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ABSTRACT. Many boundary value problems for semilinear elliptic partial differential
equations allow very stable numerical computations of approximate solutions, but are
still lacking analytical existence proofs. In the present article, we propose a method
which exploits the knowledge of a “good” numerical approximate solution, in order to
provide a rigorous proof of existence of an exact solution close to the approximate one.
This goal is achieved by a fixed-point argument which takes all numerical errors into
account, and thus gives a mathematical proof which is not “worse” than any purely
analytical one. The method is used to prove existence and multiplicity statements for
some specific examples, including cases where purely analytical methods had not been
successful.
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1. Introduction

Semilinear elliptic differential equations of the form
—Au(x) 4+ f(z,u(x)) =0 (x € Q) (1)

(with Q C R™ denoting some given domain, and f : 2 x R — R some given nonlinearity),
together with boundary conditions, e.g. of Dirichlet type

u(x) =0 (x € 09), (2)

have been (and still are) extensively studied in the differential equations literature. Such
semilinear boundary value problems have a lot of applications e.g. in Mathematical
Physics, and often serve as model problems for more complex mathematical situations,
and last but not least, they form a very exciting and challenging object for purely math-
ematical investigations. Starting perhaps with Picard’s successive iterations at the end
of the 19*" century, various analytical methods and techniques have been (and are being)
developed to study ezistence and multiplicity of solutions to problem (1), (2), such as
variational methods (including mountain pass methods), index and degree theory, mono-
tonicity methods, fixed-point methods, and more; see e.g. [2]-[6], [12]-[14], [18]-][21],
125, 26, 30, 31, 33, 34, 36], [39]-[41], [43, 44, 55, 61], and the references therein.

In this article, we want to report on a supplement to these purely analytical methods by a
computer-assisted approach, which in the recent years has turned out to be successful with
various examples where purely analytical methods have failed. In spite of many numeri-
cal calculations involved, the existence and multiplicity proofs given by our method are
completely rigorous and not “worse” than any other proof. One might ask if (systematic
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or accidental) hardware errors could spoil the correctness of a computer-assisted proof,
but the probability of the permanent occurrence of such errors can be made very small
by use of different hardware platforms and by repeating the computations many times.
Of course, some uncertainty concerning the correctness of the hardware actions or of the
program codes remains, but is this uncertainty really larger than the uncertainty attached
to a complex “theoretical” proof?

Recently, various mathematical problems have been solved by computer-assisted proofs,
among them the Kepler conjecture, the existence of chaos, the existence of the Lorenz
attractor, the famous four-colour problem, and more.

In many cases, computer-assisted proofs have the remarkable advantage (compared with
a “theoretical” proof) of providing accurate quantitative information. Coming back to
our approach concerning problem (1), (2), such quantitative information is given in form
of tight and explicit bounds for the solution.

We start with an approzimate solution w to (1), (2), which can be obtained by any nu-
merical method which gives approximations in the function space needed (to be specified
later). In this first step, there is no need for any mathematical rigor, and the field is open
for the whole rich variety of modern numerics.

Next, we use a Newton-Cantorovich-type argument to prove the existence of a solution
to (1), (2) in some “close” and “explicit” neighborhood of w. For this purpose, we con-
sider the boundary value problem for the error v = u — w and rewrite it as a fixed-point
equation

velX, v="Tv (3)

in a Banach space X, which we treat by some fixed-point theorem. More precisely, we aim
at Schauder’s fixed-point theorem if compactness is available (which essentially requires
the domain  in (1) to be bounded), or at Banach’s fixed-point theorem (if we are ready
to accept an additional contraction condition; see (17) below). The existence of a solution
v* of (3) in some suitable set V' C X then follows from the fixed-point theorem, provided
that

TV CV. (4)

Consequently, u* : = w + v* is a solution of (1), (2) (which gives the desired existence
result), and the statement “u* € w4+ V7 (implied by v* € V') gives the desired bounds,
or enclosures, for u*.

So the crucial condition to be verified, for some suitable set V', is (4). Restricting ourselves
to norm balls V' (centered at the origin), we find that (4) results in an inequality involv-
ing the radius of V', and various other terms generated by the “data” of our problem (1),
and by the numerical approximation w. All these terms are computable, either directly
or via additional computer-assisted means (like the eigenvalue bounds discussed briefly
in Section 3.3). In these computations (in contrast to the computation of w mentioned
above), all possible numerical errors have to be taken into account, in order to be able to
check the aforementioned inequality (implying (4)) with mathematical rigor. For exam-
ple, remainder term bounds need to be computed when quadrature formulas are applied,
and interval arithmetic [35, 57] is needed to take rounding errors into account.

Computer-assisted means for obtaining enclosures for solutions to elliptic partial differen-
tial equations have been proposed by Collatz [16, 17] already more than 50 years ago. He
used maximum-principle-type arguments to obtain two-sided bounds for the error function
u—w, with w denoting a numerical C*—approximation. Schroder [58]-[60], Walter [62] and

2



others generalized these ideas, which resulted in the method of differential inequalities.
It was successfully applied to many examples with first or second order ordinary differen-
tial equations, or with second order elliptic or parabolic differential equations. However,
there are drawbacks of differential inequalities methods concerning the size of the class
of problems (1), (2) to which they can be applied: At least for obtaining “tight” solution
enclosures, all eigenvalues of the linearization L of (1), (2) at w need to be positive, which
excludes many interesting situations. Furthermore, differential inequalities techniques
are essentially restricted to first- and second-order problems (with the exception of some
fourth-order problems which can be handled as second-order systems). In contrast, the
enclosure method proposed in this article requires the eigenvalues of the linearization L
to be non-zero only (which is checked by eigenvalue enclosures), and at least in principle
it can be used for elliptic problems of any (even) order; see also the remarks at the end
of Section 2.

An existence and enclosure method similar to ours has been developed by Nakao and
his group [46]-[48]. This approach avoids the computation of eigenvalue enclosures for
L, which constitutes a significant advantage in some cases. Instead, a finite-dimensional
projection of L is used, and treated by well-established means of verifying numerical linear
algebra. However, also the (infinite-dimensional) projection error needs to be bounded in
a suitable way, which is well possible for “simple” domains €2, but problematic e.g. for
unbounded domains.

Another more recent approach is based on the Conley index and the numerical verification
of corresponding topological conditions; it is suited for proving the existence of stationary
solutions for certain classes of problems, as well as for detecting global dynamics (see e. g.
22, 29]).

For ordinary differential equation problems (possibly originating from a partial differen-
tial equation after symmetry reductions), many existence and enclosure methods can be
found in the literature, which we will not address in this article.

2. Abstract formulation

It turns out to be useful to explain the basics of our computer-assisted approach first for
the following abstract problem:
Find u € X satisfying F(u) =0, (5)

with (X, (-,-,)x) and (Y, (-, -)y) denoting two real Hilbert spaces, and F : X — Y some
Fréchet differentiable mapping.

Let w € X denote some approzimate solution to (5) (computed e.g. by numerical means),
and

L=F(w): X —>Y (6)

the Fréchet derivative of F at w, i.e. L € B(X,Y’) (the Banach space of all bounded linear
operators from X to Y), and

1
lim —— ||F(w+h)—F(w)— Llhl|ly =0.
heX\{0} ||h||X
h—0

Suppose that we know constants 0 and K, and a non-decreasing function ¢ : [0,00) —
[0, 00) such that

[F(@)lly <9, (7)
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i.e. 0 bounds the defect (residual) of the approximate solution w to (5),

llullx < K ||L[ul]|ly for all u € X, (8)
i.e. K bounds the inverse of the linearization L,
17 (w +u) = F(w)llsexy) < g(llullx) for all u € X, (9)
i.e. g majorizes the modulus of continuity of 7’ at w, and
g(t) - 0ast—0 (10)

(which in particular requires F’ to be continuous at w).

The concrete computation of such §, K, and ¢ is the main challenge in our approach, with
particular emphasis on K. We will however not address these questions in this section,
i.e. on the abstract level, but postpone them to the more specific case of the boundary
value problem (1), (2), to be treated in the following sections. For now, we assume that
(7) - (10) hold true.

In order to obtain a suitable fixed-point formulation (3) for our problem (5), we will need
that the operator L is onto. (Note that L is one-to-one by (8).) For this purpose, we
propose two alternative ways, both suited for the later treatment of problem (1), (2).

1) “The compact case”. Suppose that F admits a splitting
F=Ly+G (11)

with a bijective linear operator Ly € B(X,Y) and a compact and Fréchet differentiable
operator G : X — Y with compact Fréchet derivative G'(w).

