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Magnetic Quantization and Phase Space Methods

Siliang Weng,
Karlsruhe Institute of Technology (KIT)

Abstract

In this talk we introduce the framework of magnetic quantization, aiming to treat wave or
Schrödinger equations in the presence of a strong magnetic field. Essentially this quantiza-
tion gives a pseudo-differential operator theory that incorporate the magnetic field, allowing
magnetic potentials that grows towards infinity. With this framework, we are able to adapt
the phase space transform methods, which were designed originally for the usual wave or
Schrödinger equations. Then such methods can be used to obtain well-posedness results for
magnetic equations, in the setting of more general magnetic fields.
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Interaction of liquid crystals with a rigid body

Felix Brandt,
Technical University of Darmstadt

Abstract

This talk addresses the interaction problem of liquid crystals with a rigid body. The physical
motivation for such problems is the presence of so-called liquid crystal colloids formed by
dispersion of colloidal particles in the liquid crystal host medium, where a colloidal particle is
viewed as a rigid body.

In the first part of the talk, we investigate the interaction problem involving a simplified
Ericksen-Leslie model. We verify that the director condition |d| = 1 is preserved in the in-
teraction problem. After transforming the moving boundary problem to a fixed domain, we
establish the local strong well-posedness by showing maximal Lp-Lq-regularity of the linearized
problem. Moreover, we prove global strong well-posedness close to constant equilibria, where
we perform a splitting argument of the director into its mean value zero and average part to
overcome the lack of invertibility.

The second part of the talk is dedicated to the study of the interaction problem of a general
Beris-Edwards Q-tensor model. In contrast to Ericksen-Leslie models, which are vector models,
Q-tensor models build on symmetric, traceless 3×3-matrices Q to describe the biaxial alignment
of molecules. In order to tackle the resulting quasilinear mixed-order problem with moving
boundary, we first transform it to a fixed domain and then establish maximal Lp-regularity in
an anisotropic ground space of the form L2 × H1 by means of a “monolithic” approach. The
proofs of the local strong well-posedness for large data and the global strong well-posedness for
small data are completed by suitable nonlinear estimates.

The talk is based on joint work with Tim Binz, Matthias Hieber and Arnab Roy.
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Gradient integrability for bounded BD-minimizers

Ferdinand Eitler,
University of Augsburg

Abstract

This talks focuses on regularity theory for bounded generalised min imisers of µ-elliptic linear
growth functionals in the space BD of functions of bounded deformation. For this kind of
variational problems the latter space is natural, but a priori the symmetric gradient exists only
as a matrix valued Radon measure. For generalised minimisers which are locally bounded we
es tablish a higher gradient integrability result for the full range of µ ∈ (1, 3]. In order to
use the available a priori bounds on the symmetric gradients, we must simultanously allow for
algebraic manipulations and keep track of the L∞-constraint. The potential non-uniqueness
of generalised minimisers moreover requires these tasks to be compatible with a suitable ap-
plication of Ekeland’s variational principle. This is joint work with Lisa Beck (Augsburg) and
Franz Gmeineder (Konstanz).
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Existence of a monostable front for a KPP numerical scheme

Louis Garénaux,
Karlsruhe Institute of Technology (KIT)

Abstract

The KPP equation is a reaction-diffusion equation, that admits travelling wave solutions. In
this presentation, we will study the corresponding natural numerical scheme, and will discuss
how existence of a front for the space-continuous equation can lead to existence of a front for
the space-discrete equation. This is a joint work with Hermen Jan Hupkes.
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Transverse instability of line periodic waves to the KP-I equation

Wei Lian,
Lund University

Abstract

The passage from linear instability to nonlinear instability has been shown for 1D solitary
waves under 2D perturbations. Although transverse instability of periodic waves to the KdV
equation under the KP-I flow has been expected to be true from spectral instability for a long
time, it has not been clear how to adapt the general instability theory for solitary waves to
periodic waves until now. In this talk, we present how such an adaptation works with the aid
of exponential trichotomies and multivariable Puiseux series.

