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1 Introduction
1.1 Context

Consider a particle at position u(t) ∈ R in a quadratic potential V (u) = 1
2 |u|

2. The force
acting on the particle is given by

utt = −∂uV (u) = −u.

This system is a harmonic oscillator. Since one could say that all smooth potentials are in
approximation just quadratic potentials up to second order, locally around an equilibrium
point, the harmonic oscillator is one of the most fundamental systems in physics. Consider
now the case of a quartic potential V (u) = 1

2 |u|
2 + 1

4 |u|
4. Then the force is given by

utt = −u− u3,

which is now a nonlienar equation. Visually, the difference to the harmonic oscillator is that the
frequency of oscillation increases with the amplitude. Suppose now that this system experiences
a friction or drag force proportional to the velocity of the particle, but acting against it. Up
to constants, we then have the equation

utt = −ut − u− u3.
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Here the amplitude of the oscillation will decay exponentially due to the damping term −ut.
Suppose now in addition that for every x ∈ Rd we have such a damped nonlinear harmonic
oscillator u(t, x), and that these are coupled, meaning that in each point x the particle u(t, x)
experiences forces proportional to the height difference to its surrounding particles. This
coupling force can be modeled by the laplacian ∆u, so the equation becomes

utt = ∆u− ut − u− u3.

Lastly, we add white noise. Informally, let for each t and x let ξ(t, x) be independent standard
normal random variables. Then, with a certain constant

√
2, we arrive at the system

utt = ∆u− ut − u− u3 +
√
2ξ

u(0) = u0, ut(0) = ut,0.

The actual definition of ξ is more involved as one wants to avoid working with an uncountable
number of independent random variables (in fact, one can not construct the family of random
variales {ξ(t, x)} on the probability space ([0, 1],B([0, 1]), dx)).

We restrict ourselves on the two-dimensional case

∂2t u+ ∂tu+ (1−∆)u+ u3 =
√
2ξ

u(0) = u0, ut(0) = ut,0
on B = {x ∈ R2 : |x| ≤ 1}, (1.1)

where u is a radially symmetric function with zero boundary values and ξ is radially symmetric
space-time white noise. This is now a stochastic nonlinear partial differential equation and the
system that we will study in this work. Let us informally present three questions that one may
ask when faced with such an SPDE.

(1) Global Well-posedness. Do solutions exist globally in time and with continuous depen-
dence on the initial data? What is a natural function space for the initial data so that the
problem is globally well-posed but little regularity was assumed?

(2) Existence of Invariant Measure Does an invariant measure exist? Let Φ(t,u0) be the
solution to the equation with initial data u0 = (u0, ut,0). Then, neglecting the presence
of random forces for now, a measure ρ(du0) on the space of initial data is invariant if
Φ(t, ·)#ρ = ρ for all t ≥ 0.

We can phrase this in a practical manner. Suppose we are observing an experiment which
consists of a random initial data u0 evolving according to the equation. Suppose that at
any time t we can perform a number of measurements on the state of the system, each
represented by the function 1A(u, ut) with A being a (measurable) set of pairs of functions.
Then an invariant measure is a distribution for the random initial data such that for any
time t there is no difference in the statistics we get when applying any of our possible
measurements.

(3) Ergodicity There are various ways to state ergodicity. In this setting we say that the
evolution induced by the equation is ergodic if

lim
T→∞

ˆ T

0
E [1A(Φ(t,u0))] dt =

ˆ
1A(u) dρ(u)
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for all initial data u0 = (u0, ut,0) and measurable sets of initial data A.

We also can interpret this in the practical setting. What this means for us, the exper-
imenter, is that for any measurement 1A and deterministic initial data u0 the expected
value of the measurement E [1A(Φ(t,u0))], when time-averaged over a long time span, will
converge to the expected result of the measurement if we had sampled a random initial
data according to the invariant distribution.

In this work we offer the reader the following:

1. An introduction to stochastic PDEs: How white noise is defined, what it means, and how
we can handle it in the equation using the stochastic convolution.

2. A classical local well-posedness argument for the deterministic system, reducing the nonlin-
ear problem to finding a pertubation of the linear solution.

3. A global well-posedness result for system (1.1) using a non-trivial energy estimate.

4. A construction of the Gibbs measure and a proof that it is invariant for the system (1.1),
via a reduction to the finite dimensional (SDE) setting.

These results are closely related to the work of L. Tolomeo in [19]. There he shows global
well-posedness, existence of invariant measure and ergodicity for the class of equations

∂2t u+ ∂tu+ (1(−∆)
s
2 )u+ u3 =

√
2ξ

u(0) = u0
on the torus T

where d ∈ N and s > d. Our case is s = d = 2 restricted to the ball B and assuming radial
symmetry. These assumptions improve the regularity of the white noise in such a way that
a procedure called renormalization is not necessary. Further work could aim to transfer the
ergodicity argument in [19] over to this setting.

In [17] N. Burq and N. Tzvetkov studied the local existence of strong solutions to the cubic
nonlinear wave equation

utt −∆u+ u3 = 0 (1.2)
(u(0), ∂tu(0)) = (u0, ut,0)

in Sobolev spaces Hs(M) with s < 1
2 , where M is a compact three-dimensional manifold. As

the homogeneous sobolev norm ‖ · ‖Ḣs(Rd)) is invariant under the scaling symmetry uλ(t, x) =
λu(λt, λx) of (1.2) precisely when scrit =

d
2 − 1, we call scrit = 0 for d = 2 and scrit =

1
2 for

d = 3 the critical index of the system. While the local well-posedness works often works
well for the subcritical case s > scrit, in the supercritical case s < scrit the usual methods such
as Strichartz estimates fail. In some cases even ill-posedness can be shown ([6]). Burq and
Tzvetkov nevertheless manage to show local well-posedness in three dimensions for a “large”
set of initial data in the supercritical case. The idea is that they consider the problem for a
random initial data (u0, ut0). This regularizes the problem in a certain sense: Consider the
inequality

E [|X|p] ≲ p
p
2 E
[
|X|2

] p
2

for a Gaussian random variable X (it is extended to more general probability distributions
in [17]). This allows one to improve estimates for the solutions to the random initial data
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problem which are for L2- or L4-norms to the case of Lp-norms, a strategy which Burq uses for
his existence result and which we will also in our local well-posedness theory. In our case we
show the largest space for which we show well-posedness is a space X 0, which is only slightly
smaller than the critical case H0.

Regarding the global well-posedness, the problem with white noise has recently been studied
in [12]. There the authors show global well-posedness of the renormalized cubic stochastic
nonlinear wave equation

vtt + (1−∆)v + v3 + 3v2ψ + 3v :ψ2: + :ψ3: = 0 (1.3)

in Hs(T2), where s > 4
5 and T2 is the two-dimensional torus. Here ψ is the stochastic convolu-

tion, which represents the solution to the wave equation forced by white noise. The regularity
of ψ plays a crucial role in these arguments, as it is a priori only a distribution in space. If one
can not show that ψ is in fact represented by a measurable function, then one can not make
sense of powers of ψ and has to resort to a procedure called “renormalization”, which involves
additional terms. This is the case in (1.3), where the colons :− : denote the renormalization.
In our case, the two-dimensional and radially symmetric one, we will find that ψ is indeed a
function and hence we do not have to worry about the process of renormalization. This poses
the question if we can achieve a better global well-posedness result than in [12]. Specifically,
for the energy

E(v, vt) =

ˆ
1

2
|vt|2 +

1

2
|v|2 + 1

2
|∇v|2 + 1

4
|v|4 dx,

the authors find only a double-exponential energy estimate. The reason here is that when
attempting a Grönwall-type argument, they encounter a term which looks something like´
|vt||v|2|ψ| dx. Since we want to arrive at a differential inequality of the type d

dtE ≲ E, we
need to estimate this by the energy. Since

ˆ
|vt||v|2|ψ| dx ≲ E‖ψ‖L∞

is not good enough due to alack of regularity of ψ, one has make an estimate that results in
too large a power of the energy being present on the right hand side. The same issue occurs
in our case as well, giving evidence that it was not the lack of regularity of ψ that caused the
problem, but it is instead related to the dimensionality of the space. In [12] the authors resolve
this in a fashion that in spirit is very similar to the expression below:

ˆ
|vt||v|2|ψ| dx ≲ E

1+ 1
p ‖ψ‖Lp .

The above is in fact precisely how we will resolve this problem. After a smart choice of p one
obtains the differential inequality d

dtE ≲ E lnE, which then leads to the double-exponential
energy estimate.

Besides the global well-posedness, we show the invariance of the Gibbs measure

µ = exp (−E(u, ut)) “ du dut”,

which of course has to be rigorously defined on an infinite dimensional function space. Impor-
tant and early contributions in this area were made by J. Bourgain in [3] and [23], where he
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showed the invariance of the respective Gibbs measures for nonlinear Schrödinger equations.
Notably he introduced what is now known as “Bourgain’s invariant measure argument”, a
method that exploits the invariant measure as a replacement for conservation of the energy to
gain global existence of solutions. For a great overview of the literature regarding the questions
of global existence and invariant measures for cubic nolinear wave and Schrödinger equations,
we recommend figure 1 in [5].

In the cases where the invariance of the Gibbs measure fails, one may ask the question if
the weaker condition of quasi-invariance holds. Quasi-invariance means that as the initial
distributions transforms under the flow induced by the equation, the measure at any positive
time remains absolutely continuous with respect to the initial measure. We refer the reader to
[10] for a recent result.

1.2 Function Spaces and Notation
We will study this equation in Bessel potential spaces of radially symmetric functions. In this
section we construct these spaces as subspaces of the space of distributions and define the
specific notations used in this text.

Let D ⊆ Rd be the closure of a non-empty open set. For 1 ≤ p ≤ ∞ we define

Lpr (D) = {f ∈ Lp(D) : |x| = |y| =⇒ f(x) = f(y) for almost all x, y ∈ D}

We may write just Lpr or Lp for Lpr (D). Generally for any function space X the space notation
Xr refers to the corresponding subspace of radially symmetric functions or distributions. If we
are considering functions in time and space, we may write Lpr ([0, T ]×D) or Lpt,x, in which case
we mean Lp([0, T ], Lpr (D)). The same holds for the case of distributions below. When writing
the respective norms we will usually write ‖ · ‖Lp instead of ‖ · ‖Lp

r
.

We denote the spaces of test functions and radially symmetric test functions on D by
D(D) and

Dr(D) := {f ∈ D(D) : |x| = |y| =⇒ f(x) = f(y)}

respectively. We denote the spaces of distributions and radially symmetric distributions
on D by D′(D) and D′

r(D). They are the spaces of continuous linear functionals on the
corresponding space of test functions respectively, equipped with the usual topology. We
denote the Schwartz space by Sr(Rd) and its subspace of radially symmetric functions by
Sr(Rd). Correspondingly we write S(Rd)′ and S ′r(Rd) for the spaces of tempered distributions
and radially symmetric tempered distributions.

On a domain D we define S(D) = D(D) ∩ S(Rd) and Sr(D) = Dr(D) ∩ Sr(Rd). We define
S ′(D) and S ′r(D) as the topological dual spaces. Later we will only deal with the case where
D = B is a bounded domain and so will be able to use D and S interchangeably, choosing D
by default.

For some 1 < p, p′ < ∞ with 1
p +

1
p′ = 1 we can consider the subspace of S ′(D) given by the

norm
‖f‖Lp(D) = sup

g∈D(D)

∥g∥
Lp′ (D)

≤1

|〈f, g〉|.
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What we are doing here is simply identifying the dual space (Lp
′
)∗(D) with Lp(D). We use

the same approach to define the Bessel potential spaces Hα,p(Rd) for α ∈ R. For this we need
a definition of the fractional operator (1−∆)

α
2 on test functions. Let F : S(Rd) −→ S(Rd) be

the Fourier transform given by

F(f)(ξ) := (4π)−
d
2

ˆ
Rd
f(x)e−iξx dx.

It has the important property that

−∆f = F−1(|ξ|2F(f)).

We therefore define for α ∈ R the Bessel potential on Rd of order −α by

(1−∆)
α
2

Rdf = F−1((1 + |ξ|2)
α
2F(f))

This definition makes sense not only for f ∈ S(Rd), but also f ∈ S ′(Rd). In that case we have

〈〈∇〉αRdf, g〉 = 〈f, 〈∇〉αg〉

for all g ∈ S(Rd). For λ ∈ R we use the shorthand notations

〈λ〉 :=
√
1 + |λ|2[

λ
]
:=

√
3

4
+ |λ|2,

which allow us to define 〈∇〉αRd := (1 −∆)
α
2

Rd . Now let α ∈ R and 1 < p < ∞. we define the
Bessel potential space Hα,p(Rd) as the subspace of S(Rd) given by the norm

‖f‖Hα,p(Rd) := ‖〈∇〉
α
Rdf‖Lp(Rd) = sup

g∈S(Rd)

∥g∥
Lp′ (Rd)

≤1

|〈f, 〈∇〉αRdg〉|.

We define Hα,p
r := Hα,p(Rd) ∩ S ′r(Rd) and note that this is a closed subspace.

Note that the map
〈∇〉βRd : Hα,p(Rd) −→ Hα−β,p(Rd)

is an isometry for all α, β ∈ R.

Let us now compare this to some other function spaces. It is well-known that if α ≥ 0
then Hα,p(Rd) ⊆ Lp(Rd). In fact, the Bessel potential spaces can be seen as a definition of
fractional Sobolev spaces: if α = k is an integer then Hk,p(Rd) = W k,p(Rd) ([18, Thm. 3]),
where W k,p(Rd) are the classical Sobolev spaces.

There is an alternative way to define fractional sobolev spaces. It is the case that Hα,p(Rd) =
F p,2α (Rd), where F p,qα is the Triebel-Lizorkin scale of function spaces which the reader may
read up on in [21]. We will not need these function spaces but want to make it clear that the
Bessel potential spaces Hα,p(Rd) should not be confused with an alternative scale of fractional
sobolev spaces which we denote by Wα,p

(Rd), where for non-integer α one chooses the so called
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Sobolev-Slobodeckij space. Here we have Wα,p
(Rd) = F p,pα (Rd). In the case p = 2 the two

definitions agree, i.e. Hα,2(Rd) = W
α,2

(Rd). We write Hα(Rd) := Hα,2(Rd) for this special
case.

A further way to describe this difference is that the Bessel potential spaces are the complex
interpolation spaces and the Sobolev-Slobodeckij spaces are the real interpolation spaces be-
tween the integer sobolev spaces W k,p(Rd). More on this can be found in [14], specifically
theorem 6.4.5.

We now restrict ourselves to the case of radially symmetric functions on the two-dimensional
ball B = {x ∈ R2 : |x| ≤ 1}. We define

Hα,p
r,0 (B) = Dr(B)

∥·∥
H

α,p
r (R2) .

Note that we have an isomorphism

Hα,p
r,0 (B) ∼= (H−α,p′

r,0 (B))∗ (1.4)

by defining for f ∈ Hα,p
r,0 (B) and g ∈ H−α,p′

r,0 (B) the dual pairing

〈f, g〉 = 〈〈∇〉αR2f, 〈∇〉−αR2 g〉,

where now 〈∇〉αR2f ∈ Lpr (B) and 〈∇〉−αR2 g ∈ Lp
′

r (B). Then by Hölder’s inequality

|〈f, g〉| ≤ ‖〈∇〉αR2f‖Lp(B)‖〈∇〉−αR2 g‖Lp′ (B) = ‖f‖Hα,p
r,0 (B)‖g‖H−α,p′

r,0 (B)
,

implying that we can identify Hα,p
r,0 (B) with (H−α,p′

r,0 (B))∗. This means that if α ≥ 0 the
expression 〈f, g〉 is well-defined for any g ∈ Lpr (B).

We will now define an alternative scale of fractional Sobolev spaces Wα,p
r specifically on the

ball B and then show that Wα,p
r
∼= Hα,p

r,0 (B). For this we need a special basis of L2
r (B). Here

we follow the same approach as Tzvetkov does in [24, Section 1], using a basis of rescalings of
the zero order Bessel function of first kind:

J0(z) =
∞∑
m=0

(−1)m

(m!)2

(z
2

)2m
=

2

π

cos(x− π/4)√
x

+O(x−
3
2 ). (1.5)

The corresponding transform is sometimes also called the Hankel transform. Skipping the
details, we are given an orthonormal basis (en)n∈N of L2

r (B) consisting of smooth functions

en(x) =
J0(λn|x|)

‖J0(λn·)‖L2(B)
. (1.6)

Crucially, the en are eigenfunctions of −∆ with corresponding eigenvalues

0 < |λ1|2 < |λ2|2 < . . .

and zero boundary values. We say that |λn|2 is the n-th eigenvalue because this corresponds
to λn being the n-th positive root of z 7→ J0(z), the zero order Bessel function. It also keeps
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our notation consistent with the usage of a Fourier basis on the torus, as instances of |n| are
now replaced with |λn|.

For two sequences an, bn ∈ R+ we write an ∼ bn if both an
bn

and bn
an

are bounded, and an ≈ bn

if lim bn
an

= lim bn
an

= 1.

Note that |λn| ∼ n for large n ([24, Section 1.2]). We have[
λn
]
≈ 〈λn〉 ∼ n. (1.7)

We call this basis (en)n∈N the Bessel function basis. We define the Bessel potential on
B of order −α by

〈∇〉αBf := (1−∆)
α
2
Bf :=

∞∑
n=1

〈λn〉α〈f, en〉en.

where f ∈ Dr(B). This definition can be extended to f ∈ D′
r(B), in which case

〈〈∇〉αBf, g〉 = 〈f, 〈∇〉αBg〉

for all g ∈ Dr(B). Now we define Wα,p
r to be the subspace of Dr(B) corresponding to the norm

‖f‖Wα,p
r

= ‖〈∇〉αBf‖Lp
r
= sup

g∈Sr(B)

∥g∥
Lp′ (B)

≤1

|〈f, 〈∇〉αBg〉|.

As the radially symmetric test functions on B are dense in this space, we can write

Wα,p
r = Dr(B)

∥·∥
W

α,p
r .

Recall that in contrast to the above, we defined

Hα,p
r,0 (B) = Dr(B)

∥·∥
H

α,p
r (R2) ,

where for f ∈ D′
r(B) we have

‖f‖Hα,p
r (R2) = ‖〈∇〉

α
R2f‖Lp

r
= sup

g∈D(B)

∥g∥
Lp′ (B)

≤1

|〈f, 〈∇〉αR2g〉|.

We would therefore know that Wα,p
r = Hα,p

r,0 (B) if we knew that

〈∇〉Bg = 〈∇〉R2g

any test function g ∈ Dr(B). This is in general not the case!. However, if α ≥ N is an even
integer, then both (1−∆)

α
2
B and (1−∆)

α
2

R2 become ordinary powers of (1−∆) and hence agree.
Therefore Wα,p

r = Hα,p
r,0 (B) holds for all α ∈ 2N.

For α ≥ 0 we can now recover the spaces Hα,p
r,0 (B) and Wα,p

r as complex interpolation spaces
of those spaces on their respective scales with even integer index, hence Wα,p

r = Hα,p
r,0 (B) for

all α ≥ 0. We finally extend this to α < 0 by the duality in (1.4) and the analogous duality
result for Wα,p

r .
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We are mostly interested in the space Hα
r,0 := Hα,2

r,0 (B), whose norm has the formula

‖f‖Hα
r,0(B) =

∞∑
n=1

〈λn〉2α|〈f, en〉|2.

If f : L2
r(B) −→ R is linear and the right hand side above is finite, then f ∈ Hα,2

r,0 .

We now define some new and simplified notations for the objects we really care about. We set

Hα
r :=Wα,2

r
∼= Hα

r,0(B) = Hα,2
r,0 (B).

It is a Hilbert space with the inner product

〈f, g〉Hα
r
=

∞∑
n=1

〈λn〉2α〈f, en〉〈g, en〉.

We also define the notation f̂(n) := 〈f, en〉 and sometimes write F(f) for f̂ , using the symbol
for the Fourier transform suggestively and intentionally.

We define
H−∞

r =
⋃
α∈R

Hα
r and H∞

r =
⋂
α∈R

Hα
r .

We consider these merely as sets and not spaces, unless otherwise specified.

Furthermore, we define

Wα,p
r =Wα,p

r ×Wα−1,p
r and Hαr = Hα

r ×Hα−1
r .

We will use bold letters to refer to pairs of distributions u ∈ D2
r (B) and write the individual

components in any of the following ways:

u = (u, ut) = (πu, πtu) = (u1, u2) = (π1u, π2u).

It should be said that ut is not necessarily the time derivative of u here. Time derivatives
will often but not always be denoted by ∂t or some similar notation. We only use the suggestive
notation ut since the second component of a pair of functions will often be precisely the time
derivative of the first, i.e. ∂tu = ut holds.

We will remember to write Wα,p
r , Lpr etc. but when writing their respective norms we will most

often just write ‖ · ‖Wα,p , ‖ · ‖Lp etc.

We also define for an arbitrary Banach space (E, ‖ · ‖) the space Lexp([0,∞), E) of measurable
functions f : [0,∞) −→ E with exponential decay by the norm

‖f‖Lexp([0,∞),E) = sup
t≥0

e
t
2 ‖f(t)‖E .

This will be a convenient substitute for L∞([0,∞), E) because exponential decay is often
present in our damped setting. Note that

‖f‖Lp([0,∞),E) ≤ ‖f‖Lexp([0,∞),E)‖e−
t
2 ‖Lp([0,∞)) =

(
2

p

) 1
p

‖f‖Lexp([0,∞),E). (1.8)
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1.3 Space-time White Noise
The term ξ in (1.1) refers to space-time white noise. We now define and construct this object.
We fix some measure space (Ω,F ,P).

Definition 1.1. (i) A random radially symmetric space-time distribution ξ is a
continuous linear map

ξ : Dr(R+×B) −→ L2(Ω).

We analogously define a random radially symmetric space distribution and ran-
dom time distribution. We may also consider vectors of random distributions where
the test functions are in Dr

(⊔k(R+×B)
)
∼= Dr(R+×B)k for k ∈ N.

(ii) A random radially symmetric space-time distribution ξ is called radially symmetric
space-time white noise if 〈ξ, f〉 is a centered Gaussian random variable and

E [〈ξ, f〉〈ξ, g〉] = 〈f, g〉L2
t,x

for all f, g ∈ Dr(R+×B).

(iii) Let W be a one-dimensional Brownian motion. We define a random time distribution
dW . For f ∈ D(R), set

〈dW, f〉 :=
ˆ
R+

f(s) dW (s).

This is a Wiener integral, an object which is not the focus of this text. A definition of
this integral in the infinite dimensional case can be found in [8]. Since f is smooth and
has compact support, we can choose a simple pathwise definition for this object here:

ˆ
R+

f(s) dW (s) := −
ˆ
R+

W (s)ḟ(s) ds.

In Lemma 1.3 we will use further properties of the Wiener integral that require its full
definition, but we do not want to elaborate on this.

Lemma 1.2 (Extension onto L2(R+×B)). There exists a unique estension of ξ to a bounded
linear operator ξ : L2

r (R+×B) −→ L2(Ω).

Proof. Let φn ∈ Dr(R+×B) be a Cauchy sequence in L2
r (R+×B) with limit φ ∈ L2

r (R+×B).
Then

E
[
|〈ξ, φn − φm〉|2

]
= ‖φn − φm‖2L2 ,

and so 〈ξ, φn〉 is a Cauchy sequence in L2(Ω). We define 〈ξ, φ〉 as the limit. From the con-
struction it immediately follows that this is a continuous function. Since the test functions
are dense in L2, the linearity is inherited and we have a bounded linear operator. Since it is
uniquely defined on the dense subset of test functions, it is unique.

We will identify ξ with this extension from now on.

Lemma 1.3 (Construction of space-time white noise). Let en be any ONB of L2
r and let ξ be

a random radially symmetric space-time distribution. Then the following are equivalent:
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(i) ξ is a radially symmetric space-time white noise on R+×B.

(ii) There exist independent, one-dimensional Brownian motions (Wn)n∈N so that almost
surely

〈ξ, f〉 =
∞∑
n=1

〈dWn, 〈f, en〉L2
x
〉 =

∞∑
n=1

ˆ
R+

ˆ
B
f(t, x)en(x) dx dWn(t).

for all f ∈ Dr(R+×B). The Brownian motions Wn(t) are modifications of 〈ξ,1[0,t](s)en(x)〉.

Proof. We first show (ii) =⇒ (i). Let (Wn)n∈N be a sequence of independent one-dimensional
Brownian motions and let f ∈ Dr(R+×B).

Note that
´
B f(t, x)en(x) dx is a test function in time and hence admissible for dWn. For

N ≤M ∈ N and any other test function g, we calculate

E

[
M∑
n=N

ˆ
R+

ˆ
B
f(t, x)en(x) dx dWn(t)

M∑
k=N

ˆ
R+

ˆ
B
g(t, x)ek(x) dx dWk(t)

]

=

M∑
k,n=N

k ̸=n

E
[ˆ

R+

ˆ
B
f(t, x)en(x) dx dWn(t)

]
E
[ˆ

R+

ˆ
B
g(t, x)ek(x) dx dWk(t)

]

+

M∑
n=N

E
[ˆ

R+

ˆ
B
f(t, x)ek(x) dx dWk(t)

ˆ
R+

ˆ
B
g(t, x)ek(x) dx dWk(t)

]
The first sum vanishes since we are taking the expectations of local martingales starting in
zero. For the second sum we use Itô isometry to get

=
M∑
n=N

E
[ˆ

R+

ˆ
B
f(t, x)en(x) dx ·

ˆ
B
g(t, x)en(x) dx dt

]

=

ˆ
R+

M∑
n=N

f̂(t, n)ĝ(t, n) dt.

Setting f = g we can follow from this that we indeed have a Cauchy sequence in L2(Ω). As
each element in the sequence depends linearly on f , the limit is also linear. Hence ξ is a random
space-time distribution. Taking M ↗∞ and N = 1 on both sides of the computation, we see
that

E [〈ξ, f〉〈ξ, g〉] =
ˆ
R+

〈f, g〉L2
x
dt = 〈f, g〉L2

t,x
.

We also know that time changes of Brownian Motion yield centered Gaussian random variables
and hence the limit is also centered Gaussian. Therefore ξ is space-time white noise.

Now we show (i) =⇒ (ii). Define Wn(t) := 〈ξ,1[0,t](s)en(x)〉s,x. We will show that Wn has a
modification W̃n which is a Brownian motion with the desired property.

Clearly Wn(0) = 0. The definition of radial space-time white noise also implies that for all
t1 < · · · < tk, all Wn(tj+1)−Wn(tj) = 〈ξ,1[tj+1,tj ](s)en(x)〉s,x are a centered Gaussian random
variable with variances tj+1 − tj , and that they are pairwise uncorrelated, hence independent.
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We have
E
[
|Wn(t1)−Wn(t0)|2

]
= ‖1[t0,t1]‖

2
L2 = |t1 − t0|2,

so by the Kolmorogov continuity theorem there exists a continuous modification W̃n of Wn.
This then fulfills the definition of a Brownian motion.

Now let f ∈ L2([0,∞),R) be a left-continuous simple function in time, meaning that

f(t, x) =
k∑
j=1

1(tj ,tj+1](t)gj(x).

Then

〈ξ, f〉 =
k∑
j=1

〈
ξ,1(tj ,tj+1](t)

∞∑
n=1

en(x)〈gj , en〉

〉
t,x

=
k∑
j=1

∞∑
n=1

〈
ξ,1(tj ,tj+1](t)en(x)

〉
t,x
〈gj , en〉

=

∞∑
n=1

k∑
j=1

(Wn(tj+1)−Wn(tj))〈gj , en〉

a.s.
=

∞∑
n=1

k∑
j=1

(W̃n(tj+1)− W̃n(tj))〈f(tj+1), en〉

=
∞∑
n=1

ˆ
R+

ˆ
B
f(t, x)en(x) dx dW̃n(t).