Noting that Ly’ € B(Y,X) by the Open Mapping Theorem, we find that the linear
operator

Ly'G (w) : X — X is compact.
Moreover, since L = Ly + G'(w) by (11), we have the equivalence
Liul=r e u+ (Ly'G'(w)) [u] = Ly'[r] (12)

for every u € X,r € Y. Fredholm’s Alternative Theorem for compact linear operators
tells us that the equation on the right of (12) has a unique solution u € X for every r € Y,
provided that the homogeneous equation (r = 0) admits only the trivial solution u = 0.
By the equivalence (12), the same is true for the equation L[u] = r. Since the homoge-
neous equation L{u] = 0 indeed admits only the trivial solution by (8), L is therefore onto.

2) “The dual and symmetric case”. Suppose that Y = X', the (topological) dual of X,
i.e. the space of all bounded linear functionals [ : X — R. X’(= B(X,R)) is a Banach
space endowed with the usual operator sup-norm. Indeed, this norm is generated by an
inner product (which therefore makes X’ a Hilbert space) as explained in the following:
Consider the linear mapping ® : X — X’ given by

(®lu))[v] := (u,v)x (u,v € X). (13)
For all u € X,
ol = sup WD, Moy
vex\oy  lvllx vex\fop  |[vllx

i.e. ® is an isometry (and hence one-to-one).
Furthermore, ® is onto by Riesz’ representation theorem for bounded linear functionals on
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a Hilbert space: Given any r € X’  some (unique) u € X exists such that r[v] = (u, v)x for
allv € X, i.e. ®lu] =r by (13). ® is therefore called the canonical isometric isomorphism
between X and X'. It immediately gives an inner product on X’ by

(r,s)xr == (7 [r],® ' [s]) x (r,s e X'), (14)

and the norm generated by this inner product is the “old” norm | - || x/, because ® is
isometric.

In theoretical functional analysis, the Hilbert spaces X and X’ are often identified via the
isometric isomorphism @, i.e. they are not distinguished, which however we will not do
because this might lead to confusion when X is a Sobolev function space, as it will be later.

To ensure that L : X — Y = X’ is onto, we make the additional assumption that
O 1L . X — X is symmetric with respect to (-,-)x, which by (13) amounts to the
relation

(L[u))[v] = (L[v])[u] for all u,v € X. (15)
This implies the denseness of the range (®7'L)(X) C X : Given any u in its orthogonal
complement, we have, for all v € X,
0= (u, (27'L)v])x = ((27'L)[u], v)x.

and hence (®71L)[u] = 0, which implies L[u] = 0 and thus u = 0 by (8).

Therefore, since ® is isometric, the range L(X) C X' is dense. For proving that L is onto,
we are therefore left to show that L(X) C X’ is closed. For this purpose, let (L[u,])nen
denote some sequence in L(X) converging to some r € X’. Then (8) shows that (u,)nen
is a Cauchy sequence in X. With u € X denoting its limit, the boundedness of L implies
Llu,| — L[u] (n — o0). Thus, r = L[u] € L(X), which proves closedness of L(X).

We are now able to formulate and prove our main theorem, which is similar to the Newton-
Cantorovich-Theorem:

Theorem 1: Let 0, K, g satisfy conditions (7) - (10). Suppose that some o > O exists
such that

§< = —G(a), (16)

a

K

where G(t) := f(fg(s)ds. Moreover, suppose that
1) “the compact case” is at hand,

. 2) “the dual and symmetric case” is at hand, and the additional condition
Kg(a) <1 (17)
holds true.
Then, there exists a solution u € X of the equation F(u) = 0 satisfying
lu —w|x < a. (18)

Remark 1: a) Due to (10), G(t) = f(fg(s)ds is superlinearly small as t — 0. Therefore,
the crucial condition (16) is indeed satisfied for some “small” « if K is “moderate” (i.e.
not too large) and ¢ is sufficiently small, which means according to (7) that the approx-
imate solution w to problem (5) must be computed with sufficient accuracy, and (16)
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tells us how accurate the computation has to be. This meets the general philosophy of
computer-assisted proofs: The “hard work” of the proof is left to the computer!

b) For proving Theorem 1, we will use the (abstract) Green’s operator L' to re-formulate
problem (5) as a fixed-point equation, and apply some fixed-point theorem. If the space
X were finite-dimensional, Brouwer’s Fixed-Point Theorem would be most suitable for
this purpose. In the application to differential equation problems like (1), (2), however,
X has to be infinite-dimensional, whence Brouwer’s Theorem is not applicable. We have
two choices: i) Either we can use the generalization of Brouwer’s Theorem to infinite-
dimensional spaces, i.e. Schauder’s Fixed-Point-Theorem, which explicitly requires addi-
tional compactness properties (holding automatically in the finite-dimensional case). In
our application to (1), (2) discussed later, this compactness is given by compact embed-
dings of Sobolev function spaces, provided that the domain €2 is bounded (or at least has
finite measure). Since we want to include unbounded domains in our consideration, too,
we make also use of the second option: ii) We can use Banach’s Fixed-Point Theorem.
No compactness is needed then, but instead an additional contraction condition (which
is condition (17)) is required. Due to (10), this condition is however not too critical if «
(computed according to (16)) is “small”.

Proof of Theorem 1. We rewrite problem (5) as
Llu —w] = =F(w) = {F(u) = Fw) = Llu — w]},
which due to the bijectivity of L amounts to the equivalent fixed-point equation
veEX, v=—L"[F(w)+{Flw+v) - Fw)— L]} = Tw) (19)

for the error v = u — w.
Now we are going to show the following properties of the fixed-point operator T': X — X:

i) T'(V) C V for the closed, bounded, non-empty, and convex norm ball
Vi={veX:|v[|x <a},

ii) T is continuous and compact (in case 1)) or contractive on V' (in case 2)), respec-
tively.
Then, Schauder’s Fixed-Point Theorem (in case 1)) or Banach’s Fixed-Point Theorem (in
case 2)), respectively, gives a solution v* € V of the fixed-point equation (19), whence by
construction u* := w + v* is a solution of F(u) = 0 satisfying (18).

For proving i) and ii), we first note that for every differentiable function f : [0,1] — Y, the

real-valued function || f||y is differentiable almost everywhere on [0, 1], and (d/dt)|| f|ly <
Il f'lly a.e. on [0,1]. Hence, for every v,0 € X,

|IF(w+wv)— F(w+0)—Lv—"70]|y

1
d
:/ 7 | Flw+ (1= )0+ tv) = Flw+7) — tLlv = Tllly dt
0
1
< [ IF @+ =5+~ Ly 3l
0
1
S/ | F'(w+ (1 — )0+ tv) — L||gx,yy dt - ||v — 0| x
0

< / gl (1 = )5+ toll ) di - o — 5]]x, (20)
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using (6) and (9) in the last step. Choosing © = 0 in (20) we obtain, for each v € X,

llollx

|F(w+ ) — Flw) - L[y < / g(tlollx)dt - Jollx = / g(s)ds = G(Ju]lx). (21)

Furthermore, (20) and the fact that g is non-decreasing imply, for all v, 0 € V/,

1
[Flw+v) = Flw+0) = Lv=10llly < / g((1=)[ollx +tllvlx)dt - [lv — o x
0
< gla)llv—2]x. (22)
To prove i), let v € V, ie. |[v]|x < a. Now (19), (8), (7), (21), and (16) imply

IT)lx < K[Fw)+{Flw+v)—-Fw) - Liv]}Hy
< K@+ G(vllx) £ KO0+ G(a) <o
which gives T'(v) € V. Thus, T(V) C V.

For proving ii), suppose first that “the compact case” is at hand. So (11), which in
particular gives L = Ly + G'(w), and (19) imply

T(w)=—L"F(w)+{Gw+v)—Gw)—Gw)n]} forallve X,

whence continuity and compactness of T follow from continuity and compactness of G
and G'(w), and the boundedness of L~! ensured by (8).

If the “dual and symmetric case” is at hand, (19), (8), and (22) imply, for v,0 € V,
IT(w) =T@)lx = [LTHF(w+v)—Flw+19) — Lv—0}|x
< K|F(w+v) = Flw+10) = Llv =0y < Kgla)|lv-17|x,

whence (17) shows that T' is contractive on V. This completes the proof of Theorem 1.
(]

In the following two sections, we will apply the abstract approach developed in this sec-
tion to the elliptic boundary value problem (1), (2). This can be done in (essentially
two) different ways, i.e. by different choices of the Hilbert spaces X and Y, resulting in
different general assumptions (e.g. smoothness conditions) to be made for the “data” of
the problem and the numerical approximation w, and different conditions (7) - (9), (16),
(17), as well as different “results”, i.e. existence statements and error bounds (18).