Joint work with Erik Wahlén.
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Nonlinear Stability at the Eckhaus Boundary in case of a Shortwave Destabilization

Emile Bukieda (Joint w. Björn de Rijk),
Karlsruhe Institute of Technology (KIT)

Abstract

We consider the complex Ginzburg-Landau equation in two spatial dimensions, which depends
on two real parameters a and b and admits a family of periodic traveling stripe solutions
parametrized by the wave number. We are interested in the nonlinear stability of these solutions
against localized perturbations. It is known that, depending on a and b, these waves are either
always unstable or there exists a critical value for the wave number, the so-called Eckhaus
boundary, above which they are stable and below which they are unstable. If the wave number
passes through the Eckhaus boundary from above a short- or longwave destabilization occurs.
It has been shown in case of longwave destabilization that periodic traveling waves are still
nonlinearly stable at the Eckhaus boundary. Here, we settle the other case and establish
nonlinear diffusive stability at the Eckhaus boundary in case of a shortwave destabilization.
Our proof relies on iterative L1-L∞ estimates on the Duhamel formulation of the perturbation.
To his end, we decompose the underlying semigroup which allows to separately handle the
interactions of different critical modes in the nonlinear terms. A challenge is that standard
L1-L∞ estimates are insufficient to control the most critical interaction terms. Inspired by the
space-time resonance method, developed for dispersive systems, we uncover a generic absence
of space resonances to exploit oscillations in frequency yielding additional decay which allows
to close a nonlinear argument.
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Exponential Decay of the Linear Maxwell System due to Interior Conductivity

Richard Nutt,
Karlsruhe Institute of Technology (KIT)

Abstract

We study the anisotropic, linear Maxwell system on a bounded domain with an L∞ conductivity
in a collar around the boundary and perfectly conductive boundary conditions. We show that
solutions with divergence free initial values decay exponentially to 0. In our approach we split
the solution via a Helmholtz decomposition and then show an observability estimate for the
homogenous Maxwell problem.
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Soliton-based frequency combs in the Lugiato-Lefever equation

Lukas Bengel,
Karlsruhe Institute of Technology (KIT)

Abstract

Kerr frequency combs are optical signals consisting of a multitude of equally spaced excited
modes in frequency space. They are generated by converting a continuous-wave pump laser
within an optical microresonator. In its simplest form, the physics in the microresonator is
modeled by the Lugiato-Lefever equation, a damped nonlinear Schrödinger equation with forc-
ing. In this talk we demonstrate that the Lugiato-Lefever equation supports arbitrarily broad
Kerr frequency combs by proving the existence and stability of periodic solutions consisting of
any number of well-separated, strongly localized and highly nonlinear pulses.

The talk is based on a joint work with Björn de Rijk (KIT).
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Global regularity of 2D density patches for the incompressible inhomogeneous
Navier-Stokes equations with largely varying viscosity coefficient

Rebekka Zimmermann,
Karlsruhe Institute of Technology (KIT)

Abstract

We consider the two-dimensional inhomogeneous incompressible Navier-Stokes equations with
density-dependent viscosity coefficient. These equations describe the motion of a fluid with
variable density and viscosity, which arises for example when mixing two immiscible fluids with
different densities and viscosities. One question one might ask in this situation is whether the
regularity of the interface between the two fluids is preserved over time. In this talk we prove
that under suitable assumptions on the initial data this is indeed the case, even for largely
varying, discontinuous viscosity coefficients.
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Breather solutions for semilinear wave equations - Part 1

Sebastian Ohrem,
Karlsruhe Institute of Technology (KIT)

Abstract

We consider the semilinear wave equation

V (x)utt − uxx = Γ(x)|u|p−1u, for (x, t) ∈ R× R,

with p ∈ (1,∞). For carefully chosen material coefficients V,Γ we show existence of time-
periodic, real-valued, space-localized solutions, called breathers. We use variational methods.