This identity can now be concluded for all f ∈ L2
r (R+×B) since both the space-time white

noise and the stocastic integral are continuous from L2
r (R+×B) to L2(Ω) and these simple

functions in time are dense.

1.4 On the Matter of Measurability
Regarding measurability we will take a lenient approach and consider various maps as random
variables without explicitly proving their measurability. Let it be said that by default we
always use the Borel σ-algebra of whatever Polish space we are considering, and that in the
case of separable Banach spaces, which almost all of the spaces we consider are, the Borel
σ-algebras induced by the strong and weak topologies coincide. This makes it easier to prove
the measurability of the solutions to various problems we will find throughout this work, which
is a priori not a trivial matter.

Note also that we prove in Lemma 3.5 that the embeddings between various function spaces
we consider are bimeasurable, meaning that the σ-algebras of H0

r and H1
r for example are, in

a sense, identical.
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2 Local Well-posedness
From now on (en)n∈N refers explicitly to the Bessel function basis unless otherwise specified.
Our strategy to prove local well-posedness is to decompose the problem into three easier prob-
lems.

1. For an data w0 in a certain space Xα we solve the linear problem

∂2tw + ∂tw + (1−∆)w = 0 (2.1)
w(0) = w0

∂tw(0) = wt,0

with a possibly random initial data.

2. For the space-time white noise ξ we construct a mild solution to the linear problem with
inhomogeneity

√
2ξ:

∂2t ψ + ∂tψ + (1−∆)ψ =
√
2ξ (2.2)

ψ(0) = 0

∂tψ(0) = 0.

This is called the stochastic convolution.

3. Given w and ψ, we now solve the deterministic and homogeneous nonlinear problem

∂2t v + ∂tv + (1−∆)v + (w + ψ + v)3 = 0 (2.3)
v(0) = 0

∂tv(0) = 0.

Problem (2.1) will be solved in a rather strong sense and for (2.2) and (2.3) we will find
so-called mild solutions. Then u = w + ψ + v will almost surely be a solution to (1.1) in
the sense of distributions.

Definition 2.1 (Distributional solution). Let T ∈ R+ ∪{∞}. We say that a measurable
function u = (u, ut) : [0,∞) −→ H0

r is a distributional solution to (1.1) on [0, T ] with initial
data u0 = (u0, ut,0) ∈ H0

r if

〈u0, ft(0)− f(0)〉x + 〈ut,0,−f(0)〉+ 〈u, ftt − ft + (1−∆)f〉t,x + 〈u3, f〉t,x = 〈
√
2ξ, f〉t,x

for all f ∈ Dr([0, T )×B).

2.1 The Linear Problem with Random Initial Data
In this section we compute and analyze the solution operator S for the linear wave equation
(2.1).

We view the equation as a Hilbert space valued ODE of degree 1 by considering pairs of
functions. The equation becomes

∂tw = Lw

w(0) = w0

13



where
L =

(
0 1

−(1−∆) −1

)
.

Then formally the solutions should be given by w(t) = S(t)w0, where

S(t) = exp (tL) .

is the solution operator. One could use a functional calculus to define this operator exponential
but we will simply construct it and prove the desired properties.
The operator L is well-behaved under conjugation with our ”Fourier transform” F and so we
can define S(t) in the following fashion:

Ŝ(t)w0(n) := exp

(
t

(
0 1

−1− |λn|2 −1

))
ŵ0(n).

We therefore have to only compute a matrix exponential. For c > 0 we make the ansatz(
0 1

−1− c −1

)
=

(
1 1
a1 a2

)(
a1 0
0 a2

)(
1 1
a1 a2

)−1

.

As
det

(
−a1,2 1
−1− c −1− a1,2

)
= 0 ⇐⇒ a21,2 + a1,2 + 1 + c = 0

we see that
a1,2 = −

1

2
± i
√
c+

3

4

is the correct choice. We get

exp

(
t

(
0 1

−1− c −1

))
=

(
1 1
a1 a2

)(
eta1 0
0 eta2

)(
1 1
a1 a2

)−1

=
1

a2 − a1

(
eta1 eta2

a1e
ta1 a2e

ta2

)(
a2 −1
−a1 1

)
=

1

a2 − a1

(
eta1a2 − eta2a1 eta2 − eta1

eta1a1a2 − eta2a1a2 eta2a2 − eta1a1

)
.

Setting b =
√
c+ 3

4 = [
√
c], the above is equal to

e−t
1
2

−2ib

(
i e

−itb−eitb
2i − 2ib e

itb+e−itb

2 −2i eitb−e−itb

2i

2i(c+ 1) e
itb−e−itb

2i i e
itb−e−itb

2i − 2ib e
−itb+eitb

2

)

=
e−t

1
2

−2b

(
− sin(tb)− 2b cos(tb) −2 sin(tb)

2(c+ 1) sin(tb) sin(tb)− 2b cos(tb)

)
Using the notations

[
λn
]
=
√
|λn|2 + 3

4 and
[
∇
]
=
√
−∆+ 3

4 , we ultimately get that S
conjugated with F in the n-th coordinate is given by the matrix

Tn(t) = e−t
1
2


1

2
[
λn
] sin (t[λn])+ cos

(
t
[
λn
])

1[
λn
] sin (t[λn])

−
(

1

4
[
λn
] + [λn]) sin (t[λn]) − 1

2
[
λn
] sin (t[λn])+ cos

(
t
[
λn
])
 . (2.4)
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This can be written in shorthand as

S(t) = e−t
1
2


1

2
[
∇
] sin (t[∇])+ cos

(
t
[
∇
])

1[
∇
] sin (t[∇])

−
(

1

4
[
∇
] + [∇]) sin (t[∇]) − 1

2
[
∇
] sin (t[∇])+ cos

(
t
[
∇
])
 . (2.5)

Take note of the componentwise estimate for Tn(t) by the leading order term of 〈λn〉 in each
entry:

Tn(t) ≲ e−
t
2

(
1 〈λn〉−1

〈λn〉 1

)
. (2.6)

The decay factor e− t
2 is caused by the damping in the equation. If we studied the equation

wtt + βwt + (1−∆)w = 0

where β ∈ R is the strength of the damping term, we would be dealing with the operator

L̃ =

(
0 1

−(1−∆) −β

)
and corresponding characteristic polynomial

det

(
−ã1,2 1
−1− c −β − ã1,2

)
= ã21,2 + βã1,21 + c = 0 ⇐⇒ ã1,2 = −

β

2
± i
√
c+ 1− β2

4
.

The real term −β
2 then causes a factor e−

β
2 to appear in the matrix exponential. If β = 0 then

this means we have no decay and if β < 0 we would get exponential growth.

What we can also learn from (2.6) is where Tn gives and takes regularity.

Lemma 2.2. For all α ∈ R, S ∈ C([0,∞), L(Hαr ,Hαr )). For u ∈ Hα,

‖S(t)u‖Hα ≲ e−
t
2 ‖u‖Hα .

Proof. We estimate

et‖S(t)u‖2Hα = et‖(1−∆)
α
2
(
S(t)u

)
1
‖2L2 + et‖(1−∆)

α−1
2
(
S(t)u

)
2
‖2L2

=
∞∑
n=1

|〈(1−∆)
α
2 e

t
2
(
S(t)u

)
1
, en〉|2 +

∞∑
n=1

|〈(1−∆)
α−1
2 e

t
2
(
S(t)u

)
2
, en〉|2

=
∞∑
n=1

〈λn〉2α
∣∣(e t

2Tn(t)
)
1,1

∣∣2|û1(n)|2 + ∞∑
n=1

〈λn〉2α
∣∣(e t

2Tn(t)
)
1,2

∣∣2|û2(n)|2
+

∞∑
n=1

〈λn〉2α−2
∣∣(e t

2Tn(t)
)
2,1

∣∣2|û1(n)|2 + ∞∑
n=1

〈λn〉2α−2
∣∣(e t

2Tn(t)
)
2,2

∣∣2|û2(n)|2
Now use (2.6):

≲
∞∑
n=1

(
〈λn〉2α + 〈λn〉2α−2〈λn〉2

)
|û1(n)|2 +

∞∑
n=1

(
〈λn〉2α〈λn〉−2 + 〈λn〉2α−2

)
|û2(n)|2 ≲ et‖u‖2Hα .
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Lemma 2.3. let α ∈ R. We have

(i) For any γ ∈ (0, 1] we have S ∈ C0,γ([0,∞), L(Hαr ,H
α−γ
r )) with exponential decay

sup
t<t0<t1

‖S(t1)− S(t0)‖L(Hα
r ,H

α−γ
r )

|t1 − t0|γ
≤ Ce−

t
2 .

(ii) For any u ∈ Hαr we have S(t)u ∈ C([0,∞),Hαr ) ∩ C1([0,∞),Hα−1
r ) with exponential

decay
‖S(t)u‖Hα

r
+ ‖∂tS(t)u‖Hα−1

r
≤ Ce−

t
2 .

The derivative is given by the formula

∂tS(t)u = LS(t)u.

Proof. To prove (i) we simply proceed as in Lemma 2.2 but instead of (2.6) we use the estimate

|Tn(t1)− Tn(t0)| ≲ e−
t0
2

(
1 〈λn〉−1

〈λn〉 1

)
〈λn〉γ |t1 − t0|γ

for 0 ≤ t0 < t1. This estimate is a result of the estimate | sin([λn]t1)− sin([λn]t0)| ≤ 2[λn]
γ |t1−

t0|γ and the analogous for the difference of cosines.

Now we show (ii). We start with the continuity. By the semigroup property of Sit suffices to
show that ‖S(h)u − u‖Hα

r
−→ 0 as h → 0. Looking at the Fourier multipliers, we see that

for all n ∈ N and i, j ∈ {1, 2} we have (Tn(h) − Id)i,j −→ 0 locally uniformly in h. Then we
proceed with the same estimates as above and use dominated convergence in `2(N) to conclude.

Like before we only have to show existence and the formula of the derivative at t = 0, as the
other cases follow from the semigroup property of S. We first compute ∂tTn(t):

∂tTn(t) = e−t
1
2

(1
2 cos

(
t
[
λn
])
−
[
λn
]
sin
(
t
[
λn
])

cos
(
t
[
λn
])

−
(
1
4 +

[
λn
]2)

cos
(
t
[
λn
])

−1
2 cos

(
t
[
λn
])
−
[
λn
]
sin
(
t
[
λn
]))

−1

2
e−t

1
2


1

2
[
λn
] sin (t[λn])+ cos

(
t
[
λn
])

1[
λn
] sin (t[λn])

−
(

1

4
[
λn
] + [λn]) sin (t[λn]) − 1

2
[
λn
] sin (t[λn])+ cos

(
t
[
λn
])


= e−t
1
2

 −
(

1

4
[
λn
] + [λn]) sin (t[λn]) − 1

2
[
λn
] sin (t[λn])+ cos

(
t
[
λn
])

−
(
1
4 +

[
λn
]2)(−1

2
1[
λn
] sin (t[λn])+ cos

(
t
[
λn
]))

−
(

1

4
[
λn
] + [λn]) sin (t[λn])− cos

(
t
[
λn
])
 .

Then
∂tTn(0) =

(
0 1

−1
4 −

[
λn
]2 −1

)
=

(
0 1

−1− 〈λn〉2 −1

)
Furthermore we can bound the distance of the difference quotient to the derivative uniformly
in time t. For convenience of notation we use ≤ and | · | in the following, with the meaning
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that this holds for each individual component of Tn(t). We write Tn(t) = e−
1
2
te

1
2
tTn(t) and

use the product formula for difference quotients∣∣∣∣Tn(t)− Id

t
− ∂tTn(0)

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣e
− t

2


1

2

[
λn

] sin
(
t
[
λn
])

+cos
(
t
[
λn
])

−1

t − 1
2

1[
λn

] sin
(
t
[
λn
])

t − 1

−
(

1

4

[
λn

]+[λn]) sin
(
t
[
λn
])

t + 1
4 +

[
λn
]2 − 1

2

[
λn

] sin
(
t
[
λn
])

+cos
(
t
[
λn
])

−1

t + 1
2


+

(
e−

t
2−1
t + 1

2 0

0 e−
t
2−1
t + 1

2

)∣∣∣∣∣
We define

δ(x) ≡ max

{∣∣∣∣sin(x)x
− 1

∣∣∣∣ , ∣∣∣∣cos(x)− 1

x

∣∣∣∣} γ(t) =

∣∣∣∣∣e−
t
2 − 1

t
+

1

2

∣∣∣∣∣ .
and use it to estimate the above as

≤
∣∣∣∣( 1

2δ
(
t
[
λn
])

+
[
λn
]
δ
(
t
[
λn
])

δ
(
t
[
λn
])

1
4δ
(
t
[
λn
])

+
[
λn
]2
δ
(
t
[
λn
])

1
2δ
(
t
[
λn
])

+
[
λn
]
δ
(
t
[
λn
]))∣∣∣∣+ (γ(t) 0

0 γ(t)

)

=

( 1
2 +

[
λn
]

1
1
4 +

[
λn
]2 1

2 +
[
λn
]) δ (t[λn])+ (γ(t) 0

0 γ(t)

)
.

Now let t 6= 0 and u ∈ Hαr . Then∥∥∥∥S(t)− Id

t
u− Lu

∥∥∥∥2
Hα−1

≲
∞∑
n=1

〈λn〉α2−2δ
(
t
[
λn
])2 (∣∣[λn]û1(n)∣∣2 + |û2(n)|2)

+
∞∑
n=1

〈λn〉α2−4δ
(
t
[
λn
])2(∣∣∣[λn]2û1(n)∣∣∣2 + ∣∣[λn]û2(n)∣∣2)

+

∞∑
n=1

〈λn〉α2−2 |γ(t)û1(n)|2 + 〈λn〉α2−4 |γ(t)û2(n)|2

Now we let ε > 0 be arbitrarily small and in particular small enough so that δ is monotonous
on (0, ε). We get

≲
∞∑
n=1

δ
(
|t|
[
λn
])2 (〈λn〉2α|û1(n)|2 + 〈λn〉2−2α|û2(n)|2

)
+ γ(t)

≲
(
δ(ε)2 + γ(t)2

)
‖u‖2Hα

r

+
∞∑
n=1

|t|[λn]>ϵ

(
sup
x
δ(x)

)2 (
〈λn〉2α|û1(n)|2 + 〈λn〉2−2α|û2(n)|2

)
.

We can choose ε so that δ(ε)2 is arbitrarily small. Then in the last line we are only summing over
those n where n ∼

[
λn
]
> ϵ

|t| , so the sum line vanishes as |t| → 0 (note that supx δ(x) < ∞).
Lastly γ(t)→ 0.
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We have seen that differentiating S causes a loss of regularity in space. If we integrate in time,
however, we can avoid some of that loss of regularity. However, we will not use this result later
on as

√
h is not a very strong estimate.

Lemma 2.4. Let α ∈ R and T, h ≥ 0. There exists C > 0 so that for all u ∈ L2([0, T ],Hαr )∥∥∥∥ˆ T

0
S(t+ h)u− S(t)u dt

∥∥∥∥
Hα

≤ C
√
h‖u‖L2([0,T ],Hα).

Proof. Let u ∈ Hα and T, h ≥ 0.∥∥∥∥ˆ T

0
(S(t+ h)− S(t))u(t) dt

∥∥∥∥2
Hα

≤
∑∞

n=1〈λn〉2α
´ T
0

(
1

2
[
λn
] (e− t+h

2 sin
(
(t+ h)

[
λn
])
− e−

t
2 sin

(
t
[
λn
]))

+e−
t+h
2 cos

(
(t+ h)

[
λn
])
− e−

t
2 cos

(
t
[
λn
]) )2

dt
´ T
0 û1(n, t)

2 dt

+
∑∞

n=1〈λn〉2α
´ T
0

(
1[
λn
] (e− t+h

2 sin
(
(t+ h)

[
λn
])
− e−

t
2 sin

(
t
[
λn
])))2

dt
´ T
0 û2(n, t)

2 dt

+
∑∞

n=1〈λn〉2α−2
´ T
0

(
−
(

1

4
[
λn
] + [λn])(e− t+h

2 sin
(
(t+ h)

[
λn
])
− e−

t
2 sin

(
t
[
λn
])))2

dt
´ T
0 û1(n, t)

2 dt

+
∑∞

n=1〈λn〉2α−2
´ T
0

(
− 1

2
[
λn
] (e− t+h

2 sin
(
(t+ h)

[
λn
])
− e−

t
2 sin

(
t
[
λn
]))

+e−
t+h
2 cos

(
(t+ h)

[
λn
])
− e−

t
2 cos

(
t
[
λn
]) )2

dt
´ T
0 û2(n, t)

2 dt

We estimate the following:
ˆ T

0

(
e−

t+h
2 sin

(
(t+ h)

[
λn
])
− e−

t
2 sin

(
t
[
λn
]))2

dt.

=

ˆ s

0
e−(h+r)

(
sin
(
(h+ r)

[
λn
])
− e−r sin

(
r
[
λn
]))2

dr

≲
ˆ s

0
(e−

h+r
2 − e−

r
2 )2 dr +

1

[λn]

ˆ s[λn]

0
e−r
(
sin
(
h
[
λn
]
+ r
)
− sin (r)

)2
dr

Now we estimate one of the powers of the sines on the right hand side integrand by 2, and the
other by h

[
λn
]
:

≲ (e−
h
2 − 1)2

ˆ s

0
e−r dr +

ˆ s
[
λn
]

0
e−r dr

1

[λn]
h
[
λn
]
≲ h.

With the same method we can also show that
ˆ T

0

(
e−

t+h
2 cos

(
(t+ h)

[
λn
])
− e−

t
2 cos

(
t
[
λn
]))2

dt ≲ h.

Applying those estimates to the previous yields
ˆ T

0

(
e−

t+h
2 sin

(
(t+ h)

[
λn
])
− e−

t
2 sin

(
t
[
λn
]))2

dt ≲ h

ˆ T

0
‖u‖2Hα dt.
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In other words there exists a constant C > 0 (independent of T ) so that∥∥∥∥ˆ T

0
S(t+ h)− S(t) dt

∥∥∥∥
(L2([0,T ],Hα))∗

≤ C
√
h.

With the solution operator family S(t) we can now a.s. solve the linear problem for any initial
data. The initial data may also be a random variable. For the case of random initial data
we will ultimately consider a certain space Xα which is built to contain just those initial data
that we need. In this section we choose Hαr as possible spaces of initial data and and perform
some light, preliminary analysis.

Let {gn}n∈N, {hn}n∈N be families of standard Gaussian random variables ∼ N (0, 1) so that
{gn}n and {hm}m are an independent families of random variables. We consider random intial
data of the form

w0 =
∞∑
n=1

(
angnen
bnhnen

)
where an, bn are two sequences of real numbers. This is only a preliminary investigation into
the random initial data, as later on we will need more assumptions.

Corollary 2.5. For all α ≥ 0 the following are equivalent:

(i) w0 ∈ Hαr a.s.

(ii) P(w0 ∈ Hαr ) > 0,

(iii) E
[
‖w0‖2Hα

r

]
<∞,

(iv)
(
〈λn〉αan

)
n∈N ∈ `

2(N) and
(
〈λn〉α−1bn

)
n∈N ∈ `

2(N).

This is an consequence of Lemma A.2 applied to w amd wt at time t = 1 with f being constant.

Theorem 2.6 (Global Well-posedness for Linear Problem with Random Initial Data). Let
α ≥ 0 and w0 be initial data of the aforementioned form so that w0 ∈ Hα a.s. Then for
w(t) = S(t)w0 the following holds almost surely:

(i) w ∈ C([0,∞),Hαr ) ∩ C1([0,∞),Hα−1
r ),

(ii) w solves w(0) = w0 and
∂tw(t) = Lw(t).

(iii) We have the estimates

‖w(t)‖Hα ≲ e−
t
2 ‖w0‖Hα and ‖∂tw(t)‖Hα−1 ≲ e−

t
2 ‖w0‖Hα .

Proof. By the estimate ‖S(t)w0‖Hα ≤ e−
t
2 ‖w0‖Hα we get that w ∈ C([0,∞,Hα). We see that∥∥∥∥w(t+ h)−w(t)

h
−
(

0 1
−(1−∆) −1

)
w(t)

∥∥∥∥
Hα−1
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≤
∥∥∥∥S(t+ h)− S(t)

h
−
(

0 1
−(1−∆) −1

)
S(t)

∥∥∥∥
L(Hα,Hα−1)

‖w0‖Hα .

≤
∥∥∥∥S(h)− Id

h
− L

∥∥∥∥
L(Hα,Hα−1)

‖S(t)‖L(Hα,Hα)‖w0‖Hα .

We know that the first norm vanishes as h↘ 0 and the second norm decays with e−
t
2 in t, so

w(t) is differentiable in Hα−1
r with bounded, continuous derivatives and ∂tw(t) = LS(t)w0 =

Lw(t).

Before moving on to the next section we will state and prove one more lemma, which will be
crucial in section 3 when we define the space of initial data. The reason is that we need to get
information about the initial data from the L2-in-time behaviour of the solution.

Lemma 2.7. Let w0 ∈ H−∞
r and α ∈ R. For T > 0 there exists a decreasing function

C1(T ) > 0 and an increasing function C2(T ) > 0 so that

‖w0‖Hα ≤ C1(T )‖π1S(t)w0‖L2([0,T ],Hα) ≤ C2(T )‖w0‖Hα .

Proof. The second estimate is straight forward using the energy estimate from Theorem 2.6:

‖π1S(t)w0‖2L2([0,T ],Hα) ≲
ˆ T

0
e−t dt‖w0‖2Hα = (1− e−T )‖w0‖2Hα .

Then for with some constant C̃ we can choose

C2(T ) := C̃
√
1− e−T .

Now we prove the first estimate. By the definitions

‖π1S(t)w0‖2L2([0,T ],Hα) =

∞∑
n=1

〈λn〉2α
ˆ T

0
〈π1S(s)w0, en〉2 ds

=

∞∑
n=1

〈λn〉2α〈π1w0, en〉2
ˆ T

0
e−s

(
1

2
[
λn
] sin (s[λn])+ cos

(
s
[
λn
]))2

ds

+ 〈λn〉2α〈π2w0, en〉2
ˆ T

0
e−s

(
1[
λn
] sin (s[λn]))2

ds

We denote the first integral by (I) and the second by (II). In the next section we will calculate
c2n(t) in (2.12) and d2n(t) in (2.13). These integrals are very similar to our integrals (II) and
(I) respectively and so we ask the reader to observe the computation there. Then for (II) we
get a lower bound

(II) ≳ 〈λn〉−2

(
1− e−T

(
1 +

1

2
[λn]

−1 +
1

2
[λn]

−2

))
.

For (I) we modify the computation preceding (2.13):

[
λn
]−1
ˆ 0

−T [λn]
e

τ
[λn]

(
1

2[λn]
sin(−2τ) + 1

2
cos(−2τ) + 1

2

)
dτ
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= 2
[
λn
]−1

[
e

τ
[λn]

8[λn]2 + 2

(
4
[
λn
]3

+
[
λn
]
+ (2

[
λn
]2 − 1) sin(2τ) +

[
λn
]
cos(2τ)

)]0
−T [λn]

=

[
λn
]2

4〈λn〉2
(
4− e−T

(
4 +

[
λn
]−2 −

(
2
[
λn
]−1 −

[
λn
]−3
)
sin(2T [λn]) +

[
λn
]−2

cos(2T [λn])
))

.

Then

(I) =
1

4
(II) +

[
λn
]2

〈λn〉2
(
1− e−t

(
1− 1

2

[
λn
]−1

sin(2t[λn]) +
1

4

[
λn
]−2

(1 + cos(2t[λn]))

+
1

4

[
λn
]−3

sin(2t[λn])
))

Finally, we can estimate

(I) ≥ 1

4
(II) +

[
λn
]2

〈λn〉2

(
1− e−T

(
1 +

1

2
[λn]

−1 +
1

2
[λn]

−2 +
1

4
[λn]

−3

))
≥ 1

4
〈λn〉−2

(
4[λn]

2 + 1− e−T e−T
(
1 +

1

2
[λn]

−1 +
1

2
[λn]

−2 +
1

4
[λn]

−3

))
= 1− 1

4
〈λn〉−2e−T

(
1 +

1

2
[λn]

−1 +
1

2
[λn]

−2 +
1

4
[λn]

−3

)
≥ 1− e−T

(
1 +

1

2
[λn]

−1 + [λn]
−2 +

3

4
[λn]

−3 +
1

2
[λn]

−4

)
≳ 1− e−T

(
1 + 〈λn〉−1 + 〈λn〉−2 + 〈λn〉−3 + 〈λn〉−4

)
Recall also that

(II) ≳ 〈λn〉−2
(
1− e−T

(
1 + 〈λn〉−1 + 〈λn〉−2

))
.

Using that 〈λn〉 ∼ n, this implies that there exists constants c, C, C̃ > 0 so that for all T > 0
and N ∈ N,

1 + cN−1 ≤ eT

implies
‖(1− PN )w0‖Hα ≤ C‖π1S(t)w0‖L2([0,T ],Hα) ≤ C̃

√
1− e−T ‖w0‖Hα .

For large N this holds. We deal with dimensions 1 to N separately: Define

C1(T ) := max

{
C,

(
min

{
inf

1≤n≤N
(I)n,T , inf

1≤n≤N
(II)n,T

})−1
}
.

This constant enusres “manually” that the estimate works not only for n ≥ N +1, but also the
cases n = 1, ...N . Here (I)n,T and (II)n,T refer to the corresponding integrals for the given n
and T . Both of these are positive for T > 0, increasing in T and start in 0. Therefore C1(T )
is well-defined, positive and decreasing.
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2.2 The Linear Problem with White Noise Inhomogeneity
In this section we construct the stochastic convolution Ψ, which is a almost surely solution to
(1.6) in the sense of distributions. The construction is motivated by Duhamel’s formula and
since solutions given in the shape of Duhamel’s formula are also called mild solution, one can
consider Ψ to be a mild solution to (1.6). Written in terms of pairs of functions, Ψ is supposed
to solve

∂t

(
ψ
ψt

)
=

(
0 1

−(1−∆) −1

)(
ψ
ψt

)
+

(
0√
2ξ

)
with initial data Ψ0 = 0. Since we know the solution operator S(t) to the homogeneous
problem, we can construct a mild solution to this problem by Duhamel’s formula:

Ψ(t) =

ˆ t

0
S(t− s) ·

(
0√
2ξ(s)

)
ds

It is not entirely obvious how this has to be interpreted, so let us define it

Definition 2.8 (Stochastic Convolution). For t ≥ 0, define a random radially symmetric space
distribution in two variables which we call the stochastic convolution at time t by

〈Ψ(t), f〉 :=
〈ˆ t

0
S(t− s)

(
0√
2ξ(s)

)
ds,

(
f1
f2

)〉
≡
〈
ξ,1[0,t](s)

√
2 · π2S∗(t− s)f

〉
for f = (f1, f2) ∈ Dr(B)2. Here π1 and π2 are the projections onto the first and second function.
We can unfold the definition to

〈Ψ(t), f〉 =

〈
ξ,1[0,t](s)

√
2e−

t−s
2 ·

([
1[
∇
] sin ((t− s)[∇])] f1

+

[
− 1

2
[
∇
] sin ((t− s)[∇])+ cos

(
(t− s)

[
∇
])]

f2

)〉

Lemma 2.9. The stochastic convolution is almost surely a solution to the distributional equa-
tion

∂tΨ = LΨ+

(
0√
2ξ

)
.

