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1 Introduction

1.1 Context

Consider a particle at position u(t) € R in a quadratic potential V(u) = Z|u>. The force
acting on the particle is given by

Ut — —8UV(u) = —Uu.

This system is a harmonic oscillator. Since one could say that all smooth potentials are in
approximation just quadratic potentials up to second order, locally around an equilibrium
point, the harmonic oscillator is one of the most fundamental systems in physics. Consider
now the case of a quartic potential V'(u) = 3|u|> + %|u[*. Then the force is given by
uy = —u—u’,

which is now a nonlienar equation. Visually, the difference to the harmonic oscillator is that the
frequency of oscillation increases with the amplitude. Suppose now that this system experiences
a friction or drag force proportional to the velocity of the particle, but acting against it. Up
to constants, we then have the equation

Ut = —ut—u—u3.



Here the amplitude of the oscillation will decay exponentially due to the damping term —uy.
Suppose now in addition that for every z € R? we have such a damped nonlinear harmonic
oscillator u(t,x), and that these are coupled, meaning that in each point x the particle u(t, x)
experiences forces proportional to the height difference to its surrounding particles. This
coupling force can be modeled by the laplacian Awu, so the equation becomes

utt:Au—ut—u—u3.

Lastly, we add white noise. Informally, let for each ¢ and x let (¢, x) be independent standard
normal random variables. Then, with a certain constant v/2, we arrive at the system

utt:Au—ut—u—u3+\@f
u(0) = up, ut(0) = ugp.

The actual definition of £ is more involved as one wants to avoid working with an uncountable
number of independent random variables (in fact, one can not construct the family of random
variales {£(¢,x)} on the probability space ([0, 1], B([0,1]), dz)).

We restrict ourselves on the two-dimensional case

Ru+ O+ (1 —Au+ud =+/2¢

on B={zxeR?:|z| <1}, 1.1
’LL(O):’U,O,’U,t(O) :Ut,o { ’ ‘— } ( )

where u is a radially symmetric function with zero boundary values and £ is radially symmetric
space-time white noise. This is now a stochastic nonlinear partial differential equation and the
system that we will study in this work. Let us informally present three questions that one may
ask when faced with such an SPDE.

(1) Global Well-posedness. Do solutions exist globally in time and with continuous depen-
dence on the initial data? What is a natural function space for the initial data so that the
problem is globally well-posed but little regularity was assumed?

(2) Existence of Invariant Measure Does an invariant measure exist? Let ®(¢,up) be the
solution to the equation with initial data ug = (ug, uto). Then, neglecting the presence
of random forces for now, a measure p(dug) on the space of initial data is invariant if
O(t, )yp = p forall t > 0.

We can phrase this in a practical manner. Suppose we are observing an experiment which
consists of a random initial data ug evolving according to the equation. Suppose that at
any time ¢ we can perform a number of measurements on the state of the system, each
represented by the function 1 4(u, u;) with A being a (measurable) set of pairs of functions.
Then an invariant measure is a distribution for the random initial data such that for any
time t there is no difference in the statistics we get when applying any of our possible
measurements.

(3) Ergodicity There are various ways to state ergodicity. In this setting we say that the
evolution induced by the equation is ergodic if

T
lim [ E[La(®( )] dt = / 14(w) dp(u)

T—oo 0



for all initial data ug = (ug, ut,0) and measurable sets of initial data A.

We also can interpret this in the practical setting. What this means for us, the exper-
imenter, is that for any measurement 14 and deterministic initial data ug the expected
value of the measurement E [1 4(®(¢,ug))], when time-averaged over a long time span, will
converge to the expected result of the measurement if we had sampled a random initial
data according to the invariant distribution.

In this work we offer the reader the following:

1. An introduction to stochastic PDEs: How white noise is defined, what it means, and how
we can handle it in the equation using the stochastic convolution.

2. A classical local well-posedness argument for the deterministic system, reducing the nonlin-
ear problem to finding a pertubation of the linear solution.

3. A global well-posedness result for system (1.1) using a non-trivial energy estimate.

4. A construction of the Gibbs measure and a proof that it is invariant for the system (1.1),
via a reduction to the finite dimensional (SDE) setting.

These results are closely related to the work of L. Tolomeo in [19]. There he shows global
well-posedness, existence of invariant measure and ergodicity for the class of equations

Ru+du+ (1(=A)u+u =v2¢

u(0) = ug on the torus 7T

where d € N and s > d. Our case is s = d = 2 restricted to the ball B and assuming radial
symmetry. These assumptions improve the regularity of the white noise in such a way that
a procedure called renormalization is not necessary. Further work could aim to transfer the
ergodicity argument in [19] over to this setting.

In [17] N. Burq and N. Tzvetkov studied the local existence of strong solutions to the cubic
nonlinear wave equation

uy — Au+u =0 (1.2)
(u(0), 8ru(0)) = (uo, us,0)

in Sobolev spaces H*(M) with s < 3, where M is a compact three-dimensional manifold. As
the homogeneous sobolev norm || - || frs(rey) 18 invariant under the scaling symmetry u At z) =
Au(At, Ax) of (1.2) precisely when Seyi = % — 1, we call seit = 0 for d = 2 and st = % for
d = 3 the critical index of the system. While the local well-posedness works often works
well for the subcritical case s > s.it, in the supercritical case s < sqit the usual methods such
as Strichartz estimates fail. In some cases even ill-posedness can be shown ([6]). Burq and
Tzvetkov nevertheless manage to show local well-posedness in three dimensions for a “large”
set of initial data in the supercritical case. The idea is that they consider the problem for a
random initial data (ug,us,). This regularizes the problem in a certain sense: Consider the
inequality
P 4
E[X[") S p2 E[IX]?]?
for a Gaussian random variable X (it is extended to more general probability distributions
in [17]). This allows one to improve estimates for the solutions to the random initial data



problem which are for L?- or L*-norms to the case of LP-norms, a strategy which Burq uses for
his existence result and which we will also in our local well-posedness theory. In our case we
show the largest space for which we show well-posedness is a space XY, which is only slightly
smaller than the critical case HP°.

Regarding the global well-posedness, the problem with white noise has recently been studied
in [12]. There the authors show global well-posedness of the renormalized cubic stochastic
nonlinear wave equation

v+ (1 — A+ 0% + 302 + 3v % 4+ 43 =0 (1.3)

in H*(T?), where s > % and T? is the two-dimensional torus. Here 1) is the stochastic convolu-
tion, which represents the solution to the wave equation forced by white noise. The regularity
of 1 plays a crucial role in these arguments, as it is a priori only a distribution in space. If one
can not show that 1 is in fact represented by a measurable function, then one can not make
sense of powers of 1) and has to resort to a procedure called “renormalization”, which involves
additional terms. This is the case in (1.3), where the colons : — : denote the renormalization.
In our case, the two-dimensional and radially symmetric one, we will find that ¢ is indeed a
function and hence we do not have to worry about the process of renormalization. This poses
the question if we can achieve a better global well-posedness result than in [12]. Specifically,
for the energy

1 1 1 1
E(v,v) = / §\Ut|2 + §’U|2 + §WU|2 + 1|U\4d$,

the authors find only a double-exponential energy estimate. The reason here is that when
attempting a Gronwall-type argument, they encounter a term which looks something like
[ |ve][v|?|¢| dz. Since we want to arrive at a differential inequality of the type %E < E, we
need to estimate this by the energy. Since

/ oello?l] do < Bl

is not good enough due to alack of regularity of 1), one has make an estimate that results in
too large a power of the energy being present on the right hand side. The same issue occurs
in our case as well, giving evidence that it was not the lack of regularity of i that caused the
problem, but it is instead related to the dimensionality of the space. In [12] the authors resolve
this in a fashion that in spirit is very similar to the expression below:

1
/ el [o?|v| dz < B )| o

The above is in fact precisely how we will resolve this problem. After a smart choice of p one
obtains the differential inequality %E < Eln F, which then leads to the double-exponential
energy estimate.

Besides the global well-posedness, we show the invariance of the Gibbs measure
w=exp(—FE(u,u)) “ duduy”,

which of course has to be rigorously defined on an infinite dimensional function space. Impor-
tant and early contributions in this area were made by J. Bourgain in [3] and [23], where he



showed the invariance of the respective Gibbs measures for nonlinear Schrédinger equations.
Notably he introduced what is now known as “Bourgain’s invariant measure argument”, a
method that exploits the invariant measure as a replacement for conservation of the energy to
gain global existence of solutions. For a great overview of the literature regarding the questions
of global existence and invariant measures for cubic nolinear wave and Schrédinger equations,
we recommend figure 1 in [5].

In the cases where the invariance of the Gibbs measure fails, one may ask the question if
the weaker condition of quasi-invariance holds. Quasi-invariance means that as the initial
distributions transforms under the flow induced by the equation, the measure at any positive
time remains absolutely continuous with respect to the initial measure. We refer the reader to
[10] for a recent result.

1.2 Function Spaces and Notation

We will study this equation in Bessel potential spaces of radially symmetric functions. In this
section we construct these spaces as subspaces of the space of distributions and define the
specific notations used in this text.

Let D C R? be the closure of a non-empty open set. For 1 < p < co we define
LP(D)={f € LP(D) : |z| = ly| = f(x) = f(y) for almost all z,y € D}

We may write just LY or LP for LY (D). Generally for any function space X the space notation
X, refers to the corresponding subspace of radially symmetric functions or distributions. If we
are considering functions in time and space, we may write LY ([0, T] x D) or L ,, in which case

we mean LP([0,T], L¥(D)). The same holds for the case of distributions below. When writing
the respective norms we will usually write || - [|z» instead of || - || ».

We denote the spaces of test functions and radially symmetric test functions on D by
D(D) and
Di(D) :={f €DD): || =yl = f(x) = f(y)}

respectively. We denote the spaces of distributions and radially symmetric distributions
on D by D'(D) and D'y (D). They are the spaces of continuous linear functionals on the
corresponding space of test functions respectively, equipped with the usual topology. We
denote the Schwartz space by S;(R%) and its subspace of radially symmetric functions by
S:(R%). Correspondingly we write S(R?)" and S/(R?) for the spaces of tempered distributions
and radially symmetric tempered distributions.

On a domain D we define S(D) = D(D) N S(RY) and S;(D) = D,(D) N S:(RY). We define
S'(D) and S/(D) as the topological dual spaces. Later we will only deal with the case where
D = B is a bounded domain and so will be able to use D and S interchangeably, choosing D
by default.

For some 1 < p,p’ < oo with % + 1% = 1 we can consider the subspace of §'(D) given by the
norm
1fllzey =" sup  [(f,9)]-
9€D(D)
”gHLp/(D)Sl



What we are doing here is simply identifying the dual space (LP')*(D) with LP(D). We use
the same approach to define the Bessel potential spaces H*?(R%) for o € R. For this we need
a definition of the fractional operator (1 — A)2 on test functions. Let F : S(RY) — S(R?) be
the Fourier transform given by

FONE) = mE [ f@ye e da,
It has the important property that
—Af = FHEPF)-
We therefore define for o € R the Bessel potential on R? of order —a by
(1-A)2,f = F A+ EREF()
This definition makes sense not only for f € S(R?), but also f € S'(R?). In that case we have
(V)gats9) = (f,(V)%g)
for all g € S(RY). For A € R we use the shorthand notations
(A) =1+ |22
N =2+ 2

[e3

which allow us to define (V)2 == (1 — A)]gd. Now let o« € R and 1 < p < oo. we define the
Bessel potential space H*?(R?) as the subspace of S(R?) given by the norm

1 Uty = D)2y = 51D 1 (V) 2ug)-
geS(RY)

1917 ety <1

We define H?P .= H*P(R%) N S'(R?) and note that this is a closed subspace.

Note that the map
(V)2 : HYP(RY) — HOPP(RY)

is an isometry for all a;, 8 € R.

Let us now compare this to some other function spaces. It is well-known that if o > 0
then H*P(R%) C LP(RY). In fact, the Bessel potential spaces can be seen as a definition of
fractional Sobolev spaces: if o = k is an integer then H*?(R%) = W*»(R?) ([18, Thm. 3)),
where W*P(R%) are the classical Sobolev spaces.

There is an alternative way to define fractional sobolev spaces. It is the case that H*P(RY) =
FP?(RY), where FE is the Triebel-Lizorkin scale of function spaces which the reader may
read up on in [21]. We will not need these function spaces but want to make it clear that the
Bessel potential spaces H%P(R?) should not be confused with an alternative scale of fractional
sobolev spaces which we denote by W™ (Rd), where for non-integer « one chooses the so called



Sobolev-Slobodeckij space. Here we have W7 (R?) = FPP(RY). In the case p = 2 the two
definitions agree, i.e. H%?(R%) = WQ’Z(Rd). We write H*(RY) := H*?(R?) for this special

case.

A further way to describe this difference is that the Bessel potential spaces are the complex
interpolation spaces and the Sobolev-Slobodeckij spaces are the real interpolation spaces be-
tween the integer sobolev spaces W P(R?). More on this can be found in [14], specifically
theorem 6.4.5.

We now restrict ourselves to the case of radially symmetric functions on the two-dimensional
ball B = {x € R? : |z| < 1}. We define

g (8) = D) o
Note that we have an isomorphism
Hyf (B) = (Ho g (B))* (L4)
by defining for f € H’(B) and g € H;(?’pl(B) the dual pairing
(£.9) = (V)2 1, (V)359),
where now (V)&, f € L{(B) and (V)gsg € Lf,(B). Then by Hoélder’s inequality
45,90 < )5 o)z ) = W o091y

implying that we can identify H.¢"(B) with (Hrjéx’pl(B))*. This means that if & > 0 the
expression (f, g) is well-defined for any g € LE(B).

We will now define an alternative scale of fractional Sobolev spaces Wi'" specifically on the
ball B and then show that Wy** = HF(B). For this we need a special basis of L?(B). Here
we follow the same approach as Tzvetkov does in [24, Section 1], using a basis of rescalings of
the zero order Bessel function of first kind:

VIOEDY ((;3? (5" = icos(t;/ Yioad, (1.5)

The corresponding transform is sometimes also called the Hankel transform. Skipping the
details, we are given an orthonormal basis (e, )nen of L2(B) consisting of smooth functions

m=0

Jo(An|z|)
[Jo(An) L2 (B)

Crucially, the e, are eigenfunctions of —A with corresponding eigenvalues

en(x) = (1.6)
0<|MPP<|hfr<...

and zero boundary values. We say that |\,|? is the n-th eigenvalue because this corresponds
to A, being the n-th positive root of z — Jy(z), the zero order Bessel function. It also keeps



our notation consistent with the usage of a Fourier basis on the torus, as instances of |n| are
now replaced with |A,|.

For two sequences an, b, € Ry we write a,, ~ b, if both Z—Z and fTZ are bounded, and a, ~ b,

if lim b” = lim b" =

Note that |A,| ~ n for large n (|24, Section 1.2]). We have

(An] = (An) ~n. (1.7)

We call this basis (e,)nen the Bessel function basis. We define the Bessel potential on
B of order —a by

(V)%f=(1-A)2f: Z “(f,en)e
where f € D,(B). This definition can be extended to f € D.(B), in which case

(V)Bf.9) = {f,{(V)B9)

for all g € Dy(B). Now we define W;** to be the subspace of D,(B) corresponding to the norm

[fllwer = VBfllze = sup  [{f,(V)Bg)I.
g€S:(B)

190l () <1

As the radially symmetric test functions on B are dense in this space, we can write
Wer — m”ﬂwg,p'
Recall that in contrast to the above, we defined
() = BB e,
where for f € D.(B) we have

[l zer @2y = Vg flle = sup — [{f, {(V)g29)l-

ge€D(B)

191 5y <1

We would therefore know that Wy = H’(B) if we knew that

(V)Bg = (V)g2g

any test function g € D; (B) This is in general not the case!l. However, if « > N is an even

integer, then both (1 A)Z and (1— A) become ordinary powers of (1 —A) and hence agree.
Therefore Wy = H’(B) holds for all a€2N.

For a > 0 we can now recover the spaces Hy¢’(B) and Wy*" as complex interpolation spaces
of those spaces on their respective scales with even integer index, hence Wy™" = Hi’(B) for
all & > 0. We finally extend this to < 0 by the duality in (1.4) and the analogous duality
result for WP,



We are mostly interested in the space H, = Hy), éQ(B), whose norm has the formula

111z, 8) = D (> |(f en) .
n=1

If f: Lf( B R is linear and the right hand side above is finite, then f € Hra (’)2.

We now define some new and simplified notations for the objects we really care about. We set
= W? = HYy(B) = H'(B).
It is a Hilbert space with the inner product
[e.e]
YO‘ZZ fven <g)6n>
n=1

We also define the notation f (n) = (f, en) and sometimes write F(f) for f, using the symbol
for the Fourier transform suggestively and intentionally.

We define
=|J B and  HX=()H
a€cR aceR

We consider these merely as sets and not spaces, unless otherwise specified.

Furthermore, we define
WP = WP 5 WELP and HE = HY x H* L,

We will use bold letters to refer to pairs of distributions u € D?(B) and write the individual
components in any of the following ways:

u = (u,u) = (mu, mpu) = (ug,ug) = (mu, mou).

It should be said that u; is not necessarily the time derivative of u here. Time derivatives
will often but not always be denoted by J; or some similar notation. We only use the suggestive
notation u; since the second component of a pair of functions will often be precisely the time
derivative of the first, i.e. 0;u = u; holds.

We will remember to write WP, LY etc. but when writing their respective norms we will most
often just write || - |[wer, || - ||zr etc.

We also define for an arbitrary Banach space (E, || - ||) the space L**P(]0,00), E') of measurable
functions f : [0,00) — E with exponential decay by the norm

[ £l Lexe ([0,00),2) = sup e2 || f(t)| -
>0

This will be a convenient substitute for L*°([0,00), E) because exponential decay is often
present in our damped setting. Note that

_t 2\r
£l e ((0,00), ) < 1 fllLexp((0,00), ) 1€ 2 | Lp([0,00)) = (p) £ 1l Lexe (0,00, B) - (1.8)

9



1.3 Space-time White Noise

The term & in (1.1) refers to space-time white noise. We now define and construct this object.
We fix some measure space (€2, F,P).

Definition 1.1. (i) A random radially symmetric space-time distribution £ is a

continuous linear map
¢ :D.(Ry xB) — L*(Q).

We analogously define a random radially symmetric space distribution and ran-
dom time distribution. We may also consider vectors of random distributions where

the test functions are in Dy (uk(R+ ><B)> =~ D.(Ry xB)* for k € N.

(ii) A random radially symmetric space-time distribution £ is called radially symmetric
space-time white noise if (£, f) is a centered Gaussian random variable and

ELENE ) =92,

for all f,g € D:(Ry xB).

(iii) Let W be a one-dimensional Brownian motion. We define a random time distribution

dW. For f € D(R), set
(dW, f) = A f(s)dW(s).

This is a Wiener integral, an object which is not the focus of this text. A definition of
this integral in the infinite dimensional case can be found in [8]. Since f is smooth and
has compact support, we can choose a simple pathwise definition for this object here:

f(s)dW(s) = — W(s)f(s)ds.
Ry Ry

In Lemma 1.3 we will use further properties of the Wiener integral that require its full
definition, but we do not want to elaborate on this.

Lemma 1.2 (Extension onto L?(Ry xB)). There exists a unique estension of & to a bounded
linear operator ¢ : L2(Ry xB) — L%(Q).

Proof. Let ¢, € Dy(Ry xB) be a Cauchy sequence in L2(Ry x B) with limit ¢ € L?2(Ry xB).
Then
E U<€> ¢n - ¢m>|2] = H¢n - Qsm”%%

and so (£, ¢,) is a Cauchy sequence in L?(Q). We define (£, ¢) as the limit. From the con-
struction it immediately follows that this is a continuous function. Since the test functions
are dense in L2, the linearity is inherited and we have a bounded linear operator. Since it is
uniquely defined on the dense subset of test functions, it is unique. O

We will identify & with this extension from now on.

Lemma 1.3 (Construction of space-time white noise). Let e, be any ONB of L? and let & be
a random radially symmetric space-time distribution. Then the following are equivalent:

10



(i) € is a radially symmetric space-time white noise on Ry X B.

(i) There exist independent, one-dimensional Brownian motions (Wp)nen so that almost

surely
<£af> Z<dea f»en L2 Z/ /ft$6n dedW()

n=1

forall f € Di(Ry xB). The Brownian motions Wy, (t) are modifications of (§, 1jg 4 (s)en(7))-

Proof. We first show (ii) = (). Let (W, )nen be a sequence of independent one-dimensional
Brownian motions and let f € D.(Ry xB).

