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Abstract

We consider the existence of localized modes corresponding to eigenvalues of the periodic
Schrédinger operator —92 + V(z) with an interface. The interface is modeled by a jump ei-
ther in the value or the derivative of V(z) and, in general, does not correspond to a localized
perturbation of the perfectly periodic operator. The periodic potentials on each side of the
interface can, moreover, be different. As we show, eigenvalues can only occur in spectral gaps.
We pose the eigenvalue problem as a C! gluing problem for the fundamental solutions (Bloch

functions) of the second order ODEs on each side of the interface. The problem is thus reduced

to finding matchings of the ratio functions Ry = %’ where ¢4 are those Bloch functions

that decay on the respective half-lines. These ratio functions are analyzed with the help of the
Priifer transformation. The limit values of Ry at band edges depend on the ordering of Dirichlet
and Neumann eigenvalues at gap edges. We show that the ordering can be determined in the
first two gaps via variational analysis for potentials satisfying certain monotonicity conditions.
Numerical computations of interface eigenvalues are presented to corroborate the analysis.

1 Introduction

Localization for perturbed periodic Schrédinger operators L = —A + Vy(z) + V(2), where Vp(x)
is periodic in x € R",n € N, is a classical problem traditionally treated by spectral theory. Most
commonly it is studied for perturbations f/(x) that are either compactly supported, see, e.g., Deift
& Hempel [6], Alama et al. [I], and Borisov & Gadyl’shin [3] or fast decaying, e.g. V € L"/?(R™),
cf. Zeludev [23] and Alama et al. [I]. Both of these scenarios can lead to eigenvalues of L and thus
to localization. Potentials V' describing random perturbation also yield eigenvalues due to Anderson
localization, studied, for example, by Kirsch et al. [I12] and Veseli¢ [2I]. We investigate localization
in the one-dimensional case n = 1 due to the presence of deterministic interfaces which cannot
be represented as localized perturbations of —92 + Vp(x). Such an interface arises, for instance,
when V(z) is periodic on one side of the interface and vanishes on the other side (we assume
commensurability of the periods of V and Vj to preserve periodicity on each side of the interface).
This topic has been previously studied mainly by Korotyaev via spectral theory [13, [14]. We, on
the other hand, use the properties of the fundamental solutions of the 1D spectral problems of
the periodic operators corresponding to each side of the interface and pose the eigenvalue problem
as a Cl-gluing problem for the decaying Floquet-Bloch solutions from either interface side. This



approach allows us to provide some concrete conditions on 1, and the perturbation 1%4 directly
(without conditions on the spectrum of —d2 + Vy()) that ensure eigenvalue existence in the semi-
infinite and the first finite gap of the continuous spectrum of L. Our approach is also arguably
conceptually simpler than that of [13] [14].

Localized waves at interfaces of two periodic (linear) structures have been also demonstrated
experimentally in the context of electron waves in crystals by Ohno et al. [16] and for optical waves
in photonic crystals by, e.g., Suntsov et al. [19].

In detail, within the framework of the eigenvalue problem
Ly=Xp, L=-0>+V(z), z€R (1.1)
we study the following two interface problems. Firstly, an interface made of even periodic potentials

V() = Xfa<0} V-(2) + X{oz01 Vi (2), (1.2)

where Vi has period dy > 0, i.e., Vi(z + dy) = Vi(z) for all z € R, and furthermore satisfies
Vi(dTi +xz) = Vjt(dTi —z) for all z € [0, d%] Secondly, an interface made of dislocated even periodic
potentials

V(z) = X{z<0yVo(z + 8) + X (01 Vo(2 + 1), (1.3)

where Vj has period d > 0, i.e., Vo(z +d) = Vy() for all z € R, and satisfies Vp(2 +z) = V(4 — )
for all z € [0, %] The dislocation parameters are t,s € R. Here y is the characteristic function.
Note that under the periodicity conditions the evenness of Vi and Vj about x = d% and ¢ = g
within the periodicity cell [0,d+] and [0,d], respectively, is equivalent to evenness of Vi and Vj
about x = 0. Hence, in the following we will simply require that the potentials be periodic and

even. Unless otherwise stated, the potentials Vi and Vj are continuous and hence bounded.