Proof. Let f ∈ Dr(R+×B)2. We compute

〈∂tΨ− LΨ, f〉t,x =

ˆ ∞

0
〈Ψ(t), (−∂t − L)f(t)〉x dt

=

ˆ ∞

0
〈ξ,1[s,∞](t)

√
2π2S

∗(t− s)(−∂t − L)f(t)〉s,x dt. (2.7)

We will we use that ∂tS(t)∗f = S(t)∗Lf by Lemma 2.3. Let ηk ∈ C∞(R+) be a sequence such
that

ηk −→ 1[0,∞) in L2(R+) and D′
r(R+) with supp

(
ηk − 1[0,∞)

)
⊂
(
0,

1

k

)
,
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and consider the following:

(2.7)
k→∞←−−−

ˆ ∞

0
〈ξ, ηk(t− s)

√
2π2S

∗(t− s)(−∂t − L)f(t)〉s,x dt (2.8)

=〈(∫ · dt)⊗ ξ, ηk(t− s)
√
2π2S

∗(t− s)(−∂t − L)f(t)〉t,s,x
=〈ξ ⊗ (∫ · dt), ηk(t− s)

√
2π2S

∗(t− s)(−∂t − L)f(t)〉t,s,x

=

〈
ξ,

ˆ ∞

0
ηk(t− s)

√
2π2S

∗(t− s)(−∂t − L)f(t) dt
〉
s,x

=

〈
ξ,

ˆ ∞

0
ηk(t− s)

√
2π2(−∂tS∗(t− s))f(t)− S∗(t− s)(∂tf(t)) dt

〉
s,x

=

〈
ξ,

ˆ ∞

0
∂tηk(t− s)

√
2π2S

∗(t− s)f(t) dt
〉
s,x

(2.9)

k→∞−−−→
〈
ξ,
√
2π2S

∗(s− s)f(s) dt
〉
s,x

(2.10)

=

〈(
0√
2ξ

)
, f(s)

〉
.

We have to justify the limits. Let suppt f ⊂ [0, T ]. Observe that with Jensen’s inequality and
the definition of ξ and Hölder’s inequaltiy we have

E
[
|(2.7)− (2.8)|2

]
≤ T
ˆ T

0
‖ηk(t− s)− 1[s,∞)(t)‖2L2

s,x
dt

ˆ T

0
‖
√
2π2S

∗(t− s)(−∂t − L)f(t)‖L2
s,x
dt.

this vanishes as k → ∞ as the first integrand vanishes uniformly in t and the second integral
is finite becasue f is smooth and compactly supported. Similarly with the definition of ξ we
get

E
[
|(2.9)− (2.10)|2

]
=

ˆ ∞

0

ˆ
B

∣∣∣∣ˆ T

0
∂tηk(t− s)

√
2π2S

∗(t− s)f(t) dt−
√
2π2f(s)

∣∣∣∣2 dx ds.
Since

√
2π2S

∗(t − s)f(t) is smooth in t, s and x the convergence of the integrand to 0 is
uniform. In addition we can also restrict the integral to a compact domain and so it vanishes
as k →∞.

Using that ξ is a space-time white noise, we can compute for f ,g ∈ D(B)2 that

E [〈Ψ(t), f〉〈Ψ(t),g〉] =
〈
1[0,t](s)

√
2e−

t−s
2 · π2S∗(t− s)

(
f1
f2

)
,1[0,t](s)

√
2e−

t−s
2 · π2S∗(t− s)

(
g1
g2

)〉
L2
t,x

=

ˆ t

0

∞∑
n=1

2es−t

(
1[
λn
] sin ((t− s)[λn]) f̂1(n) +(− 1

2
[
λn
] sin ((t− s)[λn])+ cos

(
(t− s)

[
λn
]))

f̂2(n)

)

·

(
1[
λn
] sin ((t− s)[λn]) ĝ1(n) +(− 1

2
[
λn
] sin ((t− s)[λn])+ cos

(
(t− s)

[
λn
]))

ĝ2(n)

)
ds.
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Furthermore 〈Ψ(t), f〉 is a centered Gaussian random variable.
In the case that f = (en, 0) and g = (em, 0) we get that

E [〈Ψ(t), (en, 0)〉〈Ψ(t), (em, 0)〉] =

{´ t
0

2es−t

[λn]2
sin ((t− s)[λn])2 ds , n = m

0 , n 6= m
. (2.11)

For f = (0, en) and g = (0, em) we have

E [〈Ψ(t), (0, en)〉〈Ψ(t), (0, em)〉] =



ˆ t

0
2es−t

(
1

4[λn]2
sin ((t− s)[λn])2

− 1

2

1

[λn]
sin (2(t− s)[λn])

+
1

2
cos (2(t− s)[λn]) +

1

2

)
ds

, n = m

0 , n 6= m

.

We can calculate the integrals:
ˆ t

0

2es−t[
λn
]2 sin ((t− s)[λn])2 ds = 2

[
λn
]−3
ˆ 0

−t[λn]
e

τ
[λn] sin (−τ)2 dτ

= 2
[
λn
]−3

[ [
λn
]
e

τ
[λn]

8
[
λn
]2

+ 2

(
4
[
λn
]2 − 2

[
λn
]
sin(2τ)− cos(2τ) + 1

)]0
−t[λn]

=
1

4〈λn〉2
(
4− e−t

(
4 + 2

[
λn
]−1

sin(2t[λn])−
[
λn
]−2

cos(2t[λn]) +
[
λn
]−2
))

We define
c2n(t) =

Θn(t)

〈λn〉2
(2.12)

where
Θn(t) = 1− e−t

(
1 +

1

2

[
λn
]−1

sin(2t[λn]) +
1

4

[
λn
]−2

(1− cos(2t[λn]))

)
.

The previous results can be summarized as

〈ψ(t), en〉 ∼ N (0, c2n(t))

and they are independent in n. Observe that

Θn(0) = 0 lim
t→∞

Θn(t) = 1 ∃K > 0 : ∀n ∈ N ∀ t ≥ 0, 0 ≤ Θn(t) ≤ K.

and that there exists N ∈ N so that for all n ≥ N and t ≥ 0

1− 2e−t ≤ Θn(t) ≤ 1− 1

2
e−t.

Hence for large n and fixed t > 0 we have c2n(t) ∼ 〈λn〉−2.
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For the other integral we compute

2
[
λn
]−1
ˆ 0

−t[λn]
e

τ
[λn]

(
− 1

2[λn]
sin(−2τ) + 1

2
cos(−2τ) + 1

2

)
dτ

= 2
[
λn
]−1

[
e

τ
[λn]

8[λn]2 + 2

(
4
[
λn
]3

+
[
λn
]
+ (2

[
λn
]2

+ 1) sin(2τ)−
[
λn
]
cos(2τ)

)]0
−t[λn]

=

[
λn
]2

4〈λn〉2
(
4− e−t

(
4 +

[
λn
]−2 −

(
2
[
λn
]−1

+
[
λn
]−3
)
sin(2t[λn])−

[
λn
]−2

cos(2t[λn])
))

.

We define

d2n(t) =
1
4Θn(t) +

[
λn
]2
Ξn(t)

〈λn〉2
(2.13)

where

Ξn(t) = 1− e−t
(
1− 1

2

[
λn
]−1

sin(2t[λn]) +
1

4

[
λn
]−2

(1− cos(2t[λn]))−
1

4

[
λn
]−3

sin(2t[λn])

)
We then have that

〈ψt(t), en〉 ∼ N (0, d2n(t))

and they are independent in n. Observe that

Ξn(0) = 0 lim
t→∞

Ξn(t) = 1 ∃K > 0 : ∀n ∈ N ∀ t ≥ 0, 0 ≤ Θn(t) ≤ K.

and that there exists N ∈ N so that for all n ≥ N and t ≥ 0

1− 1

2

[
λn
]−2 − 2e−t ≤ Ξn(t) ≤ 1− 1

2

[
λn
]−2

+
1

2
e−t.

Let us summarize the above results and more in the following lemma.

Lemma 2.10. For all f ∈ Dr(B)2 we have

〈Ψ(t), f〉 =
∞∑
n=1

cn(t)gn(t)f̂1(n) + dn(t)gn(t)f̂2(n),

which means that if the stochastic convolution is actually a function in time and space (which
is the case by lem. 2.11), we can write it as

Ψ(t, x) =
∞∑
n=1

(
cn(t)gn(t)
dn(t)hn(t)

)
en(x),

where:

(i) cn and dn are given by (2.12) and (2.13) (the choice of sign doesn’t matter). They have
growth bounds supt c

2
n(t) ≲ 〈λn〉−2 and supt d

2
n(t) ≲ 1.
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(ii) For any times 0 ≤ t1, ..., tk, the families of random vectors
gn(t1)...
gn(tk)



n∈N

and


hn(t1)...
hn(tk)



n∈N

are each independent and each one of them follows a centered joint Gaussian distribution
with 1 on the diagonal of the covariance matrix.

(iii) There exists C > 0 so that for any s ≤ t,

E
[(
cn(t)gn(t)− cn(s)gn(s)

)2] ≤ C[λn]−2|t− s|. (2.14)

and
E
[(
dn(t)hn(t)− dn(s)hn(s)

)2] ≤ C|t− s|.
Proof. We have shown (i) before and elaborated on (ii). The reason that we have a joint
Gaussian distribution is that gn(t) and hn(t) are given by ξ tested against some function,
and then by linearity of ξ any linear combination of those random variable is still normally
distributed.

We now calculate (iii). The new term that we have to analyze here is the covariance:

E [cn(t)gn(t)cn(s)gn(s)] = E [〈ψ(t), en〉〈ψ(s), en〉]

=

〈
1[0,t](τ)

√
2e−

t−τ
2 · π2S∗(t− τ)

(
en
0

)
,1[0,s](τ)

√
2e−

s−τ
2 · π2S∗(s− τ)

(
en
0

)〉
L2
t,x

=

ˆ s

0
2e

τ−t
2 e

τ−s
2

1[
λn
] sin ((t− τ)[λn]) · 1[

λn
] sin ((t− τ)[λn]) dτ.

Then together with (2.11) we have

E
[
c2n(t)gn(t)

2 − 2cn(t)gn(t)cn(s)gn(s) + c2n(s)gn(s)
2
]

=
2[
λn
]2
(ˆ s

0

(
e

τ−t
2 sin

(
(t− τ)

[
λn
])
− e

τ−s
2 sin

(
(s− τ)

[
λn
]))2

dτ

+

ˆ t

s
eτ−t sin

(
(t− τ)

[
λn
])2

dτ

)
.

We can easily estimate the second term by |t − s|. For the first term we set h = t − s and
substitute r = s− τ to get

ˆ s

0

(
e−

h+r
2 sin

(
(h+ r)

[
λn
])
− e−

r
2 sin

(
r
[
λn
]))2

dr (2.15)

≲
ˆ s

0
(e−

h+r
2 − e−

r
2 )2 dr +

1

[λn]

ˆ s[λn]

0
e
− r

[λn]
(
sin
(
h
[
λn
]
+ r
)
− sin (r)

)2
dr
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Now we estimate one of the powers of the sines on the right hand side integrand by 2, and the
other by h

[
λn
]
:

≲ (e−
h
2 − 1)2

ˆ s

0
e−r dr +

ˆ s
[
λn
]

0
e
− r

[λn] dr
1

[λn]
h
[
λn
]
≲ h.

For the case of ψt we get

E
[
d2n(t)hn(t)

2 − 2dn(t)hn(t)dn(s)hn(s) + d2n(s)hn(s)
2
]

= 2

ˆ s

0

(
e

τ−t
2

(
− 1

2
[
λn
] sin ((t− τ)[λn])+ cos

(
(t− τ)

[
λn
]))

− e
τ−s
2

(
− 1

2
[
λn
] sin ((s− τ)[λn])+ cos

(
(s− τ)

[
λn
])))2

dτ

+2

ˆ t

s
eτ−t sin

(
(t− τ)

[
λn
])2

dτ.

We can directly estimate the term by 4|t − s|. For the first term we proceed with the same
steps as in (2.15). It then remains to estimate

1[
λn
] ˆ s[λn]

0
e
− r

[λn]

(
− 1

2
[
λn
] sin (h[λn]+ r

)
+ cos

(
h
[
λn
]
+ r
)
+

1

2
[
λn
] sin (r)− cos (r)

)2

dr

We estimate the squared part of the integrand by the square of the sine difference and the
square of the cosine difference, and then again estimate one power by a constant and the other
power by h

[
λn
]
. The remaining exponential decay integral is then finite and things work out

as in the pervious case.

Lemma 2.11. Let t > 0 and α ∈ R. The following are equivalent:

(i) ψ(t) ∈ Hαr a.s.

(ii) ψ(t) ∈ L2(Ω,Hαr ),

(iii) α < 1
2 .

Proof. We know that (i) ⇐⇒ (ii) by Corollary 2.5 Let N ≤M ∈ N. Then

E
[
‖ψ(t)N − ψ(t)M‖2Hα

]
=

M∑
n=N

〈λn〉2αc2n(t) ∼
N,M large

M∑
n=N

n2α−2.

Here we use that c2n(t) ∼ 〈λn〉 ∼ |λn| ∼ n. The power series at the end converges if and only
if α < 1

2 , so (ii) ⇐⇒ (iii).

This lemma tells us that ψ(t) does exist not only as a random distribution, but a.s. as a
function in L2

r (B).

27



Let us explicitly restate again that for a fixed t > 0 there exist iid. random variables gn(t) ∼
N (0, 1) so that

ψ(t, x) =

∞∑
n=1

cn(t)en(x)gn(t),

and a fixed n and any times t1, ..., tk the random vector (gn(tj))j is jointly normally distributed.

The following lemma is an important inequality that we will use to get Wα,p regularity for ψ.

Lemma 2.12. There exists C > 0 so that for all 0 ≤ α < 1
2 and N < M ∈ N we have for

almost all x ∈ B the estimate

M∑
n=N

〈λn〉2α−2en(x)
2 (2.16)

≤ C



1
N + 1 + ln

(
M∧|x|−1

N

)
, |x|−1 > N,α = 0

1
N + |x|−1

N−1 , |x|−1 ≤ N,α = 0
1

N1−2α + 1
1−2α

(
1 + |x|−2α

)
+ 1

2α

((
M ∧ |x|−1

)2α −N2α
)

, |x|−1 > N,α > 0

1
N1−2α + 1

1−2α
2|x|−1

(N−1)1−2α , |x|−1 ≤ N,α > 0

For the case N = 1 and M =∞ this can be simplified to
∞∑
n=1

〈λn〉2α−2en(x)
2 ≤ C

{
1 + | ln(|x|)|, α = 0

1 +
(
(1− 2α)−1 + (2α)−1

)
|x|−2α, α > 0.

(2.17)

Proof. Let N < M ∈ N. Recall that 〈λn〉 ∼ n and that

en(x) = ‖J0(λnn| · |)‖−1
L2(B)

J0(λn|x|) with ‖J0(λnn| · |)‖L2(B) ∼ n−
1
2 .

We split the sum into two parts:

M∑
n=N

〈λn〉2α−2en(x)
2 ≲

M∑
n=N
n|x|>1

n2α−2nJ0(λn|x|)2 +
M∑
n=N
n|x|≤1

n2α−2nJ0(λn|x|)2.

On the first part we use the estimate J0(y) ∈ O(y−
1
2 ) for large y = n|x| > 1. On the second

part we use J0 ∈ L∞:

≲ |x|−1
∑

M∧⌈|x|−1⌉∨N<n≤M

n2α−2 +
∑

N≤n≤M∧⌊|x|−1⌋∨N

n2α−1.

In our notation we have the minimum ∧ bind more strongly than the maximum ∨ so that
a ∧ b ∨ c = (a ∧ b) ∨ c. Now we estimate the sums by corresponding integrals.

≤ |x|−1

ˆ M−1

M∧⌈|x|−1⌉∨N−1
s2α−2 ds+N2α−1 +

ˆ M∧⌊|x|−1⌋∨N

N
s2α−1 ds = (?).
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In the case α = 0 we get

(?) =
1

N
+

(
|x|−1

M ∧ d|x|−1e ∨N − 1
− |x|

−1

M − 1

)
+ ln(M ∧ b|x|−1c ∨N)− ln(N).

If |x|−1 ≥ M , then the expression in the brackets vanishes. If on the other hand |x|−1 < M ,
then

|x|−1

M ∧ d|x|−1e ∨N − 1
− |x|

−1

M − 1
=

|x|−1

d|x|−1e ∨N − 1
− |x|

−1

M − 1
≤ d|x|−1e
d|x|−1e ∨N − 1

.

If d|x|−1e ≤ N then this is less than 2 |x|−1

N−1 . On the other hand if d|x|−1e > N then it is less
than ⌈|x|−1⌉

⌈|x|−1⌉−1
≤ 2. We therefore have

(?) ≤

 1
N + 2 + ln

(
M∧|x|−1

N

)
, |x|−1 > N

1
N + 2|x|−1

N−1 , |x|−1 ≤ N

for almost all x ∈ B. In the case α > 0 we have

(?) =
1

1− 2α
|x|−1

((
M ∧ d|x|−1e ∨N − 1

)2α−1 − (M − 1)2α−1
)

+
1

N1−2α
+

1

2α

((
M ∧ b|x|−1c ∨N

)2α −N2α
)
.

Again if |x|−1 ≥M then the first term vanishes. In the other case we have

|x|−1
((
M ∧ d|x|−1e ∨N − 1

)2α−1 − (M − 1)2α−1
)
≤ |x|−1

(
d|x|−1e ∨N − 1

)2α−1
.

If d|x|−1e ≤ N then this is less than 2|x|−1(N − 1)2α−1. On the other hand if d|x|−1e > N

then it is less than ⌈|x|−1⌉
(⌈|x|−1⌉−1)1−2α ≤ d|x|−1e2α + 1 ≤ 1 + 2|x|−2α. We get

(?) ≤


1

N1−2α + 1
1−2α

(
1 + 2|x|−2α

)
+ 1

2α

((
M ∧ |x|−1

)2α −N2α
)

, |x|−1 > N

1
N1−2α + 1

1−2α
2|x|−1

(N−1)1−2α , |x|−1 ≤ N
.

We now use Lemma 2.12 to show that certain gaussian processes, in particular ψ, are in
Lebesgue and Sobolev spaces. We critically use the inequality

E [|X|p] ≤ Cpp
p
2 E
[
|X|2

] p
2 (2.18)

for p ≥ 1 and a Gaussian random variable X. The following lemma is significantly stronger
than what is necessary for the local and global well-posedness. The only case that we will use
in the near future is that of N = 1. The general case will then be used for Theorem 3.8.
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Lemma 2.13. For every α < 1
2 there exists a constant C = C(α) > 0 for which the following

holds:

Let {Xn(t)}n∈N be a family of independent and centered normally distributed random variables
for all t ∈ [0,∞), i.e. a sequence of Gaussian processes. Let σ2n(t) be their variances and
assume that there exists a square integrable function β : [0,∞) −→ [0,∞) so that

σ2n(t) ≤
β(t)2

〈λn〉2

for all t ≥ 0. Now for N < M ∈ N∪{∞} define

GMN (t, x) :=
M∑
n=N

Xn(t)en(x).

Then the following hold:

(i) There exists C > 0 so that for all p ≥ 1 and N < M ∈ N∪{∞} we have

E
[
‖GMN ‖

p
Lp
t,x

]
≤
Cppp‖β‖p

Lp
t
(1 + ln(N))

N2
.

and
E
[
‖GMN (0)‖p

Lp
x

]
≤ Cppp|β(0)|p(1 + ln(N)

N2
.

(ii) For all 0 < α < 1
2 there exists C(α) > 0 so that for all p ≥ 1 with αp < 2 and for all

N < M ∈ N∪{∞} we have

E
[
‖GMN ‖

p
Lp
tW

α,p
x

]
≤
Cp‖β‖p

Lp
t
(1 + ln(N)

N2−αp .

and
E
[
‖GMN (0)‖p

Wα,p
x

]
≤ Cp|β(0)|p(1 + ln(N)

N2−αp .

Proof. We only write down the proof for the integral in time cases as the pointwise in time
cases can be dealt with in the same fashion, just without the time integral. It suffices to assume
M < ∞ as M = ∞ then follows by taking the limit. In this case GMN is smooth in x and so
we do not have to approximate. Note that by independence of the Xn we have

E

∣∣∣∣∣
N∑
n=1

〈λn〉2αXn(t)en(x)

∣∣∣∣∣
2
 =

N∑
n=1

Xn(t)en(x)
2.

We use (2.18) to estimate

E
[ˆ ∞

0

ˆ
B
|〈∇〉αGMN (t, x)|p dx dt

]
≲ Cpp

p
2

ˆ ∞

0

ˆ
B
E
[
|〈∇〉αGMN (t, x)|2

] p
2 dx dt

≲ Cpp
p
2

ˆ ∞

0

ˆ
B

(
M∑
n=N

〈λn〉2ασ2n(t)en(x)2
) p

2

dx dt

≤ Cpp
p
2

ˆ ∞

0
|β(t)|p dt

ˆ
B

(
M∑
n=N

〈λn〉2α−2en(x)
2

) p
2

dx.
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We now apply the estimates from the previous Lemma 2.12. For α = 0 we get

≲ Cpp
p
2 ‖β‖p

Lp
t

(ˆ
{|x|≤N−1}

(
1

N
+ 1 + ln

(
M ∧ |x|−1

N

)) p
2

dx

+

ˆ
{|x|>N−1}

(
1

N
+
|x|−1

N − 1

) p
2

dx

)
.

(We also prove a bound for this in Lemma 2.14). For α > 0 we get

≲ Cpp
p
2 ‖β‖p

Lp
t

(ˆ
{|x|≤N−1}

(
1

N1−2α
+

1

1− 2α

(
1 + |x|−2α

)
+

1

2α

((
M ∧ |x|−1

)2α −N2α
)) p

2

dx

+

ˆ
{|x|>N−1}

(
1

N1−2α
+

1

1− 2α

2|x|−1

(N − 1)1−2α

) p
2

dx

)
.

The estimates for those integrals that we derive in the subsequent Lemma 2.14 conclude the
proof.

Lemma 2.14. (i) There exists C > 0 so that for all p ≥ 1 and N < M ∈ N,
ˆ
{|x|≤N−1}

(
1

N
+ 1 + ln

(
M ∧ |x|−1

N

))p
dx ≤ Cppp

N2
.

(ii) There exists C > 0 so that for all p ≥ 1 and N < M ∈ N,
ˆ
{1≥|x|>N−1}

(
1

N
+
|x|−1

N − 1

)p
dx ≤ Cp ln(N)

N2
.

(iii) For every 0 < α < 1
2 there exists C(α) > 0 so that for every p ≥ 1 with αp < 1,

ˆ
{1≥|x|≤N−1}

(
1

N1−2α
+

1

1− 2α

(
1 + |x|−2α

)
+

1

2α

((
M ∧ |x|−1

)2α −N2α
))p

dx ≤ C(α)p

N2−2αp
.

(iv) For every 0 < α < 1
2 there exists C(α) > 0 so that for every p ≥ 1 with αp < 1,

ˆ
{|x|>N−1}

(
1

N1−2α
+

1

1− 2α

2|x|−1

(N − 1)1−2α

)p
dx ≤ C(α)p ln(N)

N2−2αp
.

Proof. Since the domain of integration B is bounded it suffices to consider the case p > 2. We
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start with (i):
ˆ
{|x|≤N−1}

(
1

N
+ 1 + ln

(
M ∧ |x|−1

N

))p
dx

≤
∞∑
k=0

(k + 1)pL2
({

x ∈ B : |x| ≤ N−1, k < 2 + ln

(
M ∧ |x|−1

N

)
≤ k + 1

})

≤
∞∑
k=0

(k + 1)pL2
({
x ∈ B : |x| ≤ N−1, Nek−2 < M ∧ |x|−1 ≤ Nek−1

})
≤L2(B)N−2

∞∑
k=0

(k + 1)pe4−2k dx

≲ e4

N2

ˆ ∞

0
(s+ 1)pe−2s dx

≲Cp1
N2

2−(p+1)Γ(p+ 1) ≲ Cp2p
p

N2
.

Now we show (ii). We can trivially assume N ≥ 2 and p > 2. Then
ˆ
{|x|>N−1}

(
1

N
+
|x|−1

N − 1

)p
dx ≤ 1

(N − 1)p

ˆ 1

N−1

(
1 +

1

r

)p
r dr

≤ 2p

Np

ˆ 1

N−1

r1−p dr =
2p

Np

1

2− p
(
1−Np−2

)
=

2p

N2

1−N2−p

p− 2
≤ Cp ln(N)

N2
.

We have used that for ε > 0 and y ≥ 1 we have 1−y−ϵ

ϵ ≤ ln(y).

Next we show (iii):
ˆ
{|x|≤N−1}

(
1

N1−2α
+

1

1− 2α

(
1 + |x|−2α

)
+

1

2α

((
M ∧ |x|−1

)2α −N2α
))p

dx

≲ C(α)p
ˆ
{|x|≤N−1}

(
1 + |x|−2α +

((
M ∧ |x|−1

)2α −N2α
))p

ds

≲ C(α)p
ˆ N−1

0
(1 + r−2α)pr dr ≤ C(α)p2p

ˆ N−1

0
r1−2αp dr ≤ C1(α)

p 1

N2−2αp
.

Finally we show (iv):
ˆ
{|x|>N−1}

(
1

N1−2α
+

1

1− 2α

2|x|−1

(N − 1)1−2α

)p
dx ≲ C(α)p

1

Np−2αp

ˆ 1

N−1

(
1 +

1

r

)p
r dr

≲ C(α)p ln(N)

N2−2αp
.

Here we use that in the proof of (ii) we have already estimated this integral by Np−2 ln(N).
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We now use Lemma 2.13 to show that ψ is in certain Lebesgue and Sobolev spaces. This is
important because ψ(t, x) will show up in the non-linear part of the equation later on. We
need to be able to make sense of ψ(t, x)3. This is not possible if ψ(t, x) merely a distribution
in space and not given by a function. In higher dimensions this happens and as a result one
has to renormalize the equation.

Lemma 2.15. Let T > 0 and 0 < α < 1
2 . The following hold:

(i) ψ(t, x) is a centered Gaussian random variable for almost all t ∈ [0, T ] and x ∈ B. We
have an estimate

E
[
|ψ(t, x)|2

]
≤ C(1 + | ln(|x|)|).

(ii) There exists C > 0 so that for all p ≥ 1 and t ∈ [0, T ] we have ψ(t, ·) ∈ Lp(B) a.s,
ψ ∈ Lp([0, T ], Lpr (B)) a.s. and

E
[ˆ

B
|ψ(t, x)|p dx

]
≤ Cppp E

[ˆ T

0

ˆ
B
|ψ(t, x)|p dx dt

]
≤ TCppp.

(iii) Let p ≥ 1 so that αp < 2. Then 〈∇〉αψ(t, x) is a centered Gaussian random variable for
almost all t ∈ [0, T ] and x ∈ B. We have an estimate

E
[
|〈∇〉αψ(t, x)|2

]
≤ C(α)|x|−2α.

(iv) There exists C(α) > 0 so that for p ≥ 1 with αp < 2 and for almost all t ∈ [0, T ] we have
ψ(t, ·) ∈Wα,p

r (B) a.s., ψ ∈ Lp([0, T ]×Wα,p
r (B)) and

E
[ˆ

B
|〈∇〉αψ(t, x)|p dx

]
< C(α)p E

[ˆ T

0

ˆ
B
|〈∇〉αψ(t, x)|p dx dt

]
≤ TC(α)p.

Proof. We see that for any M ∈ N by independence of the gn

E

∣∣∣∣∣
M∑
n=1

〈λn〉2αcn(t)en(x)gn(t)

∣∣∣∣∣
2
 =

N∑
n=1

c2n(t)en(x)
2.