Note that [ f(t,x)en(x)dz is a test function in time and hence admissible for dW,. For
N < M € N and any other test function g, we calculate

iw;v//ft:cen dz AW ( Z// (t,z)e(z )d:dek()]
:kﬁ:N]E[/ /ftmen x) dx dW,(t } {/ﬂh/ (t,z)ex(x da:de()]

k#n

+§;VE [A+Lf(t,w)ek(w) dz dW(t) /R+/Bg(t,x)ek(m) d:nde(t)]

The first sum vanishes since we are taking the expectations of local martingales starting in
zero. For the second sum we use It6 isometry to get

_ A_J E[/R+/Bf(t,m)en@:)dx-/Bg(t,x)en(x)dxdt}

/R thn (t,n)d

+ n=N

Setting f = g we can follow from this that we indeed have a Cauchy sequence in L?(Q). As
each element in the sequence depends linearly on f, the limit is also linear. Hence £ is a random
space-time distribution. Taking M " oo and N = 1 on both sides of the computation, we see
that

Bl el = | (o) dt = (Lo

We also know that time changes of Brownian Motion yield centered Gaussian random variables
and hence the limit is also centered Gaussian. Therefore £ is space-time white noise.

Now we show (i) == (ii). Define W, (t) = (§, Loy (s)en(®))s.o- We will show that W), has a
modification W, which is a Brownian motion with the desired property.

Clearly W, (0) = 0. The definition of radial space-time white noise also implies that for all
t <o <ty all Wi (tj41) = Wa(t5) = (€ Lyt 1 15)(S)en(T))s,2 are a centered Gaussian random
variable with variances t; 11 — t;, and that they are pairwise uncorrelated, hence independent.

11



We have
E [|Wa(t1) = Wa(to) ] = Ly )17 = [t1 — to]?,

so by the Kolmorogov continuity theorem there exists a continuous modification W, of Wi,.
This then fulfills the definition of a Brownian motion.

Now let f € L?([0,00),R) be a left-continuous simple function in time, meaning that

k
Z Lt 055000 gj(x).

Jj=1

Then

(&, f) =

M=

13 I tj,tJ_H] Z en(z)(9;, en >
1 t,x

‘7 k)

(& 0,01 Denl@)) lgsren)

)

I
M-
NE

<
Il
i
S
Il
—_

(Wa(tj+1) — Wal(t;)) (s, €n)

o
M=

Il
i

7j=1

o k
S 3 Wty = o))

i/ﬂh/ft$en ) dx dW, (t).

This identity can now be concluded for all f € L?(R, x B) since both the space-time white
noise and the stocastic integral are continuous from L2(R; xB) to L?(2) and these simple
functions in time are dense. O

n

1.4 On the Matter of Measurability

Regarding measurability we will take a lenient approach and consider various maps as random
variables without explicitly proving their measurability. Let it be said that by default we
always use the Borel o-algebra of whatever Polish space we are considering, and that in the
case of separable Banach spaces, which almost all of the spaces we consider are, the Borel
o-algebras induced by the strong and weak topologies coincide. This makes it easier to prove
the measurability of the solutions to various problems we will find throughout this work, which
is a priori not a trivial matter.

Note also that we prove in Lemma 3.5 that the embeddings between various function spaces
we consider are bimeasurable, meaning that the o-algebras of H? and H! for example are, in
a sense, identical.

12



2 Local Well-posedness

From now on (ey)nen refers explicitly to the Bessel function basis unless otherwise specified.
Our strategy to prove local well-posedness is to decompose the problem into three easier prob-
lems.

1. For an data wq in a certain space X'* we solve the linear problem

OPw 4+ w + (1 — A)yw =0 (2.1)
w(0) = wo
8tw(0) = wt70

with a possibly random initial data.

2. For the space-time white noise £ we construct a mild solution to the linear problem with
inhomogeneity v/2¢:

O+ O + (1 — A)p = V2 (2:2)
$(0) =0
d,(0) = 0.

This is called the stochastic convolution.

3. Given w and 1, we now solve the deterministic and homogeneous nonlinear problem

v+ 0w+ (1 —-Aw+(w+y+0v)3=0 (2.3)
v(0)=0
Otv(O) =0.

Problem (2.1) will be solved in a rather strong sense and for (2.2) and (2.3) we will find
so-called mild solutions. Then u = w + ¢ + v will almost surely be a solution to (1.1) in
the sense of distributions.

Definition 2.1 (Distributional solution). Let T' € Ry U{co}. We say that a measurable
function u = (u,uy) : [0,00) — HY is a distributional solution to (1.1) on [0, T] with initial
data ug = (up,uro) € HY if

(uo, f1(0) = £(0))a + (ut,0, —F(0)) + (u, frr — fr + (L= A) e + (@, Few = (V26 Fleg
for all f € D([0,T) x B).

2.1 The Linear Problem with Random Initial Data

In this section we compute and analyze the solution operator S for the linear wave equation
(2.1).

We view the equation as a Hilbert space valued ODE of degree 1 by considering pairs of
functions. The equation becomes

8tW =Lw

w(0) = wy

13



where
0 1
=0 )
Then formally the solutions should be given by w(t) = S(t)wg, where
S(t) =exp (tL).

is the solution operator. One could use a functional calculus to define this operator exponential
but we will simply construct it and prove the desired properties.

The operator L is well-behaved under conjugation with our ”Fourier transform” F and so we
can define S(t) in the following fashion:

stmotm = (1(_y o L)) oo

We therefore have to only compute a matrix exponential. For ¢ > 0 we make the ansatz
0 1\ (1 1\fag 0\ /1 1\"
—1—c -1 o a; ag 0 as a; ag '

- 1
det 1,2 :0<:>a%2+a12+1+c:o
—-1-—c —1—0,172 ’ ’

we see that

is the correct choice. We get

il A w) &) ")
i (o aee) (22 )

1 < et gy — el%2q, etaz _ etar )

e aiay — e aqas eta2ag —elmgy

as — ay
Setting b = y/c+ 2 = [/c], the above is equal to
e,t% iefitbz;ez‘tb _ 2ibeitb+2efz‘tb _9; eith 2(;7ztb
—2Zb 22(@ + 1) eztb_Ql?—ltb ’L'eltb 25—%1) _ 2 be—ztb+eztb
e’ (—sin(th) — 2bcos(tb) —2sin(th)
) 2(c+ 1) sin(tb) sin(tb) — 2b cos(tb)
Using the notations [)\n] = /| l? +% and [V] = 4\/-A+ %, we ultimately get that S
conjugated with F in the n-th coordinate is given by the matrix
ﬁ sin (t [)\n]) + cos (t [)\n]) [/\1 ] sin (t [)\n])
T,(t)=e 2 |~ " (2.4)

- (4[;] + ] ) sin (¢[Aa]) =577 (D)) + cos (1))

14



This can be written in shorthand as
——sin (t [V}) ~+ cos (t [V]) - sin (t [V])

a2l
S(t)y=e""2 8 1
4

Tt [V]) sin (¢[V]) Pk

(2.5)

Take note of the componentwise estimate for T,,(¢) by the leading order term of (\,) in each

entry:
To(t) < et < < Aln> ) 1) . (2.6)

The decay factor e 2 is caused by the damping in the equation. If we studied the equation
wy + pwe + (1 — A)w =0

where J € R is the strength of the damping term, we would be dealing with the operator

b= <—<10— A) —16>

and corresponding characteristic polynomial

det [~ L :a%2+ﬁa121+c:0<:>a12:—éii c—l—l—B—Q
—l—c —f—aip ’ ’ ’ 2 4
The real term —2 5 then causes a factor e™ 3 to appear in the matrix exponential. If 8 = 0 then

this means we have no decay and if 8 < 0 we would get exponential growth.
What we can also learn from (2.6) is where T, gives and takes regularity.

Lemma 2.2. Foralla € R, S € C([0,00), L(HE, H)). For u e H?,
IS(t)ullwe < e % ully.
Proof. We estimate
e Sl = €' (1— A)F (S(t)), |32 + €'[[(1 = A)"F (S(t)u), |3

(1~ A)Zez (S(t)u),, en)]? +§j (1 A) T ez (S(t),, )]

NE

3
Il
A

p"qg

M) (3 T(D) [ (n \2+Z W2 (€2 Ta() o [a(m)

3
I
—

()2 (e2T(1) [ (n \2+Z R [ O) I R O]

+
NE

3
Il
—

Now use (2.6):

S D0 () + n)® 2 n)?) [ui(n) P + Z 2+ (W) 7?) [az(n)* < e ullfe.

n=1

O

15



Lemma 2.3. let o € R. We have
(i) For any v € (0,1] we have S € C%7(]0,00), L(H, Hy 7)) with exponential decay

15(t1) = S(o)ll L340 242
sup

t<to<t1 |t1 — to|”

SIS

< (e 2.

(i) For any u € H® we have S(t)u € C([0,00),HY) N CL([0,00), HE™Y) with exponential
decay
t
[S(E)allze + 105 (t)ullyo—r < Ce.

The derivative is given by the formula
0S(t)u = LS(t)u.

Proof. To prove (i) we simply proceed as in Lemma 2.2 but instead of (2.6) we use the estimate

_wo 1 ()Tt
it =~ Tt s (0 ) i -
(An) 1
for 0 <ty < t;. This estimate is a result of the estimate |sin([\,]t1) —sin([An]to)| < 2[An]7|t1 —
to|” and the analogous for the difference of cosines.

Now we show (ii). We start with the continuity. By the semigroup property of Sit suffices to
show that ||S(h)u — u|lye — 0 as h — 0. Looking at the Fourier multipliers, we see that
for all n € N and 4,j € {1,2} we have (T),(h) — Id); ; — 0 locally uniformly in h. Then we
proceed with the same estimates as above and use dominated convergence in £?(N) to conclude.

Like before we only have to show existence and the formula of the derivative at t = 0, as the
other cases follow from the semigroup property of S. We first compute 9,7}, (t):

o (heos (1)) — [Ad] sin (1[A]) cos (t[M])
ittt = (o ] cos (t[A) —%cos([ ) - {Adsm(w))
)

]
L2 M
2 —(4[in] n [)\n])sm( [An]) —2[;n} sin (t[)\n]) 1 cos (¢[An])
I _<4 )l\n] + [)‘”]) Sin (t P‘"]) —2[)1%] sin (L‘ [)x ]) + cos (t [)\n])
- —(3+ %) (-3 oy Sin (¢2a]) + cos (t[An])) (4[;n] + [A] ) sin (¢[Au]) = cos (¢[Aa])
Then

0T (0) = <_}1 _O[Anf _11) - <_1 —0<)\n>2 _11>

Furthermore we can bound the distance of the difference quotient to the derivative uniformly
in time t. For convenience of notation we use < and | - | in the following, with the meaning

16



that this holds for each individual component of T},(t). We write T,(t) = eféte%tTn(t) and
use the product formula for difference quotients

To(t) — 1d

t —8tTn(0)'
iy Q[in] sin(t[)\n]3+cos<t[)\n]>1 y [;n] Sint(t[)‘"]) y
=le 2| +[An] ) sin(t[A] — A sin(t[An] ) +eos(t[An] ) -1
<4[)‘"] - > ( ) + % + [An]Z Q[An] ( t> ( ) +%
0 e 2—1 _{_%
We define

and use it to estimate the above as

- '(éfS (t[2n]) + [And (¢[Mn]) 6 (¢[M]) )‘ N (v(t) 0 )
TN (X)) + ] 70 (t[An]) 28 (E[An]) + A8 (¢[A]) 0 ()
T+ [ 1
(e g e+ (0 )
Now let t # 0 and u € H. Then

M8

|HO | 300 % e a))? (|l + )
ch—l n=1
= 2-4 2 2, |2 2
3018 el (|l a0 + | o))
n=1

— 2

(M) 22 Iy (Oun ()| + ()22 Iy (t)izz(n)|

hE

+

3
Il
—

Now we let € > 0 be arbitrarily small and in particular small enough so that § is monotonous
on (0,¢e). We get

n=1
< (8(6)? +7(6)?) [[ull3e
e’} 2
+ 3 <s3p5<x>> ()2 @ ()2 + (A2 @3 () 2) .
n=1
[t][An]>€

We can choose € so that 6(e)? is arbitrarily small. Then in the last line we are only summing over
those n where n ~ [X,] > ﬁ, so the sum line vanishes as |t| — 0 (note that sup, d(z) < 00).

Lastly v(t) — 0. O
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We have seen that differentiating S causes a loss of regularity in space. If we integrate in time,
however, we can avoid some of that loss of regularity. However, we will not use this result later
on as Vh is not a very strong estimate.

Lemma 2.4. Let o € R and T,h > 0. There exists C > 0 so that for all u € L*([0, T], HY)

/OT S(t + hyu — S(t)udt‘

< C\/ﬁHuHL%[O,T},HQ)'
HO(

Proof. Let u e H* and T, h > 0.

/ " (S0t 1 B — S()u(t) de
0 He
< g (g (F an e i) =)
e 5 cos ((t+h) [Aa]) — e 5 cos (¢[A]) ) dt f T, )2 dt
T DO L i ( ™ (e %" sin (¢4 ) [An]) — ¢ E sin (¢[A])
X O g (- (4[§n] + Dal) (e sin (¢4 1) [An]) — e % sim (¢[A])
0% ()22 [ (- T (e sin (¢ 4+ 1) [An]) = ¢ % sim (¢[A])

t+h

. 2
+e~ 2 cos ((t+ h)[An]) — e 2 cos (t[A] ) dt fOT Us(n,t)? dt

We estimate the following:

2

/OT (ei# sin ((t +h) [)\n]) — e~ 5sin (t [)\n})> dt.

_ /0 ") (sin (h 4+ 1) [M]) — e sin (r[A]))? dr

< i . s[An]
S [ e g [T (s (0] ) —sin )
0 nl JO

Now we estimate one of the powers of the sines on the right hand side integrand by 2, and the
other by h[)\n]:

_h 2 s _ S[An] _ 1
<(e72—1) /erdr+/ e "dr——h[A\] S h.
0 0 [Anl

With the same method we can also show that

2

/OT (e_% cos ((t+h)[An]) — e 2 cos (t[An] )) dt < h.

Applying those estimates to the previous yields
T t+h t 2 T 2
/ (=" sin (¢ + M [Aa]) — e sin (7)) de h/ a2 dt.
0 0

18



In other words there exists a constant C' > 0 (independent of T') so that

< cVh.

T
/ S(t+ h) — S(t) dt
0 (L2071, He)"

O]

With the solution operator family S(t) we can now a.s. solve the linear problem for any initial
data. The initial data may also be a random variable. For the case of random initial data
we will ultimately consider a certain space X“ which is built to contain just those initial data
that we need. In this section we choose H as possible spaces of initial data and and perform
some light, preliminary analysis.

Let {gn}nen, {hn}nen be families of standard Gaussian random variables ~ A(0,1) so that
{gn}n and {hn, }m are an independent families of random variables. We consider random intial

data of the form .
o Angn€n
wo =) (bnhnen>

n=1
where a,, b, are two sequences of real numbers. This is only a preliminary investigation into
the random initial data, as later on we will need more assumptions.

Corollary 2.5. For all a > 0 the following are equivalent:
(i) wo € HE a.s.
(ii) P(wo € HE) > 0,
(iii) E [wol%z] < ox,
(iv) (</\">aa")neN € (*(N) and (<)\n>a71bn)n€N € ?(N).
This is an consequence of Lemma A.2 applied to w amd w; at time t = 1 with f being constant.

Theorem 2.6 (Global Well-posedness for Linear Problem with Random Initial Data). Let
a > 0 and wq be initial data of the aforementioned form so that wo € H® a.s. Then for
w(t) = S(t)wo the following holds almost surely:

(i) w € C([0,00), H¥) N C([0, 00), HP ),

(i) w solves w(0) = wq and
Oyw(t) = Lw(t).

(iii) We have the estimates
_t _t
[w(t)llne S €2 [[wollpe and — [|0pw(t)|lya-1 S €72 [|wol[e

Proof. By the estimate [|.S(t)wgl|ye < e_%||w0\|7.[a we get that w € C([0, 00, H*). We see that

[meen=w® (0 1Y)

Ha—l
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- “S(t+h}i—5(t) 3 (_(10_A) _11> S(t)

S(h) —1d
e IS ol

[[wollpe
L(Ho Mo

|2

L(’}_[a”}_[afl

We know that the first norm vanishes as h ~\, 0 and the second norm decays with e”2 in t, so
w(t) is differentiable in H®~! with bounded, continuous derivatives and d;w(t) = LS(t)wg =
Lw(t). O

Before moving on to the next section we will state and prove one more lemma, which will be
crucial in section 3 when we define the space of initial data. The reason is that we need to get
information about the initial data from the L2-in-time behaviour of the solution.

Lemma 2.7. Let wg € H;*° and o € R. For T > 0 there exists a decreasing function
C1(T) > 0 and an increasing function Co(T) > 0 so that

[wollze < CL(T)lm1S(E)Woll 20,17, 10) < Co(T)|[[Wolle-

Proof. The second estimate is straight forward using the energy estimate from Theorem 2.6:

T
IS Woll2 o.77, 0y /0 et dil|wol[3e = (1 — e ) ||wo 30

Then for with some constant C' we can choose

Cy(T) = Cv/1—eT.

Now we prove the first estimate. By the definitions

[e.9]

T
IS (&)Woll 20 7,y = Z<)\n>2a/0 (m15(s)wo, en)? ds

n=1

00 T 1 2
_Z</\N>2a<771w0’6”>2/0 s (2[>m] sin (s[An]) + cos (s[)\n])> ds

- 2
+ <)\n>2a<7T2W0,€n>2/ e ® <P\1n] sin (s[/\n])> ds

0

We denote the first integral by (1) and the second by (/I). In the next section we will calculate
c2(t) in (2.12) and d2(t) in (2.13). These integrals are very similar to our integrals (I7) and
(I) respectively and so we ask the reader to observe the computation there. Then for (IT) we

get a lower bound

(I1) 2 ()72 <1 —e T (1 + 1[An]—l + 1[An]_2>) .

For (I) we modify the computation preceding (2.13):

O T
[/\n]l/ eDnl (2& ] sin(—271) + %COS(—QT) + ;) dr
—T[An] n
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0

1 el 3 2 .
=3[ [W (41T + 7] + @[] — Dsin(2r) + [An] coszn) ] )
2
= (1T (14 D = (20l - ) s + D] Feos2TIMD) ).
Then
2
(1) = i(m + K]p (1-e'(1- %M sin(2eAa]) + 7 [Aa] 7 (1 + cos(2t[Aa]))
1
+ 5 ] i)
Finally, we can estimate
2
Yo B o o BB )
> iun)—? (4[An]2 +1-eTe T (1+ %[An]‘l + %[An]‘z + 1[%]_3))
>1—eT(1+ %[/\n]—l ]2+ Z[An]‘S + ;[%]‘4)
21— T (14+ ) 4 Q) 24+ )2+ ) ™)

Recall also that
IDZ M) 21— (14+ M)+ ) 72).

Using that (\,) ~ n, this implies that there exists constants ¢, C, C' > 0 so that for all T > 0

and N € N,
1+cN7t geT

implies
[(1 = Pn)wollge < CllmiS#)wollp2(o,,m0) < CV 1 — e T |[wol|pe.
For large N this holds. We deal with dimensions 1 to N separately: Define

-1
C1(T) :== max {C’, <min {1£££N(I)n’T’ 1§i1?£N(II)n’T}> } :

This constant enusres “manually” that the estimate works not only for n > N + 1, but also the
cases n = 1,...N. Here (I), 7 and (II), 1 refer to the corresponding integrals for the given n
and T'. Both of these are positive for T' > 0, increasing in 7" and start in 0. Therefore C;(T')
is well-defined, positive and decreasing. O
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2.2 The Linear Problem with White Noise Inhomogeneity

In this section we construct the stochastic convolution ¥, which is a almost surely solution to
(1.6) in the sense of distributions. The construction is motivated by Duhamel’s formula and
since solutions given in the shape of Duhamel’s formula are also called mild solution, one can
consider ¥ to be a mild solution to (1.6). Written in terms of pairs of functions, ¥ is supposed

()= oty ) () (e

with initial data ¥y = 0. Since we know the solution operator S(¢) to the homogeneous
problem, we can construct a mild solution to this problem by Duhamel’s formula:

\Il(t):/OtS(t—s)~ <ﬁ2(s)> ds

It is not entirely obvious how this has to be interpreted, so let us define it

to solve

Definition 2.8 (Stochastic Convolution). Fort > 0, define a random radially symmetric space
distribution in two variables which we call the stochastic convolution at time t by

00 ([0 ) ()= (omsr s

forf = (f1, f2) € Dy(B)?. Herem and T are the projections onto the first and second function.
We can unfold the definition to

(¥(r). ) = <€7]1[0,t}(5)\/§€t28 ([ te-s1en] 5
n [—ﬂ;}sin (6= $)[V]) +cos ((t — s) M)} f2>>

Lemma 2.9. The stochastic convolution is almost surely a solution to the distributional equa-

tion
0

Proof. Let f € D:(Ry xB)% We compute

(O — LV, )y, = / TOW(), (<0 — L)E()) di
0

_ /0 6 Loy (DVBT2S* (t — ) (0, — L)E(1))s0 . (2.7)

We will we use that 9;5(¢t)*f = S(¢)*Lf by Lemma 2.3. Let n, € C*°(R,) be a sequence such
that

1
M — L[g o0y in L*(Ry) and D}(Ry) with supp (nx — Ljgo0)) C (0, k) :
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and consider the following;:

(2.7) &2 /Ooo<£7 e(t — 8)V2maS*(t = 8)(=0; — L)E(t))s,0 dt (2.8)

=(([-dt) @ & m(t — $)V2maS*(t — 5) (=0 — L)E(1)) 1,52
f dt), mi(t — s)V2m2S* (t — 8) (=0 — L)E(t)) 1.5

e[ mt— $)V2maS*(t — )(~0 — L)E(t) dt>

5

0

S,z
oo

& | Omp(t — 8)V2maS*(t — 5)f(1) dt> (2.9)

0

(€®
e/
<§, Oo M (t — 8)V2ma(—0pS* (t — ))E(t) — S*(t — 5) (8 (t)) dt>
(¢,

S,z

koo, <5, V2m98% (s — s)(s) dt> (2.10)

(B

We have to justify the limits. Let supp, f C [0,T]. Observe that with Jensen’s inequality and
the definition of £ and Holder’s inequaltiy we have

T
BN - @O <T [ ntt =) = L ()1, d
T
| IVERS = -0 L)t@)la, .

this vanishes as k — oo as the first integrand vanishes uniformly in ¢ and the second integral
is finite becasue f is smooth and compactly supported. Similarly with the definition of & we
get

2

E [[(2.9) — (2.10)] / i (t — 8)V2maS*(t — s)E(t) dt — V2mof (s)| da ds.