In Part 1, we investigate a suitable domain for the energy functional

J(u) =
1

2

∫
−V (x)u2

t + u2
x d(x, t)−

1

p+ 1

∫
Γ(x)|u|p+1 d(x, t),

and its embedding properties, which are used for the variational argument.
This is joint work with Julia Henninger and Wolfgang Reichel, and part 2 is presented next

week by Julia Henninger.
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Breather solutions for semilinear wave equations - Part 2

Julia Henninger,
Karlsruhe Institute of Technology (KIT)

Abstract

We consider the semilinear wave equation

V (x)utt − uxx = Γ(x)|u|p−1u, for (x, t) ∈ R× R,

with p ∈ (1,∞). For carefully chosen material coefficients V,Γ we show existence of time-
periodic, real-valued, space-localized solutions, called breathers. We use variational methods.
In Part 1, we developed a suitable domain for the energy functional and proved its embedding
properties. In part 2 we show the existence of a critical point of our functional which leads to
a solution of our equation. Further, we present suitable examples of V and Γ. This is joint
work with Sebastian Ohrem and Wolfgang Reichel.
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Gaussian White Noise

Robert Wegner,
Karlsruhe Institute of Technology (KIT)

Abstract

We give an overview over different definitions Gaussian White noise and their formal relations,
ultimately concluding that it is characterized by an embedding H ↪→ X of a separable Hilbert
space into a separable Banach space. An example is space-time white noise ξ, which is a key
object in the theory of stochastic partial differential equations.



Gaussian White Noise

Robert Wegner

04.02.2025

References.

• “Gaussian Measures” by V. Bogachev.

• Lecture notes by A. Lussnardi, M. Miranda, D. Pallara for 19th ISEM:
dm.unife.it/it/ricerca-dmi/seminari/isem19/lectures

Notation.

• R+ = [0,∞).

• (Ω,G,P) is a probability space.

• (gn)n∈N, (hn)n∈N are independent Gaussian random variables (RV) with law N (0, 1).

• X is a separable Banach space. B(X) is the Borel-σ-algebra

• H is a separable Hilbert space and (en)n∈N an ONB.

We have studied the following stochastic PDE:

∂2
t u+ ∂tu+ (1−∆)u+ u3 =

√
2⟨∇⟩−sξ (t, x) ∈ R+ × T2 .

Conceptually, (space-time) white noise ξ is...

1... the isonormal distribution on H = L2
t,x, i.e. the unique weak distribution ⟨ξ,−⟩ : H −→ L2(Ω,P)

which fulfills

(⟨ξ, f⟩)f∈H are centered jointly Gaussian RV with E [⟨ξ, f⟩⟨ξ, g⟩] = ⟨f, g⟩H . (1)

2... the time derivative of a Brownian motion in each dimension:

ξ =

∞∑
n=1

dBn
t en where (Bn

t )n∈N is a family of independent Brownian motions.

3... the isonormal series on L2
t,x: ξ =

∑∞
n=1 gnen.

4... the isonormal cylinder set probability measure on L2
t,x.

5... a RV with Gaussian law µ on C
− 1

2−ε
t H−1−ε

x .

6... the separable Hilbert space ℓ2(N).

1 ⟨ξ,−⟩ as a weak distribution

Definition 1. A weak distribution on a separable Hilbert space H is an equivalence class of linear operators
⟨ξ,−⟩ : H −→ {RV on (Ωξ,Fξ,Pξ)} under the relation

⟨ξ,−⟩ ∼ ⟨ξ′,−⟩ ⇐⇒ LawPξ
(⟨ξ, x1⟩, . . . , ⟨ξ, xd⟩) = LawPξ′ (⟨ξ

′, x1⟩, . . . , ⟨ξ′, xd⟩) ∀x1, . . . , xd ∈ H .
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Lemma 2. If ⟨ξ, x1⟩ and ⟨ξ′, x1⟩ fulfill (1) then ⟨ξ, x1⟩ ∼ ⟨ξ′, x1⟩, hence the isonormal distribution is a weak
distribution if it exists.

Proof. The RV ⟨ξ, f⟩ and ⟨ξ′, f⟩ are Gaussian, hence their joint laws determined by the covariances. By (1)
they agree.

2 ξ as a time derivative of Brownian motion

Definition 3. A family of RV (Bt)t∈R+
is a Brownian motion (BM) if

(i) B0 = 0 a.s.

(ii) t 7→ Bt is a.s. continuous.

(iii) For any 0 ≤ t1 < · · · < tn the increments Btk+1
−Btk are independent and have law N (0, tk+1 − tk).

scaling limit of discrete random walk −→ Brownian motion .

Definition 4 (Stochastic integral). Let f ∈ C1
c (R+).