At this point, we want to report briefly on some other applications of our abstract setting
which we cannot discuss in more detail in this article.

For parameter-dependent problems (where F in (5), or f in (1), depends on an additional
parameter \), one is often interested in branches (uy)xes of solutions. By additional per-
turbation techniques, our method can indeed be generalized to computer-assisted proofs
for such solution branches, as long as the parameter-interval I defining the branch is com-
pact [51]. Such branches may however contain turning points (where a branch “returns”
at some value \*) or bifurcation points (where several -usually two- branches cross each
other). Near such points, the operator L defined in (6) is “almost” singular, i.e. (8) holds
only with a very large K, or not all all, which makes our approach break down. However,
there are means to overcome these problems:
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In case of (simple) turning points, the well-known method of augmenting the given equa-
tion by a bordering equation can also be used here; the “new” operator F in (5) contains
the “old” one and the bordering functional, and the “new” operator L is regular near the
turning point if the bordering equation has been chosen appropriately [50].

In case of (simple) symmetry-breaking bifurcations, we can, in a first step, include the
symmetry in the spaces X and Y, which excludes the symmetry-breaking branch and reg-
ularizes the problem, whence an existence and enclosure result for the symmetric branch
can be obtained. In a second step, we exclude the symmetric branch by some transfor-
mation (similar to the Lyapunov-Schmidt reduction), and defining a corresponding new
operator F we can perform our method to obtain an existence and enclosure result also
for the symmetry-breaking branch [52].

Non-selfadjoint eigenvalue problems have been treated in [38], again using bordering equa-
tion techniques normalizing the unknown eigenfunction. So F now acts on pairs (u, \),
and is defined via the eigenvalue equation and the (scalar) normalizing equation. In this
way, we were able to give the first known instability proof of the Orr-Sommerfeld equation
with Blasius profile, which is a fourth-order ODE eigenvalue problem on [0, 00).

Also (other) higher order problems are covered by our abstract setting. In [11], we could
prove the existence of 36 travelling wave solutions of a fourth-order nonlinear beam equa-
tion on the real line. Biharmonic problems (with AAwu as leading term) are presently
investigated by B. Fazekas; see also [23].

3. Strong solutions

Now we study the elliptic boundary value problem (1), (2) under the additional assump-
tions that f and df/dy are continuous on  x R, and that the domain Q C R" (with
n < 3) is bounded with Lipschitz boundary, and H?-regular (i.e., for each r € L*(Q), the
Poisson problem —Au = r in 2, u = 0 on 99 has a unique solution v € H*(Q) N H;()).

Here and in the following, L?(Q2) denotes the Hilbert space of all (equivalence classes of)
square-integrable Lebesgue-measurable functions on €2, endowed with the inner product

(u,v)p2 == / uv dx,
0

and H*(2) is the Sobolev space of all functions u € L*(Q) with weak derivatives up to
order k in L?(Q2). H*(Q) is a Hilbert space with the inner product

(u,v) gr 1= Z (D%, D) 2,

aeNg
la| <k

and it can also be characterized as the completion of C*°()) with respect to (-, ) . If we
replace here C°°(Q) by C5°(Q) (with the subscript 0 indicating compact support in ),
we obtain, by completion, the Sobolev space H¥(Q), which incorporates the vanishing of
all derivaties up to order k — 1 on 02 in a weak sense.

We note that piecewise C*-smooth functions u (e.g. form functions of Finite Element

methods) belong to H*(Q) if and only if they are (globally) in C*~1(0Q).



Our assumption that  is H?-regular is satisfied e.g. for C?- (or C11-)smoothly bounded
domains (see e.g. [27]), and also for conver polygonal domains 2 C R? [28]; it is not sat-
isfied e.g. for domains with re-entrant corners, like the L-shaped domain (—1,1)?\ [0, 1)2.

Under the assumptions made, we can choose the spaces
X = H*(Q)NH)(Q), Y :=L*Q), (23)
and the operators
F:=Lo+ G, Lo[u] == —Au, G(u) = f(-,u), (24)

whence indeed our problem (1), (2) amounts to the abstract problem (5). Moreover,
Ly : X — Y is bijective by the assumed unique solvability of the Poisson problem, and
clearly bounded, ie. in B(X,Y). Finally, G : X — Y is Fréchet differentiable with
derivative given by

(o] = %(~,u)v, (25)

which follows from the fact that G has this derivative as an operator from C(£2) (endowed
with the maximum norm | - || ) into itself, and that the embeddings H?(Q2) — C(Q)
and C(Q) — L%*(Q) are bounded. In fact, H2(Q2) — C(Q) is even a compact embedding
by the famous Sobolev-Kondrachev-Rellich Embedding Theorem [1] (and since n < 3),
which shows that G and G'(u) (for any v € X) are compact. Thus, “the compact case”
(see (11)) is at hand.

For the application of Theorem 1, we are therefore left to comment on the computation
of constants § and K, and a function g which satisfy (7) - (10) (in the setting (23), (24)).
But first, some comments on the computation of the approximate solution w should be
made.

3.1. Computation of w. Since w is required to be in X = H?(Q) N H}(Q), it has to
satisfy the boundary condition eractly (in the sense of being in H}(Q2)), and it needs to
have weak derivatives in L?(Q) up to order 2. If Finite Elements shall be used, this implies
the need for C'-elements (i.e. globally C'-smooth Finite Element basis functions), which
is a drawback at least on a technical level. (In the alternative approach proposed in the
next section, this drawback is avoided.) If Q = (0,a) x (0,b) is a rectangle, there are
however many alternatives to Finite Elements, for example polynomial or trigonometric
polynomial basis functions. E.g. in the latter case, w is put up in the form
N M - -
.. X1\ . . T2
w(xy, xg) = ; 2 a;j sin (m » ) sin (]7? b ) : (26)
with coefficients «;; to be determined by some numerical procedure. Such a procedure
usually consists of a Newton iteration, together with e.g. a Ritz-Galerkin or a collocation
method, and some linear algebraic system solver, which possibly incorporates multigrid
methods. To start the Newton iteration, a rough initial approximation is needed, which
can e.g. be obtained by path-following methods, or by use of the numerical mountain
pass algorithm proposed in [15].

An important remark is that, no matter how w is put up or which numerical method is
used, there is no need for any rigorous (i.e. error free) computation at this stage, i.e. the
whole variety of numerical methods is at hand.
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3.2. Defect bound 6. Computing some § satisfying (7) means, due to (23) and (24),
computing an upper bound for (the square root of)

/Q —Aw + (W) da (27)

(which should be “small” if w is a “good” approximate solution). In some cases this
integral can be calculated in closed form, by hand or by computer algebra routines, for
example if f is polynomial and w is piecewise polynomial (as it is if Finite Element meth-
ods have been used to compute it), or if f(z,-) is polynomial and both f(-,y) and w are
trigonometric polynomial (compare (26)). The resulting formulas have to be evaluated
rigorously, to obtain a true upper bound for the integral in (27). For this purpose, interval
arithmetic [35, 57] must be used in this evaluation, in order to take rounding errors into
account.

If closed form integration is impossible, a quadrature formula should be applied, possibly
piecewise, to the integral in (27), again with evaluation in interval arithmetic. To obtain
a true upper bound for the integral, we need in addition a remainder term bound for the
quadrature formula, which usually requires rough ||-||.o-bounds for some higher derivatives
of the integrand. Such rough bounds can be obtained e.g. by subdividing §2 into (many)
small boxes, and performing interval evaluations of the needed higher derivatives over
each of these boxes (which gives true supersets of the function value ranges over each of
the boxes, and thus, by union, over §2).