Since /2m2S*(t — s)f(t) is smooth in t,s and z the convergence of the integrand to 0 is
uniform. In addition we can also restrict the integral to a compact domain and so it vanishes
as k — oo. O

Using that ¢ is a space-time white noise, we can compute for f, g € D(B)? that

B L0008 = (LogVae T - m8' (=) (1) Boa()VeF ms'(e—s) (1) >Lz

92

- /Otizest ({Aln] sin ((t — s) [An]) fi(n) + (—2[in] sin ((t — ) [An]) + cos ((t — s) M)) fg(n)>

' <[A1n] sin ((t = 5) [An]) G1(n) + <_2[in] sin ((t — s)[An]) + cos ((t — s) [An])) gg(n)> ds.



Furthermore (U(t),f) is a centered Gaussian random variable.
In the case that f = (e,,0) and g = (e;,,0) we get that

b 2e" sin ((t — s A2 ds n=m
E [T (1), (e, 0))(B(1), (e 0))] = {f Lod e o e
For f = (0,e,) and g = (0, €,,) we have
/0 2e57t (4[)\n]2 sin ((t — s)[An])?
11
— ———=sin (2(t — s)|\n n=m
E[(T(t), (0, n))(T(E), (0, em))] = 2 2(t = s)[Ma])
+ %COS (2(t — s)[An]) + ;) ds
0 SN FEm
We can calculate the integrals:
t 9es—t B 0 L
/0 ?”2 sin ((t — ) [A])? ds = 2] /_ s ar
[An] €Tl 0
= - LM 2 sin(27) — cos(21
a 2[/\71] !8[)\”]2 + 2 (4[>\n] 2[/\”] (2 ) (2 )+ 1) e
Y A1n>2 (4 —e (4 +2[An] " sin(2e[An]) — [An] 7 cos(2t[An]) + [An] —2))
We define o (1
cn(t) = <;n(>2) (2.12)
where

On(t)=1—¢" <1 + %[)\n]_l sin(2t[\,]) + %[)\n] - (1- cos(2t[)\n]))> .
The previous results can be summarized as
(W(t), en) ~ N(0, (1))
and they are independent in n. Observe that

0,(00=0 lim©,(t)=1 3FJK>0:YneNVt>0, 0<06,(t)<K.

t—o00

and that there exists N € N so that for alln > N and ¢t > 0
—t L
1—2e g@n(t)gl—ie .

Hence for large n and fixed ¢ > 0 we have c2(t) ~ (\,) 2.
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For the other integral we compute

0 T
017 [ 5 gl )

0

T

_op] ! [8[5]*2}” (4] + [a] + @[] + Dsin(2r) = [An] COS@T))] i

R TNE (4= (4+ )72 = (200) 7" D] ) sin2en)) = [An] * cos(2tA])) ) -

d2(t) = < (2.13)

1

W) =1—ct (1 — D] s + 2] (1~ cos@t0a])) — 5[] sin(2t[)\n])>

[1]

We then have that
(Wi(t), en) ~ N(0,dy (1))

and they are independent in n. Observe that

2,000=0 lmE,t)=1 3JK>0:YneNVt>0, 0<O,(t) <K.

t—00

and that there exists NV € N so that foralln > N and ¢ > 0

1—=[A] 2 =207 <Eu(t) < 1— =[]

Let us summarize the above results and more in the following lemma.

Lemma 2.10. For all f € D;(B)? we have
(W), £) = > ea(t)gn(t)F1(n) + dn(H)gn (1) fo(),
n=1

which means that if the stochastic convolution is actually a function in time and space (which
is the case by lem. 2.11), we can write it as

S (el ®)Y
U(t,x) = ;1 <dn(t)hn(t)> n(2),
where:

(i) cn and dy, are given by (2.12) and (2.13) (the choice of sign doesn’t matter). They have
growth bounds sup, c2(t) < (\,) 72 and sup, d2(t) < 1.

~
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(i) For any times 0 < ty,...,t, the families of random vectors

gn(t1) hn(tl)
: and :

9n(te)/ ) pen ha(te)) ) e

are each independent and each one of them follows a centered joint Gaussian distribution
with 1 on the diagonal of the covariance matrix.

(iii) There exists C > 0 so that for any s <'t,
E [(cn(t)gn(t) - cn(s)gn(s))z} < CA] 2t 5. (2.14)

and
E [(dn(t)hn(t) - dn(s)hn(s)ﬂ <Ot —s|.

Proof. We have shown (i) before and elaborated on (ii). The reason that we have a joint
Gaussian distribution is that g¢,(¢) and h,(t) are given by ¢ tested against some function,
and then by linearity of £ any linear combination of those random variable is still normally

distributed.

We now calculate (ii7). The new term that we have to analyze here is the covariance:

E [cn () gn(t)en(s)gn(s)] = E[(@(t), en)(¥(s), en)]
= <]l[07t] (T)\/ie_t_TT -maS*(t —7) <€0"> .4 (T)V2e™ "7 - m5%(s — 7) <€6L> >L2

t,z

S ot r=s 1| 1 .
:/0 272 e 2 msm((t—T)[)\nD-msm((t—ﬂ[)\n]) dr.

Then together with (2.11) we have

E [cr,(t)gn(t)* = 2e0(t)gn(t)en(s)gn(s) + ci(s)gn(s)?]

-2 </0 (7 sin ((t = 7)[A]) = €7 sin (s = 7) [)\n])>2 dr

We can easily estimate the second term by |t — s|. For the first term we set h = t — s and

substitute r = s — 7 to get

/05 (67% sin ((h+7)[An]) — e~ 2 sin (r [)\n]))Q dr (2.15)




Now we estimate one of the powers of the sines on the right hand side integrand by 2, and the
other by h[)\n]:

For the case of ¢; we get

E [d2(t)hn(t)? — 2dn (t) b (£)dn () () + d2(8)hn(5)?]

—2 [ (¢ (- =) s (=) )
_ T (2&”} sin (s — 7) [An]) + cos ((s — 7) [)\n])))2 dr

+2 / & sin ((t — 1) [M])? dr.

We can directly estimate the term by 4|t — s|. For the first term we proceed with the same
steps as in (2.15). It then remains to estimate

1 8[An] 7[%] 1 . | 5
[)\n]/o e Dn (—M sin (h[An] 4+ 1) +cos (h[An] +7) + 2] sin (r) — cos (r)) dr

We estimate the squared part of the integrand by the square of the sine difference and the
square of the cosine difference, and then again estimate one power by a constant and the other
power by h[)\n}. The remaining exponential decay integral is then finite and things work out
as in the pervious case. O

Lemma 2.11. Lett > 0 and o € R. The following are equivalent:
(i) P(t) € HY a.s.

(it) (t) € L*(Q,HY),

(i) a < 5.

Proof. We know that (i) <= (i) by Corollary 2.5 Let N < M € N. Then

M M
E [[lv(t)™ — ()" ] = T§V<An>2%§(t) e n;vn%”.

Here we use that c2(t) ~ (An) ~ |Au| ~ n. The power series at the end converges if and only
if o < 3, s0 (i) <= (iii). O

This lemma tells us that 1 (¢) does exist not only as a random distribution, but a.s. as a
function in L?(B).
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Let us explicitly restate again that for a fixed ¢t > 0 there exist iid. random variables g, (t) ~
N(0,1) so that

o0
Y(t,w) =Y calt)en()gn(t),
n=1
and a fixed n and any times t1, ..., ¢, the random vector (g, (t;)); is jointly normally distributed.

The following lemma is an important inequality that we will use to get WP regularity for .

Lemma 2.12. There exists C > 0 so that for all 0 < a < % and N < M € N we have for
almost all x € B the estimate

M
D) e (2)? (2.16)

n=N
%—i—l%—ln(%ﬂ_l) x|t > Nya=0
-1
A = 2 Jzl < Nya=0
T ke s (U a7 ok (M) = N2 a7t > Noa > 0

1 1 2Jz| ! -1
N2z T 1234 (N—-1)I—2a o7 < Nya>0

For the case N =1 and M = oo this can be simplified to

/) (20— 1+ |In(|z))l, a=0
2 () Fen(@) < € {1 + (1 =2a)" 4+ (20) 1) [z[ 72, a>0. (2.17)

n=1

Proof. Let N < M € N. Recall that (\,) ~ n and that
_ . _1
en(z) = [[Jo(Annl] - |)HL21(B)J0(/\n‘$|) with || Jo(Ann| - |)||L2(B) ~noZ.

We split the sum into two parts:

M M M
> ) Pen(@)? S D 0 Pndo(Anlz)? + Y 0P Pndo(Anlz])?.
n=N n=N n=N

nlz|>1 nlz|<1

On the first part we use the estimate Jy(y) € O(y*%) for large y = njz| > 1. On the second
part we use Jy € L™:

SJ |l”_1 Z n2a—2 + Z n2a—1_

MA|z|~1]VN<n<M N<n<MA||z|71JVN

In our notation we have the minimum A bind more strongly than the maximum V so that
aANbVec=(aAb)Vec Now we estimate the sums by corresponding integrals.

M-1 MA||z|~ VN
< ]w\_l/ §272 ds 4 N2o~1 —i—/ s2 L ds = (%).
MA[|z|~1]VN-1 N
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In the case a = 0 we get

_ 1 2|~ I -1 _
(*)_N—i— MATe T VN=1 M-1 +In(M A ||z|”"| VN) —1In(N).

If |x|~! > M, then the expression in the brackets vanishes. If on the other hand |z|™! < M,
then
2~ I 2~ _ = [l1~"]
MAlz|"']VN—-1 M-1 [Jlza|7']VN-1 M-17[jz|7']VN-1

If [|z|7'] < N then this is less than 212 On the other hand if [|2|~1] > N then it is less

N=T1-
than #{{11 < 2. We therefore have

R e

2|z _
L4 2 Jz|"' < N

(x) <

for almost all z € B. In the case o > 0 we have

() = 1 _12a|$\_1 ((M/\ [z| ']V N — 1)2a—1 (M- 1)2a—1>
¥ g + g (M A o] v )™ - N2,

Again if |z|7! > M then the first term vanishes. In the other case we have
2l (M A T2l ™7 v NV = )7 = (M= 1)271) < o] 7 (e v N = 1)

If [|z|~Y] < N then this is less than 2|z|~'(N — 1)2*~1. On the other hand if [|z|7!] > N

[z

then it is less than W < Jlo|712* + 1 < 1+ 2|22, We get

i + T (14 200072) + o (M A2l 7)™ = N2%) o] > N

(*) S 2 -1 .
N11—2a + 171201 (Nlai‘)l—Qa 9 ’$|_1 S N

O

We now use Lemma 2.12 to show that certain gaussian processes, in particular v, are in
Lebesgue and Sobolev spaces. We critically use the inequality

[SIS]

E (X[ < CPp! E [|XP] (2.18)

for p > 1 and a Gaussian random variable X. The following lemma is significantly stronger

than what is necessary for the local and global well-posedness. The only case that we will use
in the near future is that of N = 1. The general case will then be used for Theorem 3.8.
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Lemma 2.13. For every a < % there exists a constant C = C(«) > 0 for which the following
holds:

Let { X, (t) }nen be a family of independent and centered normally distributed random variables
for all t € [0,00), i.e. a sequence of Gaussian processes. Let o2(t) be their variances and
assume that there exists a square integrable function [3 : [0,00) — [0,00) so that

B(t)°

forallt > 0. Now for N < M € NU{oo} deﬁne

GM t,x) Z Xn(
Then the following hold:

(i) There exists C > 0 so that for allp > 1 and N < M € NU{co} we have
CPpP|| 817y (1 + In(N))
E[lG¥It, | < e .

and
E [”G%(U)Hig} e p”\ﬁ(o)]\vgl +In(N)

(ii) For all 0 < a < % there exists C(a) > 0 so that for all p > 1 with ap < 2 and for all
N < M € NU{co} we have

CP B, (1 + In(N)

E[IGK 1 pes] € —
" CPBOP(1L+ ()
E[IGH )0 | < =5

Proof. We only write down the proof for the integral in time cases as the pointwise in time
cases can be dealt with in the same fashion, just without the time integral. It suffices to assume
M < oo as M = oo then follows by taking the limit. In this case Gf‘v/[ is smooth in z and so
we do not have to approximate. Note that by independence of the X,, we have

N 2 N
E D ) Xa(en(z)] | =D Xn(t)en(x)™.
n=1 n=1

We use (2.18) to estimate

[/ /| aGth)det] <cr ’z’/ / V)G (t,2)?]? dadt

p
2

S/ /( )2 %(t)en($)2> da dt

D
2

00 M
% p 2a=2¢ ()2 .
Cp/o ()] dt/jg(}jm n<>) a

n=N

IA
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We now apply the estimates from the previous Lemma 2.12. For a = 0 we get

p 1 M A |zt 3
e ([ (32

v (3l >; &
{el>n-13 \N © N -1 |

(We also prove a bound for this in Lemma 2.14). For a@ > 0 we get

IS}

2

» 1 1 _ 1 C1\2
< L P 2c - =& _ Ar2a
S crph B, </{a:|§N1} <N1_2a + g (L |27 + o ((M/\ z[7)" =N )> dx

t
+/ 1o, 9lz|~! %d
X | .
{|lz|>N-1} N1-2o 1 -2« (N_1)1—2a

The estimates for those integrals that we derive in the subsequent Lemma 2.14 conclude the
proof. O

Lemma 2.14. (i) There exists C > 0 so that for allp > 1 and N < M € N,

1 M A ]:E|_1>>p CPpP
—+1+In| ————— dx < .
/{|xszv—l} <N ( N N?

(i) There exists C > 0 so that for allp>1 and N < M € N,

-1 p D
/ (1 N || > dr < C lngN).
(12fz>n-13 \N N -1 N

(iii) For every 0 < o < % there exists C(a) > 0 so that for every p > 1 with ap < 1,

1 1 - 1 C1\20 P Cla)P
1 20 ( M 1y2e _ N2°‘> do < 2\
/{12x|§N1} (NlQO‘ * 1 -2« ( + |x‘ ) + 2 ( A ‘I| ) = N2—2ap

(iv) For every 0 < o < 3 there exists C(a) > 0 so that for every p > 1 with ap < 1,

1 1 2|x| 7t P C(a)?In(N)
=20 T 5a ) dv< 22ap °
{lz|>N-1} N 1 -2« (N — 1) N D

Proof. Since the domain of integration B is bounded it suffices to consider the case p > 2. We
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start with (7):

1 M/\|x|_1>>p
+1+ln< da
/{leN—l} <N N
= _ M Azt
< P2 : < 1 — | <
<> (k+1)PL ({xeB 2| < N ,k<2+ln< N )_k+1}>
k=0
<S7(k + 1)PL2 <{x €B:|a| < N"LNetF2 < M|t < Nek_1}>
k=0

<L (B)N?Y (k+ 1Pt da
k=0
4

e o0
SNQ/ (s +1)Pe 2 dx
0

cr ChpP
Sv2 T+ ) S

Now we show (i7). We can trivially assume N > 2 and p > 2. Then

1 ‘ZC|71 p 1 1 1 p
- dr < — 1+-) rd
/HDNl} <N+N—1> =V /N1 Ty T

p L P
<2/ rl_pdrzz—il (1—Np_2)

- m N-1 Np2—p
22 1-N*P _ C?In(N)
N2 p—-2 — N2 °

We have used that for € > 0 and y > 1 we have =" < In(y).

€

Next we show (i4i):

! 1 “2ay , L n2e o))
/{leNl} (N”a g () + e (M A e 7)™ - N )> dz

< C(a) /{|ng1} (14 Jal 2+ (M1 Al = N2))” ds

1

N1 N1
< C(a)p/O (1+ r_Qa)pr dr < C(a)p2p/0 rl=20p gp < Cl(a)p7N2_20p~

Finally we show (iv):

1 1 21z~ \? 1 ! 1\?
< —— —
/{|m>N1} <N1‘2a T 2a (V- 1)1‘2‘1) RS T /Nl b)) e

_ Cla)’ In(N)
~ N2—2ap

Here we use that in the proof of (i7) we have already estimated this integral by NP~2In(N).
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We now use Lemma 2.13 to show that ¢ is in certain Lebesgue and Sobolev spaces. This is
important because (¢, z) will show up in the non-linear part of the equation later on. We
need to be able to make sense of (¢, z)3. This is not possible if ¥ (¢, ) merely a distribution
in space and not given by a function. In higher dimensions this happens and as a result one
has to renormalize the equation.

Lemma 2.15. Let T >0 and 0 < a < % The following hold:

(i) Y(t,x) is a centered Gaussian random variable for almost all t € [0,T] and x € B. We
have an estimate

E [[4(t,2)"] < C(1+ |In(Jz]))).

(ii) There exists C > 0 so that for all p > 1 and t € [0,T] we have ¥(t,-) € LP(B) a.s,
W € LP([0,T], L¥(B)) a.s. and

E UB lw(t,x)]pdx] < CPpP E [/[)T/B|w(t,m)|pdxdt] < TCPpP.

(iii) Let p > 1 so that ap < 2. Then (V)*Y(t,x) is a centered Gaussian random variable for
almost allt € [0,T] and x € B. We have an estimate

E [|(V)*¥(t,2)*] < Cla)la] ™

(iv) There exists C(a) > 0 so that for p > 1 with ap < 2 and for almost all t € [0,T] we have
o(t, ) € Wi (B) a.s., v € LP([0,T] x Wy**(B)) and

E [ /B |<V)°‘¢(t,ay)|pd:c] < Cla)? E [ /0 ' /B [(VYou(t, )|P de dt| < TC(a)P.

Proof. We see that for any M € N by independence of the g,

M 2 N
E Z(/\n>2“cn(t)6n($)gn(t) = Z i (t)en(z)”.

We know that on any compact interval [0,7] we have c2(t) < (A\,)~2 uniformly in t. since by

Lemma 2.12 this is finite we know that (V)®(t,z) is a centered Gaussian r.v. in L?(Q). We
now define a Gaussian process X, (t) = Ly~71(¢(t), en). Then we can apply Lemma 2.13 for
N =1 to G and get the desired estimates. Since G is indistinguishable from 1 on [0, T] they
transfer over to 1. O

We can furthermore find almost sure continuity in certain Sobolev spaces via the Kolmogorov
continuity theorem.

Lemma 2.16. LetT>0,a<%,1§p<oosothatap<2andlet0<’y<%— Then

there exists a modification 1) € CO7([0,T], WP) of 1.

1
i
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Proof. We will use the Kolmogorov continuity theorem. From the previous lemma we already
know that (t,-) € WrP a.s., so to apply the theorem it remains to find a 8 > 0 so that for
all to <t1 < T,

B | [ 19 @lon0) = w0l da| < CT )l -1,
For this we again use Lemma 2.13, applying it to
G(t, ) =Pt +t1,2) = P(t+to, ) = Y _(calt + t1)gn(t + t1) — cnlt +to)gn(t + to))en().
n=1

We want to estimate the variance of the gaussians on the right side. Using (2.14) and get that
for |t; — tp| < 1 (an assumption we can make without loss of generality) and any n € (0, 2),

|t1 — tol
(An)?

E [(cn(t + t1)gn(t +t1) — cnlt +t0)gn(t +t0))?] < Clts — to|[M] > < C
Now lemma 2.13 with N =1 and ¢t = 0 yields the inequality

p—2
E [[[(tr,) = ¥(to, ) [fyan da] < Cla)?|ty — to|+ 72
The Kolmogorov continuity theorem now implies that there for any

2 1 1
0<fy<p—_———.
2p 2 p

there exists a modification 1) € C%7 ([0, T], W*P) of .

2.3 Local Well-Posedness for the Complete Problem

We now suppose that we have are given the solutions w and ¥ from the previous sections and
consider them fixed. For given realizations w(w) and ¥(w) we now have to find a solution v(w)
to

v+ 0w+ (1 —Aw+ (w++v)?=0 (2.19)
with initial data 0. In terms of pairs of functions this is equivalent to
ov = Lv-— 0
T (w+ v+ v)? (2.20)
v(0) = 0.