One of the simplest examples of the interface (1.2)) is the additive interface
V_(z) = Vo(x), Vi(z) =Vo(z) + o, Vo(z+d) =Vo(z), Vo(—z) =Vo(z), a€R, d>0, (1.4)

generated by merely changing the average value of the potential on one half of the real axis. This
example is studied in more detail in Section [3.1.1] since the conditions on eigenvalue existence
become rather specific in this particular case.

Schematic pictures of the two potentials (1.2) and (|1.3|) are displayed in Figure
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Figure 1: A cartoon of example potentials V' for the case ([1.2)) in (a) and (1.3) in (b).

Equation (1.1) finds applications in many fields of natural science. Perhaps most notably it
describes the wave function of an electron in a one dimensional crystal, where waves localized at
a crystal interface are typically called Tamm states [20]. The equation also directly applies to the



description of light propagating transversally to the direction of periodicity of a non-dispersive,
lossless, linear photonic crystal which is homogeneous in the y and z directions. Suppose the
refractive index n varies periodically in the x—direction and its mean has a jump at z = 0, such
that n(z) = /1 + W(x), W(x) = —5—22 (z). We assume the following form of the electric field,

E = (0,(z), O)Tei(kz—wt)7

such that the field is polarized in the y—direction, the waves propagate in the z— direction and the
x—profile is stationary. Then Maxwell’s equations exactly reduce to

(02 — k)¢ + C‘6’22(1 + W(x))y = 0.

With V(z) = —“;—22 (x) and setting A = ‘Z—; — k2, we recover (L.1)).

Another example of an application of ([1.1]) is the description of matter waves in one dimensional
Bose-Einstein condensates loaded onto an optical lattice, see Choi & Niu [4]. The density of a
condensate is described by the wavefunction u governed by the Gross-Pitaevskii equation [4} [9] [17]

h2
ihdpu 4 —02u — W (x)u — glu|?uv = 0,
2m

where, in our setting, W (z) is periodic but has a jump at « = 0. Here £ is Planck’s constant, m is
the boson mass, W is the potential induced by the optical lattice and g is the scattering length. In
the linear regime, g = 0, stationary waves e *1)(x) obey (after rescaling) equation ([I.1)).

The rest of the paper is organized as follows. In Section [2] we review the needed facts on spectral
properties of the interface-free periodic Schrédinger operators with an even potential including the
problem of ordering of spectral band edges according to even/odd symmetry of the Bloch functions.
Section discusses the interface and introduces the main tools of our analysis, namely the
C'-matching condition and the Priifer transformation. The theory is then applied to the additive
interface example and numerical computations of point spectrum are performed. In Section
we analyze the dislocation problem for the cases s = —t and s = 0 using the same tools as
in Section plus differential inequalities and variational methods. Numerical examples are, once
again, provided.

2 Spectrum of the Interface-Free Problem

We review, first, some well known results on the spectrum and the eigenfunctions of the interface-
free operator Lg := —02 + Vo (z), where Vg (2 +d) = Vo(z) is continuous and Vp(—2) = Vp(x). Good
sources on the theory of the periodic Schrodinger operator are Magnus and Winkler [15], Eastham

[7 and Reed & Simon [18].

Ly has a purely continuous spectrum (see Theorem XIII.90 in [I8]) consisting of bands [s2;,—1, S2n]

so that
o(Lo) = | [s2n-1, $2n],
neN

finite gap G,, := (S2n, Son+1)- Ciaarly, o(Lp) has also the semi-infinite gap Gy = (so,$1) =
(=00, 51). According to Floquet theory [7] the spectrum o(Lg) can be easily found via the use of

where s, € R and s9,-1 < S2, < Sopt1 [(]. When sopy1 > S2,, we say that o(Lp) has the



Figure 2: Spectrum of Lg for Vg(x) = sin?(rz/10).

the monodromy matrix of the second order ODE Lgip = M. Figure [2] presents the numerically
computed spectrum of the operator Ly with Vg(z) = sin?(mrxz/10).