3.3. Bound K for L~!. The next task is the computation of a constant K satisfying
(8), which due to (23) - (25) means

|ul| g2 < K||L[u]||z2 for all uw € H*(2) N Hy(£2), (28)
where L : H*(Q) N HY(Q)) — L*(Q) is given by
Liu] = =Au + cu, c(x) = g—g(x,w(x)) (z € Q). (29)

The first (and most crucial) step towards (28) is the computation of a constant Ky such
that

llullzz < Kol|Llu]||z2 for all u € HQ(Q) N Hg(Q) (30)

Choosing some constant lower bound ¢ for ¢ on Q, and using the compact embedding
H?(Q) — L*(Q), we find by standard means that (L — ¢)~! : L?*(Q) — L%*(Q) is com-
pact, symmetric, and positive definite, and hence has a (-, -) r2-orthonormal and complete
system (¢ )ren of eigenfunctions ¢ € H?(Q) N HY (), with associated sequence (uy)ren
of (positive) eigenvalues converging monotonically to 0. Consequently, L{yx] = Ay for
k € N, with A\, = p;;* + ¢ converging monotonically to +o0o. Series expansion yields, for
every u € H?(Q) N HY(Q),

IL[u]lI7: = Z ,ox)7 zzuLsok ZA U, Pk)7
k=

2 2 g2 2
> (I;IlelélA) (u, )72 = (f}lelél)‘j) [ulZ2,
which shows that (30) holds if (and only if) A; #0 for all j € N, and
> (min |\]) 7!
Ko 2 (min|A])™" (31)
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Thus, bounds for the eigenvalue(s) of L neighboring 0 are needed to compute Ky. Such
etgenvalue bounds can be obtained by computer-assisted means of their own. For example,
upper bounds to A1,..., Ay (with N € N given) are easily and efficiently computed by
the Rayleigh-Ritz method [56]:

Let ¢1,...,¢n € H*(Q)N HL(Q) denote linearly independent trial functions, for example
approximate eigenfunctions obtained by numerical means, and form the matrices

Ay = ((L[@i], §5) 12)ij=1,..n, Ao = ((Pi, Pj)12)ij=1,..N-
Then, with A; < --- < Ay denoting the eigenvalues of the matrix eigenvalue problem
Az = ANAox

(which can be enclosed by means of verifying numerical linear algebra; see [8]), the
Rayleigh-Ritz method gives

AN <Ajfori=1,...,N.

However, for computing Ky via (31), also lower eigenvalue bounds are needed, which con-
stitute a more complicated task than upper bounds. The most accurate method for this
purpose has been proposed by Lehmann [42], and improved by Goerisch concerning its
range of applicability [9]. Its numerical core is again (as in the Rayleigh-Ritz method)
a matrix eigenvalue problem, but the accompanying analysis is more involved. In most
cases, the Lehmann-Goerisch method must be combined with a homotopy method con-
necting the given eigenvalue problem to a simple “base” problem with known eigenvalues.
A detailed description of these methods would be beyond the scope of this article. In-
stead, we refer to [53] for more details.

Once a constant K satisfying (30) is known, the desired constant K (satisfying (28)) can
relatively easily be calculated by explicit a priori estimates: With ¢ denoting a constant
lower bound for ¢, we obtain by partial integration, for each u € H?(2) N Hy (),

lullz2 | L[u]ll 22 = (u, Llu])r2 = /Q(IVU|2 +cu®)de > ||Vull7z + cflull7.,
which implies, together with (30), that

v/ Ko(l — cK, if cKy <1
IVul|ze < K|l Lfull|ze, where £ ::{ ol —cko) i cRo S50 g,

1 .
5% otherwise

To complete the H?bound required in (28), we need to estimate the L?-norm of the
(Frobenius matrix norm of the) Hessian matrix u,, of u € H*(Q) N H} (). If Q is convex
(as we shall assume now), we have

ez 22 < |[Aul|r2 for all w € H*(Q) N H(Q) (33)

(see e.g. [28, 37]); for the non-convex case, we refer to [28, 49]. Now, with ¢ denoting an
additional upper bound for ¢, we choose y := max{0, 2(c + ¢)}, and calculate

[Aullz < || = Au+ pul| 2 < [[Lulll 2 + (|1 = ¢lloolull 22-
Using that || — ¢||c = max{—c, (¢ — ¢)}, and combining with (30), we obtain
1
|Aul|r2 < Ks||Llul||2, where Ky =1+ Kymax{—c, 5(6— o)} (34)

11



Now, (30), (32), (34) give (28) as follows. For quantitative purposes, we use the modified
inner product

(u, v) g2 = yo(u, v) 12 + 1 (Vu, Vo) 12 + 2 (Au, Av) 2 (35)

(with positive weights ~o,v1,72) on X, which due to (33) (and to the obvious reverse
inequality |[Aullzz < v/n||luze|/z2) is equivalent to the canonical one. Then, (28) obviously
holds for

K = /K3 + 1K} + 1:K3, (36)
with Koy, K1, K» from (30), (32), (34).
3.4. Local Lipschitz bound g for F'. By (23), (24), and (25), condition (9) reads

[ﬁ(-,w +u) — ﬁ(,cu)] vl < g(|jullg2)||v]|gz for all u,v € H*(Q) N Hy(Q). (37)
Yy Yy 12
We start with a monotonically non-decreasing function g : [0, 00) — [0, 00) satisfying

of

(x,w(z)+y)— ﬁ(av,uj(av)) < g(ly|) for all z € 2, y € R, (38)

Ay dy

and g(t) — 0 as t — 0+. In practice, such a function g can usually be calculated by hand,
if a bound for ||w|| is available, which in turn can be computed by interval evaluations
of w over small boxes (as described at the end of Subsection 3.2).

Using g, the left-hand side of (37) can be bounded by

g(lullse) [0z, (39)

whence we are left to estimate both the norms || - ||z2 and || - | by ||« ||z2. With p*
denoting the smallest eigenvalue of

—Au = pu, u € H*(Q) N Hy (),
we obtain by eigenfunction expansion that
IVullFe = (u, =Au)rz > p*[lull 72, [[AulFe > (p7)?ull7e,
and thus, by (35),
lull2 < (o + 71" + 72(p")?) "% |ull g for all w € H?(2) N Hy (). (40)

Furthermore, in [49, Corollary 1], we calculate constants Cy, Cy, Cy, which depend on €
in a rather simple way allowing explicit computation, such that

uloo < Collullz2 + C1l|Vullz2 + Colltige|| 2 for all u € H*(Q) N Hy(£2),
whence by (33) and (35) we obtain

lulloe < [ CE + 47 C 4+ CB] [lull s for all w € HAQ) N HYQ).  (41)
Using (40) and (41) in (39), we find that (37) (and (10)) hold for
9(t) 1= o+ mp" + (0?4 ([167 €+ 7' C + 5 CF] 7 ). (42)

Remark 2: Via (36) and (42), the parameters g, 71,72 enter the crucial inequality
(16). One can choose these parameters in order to minimize the error bound « (under
some normalization condition on (vo,71,72), €8 Y0 + 71 + 72 = 1), or to maximize
max{a/K — G(«a) : a > 0} (to allow a larger defect bound ¢ in (16)). Of course, this
optimization need only be carried out approximately.
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3.5. A numerical example. Consider the problem
Au+u? = s - sin(mzy) sin(7zy) (7 = (21, 22) € Q= (0,1)%), u= 0 on 9Q. (43)

The results reported here have been established in [10] in joint work with P. J. McKenna
and B. Breuer.

It had been conjectured in the PDE community since the 1980’s that problem (43) has
at least 4 solutions for s > 0 sufficiently large.

For s = 800, we were able to compute 4 essentially different approximate solutions by the
numerical mountain pass algorithm developed in [15], where “essentially different” means
that none of them is an elementary symmetry transform of another one. Using finite
Fourier series of the form (26), and a Newton iteration in combination with a collocation
method, we improved the accuracy of the mountain pass solutions, resulting in highly
accurate approximations wy, . . .,w, of the form (26).

We applied our computer-assisted enclosure method to each of these four approxima-
tions, and were successful in verifying the corresponding four inequalities (16), with four

error bounds aq,...,ay. Therefore, Theorem 1 guarantees the existence of four solutions
Uy, ..., uy € HX(Q) N H}(Q) of problem (43) such that
|wi — willgz < i (i =1,...,4).

Using the embedding inequality (41), we obtain in addition
lu; — willoo < G; (1 =1,...,4) (44)

for B; = [, 'C2 + 747 'C? + v, 'C2]2¢;. Finally, it is easy to check on the basis of the
numerical data that

||SW’L _Wj“oo > 5@ _I_ﬁ? (Z’] = 1a . 'a47 i 7&])
for each elementary (rotation or reflection) symmetry transformation S of the square 2,
whence (44) shows that Su; # u; (4,5 = 1,...,4, i # j) for each of these S, i.e. that
Uy, ..., us are indeed essentially different.

The following Figure 1 shows plots of w1, ..., w, (we might say as well: of uy, ..., uy, since
the error bounds (; are much smaller than the “optical accuracy” of the figure). The
first two solutions are fully symmetric (with respect to reflection at the axes z1 = 5, 2o =
%, 1 = Tg,x1 = 1 — x9), while the third is symmetric only with respect to xs = =, and
the fourth only with respect to xq = xo.

Table 1 shows the defect bounds ¢ (see (7), (27)), the constants K satisfying (8) (or (28)),
and the || - ||s-error bounds 3 (see (44)) for the four solutions.