We solve this as a deterministic problem with the idea being that we can assume w(w) + ¥ (w)
to be an arbitrary function that has a regulartiy we know the stochastic processes w and ¥
to possess almost surely.

We are also interested in the truncated system
81521)]\/—}—8{01\/—{—(1 —A)UN—}—PN((’LU—{—T/)—{—UN)3) =0 (2.21)

with initial data 0. Here truncation refers to the projection Py onto the first N basis vectors:
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Definition 2.17. For N €N, B € R and f € H? define
N ~
Pyf= Zf(n)en
n=1

Lemma 2.18. For all k € N and B, 52 € R,
Py : Ck([oaT]vHﬁl) — Ck([O7T]7Hﬁ2)

Proof. Let f € C*([0,T], H?'). We write down the proof only for k = 1:

2
HPNf(t+ hf})L - PNf(t) _ PNatf(t)
HA1
N
=3 B o (LEEEEI0 g p0,c, ).
n=1
%]
2
<o, ) | LIy g
HP2

We will solve(2.19) and (2.21) in a mild sense.

Definition 2.19 (Mild Solution). Let a € [1,3) and T € Ry U{oo}. Let w,v be functions so
that
w4y € Vg = LO([0, T], W), (2.22)
A mild solution in HE on [0,T] to (2.19) is a function
v e L2([0,T], Hy)

so that for almost all t € [0,T],

v(t) = /O "S- s) <(w+ ¢O+ 0)3(3)) ds. (2.23)

We analogously define mild solutions to the truncated system (2.21).

The justification for thse objects being called solutions to the problem is that they are in fact
solutions in quite a strong sense, and in particular also in the weaker sense of distributions.
This is shown in lemma 2.23.

Defining the operators

H(v) :zt»—)/OtS(t—s) (_<w+¢0ﬂ)3(s)> ds
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and

. : — S 0 s
Hy(vy) = PnH(vN)t '_>/0 St —s) <—PN((w+¢+UN)3)(S)> o

we can phrase (2.19) as the fixed point problem H(v) = v, and similarly (2.21) as Hy(vy) =
vy. We choose the space L([0,T], H®) where a < 3. Note that Hy : L>([0,T], HY) —
L*>([0,T], PND.(B)), so vy is an evolution in an N-dimensional subspace of the radial distri-
butions.

Let us recall two inequalities that will be needed for the local well-posedness: The fractional
Leibnitz and Sobolev inequalities.

Lemma 2.20 (Fractional Leibnitz Inequality / Fractional Leibnitz Rule [11]). For 1 = p% +
=t o, a—1€(0,1) and f,g € S(R")
) Pl S I e llgllza + (V) gllzea || £l pee-
In particular for all « — 1 € [0,1) we have
)z S IV Fllzs L F 11 - (2.24)

Proof. A proof can be found in [11]. The second inequality for a« — 1 > 0 follows from it by an

application with = 1 + 2 = 1 +
)z S 1P f ol 2l + 1072 (F2) g1l o

and another one with % = % + %

V) (2 s S IV Fllzs [l fllzs-

The case oo = 0 is trivial. OJ

]1.
5

For the Sobolev inequalities we need to make sure that we actually have the embedding for
the Bessel potential spaces H*P(R?), not the Sobolev-Slobodeckij spaces W7 (R?). Under
[22] one can find embeddings for the Triebel-Lizorkin scale which in our special case yield the
following lemma:

Lemma 2.21 (Fractional Sobolev Embeddings). Let 1 < p; < py < o0 and aj,ag > 0. If

2 2
ap—— 20— —,
p1 D2
then

«a1,p1 a2,p2
WPy T 02P2

This implies for example that H! «— L} for all 1 < p < co. We care about the following
special case: Given some « € ([1, %) we choose a1 = «, p1 = 2 and py = 6. Then for all as so
that

2
awm<a—-1l+-=a— 2
2= 3 3
we have [|ullyyes6 S ||ul|ge. In particular
lullyore < lull g (2.25)
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Theorem 2.22 (Deterministic Local Well-posedness). Let a € [1,3) and w + 1 € YS‘T}] be
given as in (2.22). Then there for some 0 < T(|jw + wHYa 1) < T’ there exist unique mild
T']

solutions v and vy on [0,T] to (2.19) and (2.21) respectwely For every r > 0 the maps

a—1

BLOT [0, T(r)] —> HE
(w+ 1, t) — v(t)
(w+ 1, t) — v (t)

are jointly continuous.

Proof. We show this only for (2.19) as all the estimates directly transfer to the truncated case.
Let 0 < R< % and suppose that

1Vl Lo jo,1,10) < R
From lemma 2.2 we know that [|S(¢)ul|ye < e~ 5 ||| 3¢a, SO
' 3
I (v) (@)l < /0 [(w + % +v)?|| o1 ds.

We use (2.24)
t
5/0 (V)™ (w + 2 + )l s lw + 2 + w76 ds

and Holder with % + % + % =1:

2||w + 4 + vl s oy, we-ro) lw + 9 + vl Fs (o 71.16)

N

< T3
STeflw+y+ /UH%/G([O’T]’W&—I,G)
ST+ s+ Dollgoyva-so)

We use that by (2.25)
1oll s o738y < 10ll ooz, ey < TSR
and get
I H (V)| Loo (jo,11,0) S T |w + 1/}\\3 - +TR?.

From this we can see that if T'(||w 4 v||ya-1) is small enough we get a selfmap
[0,77]

L°°([0 T], "H"‘)
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We want to show that H is a contraction on Bpg, so let vi,vy € Bpg.
t
[H(v1)(t) = H(v2)(t)|[ne < / [(w + 4 +v1)* = (w+ ¢ + v2)*|| a1 ds
0
t
<3 [+ 000 = v)lges ds
0

t
+3Z;Ww+wﬂm—WﬁﬂHmuk

+Awwvﬂ@wm4%
— (1) + (IT) + (ITT)

We apply the fractional Leibnitz inequality several times.

t
() 5 /0 1w + ¥)?llwa-rsllvr = vallzs + | (w + )?|| s o1 — vallwa-rs ds

t
S [ (o dllwesolw + Gl + o+ 6130) on = ealhwe-o ds
0

Now we Holder with % + % + % =1.

< T3 2
S T2 e — vl oo, w16y [w + P76 (0,19, wa-10)

2
S T3 i = vall e o, lw + wn;g_ﬁ (2.26)

Here we (1) we proceed similarly
' 2 2
(1) 5 / lw + Pllwa-rsll(vr = v2) s + lw + Pllzs || (01 — v2) [lwa-13 ds
0

t
5/(WHWMWLWHW+¢M@WPﬂW%aw“
0

1
STz — U2||%6([0,T},wa—1,6)||w + ¥l Lo (o, 1), wa-16)

5
< TH v = Vale oy ey [0 + Yl o (2.27)

Finally
' 3 1 3 3
(I1I) < /0 [v1 = va2lljya-16 ds S T2[jvr — U2||L6([0,T},Wa71,6) STv— V2||Loo([o,T],Ha)- (2.28)

Note that ||vi — val[zee(o,),ne) < 1 since R < . Because of this we can again choose T
depending on ||w + ¥|ya—1 small enough so that H is a contraction. Then by the Banach
[0,77]

fixed-point theorem there exists a unique v € Bg so that H(v) = v.
It remains to show the continuity. We first show continuity separately, only in ¢ and only

yor!
w + 1. For some 7 > 0, wy + 11, wy + o € B, let t € [0,T(r)]. We call v; and vy the
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corresponding solutions. Observe that

t
[vi(t) — va(t)|lae S /O [(wy + 1 + v1)® — (w2 + 2 + v1)*|| o (2.29)
+l (w2 + g + v1)% — (w2 + 2 4+ v2)3|| a1 ds.

We now repeat the estimates for the contractivity until we arrive at only expressions with

norm || - HY[QT, but we reverse the role of w + 1 and v in the first instance:
0,t
<<w+ — Wy — ot |lvg — vo|2ar vy — vallya—1||we + 2
S o+ 41 —wa = aflyaciffor = vallyes lor = vallyeollws + Pollyes
2 _ - 2 -
+ljw1 + 1 — w2 77[)2HY[3;]1 [|lv1 U2||y[3t]1 +||v1 U2||Y[g;]1 w2 + ¢2“y[8¢’t]1
Hlwr + = ws — a® 0y ot = vaf[3a0- )
[0,t] [0,]
We define

A = o1l peo(po,17,1re-1) + V2l Lo (0,77, 1)
B = [Jwz + @@Hy{g}]l + ||lwr + ¢1||y[g—T]1

E=(B*+AB + A?)

Oé(t) = Ele + 1 — wo — 1/12HY[84;]1

The inequality that we have derived can be simplified and rewritten as

V1) = va(®)llse < Cat) + /O CE||vi(s) — va(s) e ds.

Now Gronwall’s inequality implies that

[v1 = Vol poo (0,7, 00) S Ca(t)e“FT

Let wy, + ¢, — w+ ¢ in Y[g‘}l]. Since these are bounded in Y%7} they are contained in a

ball of radius r and we have a time of existence 7'(r) for all of them. We can also choose a

uniform R in the existence result, meaning that v,,,v € Béw([O’T(T)],H;’)

A=2Rand B = |w+ [, Then we get

. We can therefore set

n—oo

UiniaNy) (2.30)

Vi = VliLee(oz1,2) < €T CEJwp + thp — w — UJHY[S—T}]

Therefore v(t) is continuous in w + 1, uniformly in ¢. In the subsequence lemma 2.23 we
show that v is continuous in ¢ with respect to || - || oo (jo,7,3e) for all w + 1 € Yo b, Then if

[0,77]
(tn, Wn + 1) — (t,w + 1) we have

[Vn(tn) = vO)lle < [va(tn) = v(#)llne + [[V(Ea) = V() [1e — 0.
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Lemma 2.23. Let v, vy be a mild solutions to (2.19) and (2.21) respectively. Then
v,vy € C([0,T],H*) nC*([0, T], H*™ 1)

and the derivatives in the latter space are given by

0
oyv=0Lv-+ <—(w+¢+v)3>'

ovy = Lvy + ( 0 )
LN N\ =Py((w+v+un)?))
Conversely, if v and v have these properties, then they are mild solutions.

Proof. Again the proof for the case of vy is virtually identical to the one for v. Let 0 <t <
t+h <T. Then

ds  (2.31)
H(Jt

vttt m) vl < [ istern—s9-se- (L, )]

+lwh5“+h‘@<4w+%+ma

By the arguments in the local well-posedness, in particular (2.24) and (2.25), we know that
|(w+ 9 + /U)gHLoo([O’T]’Hoz—l) < 00. Together with S € C([0,T], L(H, HE)) from lemma 2.2
this implies that (2.31) vanishes as h — 0. This proves the continuity.

ds.
Ha

Now we show the differentiability. We estimate

— Lv(t) - <_(w +(Zﬁ + U)3> ‘ Mol

/Ot <S<t+ NS s>> (—(w R v>3> *

/tt+h (S(H—h;s)—ld) <_(w +(1b+v)3> s

Using the Lipschitz continuity in (i) from lemma 2.3 we see that the first integrand has a
majorant with respect to h. Then (i) from lemma 2.3 implies that it vanishes for every s, and
so dominated convergence shows that the integral vanishes as h — 0. For the second integral
we also use the Lipschitz continuity in (7) to see that the integrand has a majorant with respect
to h. Then the fact that the domain vanishes shows that the integral vanishes as h — 0.

v(t+h) —v(t)

<

Ha—1

+

Ho—1

The converse statement that such v and v are mild solutions is merely a calculation analogous
to the derivation of Duhamel’s formula. O

Note that as one would expect, the truncated solutions v approximate v.

Lemma 2.24. Let v, v be a mild solutions on [0,T] to (2.19) and (2.21) respectively. Then
there exists a constant C' > 0 so that the following hold:
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(i) We have an estimate

IV = vz om0y < Cll(w + 4+ 0)° = Py(w + 9 +0)°|| 1 o
x exp (TC(1+ [Jw + w\ly[g—ﬁf(l +IVlizeng + Ivillzgers)?)-

(7i) There exist constants C1,Cy > 0 so that if

1w + 4 +0)* = Pr(w + 4 +0)?|| pa o1 < Cre” 2T,
then ||v — VNHLOQ([QT]’Ha) <1.
N—oo

(iii) v = vl poo o,1y,m0) —— 0.

Proof. We start with (7). Let t € [0,7]. We apply the definition of a mild solution.

VO =@l < H/o =9 (4 g0t Pt v 5 0gt) "

0
S(t1 — d
s (=) (PN(—(w+¢+v)3+(w+¢+UN)3)> e
= (1) + (1)
We define an > (I) by
o = w4 0)? = P+ 0+ 0) ey 225 0

For (II) we can repeat the estimates (2.26), (2.27) and (2.28) with vi = v and va = vy,
except that we keep the time integral in order to apply Gronwall’s inequality. We find a
constant C' > 0 so that

() + (1) (2.32)
Se ll(w+ v +v)? = Py(w+1 + U)3HL1([to,t1],Ha—1)

t1
+ 1+ [|w + Yllya—r + |w + Y| }ar) / v = vllae + |V = VN5 + [V — V|3 ds
to
So l(w+ 9 +v)? = Py(w + % + )| 1 (g 4] 10-1)

t1
+ (14w + ¢llya—1)*(1+ || V] Loone + \|VNHL;>°Hg)5/ v — v ||3e ds.
to

After applying Gronwall’s inequality we have shown (i). For (ii) need further estimates.
Rewriting (2.32), we have shown that there exists a summarizing constant C1 = C(T, «) so
that

fa(t) < Cran + C1Cy /Ot fn(s)(1+ fn(s))PLds, (2.33)
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where

fn(t) = [v(t) = v (t)|lne (2.34)
Co = (L+ |lw+ ¢llya-t + [Jw+ 9 }a-r) (2.35)
p = 6. (2.36)

We fix a large N € N. Let g be a solution to the ODE

9’(5) = 2C1C%9(s)(1 + g(s))pfl
9(0) = Cran.

We know by the Picard-Lindelof theorem that a local solution exists and that it can be extended
either to infinity or to a finite time blow-up. By using Gronwall’s inequality we now show that
if ay < 01—16—217()1ch7 then a solution exists until time 7" and g(¢) <1 for all t < T.

Since ay > 0 the solution will be positive on a small time interval and have a positive derivative
there, meaning that g is strictly increasing. Since oy — 0 we can assume that Ciay < 1.
If g(t) <1 for all t < T then we are done, so we take t < T to be first point where g(t) = 1.
Then for all s <t we have

g'(s) < 2PC1Cay(s),

so Gronwall’s inequality implies

1= g(t) < Crane® @12 — 01212 > ot > 01T — ¢t > T

We now show that fn(t) < g(t) <1 forallt<T.

We define
t=inf{0 <s<T: fn(s)>g(s)}

If t = 00, i.e. the infimum does not exist, then we are done. We therefore assume that ¢ < T.
Applying the definition of ¢ to (2.33) yields

o(0)=9(0) = fx(t)=Cran < G0 [ ()14 fu() " ds < €10 [ glo)(1+ 900 ds.

But since . ;
90) = 90) = [ g(s)ds =201Ca [ g1+ gl s,
0 0

we have a contradiction. Therefore ¢ = co and we have proven that fy < g < 1.
Statement (7i7) is now just an application of (7) with the uniform estimate from (7). O
Using this we can show that mild solutions in ! automatically gain HS regularity for 1 <

4
a < 3!

3

Lemma 2.25 (Preservation of Regularity). Let v € L*>([0,T],H,) be a mild solution to (2.19)

1
fora=1. Leto’ € [1,3). Ifw+1 € Y[S‘:il, then v,vy € L®([0,T),H") for alln € N.
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Proof. In order to be rigorous, we first derive an estimate for vy. By the definition of a mild
solution yielding the analogous of (2.3) for vy, the fractional Leibnitz inequality (2.24) and
the embeddings Y, H' C L% we have for t € [0,T] that

t
Iva @l < /0 1P (w46 + o)) s
t
S [+ o Ballw+ 6 o v d
0
t
< / (o + 12 1o+ lon I ) (e + Sllpar o + VAl ) e

t
5c+o/ vl dt,
0

where C' = C(T, |w + ¥[lya-1, |[vn|ze 1) is some large constant. THen By Grénwall’s in-
equality implies
IV ()l < Ce.

This constant C' is uniformly bounded in NN since |[vn || oo 1 is uniformly bounded in N (lemma

2.24), and hence vy € L®([0,T], 1) also with a uniform bound. By the Banach-Alaoglu
theorem there must exist v € L>([0,T],HS") which is the weak limit of a subsequence vy, .
Since lemma 2.24 also implies that ||[v — vn|[ze(o,7],21) — 0, it must be the case that

v =ve L®(0,T], H). O

Corollary 2.26 (Stochastic Local Well-posedness). Let o € [1,%), T > 0 and ¥ be the
stochastic convolution. Let wo € L*(Q, L*(B)) so that almost surely ||w|lya—1 < oo, where
[0,77]

W = mS(t)wo.

Then there exists a random variable T > 0 and random wvariables v,vy € L*([0,00), H)
which are almost surely mild solutions to (2.19) and (2.21) on [0,T] respectively. Furthemore

u=v+w+9U¥ and uy=vy+w+U

solve (1.5), i.e.

O2u+ Opu + (1 — A)u +u® = V2¢

u(0) = wy,
and
DPun + Oun + (1 — A)uy + uk = V2¢
un(0) = wo

in the sense of distributions up to time T.

Proof. We require that a.s. w € Y[g;}] and we have shown that a.s. 1) € Y[g}}] in lemma 2.15.

(Note that this uses « — 1 < % < %) Therefore we can just apply Theorem 2.22 pathwise to
find the time of existence T as well as v and vy on the interval [0,7”]. We extend v and vy
by zero onto (T, 00).
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Using Theorem 2.6, lemma 2.9 and lemma 2.23, we then have that almost surely in the sense
of distributions on the time interval [0, 77,

0
U) =1L LG :
O(v+w+17) (vtw+ )+(—(w+¢+v)3+\@§)
The proof of the truncated case is again a direct transfer of the one above. O
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3 Global Well-posedness

3.1 Controlling the Growth of ||¢||»

The energy estimates we will derive to get global well-posedness involve LP-norms of v for
large p, so we have to control its growth. What we know so far from lemmas 2.12, 2.15 and
2.14 is that

B| [ ool | <ot [ Eve.o

Using this estimate, we have

[NIS]

dz < CPp 5/(1+\1n(|xy )% de < CPph.
B

E [ / \zp(t,xﬂpdx} < e,
B

and with Jensen’s inequality we can find Cy > 0 so that

E [(/B\z/)(t, :c)\pdx>2] < ChpPp?

ar ( / |b(t, z) [P dx) < C2(2p)% = CEpPpP.
B

and

What we will now do is prove the existence of such a kind of growth estimate almost surely
in several different ways.

Lemma 3.1. There exists a K > 0 so that for allt > s > 0 the following holds almost surely:
(i) 3po > 0:Vp > po, |P(t)||r < Kp.
(’L’L) Jpo >0 vp>pO7||1/}||L1’(St><B) (t—S) Kp.

(iii) ¥p € N, [(0)l|z» < Q(t)7 Kp where Q(t) = Y22, W0l < o0 s,

1 1 o0 Hw”T—’p s,t] X
() Vp € N, |9]|Lo(is,yx By < (= 8)PQ(s,1)» Kp where Q(s,t) = > 2, W < 00 a.s.

Proof. We write down the proof only for (i) and (¢i7) as including the time integral for (i7)
and (iv) causes no complications. It suffices to show this for p € N.

We prove (i) via an argument with the Borel-Cantelli lemma and the Chebyshev inequality.
Observe that for a large K > 0

gp</Blw(t,w)l”dx>2K”p”>ggpﬂ/ | (t, )P [/ ]1/Jt:z\pd1}
+ i:jp <IE [/B \¢(t,x)|pd4 > Kppp>

1
(I)+ (I1).

> Kpp”>
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The sum (I7) is zero if K > Cy. For (I) we use Chebyshev’s inequality:

<y Yrls W ol de) = <02>ppppp <

]{%ﬁﬂp K2 PPpP

p=1 p=1

where the result at the end is certainly summable given K? > Cy. Then the Borel-Cantelli
lemma now implies

P </ | (t, x)|P de > 2KPpP for infinitely many p € N> =0.
B

This finishes the proof of (¢). While this is a good result, we would like to have the estimate
for all p as opposed to just large p. In return we give up that the constant in the estimate is
deterministic. This leads us to statement (ii7). Quantitatively, what we have really shown is

that -
Var(Q) < oo where Q = H@Z}Hip
}(ppP'

p=1

Therefore Q) < oo a.s. and for all p € N

[Nz, < QKPPP.