ˆ
R+

f(t) dBt := −
ˆ
R+

f ′(t)Bt dt .

• “Sum” of Gaussian RV = Gaussian RV

• Bt has a.s. unbounded variation so the oscillations of dBt don’t cancel out to 0.

• Bt has a.s. finite quadratic variation, which allows extending to f ∈ L2(R+) (Ito-integral).

• If Bt = $ to buy/sell a stock and f(t) = $ invested then
´
f dBt = $ return.

Lemma 5. Let (Bn
t )n∈N be independent BM and (en)n∈N an ONB of H. Then ⟨ξ,−⟩ := ⟨

∑∞
n=1 dB

n
t en,−⟩

is space-time white noise.

Proof. for f ∈ C1
c,tL

2
x we have

⟨ξ, f⟩ =

〈 ∞∑
n=1

en dB
n
t , f

〉
t,x

=

∞∑
n=1

ˆ
R+

⟨f(t), en⟩x dBn
t =

∞∑
n=1

ˆ
R+

⟨∂tf(t), en⟩xBn
t dt is a centered Gaussian RV ✓

E [⟨ξ, f⟩⟨ξ, g⟩] =
∞∑

n,k=1

ˆ
R+

⟨∂tf(t), en⟩x⟨∂sg(s), ek⟩x E
[
Bn

t B
k
s

]
=δn,k min{s∧t}

dtds

=

∞∑
n=1

ˆ
R+

⟨f(t), en⟩x⟨g(t), en⟩x dt = ⟨f, g⟩t,x ✓ (2)

Extend to f ∈ L2
t,x...

3 ξ as the isonormal series

Let H be a separable Hilbert space and consider the formal random series ξ =
∑∞

n=1 gnen.

Lemma 6. f 7→ ⟨ξ, f⟩ is the isonormal distribution.

2



Proof. We check (1):

⟨ξ, f⟩ =
∞∑

n=1

gn⟨f, en⟩ is a centered Gaussian RV ✓

E [⟨ξ, f⟩⟨ξ, g⟩] =
∞∑

n,k=1

E[gngk]
=δn,k

⟨f, en⟩⟨g, ek⟩ =
∞∑

n=1

⟨f, en⟩⟨g, en⟩ = ⟨f, g⟩ ✓

Lemma 7. (i) Almost surely, ξ diverges in H if H is infinite dimensional.

(ii) Almost surely, ξ converges in Hs = H
∥·∥Hs

for s < − 1
2 where ∥x∥2Hs =

∑∞
n=1 n

2s⟨x, en⟩2.

Proof. (i)

P

( ∞∑
n=1

gnen converges

)
= P

( ∞∑
n=1

g2n <∞

)
≤ P

(
1

N

N∑
n=1

g2n
N→∞−−−−→ 0

)
.

But by the law of large numbers

P

(
1

N

N∑
n=1

|gn|2
N→∞−−−−→ E[g2n] = 1

)
= 1 .

(ii) Let s < − 1
2 . Then

E

 supN∈N

∥∥∥∥∥
N∑

n=1

gnen

∥∥∥∥∥
2

Hs︸ ︷︷ ︸
<∞ a.s.

 = E

[
sup
N∈N

N∑
n=1

n2sg2n

]
= sup

N∈N

N∑
n=1

n2sE[g2n]
=1

<∞ .

Therefore the series converges a.s.

4 Law(ξ) as a cylinder set probability measure

Let X be a separable Hilbert space. Let πK : H −→ K ∼= Rd be a projection with finite dimensional range.
Since K ∼= Rd it has an obvious Borel-σ-algebra B(K). Define

Fcyl
K = {π−1

K (A) : A ∈ B(K) ∼= B(Rd)} Fcyl =
⋃

K⊂H,dim(K)<∞

Fcyl
K F = σ(Fcyl) .

Then Fcyl
K and F are σ-algebras but Fcyl is only a set-algebra (closed under only finite unions).

Lemma 8. F = B(H).

Definition 9. A cylinder set probability measure (CSPM) on H is probability pre-measure on
(H,Fcyl), i.e. an additive set function µ : Fcyl −→ R+ ∪ {∞} which is countable additive on Fcyl

K for
any finite dimensional K ⊂ H, and fulfills µ(H) = 1.