The ODE Ly = MY has two linearly independent solutions, so called, Bloch functions. For real
A & 0o (Lo) they are of the form

P1(x;0) = pr(a; N)e VT gy (23 0) = pala; N) kT, (2.1)

where k € R\ {0} if XA € int(0(Lo)) and k € iR\ {0} if A € R\ 0(Lg), and p1 2(x; A) are real-valued
and 2d—periodic in z. In fact, p; 2 are either d—periodic of d—anti-periodic. If A € d(c(Lo)), the
Bloch functions are of the form

Yi(x;A) = pr(zsA),  a(x;A) = pa(z; A) + zp1(z; A), (2.2)

where again pj o(x; ) are real and 2d—periodic in z.

The evenness of the potential Vy(z) and the fact that only one linearly independent bounded
Bloch function (namely ¥1(z;A) = pi(x;\)) exists at any A € 9(o(Lo)) imply that this solution
must be even or odd and hence it satisfies at the boundary-points x = 0 and x = d either Dirichlet-
or Neumann-boundary conditions. For k € N let (ug, (x) denote the k-th Dirichlet eigenpair of Lg
on [0, d] satisfying (x(0) = (x(d) = 0 and let (vg,nx) be the k-th Neumann eigenpair of Ly on [0, d]
such that 7, (0) = 7, (d) = 0. The following lemma may be well known, cf. [7], Theorem 1.3.4.

Lemma 2.1. For the first gap edge we have s1 = vi. If k > 1 and if sop # Sop+1 then sop =
min{ gk, Vky1}, Sok+1 = max{uk,Vkr1}. Moreover, the following properties of the eigenfunctions
are known (note that the even/odd-property applies with respect to reflection about %)

eigenvalue eigenfunction properties
Dirichlet | por—1 even | d—anti-periodic Cékfl(%) =0
Dirichlet | fios odd | d—periodic Ck(2) =0
Neumann | vg;_q even d—periodic Uék—1(g) =0
Neumann | vy odd | d—anti-periodic ngk(g) =0

Remark. Note that A € G, can never be a Dirichlet or Neumann eigenvalue since any corresponding
eigenfunction could be extended to a bounded solution of Ly = Ay on R by reflection and periodic
extension. Such nontrivial solutions cannot exist for A\ € Gy, by (2.1)).

As we show in Sections [3.1 and ordering between the Dirichlet and Neumann eigenvalues py,
and vgy1 plays an important role for existence of interface eigenvalues. It is, however, known that



all orderings are in general possible, i.e., for any given ordering of the Dirichlet and Neumann eigen-
values (respecting the condition max{pg, vg+1} < min{pgi1, k12t k& € N) a corresponding even
potential Vj exists, see Theorem 3 in Garnett & Trubowitz [8]. Nevertheless, the following lemma
provides an ordering of low eigenvalues under some monotonicity assumptions on the potential V4.

Lemma 2.2. (a) If Vj is strictly increasing on [0, %], then v < 1. The Neumann eigenfunction
corresponding to v is strictly monotone on [0,d] and odd with respect to %.

(b) If Vi is strictly decreasing on [0, 5], then py < vo. The Dirichlet eigenfunction corresponding

oI

to py is strictly monotone on [0, %] and even with respect to %.

The proof is based on the following result.

Lemma 2.3. Consider a potential Vo € L™ (a,b) (not necessarily periodic, even or continuous) and
let knp be the first eigenvalue of Ly = —0% + Vo on [a,b] with the boundary condition u'(a) = 0 =
u(b), whereas kpn denotes the first eigenvalue of the same differential operator but with boundary
conditions u(a) = 0 = u/(b). Then

b b
min{kyp, KpN} = min {/ o+ Vo(x)v?da : v € H'(a,b) has a zero and / v?dr = 1} . (2.3)

Moreover, if Vi is strictly increasing on [a,b] then kyp < kpn and any eigenfunction for knp with
u(a) > 0 is strictly decreasing on [a,b]. If Vi is strictly decreasing on [a,b] then kpy < kKnp and
any eigenfunction for kpy with u'(a) > 0 is strictly increasing on [a,b].