1
27
1
bR

We wish to remark that, two years after publication of our result, Dancer and Yan [21]
gave a more general analytical proof (which we believe was stimulated by our result); they
even proved that the number of solutions of problem (43) becomes unbounded as s — oo.

Figure 1: Four solutions to problem (43), s = 800.
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approximate solution | defect bound ¢ | K (see (28)) | error bound (3
Wy 0.0023 0.2531 5.8222-1071
wa 0.0041 4.9267 0.0228
w3 0.0059 2.8847 0.0180
Wy 0.0151 3.1436 0.0581

Table 1: Enclosure results for problem (43).

4. Weak solutions

We will now investigate problem (1), (2) under weaker assumptions on the domain 2 C R”
and on the numerical approximation method, but stronger assumptions on the nonlinear-
ity f, compared with the “strong solutions” approach described in the previous section.
Q is now allowed to be any (bounded or unbounded) domain with Lipschitz boundary.
We choose the spaces

X = H{Q), Y == HY(Q) (45)

for our abstract setting, where H=1(Q) := (H}())" denotes the topological dual space of
HL(Q), i.e. the space of all bounded linear functionals on H}(Q). We endow H}(2) with
the inner product

(u,v) g = (Vu, Vo) 2 + o (u, v) 2 (46)

(with some parameter o > 0 to be chosen later), and H () with the “dual” inner prod-
uct given by (14), with ® from (13).

To interprete our problem (1), (2) in these spaces, we first need to define Au (for u €
H(£)), or more general, divp (for p € L*(2)"), as an element of H (). This definition
simply imitates partial integration: The functional divp : H}(Q) — R is given by

(divp)[¢] == — /p -V dr for all o € Hy(S2), (47)

implying in particular that |(divp)[e]] < [[pllzz|Vellze < [lpllzzll¢ll g2, whence divp is
indeed a bounded linear functional, and

[divollg-1 < o]l (48)

Using this definition of Au(= div(Vu)), it is easy to check that the canonical isometric
isomorphism @ : H}(Q) — H () defined in (13) is now given by (note (46))

Plu) = —Au + ou (u € HY(Q)), (49)

where ou € H}(Q) is interpreted as an element of H~*(Q) as explained in the following.

Next, we give a meaning to a function being an element of H~1(2), in order to define
f(-,u) in (1) (and ou in (49)) in H~1(Q). For this purpose, let £ denote the linear space
consisting of all (equivalence classes of) Lebesgue-measurable functions w : Q@ — R such
that

1
sup / lweldr : ¢ € Hy(Q)\ {0} 3 < oo. (50)
ol
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For each w € £, we can define an associated linear functional ¢, : H}(Q) — R by

lylp] = /wgpdw for all p € Hy(9).
0
{,, is bounded due to (50) and hence in H=Y(Q). Identifying w € L with its associated
functional £,, € H~1(£2), we obtain
L cC H(Q), (51)
and [|w| g-1 is less than or equal to the left-hand side of (50), for every w € L.

To get a better impression of the functions contained in £, we recall that Sobolev’s
Embedding Theorem [1, Theorem 5.4] gives H}(Q) C LP(€), with bounded embedding
Hg(Q) — LP(Q) (i.e. there exists some constant C, > 0 such that |[ufz» < Cpllul|g for
all u € H}(R2)), for each

2
pE[2,00)ifn=2, pE{Q,—nQ] if n > 3. (52)
n_

Here, LP(2) denotes the Banach space of all (equivalence classes of) Lebesgue-measurable
functions v : 2 — R with finite norm

5
llull e == /|u|pdx ) (53)
Q

With p in the range (52), and p’ denoting its dual number (i.e. p~'+(p')~! = 1), we obtain
by Hélder’s Inequality, combined with the above embedding, that for all w € L ()

/Iwwldw < wlizwllelizr < Collwll o lloll g
O

implying w € £, and ||w||g-: < Cpljw]||; . Consequently,
L’ (Q) c L, (54)
and (note (51)) the embedding L” () — H~'(Q) is bounded, with the same embedding

constant C, as in the “dual” embedding H}(2) — L?(Q). Note that the range (52) for p
amounts to the range

2n
'e(1.2]if n =2 fe |2 9| ifn>3 55
pe(1,2]if n=2, pé{n+2,}ln_ (55)

for the dual number p'.

By (54), the linear span of the union of all L” (), taken over p’ in the range (55), is a
subspace of £, and this subspace is in fact all of £ which we need (and can access) in
practical applications.

Coming back to our problem (1), (2), we now simply require that
fG,u) € L for all u € Hy(S2), (56)

in order to define the term f(-,u) as an element of H~1(Q).
Our abstract setting requires furthermore that

H&Q — H Y
f:{ 5) — _Aéjf@u) (57)

15



is Fréchet-differentiable. Since A : H(Q2) — H~Y(Q) is linear and bounded by (48), this
amounts to the Fréchet-differentiability of
J Ho(Q) — H7HQ)
g'{ w e [ (58)
For this purpose, we require (as in the previous section) that df/9dy is continuous on

0 x R. But in contrast to the “strong solutions” setting, this is not sufficient here; the
main reason is that H}(Q) does not embed into C(£2). We need additional growth restric-

tions on f(x,y) or (Of/0y)(x,y) as |y| — oo.

An important (but not the only) admissible class consists of those functions f which
satisfy

aof , :

G_y(.’ 0) is a bounded function on €, (60)
0 0
Sole) — Gon.0)| S il + eyl (£ € 0, yER) (61)

with non-negative constants c;, ¢y, and with

0<ri<ry<oo ifn=2, 0<ri<rg <

1 S ifn>3 (62)

(A “small” r; will make condition (61) weak near y = 0, and a “large” ry will make it
weak for |y| — 00.)

Lemma 1: Let [ satisfy (59) - (61), besides the continuity of 0f/Jy. Then G given by
(58) is well-defined and Fréchet-differentiable, with derivative G'(u) € B(HL(Q), H1(Q))
(for u € HX(Q)) given by

0
Gl = [ Ftwupar .0 € @) (63
Q
The proof of Lemma 1 is rather technical, and therefore omitted here.

According to (47) and (63), we have

F il = [ [w Yo+ Z—i(-,u>w¢] de = (F) ] (w ot € HAQ) (64)

for the operator F defined in (57), which in particular implies condition (15) (for any
w € H}(Q); note (6)), in the setting (45), (57). Thus, the “dual and symmetric case” (see
Section 2) is at hand.

Remark 3: If the domain € is bounded, several simplifications and extensions are possible:
a) The range o > 0 for the parameter in (46) can be extended to o > 0.
b) Condition (61) can be simplified to

af

8—y(x,y) <& +ély" (e, yeR) (65)

for some r in the range (62). Condition (60) is satisfied automatically and can therefore
be omitted.
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c) In the case n = 2, the power-growth condition (61) (or (65)) is too restrictive (for
bounded domains). Instead, exponential growth can be allowed, based on the Trudinger-
Moser inequality [45, Theorem 1 and the first part of its proof] which states that

! u(@) \’ | 1
meas({2) /exp (M) dr <1+ T2 — 1 (u € Hy(2)) (66)

Q

for each ¢ > (47)~%. In [54], we showed that e.g. in the case f(z,y) = —Ae¥, the Fréchet
differentiability (and other properties) of the mapping G defined in (58) can easily be
derived from (66); see also the second example in Subsection 4.5.

Again, we comment now on the computation of an approximate solution w, and of the
terms 9, K, and ¢ satisfying (7) - (10), needed for the application of Theorem 1, here in
the setting (45), (57).

4.1. Computation of w. By (45), w needs to be in X = H}(Q) only (and no longer
in H%(Q), as in the “strong solutions” approach of the previous Section). In the Finite
Element context, this increases the class of allowed elements significantly; for example, the
“usual” linear (or quadratic) triangular elements can be used. In case of an unbounded
domain €2, we are furthermore allowed to use approximations w of the form

wy on )

w:{ 0 onQ\Qo}’ (67)
with Qp C  denoting some bounded subdomain (the “computational” domain), and
wo € Hy () some approximate solution of the differential equation (1) on g, subject to
Dirichlet boundary conditions on 0€2.

We pose the additional condition of w being bounded, which on one hand is satisfied
anyway for all practical numerical schemes, and on the other hand turns out to be very
useful in the following.