3.2 The Space of Initial Data

For reasons that will later become apparent in the proof of the global well-posedness, we want
an initial data wq so that for a given o € [1, %) and for all T' > 0 the following two conditions
hold:

o0 HTrls(t)WOHIJéP([O,T],LP)
< 00

”71'15(t)W0||L6([0’T]’Wa71,6) <ocand 3K >0: Kopp

p=1

We have in fact already shown that both of these hold for the stochastic convolution ¢ (lemmas
2.15 and 3.1). We have defined a shorthand notation for the first quantity in (2.22) that we
adapt:

Y= L([0, o), W),

We would like the second quantity to correspond to some function space. Because of separa-
bility issues we have to require something stronger here: Instead of working with a p growth
bound we use a slightly weaker plnlnp growth bound. Consider the set

p
171

Bf ={ f e L}[0,00) x B) : Z(plnTp)P_

p=po
and for all f € L([0,00) x B) define the quantity

Ifllz = (sup{A > 0: Af € Bf}) ™.
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The choice of the starting value pg is rather arbitrary as in any case the norms are equivalent.
We choose py = 7 as a large py will help us in some estimates. To emphasize that this choice is
arbitrary we mostly write pg instead of 7. We define the space Z to be the sub-Banach space
of L'([0,00) x B) induced by the norm | - || z.

Lemma 3.2. Let
2= {f e LX([0,00) x B) : ||f]lz < oo}.

The following hold:

(i) For all R > 0,
R [V
< <= — <1
I7llz < & Z Rr( plnlnp)p B

(i) There is an equivalent norm:

1 1fllze
Sfllz < su =< | flz.
il ng)plnlnp £l

(iii) Z is well-defined as a Banach space.
(iv) We have the embeddings

L¥P([0,00), H}) < L™®([0,00), BMOgq|, N L)) — Z.
In fact a slightly stronger result holds:

/1|2y

t,x

sup

S 1 fll Lexw (0,00), H71)-
DPZ>Po

Here BMOQ’Br refers to the subspace of BMOg for the unit cube @ = [0, 1)2 of those
functions which are radially symmetric and vanish outside of the unit ball B.

Proof. (i) If ||fllz < R, then for any 0 < 7~} < R™! there exists A > 7! with \f € Z.

Therefore »
= £l
> wopmingp <1
2 P{pnp)

By letting r \( R we get the statement for R.

Now suppose that
< I

Z Rp plnlnp

Then R~!f € Z, and so || f|lz < R.
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(i)

(i)

If | f]lz < R, then for any ¢ € N with g > py,

1£11a o fI%»
Lt,z S Z Lt,z S 1
Ri(gInlnq)9 = Rr(pInlnp)?

which implies sup,,>,, HfHL? (plnlnp)~! < R.
Now suppose that sup,>,, [|f|lzz (pIn Inp)~! < R. Then for any 7 > R we have

171,
pz r?(plnlnp)P

=Do Pp=Ppo

I\
NE
E
INA
|

We choose r = 2R so that the right hand side is 1. Then (i) yields || f||z < 2R.

We have to check that || f]|z is @ norm. The completeness will then follow trivially from
the completeness of the equivalent norm in (7¢). Only the triangle inequality is non-trivial.
Suppose that ||f||z + ||g]lz < R. Then there exists some A € (0,1) so that || f|lz < AR
and ||g||z < (1 — A\)R. By convexity of | - || e,

i I +9lzp -, i Iy o i lall7 |
= Re(plnlnp)r = = APRP(plnln p)P = (1 =X)PRP(plnlnp)r

But (i) implies that this is less or equal to A1 4+ (1 — A)1 = 1, and then again (¢) implies
that || f + gl|z < R.

Let f € L*P([0,00), H'). In 2 dimensions it is known that H' < BMO by an appli-
cation of the Poincaré inequality. At the same time H' «— L! is trivial. Therefore the
first embedding holds.

The second embedding is an application of the John-Nirenberg inequality ([13]). It implies
that if f : Q — R is a measurable function in BMOg, then for all A > 0 we have

u{x | f(@) = f| > A\}) < Ce “Tenio,

where p is the Lebesgue measure and f the mean of f. Let p > pg and ¢ > 0. Then
_ o0 _ 1
o = Fords = [ utie <@ 156 - F] > i)
(e} _ [e.e] _ A
N / pAP T u({ | f (8 a) = F(B)] > A} dA < C / pAP~le 050 d
0 0

C C
= S PTO IF B0 < 7 1FO5u0-

Rearranging and integrating this in time, we get

1 f1l _ Cr
== < Il + /e (0,00),B710)
p N——
:”f”ng’L%c
(1.8)

S e (o,00),21) F I F I zexe((0,00),B30) S I f | Lexe ((0,00), 10 BMOY-
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O]

There is a problem with this space: it is not separable. The space Z that we have defined here
is also knwon as the Orlicz-space generated by the N-function M(z) = > 2, pﬂﬂip, and this
space is only separable if M fulfills the doubling condition M (2x) < CM(x). This is not the

case for our M. The definition of Orlicz spaces and this result can be found in [15, p.108].

We can get around this by working with the closure of L* in the Orlicz-space, as this subspace
is always separable. We define

Z =T=(0,T] x B)".

The separability of this subspace is part of the theory of Orlicz-spaces but we will prove it
manually in our case.

Given a measurable set I C [0,00), we also define the spaces Z; and Z; in the same fashion
but replacing the domain [0, 00) in every time integral by I. The results of Lemma 3.2 hold
analogously. We also define YIO‘_1 in the same fashion. It is important that for all 7' > 0 the
stochastic convolution is almost surely an element of Y[g‘},]l and Zjg 7). For the former space
we already know this. For the latter space the reason is that

1/l e oryxm) _ 0} 7

Zior) = {f € Zpr) : lim SR?p pIninp
pe

and we know from Lemma 3.1 that the stochastic convolution almost surely has a growth
bound ||¢||z» < Kp.

[0,T]xB —

The following lemma estbalishes some properties of Z. We do not use the compactness results
because they are not quite strong enoguh to be useful, but they are still worth noting.

Lemma 3.3. The following hold:
(i) There exists a countable subset of Dy([0,00) x B) which is dense in Z.
(ii) We have

Z =< f€Z:limsup —HfHLp([O’T]XB) =0;.
peN plnlnp

(iii) If a bounded set E C L¥P([0,00), H}) is equicontinuous in C([0,00), L¥) for every p € N,
then it is relatively compact in Z.

(iv) Given f € Zjg ) and a measurable function p : [0,T] — [1,00), we can estimate

®)
/T iz dt < 2m(T + 1
0 p(t) lnlnp(t) — 7T( + )HfHZ[O,T]

Proof. (i) It suffices to show that L7; is separable with respect to the equivalent norm
e

SupPZPO plnln,p' ~

of test functions E, C D:([0,00) x B) which is dense in L},. By adding for every

It is well known that for every p € N there exists a countable subset
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(iii)

function g € Ep and r,q € Q4 the functions p, * (f1 <), where p, is a standard
mollifier, to Ep, we get another countable dense subset E), that has the property that any
f € L™ can be approximated in LP by functions g, € E, with ||gy ||z < ||f|lzec. We set
E = U,en Ep, which is still countable. We claim that E is dense in L§5, with respect to
the aforementioned norm of Z.

27l fll e

Let f € LgS, and € > 0. We choose qp > 2 po and some g € E so that ||f_9HL‘t’0 <

37 and [|gl[zge. < [|flzge,- Then for pg < p < go we have

€

IS = gllze €
LA — < =
and for p > ¢gp we have
I ol _ 2his _
plnlnp — qo 2

Therefore Z is separable.

We show C. Let f € Z, e > 0 and choose some g € L™ so that ||f — g||z < e. Then

, I Fllze , lgllze , lgllLse,
lim sup = < €+ limsup = < e+ 7wlimsup = =c.
p>po plnlnp p>po plnlnp p>po plnlnp

Since € > 0 is arbitrary the left hand side is zero.

11 e
For the direction O, suppose that f € Z and that limsup,>, ﬁ = 0. Then there
exists C' > 0 so that || f||L» < C for all p > 1, and so f € L.

This is an addition to (iv) from Lemma 3.2. We claim that E is compact in LP([0, 00), LF).
This follows from the Arzela-Ascoli theorem for metric spaces. In our situation it states
that the set E is realtively compact in C([0,00), L%) if it is equicontinuous and point-
wise relatively compact. We have assumed equicontinuity and get the pointwise relative
compactness from the boundedness of E in L™P([0,T], H}), together with the Rellich-
Kandrachov theorem, which states that H! — L¥ is compact for all p. Since C([0,T7], LY)
embeds continuously into LP([0,T], L¥) we get the claim. Now we consider the space

0o p
£ = H Eb

Pp=po

7P
which we equip with the product topology. Here E"* refers to the closure of E in Lf@,

equipped with the topolgoy of Lﬁ .- By Tychonoff’s theorem the space £ is itself compact.
Then the closed subset

E={Fec&:n,F=mFVp>po}

is compact with respect to the product topology. Note that convergence of F), to F' in
E' is equivalent to convergence of m F, to mF in LP for all p > pg. We claim that this
topology on F is in fact equivalent to the (seemingly stronger) one given by the metric
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|1 F— 7T1G||Lp
SUPp>p, W for F,G € E. One implication is trivial and we now show the other

direction:

Since E is bounded in L™P([0,0), H!) we know by statement (iv) from Lemma 3.2 that
there exists a constant C' so that sup,>,, HmFH“’ < C for all F' € E. Now suppose that

F, — F in E. Let gy > po be large so that lnlnq < €. We have
w1 Fy — mF e |1 Fp — i F| e C
sup — < sup . .
P>Do plnlnp Po<p<qo plnlnp Inln g

Here the first term converges to 0 since w1 F,, — m F in L? for all p < ¢p, and the second

term is less than e, concluding our argument.

We now define

E'={felLi,:(ff..)€E}

What we have shown above implies that E’ is compact in Z and in fact is a subset of Z,

so E C F’ is relatively compact in Z.

(iv) Recall that by Holder’s inequality for any ¢ > p,

1
I llze < 1LBl? o Nl < 7l Fllzo-
Using this, we estimate

/ Hf()||Lp(t> T pt)]nlnfpt)] IOl men
o p(t)Inlnp(t) p(t)Inlnp(t) [p(t)]Inln[p(t)]

ol

HfIIZOT]([ p(t)] Inln[p(t)])P®]
(ol
plnlnp)

T
< 217 (1) 170 0 /0 14 dt

< 27er”Z[o,T] T+ Z ”pr

PZpo
lem. 3.2 < 27f||f||Z[O’T] (T +1).

Definition 3.4. For a € R we define the space
Xlt=y*!nz

with norm
[fllxo=1 = [[fllyer + [If]2-
We define the space of initial data as

Xl i={wy e H7>® : mS(t)wo € X1}

with norm
[wollxa—1 = [|T1.S(t)Wol| xa-1.
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Lemma 3.5. The following hold:

(i) X*~ ! is a separable Banach space. It has a countable and dense subset of radially

symmetric test functions.

(ii) X~ is a separable Banach space. It has a countable and dense subset of radially

symmetric test functions.

(iii) We have continuous inclusions Ht —— X071 ——— o1,

(iv) All the relevant Borel o-algebras are identical in the sense that for 8 < ' the following

inclusions are bimeasurable:
’
HY —— HE.

My —— X0 —— AT

Proof. (i) X! is the intersection of two Banach spaces in both of which we can find the

(i)

(iii)

same countable dense subset of radially symmetric test functions, so it is a separable
Banach space.

Completeness: Let w,, be a Cauchy sequence in X*~!. This implies that there exists some

2
L[O,T]XB

F € X !sothat 71 9(t)wy, X F. Then for all T > 0 we also have m1S(t)wy,
F, and so we know by Lemma 2.7 that w, converges to some wqg in H?. A direct
consequence is that S(t)w, — S(t)wo € C([0,T],H?). But then both F(t,x) and
m1S(t)wo(x) are the limit of S(¢)w(x) for almost all (¢,x) € [0,7] x B, hence F =
mS(t)wo up to time T, which is arbitratily large. Therefore w, — wq in X2 ".

Separability: Define
A={Fec X' F=mS(t)f for some f € X1} c X1,

This is a subspace of a separable metric space (lem. 3.3) and hence separable. Let F}; be
a countable dense subset. Since f — 71.S(¢)f is surjective from X! to A, we can choose
f; so that F; = 1 S(t)f;. Then for any wo € X*~! and € > 0 we know that there exists
a j € N so that |[[wg — fijﬁfl = ||F; — mS(t)onX%% < €.

If f, — f € H}, then 1 S(t)f, — m S(t)f in L=P(]0, T],H') by Lemma 2.2 and we can
use Lemma 3.2.

If f, — £ € X! then because of the Y*~! norm part we get 715(t)f, — 715(¢)f in
L2([0,T],He™Y) for all T > 0. Now Lemma 2.7 implies that f,, — f in H& L.

By the continuity of these maps it suffices to show that a measurable set in the smaller

space is measurable in the larger space. Let A € B(’H? l). It is a well-known result that on
separable Hilbert spaces the Borel o-algebras induced by the weak and strong topology
agree, and since the weak topology in P " is weaker than the weak topology in the larger
space Hy , we get

) C B(H

r,Weak) =

AeBH”

r,weak B(Hf)
Similarly if A € B(H}), then

Ae BH”

r,weak

) € B(H. year) = BOHY).

r,weak
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But since A € X% and X% ! has a stronger topology than H? we have in particular
A€ B(xeh).

O
The following lemma allows us to find large compact sets in X*~!. This is useful because it can
help prove tightness of sets of measures on X*~!, which can be used to show weak convergence

results. We will not use this result later though as we can show the desired weak convergences
in a more direct fashion.

Lemma 3.6. We have some compactness results:

(i) If a bounded set E C L™P([0, 00), H) is equicontinuous in C([0, 00), W™ %) and C(]0, 00), LP)
for every p € N, then it is relatively compact in X~ 1.

(it) Let N € N and B > 1. The embeddings

H? ¢ cpt. on—l
and
PyH® <Py yo-l

are compact. Here PNH > is equipped with the norm of RN,

Proof. The proof of (i) just uses the same argument as that of (iii) in Lemma 3.3. We prove
(i).

We have an embedding first of all since for all finite n, k < N we have (e,, e;,) € H! — XL,
Let ECHY or EC PnyH° be bounded. We will differentiate these cases later on.

We want to show that E is relatively compact in X*~!. Note that the topology on X*~! is
induced by the map
xoels wo — 7T15(t)W0 e xo L.

It therefore suffices to show that
A= {mS(t)wo TWo € E}

is relatively compact in X“~1. In the case of E C PyH, * being bounded in the norm of RV,
we use that A = Pym1S(t)E is the image of a finite rank and hence compact linear operator
applied to a bounded set, and hence relatively compact. Alternatively we could argue that
there exists constants C,C > 0 so that for all 3 > 0 and w € E,

9] N
[Wll350 = D> (M) (w, en)? + (M) 2wy, e0)? < C D (M) + (M) 2 < C.
n=1 n=1

Then by applying Lemma 2.3 we find that

|1 S @)WI| Lexp ((0,00),8) < C
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so E is bounded in C([0,7], H'). The lemma also implies that
[m1SEW et (j0,00),128) < CllW|lggs1,

so E is equicontinuous in C([0,T], H'). In the case of E C HY being bounded we choose
0 <y < B — 1. Then similarly with Lemma 2.3 we get the boundedness and

IS ()Wl o (0,00, 18-7) < Sup £ 11228 15Tl 0. (j0,00), L8 745=7))

so we also have the equicontinuity. Therefore in either case we have that E is equicontinuous
and bounded in C([0, 7], H'), and hence it fulfills the conditons of (7). O

Lemma 3.7. The map

S :[0,00) x Xt — yo-t
(t7 WO) — S(t)w(]

is jointly continuous in (t,wq). It is Lipschitz continuous with constant 1 in wy.

Proof. Let tg > 0 and wq,wy € X* 1. We have
[S(to) (w1 — wa)||xa—1 = [[t = m1S(to + t) (W1 — Wa) | xa—

< |l S(t) (w1 — wa)|| xa-1 = [[W1 — W2 ya-1.

This proves the Lipschitz continuity. As a result S(¢)wq is continuous in wg, uniformly in ¢.
It therefore suffices to show continuity in ¢ at every wg in to get joint continuity.

Now let wg € X* ! and ¢, — t > 0. We first assume that wq € 7—[} Set ¢, = t, —t and
assume that n is large enough so that €, > 0. Then

1(S(#) = S(tn))wollxa-1 = [[r1(1d =S(€n))S(t + s)Woll ot

< [lmi(1d =S(en))S(s)Wollya-1 + [|mi(Id =S(€n)) S (s)wol z-

We know that L&P ([0, 00), HY) — Y~ (equation 2.25) and L™P([0,00), H}) — Z (Lemma
3.2, (iv)). Therefore we can estimate the above by

S sup  e2]|S(s)]| o ey (1 =S(en))Wollpa = 0.

~Y
s€|0,00

bounded in s by lem. 2.2

Now suppose that wg € X!, Let ¢ > 0 and, using the density of radially symmetric test
functions, choose some w(, € H} so that |[wg — w{]|ya-1 < 5. Then

1(S(t) = S(tn))Wollxa-1 < [[(S(E) = S(tn))(Wo — Wo)[[xa-1 + [[(S(E) = S(tn)) W | a1
We already know that the second term vanishes as n * co. For the first term we estimate
1(S(t) = S(tn))(Wo — W)l a1 < 2[|m1.5(s)(Wo — Wp) || xa-1 <.

Therefore S(t,)wo — S(t)wo. O
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Theorem 3.8. Let o € [1, %) and note that we have chosen pg = 7 in the definition of Z.
There exists a constant C > 0 so that the following hold:

(i) If w is an L2(]0,00) x B)-valued random variable with estimates
E [wl[7,] < nAPp” (3.1)

and
E [[wl$ui] < 74° (3.2)

for all p > pg, some A > 0 and some n € [0,1], then w € X~ almost surely and
E [[w]%a1] < Cn? A°.
(71) Let {Xn(t)tneny U{Xn(t)Inen be a family of independent and centered normally dis-

tributed random variables. Let a%,ot%n be their variances and assume that there exists a
constant B > 0 so

< B and o2 <32
for allm € N. Now for N < M € NU{oco} define
M
W% = Z (Xnen,Xtynen)
n=N

Then for all N < M € NU{oo} we have wi € X~ almost surely and

6
B [ 1f-i] < 000 (L) Ny

Proof. We start with (7). The first given estimate implies that for any R > 2A

HWHP([O ) HWHL([O ') O /A\P AP0 R APo
=2 <R —— P < — <2
Z Re(plnlnpy | = Z RppP <n), <R> R R—A = “TRee

p=po P=po
(3.3)
Then, using Lemma 3.2 (i), we have
Iwlizs APo
>R O<><>)><B)>1 <o
P([lwllz Z RP(pIninp)P = T e

Recall that pg = 7. We apply the layer-cake formula:

E [Jw]$] = /0 6R°P (|w|z > R) dR

1
2AnPo 00 APo
g/ 6R° dR+217/ 6R°— dR
0 2 An70 Rpo
6 )
<n (26A6npo + 12nAPo / , R72 dR)

2AnPo

< AGU% + Apo_lnlii (p(§7) Aﬁng
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Using this and (3.2), we find that there exist constants C,C2 > 0, independent of all the other
variables, so that

E (W] < Ct (B [IW§es] + E [IWl2]) < Con? 4%

We are almost done, but a subtletly remains for our proof to be complete: we know that

E[||w| z] < oo which implies w € Z almost surely, but for X € Z by Lemma 3.3, (i) we need
that limsup,,> Eﬁ”lrﬁ; = 0. We can show this by proving the almost sure existence of a linear
growth bound in p. This is why we defined the space Z with a slightly weaker growth bound

plnlnp. We can improve the left hand side of (3.3) to get

p
W
[

Rppp < 00.

P=po

Then the sum almost surely converges and hence the summands must almost surely have a
uniform bound for all p, yielding the desired growth bound by p. As a consequence it must

almost surely be the case that limsup,, ]U‘f;”lflz = (0 and hence w € Z.