Proof. The proof is inspired by a similar result in Bandle et al. [2]. Note first that the set, on
which the minimization is performed, is weakly closed in H'(a,b) due to the compact embedding
H'(a,b) — Cla,b]. Hence a minimizer of the right-hand side of exists. We denote it by U.
Let us also denote the value of the minimum by k. The proof is now divided into five steps:

Step 1: U has exactly one zero on |a,b]. Since U possesses at least one zero xo € [a,b], we have
U € H,, ={ve H(a,b): v(zg) =0}. Clearly U is then the minimizer of

b b
min{/ v’2+%(x)v2da::v€Hzo,/ Ude:I},

and therefore U satisfies the Euler-Lagrange equation
—U" +Vo(2)U = kU in (a,z0) U (0, b) (2.4)

with boundary condition
U'(a) = U(xo) =U'(b) =0 (2.5)

where in case zy € {a,b} one of the two Neumann conditions is dropped. Note that
b b
/ U + Vo(z)Uvde = /{/ Uvdz for all v € Hy,. (2.6)
a a

Now assume for contradiction that U has a second zero x; # xo. Then (2.6) holds also for all
v € Hy, and since H'(a,b) = H,, ® H,,, we find that (2.6 holds for all v € H'(a,b), i.e., U is a
Neumann-eigenfunction. The same applies for |U|, which is also a minimizer of (2.3)). But then U



must be the first Neumann-eigenfunction of Ly on (a,b) and it therefore has no zero on [a, b]. This
contradiction shows that U has exactly one zero in [a, b].

Step 2: K is strictly less than the second Neumann-eigenvalue vy on [a, b]. Since the second Neumann
eigenfunction 7y has one zero in [a, b], we find k < v5. Suppose for contradiction that x = vo. Testing
the equation for ny with 7 = max{ns, 0} we obtain

b , b
w4 Vo) o = v [ )2 o

and thus n; is a minimizer for (2.3)) and must have a unique zero by Step 1. However, clearly n;
has a continuum of zeros. Therefore we can conclude that k < vs.

Step 3: U has its unique zero either at x = a or at x = b. If we suppose for contradiction that the
unique zero zo lies in the open interval (a,b), then we obtain the Euler-Lagrange equation (2.4))
with boundary condition . By rescaling the minimizer U suitably on [a, zy] we can achieve that
the rescaled function U is a C!-function on [a, b] solving the equation pointwise a.e. on (a,b).
Hence, the rescaled function U is a Neumann-eigenfunction with one interior zero, i.e., kK = o in
contradiction to Step 2.

Now the claim of the lemma about the value of the minimum is immediate.

Step 4: ordering of kNp, kpn. We are using the following rearrangement result of Hardy, Little-
wood, Pélya [I0]. Let v,w be non-negative and measurable on [a,b]. If v#, w! are the increasing
rearrangements of v, w, then f; vwdr < f; viwf dz. Moreover, if v is strictly increasing, then
equality holds if and only if w = wf. A similar statement holds for the decreasing rearrangements
v*, w*. Note, that the non-negativity of v, w can be replaced by boundedness.

A simple corollary of the Hardy, Littlewood, Pélya inequality is the following: suppose V = V*#
is strictly increasing and both V' and w are bounded. Then

b b
/Vw*d$§/ Vwdx (2.7)

with equality if and only if w = w*. The proof follows immediately from the observation that
(—w)t = —w*.