We know that on any compact interval [0, T ] we have c2n(t) ≲ 〈λn〉−2 uniformly in t. since by
Lemma 2.12 this is finite we know that 〈∇〉αψ(t, x) is a centered Gaussian r.v. in L2(Ω). We
now define a Gaussian process Xn(t) = 1{t>T}〈ψ(t), en〉. Then we can apply Lemma 2.13 for
N = 1 to G and get the desired estimates. Since G is indistinguishable from ψ on [0, T ] they
transfer over to ψ.

We can furthermore find almost sure continuity in certain Sobolev spaces via the Kolmogorov
continuity theorem.

Lemma 2.16. Let T > 0, α < 1
2 , 1 ≤ p < ∞ so that αp < 2 and let 0 < γ < 1

2 −
1
p . Then

there exists a modification ψ̃ ∈ C0,γ([0, T ],Wα,p
r ) of ψ.
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Proof. We will use the Kolmogorov continuity theorem. From the previous lemma we already
know that ψ(t, ·) ∈ Wα,p

r a.s., so to apply the theorem it remains to find a β > 0 so that for
all t0 < t1 ≤ T ,

E
[ˆ

B
|〈∇〉α(ψ(t1, x)− ψ(t0, x))|p dx

]
≤ C(T, p)|t1 − t0|1+β.

For this we again use Lemma 2.13, applying it to

G(t, x) = ψ(t+ t1, x)− ψ(t+ t0, x) =
∞∑
n=1

(cn(t+ t1)gn(t+ t1)− cn(t+ t0)gn(t+ t0))en(x).

We want to estimate the variance of the gaussians on the right side. Using (2.14) and get that
for |t1 − t0| < 1 (an assumption we can make without loss of generality) and any η ∈ (0, 2),

E
[
(cn(t+ t1)gn(t+ t1)− cn(t+ t0)gn(t+ t0))

2
]
≤ C|t1 − t0|

[
λn
]−2 ≤ C |t1 − t0|

〈λn〉2
.

Now lemma 2.13 with N = 1 and t = 0 yields the inequality

E
[
‖ψ(t1, ·)− ψ(t0, ·)‖pWα,p dx

]
≤ C(α)p|t1 − t0|1+

p−2
2 .

The Kolmogorov continuity theorem now implies that there for any

0 < γ <
p− 2

2p
=

1

2
− 1

p
.

there exists a modification ψ̃ ∈ C0,γ([0, T ],Wα,p
r ) of ψ.

2.3 Local Well-Posedness for the Complete Problem
We now suppose that we have are given the solutions w and Ψ from the previous sections and
consider them fixed. For given realizations w(ω) and Ψ(ω) we now have to find a solution v(ω)
to

∂2t v + ∂tv + (1−∆)v + (w + ψ + v)3 = 0 (2.19)
with initial data 0. In terms of pairs of functions this is equivalent to

∂tv = Lv −
(

0
(w + ψ + v)3

)
v(0) = 0.

(2.20)

We solve this as a deterministic problem with the idea being that we can assume w(ω)+Ψ(ω)
to be an arbitrary function that has a regulartiy we know the stochastic processes w and Ψ
to possess almost surely.

We are also interested in the truncated system

∂2t vN + ∂tvN + (1−∆)vN + PN ((w + ψ + vN )
3) = 0 (2.21)

with initial data 0. Here truncation refers to the projection PN onto the first N basis vectors:

34



Definition 2.17. For N ∈ N, β ∈ R and f ∈ Hβ define

PNf =
N∑
n=1

f̂(n)en.

Lemma 2.18. For all k ∈ N and β1, β2 ∈ R,

PN : Ck([0, T ],Hβ1) −→ Ck([0, T ],Hβ2).

Proof. Let f ∈ Ck([0, T ],Hβ1). We write down the proof only for k = 1:∥∥∥∥PNf(t+ h)− PNf(t)
h

− PN∂tf(t)
∥∥∥∥2
Hβ1

=

N∑
n=1

〈λn〉
2
β1
β2︸ ︷︷ ︸

≲N

∣∣∣∣β1β2
∣∣∣∣
〈λn〉2β2

〈
f(t+ h)− f(t)

h
− ∂tf(t), en

〉
.

≤ C(N, β1, β2)
∥∥∥∥f(t+ h)− f(t)

h
− ∂tf(t)

∥∥∥∥2
Hβ2

We will solve(2.19) and (2.21) in a mild sense.

Definition 2.19 (Mild Solution). Let α ∈
[
1, 43
)

and T ∈ R+ ∪{∞}. Let w,ψ be functions so
that

w + ψ ∈ Y α−1
[0,T ]

:= L6([0, T ],Wα−1,6
r ). (2.22)

A mild solution in Hαr on [0, T ] to (2.19) is a function

v ∈ L∞([0, T ],Hαr )

so that for almost all t ∈ [0, T ],

v(t) =

ˆ t

0
S(t− s)

(
0

−(w + ψ + v)3(s)

)
ds. (2.23)

We analogously define mild solutions to the truncated system (2.21).

The justification for thse objects being called solutions to the problem is that they are in fact
solutions in quite a strong sense, and in particular also in the weaker sense of distributions.
This is shown in lemma 2.23.

Defining the operators

H(v) := t 7−→
ˆ t

0
S(t− s)

(
0

−(w + ψ + v)3(s)

)
ds
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and
HN (vN ) := PNH(vN )t 7−→

ˆ t

0
S(t− s)

(
0

−PN ((w + ψ + vN )
3)(s)

)
ds,

we can phrase (2.19) as the fixed point problem H(v) = v, and similarly (2.21) as HN (vN ) =
vN . We choose the space L∞([0, T ],Hαr ) where α < 4

3 . Note that HN : L∞([0, T ],Hαr ) −→
L∞([0, T ], PND′

r(B)), so vN is an evolution in an N -dimensional subspace of the radial distri-
butions.

Let us recall two inequalities that will be needed for the local well-posedness: The fractional
Leibnitz and Sobolev inequalities.

Lemma 2.20 (Fractional Leibnitz Inequality / Fractional Leibnitz Rule [11]). For 1
r = 1

p1
+

1
q1

= 1
p2

+ 1
p2

, α− 1 ∈ (0, 1) and f, g ∈ S(Rn)

‖〈∇〉α−1(fg)‖Lr ≲ ‖〈∇〉α−1f‖Lp1‖g‖Lq1 + ‖〈∇〉α−1g‖Lp2‖f‖Lq2 .

In particular for all α− 1 ∈ [0, 1) we have

‖〈∇〉α−1(f3)‖L2 ≲ ‖〈∇〉α−1f‖L6‖f‖2L6 . (2.24)

Proof. A proof can be found in [11]. The second inequality for α− 1 > 0 follows from it by an
application with 1

2 = 1
6 + 1

3 = 1
3 + 1

6 :

‖〈∇〉α−1(f3)‖L2 ≲ ‖〈∇〉α−1f‖L6‖f2‖L3 + ‖〈∇〉α−1(f2)‖L3‖f‖L6

and another one with 1
3 = 1

6 + 1
6 :

‖〈∇〉α−1(f2)‖L3 ≲ ‖〈∇〉α−1f‖L6‖f‖L6 .

The case α = 0 is trivial.

For the Sobolev inequalities we need to make sure that we actually have the embedding for
the Bessel potential spaces Hα,p(R2), not the Sobolev-Slobodeckij spaces Wα,p

(R2). Under
[22] one can find embeddings for the Triebel-Lizorkin scale which in our special case yield the
following lemma:

Lemma 2.21 (Fractional Sobolev Embeddings). Let 1 < p1 ≤ p2 <∞ and α1, α2 ≥ 0. If

α1 −
2

p1
≥ α2 −

2

p2
,

then
Wα1,p1

r ↪−→Wα2,p2
r .

This implies for example that H1
r ↪−→ Lpr for all 1 ≤ p < ∞. We care about the following

special case: Given some α ∈
(
[1, 43

)
we choose α1 = α, p1 = 2 and p2 = 6. Then for all α2 so

that
α2 ≤ α− 1 +

1

3
= α− 2

3

we have ‖u‖Wα2,6 ≲ ‖u‖Hα . In particular

‖u‖Wα−1,6 ≲ ‖u‖H1 . (2.25)
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Theorem 2.22 (Deterministic Local Well-posedness). Let α ∈
[
1, 43
)

and w + ψ ∈ Y α−1
[0,T ′] be

given as in (2.22). Then there for some 0 < T (‖w + ψ‖Y α−1
[0,T ′]

) ≤ T ′ there exist unique mild
solutions v and vN on [0, T ] to (2.19) and (2.21) respectively. For every r > 0 the maps

B
Y α−1
[0,T ′]
r × [0, T (r)] −→ Hαr

(w + ψ, t) 7−→ v(t)

(w + ψ, t) 7−→ vN (t)

are jointly continuous.

Proof. We show this only for (2.19) as all the estimates directly transfer to the truncated case.
Let 0 < R ≤ 1

2 and suppose that

‖v‖L∞([0,T ],Hα) ≤ R.

From lemma 2.2 we know that ‖S(t)u‖Hα ≤ e−
t
2 ‖u‖Hα , so

‖H(v)(t)‖Hα ≤
ˆ t

0
‖(w + ψ + v)3‖Hα−1 ds.

We use (2.24)

≲
ˆ t

0
‖〈∇〉α−1(w + ψ + v)‖L6‖w + ψ + v‖2L6 ds

and Hölder with 1
2 + 1

6 + 1
3 = 1:

≲ T
1
2 ‖w + ψ + v‖L6([0,T ],Wα−1,6)‖w + ψ + v‖2L6([0,T ],L6)

≲ T
1
2 ‖w + ψ + v‖3L6([0,T ],Wα−1,6)

≲ T
1
2
(
‖w + ψ‖3

Y α−1
[0,T ]

+ ‖v‖3L6([0,T ],Wα−1,6)

)

We use that by (2.25)
‖v‖L6([0,T ],L6) ≲ ‖v‖L6([0,T ],Hα) ≤ T

1
6R

and get
‖H(v)‖L∞([0,T ],Hα) ≲ T

1
2 ‖w + ψ‖3

Y α−1
[0,T ]

+ TR3.

From this we can see that if T (‖w + ψ‖Y α−1
[0,T ′]

) is small enough we get a selfmap

H : B
L∞([0,T ],Hα

r )
R −→ B

L∞([0,T ],Hα
r )

R .
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We want to show that H is a contraction on BR, so let v1,v2 ∈ BR.

‖H(v1)(t)−H(v2)(t)‖Hα ≤
ˆ t

0
‖(w + ψ + v1)

3 − (w + ψ + v2)
3‖Hα−1 ds

≤ 3

ˆ t

0
‖(w + ψ)2(v1 − v2)‖Hα−1 ds

+ 3

ˆ t

0
‖(w + ψ)(v1 − v2)2‖Hα−1 ds

+

ˆ t

0
‖(v1 − v2)3‖Hα−1 ds

= (I) + (II) + (III)

We apply the fractional Leibnitz inequality several times.

(I) ≲
ˆ t

0
‖(w + ψ)2‖Wα−1,3‖v1 − v2‖L6 + ‖(w + ψ)2‖L3‖v1 − v2‖Wα−1,6 ds

≲
ˆ t

0

(
‖w + ψ‖Wα−1,6‖w + ψ‖L6 + ‖w + ψ‖2L6

)
‖v1 − v2‖Wα−1,6 ds

Now we Hölder with 1
2 + 1

3 + 1
6 = 1.

≲ T
1
2 ‖v1 − v2‖L6([0,T ],Wα−1,6)‖w + ψ‖2L6([0,T ],Wα−1,6)

≲ T
2
3 ‖v1 − v2‖L∞([0,T ],Hα)‖w + ψ‖2

Y α−1
[0,T ]

(2.26)

Here we (II) we proceed similarly

(II) ≲
ˆ t

0
‖w + ψ‖Wα−1,6‖(v1 − v2)2‖L3 + ‖w + ψ‖L6‖(v1 − v2)2‖Wα−1,3 ds

≲
ˆ t

0

(
‖w + ψ‖Wα−1,6 + ‖w + ψ‖L6

)
‖v1 − v2‖2Wα−1,6 ds

≲ T
1
2 ‖v1 − v2‖2L6([0,T ],Wα−1,6)‖w + ψ‖L6([0,T ],Wα−1,6)

≲ T
5
6 ‖v1 − v2‖2L∞([0,T ],Hα)‖w + ψ‖Y α−1

[0,T ]
(2.27)

Finally

(III) ≲
ˆ t

0
‖v1 − v2‖3Wα−1,6 ds ≲ T

1
2 ‖v1 − v2‖3L6([0,T ],Wα−1,6) ≲ T‖v1 − v2‖3L∞([0,T ],Hα). (2.28)

Note that ‖v1 − v2‖L∞([0,T ],Hα
r )
≤ 1 since R ≤ 1

2 . Because of this we can again choose T
depending on ‖w + ψ‖Y α−1

[0,T ′]
small enough so that H is a contraction. Then by the Banach

fixed-point theorem there exists a unique v ∈ BR so that H(v) = v.

It remains to show the continuity. We first show continuity separately, only in t and only

w + ψ. For some r > 0, w1 + ψ1, w2 + ψ2 ∈ B
Y α−1
[0,T ′]
r let t ∈ [0, T (r)]. We call v1 and v2 the

38



corresponding solutions. Observe that

‖v1(t)− v2(t)‖Hα ≲
ˆ t

0
‖(w1 + ψ1 + v1)

3 − (w2 + ψ2 + v1)
3‖Hα−1 (2.29)

+‖(w2 + ψ2 + v1)
3 − (w2 + ψ2 + v2)

3‖Hα−1 ds.

We now repeat the estimates for the contractivity until we arrive at only expressions with
norm ‖ · ‖Y α−1

[0,t]
, but we reverse the role of w + ψ and v in the first instance:

≲
(
‖w1 + ψ1 − w2 − ψ2‖Y α−1

[0,t]
‖v1 − v2‖2Y α−1

[0,t]

+‖v1 − v2‖Y α−1
[0,t]
‖w2 + ψ2‖2Y α−1

[0,t]

+‖w1 + ψ1 − w2 − ψ2‖2Y α−1
[0,t]

‖v1 − v2‖Y α−1
[0,t]

+‖v1 − v2‖2Y α−1
[0,t]

‖w2 + ψ2‖Y α−1
[0,t]

+‖w1 + ψ1 − w2 − ψ2‖3Y α−1
[0,t]

+‖v1 − v2‖3Y α−1
[0,t]

)
We define

A = ‖v1‖L∞([0,T ],Hα−1) + ‖v2‖L∞([0,T ],Hα−1)

B = ‖w2 + ψ2‖Y α−1
[0,T ]

+ ‖w1 + ψ1‖Y α−1
[0,T ]

E = (B2 +AB +A2)

α(t) = E‖w1 + ψ1 − w2 − ψ2‖Y α−1
[0,t]

.

The inequality that we have derived can be simplified and rewritten as

‖v1(t)− v2(t)‖Hα ≤ Cα(t) +
ˆ t

0
CE‖v1(s)− v2(s)‖Hα ds.

Now Grönwall’s inequality implies that

‖v1 − v2‖L∞([0,T ],Hα) ≲ Cα(t)eCET .

Let wn + ψn −→ w + ψ in Y α−1
[0,T ′]. Since these are bounded in Y α−1

[0,T ′] they are contained in a
ball of radius r and we have a time of existence T (r) for all of them. We can also choose a
uniform R in the existence result, meaning that vn,v ∈ BL∞([0,T (r)],Hα

r )
R . We can therefore set

A = 2R and B = ‖w + ψ‖α−1
Y . Then we get

‖vn − v‖L∞([0,T ],Hα) ≤ eCETCE‖wn + ψn − w − ψ‖Y α−1
[0,T ′]

n→∞−−−→ 0. (2.30)

Therefore v(t) is continuous in w + ψ, uniformly in t. In the subsequence lemma 2.23 we
show that v is continuous in t with respect to ‖ · ‖L∞([0,T ],Hα) for all w + ψ ∈ Y α−1

[0,T ′]. Then if
(tn, wn + ψn) −→ (t, w + ψ) we have

‖vn(tn)− v(t)‖Hα ≤ ‖vn(tn)− v(t)‖Hα + ‖v(tn)− v(t)‖Hα −→ 0.
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Lemma 2.23. Let v, vN be a mild solutions to (2.19) and (2.21) respectively. Then

v,vN ∈ C([0, T ],Hα) ∩ C1([0, T ],Hα−1)

and the derivatives in the latter space are given by

∂tv = Lv +

(
0

−(w + ψ + v)3

)
.

∂tvN = LvN +

(
0

−PN ((w + ψ + vN )
3)

)
.

Conversely, if v and vN have these properties, then they are mild solutions.

Proof. Again the proof for the case of vN is virtually identical to the one for v. Let 0 ≤ t ≤
t+ h ≤ T . Then

‖v(t+ h)− v(t)‖Hα ≤
ˆ t

0

∥∥∥∥(S(t+ h− s)− S(t− s))
(

0
−(w + ψ + v)3

)∥∥∥∥
Hα

ds (2.31)

+

ˆ t+h

t

∥∥∥∥S(t+ h− s)
(

0
−(w + ψ + v)3

)∥∥∥∥
Hα

ds.

By the arguments in the local well-posedness, in particular (2.24) and (2.25), we know that
‖(w + ψ + v)3‖L∞([0,T ],Hα−1) < ∞. Together with S ∈ C([0, T ], L(Hαr ,Hαr )) from lemma 2.2
this implies that (2.31) vanishes as h→ 0. This proves the continuity.

Now we show the differentiability. We estimate∥∥∥∥v(t+ h)− v(t)

h
− Lv(t)−

(
0

−(w + ψ + v)3

)∥∥∥∥
Hα−1

≤
∥∥∥∥ˆ t

0

(
S(t+ h− s)− S(t− s)

h
− LS(t− s)

)(
0

−(w + ψ + v)3

)
ds

∥∥∥∥
Hα−1

+

∥∥∥∥ˆ t+h

t

(
S(t+ h− s)− Id

h

)(
0

−(w + ψ + v)3

)
ds

∥∥∥∥
Hα−1

.

Using the Lipschitz continuity in (i) from lemma 2.3 we see that the first integrand has a
majorant with respect to h. Then (ii) from lemma 2.3 implies that it vanishes for every s, and
so dominated convergence shows that the integral vanishes as h → 0. For the second integral
we also use the Lipschitz continuity in (i) to see that the integrand has a majorant with respect
to h. Then the fact that the domain vanishes shows that the integral vanishes as h→ 0.

The converse statement that such v and vN are mild solutions is merely a calculation analogous
to the derivation of Duhamel’s formula.

Note that as one would expect, the truncated solutions vN approximate v.

Lemma 2.24. Let v, vN be a mild solutions on [0, T ] to (2.19) and (2.21) respectively. Then
there exists a constant C > 0 so that the following hold:
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(i) We have an estimate

‖v − vN‖L∞([0,T ],Hα) ≤ C‖(w + ψ + v)3 − PN (w + ψ + v)3‖L1
tH

α−1
x

× exp
(
TC(1 + ‖w + ψ‖Y α−1

[0,T ]
)2(1 + ‖v‖L∞

t Hα
x
+ ‖vN‖L∞

t Hα
x
)3
)
.

(ii) There exist constants C1, C2 > 0 so that if

‖(w + ψ + v)3 − PN (w + ψ + v)3‖L1
tH

α−1
x
≤ C1e

−2pC1C2T ,

then ‖v − vN‖L∞([0,T ],Hα) ≤ 1.

(iii) ‖v − vN‖L∞([0,T ],Hα)
N→∞−−−−→ 0.

Proof. We start with (i). Let t ∈ [0, T ]. We apply the definition of a mild solution.

‖v(t)− vN (t)‖Hα ≤
∥∥∥∥ˆ t1

0
S(t1 − s)

(
0

−(w + ψ + v)3 + PN (w + ψ + v)3

)
ds

∥∥∥∥
Hα

+

∥∥∥∥ˆ t1

0
S(t1 − s)

(
0

PN (−(w + ψ + v)3 + (w + ψ + vN )
3)

)
ds

∥∥∥∥
Hα

= (I) + (II)

We define αN ≥ (I) by

αN := ‖(w + ψ + v)3 − PN (w + ψ + v)3‖L1([0,T ],Hα−1)
N→∞−−−−→ 0.

For (II) we can repeat the estimates (2.26), (2.27) and (2.28) with v1 = v and v2 = vN ,
except that we keep the time integral in order to apply Grönwall’s inequality. We find a
constant C > 0 so that

(I) + (II) (2.32)
≲C ‖(w + ψ + v)3 − PN (w + ψ + v)3‖L1([t0,t1],Hα−1)

+ (1 + ‖w + ψ‖Y α−1 + ‖w + ψ‖2Y α−1)

ˆ t1

t0

‖v − vN‖Hα + ‖v − vN‖2Hα + ‖v − vN‖3Hα ds

≲C ‖(w + ψ + v)3 − PN (w + ψ + v)3‖L1([t0,t1].Hα−1)

+ (1 + ‖w + ψ‖Y α−1)2(1 + ‖v‖L∞
t Hα

x
+ ‖vN‖L∞

t Hα
x
)3
ˆ t1

t0

‖v − vN‖Hα ds.

After applying Grönwall’s inequality we have shown (i). For (ii) need further estimates.
Rewriting (2.32), we have shown that there exists a summarizing constant C1 = C(T, α) so
that

fN (t) ≤ C1αN + C1C2

ˆ t

0
fN (s)(1 + fN (s))

p−1 ds, (2.33)

41



where

fN (t) = ‖v(t)− vN (t)‖Hα (2.34)
C2 = (1 + ‖w + ψ‖Y α−1 + ‖w + ψ‖2Y α−1) (2.35)
p = 6. (2.36)

We fix a large N ∈ N. Let g be a solution to the ODE

g′(s) = 2C1C2g(s)(1 + g(s))p−1

g(0) = C1αN .

We know by the Picard-Lindelöf theorem that a local solution exists and that it can be extended
either to infinity or to a finite time blow-up. By using Grönwall’s inequality we now show that
if αN ≤ C−1

1 e−2pC1C2T , then a solution exists until time T and g(t) ≤ 1 for all t ≤ T .

Since αN > 0 the solution will be positive on a small time interval and have a positive derivative
there, meaning that g is strictly increasing. Since αN −→ 0 we can assume that C1αN < 1.
If g(t) ≤ 1 for all t ≤ T then we are done, so we take t < T to be first point where g(t) = 1.
Then for all s ≤ t we have

g′(s) ≤ 2pC1C2g(s),

so Grönwall’s inequality implies

1 = g(t) ≤ C1αNe
2pC1C2t =⇒ C1e

2pC1C2t ≥ α−1
N ≥ C1e

2pC1C2T =⇒ t ≥ T.

We now show that fN (t) ≤ g(t) ≤ 1 for all t ≤ T .

We define
t = inf{0 ≤ s ≤ T : fN (s) ≥ g(s)}.

If t =∞, i.e. the infimum does not exist, then we are done. We therefore assume that t ≤ T .
Applying the definition of t to (2.33) yields

g(t)−g(0) = fN (t)−C1αN ≤ C1C2

ˆ t

0
fN (s)(1+fN (s))

p−1 ds ≤ C1C2

ˆ t

0
g(s)(1+g(s))p−1 ds.

But since
g(t)− g(0) =

ˆ t

0
g′(s) ds = 2C1C2

ˆ t

0
g(s)(1 + g(s))p−1 ds,

we have a contradiction. Therefore t =∞ and we have proven that fN ≤ g ≤ 1.

Statement (iii) is now just an application of (i) with the uniform estimate from (ii).

Using this we can show that mild solutions in H1
r automatically gain Hαr regularity for 1 <

α < 4
3 :

Lemma 2.25 (Preservation of Regularity). Let v ∈ L∞([0, T ],H1
r ) be a mild solution to (2.19)

for α = 1. Let α′ ∈
[
1, 43
)
. If w + ψ ∈ Y α′−1

[0,T ] , then v,vN ∈ L∞([0, T ],Hα′
r ) for all n ∈ N.
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Proof. In order to be rigorous, we first derive an estimate for vN . By the definition of a mild
solution yielding the analogous of (2.3) for vN , the fractional Leibnitz inequality (2.24) and
the embeddings Y 1,H1 ⊂ L6, we have for t ∈ [0, T ] that

‖vN (t)‖Hα′ ≲
ˆ t

0
‖PN ((w + ψ + vN )

3)‖Hα′−1 dt

≲
ˆ t

0
‖w + ψ + vN‖2L6‖w + ψ + vN‖Wα′−1,6 dt

≲
ˆ t

0
(‖w + ψ‖2

Wα′−1,6 + ‖vN‖2H1)(‖w + ψ‖Wα′−1,6 + ‖vN‖Hα′ ) dt

≲ C + C

ˆ t

0
‖vN‖Hα′ dt,

where C = C(T, ‖w + ψ‖Y α−1 , ‖vN‖L∞
t H1

x
) is some large constant. THen By Grönwall’s in-

equality implies
‖vN (t)‖Hα′ ≤ CeCt.

This constant C is uniformly bounded in N since ‖vN‖L∞
t H1

x
is uniformly bounded in N (lemma

2.24), and hence vN ∈ L∞([0, T ],Hα′
r ) also with a uniform bound. By the Banach-Alaoglu

theorem there must exist ṽ ∈ L∞([0, T ],Hα′
r ) which is the weak limit of a subsequence vNk

.
Since lemma 2.24 also implies that ‖v − vN‖L∞([0,T ],H1) −→ 0, it must be the case that
v = ṽ ∈ L∞([0, T ],Hα′

r ).

Corollary 2.26 (Stochastic Local Well-posedness). Let α ∈
[
1, 43
)
, T ′ > 0 and Ψ be the

stochastic convolution. Let w0 ∈ L2(Ω, L2(B)) so that almost surely ‖w‖Y α−1
[0,T ′]

< ∞, where
w = π1S(t)w0.

Then there exists a random variable T > 0 and random variables v,vN ∈ L∞([0,∞),Hαr )
which are almost surely mild solutions to (2.19) and (2.21) on [0, T ] respectively. Furthemore

u := v +w +Ψ and uN := vN +w +Ψ

solve (1.5), i.e.

∂2t u+ ∂tu+ (1−∆)u+ u3 =
√
2ξ

u(0) = w0,

and

∂2t uN + ∂tuN + (1−∆)uN + u3N =
√
2ξ

uN (0) = w0

in the sense of distributions up to time T .

Proof. We require that a.s. w ∈ Y α−1
[0,T ′] and we have shown that a.s. ψ ∈ Y α−1

[0,T ′] in lemma 2.15.
(Note that this uses α − 1 < 1

3 <
1
2). Therefore we can just apply Theorem 2.22 pathwise to

find the time of existence T as well as v and vN on the interval [0, T ′]. We extend v and vN
by zero onto (T,∞).
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Using Theorem 2.6, lemma 2.9 and lemma 2.23, we then have that almost surely in the sense
of distributions on the time interval [0, T ],

∂t(v +w +Ψ) = L(v +w +Ψ) +

(
0

−(w + ψ + v)3 +
√
2ξ

)
.

The proof of the truncated case is again a direct transfer of the one above.
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3 Global Well-posedness
3.1 Controlling the Growth of ‖ψ‖Lp

The energy estimates we will derive to get global well-posedness involve Lp-norms of ψ for
large p, so we have to control its growth. What we know so far from lemmas 2.12, 2.15 and
2.14 is that

E
[ˆ

B
|ψ(t, x)|p dx

]
≤ p

p
2

ˆ
B
E
[
|ψ(t, x)|2

] p
2 dx ≤ Cpp

p
2

ˆ
B
(1 + | ln(|x|)|)

p
2 dx ≤ Cpp

p
2 .

Using this estimate, we have

E
[ˆ

B
|ψ(t, x)|p dx

]
≤ Cp1p

p,

and with Jensen’s inequality we can find C2 > 0 so that

E

[(ˆ
B
|ψ(t, x)|p dx

)2
]
≤ Cp2p

ppp

and
Var

(ˆ
B
|ψ(t, x)|p dx

)
≤ C2p

1 (2p)2p = Cp2p
ppp.