4.2. Defect bound §. By (45) and (57), condition (7) for the defect bound § now
amounts to
| = Aw+ f(w)llg-1 <6, (68)

which is a slightly more complicated task than computing an upper bound for an integral
(as it was needed in Section 3). The best general way seems to be the following. First
we compute an additional approximation p € H(div, ) to Vw. (Here, H(div, §2) denotes
the space of all vector-valued functions 7 € L?(Q)" with weak derivative div 7 in L*(Q).
Hence, obviously H(div,Q) > HY(Q)".) p can be computed e.g. by interpolation (or
some more general projection) of Vw in H(div,Q), or in H'(2)". It should be noted that
p comes “for free” as a part of the approximation, if mized Finite Elements are used to
compute w.

Furthermore, according to the arguments before and after (54), applied with p = p’ = 2,
|w|z-1 < Collwl|rz for all w € L*(£2). (69)
For explicit calculation of Cy, we refer to the appendix. By (48) and (69),
= Aw+ f(w)llg— < div(=Vw +p)llg- + [| = dive + f(-,w)|[5—
< |[Vw = pllzz + Cafl = divp + f(-,w) |22, (70)
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which reduces the computation of a defect bound ¢ (satisfying (68)) to computing bounds
for two integrals, i.e. we are back to the situation discussed in Subsection 3.2 already.

There is an alternative way to compute ¢ if w is of the form (67), with wy € H?(p) N
H}(Qp), and with Qg having a Lipschitz boundary. This situation can arise e.g. if € is
the whole of R™, and the “computational” domain €2 is chosen as a “large” rectangle,
whence wy can be put up e.g. in the form (26).

Using partial integration on €2y, we obtain now

| =Aw+ f(,w)la— <

1

3 ow,
< Gy [l = Ao + £ w0) 2 + 1 0 3x@an] T+ Cor || 5

81/0

with Cy,. denoting a constant for the trace embedding H'(£y) — L?(9€)), the explicit
computation of which will be addressed in the appendix, and dwg/0vy the normal deriv-
ative on 0€).

, (T1)
L2(890)

4.3. Bound K for L~!. According to (45), condition (8) now reads
lullmy < K| L[u]l[- for all u € Hy(9), (72)
with L, defined in (6), now given by (note (57), (58))
L=-A+G(w): Hj(Q) — H ().
Under the growth conditions (59) - (62), Lemma 1 (or (63)) shows that, more concretely,

GENEY [w-vw%«,ww dr (0 H(Q): (73)

the same formula holds true also in the exponential case mentioned in Remark 3c). So
we will assume from now on that L is given by (73).
Making use of the isomorphism ® : H}(Q) — H~1(Q) given by (13) or (49), we obtain

ILulllz-r = |97 Llulllgy  (u € Hy()).

Since moreover ®'L is (-, ) g1 —symmetric by (73) and (15), and defined on the whole
Hilbert space H;(f2), and hence selfadjoint, we find that (72) holds for any

K > [min {|\| : X is in the spectrum of ® 'L}, (74)

provided that the min is positive (which is clearly an unavoidable condition for &1L
being invertible with bounded inverse). Thus, in order to compute K, we need bounds
for

i) the essential spectrum of ®~ 'L (i.e. accumulation points of the spectrum, and eigen-
values of infinite multiplicity),

ii) isolated eigenvalues of ®~!'L of finite multiplicity, more precisely those neighboring 0.

ad i) If Q is unbounded, we suppose again that w is given in the form (67), with some
bounded Lipschitz domain €y C Q. If € is bounded, we may assume the same, simply
choosing 2y := Q (and wy = w).

Now define Ly : H}(Q) — H Q) by (73), but with (0f/0y)(x,w(x)) replaced by
(0f /0y)(x,0). Using the Sobolev/Kondratchev/Rellich Embedding Theorem [1], imply-
ing the compactness of the embedding H'(Qy) — L?*(), we find that &1L — &1L, :
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HNQ) — H(Q) is compact. Therefore, the perturbation result given in [32, IV, The-
orem 5.35] shows that the essential spectra of ®~ 'L and ® 'L, coincide. Thus, being
left with the computation of bounds for the essential spectrum of ®~! Ly, we can use e.g.
Fourier transform methods if Q = R™ and (9f/dy)(+,0) is constant, or Floquet theory if
(0f /0y)(+,0) is periodic. Alternatively, if
Yiro)y>e>—p (@en), (75)
dy
with p* € [0,00) denoting the minimal point of the spectrum of —A on H}(Q), we
obtain by straightforward estimates of the Rayleigh quotient that the (full) spectrum
of ®7'Ly, and thus in particular the essential spectrum, is bounded from below by

min{1, (co + p*)/ (o + p*)}.

ad ii) For computing bounds to eigenvalues of ®~!L, we choose the parameter o in the
H}—product (46) such that

0

o> Dau@)  @eo (76)

Yy
thus, we have to assume that the right-hand side of (76) is bounded above. Furthermore,
we assume that the infimum s, of the essential spectrum of ®~'L is positive, which is true
e.g. if (75) holds. As a particular consequence of (76) (and (49)) we obtain that sy < 1
and all eigenvalues of =1L are less than 1, and that, via the transformation x = 1/(1—\),
the eigenvalue problem ®~!L[u] = A\u is equivalent to

0
—Au+ou=~k <O‘ - a—g(,w)> u (77)
(to be understood as an equation in H~'(Q)), which is furthermore equivalent to the
eigenvalue problem for the selfadjoint operator R := (Ip1q) — ®~1L)~L. Thus, defining
the essential spectrum of problem (77) to be the one of R, we find that it is bounded from
below by 1/(1 — sp) if s9 < 1, and is empty if s = 1. In particular, its infimum is larger
than 1, since sy > 0 by assumption.

Therefore, the computer-assisted eigenvalue enclosure methods mentioned in Subsection
3.3 (which are applicable to eigenvalues below the essential spectrum; see [63]) can be
used to enclose the eigenvalue(s) of problem (77) neighboring 1 (if they exist), whence
by the transformation x = 1/(1 — \) we obtain enclosures for the eigenvalue(s) of ®~1L
neighboring 0 (if they exist). Taking also sq into account, we can now easily compute the
desired constant K via (74). (Note that K = s,' can be chosen if no eigenvalues below
the essential spectrum exist.)

4.4. Local Lipschitz bound ¢ for F'. In the setting (45), (57), condition (9) now
reads

of of
/ [8—y($,w($) +u(z)) = a—y(%W(ﬂ?)) v(e)p(e) de| < g(llull g)llvllmgllellm  (78)
Q
for all u,v,p € Hi(Q). Here, we have assumed that the Fréchet derivative of G (defined
in (58)) is given by (63), which is true e.g. under the growth conditions (59)—-(62), but

also in the exponential case (with n = 2 and Q bounded) mentioned in Remark 3c). We
will now concentrate on the case where (59)—(62) hold true. For the exponential case, we
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refer to [54] and to the second example in Subsection 4.5.

As in the strong solutions approach treated in Section 3, we start with a monotonically
non-decreasing function g : [0, 00) — [0, 00) satisfying

g—z(x,w(x) +y) — g—]yc(x,w(x)) < g(ly]) forallz e, yeR, (79)

and §(t) — 0 as t — 0+, but now we require in addition that §(t/") is a concave function
of t. Here, r := ry is the (larger) exponent in (61).
In practice, g can often be put up in the form

N
= ait  (0<t<o0),
Jj=1

where a1, ...,ay > 0 and puq,...,uy € (0,r] are arranged in order to satisfy (79).

Now defining () := §(t'/7), the left-hand side of (78) can be bounded by (note (79))

/§ (lu(@)D]v(z)e ()] dz = /¢(|U($)|r)|v(3?)90($)|d93- (80)
Q 0

Without loss of generality we may assume that vy does not vanish identically (almost
everywhere) on ) (otherwise, (78) is trivial because the left-hand side is zero). Since
vp € LY(N) and hence |v(z)p(x)|dr induces a finite measure, and since v is concave,
Jensen’s Inequality [7] shows that

fw(IU(:E)IT)|v(x)90(fv)|dx J lu(@)["o(z)e(x)| de
Q Q

Th@e@la ="\ el o

Furthermore, for A € (0,1] and ¢ € [0, 00), (At) = Y(At+(1—X)0) > Mp(¢)+(1—=N)(0) =
(L), ie. p(t) < X hp(Mt). By Cauchy—SChwarz and the embedding H}(Q) — L*(Q),

J lo(@)e(@)lde

A= € (0,1],
CQQHU||H(1)H90HH(§

whence the right-hand side of (81) is bounded by
f |u(2)["|v(z)e(z)|dz

CQHUHH1“90“HO

82
Ti@ealde '\ Tyl )

According to (62), we can find some
qe(1,oo)ifn=2,qe[g,oo)ifnzs, (83)

such that ¢r is in the range (52). Since (83) implies that also p := 2¢/(q — 1) is in the
range (52), both the embeddings H}(Q) — L% (Q) and H}(Q) — LP(Q) are bounded.
Furthermore, g=! +p~! 4+ p~! = 1, whence the generalized Holder Inequality gives

/|u ) o(@)p(@)lde < [l

Lar

vlizllellee < CLCulli 0]l ey ol g -
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Using this estimate in (82), and combining it with (81) and (80), we find that the left-hand
side of (78) is bounded by

Rl el - (Co(Co/ o)l )
Since ¥(t) = §(¢7), (78) therefore holds for
9(t) = C3 5 (Cor(Co/C)Pt) (0 <t < 00), (84)
which also satisfies (10) and is non-decreasing.