Lemma 10. Let µ be a CSPM and K = span(x1, . . . , xd) ⊂ H. Then

H∗ ∋ x∗
j = [y 7−→ ⟨y, xj⟩] is a RV on (H,Fcyl

K , µ) ∀ j .

3



By some abstract construction: There exists a large probability space (Ω,G,P) and an embedding

⟨ζ,−⟩ : H∗ −→ {RV on (Ω,G,P)} .

such that

Law(H,Fcyl

K ,µ) (x
∗
1, . . . , x

∗
d) = Law(Ω,G,P) (⟨ζ, x∗

1⟩, . . . , ⟨ζ, x∗
d⟩) ∀K = span(x1, . . . , xd) .

Hence we have a correspondence

{CSPMs µ} ←→ {weak distributions ⟨ζ,−⟩} .

Definition 11. Let K = span(x1, . . . , xd) ⊂ H be finite dimensional. We define a CSPM by

µ
(
π−1
K (A)

)
= µ

(
(x∗

1, . . . x
∗
d)

−1(A)
)
:= N (0, ⟨xi, xj⟩1≤i,j≤d) (A) .

for an arbitrary set π−1
K (A) ∈ Fcyl

K , A ∈ B(Rd). Then

Law(H,Fcyl

K ,µ) (x
∗
1, . . . , x

∗
d) = N (0, ⟨xi, xj⟩1≤i,j≤d) = Law (⟨ξ, x1⟩ . . . ⟨ξ, xd⟩) ,

hence µ corresponds to ξ. We call µ the isonormal CSPM.

Lemma 12. Formally, µ = Law (
∑∞

n=1 gnen) for any ONB (en)n∈N. Therefore if H is infinite dimensional
then µ does not extend to a measure on (H,B(H)).

Theorem 13 (L. Gross 1967). Let µ be a CSPM on H and consider j : H ↪−→ X where X is a separable
Banach space.

(i) j#µ is a CSPM on X.

(ii) Iff ∥ · ∥X is a “measureable seminorm” on H, then j#µ extends to a measure µ on (X,B(X)).

(iii) In this case
∑∞

n=1 gnj(en) converges µ-a.s. in X for any ONB (en)n∈N of H.

Definition 14 (L. Gross 1967). An Abstract Wiener space is an emedding H ↪−→ X where X is suffi-
ciently large so that one of the following equivalent conditions holds:

(i) The isonormal CSPM extends to a measure on µ on (X,B(X)).

(ii) The isonormal series ξ =
∑∞

n=1 gnen converges in L2(Ω;X).

(iii) The isonormal distribution ⟨ξ,−⟩ can be extended to a RV in L2(Ω;X∗).

Then µ is a Gaussian measure.

L2
t,x ↪−→ C

− 1
2−ε

t∈R+
H−1−ε

x∈T2 yields space-time white noise.

5 ξ as a RV with Gaussian law µ

Example 15. Some Gaussian measures:

(i) N (a, σ2) = 1√
2πσ2

e−
1
2σ

−2(x−a)2 dx, a ∈ R, σ2 > 0.

(ii) σ = 0 degenerate case: δ0 on R

(iii) N (a,Σ) = 1

det(
√

2π|Σ|)
e−

1
2 (x−a)TΣ−1(x−a) dLn(x), a ∈ Rd, Σ ∈ Rd×d invertible.

(iv) rank(Σ) = k < d degenerate case: Ln replaced by Hk
∣∣{

a+Σ
1
2 (Rd)

}.
(v) The Wiener measure µ on (X,B(X)) where X = L2([0, 1]) or X = Cb([0, 1]) such that for all

A ∈ B(X), µ(A) = P(Bt ∈ A) .

4



(vi) There exists a Gaussian measure µ on C
− 1

2−ε

t∈R+
H−1−ε

x∈T2 s.t.

Lawx∼µ(⟨x, f1⟩t,x, . . . , ⟨x, fd⟩t,x) = Law(⟨ξ, f1⟩, . . . , ⟨ξ, fd⟩) ∀f1, . . . , fd ∈ L2
t,x .

Let X be a separable Banach space.