What we will now do is prove the existence of such a kind of growth estimate almost surely
in several different ways.

Lemma 3.1. There exists a K > 0 so that for all t ≥ s ≥ 0 the following holds almost surely:

(i) ∃p0 > 0 : ∀p ≥ p0, ‖ψ(t)‖Lp ≤ Kp.

(ii) ∃p0 > 0 : ∀p ≥ p0, ‖ψ‖Lp([s,t]×B) ≤ (t− s)
1
pKp.

(iii) ∀p ∈ N, ‖ψ(t)‖Lp ≤ Q(t)
1
pKp where Q(t) =

∑∞
p=1

∥ψ(t)∥p
Lp

Kppp <∞ a.s.

(iv) ∀p ∈ N, ‖ψ‖Lp([s,t]×B) ≤ (t− s)
1
pQ(s, t)

1
pKp where Q(s, t) =

∑∞
p=1

∥ψ∥p
Lp([s,t]×B)

Kppp <∞ a.s.

Proof. We write down the proof only for (i) and (iii) as including the time integral for (ii)
and (iv) causes no complications. It suffices to show this for p ∈ N.

We prove (i) via an argument with the Borel-Cantelli lemma and the Chebyshev inequality.
Observe that for a large K > 0

∞∑
p=1

P
(ˆ

B
|ψ(t, x)|p dx > 2Kppp

)
≤

∞∑
p=1

P
(∣∣∣∣ˆ

B
|ψ(t, x)|p − E

[ˆ
B
|ψ(t, x)|p dx

]∣∣∣∣ > Kppp
)

+
∞∑
p=1

P
(
E
[ˆ

B
|ψ(t, x)|p dx

]
> Kppp

)
= (I) + (II).
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The sum (II) is zero if K > C1. For (I) we use Chebyshev’s inequality:

(I) ≤
∞∑
p=1

Var
(´
B |ψ(t, x)|

p dx
)

K2pp2p
≤

∞∑
p=1

(
C2

K2

)p pppp
pppp

<∞,

where the result at the end is certainly summable given K2 > C2. Then the Borel-Cantelli
lemma now implies

P
(ˆ

B
|ψ(t, x)|p dx > 2Kppp for infinitely many p ∈ N

)
= 0.

This finishes the proof of (i). While this is a good result, we would like to have the estimate
for all p as opposed to just large p. In return we give up that the constant in the estimate is
deterministic. This leads us to statement (iii). Quantitatively, what we have really shown is
that

Var(Q) <∞ where Q =
∞∑
p=1

‖ψ‖pLp

Kppp
.

Therefore Q <∞ a.s. and for all p ∈ N

‖ψ‖pLp ≤ QKppp.

3.2 The Space of Initial Data
For reasons that will later become apparent in the proof of the global well-posedness, we want
an initial data w0 so that for a given α ∈

[
1, 43
)

and for all T > 0 the following two conditions
hold:

‖π1S(t)w0‖L6([0,T ],Wα−1,6) <∞ and ∃K > 0 :
∞∑
p=1

‖π1S(t)w0‖pLp([0,T ],Lp)

Kppp
<∞.

We have in fact already shown that both of these hold for the stochastic convolution ψ (lemmas
2.15 and 3.1). We have defined a shorthand notation for the first quantity in (2.22) that we
adapt:

Y α−1 := L6([0,∞),Wα−1,6
r ).

We would like the second quantity to correspond to some function space. Because of separa-
bility issues we have to require something stronger here: Instead of working with a p growth
bound we use a slightly weaker p ln ln p growth bound. Consider the set

BZ
1 :=

f ∈ L1
r ([0,∞)×B) :

∞∑
p=p0

‖f‖p
Lp
t,x

(p ln ln p)p
≤ 1

 ,

and for all f ∈ L1([0,∞)×B) define the quantity

‖f‖Z :=
(
sup{λ ≥ 0 : λf ∈ BZ

1 }
)−1

.
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The choice of the starting value p0 is rather arbitrary as in any case the norms are equivalent.
We choose p0 = 7 as a large p0 will help us in some estimates. To emphasize that this choice is
arbitrary we mostly write p0 instead of 7. We define the space Z to be the sub-Banach space
of L1([0,∞)×B) induced by the norm ‖ · ‖Z .

Lemma 3.2. Let
Z := {f ∈ L1

r ([0,∞)×B) : ‖f‖Z <∞}.

The following hold:

(i) For all R ≥ 0,

‖f‖Z ≤ R ⇐⇒
∞∑
p=p0

‖f‖p
Lp
t,x

Rp(p ln ln p)p
≤ 1.

(ii) There is an equivalent norm:

1

2
‖f‖Z ≤ sup

p≥p0

‖f‖Lp
t,x

p ln ln p
≤ ‖f‖Z .

(iii) Z is well-defined as a Banach space.

(iv) We have the embeddings

Lexp([0,∞),H1
r ) ↪−→ Lexp([0,∞), BMOQ

∣∣
B,r
∩ L1

r ) ↪−→ Z.

In fact a slightly stronger result holds:

sup
p≥p0

‖f‖Lp
t,x

p
≲ ‖f‖Lexp([0,∞),H1).

Here BMOQ
∣∣
B,r

refers to the subspace of BMOQ for the unit cube Q = [0, 1]2 of those
functions which are radially symmetric and vanish outside of the unit ball B.

Proof. (i) If ‖f‖Z ≤ R, then for any 0 < r−1 < R−1 there exists λ > r−1 with λf ∈ Z.
Therefore

∞∑
p=p0

‖f‖p
Lp
t,x

rp(p ln ln p)p
≤ 1.

By letting r ↘ R we get the statement for R.

Now suppose that
∞∑
p=p0

‖f‖p
Lp
t,x

Rp(p ln ln p)p
≤ 1.

Then R−1f ∈ Z, and so ‖f‖Z ≤ R.
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(ii) If ‖f‖Z ≤ R, then for any q ∈ N with q ≥ p0,

‖f‖q
Lq
t,x

Rq(q ln ln q)q
≤

∞∑
p=p0

‖f‖p
Lp
t,x

Rp(p ln ln p)p
≤ 1,

which implies supp≥p0 ‖f‖Lp
t,x
(p ln ln p)−1 ≤ R.

Now suppose that supp≥p0 ‖f‖Lp
t,x
(p ln ln p)−1 ≤ R. Then for any r > R we have

∞∑
p=p0

‖f‖p
Lp
t,x

rp(p ln ln p)p
≤

∞∑
p=p0

Rp

rp
≤ 1

1− R
r

− 1.

We choose r = 2R so that the right hand side is 1. Then (i) yields ‖f‖Z ≤ 2R.

(iii) We have to check that ‖f‖Z is a norm. The completeness will then follow trivially from
the completeness of the equivalent norm in (ii). Only the triangle inequality is non-trivial.
Suppose that ‖f‖Z + ‖g‖Z ≤ R. Then there exists some λ ∈ (0, 1) so that ‖f‖Z ≤ λR
and ‖g‖Z ≤ (1− λ)R. By convexity of ‖ · ‖Lp ,

∞∑
p=p0

‖f + g‖p
Lp
t,x

Rp(p ln ln p)p
≤ λ

∞∑
p=p0

‖f‖p
Lp
t,x

λpRp(p ln ln p)p
+ (1− λ)

∞∑
p=p0

‖g‖p
Lp
t,x

(1− λ)pRp(p ln ln p)p
.

But (i) implies that this is less or equal to λ1 + (1− λ)1 = 1, and then again (i) implies
that ‖f + g‖Z ≤ R.

(iv) Let f ∈ Lexp([0,∞),H1). In 2 dimensions it is known that H1 ↪−→ BMO by an appli-
cation of the Poincaré inequality. At the same time H1 ↪−→ L1 is trivial. Therefore the
first embedding holds.

The second embedding is an application of the John-Nirenberg inequality ([13]). It implies
that if f : Q −→ R is a measurable function in BMOQ, then for all λ > 0 we have

µ({x : |f(x)− f̄ | > λ}) ≤ Ce−c
λ

∥f∥BMO ,

where µ is the Lebesgue measure and f̄ the mean of f . Let p ≥ p0 and t ≥ 0. Thenˆ
Q
|f(t)− f̄(t)|p dx =

ˆ ∞

0
µ({x ∈ Q : |f(t, x)− f̄(t)| > λ

1
p }) dλ

=

ˆ ∞

0
pλp−1µ({x : |f(t, x)− f̄(t)| > λ}) dλ ≤ C

ˆ ∞

0
pλp−1e

−c λ
∥f(t)∥BMO dλ

=
C

cp
pΓ(p) ‖f(t)‖pBMO ≤

C

cp
pp ‖f(t)‖pBMO.

Rearranging and integrating this in time, we get

‖f‖Lp
t,x

p
≤ ‖f̄‖Lp

t,x︸ ︷︷ ︸
=∥f∥

L
p
t L

1
x

+
C

1
p

c
‖f‖Lp([0,∞),BMO)

(1.8)

≲ ‖f‖Lexp([0,∞),L1) + ‖f‖Lexp([0,∞),BMO) ≲ ‖f‖Lexp([0,∞),L1∩BMO).
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There is a problem with this space: it is not separable. The space Z that we have defined here
is also knwon as the Orlicz-space generated by the N -function M(x) =

∑∞
p=2

|x|p
p ln ln p , and this

space is only separable if M fulfills the doubling condition M(2x) ≤ CM(x). This is not the
case for our M . The definition of Orlicz spaces and this result can be found in [15, p.108].

We can get around this by working with the closure of L∞ in the Orlicz-space, as this subspace
is always separable. We define

Z = L∞
r ([0, T ]×B)

Z
.

The separability of this subspace is part of the theory of Orlicz-spaces but we will prove it
manually in our case.

Given a measurable set I ⊆ [0,∞), we also define the spaces ZI and ZI in the same fashion
but replacing the domain [0,∞) in every time integral by I. The results of Lemma 3.2 hold
analogously. We also define Y α−1

I in the same fashion. It is important that for all T > 0 the
stochastic convolution is almost surely an element of Y α−1

[0,T ] and Z[0,T ]. For the former space
we already know this. For the latter space the reason is that

Z[0,T ] =

{
f ∈ Z[0,T ] : lim sup

p∈N

‖f‖Lp([0,T ]×B)

p ln ln p
= 0

}
,

and we know from Lemma 3.1 that the stochastic convolution almost surely has a growth
bound ‖ψ‖Lp

[0,T ]×B
≤ Kp.

The following lemma estbalishes some properties of Z. We do not use the compactness results
because they are not quite strong enoguh to be useful, but they are still worth noting.

Lemma 3.3. The following hold:

(i) There exists a countable subset of Dr([0,∞)×B) which is dense in Z.

(ii) We have

Z =

{
f ∈ Z : lim sup

p∈N

‖f‖Lp([0,T ]×B)

p ln ln p
= 0

}
.

(iii) If a bounded set E ⊆ Lexp([0,∞),H1
r ) is equicontinuous in C([0,∞), Lpr ) for every p ∈ N,

then it is relatively compact in Z.

(iv) Given f ∈ Z[0,T ] and a measurable function p : [0, T ] −→ [1,∞), we can estimate

ˆ T

0

‖f‖p(t)
L
p(t)
x

p(t) ln ln p(t)
dt ≤ 2π(T + 1)‖f‖Z[0,T ]

Proof. (i) It suffices to show that L∞
t,x is separable with respect to the equivalent norm

supp≥p0

∥f∥
L
p
t,x

p ln ln p . It is well known that for every p ∈ N there exists a countable subset
of test functions Ẽp ⊂ Dr([0,∞) × B) which is dense in Lpt,x. By adding for every
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function g ∈ Ẽp and r, q ∈ Q+ the functions ρr ∗ (f1|f |≤q), where ρr is a standard
mollifier, to Ẽp, we get another countable dense subset Ep that has the property that any
f ∈ L∞ can be approximated in Lp by functions gn ∈ Ep with ‖gn‖L∞ ≤ ‖f‖L∞ . We set
E =

⋃
p∈NEp, which is still countable. We claim that E is dense in L∞

t,x with respect to
the aforementioned norm of Z.

Let f ∈ L∞
t,x and ε > 0. We choose q0 ≥

2π∥f∥L∞
t,x

ϵ , p0 and some g ∈ E so that ‖f−g‖Lq0
t,x
<

ϵ
2π and ‖g‖L∞

t,x
≤ ‖f‖L∞

t,x
. Then for p0 ≤ p ≤ q0 we have

‖f − g‖Lp

p ln ln p
≤ π‖f − g‖Lq0

t,x
<
ε

2
,

and for p > q0 we have
‖f − g‖Lp

p ln ln p
≤

2π‖f‖L∞
t,x

q0
<
ε

2
.

Therefore Z is separable.

(ii) We show ⊆. Let f ∈ Z, ε > 0 and choose some g ∈ L∞ so that ‖f − g‖Z < ε. Then

lim sup
p≥p0

‖f‖Lp
t,x

p ln ln p
< ε+ lim sup

p≥p0

‖g‖Lp
t,x

p ln ln p
≤ ε+ π lim sup

p≥p0

‖g‖L∞
t,x

p ln ln p
= ε.

Since ε > 0 is arbitrary the left hand side is zero.

For the direction ⊇, suppose that f ∈ Z and that lim supp≥p0

∥f∥
L
p
t,x

p ln ln p = 0. Then there
exists C > 0 so that ‖f‖Lp ≤ C for all p ≥ 1, and so f ∈ L∞

t,x.

(iii) This is an addition to (iv) from Lemma 3.2. We claim that E is compact in Lp([0,∞), Lpr ).
This follows from the Arzela-Ascoli theorem for metric spaces. In our situation it states
that the set E is realtively compact in C([0,∞), Lpx) if it is equicontinuous and point-
wise relatively compact. We have assumed equicontinuity and get the pointwise relative
compactness from the boundedness of E in Lexp([0, T ],H1

r ), together with the Rellich-
Kandrachov theorem, which states thatH1

r ↪−→ Lpr is compact for all p. Since C([0, T ], Lpr )
embeds continuously into Lp([0, T ], Lpr ) we get the claim. Now we consider the space

E :=

∞∏
p=p0

E
Lp
t,x ,

which we equip with the product topology. Here EL
p
t,x refers to the closure of E in Lpt,x,

equipped with the topolgoy of Lpt,x. By Tychonoff’s theorem the space E is itself compact.
Then the closed subset

Ẽ := {F ∈ E : πpF = π1F ∀p ≥ p0}

is compact with respect to the product topology. Note that convergence of Fn to F in
Ẽ is equivalent to convergence of π1Fn to π1F in Lp for all p ≥ p0. We claim that this
topology on Ẽ is in fact equivalent to the (seemingly stronger) one given by the metric
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supp≥p0

∥π1F−π1G∥
L
p
t,x

p ln ln p for F,G ∈ Ẽ. One implication is trivial and we now show the other
direction:

Since E is bounded in Lexp([0,∞),H1) we know by statement (iv) from Lemma 3.2 that
there exists a constant C so that supp≥p0

∥π1F∥Lp

p ≤ C for all F ∈ Ẽ. Now suppose that
Fn −→ F in Ẽ. Let q0 > p0 be large so that C

ln ln q0
< ε. We have

sup
p≥p0

‖π1Fn − π1F‖Lp
t,x

p ln ln p
≤ sup

p0≤p≤q0

‖π1Fn − π1F‖Lp
t,x

p ln ln p
+

C

ln ln q0
.

Here the first term converges to 0 since π1Fn −→ π1F in Lp for all p ≤ q0, and the second
term is less than ε, concluding our argument.

We now define
E′ = {f ∈ L1

t,x : (f, f, ...) ∈ Ẽ}.

What we have shown above implies that E′ is compact in Z and in fact is a subset of Z,
so E ⊂ E′ is relatively compact in Z.

(iv) Recall that by Hölder’s inequality for any q ≥ p,

‖f‖Lp ≤ ‖1B‖
1
p

L
q

q−p
‖f‖Lq ≤ π‖f‖Lq .

Using this, we estimate
ˆ T

0

‖f(t)‖
L
p(t)
x

p(t) ln ln p(t)
dt ≤ π

ˆ T

0

dp(t)e ln lndp(t)e
p(t) ln ln p(t)

‖f(t)‖
L
⌈p(t)⌉
x

dp(t)e ln lndp(t)e
dt

≤ 2π‖f(t)‖Z[0,T ]

ˆ T

0
1 +

‖f(t)‖⌈p(t)⌉
L
⌈p(t)⌉
x

‖f‖⌈p(t)⌉Z[0,T ]
(dp(t)e ln lndp(t)e)⌈p(t)⌉

dt

≤ 2π‖f‖Z[0,T ]

T +
∑
p≥p0

‖f(t)‖p
Lp
t,x

‖f‖pZ[0,T ]
(p ln ln p)p


lem. 3.2 ≤ 2π‖f‖Z[0,T ]

(T + 1).

Definition 3.4. For α ∈ R we define the space

Xα−1 := Y α−1 ∩ Z

with norm
‖f‖Xα−1 = ‖f‖Y α−1 + ‖f‖Z .

We define the space of initial data as

Xα−1 := {w0 ∈ H−∞
r : π1S(t)w0 ∈ Xα−1}

with norm
‖w0‖Xα−1 = ‖π1S(t)w0‖Xα−1 .
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Lemma 3.5. The following hold:

(i) Xα−1 is a separable Banach space. It has a countable and dense subset of radially
symmetric test functions.

(ii) Xα−1 is a separable Banach space. It has a countable and dense subset of radially
symmetric test functions.

(iii) We have continuous inclusions H1
r ↪−−−→ Xα−1 ↪−−−→ Hα−1

r .

(iv) All the relevant Borel σ-algebras are identical in the sense that for β < β′ the following
inclusions are bimeasurable:

Hβ′
r ↪−−−→ Hβr .

H1
r ↪−−−→ Xα−1 ↪−−−→ Hα−1

r .

Proof. (i) Xα−1 is the intersection of two Banach spaces in both of which we can find the
same countable dense subset of radially symmetric test functions, so it is a separable
Banach space.

(ii) Completeness: Let wn be a Cauchy sequence in Xα−1. This implies that there exists some

F ∈ Xα−1 so that π1S(t)wn
Xα−1

−−−→ F . Then for all T > 0 we also have π1S(t)wn

L2
[0,T ]×B−−−−−→

F , and so we know by Lemma 2.7 that wn converges to some w0 in H0
r . A direct

consequence is that S(t)wn −→ S(t)w0 ∈ C([0, T ],H0
r ). But then both F (t, x) and

π1S(t)w0(x) are the limit of S(t)w(x) for almost all (t, x) ∈ [0, T ] × B, hence F =
π1S(t)w0 up to time T , which is arbitratily large. Therefore wn −→ w0 in Xα−1

T .

Separability: Define

A = {F ∈ Xα−1 : F = π1S(t)f for some f ∈ Xα−1} ⊂ Xα−1.

This is a subspace of a separable metric space (lem. 3.3) and hence separable. Let Fj be
a countable dense subset. Since f 7→ π1S(t)f is surjective from Xα−1 to A, we can choose
fj so that Fj = π1S(t)fj . Then for any w0 ∈ Xα−1 and ε > 0 we know that there exists
a j ∈ N so that ‖w0 − fj‖Xα−1

T
= ‖Fj − π1S(t)w0‖Xα−1

[0,T ]
< ε.

(iii) If fn −→ f ∈ H1
r , then π1S(t)fn −→ π1S(t)f in Lexp([0, T ],H1) by Lemma 2.2 and we can

use Lemma 3.2.

If fn −→ f ∈ Xα−1, then because of the Y α−1 norm part we get π1S(t)fn −→ π1S(t)f in
L2([0, T ],Hα−1

r ) for all T > 0. Now Lemma 2.7 implies that fn −→ f in Hα−1
r .

(iv) By the continuity of these maps it suffices to show that a measurable set in the smaller
space is measurable in the larger space. Let A ∈ B(Hβ

′
r ). It is a well-known result that on

separable Hilbert spaces the Borel σ-algebras induced by the weak and strong topology
agree, and since the weak topology in Hβ

′
r is weaker than the weak topology in the larger

space Hβr , we get
A ∈ B(Hβ

′

r,weak) ⊆ B(H
β
r,weak) = B(H

β
r ).

Similarly if A ∈ B(H1
r ), then

A ∈ B(Hβ
′

r,weak) ⊆ B(H
0
r,weak) = B(H0

r ).
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But since A ⊆ Xα−1 and Xα−1 has a stronger topology than H0
r we have in particular

A ∈ B(Xα−1).

The following lemma allows us to find large compact sets in Xα−1. This is useful because it can
help prove tightness of sets of measures on Xα−1, which can be used to show weak convergence
results. We will not use this result later though as we can show the desired weak convergences
in a more direct fashion.

Lemma 3.6. We have some compactness results:

(i) If a bounded set E ⊆ Lexp([0,∞),H1
r ) is equicontinuous in C([0,∞),Wα−1,6

r ) and C([0,∞), Lpr )
for every p ∈ N, then it is relatively compact in Xα−1.

(ii) Let N ∈ N and β > 1. The embeddings

Hβr
cpt.
↪−−−→ Xα−1

and
PNH−∞

r

cpt.
↪−−−→ Xα−1

are compact. Here PNH−∞
r is equipped with the norm of RN .

Proof. The proof of (i) just uses the same argument as that of (iii) in Lemma 3.3. We prove
(ii).

We have an embedding first of all since for all finite n, k ≤ N we have (en, ek) ∈ H1 ↪−→ Xα−1.

Let E ⊂ Hβr or E ⊂ PNH−∞
r be bounded. We will differentiate these cases later on.

We want to show that E is relatively compact in Xα−1. Note that the topology on Xα−1 is
induced by the map

Xα−1 3 w0 7−→ π1S(t)w0 ∈ Xα−1.

It therefore suffices to show that

A := {π1S(t)w0 : w0 ∈ E}

is relatively compact in Xα−1. In the case of E ⊆ PNH−∞
r being bounded in the norm of RN ,

we use that A = PNπ1S(t)E is the image of a finite rank and hence compact linear operator
applied to a bounded set, and hence relatively compact. Alternatively we could argue that
there exists constants C, C̃ > 0 so that for all β > 0 and w ∈ E,

‖w‖2Hβ+1 =

∞∑
n=1

〈λn〉2β〈w, en〉2 + 〈λn〉2β−2〈wt, en〉2 ≤ C̃
N∑
n=1

〈λn〉2β + 〈λn〉2β−2 ≤ C.

Then by applying Lemma 2.3 we find that

‖π1S(t)w‖Lexp([0,∞),Hβ) ≤ C,
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so E is bounded in C([0, T ],H1). The lemma also implies that

‖π1S(t)w‖C1([0,∞),Hβ) ≤ C‖w‖Hβ+1 ,

so E is equicontinuous in C([0, T ],H1). In the case of E ⊆ Hβr being bounded we choose
0 < γ < β − 1. Then similarly with Lemma 2.3 we get the boundedness and

‖π1S(t)w‖C0,γ([0,∞),Hβ−γ) ≤ sup
f∈E
‖f‖Hβ‖S‖C0,γ([0,∞),L(Hβ ,Hβ−γ)),

so we also have the equicontinuity. Therefore in either case we have that E is equicontinuous
and bounded in C([0, T ],H1), and hence it fulfills the conditons of (i).

Lemma 3.7. The map

S : [0,∞)×Xα−1 −→ Xα−1

(t,w0) 7−→ S(t)w0

is jointly continuous in (t,w0). It is Lipschitz continuous with constant 1 in w0.

Proof. Let t0 ≥ 0 and w1,w2 ∈ Xα−1. We have

‖S(t0)(w1 −w2)‖Xα−1 = ‖t 7→ π1S(t0 + t)(w1 −w2)‖Xα−1

≤ ‖π1S(t)(w1 −w2)‖Xα−1 = ‖w1 −w2‖Xα−1 .

This proves the Lipschitz continuity. As a result S(t)w0 is continuous in w0, uniformly in t.
It therefore suffices to show continuity in t at every w0 in to get joint continuity.

Now let w0 ∈ Xα−1 and tn −→ t ≥ 0. We first assume that w0 ∈ H1
r . Set εn = tn − t and

assume that n is large enough so that εn ≥ 0. Then

‖(S(t)− S(tn))w0‖Xα−1 = ‖π1(Id−S(εn))S(t+ s)w0‖Xα−1

≤ ‖π1(Id−S(εn))S(s)w0‖Y α−1 + ‖π1(Id−S(εn))S(s)w0‖Z .

We know that Lexp([0,∞),Hα
r ) ↪−→ Y α−1 (equation 2.25) and Lexp([0,∞),H1

r ) ↪−→ Z (Lemma
3.2, (iv)). Therefore we can estimate the above by

≲ sup
s∈[0,∞)

e
s
2 ‖S(s)‖L(Hα,Hα)︸ ︷︷ ︸

bounded in s by lem. 2.2

‖(Id−S(εn))w0‖Hα
n→∞−−−→ 0.

Now suppose that w0 ∈ Xα−1. Let ε > 0 and, using the density of radially symmetric test
functions, choose some w′

0 ∈ H1
r so that ‖w0 −w′

0‖Xα−1 < ϵ
2 . Then

‖(S(t)− S(tn))w0‖Xα−1 ≤ ‖(S(t)− S(tn))(w0 −w′
0)‖Xα−1 + ‖(S(t)− S(tn))w′

0‖Xα−1 .

We already know that the second term vanishes as n↗∞. For the first term we estimate

‖(S(t)− S(tn))(w0 −w′
0)‖Xα−1 ≤ 2‖π1S(s)(w0 −w′

0)‖Xα−1 < ε.

Therefore S(tn)w0 −→ S(t)w0.
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Theorem 3.8. Let α ∈
[
1, 34
)

and note that we have chosen p0 = 7 in the definition of Z.
There exists a constant C > 0 so that the following hold:

(i) If w is an L2
r ([0,∞)×B)-valued random variable with estimates

E
[
‖w‖pLp

]
≤ ηAppp (3.1)

and
E
[
‖w‖6Y α−1

]
≤ ηA6 (3.2)

for all p ≥ p0, some A > 0 and some η ∈ [0, 1], then w ∈ Xα−1 almost surely and

E
[
‖w‖6Xα−1

]
≤ Cη

6
7A6.

(ii) Let {Xn(t)}n∈N ∪ {Xt,n(t)}n∈N be a family of independent and centered normally dis-
tributed random variables. Let σ2n, σ2t,n be their variances and assume that there exists a
constant β > 0 so

σ2n ≤
β2

〈λn〉2
and σ2t,n ≤ β2

for all n ∈ N. Now for N < M ∈ N∪{∞} define

wM
N :=

M∑
n=N

(
Xnen, Xt,nen

)
Then for all N < M ∈ N∪{∞} we have wM

N ∈ Xα−1 almost surely and

E
[
‖wM

N ‖6Xα−1

]
≤ C6β6

(
1 + ln(N)

N8−6α

) 6
7 N→∞−−−−→ 0.

Proof. We start with (i). The first given estimate implies that for any R ≥ 2A

E

 ∞∑
p=p0

‖w‖p
Lp
([0,∞)×B)

Rp(p ln ln p)p

 ≤ E

 ∞∑
p=p0

‖w‖p
Lp
([0,∞)×B)

Rppp

 ≤ η ∞∑
p=p0

(
A

R

)p
=
Ap0

Rp0
R

R−A
≤ 2η

Ap0

Rp0
.

(3.3)
Then, using Lemma 3.2 (i), we have

P (‖w‖Z > R) = P

 ∞∑
p=p0

‖w‖p
Lp
([0,∞)×B)

Rp(p ln ln p)p
> 1

 ≤ 2η
Ap0

Rp0
.