Now we show (7i). This is a combination of (i) and Lemma 2.13. Note first of all that Corollary
2.5 and Lemma 2.2 imply that 71.S(t)w4/ is indeed an L?([0,7] x B)-valued random variable.
Therefore (i) applies and we only have to show estimates of the type (3.1) and (3.2). We define
GX(t) == mS(t)wh and we want this to fulfill the conditions of Lemma 2.13. This means
that we have to bound the variance of

M
<G§\V4(t)> €n> = Z Tn(t)l,an + Tn(t)1,2Xt,n-
n=N

We estimate for N < N < M that
2 _ _ _ _
E[[(GN (1), en)[*] = |Tu()3102 + Tu () 02| S €782 0n) 72 4+ e (M) 282

Note that H‘ftﬁHLf[o,oo) < B. Therefore we can apply Lemma 2.13 (note that a — 1 < % < %
and 6(c — 1) < 2) and get the estimates

CPBP(1 + In(N))
N2

E[IGXIE, | <

CYB5(1 + In(N))
N2—6(a—1) :

E [IGN S gyya-1s] <

Now (%) concludes. O

Lemma 3.9. Let o € [1, %) For all v € (0, %) there exists a modification U of the stochastic

convolution such that W : [0,00) — X is almost surely continuous y-Hélder continuous on
[0,T] for all T > 0.
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Proof. Let T > 0. We will use the Kolmogorov continuity theorem and find a modification for
Holder-continuity on [0, 7']. Then a single modification that is almost surely Holder continuous
on all intervals [0,7] can easily be constructed. Let 0 < ¢ty < t; < T. We get the estimate
needed for the Kolmogorov continuity theorem through Theorem 3.8 applied to W(t1) — ¥(tp).
For the variances we have ¢

-5

E [(w(t1) = wlto).en)’] § 553

A

and
E [((t1) = ve(to), en)’] S [t — sl
by Lemma 2.10. Thince the we have the variance bound c2(t) < ()2 and g, (t)? < 1 we can
apply the theorem for N =1 and M = oo, which yields
E [[[%(t1) = T(to)[ o] < Cilts — tol*.
Kolmogorov’s continuity theorem now implies that for all 0 < v < 3% = % there exists a
modification Wy of ¥ such that ¥ € C%7([0,T], X*!) almost surely. We can now construct

from these \ifT a modification ¥ of ¥ which is a.s. continuous in X*~! on the whole domain
[0, 00). O

From now on we will implicitly assume that U refers to this modification W,

3.3 Energy Estimates

Let v € H}. we define an energy E : H! — [0,00) by
1 1
mw:/hﬁ+m2+ww+mwm
2 /5 2

Recall that H' embeds into all LP spaces so this is finite. This energy has regularity E €
CY(H!,R) with Fréchet derivative

DE(v)(f) = /viﬂtft + VoV f + 03 fda.

Our solutions only have regularity C1([0,T],H& ) with @ — 1 < 1, so we can not simply
differentiate the energy straight away. Instead we consider the energy of the solutions vy (t)
to the truncated equation. Then we take a limit to show that E(v(t)) is absolutely continuous
in time and even continuously differentiable under additional assumptions.

Lemma 3.10. Let v, vy be mild solutions to (2.19) and (2.21) on[0,T]. Thent — E(vy(t)) €
CY([0,T],R) with derivative

d
£E(VN(t)) = / —’UNAZ + ijt(vg — Py(w+ ¢+ ’UN)3) dx, (3.4)
B
and E(v(t)) is absolutely continuous in time with a.e. derivative
d
GEC®) = [ =l 4 = (w+ o+ 0)%) da (3.5)
B

If in addition that w + v € L>=([0,T), L), then also E(v(t)) € C1([0,T],R).
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Proof. We first show that the energy is absolutely continuous, then we show that the a.e.
derivative is itself continuous, therefore making the energy C*.

We know that viy € C*([0,T], H*"!), so with Lemma 2.18 we have vy = Pyvy € C([0,T], H')
and can compute

%E(VN@)) = DE(vy(t)(0vn(t))

3
= / UNUNt + UN7t8tUN’t + VUNVUMt + UNUN dzr
B

= / ’UN,t(AUN — Avy + oy —uN —UNg F vy — Py(w+ v + UN)?’) dz.
B —_——— ——

The above implies that for any 0 <tg <t; < T,

t1
BE(va(t)) — E(va(to)) = / / lonal? + on et — vn P (w + 1 + vy ) da ds.
to B

Now we let N — 0o on both sides and use dominated convergence. A majorant is given by
the absolute value of the integrand. We check its integrability for the last two terms. For the
first one:

t1
[ [ Toeni] ded < oscellzez low g < IValions < oo
0

For the second one:
t1
/ / |on e Py (w + ¢ +on)?| dedt < lon el 221 Pr(w + ¢ + UN)3HL§L3
to B

S Ivallengllo + 9 +onllZers < IVallzengllw + 9 +vnllya- < oc.

Since we know by Lemma 2.24 that the left hand side converges to E(v(t1)) — E(v(t1)) almost
everywhere, and the integrand in the right hand side also converges almost everyhwere, taking
the limit N — oo yields that E(v(t)) is absolutely continuous in time with a.e. derivative
given by (3.5).

Assume now that w + v € L*(]0,7], L¥) and note that after dropping the projection (since
unt = Pnung), we can write

iE(vN(t)) = /B —U?w — 3un oy (w + V) — 3’UN¢U]2V(U} + ) —ong(w+ V)3 ds

dt
= (I) + (IT) + (ITT) + (IV)).

Consider now the following estimates. For (I):

/U?wdx—/vfdx
B B

For (II) we apply Holder with % + i + % =1:

< lune = vllzeoo,m,z2) < IV — Vi Lzona-

/vNytvN(w—Hb)zda:—/vtv(w+¢)2daz
B

B
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< llowg = vell 2 lonllpallw + 9 [17s + lloel 2 low — ol pallw + 17
S vy = viceus (IValleus + 1VIieus)llw + 9l 7o s

For (II1) we also apply Holder with % + i + % =1:

/ UN’t’U%V(w + ) dx — / vtv2(w + 1) dx
B

B

< lowe — vell g2 lvnll pallw + 9l pa + lvel g2 llvie — v?] pallw + 9| g4
Note that

1
1
rﬁfﬁm4émwwww+wM)<mwwmwwmm,

SO
(3.6) S v — VHLtMH%(HVNH%OOHg + HVH%‘”Hg)”w +Yllpeera
t t

For (IV') we apply Holder with % + % =1:

/ijt(w—i-w)?’d:L‘—/vt(w+¢)3dx
B

B

< [lowe = vell p2llw + W[l

SIvy = vilzewgllw + 92 6

Together these imply that

4 Bvn (1) — S B(v(1)

uniformly in time. Therefore since left hand side is continuous in time for any IV, so is the

right hand side.

We now derive a global energy estimate.

O]

Theorem 3.11 (Energy Estimate). Let v be a mild solution to (2.19) on [0,T]. Assume in
addition to w4 € YO ! that w41 € Zio1)- Define E(t) = E(v(t)) or E(t) = E(vn(t)).

(0,7]

Then there exists a constant C > 0 such that for all 0 <ty <ty <T with Inlnln E(s) > 1 for

s € [to, t1] we have the estimate

E(t1) <exp (exp (G—1 <G(lnln(E(t0))) +C(1+t —to)||w+ ¢‘|Z([to7t1]))))) .

Here G(z) = ﬁ, which is invertible on [1,00).

Proof. The proof for the truncated case of vy is again identical to the one for v.

We have calculated before that

%E(v(t)) = /B —|vel* + v (v = (w+ Y +v)?) da
< / —3vv(w + )2 — 3v?(w + ) — ve(w + ¥)> dx
B

=)+ )+ (I1).
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For (I) we apply Holder with % + i + % =1:

3
(DI S Mvellzllvllallw + 178 S B lw +9IZs

For (I11) we apply Holder with % + % =1:

1
((IID)] S Nlvellz2llw + 9 lI76 S B2 [lw + ¢l76.

For (II) we apply Holder with % + é + 1% where p > 1 and % + % =1.

(11) S llvell g2 l[vl 2o lw + ]l o

Now we apply a specical case of the Gagliardo-Nirenberg-Sobolev inequality, also known as a
generalization of Ladyzhenskaya’s inequality:

2 2

2 1—
[ullzoa S llull pallwll g

The Gagliardo-Nirenberg-Sobolev inequality is obtained, as the name suggests, by combining
the Sobolev inequality and the Gagliardo-Nirenberg interpolation inequality. A detailed but
transparent study of this inequality can be found at [4]. We get that

et 9l
p

4 22 1,1,4_ 2 1
(I1) £ Cllw + Yllzellvell g2 llvllfa vl o S lw + @l r B2 a3 pE" v,

Now we choose p(s) = In(E(s)) > 1 and define 5(s,r) = % Applying Young’s
inequality for products to the estimates for (I) and (III), we can summarize what we have
shown as

1

E'(5) < B(5,6) + B(s,8) + E(s) + B(s, In(E(s))) In(E(s)) In In In(E(s))e" E 1+ i)
= B(s,6) + B(s,8) + E(s) + (s, In(E(s)))eE(s) In(E(s)) InlnIn(E(s)).

—

Then using E(s) > 1 we have

B(s,6) + B(s,8)
E(s)

<14 8(s,6) 4 B(s,8) 4+ B(s,In(E(s))) In(E(s)) InlnIn(E(s)).

S1+ + B(s,In(E(s))) In(E(s)) InlnIn(E(s))

Since In is Lipschitz continuous on the range of values of E on [tg,t;] and E is absolutely
continuous, In oF is absolutely continuous on [tg, t1] with derivative given by the left hand side
above. Then we get

In(E(s))

In(E(s)) S 1+ 6(s,6) + 5(s,8) + B(s, In(E(s))) Inlnln(E(s)).

Again f :=InolnoF is absolutely continuous on [tg,t1] so we get the differential inequality

f'(s) < C- (14 B(s,6) + B(s,8) + B(s, In(E(s)) In(f(s)))-
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Since In(f) > 1 on [tg, t1] the function % is absolutely continuous and we can calculate

(t5) = (i )

If s is a time where the left hand side is nonnegative, then so is f’(s) and we get for those
times that

PN L S (1EB0 486
<1n<f>>“ ln(f(s))<c< m(f) o ”)'

Using again In(f(s)) > 1 and setting G(z) = TGy the above implies

t1

G(f(t1)) = G(f(to)) <C [ 14 f(s,6) + B(s,8) + B(s,In(E(s)) ds.

to

Note that G'(x) = In(z) ™! —In(x) 2 is strictly positive on [1,00) and so on the range of values
of f on [to,t1]. Therefore G is invertible on the relevant interval. Using (iv) from Lemma 3.3,
we get

E(t1) <exp (exp (Gil (G(lnln(E(tg))) + C(1+ 11— to)|w+ 7/’||Z([t0,t1]>>)) :

Note that
rln(z) < G7Y(z) < 2z1n(x)

for all Inlnlnx > 1. For the first inequality we check that

_ In(z)
Nzln(z) = ——— " <g.
G @n(@) = fenay S°
For the second one we have
_ 2z In(x)
1
2zl = >
G @) = e ey 2°
if 22 > 2xIn(z). This is the case since z is sufficiently large. O

Lemma 3.12. Let T* > 0 and o € [1,3). Let v be a mild solution to (2.19) or (2.21)) on
[0,T] for all T € [0,T*). Then the following are equivalent:

(i) supgepo,r+) E(t) < oo.
(ii) v can be extended to a mild solution on [0,T’] for some T' > T*. This extension is given
by
v(T* +t) =v(t) + S{t)v(T"),
where v is a mild solution on [0,T" —T*| for an initial data and stochastic convolution
part given by

W(t) +P(t) = w(T* +t) + SE)WV(T*) + p(T* +t).
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Proof. We first show that (i) = (ii). Note that (i) implies v € L*([0,T*],H}), and so by
Lemma 2.25 we have v € L>([0,7%], H). Lemma 2.23 implies that it is continuous on [0, 7*].

By Theorem 2.22 there exists for some 7" > 0 a mild solution v on [0, 7] with initial data and
stochastic convolution part given by

W) +D(t) = w(T* + ) + SEV(T™) + (T +1).

Since Lemma 2.23 yields regularity, we can make the following explicit computation to see that
we have a solution in a strong sense, and hence particularly a mild solution:

T 0)+SOVT™) = LEO+SOVTN = (e ) 4 e+ 614 500 4 S(ere(r) )
v(0) + S(0)v(T™) = v(T™).
We have shown that we can continue v to a mild solution on [0, 7™ + T7].

The direction (i7) = (i) is trivial as (i) implies that v € L*([0,7"], %), and this bounds
the energy. ]

Lemma 3.13. Let vy and va be two mild solutions to (2.19) or (2.21) on [0,T'] for a given
w ~+ 1 as in the definition of a mild solution. Then vi = va.

Proof. The local well-posedness result only gives us uniqueness up to some fixed time 7" > 0
determined by the estimates for the fixed point argument. Define

T* = Sup{O S T1 S T, . Vl(t) = Vg(t) Vit € [0, Tl]}
By the continuity of the solutions (Lemma 2.23) we directly get vi(T*) = vo(T*). If T* =T’
then we are done, so suppose that 7% < T”. Consider the maps
Vi (t) =V (T* + t) — S(t)v1 (T*)
\72(25) = V2(T* + t) — S(t)VQ(T*)

Since Lemma 2.23 yields regularity, we can make the following computation:

0
ovi(t) = Lvy(t) — ~
0= 200~ (2 )+ s(epa(1) 001 )+ 905):
\71(0) = Vl(Tﬂ< + 0) — S(O)V1(T*) =0.
Therefore v; and vy are themselves mild solutions to (2.19) with w(t) + ¢(t) replaced by
w(T* +t) + S{t)vi(T*) + (T* + t). The local uniqueness result implies that v; = V2 on
[0,7]. But by the uniqueness of the linear problem S(t)vi(T™) = S(t)va(T*), hence vi = vo
on [T*,(T* +T) ANT']. By the definition of 7% this implies that 7% = T”, a contradiction. [

Theorem 3.14 (Deterministic Global Well-posedness). If w + ¢ € X[%_Tl] for all T > 0, then

there exist unique global solutions v and vy to (2.19) and (2.21). For any T > 0 the maps
X[C(“)jTl] x [0,T] — H
w+Y v
w+Y— vy

are jointly continuous in (w + 1, t).
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Proof. The proof for (2.21) is completely analogous to the one presented below. Since w+1 €

X[‘E‘)_Tl] we have ||w + ¢||y[a7]1 + lw + Y|z, < oo for any T' > 0, so the assumptions of the
) 0,T ,

theorems and lemmas that we use below are fulfilled.

Define
T* =sup{T > 0: (2.19) has a mild solution v’ on [0, 7] }.

If Ty, 77 < T*, then by the uniqueness in 3.13 we have v We can

Tll[OT/\T = v’ :
T1AT3] [0,T1 N3]
therefore just write v to refer to a unique solution that exists on the interval [0, 7*). If T* = co
then we are done, so we suppose that T* < oo. The energy estimate in Theorem 3.11 implies
that sup,cfo 1+ E(t) < oo, and so by Lemma 3.12 we can extend v to a mild solution on a
larger interval, contradicting the maximality of 1.

The continuity works the same way as the one in the local well-posedness Theorem 2.22, except

that we can use the energy inequality to perform the argument for a uniform 7" > 0 independent

of the size of ||w + 1/1||y[a7]1. O
0,T

Corollary 3.15 (Stochastic Global Well-posedness). Let o € [1, %) and ¥ be the stochastic
convolution. Let wo € X1,

Then there exist random variables v and vy which a.s. are mild solutions (2.19) and (2.21)
respectively on any interval [0,T]. Furthemore

u=v+w+9¥ and uy=vy+w+VU
solve (1.5), i.e.
OPu+ O+ (1 — A)u+ u? = V2
(u,ut)(0) = wo
and
8t2uN + Oyun + (1 —A)uy + u‘;’\; = \/if
(un,un)(0) = wo

almost surely globally in time in the sense of distributions.

Proof. We have shown in lemmas 2.15 and 3.1 that 1 € X®~!. The assumption wy € X*~!
then implies w + 1 € X* ! so we can use Theorem 3.14 to find v and vy.

We apply the stochastic local well-posedness (Corollary 2.26) to see that u and uy are distri-
butional solutions on any [0, 7], hence globally in time. O
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4 The Invariant Measure

4.1 The Stochastic Flows ® and &y

Given the global well-posedness result we can now define stochastic flows on X*~1 by

PRy xQx Xl — yol
(t7£; WU) — u(t) = S(t)WO + \Il(gat) + V(t)

and analogously
Py Ry xQ x Xt — yol
(¢, & wo) —> un(t) = S(H)wo + W(&, 1) + v (t),

where v and vy are the unique global solutions from Theorem 3.14 for w + ¢ = m.S(t)wo +
Wl\l’(t, f) .

Here we use a variable £ € ), which is already the notation for the radially symmetric space-
time white noise £. The reason for this is that we can write ¥(&) to signify that ¥ depends
on the white noise . We overload the notation and sometimes write ¥ (&) for a different
white noise £ to mean that this white noise is instead used in the definition of the stochastic
convolution.

Lemma 4.1. ® and &y are continuous stochastic flows in the sense that the following holds
almost surely (i.e. for almost all £ € Q):

(7“) @(0,£,w0) = (I>N(07£7W0) = Wp f07” all wo € Xa_17
(ii) ®(t,&,wo) and PN (t,&, wo) are continuous with respect to (t, wg).

(iii) Let &1, & and & independent instances of radially symmetric space-time white noise.
Then for all s,t > 0 and wo € X*~1 we have

LaW((I)(S7 gla (I)(t7 g?a WO)) = LaW((I)(t + s, ga WO)

and
LaW(fl)N(S, fl, (I)N(t, 62, Wo)) = Law(@N(t + s, 5, Wo).

Proof. Statement (i) is trivial. We show (#¢). We have seen in Lemma 3.7 that S(t)wq is
continuous in (¢, wp). We have seen in Lemma 3.9 that also ¥ is a.s. continuous in ¢. Lastly,
we have shown in Lemma 2.22 that the the mild solution v and vy for given w + 1 are

continuous from X [(S_Tl] x [0, T] to HE for any T > 0. Since the latter space embeds into X1

and since the map
-1 a—1
X — X 0,77
wo — w = 1.5 (t)wo
is by the definition of X*~! continuous, we are done.

Now we show (iii) for the case of ®. We have

(t,61,wo) = S(t)wo + W(&1,t) + vi(t)
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where vy is a mild solution corresponding to [w + ¥|(t) = m.S(t)wo + ¥ (&1,1), and
D(s, &2, ©(t, 61, w0)) = S(5)D(t, &1, Wo) + ¥ (&2, 5) 4 va(s)
where v is a mild solution corresponding to
[w+P)(s) = m18(s)R(L, &1, Wo) + m19(E2, 5)
=mS(t+ s)wo + w1 S(s)U (&L, t) + mS(s)vi(t) + ¥(&a, s).
For f € D;(R xB) We define
(€3, f) = (€1, L —oo,g f) + (€25 Ljo,00) (- + 1))

This means that essentially &3 is & up to time t and afterwards &3 is &. Since & and & are
independent it is easily verified that {3 is again a radially symmetric space-time white noise.
Note that by definition 2.8 for f € D?(R; x B) we have

(W(Es,t+8),£) = (&, T 14 (V278" (E + 5 = 1)E(r) )
= (60,10 (V28 (t 4+ 5 = 1)E(r) )
+ (&2, 10,9 (1) V228" (s = 1)E(r))
= (S()¥ (&, 1) + V(&2, ), 1) -

We now proceed similarly as in Lemma 3.12, defining
<t
V(S) _ Vl(s)’ s> )
S(s—t)vi(t) +va(s—1t), s>t

Since Lemma 2.23 yields regularity can make the following calculation: For s <t we have

0
o) = 216+ (i, sy o611+ (0"
On the other hand for s > 0 we have
0
auvte+3) = L0+ S0 (1 sy st wleons s 65 mS(emn(t) + m(e)’)
Since U(&1,s) = W(&3, s) almost everywhere for s < t we see that v is a mild solution corre-
sponding to [w + ¢](s) = m.S(s)wo + (&3, 5). But at the same time
O(t+s,&wo) =S+ s)wo + V(& t+s) + Vot + s)

where v{ is a mild solution corresponding to [w+](s) = m1S(s)wo+1(, s). Let T > t+s > 0.
Since &3 and £ are both radially symmetric space-time white noises, we have

Law(1(§)) = Law(¢(£3)) as measures on Y[o 1]

Then due to the continuous dependence of the mild solution with respect to the “initial data
+ stochastic part” w + v established in Theorem 3.14 this implies that

Law(v(t+ s)) = Law(v(t + s)) as measures on X1,

Therefore
Law(@(s, 627 (I)(tv 617 wO))) = Law((I)(t + s, é.a WO))
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4.2 Limits of Invariant Measures

Our goal is to find a measure that is invariant under the flow of ®. What this means is that
if the random initial data is distributed according to this distribution, then the distribution
stays constant as our initial data evolves under the flow.

Definition 4.2. A measure p on X*~! is called invariant under ® if for every Lipschitz
continuous and bounded F : X*1 — R and t > 0 we have

| BelP@t. € wo)] dotwo) = [ Fwa) dp(wo).
Xa—l

Xoa—1

We face two challenges: Constructing such a measure, and showing that it is actually invariant.
We will first spend some time exploring different measures on X*~! that we can define as the
laws of certain random variables. Then we will construct the an invariant measure as a limit
of invariant measures for finite dimensional equations, where we can use finite dimensional
methods to prove the invariance.

This limit will be achieved in the weak topology on the space of probability measure on X1,
We will metrize this topology with the Wasserstein metric because it aids us in computations.
Let p > 1. Given two probability measure u, v on a metric space (F, d) with finite p-th moment,
their p-Wasserstein distance is defined as

Ed . . 5 1
Wi () = b Epld(X, Xy ) (4.1)

prob. space (Q,]},ﬁ")

By the Kantorovich-Rubinstein Theorem [16] there is an alternative representation in the case
p=1:

Wl(E’d)(,u, v) = sup /F(d,u — dv), (4.2)

[FlLip<1

which we will use later. The Wasserstein metric is related to the theory of optimal transport
because it represents the minimal ”cost” associated with moving an amount of mass distributed
according to p into the distribution v. The reader may find out more about this metric in
[25, Def. 6.4]. Theorem 6.18 in this book establishes that if (F,d) is complete, then the p-
Wasserstein metric is a complete metric on the space of probability measures on E with finite
p-th moment.