4.5. Examples. In our first example, we consider the problem of finding nontrivial so-
lutions to

~Au+V(z)u—u*=0 on Q:=R? (85)

where V(z) = A + Bsin(w(zy + x2))sin(w(zy — 2)), with real parameters A and B.
The results presented here have been obtained in joint work with B. Breuer and P. J.
McKenna.
We are interested only in solutions which are symmetric with respect to reflection about
both coordinate axes. Thus, we include these symmetries into all function spaces used,
and into the numerical approximation spaces.
We treated the particular case A = 6, B = 2. On a “computational” domain  :=
(—0,0) x (—£,£), we computed an approximation wy € H?(Q) N H(Qp) of the differential
equation in (85), with Dirichlet boundary conditions on 92, in a finite Fourier series form
like (26) (with N = M = 80). For finding wy, we started with a nontrivial approximate
solution for Emden’s equation (which is (85) with A = B = 0) on €, and performed a
path following Newton method, deforming (A, B) from (0,0) into (6, 2).
In the single Newton steps, we used a collocation method with equidistant collocation
points. By increasing the sidelength of €y in an additional path following, we found
that the approximation wy remains “stable”, with rapidly decreasing normal derivative
Owg /vy (on 0€)), as £ increases; this gives rise to some hope that a “good” approximation
w for problem (85) is obtained in the form (67). For ¢ = 8, ||0wo/0vy||12(00,) turned out
to be small enough compared with || — Awg + Vwy — Wi || 12(0,), and we computed a defect
bound ¢ (satisfying (68)) via (71) as

§=0.7102-107% (86)
note that, by the results mentioned in the appendix, Cy = 0_%, and Cy, = o072 [+

1
+v{=2+20|°. Moreover, (76) requires 0 > A+ B = 8 (since w turns out to be non-

negative). Choosing o := 9, we obtain Cy < 0.3334 and Cy,. < 0.6968 .

Since condition (75) holds for ¢ = A— B =4 (and p* = 0), the arguments following (75)
give the lower bound sy := 4/9 > 0.4444 for the essential spectrum of ® 'L, and hence
the lower bound 1/(1 — s9) = 1.8 for the essential spectrum of problem (77).

By the eigenvalue enclosure methods mentioned in Subsection 3.3, we were able to com-
pute the bounds

k1 < 0.5293, Ky > 1.1769
for the first two eigenvalues of problem (77), which by (74) leads to the constant
K = 6.653 (87)
satisfying (72).

21



For computing ¢ satisfying (9) or (78), we first note that (79) holds for
g(t) == 2t,

and (61) for r; = ro = 1, whence the additional concavity condition is satisfied. Choosing
:= 2 we obtain gr = 2 and p = 4 in the arguments following (83), whence (84) gives

1
g(t) =20,C3t = 5t (88)

since 2C,C? = 0~ ! by Lemma 2a) in the appendix.

Using (86) - (88), we find that (16) and (17) hold for o = 0.04811, whence Theorem 1
implies the existence of a solution u* € Hj(R?) to problem (85) such that

lu* — w|[ 1 < 0.04811. (89)

It is easy to check on the basis of the numerical data that |[w||g1 > 0.04811, whence (89)
shows in particular that «* is non-trivial.

We wish to remark that it would be of great interest to achieve such results also for cases
where 0 < A < B in the potential V', because V' is then no longer non-negative, which
excludes an important class of purely analytical approaches to prove existence of a non-
trivial solution. So far, we were not sucessful with such cases due to difficulties in the
homotopy method which has to be used for our computer-assisted eigenvalue enclosures
(see the brief remarks in Subsection 3.3); note that these difficulties occur on a rather
“technical” level. We were however able to compute an (apparently) “good” approxima-
tion w, e.g. in the case A =6, B = 26.

The following Figure 2 shows plots of w for the successful case A =6, B = 2, and for the
non-successful case A =6, B = 26.

Figure 2: Example (85); A =6, B =2 (left) and A =6, B = 26 (right).

In our second example, we consider the Gelfand equation
—Au=Xe" on ), u=0 on 01, (90)

depending on a real parameter A. We are interested in parameter values A > 0 only;
negative values of A are less important. The results reported on here are joint work with
C. Wieners and published in [54].

It is known that, on “simple” domains €2 like the unit square or the unit ball, problem
(90) has a “nose”-shaped branch (A, u) of solutions, starting in (A = 0, u = 0), going up
to some maximal value of A where the branch has a turning point, and then returning to
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A = 0 but with ||ul| tending to oo as A\ — 0. Moreover, there are no other solutions (on
these “simple” domains).

Here (and in [54]) we are concerned with a special non-conver domain © C R? plotted in
Figure 3. (For an exact quantitative definition of €2, see [54].) €2 is symmetric with respect
to the xi-axis but not quite symmetric with respect to the xo-axis; it is a bit shorter on
the left-hand side than on the right. Starting at (A = 0, v = 0), and performing numerical
branch following, we obtained the usual “nose”-shaped branch (of approximate solutions)
plotted in Figure 4; the plot consists in fact of an interpolation of many grid points.
Obviously, the approximations develop substantial unsymmetries along the branch. In
order to find new (approximate) solutions, we reflected such an unsymmetric approxima-
tion about the zo-axis, re-arranged the boundary values (which is necessary but easily
possible due to the slight unsymmetry of €2), and re-started the Newton iteration. Fortu-
nately, it “converged” to a new approximation, and by branch following we could detect
a new branch of approximate solutions plotted (together with the “old” one) in Figure
5; in order to obtain a nicely visible separation of the two branches, we introduced the
difference d(u) between the two peak values of each approximation as a third dimension
in the bifurcation diagram.

Figure 3: Domain €2 for example (90).

In oder to prove the existence of a new solution branch, we performed the computer-
assisted method described above for the selected value A = 15/32. Here, our “new”
approximation w was computed with 65536 quadratic triangular finite elements, corre-
sponding to 132225 unknowns.

For calculating a defect bound § (satisfying (68)), we used essentially (up to some tech-
nical refinements) the estimate (70), where the approximation p € H(div,{2) to Vw was
computed by linear Raviart-Thomas elements. The result is

§=0.8979- 1072 (91)

Since (Of/0y)(z,y) = —Xe¥ < 0 here, condition (76) is satisfied for o = 0; indeed, this
choice is allowed because €2 is bounded (see Remark 3a)). We computed eigenvalue bounds
for problem (77) by the Rayleigh-Ritz and the Lehmann-Goerisch method, exploiting
symmetry properties, with the final result that (72) holds for

K = 3.126; (92)
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Figure 4: Main branch of (approximate) Figure 5: Main and new branch for
solutions for problem (90). problem (90).

note that problem (77) has no essential spectrum here since € is bounded.

For proving that G defined in (58) is Fréchet differentiable and for computing a function
g satisfying (9) or (78), we make essential use of the Trudinger-Moser inequality (66)
(note that Lemma 1 does not apply here due to the exponential nonlinearity). For each
u € Hy(2)\ {0},

2
u\xr u\xr
[l a2 o\ lulla

whence (66) (with ¢ := 1) gives, since [47/(4m — 1)]*/* < 1.03,
lexp(jul)lzs < 1.03 meas(€)texp(ull,)- (93)

Au(x)| =2 - 2||ullgy -

For all ug, u,v,p € HE(S), the generalized Holder Inequality and (93) imply

/|€“°+“ — ™| [o] pldz < /6“06'“'IUI (o] lldz < [l ol zallul o llv]l s [l 2o
Q Q

1
< lle e - 1.03 meas(@)vexp ([[uly ) Cllullug ol el (99

By an argument similar to the abstract estimate (20), (21), we obtain the desired Fréchet
differentiability from (94). Furthermore, for ug := w, (94) shows that (78) holds for

g(t) = vte®, where v := | Ae®||14 - 1.03 meas(Q)ng, (95)

and thus G(t) = [ g(s)ds = Iy(exp(t?) — 1) < Iyt%exp(t?). From the numerical data,
Lemma 2 (appendix), and the result p* > 1.4399 (obtained by eigenvalue bounds), we
obtain that v < 5.62. Together with (91), (92), (95), we obtain that (16) and (17) hold for
« := 0.05066, whence Theorem 1 gives the existence of a solution u* € H}(£2) of problem
(90) (with A = 15/32) such that

lu* — wl| 2 < 0.05066. (96)

(It should be remarked that we could do without condition (17) being satisfied, since (2
is bounded and hence we could use compactness properties, and Schauder’s instead of
Banach’s Fixed Point Theorem.)