Recall that p0 = 7. We apply the layer-cake formula:

E
[
‖w‖6Z

]
=

ˆ ∞

0
6R5 P (‖w‖Z > R) dR

≤
ˆ 2Aη

1
p0

0
6R5 dR+ 2η

ˆ ∞

2Aη
1
p0

6R5A
p0

Rp0
dR

≤ η
(
26A6η

6
p0 + 12ηAp0

ˆ ∞

2Aη
1
p0

R−2 dR

)
≲ A6η

6
p0 +Ap0−1η

1− 1
p0

(p0=7)
= A6η

6
7 .
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Using this and (3.2), we find that there exist constants C1, C2 > 0, independent of all the other
variables, so that

E
[
‖w‖6Xα−1

]
≤ C1

(
E
[
‖w‖6Y α−1

]
+ E

[
‖w‖6Z

])
≤ C2η

6
7A6.

We are almost done, but a subtletly remains for our proof to be complete: we know that
E [‖w‖Z ] <∞ which implies w ∈ Z almost surely, but for X ∈ Z by Lemma 3.3, (ii) we need
that lim supp≥p0

∥X∥Lp

p ln ln p = 0. We can show this by proving the almost sure existence of a linear
growth bound in p. This is why we defined the space Z with a slightly weaker growth bound
p ln ln p. We can improve the left hand side of (3.3) to get

E

 ∞∑
p=p0

‖w‖p
Lp
([0,∞)×B)

Rppp

 <∞.
Then the sum almost surely converges and hence the summands must almost surely have a
uniform bound for all p, yielding the desired growth bound by p. As a consequence it must
almost surely be the case that lim supp≥p0

∥w∥Lp

p ln ln p = 0 and hence w ∈ Z.

Now we show (ii). This is a combination of (i) and Lemma 2.13. Note first of all that Corollary
2.5 and Lemma 2.2 imply that π1S(t)wM

N is indeed an L2
r ([0, T ]×B)-valued random variable.

Therefore (i) applies and we only have to show estimates of the type (3.1) and (3.2). We define
GMN (t) := π1S(t)w

M
N and we want this to fulfill the conditions of Lemma 2.13. This means

that we have to bound the variance of

〈GMN (t), en〉 =
M∑
n=N

Tn(t)1,1Xn + Tn(t)1,2Xt,n.

We estimate for N ≤ N ≤M that

E
[∣∣〈GMN (t), en〉

∣∣2] = ∣∣Tn(t)21,1σ2n + Tn(t)
2
1,2σ

2
t,n

∣∣ ≲ e−tβ2〈λn〉−2 + e−t〈λn〉−2β2.

Note that ‖e−tβ‖Lp
(
[0,∞) ≤ β. Therefore we can apply Lemma 2.13 (note that α − 1 < 1

3 <
1
2

and 6(α− 1) < 2) and get the estimates

E
[
‖GMN ‖

p
Lp
t,x

]
≤ Cpβp(1 + ln(N))

N2

E
[
‖GMN ‖6L6

tW
α−1,6
x

]
≤ C6β6(1 + ln(N))

N2−6(α−1)
.

Now (i) concludes.

Lemma 3.9. Let α ∈
[
1, 34
)
. For all γ ∈

(
0, 13
)

there exists a modification Ψ̃ of the stochastic
convolution such that Ψ̃ : [0,∞) −→ Xα−1 is almost surely continuous γ-Hölder continuous on
[0, T ] for all T > 0.
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Proof. Let T > 0. We will use the Kolmogorov continuity theorem and find a modification for
Hölder-continuity on [0, T ]. Then a single modification that is almost surely Hölder continuous
on all intervals [0, T ] can easily be constructed. Let 0 < t0 < t1 < T . We get the estimate
needed for the Kolmogorov continuity theorem through Theorem 3.8 applied to Ψ(t1)−Ψ(t0).
For the variances we have

E
[
〈ψ(t1)− ψ(t0), en〉2

]
≲ |t− s|
〈λn〉2

and
E
[
〈ψt(t1)− ψt(t0), en〉2

]
≲ |t− s|.

by Lemma 2.10. Thince the we have the variance bound c2n(t) ≲ 〈λn〉−2 and gn(t)2 ≲ 1 we can
apply the theorem for N = 1 and M =∞, which yields

E
[
‖Ψ(t1)−Ψ(t0)‖6Xα−1

]
≤ C1|t1 − t0|3.

Kolmogorov’s continuity theorem now implies that for all 0 < γ < 3−1
6 = 1

3 there exists a
modification Ψ̃T of Ψ such that Ψ̃ ∈ C0,γ([0, T ],Xα−1) almost surely. We can now construct
from these Ψ̃T a modification Ψ̃ of Ψ which is a.s. continuous in Xα−1 on the whole domain
[0,∞).

From now on we will implicitly assume that Ψ refers to this modification Ψ̃.

3.3 Energy Estimates
Let v ∈ H1

r . we define an energy E : H1
r −→ [0,∞) by

E(v) =
1

2

ˆ
B
|v|2 + |vt|2 + |∇v|2 +

1

2
|v|4 dx.

Recall that H1 embeds into all Lp spaces so this is finite. This energy has regularity E ∈
C1(H1

r ,R) with Fréchet derivative

DE(v)(f) =

ˆ
B
vf + vtft +∇v∇f + v3f dx.

Our solutions only have regularity C1([0, T ],Hα−1
r ) with α − 1 < 1, so we can not simply

differentiate the energy straight away. Instead we consider the energy of the solutions vN (t)
to the truncated equation. Then we take a limit to show that E(v(t)) is absolutely continuous
in time and even continuously differentiable under additional assumptions.

Lemma 3.10. Let v, vN be mild solutions to (2.19) and (2.21) on [0, T ]. Then t 7→ E(vN (t)) ∈
C1([0, T ],R) with derivative

d

dt
E(vN (t)) =

ˆ
B
−|vN,t|2 + vN,t(v

3 − PN (w + ψ + vN )
3) dx, (3.4)

and E(v(t)) is absolutely continuous in time with a.e. derivative

d

dt
E(v(t)) =

ˆ
B
−|vt|2 + vt(v

3 − (w + ψ + v)3) dx. (3.5)

If in addition that w + ψ ∈ L∞([0, T ], L8
r ), then also E(v(t)) ∈ C1([0, T ],R).

57



Proof. We first show that the energy is absolutely continuous, then we show that the a.e.
derivative is itself continuous, therefore making the energy C1.

We know that vN ∈ C1([0, T ],Hα−1), so with Lemma 2.18 we have vN = PNvN ∈ C1([0, T ],H1)
and can compute

d

dt
E(vN (t)) = DE(vN (t))(∂tvN (t))

=

ˆ
B
vNvN,t + vN,t∂tvN,t +∇vN∇vN,t + v3NvN,t dx

=

ˆ
B
vN,t

(
∆vN −∆vN︸ ︷︷ ︸

=0

+ vN − vN︸ ︷︷ ︸
=0

− vN,t + v3N − PN (w + ψ + vN )
3
)
dx.

The above implies that for any 0 ≤ t0 < t1 ≤ T ,

E(vN (t1))− E(vN (t0)) =

ˆ t1

t0

ˆ
B
−|vN,t|2 + vN,tv

3
N − vN,tPN (w + ψ + vN )

3 dx ds.

Now we let N −→ ∞ on both sides and use dominated convergence. A majorant is given by
the absolute value of the integrand. We check its integrability for the last two terms. For the
first one: ˆ t1

t0

ˆ
B

∣∣vN,tv3N ∣∣ dx dt ≤ ‖vN,t‖L2
tL

2
x
‖vN‖3L6

tL
6
x
≲ ‖vN‖4L∞

t Hα
x
<∞.

For the second one:
ˆ t1

t0

ˆ
B

∣∣vN,tPN (w + ψ + vN )
3
∣∣ dx dt ≤ ‖vN,t‖L2

tL
2
x
‖PN (w + ψ + vN )

3‖L2
tL

2
x

≲ ‖vN‖L∞
t Hα

x
‖w + ψ + vN‖3L6

tL
6
x
≤ ‖vN‖L∞

t Hα
x
‖w + ψ + vN‖Y α−1 <∞.

Since we know by Lemma 2.24 that the left hand side converges to E(v(t1))−E(v(t1)) almost
everywhere, and the integrand in the right hand side also converges almost everyhwere, taking
the limit N −→ ∞ yields that E(v(t)) is absolutely continuous in time with a.e. derivative
given by (3.5).

Assume now that w + ψ ∈ L∞([0, T ], L8
r ) and note that after dropping the projection (since

vN,t = PNvN,t), we can write

d

dt
E(vN (t)) =

ˆ
B
−v2N,t − 3vN,tvN (w + ψ)2 − 3vN,tv

2
N (w + ψ)− vN,t(w + ψ)3 ds

= (I) + (II) + (III) + (IV ).

Consider now the following estimates. For (I):∣∣∣∣ˆ
B
v2N,t dx−

ˆ
B
v2t dx

∣∣∣∣ ≤ ‖vN,t − v‖L∞([0,T ],L2) ≤ ‖vN − v‖L∞
t Hα

x
.

For (II) we apply Hölder with 1
2 + 1

4 + 1
4 = 1:∣∣∣∣ˆ

B
vN,tvN (w + ψ)2 dx−

ˆ
B
vtv(w + ψ)2 dx

∣∣∣∣
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≤ ‖vN,t − vt‖L2‖vN‖L4‖w + ψ‖2L8 + ‖vt‖L2‖vN − v‖L4‖w + ψ‖2L8

≲ ‖vN − v‖L∞
t Hα

x
(‖vN‖L∞

t Hα
x
+ ‖v‖L∞

t Hα
x
)‖w + ψ‖2L∞

t L8
x

For (III) we also apply Hölder with 1
2 + 1

4 + 1
4 = 1:∣∣∣∣ˆ

B
vN,tv

2
N (w + ψ) dx−

ˆ
B
vtv

2(w + ψ) dx

∣∣∣∣
≤ ‖vN,t − vt‖L2‖v2N‖L4‖w + ψ‖L4 + ‖vt‖L2‖v2N − v2‖L4‖w + ψ‖L4 (3.6)

Note that

‖v2N − v2‖L4

(ˆ
B
(vN − v)4(vN + v)4 dx

) 1
4

≤ ‖vN − v‖L8‖vN + v‖L8 ,

so
(3.6) ≲ ‖vN − v‖L∞

t Hα
x
(‖vN‖2L∞

t Hα
x
+ ‖v‖2L∞

t Hα
x
)‖w + ψ‖L∞

t L4
x

For (IV ) we apply Hölder with 1
2 + 1

2 = 1:∣∣∣∣ˆ
B
vN,t(w + ψ)3 dx−

ˆ
B
vt(w + ψ)3 dx

∣∣∣∣ ≤ ‖vN,t − vt‖L2‖w + ψ‖2L6

≲ ‖vN − v‖L∞
t Hα

x
‖w + ψ‖2L∞

t L6
x
.

Together these imply that
d

dt
E(vN (t)) −→

d

dt
E(v(t))

uniformly in time. Therefore since left hand side is continuous in time for any N , so is the
right hand side.

We now derive a global energy estimate.

Theorem 3.11 (Energy Estimate). Let v be a mild solution to (2.19) on [0, T ]. Assume in
addition to w + ψ ∈ Y α−1

[0,T ] that w + ψ ∈ Z[0,T ]. Define E(t) = E(v(t)) or E(t) = E(vN (t)).

Then there exists a constant C > 0 such that for all 0 ≤ t0 < t1 ≤ T with ln ln lnE(s) ≥ 1 for
s ∈ [t0, t1] we have the estimate

E(t1) ≤ exp
(
exp

(
G−1

(
G(ln ln(E(t0))) + C(1 + t1 − t0)‖w + ψ‖Z([t0,t1])

))))
.

Here G(x) = x
ln(x) , which is invertible on [1,∞).

Proof. The proof for the truncated case of vN is again identical to the one for v.

We have calculated before that
d

dt
E(v(t)) =

ˆ
B
−|vt|2 + vt

(
v3 − (w + ψ + v)3

)
dx

≤
ˆ
B
−3vtv(w + ψ)2 − 3vtv

2(w + ψ)− vt(w + ψ)3 dx

= (I) + (II) + (III).
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For (I) we apply Hölder with 1
2 + 1

4 + 1
4 = 1:

|(I)| ≲ ‖vt‖L2‖v‖L4‖w + ψ‖2L8 ≲ E
3
4 ‖w + ψ‖2L8

For (III) we apply Hölder with 1
2 + 1

2 = 1:

|(III)| ≲ ‖vt‖L2‖w + ψ‖3L6 ≲ E
1
2 ‖w + ψ‖3L6 .

For (II) we apply Hölder with 1
2 + 1

q +
1
p where p > 1 and 1

q +
1
p = 1.

(II) ≲ ‖vt‖L2‖v‖2L2q‖w + ψ‖Lp .

Now we apply a specical case of the Gagliardo-Nirenberg-Sobolev inequality, also known as a
generalization of Ladyzhenskaya’s inequality:

‖u‖L2q ≲ ‖u‖
2
q

L4‖u‖
1− 2

q

H1 .

The Gagliardo-Nirenberg-Sobolev inequality is obtained, as the name suggests, by combining
the Sobolev inequality and the Gagliardo-Nirenberg interpolation inequality. A detailed but
transparent study of this inequality can be found at [4]. We get that

(II) ≲ C‖w + ψ‖Lp‖vt‖L2‖v‖
4
q

L4‖v‖
2− 4

q

H1 ≲ ‖w + ψ‖LpE
1
2
+ 1

q
+1− 2

q =
‖w + ψ‖Lp

p
pE

1+ 1
p .

Now we choose p(s) = ln(E(s)) ≥ 1 and define β(s, r) = ∥w(s)+ψ(s)∥Lr

r ln ln r . Applying Young’s
inequality for products to the estimates for (I) and (III), we can summarize what we have
shown as

E′(s) ≲ β(s, 6) + β(s, 8) + E(s) + β(s, ln(E(s))) ln(E(s)) ln ln ln(E(s))e
ln(E(s))

(
1+ 1

ln(E(s))

)
= β(s, 6) + β(s, 8) + E(s) + β(s, ln(E(s)))eE(s) ln(E(s)) ln ln ln(E(s)).

Then using E(s) ≥ 1 we have

E′(s)

E(s)
≲ 1 +

β(s, 6) + β(s, 8)

E(s)
+ β(s, ln(E(s))) ln(E(s)) ln ln ln(E(s))

≲ 1 + β(s, 6) + β(s, 8) + β(s, ln(E(s))) ln(E(s)) ln ln ln(E(s)).

Since ln is Lipschitz continuous on the range of values of E on [t0, t1] and E is absolutely
continuous, ln ◦E is absolutely continuous on [t0, t1] with derivative given by the left hand side
above. Then we get

ln(E(s))′

ln(E(s))
≲ 1 + β(s, 6) + β(s, 8) + β(s, ln(E(s))) ln ln ln(E(s)).

Again f := ln ◦ ln ◦E is absolutely continuous on [t0, t1] so we get the differential inequality

f ′(s) ≤ C ·
(
1 + β(s, 6) + β(s, 8) + β(s, ln(E(s)) ln(f(s))

)
.
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Since ln(f) ≥ 1 on [t0, t1] the function f
ln(f) is absolutely continuous and we can calculate(

f

ln(f)

)′
=

(
1

ln(f)
− 1

ln(f)2

)
f ′.

If s is a time where the left hand side is nonnegative, then so is f ′(s) and we get for those
times that (

f

ln(f)

)′
(s) =

f ′(s)

ln(f(s))
≤ C ·

(
1 + β(s, 6) + β(s, 8)

ln(f(s))
+ β(s, ln(E(s))

)
.

Using again ln(f(s)) ≥ 1 and setting G(x) = x
ln(x) , the above implies

G(f(t1))−G(f(t0)) ≤ C
ˆ t1

t0

1 + β(s, 6) + β(s, 8) + β(s, ln(E(s)) ds.

Note that G′(x) = ln(x)−1− ln(x)−2 is strictly positive on [1,∞) and so on the range of values
of f on [t0, t1]. Therefore G is invertible on the relevant interval. Using (iv) from Lemma 3.3,
we get

E(t1) ≤ exp
(
exp

(
G−1

(
G(ln ln(E(t0))) + C(1 + t1 − t0)‖w + ψ‖Z([t0,t1])

)))
.

Note that
x ln(x) ≤ G−1(x) ≤ 2x ln(x)

for all ln ln lnx ≥ 1. For the first inequality we check that

G−1(x ln(x)) =
x ln(x)

ln(x ln(x))
≤ x.

For the second one we have

G−1(2x ln(x)) =
2x ln(x)

ln(2x ln(x))
≥ x

if x2 ≥ 2x ln(x). This is the case since x is sufficiently large.

Lemma 3.12. Let T ∗ > 0 and α ∈
[
1, 43
)
. Let v be a mild solution to (2.19) or (2.21)) on

[0, T ] for all T ∈ [0, T ∗). Then the following are equivalent:

(i) supt∈[0,T ∗)E(t) <∞.

(ii) v can be extended to a mild solution on [0, T ′] for some T ′ > T ∗. This extension is given
by

v(T ∗ + t) = ṽ(t) + S(t)v(T ∗),

where ṽ is a mild solution on [0, T ′ − T ∗] for an initial data and stochastic convolution
part given by

w̃(t) + ψ̃(t) = w(T ∗ + t) + S(t)v(T ∗) + ψ(T ∗ + t).
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Proof. We first show that (i) =⇒ (ii). Note that (i) implies v ∈ L∞([0, T ∗],H1
r ), and so by

Lemma 2.25 we have v ∈ L∞([0, T ∗],Hαr ). Lemma 2.23 implies that it is continuous on [0, T ∗].

By Theorem 2.22 there exists for some T > 0 a mild solution ṽ on [0, T ] with initial data and
stochastic convolution part given by

w̃(t) + ψ̃(t) = w(T ∗ + t) + S(t)v(T ∗) + ψ(T ∗ + t).

Since Lemma 2.23 yields regularity, we can make the following explicit computation to see that
we have a solution in a strong sense, and hence particularly a mild solution:

∂t(ṽ(t)+S(t)v(T
∗)) = L(ṽ(t)+S(t)v(T ∗))−

(
0

(w(T ∗ + t) + ψ(T ∗ + t) + ṽ(t) + S(t)v(T ∗))3

)
,

ṽ(0) + S(0)v(T ∗) = v(T ∗).

We have shown that we can continue v to a mild solution on [0, T ∗ + T ].

The direction (ii) =⇒ (i) is trivial as (ii) implies that v ∈ L∞([0, T ′],Hαr ), and this bounds
the energy.

Lemma 3.13. Let v1 and v2 be two mild solutions to (2.19) or (2.21) on [0, T ′] for a given
w + ψ as in the definition of a mild solution. Then v1 = v2.

Proof. The local well-posedness result only gives us uniqueness up to some fixed time T > 0
determined by the estimates for the fixed point argument. Define

T ∗ = sup{0 ≤ T1 ≤ T ′ : v1(t) = v2(t) ∀t ∈ [0, T1]}.

By the continuity of the solutions (Lemma 2.23) we directly get v1(T
∗) = v2(T

∗). If T ∗ = T ′

then we are done, so suppose that T ∗ < T ′. Consider the maps

ṽ1(t) = v1(T
∗ + t)− S(t)v1(T

∗)

ṽ2(t) = v2(T
∗ + t)− S(t)v2(T

∗).

Since Lemma 2.23 yields regularity, we can make the following computation:

∂tṽ1(t) = Lv1(t)−
(

0
(w(T ∗ + t) + S(t)v1(T

∗) + ψ(T ∗ + t) + ṽ1(t))
3

)
,

ṽ1(0) = v1(T
∗ + 0)− S(0)v1(T

∗) = 0.

Therefore ṽ1 and ṽ2 are themselves mild solutions to (2.19) with w(t) + ψ(t) replaced by
w(T ∗ + t) + S(t)v1(T

∗) + ψ(T ∗ + t). The local uniqueness result implies that ṽ1 = ṽ2 on
[0, T ]. But by the uniqueness of the linear problem S(t)v1(T

∗) = S(t)v2(T
∗), hence v1 = v2

on [T ∗, (T ∗ + T ) ∧ T ′]. By the definition of T ∗ this implies that T ∗ = T ′, a contradiction.

Theorem 3.14 (Deterministic Global Well-posedness). If w + ψ ∈ Xα−1
[0,T ] for all T > 0, then

there exist unique global solutions v and vN to (2.19) and (2.21). For any T > 0 the maps

Xα−1
[0,T ] × [0, T ] −→ Hαr

w + ψ 7−→ v

w + ψ 7−→ vN

are jointly continuous in (w + ψ, t).
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Proof. The proof for (2.21) is completely analogous to the one presented below. Since w+ψ ∈
Xα−1

[0,T ] we have ‖w + ψ‖Y α−1
[0,T ]

+ ‖w + ψ‖Z[0,T ]
< ∞ for any T > 0, so the assumptions of the

theorems and lemmas that we use below are fulfilled.

Define
T ∗ = sup{T > 0 : (2.19) has a mild solution vT on [0, T ] }.

If T0, T1 < T ∗, then by the uniqueness in 3.13 we have vT1
∣∣
[0,T1∧T2] = vT2

∣∣
[0,T1∧T2]. We can

therefore just write v to refer to a unique solution that exists on the interval [0, T ∗). If T ∗ =∞
then we are done, so we suppose that T ∗ <∞. The energy estimate in Theorem 3.11 implies
that supt∈[0,T ∗)E(t) < ∞, and so by Lemma 3.12 we can extend v to a mild solution on a
larger interval, contradicting the maximality of T ∗.

The continuity works the same way as the one in the local well-posedness Theorem 2.22, except
that we can use the energy inequality to perform the argument for a uniform T > 0 independent
of the size of ‖w + ψ‖Y α−1

[0,T ]
.

Corollary 3.15 (Stochastic Global Well-posedness). Let α ∈
[
1, 43
)

and Ψ be the stochastic
convolution. Let w0 ∈ Xα−1.

Then there exist random variables v and vN which a.s. are mild solutions (2.19) and (2.21)
respectively on any interval [0, T ]. Furthemore

u := v +w +Ψ and uN := vN +w +Ψ

solve (1.5), i.e.

∂2t u+ ∂tu+ (1−∆)u+ u3 =
√
2ξ

(u, ut)(0) = w0

and

∂2t uN + ∂tuN + (1−∆)uN + u3N =
√
2ξ

(uN , uN,t)(0) = w0

almost surely globally in time in the sense of distributions.

Proof. We have shown in lemmas 2.15 and 3.1 that ψ ∈ Xα−1. The assumption w0 ∈ Xα−1

then implies w + ψ ∈ Xα−1, so we can use Theorem 3.14 to find v and vN .

We apply the stochastic local well-posedness (Corollary 2.26) to see that u and uN are distri-
butional solutions on any [0, T ], hence globally in time.
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4 The Invariant Measure
4.1 The Stochastic Flows Φ and ΦN

Given the global well-posedness result we can now define stochastic flows on Xα−1 by

Φ : R+×Ω×Xα−1 −→ Xα−1

(t, ξ,w0) 7−→ u(t) = S(t)w0 +Ψ(ξ, t) + v(t)

and analogously

ΦN : R+×Ω×Xα−1 −→ Xα−1

(t, ξ,w0) 7−→ uN (t) = S(t)w0 +Ψ(ξ, t) + vN (t),

where v and vN are the unique global solutions from Theorem 3.14 for w + ψ = π1S(t)w0 +
π1Ψ(t, ξ).

Here we use a variable ξ ∈ Ω, which is already the notation for the radially symmetric space-
time white noise ξ. The reason for this is that we can write Ψ(ξ) to signify that Ψ depends
on the white noise ξ. We overload the notation and sometimes write Ψ(ξ′) for a different
white noise ξ′ to mean that this white noise is instead used in the definition of the stochastic
convolution.

Lemma 4.1. Φ and ΦN are continuous stochastic flows in the sense that the following holds
almost surely (i.e. for almost all ξ ∈ Ω):

(i) Φ(0, ξ,w0) = ΦN (0, ξ,w0) = w0 for all w0 ∈ Xα−1,

(ii) Φ(t, ξ,w0) and ΦN (t, ξ,w0) are continuous with respect to (t,w0).

(iii) Let ξ1, ξ2 and ξ independent instances of radially symmetric space-time white noise.
Then for all s, t ≥ 0 and w0 ∈ Xα−1 we have

Law(Φ(s, ξ1,Φ(t, ξ2,w0)) = Law(Φ(t+ s, ξ,w0)

and
Law(ΦN (s, ξ1,ΦN (t, ξ2,w0)) = Law(ΦN (t+ s, ξ,w0).

Proof. Statement (i) is trivial. We show (ii). We have seen in Lemma 3.7 that S(t)w0 is
continuous in (t,w0). We have seen in Lemma 3.9 that also Ψ is a.s. continuous in t. Lastly,
we have shown in Lemma 2.22 that the the mild solution v and vN for given w + ψ are
continuous from Xα−1

[0,T ] × [0, T ] to Hαr for any T > 0. Since the latter space embeds into Xα−1

and since the map

Xα−1 −→ Xα−1
[0,T ]

w0 7−→ w := π1S(t)w0

is by the definition of Xα−1 continuous, we are done.

Now we show (iii) for the case of Φ. We have

Φ(t, ξ1,w0) = S(t)w0 +Ψ(ξ1, t) + v1(t)
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where v1 is a mild solution corresponding to [w + ψ](t) = π1S(t)w0 + ψ(ξ1, t), and
Φ(s, ξ2,Φ(t, ξ1,w0)) = S(s)Φ(t, ξ1,w0) + ψ(ξ2, s) + v2(s)

where v2 is a mild solution corresponding to
[w + ψ](s) = π1S(s)Φ(t, ξ1,w0) + π1ψ(ξ2, s)

= π1S(t+ s)w0 + π1S(s)Ψ(ξ1, t) + π1S(s)v1(t) + ψ(ξ2, s).

For f ∈ Dr(R×B) We define
〈ξ3, f〉 := 〈ξ1,1(−∞,t]f〉+ 〈ξ2,1[0,∞)f(·+ t)〉.

This means that essentially ξ3 is ξ1 up to time t and afterwards ξ3 is ξ2. Since ξ1 and ξ2 are
independent it is easily verified that ξ3 is again a radially symmetric space-time white noise.
Note that by definition 2.8 for f ∈ D2

r (R+×B) we have

〈Ψ(ξ3, t+ s), f〉 =
〈
ξ3,1[0,t+s](r)

√
2π2S

∗(t+ s− r)f(r)
〉

=
〈
ξ1,1[0,t](r)

√
2π2S

∗(t+ s− r)f(r)
〉

+
〈
ξ2,1[0,s](r)

√
2π2S

∗(s− r)f(r)
〉

= 〈S(s)Ψ(ξ1, t) + Ψ(ξ2, s), f〉 .

We now proceed similarly as in Lemma 3.12, defining

v(s) =

{
v1(s), s ≤ t
S(s− t)v1(t) + v2(s− t), s ≥ t

.

Since Lemma 2.23 yields regularity can make the following calculation: For s ≤ t we have

∂tv(s) = Lv1(s) +

(
0

−
(
π1S(s)w0 + ψ(ξ1, s) + v1(s)

)3) .
On the other hand for s ≥ 0 we have

∂tv(t+ s) = L(v2(s) + S(s)v1(t))

(
0

−
(
π1S(t+ s)w0 + ψ(ξ3, s+ t) + π1S(s)v1(t) + v2(s)

)3) .
Since Ψ(ξ1, s) = Ψ(ξ3, s) almost everywhere for s ≤ t we see that v is a mild solution corre-
sponding to [w + ψ](s) = π1S(s)w0 + ψ(ξ3, s). But at the same time

Φ(t+ s, ξ,w0) = S(t+ s)w0 +Ψ(ξ, t+ s) + ṽ0(t+ s)

where ṽ0 is a mild solution corresponding to [w+ψ](s) = π1S(s)w0+ψ(ξ, s). Let T > t+s > 0.
Since ξ3 and ξ are both radially symmetric space-time white noises, we have

Law(ψ(ξ)) = Law(ψ(ξ3)) as measures on Y α−1
[0,T ]

Then due to the continuous dependence of the mild solution with respect to the “initial data
+ stochastic part” w + ψ established in Theorem 3.14 this implies that

Law(v(t+ s)) = Law(ṽ(t+ s)) as measures on Xα−1.