Convergence of py to p in the p-Wasserstein metric is equivalent to weak convergence plus
convergence of the p-th moment ([25, Thm. 3.9]), meaning there there exists some zy € E so
that

/d(.%',l’o)pd,u]v(l‘) —>/d(m,$0)pdu(x).
E E

This means that if we are in a bounded setting d < 1, then the Wasserstein metric metrizes
the weak topology.

The following lemma is a crucial element of our strategy. It gives us a way to get an invariant
measure for a flow ® from a sequence of invariant measures for flows ®y.
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Lemma 4.3. Let (Q, F,P) be a probability space and (E,d) a Polish space. Suppose that we
are given measurable functions

O, Py :[0,00) xQUXE—FE

with ®(0,&,z) = ®n(0,&,2) = x for all N € N. Then a probability measure . on E is invariant
under © if the following hypotheses are given:

(H1) There exists a function L(t,&,x,y) which is locally bounded in (z,y) € E? and fulfills
d(®n(t,& ), PN (¢, € y) < L(E, € 2, y)d(z,y) (4.3)
forall N e N and z,y € E.
(H2) For allt > 0 we have

[ B ld(@(1.6.0),x(1.60)] dute) 20 (4.4)

(H3) There ezists a sequence of probability measures (un)nen on E, where each py is invariant
under the flow ®n, so that puy converges weakly to .

Proof. By the Skorokhod representation Theorem [2, Thm. 3.8.6] there exists a probability
space (Qg, F2,P2) on which we have E-valued random variables Xy, X, so that Law(Xy) =
un, Law(X) = p and almost surely Xy — X. Dominated convergence then implies that

/Q A(X (@), X (@) dPa(w) Y225 0.

Now let F': (F,d) — R be Lipschitz continuous with constant L' > 0 and absolutely bounded
by b > 0. We have

/EEé [F(®(t, &, 2))] du(w)Z/ Ee [F(Pn(t,¢, Xn(w)))] dPa(w)

Q2

+ [ BelP(@n(t.& X)) - FBx(t€ X)) dPale)

+ [ BelP(B(1.6 X() - F@n(t.6 X ()] dPafa)

The first term is equal to [, F(z)duy(x) due to the invariance of py and Law(Xy) = pn.
Since p converges weakly to p and F' is also continuous and bounded with respect to d, the
first term converges to [i, F(x) du(x). It therefore suffices to show that the other terms vanish
as N — oo.

The third term vanishes directly due to Lipschitz continuity of F' and assumption (H2). For
the second term we use (H1) to estimate

[F(®(t, &, X (w)) = F(On(t & Xn(w)))] < bAL'L(¢, &, X (w), Xy (w))d(X (w), Xn(w)).

For a given ¢, ¢ and w this almost surely converges to 0 as N goes to infinity because
L(t, &, X (w), Xn(w)) is bounded on the bounded set {(X(w), Xn(w)) : N € N} ¢ E? and
d(Xn,X) — 0 almost surely. Therefore the integral also vanishes by dominated conver-
gence. O
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4.3 Measures on X!

Let us now define and analyze a number of measures on the space of initial data that we will
use in the subsequent section. In Section 2.1 we have previously considered random initial

data of the form -
_ anXnen
o= Z <ant,nen) '

n=1

Here ay,, by, € R and { X, }nen, {Xtn}tnen are families of independent standard normal random
variables. We are interested in the case where a,, = <)\n)_1 and b, = 1. Corollary 2.5 tells us
that then

1
E[||wollys] < 0o <= woeH’ as. «— B< 5

We can therefore consider
u = Law(wyg)

as a measure on HV. It is in fact a Gaussian measure in the sense of Gaussian measures on
infinite dimensional Hilbert spaces, but we do not need to use this and hence do not define it.

The choice of H is rather arbitrary here as p and the following measures are in fact concen-
trated on and have finite expectation in the smaller space X*~1. Once we have shown this fact
we can immediately switch to considering them as measure on the space of initial data X~
Due to (iv) from Lemma 3.5, the Borel o-algebras are, in a sense, identical.

Since our plan is to work with finite-dimensional approximations, we define the measures
M
An) 1 X e
HN M aw ( g ( X, nen
n=N+1 ’

for M > N. We also define this for M = oo so that we can, for example, write = [0, 00-
Unless explicitly stated however, we always assume M < oo. These measures are Gaussian
measures on RM ™V and hence

M
L1 1
pn v = Fyt <F exp (‘2 > () +yt2n)> dy) ;

N.M n=N+1
where
1 M
I‘N,M = exp _5 Z (<)‘n>29727, + |yt,n|2) dy
RM-N n=N+1
and

FHi(N) — A

o
(Tn)neN — Z Tnen.

n=1

Here F is the analogue of the Fourier transform for our radial and 2-dimensional situation,
defined in section 1. Note that we use the indices y = (yn+1, ..., yap) to make the notation
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more adaptable to changes of M and N. For example, we want to make it clear to the reader

that
M
Z Yn€n
n=N-+1

is the correct interpretation. We see that py s is a measure concentrated on the smaller
subspace (Py — Pn)HY.

We can heuristically write

1
1
p=Fy (eXp< 52 (A yn+ytn)> dy>,
where

oo

I'= /oo €xp (_; Z (<)‘n>2y721 + ’yt,n’2)> d
n=1

Of course this is not rigorous as there exists no Lebesgue measure on R,

Our first goal is to show that p and py,ar are concentrated on and have finite expectation in

X2~ 1. Recall that the latter does not trivially imply the former due to the subtlety in the

difference between the spaces Z and Z. The case of uy s is rather trivial as

[ Il diano = [ ‘ > e

=N+1

1

» 'y

=3 Sntn ()02 432.0) gy < oo,

The finiteness just follows from the fact that e, € 7—[} c X2 ! for all n € N. Since u N,M is the
law of a random variable which a.s. has values in X®~1, it is concentrated on this set.

The case of y is not as easy. We will show the following lemma which establishes that in fact
p is the limit of iy as as M goes to infinity with respect to the 6-Wasserstein metric Wg' o
This then implies that in particular p(X*~1) =1 and E [||wol%.-1] < .

Lemma 4.4. For all N € N we have (1 — Py)wo € X*~! almost surely and
E [|(1 — Px)wol|%a-1] < o0

Furthermore

a—1 M
W™ (v v, v o0) ——— 0.

Proof. Let N < My < My € N. For M € N, consider the random variables

M
= Z (Xnena Xt,nen) .

n=1

Since the variances of X,, and X;, have appropriate bounds we can apply Theorem 3.8 and
for some constant C' > 0, independent of N, M; and Ms, get a certain estimate. Together
with definition (4.1) we then have

a—1

W™ (un s iv,a,) < E {H(l — Py)(wt — WMQ)H;H}
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6

My ,
1+ In(M- 7
n=M;+1 L

Xo—1

Therefore iy s is a Cauchy sequence in M with respect to W6X ail, and hence it converges to
some measure [iy, with finite sixth moment. The estimate above also shows that wy ,y —>
(1 — Py)wg in L8(2, X*~1), where Q is our arbitrarily chosen probability space. Therefore
there exists a subsequence (1 — Py)w™* which almost surely converges to (1 — Py)wyg in
X1 As convergence in the p-Wasserstein metric implies weak convergence and almost sure
convergence implies weak convergence, by the uniqueness of weak limits we know that fiy o =
Law((1 — Pn)Wo) = [N,c0- O

There are some more measures we need to consider. Given that we have defined a number
of measures gy s and g on X*~! we can now define new measures on this space which are
absolutely continuous with respect to p or py -

We define the measure

o llulza dp(u)

1
P=5

with

= / e~ allvlLa du(u).
Xo—1

For this measure to be well-defined we need that the density is p-a.s. finite. This is the case
since E [||lwol|74] < oo by lemma 2.13 applied to wo, which has Law(wg) = p. Similarly for
N < M with M € NU{oo} we define

1
PNM = =
I'nm

1 4
— 7PNy
e 4” HL4 d/Lo,M(u),

with
~ _1 4
I'nom 3:/ € IR dpag g ().
Xe-

Note that just like for puy s if M < oo we can write it as an absolutely continuous measure
with respect to the M-dimensional Lebesgue measure:

1 1| & X
pvar =Tyt | Eesp | = | wnen| =53 (Wit uin) | dy
N,M — —
) n=1 A n=1
We also define . 3
PN = PN,c0 and FN = FN,oo‘

Note that for F' € Cy(X*"1) we have

/ F(u)dpn(u) =E [F(wo)e_%”PNoniq
a1

=k [F(PNWO +(1 - PN)Wo)e_i”PNwO”iLL]
- / / F(z +y) dpn,n(2) dpin,oo(y),
PyXxo—1J(1-Py)Xxo-1
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SO
PN = PN,N X UN oco-

We now show that also py converges to p in a Wasserstein distance as N goes to infinity.

Define d(wy, ws) = |[w1 — Walxa—1 A1 for wy, wo € X!, This metric is equivalent to the
normal one on X1,

Lemma 4.5. We have o N
WD (o, p) 222 0,

Proof. Here we use the dual formulation of the 1-Wasserstein distance given by (4.2). Let

F : (X' d) — R have Lipschitz constant less or equal to 1. Since d < 1 this implies
|F| < 1. Then

. ; ; B . e illPnuliy = llulg, p
Jo FO o — i = [ ) (= ) e

SE[ ]

We want to show that this vanishes as N — oo. Since pro — T > 0, the following
computation, using e"Y|1 — e~ *| < z for x,y > 0 and Lemma 2.13, suffices:

e — 3 1Pywoll, e—inoll‘}ﬁ

I'noo r

_1 4 _ 4
E [e_i”PNwO”iAl (1 —e 4(Hw0”L4 PNwOHL4)>] SE [HwOHE - HPN’UJOH%‘J

A5 SE 11— Py )woll 2 ([lwoll 74 + | Prwol4)]
<E (1 = Pv)wol3s] (E [[lwoll34] +E [| Prwoll7a])
SE[II(1 = Pyv)wollis] (B [lwoll3s] + E [|[Pvwol$s])

2 0.

lem.2.13 <

4.4 Invariance of p under ¢
Lemma 4.6. The following hold:
(i) The flows ® and @ fulfill the hypotheses (H1), (H2) and (H3) for p.

(i)) Fix N € N and consider for M > N the sequence of functions (®nar)men = (P —
PN)®N as well as their limit @y = (1 — Py)®x as flows on (1 — Py)X*~ L. These fulfill
the hypotheses and (H1), (H2) and (H3) for jin, co-

Proof. (i) We have shown (H3) in Lemma 4.5. We can get (H1) as a slight improvement
over the continuity results in Theorem 2.22. First of all, observe that

[P (&, w1) = B (t, 6, W)l xa-t <[[S(E)(W1 = W2)llxa-1 + [[VN1 () = viv2()]|3e-
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By the Lipschitz continuity in Lemma 3.7 the first term easily obeys the desired estimate.
For the second term we have to look into the proof of 2.22. Note that first of all (2.29)
holds for vy,1 and vy 2 as we wrote it there for vi and va, with no constant depending on
N being necessary. We therefore have the analogue of (2.30), which is almost the desired
inequality for a suitable choice of L. We know that Hz/JHY[a o is almost surely continuous

in ¢, and it trivially holds that HwZHY[a 1 < ||wil|xya-1 for i = 1,2. We also have to

estimate ||V ;2o by ||W;i| ya—1, which is possible due to the global energy estimate and
preservation of regularity (Theorem 3.11 and Lemma 2.25). Then we get (2.30) with
some factor that depends continuously on wy and ws. In particular this factor locally
bounded with respect to these variables.

Assumption (H2) is a direct consequence of Lemma 2.24 and Lipschitz continuity of F,
which establish convergence to 0 for all ¢ and almost all (£, x). Then due to boundedness
of F dominated convergence concludes the argument.

(ii) We have shown (H3) in Lemma 4.4. Assumption (H1) for (®x ) follows from the
same result for (®x)x which we have shown in the stronger norm of H<. We simply
estimate

[(Prr — PN) (PN (t €, w1) — PN (E, €, W2))l|xva—1 S [[PN(E €, W1) — PN (t, W)l pe.

Assumption (H2) is also straightforward: Given ¢, ¢ and w € X~ we compute
11 = Pr)D(t, & W) — (Pag — Pa)@x(t, €, wllxacr = (1 = Pa)®n (1,6, w)l|os,

<A = Par)S@)wll a1 4+ [[(1 = Par) U (L, &)l xa-1 + [|(1 = Par) v et

We have to estimate this under the integral against p1n o and the expectation E¢. Since
Pyvy = v the third term vanishes as soon as M > N. For the first term note that
UN,00 = Law((1 — Pn)wo) and that (1 — Py)S(t)wy fulfills the variance estimates needed
to apply Theorem 3.8. We get

By [[I(1 = Par) (1 = Pn)S(#)wl|xa-1] = Ew, [[[(1 = Par) S(E)wl| xa-1]

o (”Liﬁf”) Moo, o

~o

For the second term we also apply Lemma 3.8 and get

(1+1n(M)))$ Moo,

Bell(1 - Puwe. ] < € (UG

Theorem 4.7 (Invariant Measures). For N € N and M > N the following hold:

(1) pn,N is invariant under the flow Py®y on the space Pyxo—1,

(it) pn ts invariant under the flow (Py — Py)®n on the space (Py — Py)xe—t,
(i4) N0 is invariant under the flow (1 — Px)®x on the space (1 — Py)X L.
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(iv) pn is invariant under the flow ®x on the space X1

(v) p is invariant under the flow ® on the space X 1.

Proof. (i) We fix some N € N and do not always mention it in the notation. Define z =
Pyup. This solves the equation

Zy + 2 + (1 — A)Z + PN(Z?’) = \/§PN§
(z,2)(0) = Pywyo

or equivalently

Oz = Lo = (PN?z%) " <ﬂ?%v5> ‘

in the sense of distributions. We can write this as a system of distributional equations
in time: for some n < N let f € D(R,) and test the equation with f(t)e,(z) in each
component. This yields

0

o= (e 430~ ) )+ (g,
t —(n)? -1 Yiher 20202 (k) (eiejer, en) V2(€ en)s )’

(4.5)
which is to be understood as an equation of time distributions in D'(R.).

Recall that we have seen in Lemma 1.3 that
(€ en)er e = /0 F(t) AW (0.

for some collection of independent Brownian motions W,,. We now test (4.5) with f =
L1 and get

zt(n, s)
(—<>\n>22(n, $) = Zu(n, 8) — Y00 ke 201, 8)2(4, 9)2(k, 5)(ee;ex, 6n>> &

i (f& V2 ?iwn@)) |

We write this as a stochastic differential equation
dZ(t) = b(Z(t))dt + o AW (1) (4.6)

where Z(t) = (712(n,t))n=1... N, T2Z(n,t))n=1... ) € R*¥  the function b: R* — R?N
is defined by

(Zt»”)nzl,A..,N )
b

— (M) 22n — 2o — Y1y et Zi%i2k(CiC €R )y

goeny

b(Z].? <y AN 21y ooy Zt,N) = ((
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o € R2V>2N g the matrix

0 o0 V2

and W = (V, W) where V is another N-dimensional Brownian motion independent of
w.

The Fokker-Planck equations (A.3) state that the law of Z(¢) has a probability density
p(t) : R*®Y — [0, 00) which weakly solves

Op(t, z,21) = =0z, (b(2)np(t, 2, 2¢)) = Oz, ,, (D(2) N4np(t, 2, 2t)) (4.7)

+

M= 11

N
Z (azn azm Dn,m + aztm azm DN+n,m
1m=1

+ aznaZt,mDn,N+m + azt,nazt,mDN+TL,N+m)p(t7 Z, Zt)
= _Np(tv Z, Zt) - b(z)v(z,zt)p(tv 2, Zt) + Aztp(tv 2, Zt)7

n

where

1 1, i,j>N+1
Dij = 2 Zai’kaj’k “ o, else .
k=1 )

We invite the reader to read up on its derivation in the Appendix if this is a surprise. It
is a rather direct consequence of Ito’s formula.

To find an invariant measure, we hypothesize that the energy
1 1 1 1 1 1 1
E(z) = /B §|z]2 + §|Vz|2 + 5‘2t|2 + le\‘ld:v = /B §\<V>z\2 + §|zt\2 + Z|Z|4 dx

is in fact conserved. Then the measure

Fupn = e FF @) gy gz = Trle S((Eime) en) -3 TR gl g
should, heuristically, not change along trajectories generated by the flow Py®y, so we
have some hope that the measure is invariant under the evolution of z (this is nevertheless

only an intuition). Note that

4
00 N 9 9 N
E << E Zj@j) ,€n> = E Zn€n
n=1 j=1 n=1 L4

The measure Fypy is a measure on R2N | so we are in a finite-dimensional setting and
can check the invariance by a calculation with the Fokker-Planck equation. Let py be the
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(i)

density of Fypny = Law(z(0)). Now observe the following computations which we can
perform in the sense of distributions:

Atho(z7 Zt) = (‘zt|2 + N)pO(za Zt)
and

b(z)v(z,zt)pO(zy Zt)

(Zt’n)nzl,..‘,N

— polz. ) <_<An>2zn_znvt_<(z;°;1zjej>sek,en>)n:1 §

geeey

RS (z;;ol <(Z§V1 5e;)’ 7en> (S 2e)) ek,en>>

k=1,..,N
N > /N N
=po(z,2) | 2 ((An)zn)n=1,...8 — < dozer| | Doz (Z Zt,k6k> >
= =1 k=1
xX
Ny 3
—2t - ((An)2n)n=1,..N + 2> + < > zej | (Z Zt,k‘%) >
=1 k=1

x

= |Zt’2P0(Z,Zt)~

We see that Fupy is a weak solution to the stationary Fokker-Planck equation, i.e. the
right hand side of (4.7) is zero. If we know that weak solutions to the Fokker-Planck
equation of a class of measures that both Law(Z;) and Fxpn belong to are unique,
then it follows that Fxppy is indeed an invariant measure under the flow of Z, that is

Law(Z(t)) = Law(Z(0)) = Fxpn-

It then follows directly that py is invariant under the flow of z, that is Py®y.

Now it only remains to show this uniqueness of weak solutions to the Fokker-Planck
equation given by measures. We use Lemma A.4. What we have to check is that for all

1<i<2N,
) |
L )
dL Z4) dt .
/o/Rzmer?*lﬂx\ aw(Zy) di < oo

As |bi(z)| < |z| for i < N it suffices to look at the cases N +1 < i < 2N. Here

bi(x)] < 1+]|z|* and we use that fOTIE [11Z¢||3] dt < oo, as each Z; is a Gaussian random
variable and their variances are locally bounded in .

We now deal with the other part of the equation for uy. Define y = (1 — Py)uy so that
uy =z +y, and define y™ = Py;y for M > N. This solves

uil +y + (1= A)yM = V2(Py — Py)¢
™, y")(0) = (Par — Py)wo,
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(iii)

~—

(iv

4.5

which again corresponds to a a finite ((M — N) -) dimensional SDE for y. We will now
sometimes write y € R2M=N) and use the notation

y = (y7yt) = (yN-i-la e YMH Yt N+1, "'?yt,M)'

We can write the SDE as
dYM(t) = b(YM (b)) dt + o AWM (1), (4.8)

where
(yt,n)n:NJrl,...,M )

D(YN+1y ooy UM Yt N+15 oy Yt,M) = ((—(/\ Y?Un = Yn,t)n=N+1,..M
n n n,t)n= ERRES}

and o € RZM-N).2(M=N) 5 defined analogously to the previous case. The Brownian
motion is given as WM = (V, W) where W is a (M — N) dimensional Brownian motion
which is a modification of (§, 1jpyex) with k € {N +1,..., M}, and V is any M — N
dimensional Brownian motion independent of W. Note that the Brownian motions in
(4.6) and (4.8) are independent.

Now we can again use the Fokker-Planck equations to verify with an analogous and
simpler calculation to the one in (7) that

}_#MN,M = F]_\/}Me_% ZﬁLN+1<An>2y%_%|yt|2 dy dyt-

is an invariant measure on R2M~=N) under the flow of YM , that is F(Py; — Py)®y. Then
it follows that gy as is invariant under the flow of y, that is (Pyy — Pn)@n.

This is now simply an application of Lemma 4.3. We have shown in Lemma 4.6 that the
necessary conditions are fulfilled.

Since py = pN,N X [AN 00, the invariance of py follows from (i) and (i77).

This is again an application of Lemma 4.3. We have shown in Lemma 4.6 that the
necessary conditions are fulfilled.

O

An Outlook: The Flow as a Feller Semigroup

We can frame the flows ® and &y as Markovian semigroups in the sense of [7, Chp. 2 Prop.
2.1.1, Chp. 3].