Definition 16. A measure µ on (X,B(X)) is Gaussian if these equivalent definitions hold:

(i) For every f ∈ X∗ we have f#µ = N (0, σ2) for some σ > 0.

(ii) The characteristic function

µ̂(f) =

ˆ
X

eif(x) dµ(x) fulfills µ̂(f) = eiEµ[f ]− 1
2 Covµ(f,f)

where

Eµ[f ] =

ˆ
X

f(x) dµ(x)

Covµ(f, g) = Eµ

[(
f − Eµ[f ]

)(
g − Eµ[g]

)]
=

ˆ
X

(
f(x)− Eµ[f ]

)(
g(x)− Eµ[g]

)
dµ(x) .

Lemma 17. Some facts:

• Fernique theorem: ∃α > 0 such that
´
X
eα∥x∥

2
X dµ(x) <∞.

• Eµ ∈ (X∗)∗ and Covµ ∈ (X∗ ⊗X∗)∗, i.e. they are bounded multilinear forms w.r.t. ∥ · ∥X∗ .

• ∃ aµ ∈ X, the mean of µ, such that Eµ[f ] = f(aµ) ∀ f ∈ X∗.
Suffices: Eµ ∈ (X∗)∗ is weak*-continuous. Use uniform boundedness and dominated convergence.
Alternatively: aµ = Eµ[IdX ] exists as a Bochner integral.

• The measure µ0(A) = µ(A − aµ) is centered Gaussian. For simplicity we always assume µ is
centered.

• X∗ ⊂ L2(X,µ), so every f ∈ X∗ is a linear RV.

• ⟨f, g⟩L2(X,µ) =
´
X
f(x)g(x) dµ(x) = Covµ(f, g).

• Covµ(−, g) ∈ L2(X,µ)∗ ⊂ (X∗)∗
evx(f)=f(x)
←−−−−−−−−↩ X.

Question: When is Covµ(−, g) ∈ evX , i.e. Covµ(f, g) = f(h) for some h ∈ X?

Definition 18. The Reproducing kernel Hilbert space (RKHS) X∗
µ of µ is the closure X∗∥·∥L2(X,µ) .

It is a Hilbert space with inner product Covµ. Let τ : (X∗
µ)

∗ −→ X∗
µ be the Riesz representation.

Definition 19. The Cameron-martin space (CMS) H of µ is the Hilbert space

H = {h ∈ X : ∥h∥H <∞} ∥h∥H = ∥ evh ∥(X∗
µ)

∗ .

Lemma 20. (i) Eµ ∈ (X∗
µ)

∗ and Covµ ∈ (X∗
µ ⊗X∗

µ)
∗, i.e. they are bounded w.r.t. ∥ · ∥L2(X,µ).

(ii) If g ∈ X∗
µ then τ−1(g) = Covµ(−, g) ∈ evX ⊂ (X∗)∗

Again: weak*-continuity by uniform boundedness and dominated convergence.

(iii) We have isomophisms

H
τ◦ev−−−→ X∗

µ
ev−1 ◦τ−1

−−−−−−→ H .

(iv) If h ∈ H and g = τ(evh) ∈ Xµ
∗ are identified, then Covµ(f, g) = Covµ(f, τ(evh)) = evh(f) = f(h).
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Proof. (iii) ∥∥∥ev−1
Covµ(−,g)

∥∥∥
H

= ∥Covµ(−, g)∥(X∗
µ)

∗ = ∥g∥X∗
µ
.

Example 21. Consider the Wiener measure µ on X = L2([0, 1]).
Then

X∗ =

{[
B 7→

ˆ 1

0

f(t)Bt dt

]
: f ∈ L2([0, 1])

}
.

What are X∗
µ = X∗L

2(X,µ)
and H? Suppose (fn)n∈N is Cauchy in L2([0, 1]). Write

Ih(t) =

ˆ t

0

h(s) ds .

Then

0
n,m→∞←−−−−− E

[(ˆ 1

0

(fn − fm)Bt dt

)2
]

IBP
= E

[(ˆ 1

0

I(fn − fm) dBt

)2
]

(2)
=

ˆ 1

0

(I(fn − fm))
2
dt .