Therefore
Law(Φ(s, ξ2,Φ(t, ξ1,w0))) = Law(Φ(t+ s, ξ,w0)).
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4.2 Limits of Invariant Measures
Our goal is to find a measure that is invariant under the flow of Φ. What this means is that
if the random initial data is distributed according to this distribution, then the distribution
stays constant as our initial data evolves under the flow.

Definition 4.2. A measure ρ on Xα−1 is called invariant under Φ if for every Lipschitz
continuous and bounded F : Xα−1 −→ R and t ≥ 0 we have

ˆ
Xα−1

Eξ [F (Φ(t, ξ,w0))] dρ(w0) =

ˆ
Xα−1

F (w0) dρ(w0).

We face two challenges: Constructing such a measure, and showing that it is actually invariant.
We will first spend some time exploring different measures on Xα−1 that we can define as the
laws of certain random variables. Then we will construct the an invariant measure as a limit
of invariant measures for finite dimensional equations, where we can use finite dimensional
methods to prove the invariance.

This limit will be achieved in the weak topology on the space of probability measure on Xα−1.
We will metrize this topology with the Wasserstein metric because it aids us in computations.
Let p ≥ 1. Given two probability measure µ, ν on a metric space (E, d) with finite p-th moment,
their p-Wasserstein distance is defined as

W (E,d)
p (µ, ν) := inf

X∼µ, XN∼ν
prob. space (Ω̃,F̃ ,P̃)

EP̃ [d(X,XN )
p]

1
p . (4.1)

By the Kantorovich-Rubinstein Theorem [16] there is an alternative representation in the case
p = 1:

W
(E,d)
1 (µ, ν) = sup

[F ]Lip≤1

ˆ
F ( dµ− dν), (4.2)

which we will use later. The Wasserstein metric is related to the theory of optimal transport
because it represents the minimal ”cost” associated with moving an amount of mass distributed
according to µ into the distribution ν. The reader may find out more about this metric in
[25, Def. 6.4]. Theorem 6.18 in this book establishes that if (E, d) is complete, then the p-
Wasserstein metric is a complete metric on the space of probability measures on E with finite
p-th moment.

Convergence of µN to µ in the p-Wasserstein metric is equivalent to weak convergence plus
convergence of the p-th moment ([25, Thm. 3.9]), meaning there there exists some x0 ∈ E so
that ˆ

E
d(x, x0)

p dµN (x) −→
ˆ
E
d(x, x0)

p dµ(x).

This means that if we are in a bounded setting d ≤ 1, then the Wasserstein metric metrizes
the weak topology.

The following lemma is a crucial element of our strategy. It gives us a way to get an invariant
measure for a flow Φ from a sequence of invariant measures for flows ΦN .
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Lemma 4.3. Let (Ω,F ,P) be a probability space and (E, d) a Polish space. Suppose that we
are given measurable functions

Φ,ΦN : [0,∞)× Ω× E −→ E

with Φ(0, ξ, x) = ΦN (0, ξ, x) = x for all N ∈ N. Then a probability measure µ on E is invariant
under Φ if the following hypotheses are given:

(H1) There exists a function L(t, ξ, x, y) which is locally bounded in (x, y) ∈ E2 and fulfills
d(ΦN (t, ξ, x),ΦN (t, ξ, y)) ≤ L(t, ξ, x, y)d(x, y) (4.3)

for all N ∈ N and x, y ∈ E.

(H2) For all t > 0 we haveˆ
E
Eξ [d(Φ(t, ξ, x),ΦN (t, ξ, x))] dµ(x)

N→∞−−−−→ 0. (4.4)

(H3) There exists a sequence of probability measures (µN )N∈N on E, where each µN is invariant
under the flow ΦN , so that µN converges weakly to µ.

Proof. By the Skorokhod representation Theorem [2, Thm. 3.8.6] there exists a probability
space (Ω2,F2,P2) on which we have E-valued random variables XN , X, so that Law(XN ) =
µN , Law(X) = µ and almost surely XN −→ X. Dominated convergence then implies thatˆ

Ω2

d̃(XN (ω), X(ω)) dP2(ω)
N→∞−−−−→ 0.

Now let F : (E, d) −→ R be Lipschitz continuous with constant L′ > 0 and absolutely bounded
by b > 0. We haveˆ

E
Eξ [F (Φ(t, ξ, x))] dµ(x) =

ˆ
Ω2

Eξ [F (ΦN (t, ξ,XN (ω)))] dP2(ω)

+

ˆ
Ω2

Eξ [F (ΦN (t, ξ,X(ω)))− F (ΦN (t, ξ,XN (ω)))] dP2(ω)

+

ˆ
Ω2

Eξ [F (Φ(t, ξ,X(ω)))− F (ΦN (t, ξ,X(ω)))] dP2(x).

The first term is equal to
´
E F (x) dµN (x) due to the invariance of µN and Law(XN ) = µN .

Since µN converges weakly to µ and F is also continuous and bounded with respect to d̃, the
first term converges to

´
E F (x) dµ(x). It therefore suffices to show that the other terms vanish

as N →∞.

The third term vanishes directly due to Lipschitz continuity of F and assumption (H2). For
the second term we use (H1) to estimate
|F (Φ(t, ξ,X(ω)))− F (ΦN (t, ξ,XN (ω)))| ≤ b ∧ L′L(t, ξ,X(ω), XN (ω))d(X(ω), XN (ω)).

For a given t, ξ and ω this almost surely converges to 0 as N goes to infinity because
L(t, ξ,X(ω), XN (ω)) is bounded on the bounded set {(X(ω), XN (ω)) : N ∈ N} ⊂ E2 and
d(XN , X) −→ 0 almost surely. Therefore the integral also vanishes by dominated conver-
gence.
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4.3 Measures on X α−1

Let us now define and analyze a number of measures on the space of initial data that we will
use in the subsequent section. In Section 2.1 we have previously considered random initial
data of the form

w0 =

∞∑
n=1

(
anXnen
bnXt,nen

)
.

Here an, bn ∈ R and {Xn}n∈N, {Xt,n}n∈N are families of independent standard normal random
variables. We are interested in the case where an = 〈λn〉−1 and bn = 1. Corollary 2.5 tells us
that then

E [‖w0‖Hβ ] <∞ ⇐⇒ w0 ∈ Hβ a.s. ⇐⇒ β <
1

2
.

We can therefore consider
µ := Law(w0)

as a measure on H0
r . It is in fact a Gaussian measure in the sense of Gaussian measures on

infinite dimensional Hilbert spaces, but we do not need to use this and hence do not define it.

The choice of H0
r is rather arbitrary here as µ and the following measures are in fact concen-

trated on and have finite expectation in the smaller space Xα−1. Once we have shown this fact
we can immediately switch to considering them as measure on the space of initial data Xα−1.
Due to (iv) from Lemma 3.5, the Borel σ-algebras are, in a sense, identical.

Since our plan is to work with finite-dimensional approximations, we define the measures

µN,M = Law

(
M∑

n=N+1

(
〈λn〉−1Xnen
Xt,nen

))

for M > N . We also define this for M = ∞ so that we can, for example, write µ = µ0,∞.
Unless explicitly stated however, we always assume M < ∞. These measures are Gaussian
measures on RM−N and hence

µN,M = F−1
#

(
1

ΓN,M
exp

(
−1

2

M∑
n=N+1

(
〈λn〉2y2n + y2t,n

))
dy

)
,

where

ΓN,M =

ˆ
RM−N

exp

(
−1

2

M∑
n=N+1

(
〈λn〉2y2n + |yt,n|2

))
dy

and

F−1 : `2(N) −→ H0
r

(xn)n∈N 7−→
∞∑
n=1

xnen.

Here F is the analogue of the Fourier transform for our radial and 2-dimensional situation,
defined in section 1. Note that we use the indices y = (yN+1, ..., yM ) to make the notation
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more adaptable to changes of M and N . For example, we want to make it clear to the reader
that

F−1(y) =

M∑
n=N+1

ynen

is the correct interpretation. We see that µN,M is a measure concentrated on the smaller
subspace (PM − PN )H0

r .

We can heuristically write

µ = F−1
#

(
1

Γ
exp

(
−1

2

∞∑
n=1

(
〈λn〉2y2n + y2t,n

))
dy

)
,

where

Γ =

ˆ
R∞

exp

(
−1

2

∞∑
n=1

(
〈λn〉2y2n + |yt,n|2

))
dy.

Of course this is not rigorous as there exists no Lebesgue measure on R∞.

Our first goal is to show that µ and µN,M are concentrated on and have finite expectation in
Xα−1. Recall that the latter does not trivially imply the former due to the subtlety in the
difference between the spaces Z and Z. The case of µN,M is rather trivial as
ˆ
H0

‖x‖Xα−1 dµN,M (x) =

ˆ
RM−N

∥∥∥∥∥
M∑

n=N+1

ynen

∥∥∥∥∥
Xα−1

1

ΓN,M
e−

1
2

∑M
n=N+1(⟨λn⟩2y2n+y2t,n) dy <∞.

The finiteness just follows from the fact that en ∈ H1
r ⊂ Xα−1 for all n ∈ N. Since µN,M is the

law of a random variable which a.s. has values in Xα−1, it is concentrated on this set.

The case of µ is not as easy. We will show the following lemma which establishes that in fact
µ is the limit of µN,M as M goes to infinity with respect to the 6-Wasserstein metric WXα−1

6 .
This then implies that in particular µ(Xα−1) = 1 and E

[
‖w0‖6Xα−1

]
<∞.

Lemma 4.4. For all N ∈ N we have (1− PN )w0 ∈ Xα−1 almost surely and

E
[
‖(1− PN )w0‖6Xα−1

]
<∞.

Furthermore
WXα−1

6 (µN,M , µN,∞)
M→∞−−−−→ 0.

Proof. Let N < M1 < M2 ∈ N. For M ∈ N, consider the random variables

wM :=
M∑
n=1

(
Xnen, Xt,nen

)
.

Since the variances of Xn and Xt,n have appropriate bounds we can apply Theorem 3.8 and
for some constant C > 0, independent of N , M1 and M2, get a certain estimate. Together
with definition (4.1) we then have

WXα−1

6 (µN,M1 , µN,M2) ≤ E
[∥∥(1− PN )(wM1 −wM2)

∥∥6
Xα−1

]
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= E

∥∥∥∥∥∥
M2∑

n=M1+1

(
Xnen, Xt,nen

)∥∥∥∥∥∥
6

Xα−1

 ≤ C ((1 + ln(M1))

M1
8−6α

) 6
7 M1→∞−−−−−→ 0.

Therefore µN,M is a Cauchy sequence in M with respect to WXα−1

6 , and hence it converges to
some measure µ̃N,∞ with finite sixth moment. The estimate above also shows that wN,M −→
(1 − PN )w0 in L6(Ω,Xα−1), where Ω is our arbitrarily chosen probability space. Therefore
there exists a subsequence (1 − PN )w

Mk which almost surely converges to (1 − PN )w0 in
Xα−1. As convergence in the p-Wasserstein metric implies weak convergence and almost sure
convergence implies weak convergence, by the uniqueness of weak limits we know that µ̃N,∞ =
Law((1− PN )w0) = µN,∞.

There are some more measures we need to consider. Given that we have defined a number
of measures µN,M and µ on Xα−1, we can now define new measures on this space which are
absolutely continuous with respect to µ or µN,M .

We define the measure
ρ :=

1

Γ̃
e−

1
4
∥u∥4

L4 dµ(u)

with
Γ̃ :=

ˆ
Xα−1

e−
1
4
∥u∥4

L4 dµ(u).

For this measure to be well-defined we need that the density is µ-a.s. finite. This is the case
since E

[
‖w0‖4L4

]
< ∞ by lemma 2.13 applied to w0, which has Law(w0) = µ. Similarly for

N < M with M ∈ N∪{∞} we define

ρN,M :=
1

Γ̃N,M
e−

1
4
∥PNu∥4L4 dµ0,M (u),

with
Γ̃N,M :=

ˆ
Xα−1

e−
1
4
∥PNu∥4L4 dµ0,M (u).

Note that just like for µN,M if M < ∞ we can write it as an absolutely continuous measure
with respect to the M -dimensional Lebesgue measure:

ρN,M = F−1
#

 1

Γ̃N,M
exp

−1

4

∥∥∥∥∥
N∑
n=1

ynen

∥∥∥∥∥
4

L4

− 1

2

M∑
n=1

(
〈λn〉2y2n + y2t,n

) dy

 .

We also define
ρN := ρN,∞ and Γ̃N := Γ̃N,∞.

Note that for F ∈ Cb(Xα−1) we have
ˆ
Xα−1

F (u) dρN (u) = E
[
F (w0)e

− 1
4
∥PNw0∥4

L4

]
= E

[
F (PNw0 + (1− PN )w0)e

− 1
4
∥PNw0∥4

L4

]
=

ˆ
PNXα−1

ˆ
(1−PN )Xα−1

F (z+ y) dρN,N (z) dµN,∞(y),
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so
ρN = ρN,N × µN,∞.

We now show that also ρN converges to ρ in a Wasserstein distance as N goes to infinity.

Define d̃(w1,w2) := ‖w1 −w2‖Xα−1 ∧ 1 for w1,w2 ∈ Xα−1. This metric is equivalent to the
normal one on Xα−1.

Lemma 4.5. We have
W

(Xα−1,d̃)
1 (ρN , ρ)

N→∞−−−−→ 0.

Proof. Here we use the dual formulation of the 1-Wasserstein distance given by (4.2). Let
F : (Xα−1, d̃) −→ R have Lipschitz constant less or equal to 1. Since d̃ ≤ 1 this implies
|F | ≤ 1. Then

ˆ
Xα−1

F (u)( dρN − dρ)(u) =

ˆ
Xα−1

F (u)

(
e−

1
4
∥PNu∥4L4

Γ̃N,∞
− e−

1
4
∥u∥4

L4

Γ̃

)
dµ(u)

≤ E

[∣∣∣∣∣e−
1
4
∥PNw0∥4

L4

Γ̃N,∞
− e−

1
4
∥w0∥4

L4

Γ̃

∣∣∣∣∣
]
.

We want to show that this vanishes as N −→ ∞. Since Γ̃N,∞ −→ Γ̃ > 0, the following
computation, using e−y|1− e−x| ≤ x for x, y ≥ 0 and Lemma 2.13, suffices:

E
[
e−

1
4
∥PNw0∥4

L4

(
1− e−

1
4

(
∥w0∥4

L4−∥PNw0∥4
L4

))]
≲ E

[
‖w0‖4L4 − ‖PNw0‖4L4

]
A.5 ≲ E

[
‖(1− PN )w0‖4L4(‖w0‖4L4 + ‖PNw0‖4L4)

]
≤ E

[
‖(1− PN )w0‖8L4

] (
E
[
‖w0‖8L4

]
+ E

[
‖PNw0‖8L4

])
≲ E

[
‖(1− PN )w0‖8L8

] (
E
[
‖w0‖8L8

]
+ E

[
‖PNw0‖8L8

])
lem.2.13 ≲ 1 + ln(N)

N2

N→∞−−−−→ 0.

4.4 Invariance of ρ under Φ

Lemma 4.6. The following hold:

(i) The flows Φ and ΦN fulfill the hypotheses (H1), (H2) and (H3) for ρ.

(ii) Fix N ∈ N and consider for M > N the sequence of functions (Φ̃N,M )M∈N := (PM −
PN )ΦN as well as their limit Φ̃N := (1−PN )ΦN as flows on (1−PN )Xα−1. These fulfill
the hypotheses and (H1), (H2) and (H3) for µN,∞.

Proof. (i) We have shown (H3) in Lemma 4.5. We can get (H1) as a slight improvement
over the continuity results in Theorem 2.22. First of all, observe that

‖ΦN (t, ξ,w1)− ΦN (t, ξ,w2)‖Xα−1 ≤ ‖S(t)(w1 −w2)‖Xα−1 + ‖vN,1(t)− vN,2(t)‖Hα .
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By the Lipschitz continuity in Lemma 3.7 the first term easily obeys the desired estimate.
For the second term we have to look into the proof of 2.22. Note that first of all (2.29)
holds for vN,1 and vN,2 as we wrote it there for v1 and v2, with no constant depending on
N being necessary. We therefore have the analogue of (2.30), which is almost the desired
inequality for a suitable choice of L. We know that ‖ψ‖Y α−1

[0,t]
is almost surely continuous

in t, and it trivially holds that ‖wi‖Y α−1
[0,t]

≤ ‖wi‖Xα−1 for i = 1, 2. We also have to
estimate ‖vN,i‖Hα by ‖wi‖Xα−1 , which is possible due to the global energy estimate and
preservation of regularity (Theorem 3.11 and Lemma 2.25). Then we get (2.30) with
some factor that depends continuously on w1 and w2. In particular this factor locally
bounded with respect to these variables.

Assumption (H2) is a direct consequence of Lemma 2.24 and Lipschitz continuity of F ,
which establish convergence to 0 for all t and almost all (ξ, x). Then due to boundedness
of F dominated convergence concludes the argument.

(ii) We have shown (H3) in Lemma 4.4. Assumption (H1) for (Φ̃N,M )M follows from the
same result for (ΦN )N which we have shown in the stronger norm of Hαr . We simply
estimate

‖(PM − PN )(ΦN (t, ξ,w1)− ΦN (t, ξ,w2))‖Xα−1 ≤ ‖ΦN (t, ξ,w1)− ΦN (t, ξ,w2)‖Hα .

Assumption (H2) is also straightforward: Given t, ξ and w ∈ Xα−1, we compute

‖(1− PN )ΦN (t, ξ,w)− (PM − PN )ΦN (t, ξ,w)‖Xα−1 = ‖(1− PM )ΦN (t, ξ,w)‖Xα−1 ,

≤ ‖(1− PM )S(t)w‖Xα−1 + ‖(1− PM )Ψ(t, ξ)‖Xα−1 + ‖(1− PM )vN‖Xα−1 .

We have to estimate this under the integral against µN,∞ and the expectation Eξ. Since
PNvN = vN the third term vanishes as soon as M > N . For the first term note that
µN,∞ = Law((1−PN )w0) and that (1−PN )S(t)w0 fulfills the variance estimates needed
to apply Theorem 3.8. We get

Ew0 [‖(1− PM )(1− PN )S(t)w‖Xα−1 ] = Ew0 [‖(1− PM )S(t)w‖Xα−1 ]

≤ C
(
(1 + ln(M))

M8−6α

) 6
7 M→∞−−−−→ 0.

For the second term we also apply Lemma 3.8 and get

Eξ [‖(1− PM )Ψ(t, ξ)‖Xα−1 ] ≤ C
(
(1 + ln(M))

M8−6α

) 6
7 M→∞−−−−→ 0.

Theorem 4.7 (Invariant Measures). For N ∈ N and M > N the following hold:

(i) ρN,N is invariant under the flow PNΦN on the space PNXα−1.

(ii) µN,M is invariant under the flow (PM − PN )ΦN on the space (PM − PN )Xα−1.

(iii) µN,∞ is invariant under the flow (1− PN )ΦN on the space (1− PN )Xα−1.

72



(iv) ρN is invariant under the flow ΦN on the space Xα−1.

(v) ρ is invariant under the flow Φ on the space Xα−1.

Proof. (i) We fix some N ∈ N and do not always mention it in the notation. Define z :=
PNuN . This solves the equation

ztt + zt + (1−∆)z + PN (z
3) =

√
2PNξ

(z, zt)(0) = PNw0

or equivalently

∂tz = Lz−
(

0
PN (z

3)

)
+

(
0√

2PNξ

)
.

in the sense of distributions. We can write this as a system of distributional equations
in time: for some n ≤ N let f ∈ D(R+) and test the equation with f(t)en(x) in each
component. This yields

∂tẑ(n) =

(
0 1

−〈λn〉2 −1

)
ẑ(n)−

(
0∑N

i,j,k=1 ẑ(i)ẑ(j)ẑ(k)〈eiejek, en〉

)
+

(
0√

2〈ξ, en〉x

)
,

(4.5)
which is to be understood as an equation of time distributions in D′(R+).

Recall that we have seen in Lemma 1.3 that

〈〈ξ, en〉x, f〉t =
ˆ ∞

0
f(t) dWn(t).

for some collection of independent Brownian motions Wn. We now test (4.5) with f =
1[0,t] and get(

ẑ(n, t)
ẑt(n, t)

)
−
(
ẑ(n, 0)
ẑt(n, 0)

)
=

(
ẑt(n, s)

−〈λn〉2ẑ(n, s)− ẑt(n, s)−
∑N

i,j,k=1 ẑ(i, s)ẑ(j, s)ẑ(k, s)〈eiejek, en〉

)
dt

+

(
0´ t

0

√
2 dWn(t)

)
.

We write this as a stochastic differential equation

dZ(t) = b(Z(t)) dt+ σ dW(t) (4.6)

where Z(t) = (π̂1z(n, t))n=1,...,N , π̂2z(n, t))n=1,...,N ) ∈ R2N , the function b : R2N −→ R2N

is defined by

b(z1, ..., zN , zt,1, ..., zt,N ) :=

( (
zt,n
)
n=1,...,N(

− 〈λn〉2zn − zt,n −
∑N

i,j,k=1 zizjzk〈eiejek, en〉
)
n=1,...,N

)
,
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σ ∈ R2N×2N is the matrix

σ =



0 . . . . . . 0
. . .

... 0
...

...
√
2 0

. . . ...
0 . . . 0 . . .

√
2


,

and W = (V,W ) where V is another N -dimensional Brownian motion independent of
W .

The Fokker-Planck equations (A.3) state that the law of Z(t) has a probability density
p(t) : R2N −→ [0,∞) which weakly solves

∂tp(t, z, zt) =

N∑
n=1

−∂zn(b(z)np(t, z, zt))− ∂zt,n(b(z)N+np(t, z, zt)) (4.7)

+
N∑
n=1

N∑
m=1

(
∂zn∂zmDn,m + ∂zt,n∂zmDN+n,m

+ ∂zn∂zt,mDn,N+m + ∂zt,n∂zt,mDN+n,N+m

)
p(t, z, zt)

= −Np(t, z, zt)− b(z)∇(z,zt)p(t, z, zt) + ∆ztp(t, z, zt),

where

Di,j =
1

2

2N∑
k=1

σi,kσj,k =

{
1, i, j ≥ N + 1

0, else
.

We invite the reader to read up on its derivation in the Appendix if this is a surprise. It
is a rather direct consequence of Ito’s formula.

To find an invariant measure, we hypothesize that the energy

E(z) =

ˆ
B

1

2
|z|2 + 1

2
|∇z|2 + 1

2
|zt|2 +

1

4
|z|4 dx =

ˆ
B

1

2
|〈∇〉z|2 + 1

2
|zt|2 +

1

4
|z|4 dx

is in fact conserved. Then the measure

F#ρN = e−E(F−1(z)) dz dzt = Γ̃−1
N e

− 1
4

∑∞
n=1

⟨
(
∑N

j=1 zjej)
2
,en

⟩2
− 1

2

∑N
n=1⟨λn⟩2z2n−

1
2
|zt|2 dz dzt,

should, heuristically, not change along trajectories generated by the flow PNΦN , so we
have some hope that the measure is invariant under the evolution of z (this is nevertheless
only an intuition). Note that

∞∑
n=1

〈( N∑
j=1

zjej

)2
, en

〉2
=

∥∥∥∥∥
N∑
n=1

znen

∥∥∥∥∥
4

L4

.

The measure F#ρN is a measure on R2N , so we are in a finite-dimensional setting and
can check the invariance by a calculation with the Fokker-Planck equation. Let p0 be the
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density of F#ρN = Law(ẑ(0)). Now observe the following computations which we can
perform in the sense of distributions:

∆ztp0(z, zt) = (|zt|2 +N)p0(z, zt)

and

b(z)∇(z,zt)p0(z, zt)

= p0(z, zt)


(
zt,n
)
n=1,...,N(

−〈λn〉2zn − zn,t −
〈(∑∞

j=1 zjej

)3
ek, en

〉)
n=1,...,N


×

−〈λk〉2zk −
(∑∞

n=1

〈(∑N
j=1 zjej

)2
, en

〉〈(∑N
j=1 zjej

)
ek, en

〉)
k=1,...,N

−zt


= p0(z, zt)

zt · (〈λn〉zn)n=1,...,N −

〈 N∑
j=1

zjej

2

,

 N∑
j=1

zjej

( N∑
k=1

zt,kek

)〉
x

−zt · (〈λn〉zn)n=1,...,N + |zt|2 +

〈 N∑
j=1

zjej

3

,

(
N∑
k=1

zt,kek

)〉
x


= |zt|2p0(z, zt).

We see that F#ρN is a weak solution to the stationary Fokker-Planck equation, i.e. the
right hand side of (4.7) is zero. If we know that weak solutions to the Fokker-Planck
equation of a class of measures that both Law(Zt) and F#ρN belong to are unique,
then it follows that F#ρN is indeed an invariant measure under the flow of Z, that is

Law(Z(t)) = Law(Z(0)) = F#ρN .

It then follows directly that ρN is invariant under the flow of z, that is PNΦN .

Now it only remains to show this uniqueness of weak solutions to the Fokker-Planck
equation given by measures. We use Lemma A.4. What we have to check is that for all
1 ≤ i ≤ 2N , ˆ T

0

ˆ
R2N

1

1 + |x|2
+
|bi(x)|
1 + |x|

dLaw(Zt) dt <∞.

As |bi(x)| ≤ |x| for i ≤ N it suffices to look at the cases N + 1 ≤ i ≤ 2N . Here
|bi(x)| ≲ 1+ |x|3 and we use that

´ T
0 E

[
‖Zt‖32

]
dt <∞, as each Zt is a Gaussian random

variable and their variances are locally bounded in t.

(ii) We now deal with the other part of the equation for uN . Define y = (1−PN )uN so that
uN = z+ y, and define yM = PMy for M > N . This solves

yMtt + yMt + (1−∆)yM =
√
2(PM − PN )ξ

(yM , yMt )(0) = (PM − PN )w0,
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which again corresponds to a a finite ((M −N) -) dimensional SDE for ŷ. We will now
sometimes write y ∈ R2(M−N) and use the notation

y = (y, yt) = (yN+1, ..., yM , yt,N+1, ..., yt,M ).

We can write the SDE as

dYM (t) = b(YM (t)) dt+ σ dWM (t), (4.8)

where
b(yN+1, ..., yM , yt,N+1, ..., yt,M ) =

(
(yt,n)n=N+1,...,M

(−〈λn〉2yn − yn,t)n=N+1,...,M

)
and σ ∈ R2(M−N),2(M−N) is defined analogously to the previous case. The Brownian
motion is given as WM = (V,W ) where W is a (M −N) dimensional Brownian motion
which is a modification of 〈ξ,1[0,t]ek〉 with k ∈ {N + 1, ...,M}, and V is any M − N
dimensional Brownian motion independent of W . Note that the Brownian motions in
(4.6) and (4.8) are independent.

Now we can again use the Fokker-Planck equations to verify with an analogous and
simpler calculation to the one in (i) that

F#µN,M = Γ−1
N,Me

− 1
2

∑M
n=N+1⟨λn⟩2y2n−

1
2
|yt|2 dy dyt.

is an invariant measure on R2(M−N) under the flow of YM , that is F(PM−PN )ΦN . Then
it follows that µN,M is invariant under the flow of y, that is (PM − PN )ΦN .