Definition 4.8 (Markovian Transition Function). Let (E,d) be a Polish space. We say that a
family of functions (Pt)ic(0,00) with

Py Ex B(E) — R

is a Markovian transition function on E if the following hold for every t,s > 0, x € E
and A € B(E):

(i) Pi(x,—) is a probability measure on E.

(i) Pi(—, A) is a measurable function on E.
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(i7i) Polz, A) = 14().

(iv) We have Chapman-Kolmogorov equations

Pt+5<$,A):/Eps(y,A)Pt(l',dy).

In our instance we take XY*~1 as the Polish space and define
Pi(wo, A) = [@(t, =, wo ) Pe] (A) = Pc({€ : D(2, &, wo) € A}).
Pt(wo, A) = [ON (L, = wo)4 Pe] (A) = Pe({€ - (2, € wo) € A}).
Lemma 4.9. (Py)i>0 and (Pnt)i>0 are Markovian transition functions on xo—L,

Proof. We only write down the proof for (P;)i>o. (i) follows directly from the fact that
Pi(wo, —) is the push-forward of a measure. For (i7), write

Pe({€: ®(t, &, wo) € A}) = E¢ [La(te,wo)ea -

Since ®(t, —, —) is measurable the indicator function in the expectation is measurable with
respect to & and wg. Then Fubini’s theorem implies that the expectation with respect to £ is
still measurable with respect to wq. Statement (iii) directly follows from (i) of Lemma 4.1,
and lastly (iv) follows from (7ii) of that lemma in the following fashion:

Note that given three independent copies &, £ and & of the white noise, (iv) is equivalent to
the statement that for all wo € X! and F € Cp(X*71),

Be [P0t & w0 =B, | [ F(8(6,6,v0) d[(0.— wo) P (w0

= E52 [Egl [F((p(‘S? 627 (p(t7 617 WO))]] .
It is now evident that this is equivalent to (7i7) from Lemma 4.1. O
Definition 4.10 (Markovian Feller Semigroup, [7]). A markovian transition function (P¢)i>o0

on a Polish space (E,d) is a Markovian Feller semigroup if it is stochastically continuous,
meaning that for all F' € Cy(E) and x € E we have

lim EF(y) dPi(z, dy) = F(z),

and furthermore for all F € Cy(E)

[;c — / F(y)dPe(z, dy)| € Cy(E).
E

Lemma 4.11. (P;)i>0 and (Pn)t>0 are Markovian Feller semigroups on Xt
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Proof. We again only write down the proof for (P;);>0. We first show the stochastic continuity.
Let F € Cp(X* 1), wo € X! and t > 0 and note that

Aal F(Vo) dpt(Wo, dVQ) = Eg [F(q)(t, f, Wo)] .

We know from Lemma 4.1 that ®(¢,&, wy) is almost surely continuous in ¢ and so dominated
convergence implies that the limit of the above as ¢ \, 0 is F'(wy).

The second property we have to show is similarly easy to prove. Clearly if F' is bounded then
so is E¢ [F(®(t, &, wo)]. At the same time we know that ®(t,&, wo) is almost surely continuous
in wg, and so dominated convergence implies that the expectation is also continuous in wg. [

Having establishes this, we could now use the machinery in works such as [7] to tackle problems
such as uniqueness of the invariant measure and ergodicity. One of the more difficult parts of
the standard approach involves showing the strong Feller property, which states that the flow
® is regularizing in the sense that if F' is a measurable and bounded function on X*~!, then
for all ¢t > 0, E [®(t, £, wo)] is a continuous and bounded function in wq. This straight forward
approach does not work though as the Markov semigroup does in fact not have the strong
Feller property, although we have not shown this. In [19] a very similar stochastic nonlienar
wave equation is treated and at the beginning of section 5 an argument for the failure of the
strong Feller property is provided. An alternative technique using a modified Feller property
is used to show unique Ergodicity. Transferring this approach over to our equation would be
a matter worth investigating.
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A Appendix

Lemma A.1. Let {X,}nen and {Y,}nen be real random variables. Suppose that for some
~ € {<,=,>} we have the following "Gaussian” moment estimates: For any finite set I C N
and n,k € N

AR e
~ [Lies ((T:”ikl))' if Vi € I, n; + k; even
Y

=0 ifﬂie]:ni+kiodd.

E

iel

(For example this is satisfied with ~ being < if {(Xn,Yn)}nen is an independent family of
centered normal random vectors with variances < 1, see [20/[Thm 3.1]). Let an,b, > 0 be real

sequences and define
oo oo
A=>"a,X, and B=) bV
n=1 k=1

Let p,q € N. If p+ q is odd, then

E[APBY] = 0.
If p+ q = 2r for some r € N, then
E[AP BT ~ plq! g r 9P=25| 41125 (. HYP=25 ||p||2(T—PFS) Al
we=EE S (s oo ) 22l 002 o (A1)

Proof. For now we let N € N and consider

() ()

We apply the multinomial theorem:

_E ( 3 (nh ? nN) ﬁ(aiXi)"i> > <k1qu) ﬂ(biYi)k

ni+..4+ny=p Y i=1 k1+..+kn=q i=1

= > > <n1,.inN><k1,.?,kN>E

nit..Ann=pki+..+kn=¢q

(A.2)

N
HaizbilXi 7,}/; 7
i—1

We now apply our moment estimates. This makes all terms vanish where one of the n; + k; is
odd. This immediately implies that if p 4+ ¢ is odd there are no terms remaining and the sum
is zero. From now on we assume that p + ¢ is even and define r = p—;rq. So we get

~ p! nl+k ni ki
(A2) - Z TLl! .. .TLN! kil ]CN' H (nﬂrk ) i ’

ni+...+ny=p
k1+...+kN:q
n;+k; even
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. The rest of the proof is just combinatorics. We can rewrite this in terms of indices m and n
instead of k and n:

plg! T Z H 2m; Qmibki
= — Zb
rl Z (ml,...,mN> <
mi+...4Amy=r (kiyn;i),1<i<N:i=1

2m;=n;+k;
ni+..+ny=p

(*)
We now compute (%) for a fixed decomposition m; + - -- + my = r. Define

a;

ai +bi

qi =

With this (x) can be written as

i=1n;=1
N o2mi
- H(“Z +bi) "™ H Z < ;m) gi" (1= qi)*™ " (ai 4 b1)*™ Ly 14y =p
i=1 i=1n;=1 v
N
_Haz—{—b QmiPQ(X1+ + Xy =0p)
i=1

where X; ~ Bin(2m;, ;) are independent random variables on some new probability space
Q. Luckily there are closed form expressions for the distribution of such a sum of Binomial
variables. To use them, we rewrite each X; as independent Bernoulli variables. Note that in
the sum X7 + ... + X only at most 2mq + ... + 2my = 2r = p + ¢ variables can be nonzero
with the rest having distribution Bin(0,a;), so the sum really only has at most 2r terms for
the indices {1 <i < N :m; > 0}. Then

Pg (X1 + ...+ Xy = p) Zy

where the Y; are independent random variables with

Y; ~ Ber(q;) where ¢; = ¢; whenever 2m; + ... +2m;—1 +1 < j <2mj + ... +2my
for some 1<i<N and 1<5<2r

so that
2mi+...4+2m;

X; = > Y;.

j=2mi+..4+2m;_1+1
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The random variable Z?;l Y; is now distributed according to a Poisson binomial distri-
bution. There exists a closed form expression for its distribution using the discrete Fourier
transform [9]:

2r 1 2r " 2r o
g 2T L |22 -
Pq ;Yjw e 1_]<q (1 ).

We define R = 2r + 1, plug in « = p and rewrite the above

Let’s recap what we have done so far: We have shown that

() ()

N
N r plq! o T B
~ Y <m17 >T! ZHl(aierZ-) Pg (X1 + ... + Xn = p)

mi+..+my=r ’ N

2r N
plg'l pizs r i2x o,
S -D D D (m . > ((a: + ) (@e"F + (1 - q))™™.  (A3)
’ 1=0 mi+...4Amy=r Ly N/ 225

We can simplify:
i2m i2m
(a; +0:)*(gie" ® + (1 — ;) = (aZe' ® +b2)

Now we apply the multinomial theorem in reverse:

plg! 1 < —lpi2z = |2z 2 '
SIEEY e (Ll F )

1=0 i=1
plg! 1
== TR b,
where
N 12
Y, = Z(aielT + bl)2
i=1
and
Fr, F':Ct—CH
R-1
(z)1<i<r — (Fr{zi}r) | cpep = < elRa:l>
=0 1<k<R
R-1
1 (1 Ji2n
(@)1<i<r — (FpAzith) 1 cpen = <R 'R g;l)
=0 1<k<R
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is the discrete Fourier transform and its corresponding inverse. We rewrite

]‘ T — T
E-FR{Yl }p = ‘FRI{YR#}P'

We want to pull the powers Y}" in the Fourier transform to the outside. To do this we use the
convolution theorem for the discrete Fourier Transform:

Fp{A B}, = RZ]: HAY - FRH{BYa-pwn:

Here % denotes the modulo operation. Applying this repeatedly yields

1 R 1
R VAo l} = Z FriYrohy

I1,e.ey l,—1=0
—1
Fr AYr-1}to—11)%R

Fr' {1}y 11, 0) %R
Fr' {Yr-1} -1, %R

.
= > | B AN
0<ly,...,lp—1<R—11t=1
lo=0,l.=p

To continue we now compute Fr{Y;}:

R—1 N
i2m 2m
Fr{Vi}e = § R § (aiet B + b;)?
=0 =1

-

N R-1

227r 27 127
g e <a?62l? + 2a;bel B+ bf)
=11

x2+2azbéml+b 6:130

|Pﬂzg

Here 0y = 1{,—y) is the Kronecker delta. With this we have

(A.3) = —‘;’ Frl¥' )

N

T
plq! 2 2
=T Z H Z (aitd(lz—ltfl)%R,Q + 2aitbit6(lz—lt71)%R,1 + bit(s(lz—ltfl)%R»O)'
T 0<ly,.lp_1<R—-1t=14;=1
lo=0, lp=p

Suppose we are given l;_1. What are the possible values [; can take so that we get a non-zero
term? It has to be the case that (I — l;—1)%R € {0,1,2}. As l; < R — 1 it can never happen
that l; — l;—1 > R. It can however happen that I; — l;_1 < 0. We split {0, ..., R — 1} in three
regions:
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o If ;1 € [0,R— 3] then I — l;—1 € [3 — R,2] and so only if I; € l;_; + {0,1,2} can we
have a nonzero term. One could say that the following "moves” are available to us:

l; € {lt_l,lt_1 + 1,051+ 2}.

o Ifl;_1 =R—2thenl; —l;_1 € [2— R,1]. Besides choosing l; = l;_1 or l; = l;_1 + 1 we
can choose I; = 0 so that (I; — l;—1)%R = 2. We have the following moves:

l; € {ltfl, ly1+ 1, 0}

Ifl;_1 =R—1thenl; —l;_1 € [l — R,2]. Besides choosing l; = l;_; we can choose [; = 0
so that (It — l;—1)%R =1 and l; = 1 so that (I — l;—1)%R = 2. We have the following
moves:

ly € {lt_l,O, 1}.

The behvaiour that this corresponds to is that every tuple (lg,l1,...,1—1,(,) describes a path
in Z/(2r + 1)Z = Z/(p + q + 1)Z that starts in 0, ends in p, and has r = 25 steps, each
consisting of one of the actions +0, +1 or +2. The longest possible path consists of adding
+2 each time and so has a total length of 2r. Therefore there can not exist such a path from
0 to p that goes ”around the clock” more than zero times (such a path would need a length of
at least 2r + 1). As a result there is no tuple (i, ...,{,—1) which produces a non-zero term in
the sum above where also (Iy — l;—1)%R # Iy — l;—1, i.e. the %R is superfluous. We rewrite the
previous result as

N r
plg!
= > > 11 (afﬁlt—lt_lz +2ai,biy 61,1,y 1+ 05,0, 1, 1 0)

10y lp=1 loy..,lrEN t=1
0=lo<...<l,=p
ly—1;—1€{0,1,2}

Pl -
q. 2 2
- Z Z H (a’itéht72 + 2a4,bi,0n,,1 + bitéhtio)'
" ilyenir=1 hi,..,hr.€{0,1,2} t=1
hi+...4+hr=p

To further simplify this combinatorically, we carefully observe that the map

(he{0,1,2): — {(I, 1) € P({1,....,7})* :
hi+ ...+ h, = p} LN Iy = 2,|l| + 2|2] = p}

given by
h— ({i:h; =1}, {i: h; =2})

is a bijection. This is because

2, 1€l
(Il,fg)l—>h1'£ 1, iEIl
0, i¢11UIQ
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is an inverse. We get

1g! N
(A3) == pri? Z Z H a?t . H 2a¢tbit . H bi

) Il,IQC{l,...,T} i1,..,tr=1tEl> tely tgI1 Ul
I1NIa=2
[11]+2|I2|=p

Suppose that I, Iy is one such decomposition of {1,...,r7} and J;, Jy is another one with
|Ii| = |Ji| and |I2] = |J2|. Let o be a permutation of {1,...,7} so that o(I;) = J; and
o(I2) = Jo. The existence of at least one such permutation is guaranteed since the cardinalities
match. Then since for any function f: N — R,

N
E f(zlv eyl E f ( T'))’
1] 4eeeylp=1 014yl =1
we have
N
2 2
> Ilak-TT2aubi- T1
11,y tr=1tEI> tely tg 11Ul
N
2 2
>, 1l 112006000y 11 %,
i1yetr=1tEI2 tely tgI1 Ul
2
S [T T1 %
i1,y tr=11tEJ teJi t&J1UJ2
As a result in
p'Q' r al 2 2
My Y T Tl T 6
) Il,IQC{l,...,T‘}ily---,ipzltEIQ tely tgI1 Ul
ILNl=2
[11]+2[L2|=p

the second sum does not depend on the exact shape of the sets I; and I, but instead only on
|Io] and |I;| = p — 2|I2]. Given r, the possible values for s = |I| so that a corresponding Iy
can exist are s € {0V (p —7),...,m A [§]}. This is becuase for each of these s, there exist

()G 0) = (operes) (= ot 5 i om)

ways to choose the sets I; and I>. If p > ¢ then p > r and binomial coefficients with negative
numbers appear. Using the convention (g;) = 0 for y < 0 and y > x the expression above
is correct and also gives the aforementioned bounds for s, but we can mitigate confusion by
simply assuming WLOG that p < ¢ and so p < r. Therefore our sum becomes

| r
pq Z Z (sp 23r—p+s>Hlt H2alt2t' IT .

i1,..5tp=1 s=0V(p—r) t=s+1 t=p—s+1
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rALS]

pl¢! 2 T
= 2p s
rl Z (S,p—ZS,T—p—i-S)

s=0V(p—r)
N s N p—s N r
2 2
> et > IMaets > I &
1yis=11=1  Ggp1,mmip_s=1t=s+1 a4 1yeyir=1 t=p—s+1
- T/\L%J N s N p—2s N r—p+s
pq’ -2 r 2 2
= 2 27 e pas) ([ 2o lanl® ) (D0 landal > 1bal
T s=0V(p—r) P ’ p n=1 n=1 n=1

To conclude the proof we let N — oco. Then depending on what relation ~ is, if one side
converges the other does as well and if the above converges it converges to

NES

! ' _ T _ 2(r—
ELOY ( ) lalZ (a, b2 b2 P+

| _ _
7! =0V (p—r) $,p—28,7r—p+s

O

Lemma A.2. Let (Wy)nen be a sequence of independent one-dimensional Brownian motions.
Let e, be any ONB of L?. Consider a stochastic process ¢ of the form

:;/0 ful(s) dWp(s) - e

for functions f, € C(R4). Let a > 0 and T > 0. Then the following are equivalent:
(i) ¥ € C([[0,T], HY) a.s
(i) P(y € C([[0,T], H)) > 0,
(iii) B |I(8) 13 0.1y < 00
(i) (Pl fallz2om)), g € ().

In particular we have the estimate

E (100120 ,00)] < 2]/ (O I fal2ory) e o o = 2EIR@IR] . (A4)

£2(N)
Proof. We start by showing (i) <= (iv) and the estimate.
Observe that we can trivially move the supremum inside the sum, and the sum out of the
integral by Fubini-Tonelli:

[e%9) t 2
E[\|¢<t>||%qo,ﬂ,m)}=E[OgggTZO [ futs) awas) <An>2a]
< An) 22 || su / n(8) dWh(
_7;)< 0<t£T fuls




Since fg’ fn(s) dW,(s) is a square integrable martingale we can use Doob’s L? inequality and

then It6-isometry:
2

- 2a su ' s S

0<t<T

- 2 r 2
=230 / (52 ds.

For the reverse inequality we do the same steps except that the supremum is now absent and
hence no inequalities are needed.

Clearly (i) = (7). Regarding (iii) = (i), observe that for t; < t2 € [0,7T] we can calculate

00 to
9 (t2) = 9 (t1) | Fe = Z<>\n>2a/t | fa(s)[? ds,
n=0 1
and since (iv) states that
o0 T
St [ 1) s < o0
n=0 0
we get that 1 is both continuous and bounded with respect to || - || e

It now only remains to show (ii) = (4i7). We can apply estimate (A.4) to the case where
only finitely many f,, are non-zero. The result is that to show (éii) it suffices to show

E

Z(An>2al$(n)l2] < oo, (A.5)

n=1

where ¢ = ¢(T’). Since the convergence of the sum in the expectation is a tail-event for the
sigma algebra o({¢(n)}nen), Kolmogorov’s 0-1 law and (i) imply (7). Then

N o~
S () ()
n=1

is a sequence of gaussian random variables which is Cauchy in L?(2) and hence converges to
another gaussian random variable. As a consequence we know that the second moment of the
limit is finite, i.e. (A.5). O

Lemma A.3 (Fokker-Planck Equation). Let d € N, b € CY(R% RY) and o € C?(RY, R¥*9).
Suppose on some probability space we have a d-valued Brownian Motion By and a stochastic
process Xy that solves the SDE

dXt = b(Xt) dt + O'(Xt) dBt

with indtial distribution Law(Xo) = po(z) dz. Then there exists a density p : [0,00) x R? —
[0,00) so that Law(X;) = p(t,x) dx and p is a weak solution to the Fokker Planck Equation

Op(t, x) = =0y, (V (x)p(t, @) + %3‘”% (oh ()0 (x)p(s, x)) (A.6)
p(0,2) = po(z) dz. (A.7)
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Proof. Clearly P(X; € A) = 0if [, dz = 0 for all measurable A C RY, so Law(X;) is absolutely
continuous with respect to dx for all t > 0. Then the Radon-Nikodym theorem gives us the
function p(¢,z). Since the process X; is continuous and Gaussian we know that p is continuous
in t and z. Now let f : [0,00) x Rd) be compactly supported and continuously differentiable
once in time and twice in space. An application of Ito’s formula yields

f(t,Xt)—f(O,Xo)z/O 8sf(s,Xs)ds+/0 (%jf(s,Xs)(bj(Xs)ds+af(X5)dBi(s))

t
1 ,
+/0 iaxiaxjf(s,Xs)ai(Xs)af(Xs) ds.
Then

[ 1tonit.) = F0.2)p(0.2) de = EL£(X) = F(X0)

/ / I: Sf(s,x) 8$J"J (S,I’)b‘j({I)) axiazjf<57x) i(x) f(x) (8,.’1]) X .
0 R? 2 0 o p d (iS
D

Lemma A.4 (Uniqueness for Fokker-Planck Equation). [1, Thm. 9.8.9.] Fiz T > 0 and po
be a measure on RY. Let o € R4 be symmetric and b € C(Rd,Rd) so that on any set of the
form By(z9) x (0,T) the continuity of b with respect to x is uniform in t. Then there exists at
most one family of measures {fit}e(0,1) on R? so that the following hold:

(i) Foralll <i<d,

/T/ ! + Ll dpg(x) dt < oo
o Jralt a1 [ '

(i) The Fokker-Planck equation is solved weakly with initial data po, meaning that for any
feCe(0,T) x RY) we have

T .
[ [ s+ o s + oo st ajait@ot o) dutoar
0 R
—— [ 710.2) dpo(a).
R

Proof. This is merely a direct simplification of [1, Thm. 9.8.9.] to the case of a constant
diffusion matrix o. O

Lemma A.5. Let F,, be the n-th Fibonacci number and a,b € R. For all p € N>q,
@ — 19| < Fyla —bl(Jal + o))" (A8)

Proof. We show this by induction on p.

e Case p = 1: This is trivial

la —b| < Fila —b|(|la| + [b])°.
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e (Case p = 2: This is a binomial identity.
|a® = b?| < |a —bl(Jal + [b])
o Case p > 2: We assume (A.8) holds for p < 2. Then
|ap — bp| = ‘(a + b)(a”_1 — bp_l) —ab (ap_2 — b”_z)‘

< (la| + [b))Fp-1la — bl(lal + [b1)"~* + (lal + [b])* Fp-2]a — bl (a] + [b))P~
< (Fp—1 + Fp2)la — bl (la] + [)"~".
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