Therefore ∃G ∈ L2([0, 1]) : Ifn −→ G. Hence

X∗
µ =

{[
B 7→

ˆ 1

0

f(t) dBt

]
: f ∈ L2([0, 1])

}
,

〈[
B 7→

ˆ 1

0

f(t) dBt

]
,

[
B 7→

ˆ 1

0

h(t) dBt

]〉
X∗

µ

=

ˆ 1

0

fhdt .

For h ∈ L2([0, 1]) calculate〈[
B 7→

ˆ 1

0

f(t) dBt

]
︸ ︷︷ ︸

∈X∗
µ

, (τ ◦ ev)(Ih)︸ ︷︷ ︸
∈X∗

µ ?

〉
X∗

µ

= evIh

([
B 7→

ˆ 1

0

f(t) dBt

])
=

ˆ 1

0

f(t) d(Ih)(t) =

ˆ 1

0

fhdt .

Therefore (τ ◦ ev)(Ih) =
[
B 7→

´ 1
0
h(t) dBt

]
. Hence

H =
{
Ih : h ∈ L2([0, 1])

}
, ⟨If, Ih⟩H =

ˆ 1

0

fhdt .

Remark 22.

H
{stochastic integrands}

↪→ (X,µ)
{samples of Gaussian noise}

⇝ X∗
µ

{RV which are stochastic integrals}

dF (· · · ∈ X∗
µ)

d(· · · ∈ H)
= Malliavin calculus = $$$ .

Lemma 23 (CMS Facts). (i) H
cpt.
↪−−→ X.

(ii) If H is infinite dimensional then µ(H) = 0.

(iii) H =
⋂

µ(E)=1
E Borel subspace

E.

(iv) Cameron-Martin theorem: Let h ∈ X.

µ(·+ h)≪ µ ⇐⇒ h ∈ H and then
dµ(·+ h)

dµ
(x) = eτ(evh)(x)− 1

2∥h∥
2
H .
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(v) If X is a Hilbert space then H = Q
1
2
µ (X) where ⟨Qµf, g⟩ = Covµ(f, g).

(vi) Let X
j

↪−→ Y and µ be Gaussian on X. The CMS Hµ of µ and Hj#µ of j#µ fulfill Hµ
j←→ Hj#µ.

Theorem 24 (R.M. Dudley, J. Feldman, L. Le Cam 1971). Let H ↪−→ X and µ be a measure on (X,B(X)).
The following are equivalent:

(i) H ↪−→ X is an abstract Wiener space and µ the isonormal CSPM.

(ii) µ is Gaussian and H is the CMS of µ.

6 ξ as a Hilbert space

Remark 25. Fix a separable Hilbert space H. Various abstract Wiener spaces H ↪−→ X are just “presen-
tations” of the same “isonormal” noise on H:

{Gaussian measures on separable Banach spaces}
Cameron-Martin space

−−−−−−−−−−−→

←−−−−−−−−−−−
abstract Wiener spaces

{separable Hilbert spaces} .

Therefore there are really only N+ 1 types of Gaussian noise:

R1,R2,R3, . . . , ℓ2(N) .
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Nonlinear dynamics of periodic Lugiato-Lefever waves against nonlocalized
perturbations

Joannis Alexopoulos,
Karlsruhe Institute of Technology (KIT)

Abstract

I give an overview of nonlinear stability results of diffusively spectrally stable periodic wave
trains in the Lugiato-Lefever equation. Inspired by previous works, I add a further nonlinear
stability result for a class of nonlocalized perturbations. This extends and unifies existing
results in a natural manner. Furthermore, I discuss some insights of the proof.
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On the Gross-Pitaevskii flow past a delta potential in one dimension

Martino Caliaro,
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Abstract

In this talk we investigate the flow of a one-dimensional Gross-Pitaevskii fluid past a repulsive
delta potential. For subsonic velocities of the flow at infinity, this system admits a critical
value of the potential strength, below which two steady solutions exist. At the critical value
of the potential strength the two solutions merge, while above it they disappear in a saddle
node bifurcation. Numerical simulations suggest that, in the subcritical regime, the first of
these steady solutions is stable while the second is unstable. We employ the method of the
Evans function to show the linear instability of the second solution, assuming that the potential
strength is small enough. The talk is based on joint work with Paolo Antonelli (GSSI).