(iii) This is now simply an application of Lemma 4.3. We have shown in Lemma 4.6 that the
necessary conditions are fulfilled.

(iv) Since ρN = ρN,N × µN,∞, the invariance of ρN follows from (i) and (iii).

(v) This is again an application of Lemma 4.3. We have shown in Lemma 4.6 that the
necessary conditions are fulfilled.

4.5 An Outlook: The Flow as a Feller Semigroup
We can frame the flows Φ and ΦN as Markovian semigroups in the sense of [7, Chp. 2 Prop.
2.1.1, Chp. 3].

Definition 4.8 (Markovian Transition Function). Let (E, d) be a Polish space. We say that a
family of functions (Pt)t∈[0,∞) with

Pt : E × B(E) −→ R

is a Markovian transition function on E if the following hold for every t, s ≥ 0, x ∈ E
and A ∈ B(E):

(i) Pt(x,−) is a probability measure on E.

(ii) Pt(−, A) is a measurable function on E.
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(iii) P0(x,A) = 1A(x).

(iv) We have Chapman-Kolmogorov equations

Pt+s(x,A) =
ˆ
E
Ps(y,A)Pt(x, dy).

In our instance we take Xα−1 as the Polish space and define

Pt(w0, A) := [Φ(t,−,w0)# Pξ] (A) = Pξ({ξ : Φ(t, ξ,w0) ∈ A}).

PN,t(w0, A) := [ΦN (t,−,w0)# Pξ] (A) = Pξ({ξ : ΦN (t, ξ,w0) ∈ A}).

Lemma 4.9. (Pt)t≥0 and (PN,t)t≥0 are Markovian transition functions on Xα−1.

Proof. We only write down the proof for (Pt)t≥0. (i) follows directly from the fact that
Pt(w0,−) is the push-forward of a measure. For (ii), write

Pξ({ξ : Φ(t, ξ,w0) ∈ A}) = Eξ
[
1Φ(t,ξ,w0)∈A

]
.

Since Φ(t,−,−) is measurable the indicator function in the expectation is measurable with
respect to ξ and w0. Then Fubini’s theorem implies that the expectation with respect to ξ is
still measurable with respect to w0. Statement (iii) directly follows from (i) of Lemma 4.1,
and lastly (iv) follows from (iii) of that lemma in the following fashion:

Note that given three independent copies ξ, ξ1 and ξ2 of the white noise, (iv) is equivalent to
the statement that for all w0 ∈ Xα−1 and F ∈ Cb(Xα−1),

Eξ [F (Φ(t, ξ,w0))] = Eξ2
[ˆ

Xα−1

F (Φ(s, ξ2,v0) d
[
Φ(t,−,w0)# Pξ1

]
(v0)

]
= Eξ2 [Eξ1 [F (Φ(s, ξ2,Φ(t, ξ1,w0))]] .

It is now evident that this is equivalent to (iii) from Lemma 4.1.

Definition 4.10 (Markovian Feller Semigroup, [7]). A markovian transition function (Pt)t≥0

on a Polish space (E, d) is a Markovian Feller semigroup if it is stochastically continuous,
meaning that for all F ∈ Cb(E) and x ∈ E we have

lim
t→0

ˆ
E
F (y) dPt(x, dy) = F (x),

and furthermore for all F ∈ Cb(E)[
x 7−→

ˆ
E
F (y) dPt(x, dy)

]
∈ Cb(E).

Lemma 4.11. (Pt)t≥0 and (PN,t)t≥0 are Markovian Feller semigroups on Xα−1.
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Proof. We again only write down the proof for (Pt)t≥0. We first show the stochastic continuity.
Let F ∈ Cb(Xα−1), w0 ∈ Xα−1 and t ≥ 0 and note that

ˆ
Xα−1

F (v0) dPt(w0, dv0) = Eξ [F (Φ(t, ξ,w0)] .

We know from Lemma 4.1 that Φ(t, ξ,w0) is almost surely continuous in t and so dominated
convergence implies that the limit of the above as t↘ 0 is F (w0).

The second property we have to show is similarly easy to prove. Clearly if F is bounded then
so is Eξ [F (Φ(t, ξ,w0)]. At the same time we know that Φ(t, ξ,w0) is almost surely continuous
in w0, and so dominated convergence implies that the expectation is also continuous in w0.

Having establishes this, we could now use the machinery in works such as [7] to tackle problems
such as uniqueness of the invariant measure and ergodicity. One of the more difficult parts of
the standard approach involves showing the strong Feller property, which states that the flow
Φ is regularizing in the sense that if F is a measurable and bounded function on Xα−1, then
for all t > 0, E [Φ(t, ξ,w0)] is a continuous and bounded function in w0. This straight forward
approach does not work though as the Markov semigroup does in fact not have the strong
Feller property, although we have not shown this. In [19] a very similar stochastic nonlienar
wave equation is treated and at the beginning of section 5 an argument for the failure of the
strong Feller property is provided. An alternative technique using a modified Feller property
is used to show unique Ergodicity. Transferring this approach over to our equation would be
a matter worth investigating.
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A Appendix
Lemma A.1. Let {Xn}n∈N and {Yn}n∈N be real random variables. Suppose that for some
' ∈ {≤,=,≥} we have the following ”Gaussian” moment estimates: For any finite set I ⊂ N
and n, k ∈ NI

E

[∏
i∈I

Xni
i Y

ki
i

] '
∏
i∈I

(ni+ki)!(
ni+ki

2

)
!

if ∀i ∈ I, ni + ki even

= 0 if ∃i ∈ I : ni + ki odd .

(For example this is satisfied with ' being ≤ if {(Xn, Yn)}n∈N is an independent family of
centered normal random vectors with variances ≤ 1, see [20][Thm 3.1]). Let an, bn ≥ 0 be real
sequences and define

A =

∞∑
n=1

anXn and B =

∞∑
k=1

bkYk

Let p, q ∈ N. If p+ q is odd, then
E [ApBq] = 0.

If p+ q = 2r for some r ∈ N, then

E [ApBq] ' p!q!

r!

r∧⌊ p
2
⌋∑

s=0∨(p−r)

(
r

s, p− 2s, r − p+ s

)
2p−2s‖a‖2sℓ2 〈a, b〉

p−2s
ℓ2

‖b‖2(r−p+s)
ℓ2

(A.1)

Proof. For now we let N ∈ N and consider

E

[(
N∑
n=1

anXn

)p( N∑
k=1

bnYk

)q]

We apply the multinomial theorem:

= E

( ∑
n1+...+nN=p

(
p

n1, ..., nN

) N∏
i=1

(aiXi)
ni

) ∑
k1+...+kN=q

(
q

k1, ..., kN

) N∏
i=1

(biYi)
ki



=
∑

n1+...+nN=p

∑
k1+...+kN=q

(
p

n1, ..., nN

)(
q

k1, ..., kN

)
E

[
N∏
i=1

ani
i b

ki
i X

ni
i Y

ki
i

]
. (A.2)

We now apply our moment estimates. This makes all terms vanish where one of the ni + ki is
odd. This immediately implies that if p+ q is odd there are no terms remaining and the sum
is zero. From now on we assume that p+ q is even and define r = p+q

2 . So we get

(A.2) '
∑

n1+...+nN=p

k1+...+kN=q

ni+ki even

p!

n1! . . . nN !

q!

k1! . . . kN !

N∏
i=1

(ni + ki)!(
ni+ki

2

)
!
ani
i b

ki
i .
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=
p!q!

r!

∑
n1+...+nN=p

k1+...+kN=q

ni+ki even
mi:=(ni+ki)/2

(
r

m1, . . . ,mN

) N∏
i=1

(ni + ki)!

ni!ki!
ani
i b

ki
i

. The rest of the proof is just combinatorics. We can rewrite this in terms of indices m and n
instead of k and n:

=
p!q!

r!

∑
m1+...+mN=r

(
r

m1, . . . ,mN

) ∑
(ki,ni),1≤i≤N :

2mi=ni+ki
n1+...+nN=p

N∏
i=1

(
2mi

ni

)
ani
i b

ki
i

︸ ︷︷ ︸
(⋆)

.

We now compute (?) for a fixed decomposition m1 + · · ·+mN = r. Define

qi =
ai

ai + bi
.

With this (?) can be written as

=

N∏
i=1

2mi∑
ni=1

(
2mi

ni

)
qni
i (1− qi)2mi−ni(ai + bi)

2mi1n1+...+nN=p.

=
N∏
i=1

(ai + bi)
2mi

N∏
i=1

2mi∑
ni=1

(
2mi

ni

)
qni
i (1− qi)2mi−ni(ai + bi)

2mi1n1+...+nN=p.

=

N∏
i=1

(ai + bi)
2mi PΩ̃ (X1 + ...+XN = p)

where Xi ∼ Bin(2mi, qi) are independent random variables on some new probability space
Ω̃. Luckily there are closed form expressions for the distribution of such a sum of Binomial
variables. To use them, we rewrite each Xi as independent Bernoulli variables. Note that in
the sum X1 + ... +XN only at most 2m1 + ... + 2mN = 2r = p + q variables can be nonzero
with the rest having distribution Bin(0, ai), so the sum really only has at most 2r terms for
the indices {1 ≤ i ≤ N : mi > 0}. Then

PΩ̃ (X1 + ...+XN = p) = PΩ̃

 2r∑
j=1

Yj = p


where the Yj are independent random variables with

Yj ∼ Ber(q̃j) where q̃j = qi whenever 2m1 + ...+ 2mi−1 + 1 ≤ j ≤ 2m1 + ...+ 2mi
for some 1≤i≤N and 1≤j≤2r

so that

Xi =

2m1+...+2mi∑
j=2m1+...+2mi−1+1

Yj .
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The random variable
∑2r

j=1 Yj is now distributed according to a Poisson binomial distri-
bution. There exists a closed form expression for its distribution using the discrete Fourier
transform [9]:

PΩ̃

 2r∑
j=1

Yj = x

 =
1

2r + 1

2r∑
l=0

e−lx
i2π
2r+1

2r∏
j=1

(q̃je
l i2π
2r+1 + (1− q̃j)).

We define R = 2r + 1, plug in x = p and rewrite the above

=
1

R

2r∑
l=0

e−lp
i2π
R

N∏
i=1

(qie
l i2π

R + (1− qi))2mi .

Let’s recap what we have done so far: We have shown that

E

[(
N∑
n=1

anXn

)p( N∑
k=1

bnYk

)q]

'
∑

m1+...+mN=r

(
r

m1, ...,mN

)
p!q!

r!

N∏
i=1

(ai + bi)
2mi PΩ̃ (X1 + ...+XN = p)

=
p!q!

r!

1

R

2r∑
l=0

e−lp
i2π
R

∑
m1+...+mN=r

(
r

m1, ...,mN

) N∏
i=1

(
(ai + bi)(qie

l i2π
R + (1− qi))

)2mi . (A.3)

We can simplify:
(ai + bi)

2(qie
l i2π

R + (1− qi))2 = (a2i e
l i2π

R + b2i )
2.

Now we apply the multinomial theorem in reverse:

=
p!q!

r!

1

R

2r∑
l=0

e−lp
i2π
R

(
N∑
i=1

(aie
l i2π

R + bi)
2

)r

=
p!q!

r!

1

R
FR{Y r

l }p,

where

Yl =
N∑
i=1

(aie
l i2π

R + bi)
2

and

FR,F−1
R : CR −→ CR

(xl)1≤l≤R 7−→
(
FR{xl}k

)
1≤k≤R =

(
R−1∑
l=0

e−l
i2π
R xl

)
1≤k≤R

(xl)1≤l≤R 7−→
(
F−1
R {xl}k

)
1≤k≤R =

(
1

R

R−1∑
l=0

el
i2π
R xl

)
1≤k≤R
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is the discrete Fourier transform and its corresponding inverse. We rewrite
1

R
FR{Y r

l }p = F−1
R {Y

r
R−l}p.

We want to pull the powers Y r
l in the Fourier transform to the outside. To do this we use the

convolution theorem for the discrete Fourier Transform:

F−1
R {A ·B}x =

1

R

R−1∑
l=0

F−1
R {A}l · F

−1
R {B}(x−l)%R.

Here % denotes the modulo operation. Applying this repeatedly yields

F−1
R

{
Y r
R−l
}
p
=

1

R

R−1 R−1∑
l1,...,lr−1=0

F−1
R {YR−l}l1

·F−1
R {YR−l}(l2−l1)%R

...
·F−1
R {YR−l}(lp−1−lp−2)%R

·F−1
R {YR−l}(p−lp−1)%R

=
∑

0≤l1,...,lr−1≤R−1

l0=0, lr=p

r∏
t=1

FR{Yl}(lt−lt−1)%R.

To continue we now compute FR{Yl}:

FR{Yl}x =

R−1∑
l=0

e−lx
i2π
R

N∑
i=1

(aie
l i2π

R + bi)
2

=
N∑
i=1

R−1∑
l=0

e−lx
i2π
R

(
a2i e

2l i2π
R + 2aibie

l i2π
R + b2i

)

=
N∑
i=1

a2i δx,2 + 2aibiδx,1 + b2i δx,0.

Here δu,v = 1{u=v} is the Kronecker delta. With this we have

(A.3) =
p!q!

r!

1

R
FR{Y r

l }p

=
p!q!

r!

∑
0≤l1,...,lr−1≤R−1

l0=0, lp=p

r∏
t=1

N∑
it=1

(
a2itδ(lt−lt−1)%R,2 + 2aitbitδ(lt−lt−1)%R,1 + b2itδ(lt−lt−1)%R,0

)
.

Suppose we are given lt−1. What are the possible values lt can take so that we get a non-zero
term? It has to be the case that (lt − lt−1)%R ∈ {0, 1, 2}. As lt ≤ R − 1 it can never happen
that lt − lt−1 ≥ R. It can however happen that lt − lt−1 < 0. We split {0, ..., R − 1} in three
regions:
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• If lt−1 ∈ [0, R − 3] then lt − lt−1 ∈ [3 − R, 2] and so only if lt ∈ lt−1 + {0, 1, 2} can we
have a nonzero term. One could say that the following ”moves” are available to us:

lt ∈ {lt−1, lt−1 + 1, lt−1 + 2}.

• If lt−1 = R − 2 then lt − lt−1 ∈ [2− R, 1]. Besides choosing lt = lt−1 or lt = lt−1 + 1 we
can choose lt = 0 so that (lt − lt−1)%R = 2. We have the following moves:

lt ∈ {lt−1, lt−1 + 1, 0}

If lt−1 = R− 1 then lt− lt−1 ∈ [1−R, 2]. Besides choosing lt = lt−1 we can choose lt = 0
so that (lt − lt−1)%R = 1 and lt = 1 so that (lt − lt−1)%R = 2. We have the following
moves:

lt ∈ {lt−1, 0, 1}.

The behvaiour that this corresponds to is that every tuple (l0, l1, ..., lr−1, lr) describes a path
in Z/(2r + 1)Z = Z/(p + q + 1)Z that starts in 0, ends in p, and has r = p+q

2 steps, each
consisting of one of the actions +0, +1 or +2. The longest possible path consists of adding
+2 each time and so has a total length of 2r. Therefore there can not exist such a path from
0 to p that goes ”around the clock” more than zero times (such a path would need a length of
at least 2r + 1). As a result there is no tuple (l1, ..., lr−1) which produces a non-zero term in
the sum above where also (lt− lt−1)%R 6= lt− lt−1, i.e. the %R is superfluous. We rewrite the
previous result as

=
p!q!

r!

N∑
i1,...,ir=1

∑
l0,...,lr∈N

0=l0≤...≤lr=p
lt−lt−1∈{0,1,2}

r∏
t=1

(
a2itδlt−lt−1,2 + 2aitbitδlt−lt−1,1 + b2itδlt−lt−1,0

)

=
p!q!

r!

N∑
i1,...,ir=1

∑
h1,...,hr∈{0,1,2}
h1+...+hr=p

r∏
t=1

(
a2itδht,2 + 2aitbitδht,1 + b2itδht,0

)
.

To further simplify this combinatorically, we carefully observe that the map

{h ∈ {0, 1, 2}r : −→ {(I1, I2) ∈ P({1, ..., r})2 :
h1 + ...+ hr = p} I1 ∩ I2 = ∅, |I0|+ 2|I2| = p}

given by
h 7−→ ({i : hi = 1}, {i : hi = 2})

is a bijection. This is because

(I1, I2) 7−→ hi ≡


2, i ∈ I2
1, i ∈ I1
0, i 6∈ I1 ∪ I2
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is an inverse. We get

(A.3) =
p!q!

r!

∑
I1,I2⊂{1,...,r}
I1∩I2=∅

|I1|+2|I2|=p

N∑
i1,...,ir=1

∏
t∈I2

a2it ·
∏
t∈I1

2aitbit ·
∏

t̸∈I1∪I2

b2it .

Suppose that I1, I2 is one such decomposition of {1, ..., r} and J1, J2 is another one with
|I1| = |J1| and |I2| = |J2|. Let σ be a permutation of {1, ..., r} so that σ(I1) = J1 and
σ(I2) = J2. The existence of at least one such permutation is guaranteed since the cardinalities
match. Then since for any function f : Nr −→ R,

N∑
i1,...,ir=1

f(i1, ..., ir) =
N∑

i1,...,ir=1

f(σ(i1), ..., σ(ir)),

we have
N∑

i1,...,ir=1

∏
t∈I2

a2it ·
∏
t∈I1

2aitbit ·
∏

t̸∈I1∪I2

b2it

=
N∑

i1,...,ir=1

∏
t∈I2

a2σ(it) ·
∏
t∈I1

2aσ(it)bσ(it) ·
∏

t̸∈I1∪I2

b2σ(it)

N∑
i1,...,ir=1

∏
t∈J2

a2it ·
∏
t∈J1

2aitbit ·
∏

t̸∈J1∪J2

b2it .

As a result in
p!q!

r!
2r

∑
I1,I2⊂{1,...,r}
I1∩I2=∅

|I1|+2|I2|=p

N∑
i1,...,ip=1

∏
t∈I2

a2it ·
∏
t∈I1

2aitbit ·
∏

t̸∈I1∪I2

b2it .

the second sum does not depend on the exact shape of the sets I1 and I2, but instead only on
|I2| and |I1| = p − 2|I2|. Given r, the possible values for s = |I2| so that a corresponding I1
can exist are s ∈ {0 ∨ (p− r), ..., r ∧ bp2c}. This is becuase for each of these s, there exist(

r

s

)(
r − s
p− 2s

)
=

(
r

s, p− 2s, r − p+ s

) (
=

(
|{1, ..., r}|

|I2|, |I1|, |{1, ..., r} \ (I1 ∪ I2)|

))
ways to choose the sets I1 and I2. If p > q then p > r and binomial coefficients with negative
numbers appear. Using the convention

(
x
y

)
= 0 for y < 0 and y > x the expression above

is correct and also gives the aforementioned bounds for s, but we can mitigate confusion by
simply assuming WLOG that p ≤ q and so p ≤ r. Therefore our sum becomes

=
p!q!

r!

N∑
i1,...,ip=1

r∧⌊ p
2
⌋∑

s=0∨(p−r)

(
r

s, p− 2s, r − p+ s

) s∏
t=1

a2it ·
p−s∏
t=s+1

2aitbit ·
r∏

t=p−s+1

b2it .
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=
p!q!

r!

r∧⌊ p
2
⌋∑

s=0∨(p−r)

2p−2s

(
r

s, p− 2s, r − p+ s

)
N∑

i1,...,is=1

s∏
t=1

a2it

N∑
is+1,...,ip−s=1

p−s∏
t=s+1

aitbit

N∑
ip−s+1,...,ir=1

r∏
t=p−s+1

b2it

=
p!q!

r!

r∧⌊ p
2
⌋∑

s=0∨(p−r)

2p−2s

(
r

s, p− 2s, r − p+ s

)( N∑
n=1

|an|2
)s( N∑

n=1

|anbn|

)p−2s( N∑
n=1

|bn|2
)r−p+s

To conclude the proof we let N −→ ∞. Then depending on what relation ' is, if one side
converges the other does as well and if the above converges it converges to

p!q!

r!

r∧⌊ p
2
⌋∑

s=0∨(p−r)

2p−2s

(
r

s, p− 2s, r − p+ s

)
‖a‖2sℓ2 〈a, b〉

p−2s
ℓ2

‖b‖2(r−p+s)
ℓ2

Lemma A.2. Let (Wn)n∈N be a sequence of independent one-dimensional Brownian motions.
Let en be any ONB of L2

r . Consider a stochastic process ψ of the form

ψ(t) =
∞∑
n=0

ˆ t

0
fn(s) dWn(s) · en

for functions fn ∈ C(R+). Let α ≥ 0 and T ≥ 0. Then the following are equivalent:

(i) ψ ∈ C([[0, T ],Hα
r ) a.s.

(ii) P(ψ ∈ C([[0, T ],Hα
r )) > 0,

(iii) E
[
‖ψ(t)‖2C([0,T ],Hα)

]
<∞,

(iv)
(
〈λn〉α‖fn‖L2([0,T ])

)
n∈N ∈ `

2(N).

In particular we have the estimate

E
[
‖ψ(t)‖2C([0,T ],Hα)

]
≤ 2

∥∥∥(〈λn〉α‖fn‖L2([0,T ])

)
n∈N

∥∥∥
ℓ2(N)

= 2E
[
‖ψ(T )‖2Hα

]
. (A.4)

Proof. We start by showing (iii) ⇐⇒ (iv) and the estimate.
Observe that we can trivially move the supremum inside the sum, and the sum out of the
integral by Fubini-Tonelli:

E
[
‖ψ(t)‖2C([0,T ],Hα)

]
= E

[
sup

0≤t≤T

∞∑
n=0

∣∣∣∣ˆ t

0
fn(s) dWn(s)

∣∣∣∣2 〈λn〉2α
]

≤
∞∑
n=0

〈λn〉2α E

∣∣∣∣∣ sup0≤t≤T

ˆ t

0
fn(s) dWn(s)

∣∣∣∣∣
2
 .
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Since
´ t
0 fn(s) dWn(s) is a square integrable martingale we can use Doob’s L2 inequality and

then Itô-isometry:

≤
∞∑
n=0

〈λn〉2α · 2 sup
0≤t≤T

E

[∣∣∣∣ˆ t

0
fn(s) dWn(s)

∣∣∣∣2
]

= 2
∞∑
n=0

〈λn〉2α
ˆ T

0
|fn(s)|2 ds.

For the reverse inequality we do the same steps except that the supremum is now absent and
hence no inequalities are needed.

Clearly (i) =⇒ (ii). Regarding (iii) =⇒ (i), observe that for t1 < t2 ∈ [0, T ] we can calculate

‖ψ(t2)− ψ(t1)‖2Hα =

∞∑
n=0

〈λn〉2α
ˆ t2

t1

|fn(s)|2 ds,

and since (iv) states that
∞∑
n=0

〈λn〉2α
ˆ T

0
|fn(s)|2 ds <∞

we get that ψ is both continuous and bounded with respect to ‖ · ‖Hα .

It now only remains to show (ii) =⇒ (iii). We can apply estimate (A.4) to the case where
only finitely many fn are non-zero. The result is that to show (iii) it suffices to show

E

[ ∞∑
n=1

〈λn〉2α|φ̂(n)|2
]
<∞. (A.5)

where φ = ψ(T ). Since the convergence of the sum in the expectation is a tail-event for the
sigma algebra σ({φ̂(n)}n∈N), Kolmogorov’s 0-1 law and (ii) imply (i). Then

N∑
n=1

〈λn〉αφ̂(n)

is a sequence of gaussian random variables which is Cauchy in L2(Ω) and hence converges to
another gaussian random variable. As a consequence we know that the second moment of the
limit is finite, i.e. (A.5).

Lemma A.3 (Fokker-Planck Equation). Let d ∈ N, b ∈ C1(Rd,Rd) and σ ∈ C2(Rd, Rd×d).
Suppose on some probability space we have a d-valued Brownian Motion Bt and a stochastic
process Xt that solves the SDE

dXt = b(Xt) dt+ σ(Xt) dBt

with initial distribution Law(X0) = p0(x) dx. Then there exists a density p : [0,∞) × Rd −→
[0,∞) so that Law(Xt) = p(t, x) dx and p is a weak solution to the Fokker Planck Equation

∂tp(t, x) = −∂xj (bj(x)p(t, x)) +
1

2
∂xj∂xi(σ

j
k(x)σ

k
i (x)p(s, x)) (A.6)

p(0, x) = p0(x) dx. (A.7)
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Proof. Clearly P(Xt ∈ A) = 0 if
´
A dx = 0 for all measurable A ⊆ Rd, so Law(Xt) is absolutely

continuous with respect to dx for all t ≥ 0. Then the Radon-Nikodym theorem gives us the
function p(t, x). Since the process Xt is continuous and Gaussian we know that p is continuous
in t and x. Now let f : [0,∞) × Rd) be compactly supported and continuously differentiable
once in time and twice in space. An application of Ito’s formula yields

f(t,Xt)− f(0, X0) =

ˆ t

0
∂sf(s,Xs) ds+

ˆ t

0
∂xjf(s,Xs)(b

j(Xs) ds+ σji (Xs) dB
i(s))

+

ˆ t

0

1

2
∂xi∂xjf(s,Xs)σ

j
k(Xs)σ

k
i (Xs) ds.

Then ˆ
Rd
f(t, x)p(t, x)− f(0, x)p(0, x) dx = E [f(Xt)− f(X0)]

=

ˆ t

0

ˆ
Rd

[
∂sf(s, x) + ∂xjf(s, x)b

j(x) +
1

2
∂xi∂xjf(s, x)σ

j
k(x)σ

k
i (x)

]
p(s, x) dx ds.

Lemma A.4 (Uniqueness for Fokker-Planck Equation). [1, Thm. 9.8.9.] Fix T > 0 and µ0
be a measure on Rd. Let σ ∈ Rd×d be symmetric and b ∈ C(Rd,Rd) so that on any set of the
form Br(x0)× (0, T ) the continuity of b with respect to x is uniform in t. Then there exists at
most one family of measures {µt}t∈[0,T ] on Rd so that the following hold:

(i) For all 1 ≤ i ≤ d, ˆ T

0

ˆ
Rd

1

1 + |x|2
+
|bi|

1 + |x|
dµt(x) dt <∞.

(ii) The Fokker-Planck equation is solved weakly with initial data µ0, meaning that for any
f ∈ C∞

c ([0, T )× Rd) we have
ˆ T

0

ˆ
Rd

[
∂tf(t, x) + ∂xjf(t, x)b

j(x) +
1

2
∂xi∂xjf(t, x)σ

j
k(x)σ

k
i (x)

]
dµt(x) dt

=−
ˆ
Rd
f(0, x) dµ0(x).

Proof. This is merely a direct simplification of [1, Thm. 9.8.9.] to the case of a constant
diffusion matrix σ.

Lemma A.5. Let Fn be the n-th Fibonacci number and a, b ∈ R. For all p ∈ N≥1,∣∣ap − bp∣∣ ≤ Fp|a− b|(|a|+ |b|)p−1. (A.8)

Proof. We show this by induction on p.

• Case p = 1: This is trivial ∣∣a− b∣∣ ≤ F1|a− b|(|a|+ |b|)0.
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• Case p = 2: This is a binomial identity.∣∣a2 − b2∣∣ ≤ |a− b|(|a|+ |b|)
• Case p > 2: We assume (A.8) holds for p ≤ 2. Then∣∣ap − bp∣∣ = ∣∣(a+ b)(ap−1 − bp−1)− ab (ap−2 − bp−2)

∣∣
≤ (|a|+ |b|)Fp−1|a− b|(|a|+ |b|)p−2 + (|a|+ |b|)2Fp−2|a− b|(|a|+ |b|)p−3

≤ (Fp−1 + Fp−2)|a− b|(|a|+ |b|)p−1.
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