In the same way, we also obtained existence results with Hi-error bounds for two so-
lutions of (90) on the “old” (nose-shaped) branch, again for A = 15/32. From the nu-
merical data, and all three error bounds, we can easily deduce that the three solutions
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are pairwise different, whence u* established above lies on a new independent solution
branch; the Implicit Function Theorem (plus some perturbation type argument showing
that —A — X% @ HY(Q) — H~1() is one-to-one and onto) shows that indeed a solution
branch through (A = 15/32, u*) exists.

5. Appendix: Embedding constants

At various points in this paper, an explicit norm bound for the embedding H} () —
LP(Q), i.e. a constant C, such that

[ullr < Cyllullgy for all u € Hy (), (97)

is needed, for p in the range (52), and with || - |51 and [| - ||z» defined in (46) and (53),
respectively. Here, we are not aiming at the optimal constants, but at “gcood” constants
which are easy to compute.

Lemma 2: Let p* € [0,00) denote the minimal point of the spectrum of —/A on H(S2).
a) Let n =2 and p € [2,00). With v denoting the largest integer < p/2, (97) holds for

o= (@) BG-GB

P+ ga)%

(where the bracket-term is put equal to 1 if v =1).
b) Letn >3 and p € [2, 2], With s:=n (% -1+ %) € [0,1], (97) holds for

n—2

(where the second factor is put equal to 1 if s =10).

[N

Proof. ad a) Since C°(Q) is dense in H} (), it suffices to prove (97) for u € C5°(Q2). By
zero extension outside 2, we may regard u as a function in C§°(IR?).
For all (z1, ) € R?,

ou

xr1 ]
p _ p _
|u(ar, 22)|2 =3 / |u(t, 22)|2 1Sgn(u(t,iﬂ2))8—m(t,$2)dt§ B / Ju(t, )| 27 dt

(t, 1172)

o
1

Ox

and analogously,

 _ P p_
et < 5 [ et 2

Adding these two inequalities gives

o)l <8 [t o))
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An analogous inequality is obtained by integration over x, instead of x;. Multiplication
of these two inequalities yields
/ |u(zy,t

|u(zy, a) P < 16 / |u(t, o)

Note that, on the right-hand side, the first factor depends only on x5, and the second only
on z;. Thus, integrating this inequality over R? we obtain, using Cauchy-Schwarz,

2
/ lulPdz < §—2 / ulP~2dz / Vul?dz | . (100)
R2 2 2

By iteration of this inequality,

ou
t)| dt
o)

tilfg
T

v—1

P p 2) . (p —2v+ 4)2 / p—2v+2 / 2
/|u| dx < 32 39 |ul dx |Vu|*dx . (101)
2 2

Let ¢ :== p — 2v + 2. By the choice of v, we have 2 < ¢ < 4. Thus, Holder’s Inequality
gives the following simple interpolation inequality:

%_
/|u|qu=/|u|2q_4|u|4_qu < (m/u‘ldx (R/ . (102)
R2 R2 2

Using (100) with 4 in place of p, inserting the result into (102), and further inserting into
(101) gives, since (¢/2) — 1 = (p/2) — v,

l\Jl'Q

y4
rq

p
pl b L= D (O [eear | { [ rowr
vy < 2 ) - d d . (103
/'ul RPNy 32 2 o v e
R2 : ’
Moreover,
2 1-2
P
/ e (m/ Vul2de
9 2
_ 2 1-2
1 2 p 2 2
5 |Vul“de + =0 [ u“dx |Vu|*dz
pr+ 350 2 \¢
| R2 R2 2
1 2 2
<—< = /|Vu|2dx+§a/u2dx + (1——> /|VU|2d$
(o +80)7 (P | R? - -
1
= July (104
(0" +50)”

Using this inequality in (103), and moreover calculating

PP(p—22% (—2w+4% 1\ [pp P > /1) B3
- “e. —_ — |:— (— — 1> “ o (_ — v _|_ 2>] . - 7
32 32 32 2 5 \3 5 5
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we obtain the assertion.

ad b) In [24, proof of Theorem 9.2, (9.10)], it is shown that, again for u € C{°(R"),

el ey < =

83:2

L2
Thus, by the arithmetic-geometric mean mequahty,

lul IVl 2, (105)

S 7
which implies the result (even with ¢ = 0 in (46)) if p = 2n/(n — 2). Now let p €
2,2n/(n — 2)), whence s = n (% —3+1) e (

inequality (note that 2=2p(1 — s) + sps = 1)

0,1]. Again, we use the interpolation

NI

2n p(1—s) ps

/|u|pd:c:/|u|p(1_s)|u|psdxS /|u|% dx /uzdfc )
R’n, R’n, n

n

whence, by (105),

L(1-s) is
2 2
lullzr < ( |Vul*dz /quaz : (106)
Moreover, by arguments similar to ( 104)
1-s
1
2 2 2
u“dx Vu|*dx < — ||ul| 5
[ [|| < Gz M
Inserting into (106) gives the assertion. O

Remark 4: The embedding constants given in Lemma 2 depend on the minimum p* of
the spectrum of —A on H}(Q). If no information on p* is available, one may simply use
the lower bound 0 for p*. If €2 contains balls of arbitrarily large radius, p* is 0. In these
cases the parameter o in (46) must of course be chosen positive.

In many cases, however, positive lower bounds for p* can easily be computed, since
p* depends in an antitone way on the domain €. If e.g. €2 is contained in a rec-
tangle (ay,b1) X -++ X (an,byn), where a; = —oo and b; = oo are admitted, then p* >
T2 (b — ;)2

If 2 C R? has finite measure, another simple lower bound for p* is obtained by using (100)
for p := 2, implying that the Rayleigh quotient for —A, and hence p*, is > 8/meas(€2).
More accurate lower bounds for p* can be computed by the eigenvalue enclosure methods
mentioned in Subsection 3.3.

In Subsection 4.2, a trace embedding constant C;, satisfying
luloall 200y < Cullullm) (u € H () (107)

is required, with € denoting a bounded Lipschitz domain. Here, the norm || - ||z is given
by (the square root of) the right-hand side of (46). Clearly, ¢ > 0 must be required
now, since otherwise (107) would be violated for constant functions u. Again, we are not
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aiming at the optimal constant, but at a “good” and easily computable one.

Lemma 3: Let p: Q — R" be continuous, with bounded weak first derivatives, such that
p-v>1on 08, (108)

where v : 0 — R™ denotes the outer unit normal field (which erxists almost everywhere

on 0). Then, with ||p|lo = ”\/ . LpE (107) holds for

1
1{1 1 :
Cy = [; <§|Idiw|loo + \/lediVPH%o + 0||p||%o>] :

Proof: We have to show (107) for u € C'(2). By (108) and GauB’ Divergence Theorem,
/ u?dS < /(u p) - vdS = /le (u?p)dx = /(dlvp) 2dx + Z/u(Vu) - pdx

a9 a9 Q Q
< [l divplloc|[ullZ20) + 2||p||ooIIUI|L2<m||W||L2<m

. 1
SHdWMkMM&%m+WWWm(AWM§my+XHVM@%m>
nm@{

HV|uuD+(””|mWﬁw+AﬁnwpmJ

for arbitrary A > 0. Choosing X := ||p||2} [—%||div,0||oo + \/i||div,0||go + ol|pll% | gives the
assertion. UJ

If for example 2 is a bounded rectangle (—¢1, 1) X - -+ X (=€, {,), we can choose p(x) :=
(x1/l1, ... ,x,/l,), satisfying (108). Lemma 3 therefore yields

Ctr =

2

I~ 1 11

5 ZZ:; Z + Z (; Z) +no

If Q is a ball with radius R, centered at 0, we choose p(z) := R~'x, which satisfies (108),

whence Lemma 3 gives
1 N n?
2R 4R2

Note that the shear existence of a vector field p with the required properties is ensured
by the Lipschitz continuity of 9 (see [28, Lemma 1.5.1.9]).

Q|+

2

Ctr ==
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