Let Vj be strictly increasing on [a,b]. Suppose for contradiction that kpy < kyp and let U
be an eigenfunction corresponding to xpy, which by is also a minimizer of the variational
problem in (2.3). We may assume U to be non-negative, since |U| is also a minimizer of the
corresponding variational problem and kpy is a simple eigenvalue. Let now U* be the decreasing
rearrangement of U on [a,b] and note that (U?)* = (U*)2. Since for the decreasing rearrangement
we have f;(U*/)ZdSL' < ff(U’)de, cf. Kawohl [I1], we obtain by applied to Vo and U? the

relations

/b(U*)Qd:n - /b U2dp =1, /b(U*')2 V(@) (U)2 de < /b(U’)2 V@) U2de. (2.8)

Therefore U*, which satisfies U*(b) = 0, is also a minimizer of and hence equality has to hold
in . But since Vj is strictly increasing, the sharp form of implies that U = U* which by
U(a) = 0 implies the contradiction that U must be identically zero. Hence kyp < kpn. Moreover,
shows that any non-negative minimizer U for kyp satisfies U = U*, i.e., U is decreasing, and



by using the differential equation for U and the strict monotonicity of Vj it is easy to see that in
fact U is strictly decreasing.

If Vj is strictly decreasing on [a, b] then a similar argument based on replacing U by its increasing
rearrangement shows that kpy < KnpD. O

Proof of Lemma[2.4 Consider the Dirichlet-eigenfunction ¢;. By Lemma [2.1] its restriction to
[0, %] is the eigenfunction for kpy of Lemma Likewise, the restriction of 7y to [0, %] is the
eigenfunction for kyp. Hence u1 = kpy and vo = kyp. The statements (a) and (b) then follow
from Lemma 2.3 O

3 Interface Problems

Let L be the operator in defined on the dense subset H?(R) of L?(R). We investigate next the
existence of eigenvalues of L for the interface potentials and . These examples fall into a
larger class of potentials, namely V(x) = X{z<0} V1 (%) + X{a>0} V2(x), where V1 2(z +d12) = V1 2(2)
for some dj 5 > 0 but where V; 5 may not be even in x. Clearly, all solutions of (—82+V (z))y = A\
are then

Y(T) = X{2<0} V- (T) + Xgaz01 ¥+ (2),

where 11 are Bloch functions of (—92 + V; o(x))1) = A, respectively. As decaying Bloch functions
1+ exist only in spectral gaps of —02 + Vi,2(z), respectively, eigenvalues of L can exist only within
intersections of the gaps of o(—92 + Vi(x)) and o(—92 + Va(z)). Note the following additional
information on the spectrum of L, which for our purpose plays no further role: the essential
spectrum of L is the union of the essential spectra of —92 + V4 (x) and —9?2 + Va(z), cf. Korotyaev
[14]. As a result, no embedded eigenvalues of L exist.

3.1 Point Spectrum for Interfaces Made of Even Potentials

The eigenvalue problem ([1.1)) with (1.2)) can be viewed as the system

L ap:=—-0*+V_(x)p =X ) forx <0,

Litp:=—0%+Vi(z) =X p for x>0 (3.1)
coupled by the C'-matching conditions
»(0-)=¢(0+) and  ¥'(0-) =¢'(0+). (3-2)

As stated in Section |1} the functions Vi(x) are continuous, even and di-periodic.

Based on the knowledge of the fundamental solutions in , we conclude that an L2-
integrable solution of with can only exist if A lies in the intersection of the resolvent
sets, i.e., in the intersection of the spectral gaps of L_ and L., i.e., if A € G} N G,, for some
n,m € NU {0}, where G- is the n-th spectral gap of L. respectively.

For A € G}t NG, with some n,m > 0 any localized eigenfunction v of L, therefore, has to be of
the form

V(5 A) = X o<y V- (75 A) + X{az0y ¥+ (75 M),



where

P (23 \) = py (3 N)eFHNe (3.3)
with x(\) > 0 and p4(x; \) being 2d+—periodic in z. The functions p are restrictions of either py
or pg in (2.1) with V5 = V4 to the half-line Ry respectively.

An important remark is that, due to the linearity of the problem, the matching conditions (3.2
together with an appropriate scaling are equivalent to

Ry(\) =R_()\), where Ryi(\) = ¥ (0:4) (3.4)

and the prime denotes differentiation in x.

We determine existence of solutions to (3.4]) via the intermediate value theorem and by mono-
tonicity of the functions Ry (\). The monotonicity then also implies uniqueness.

Lemma 3.1. Within each gap G} and G, ,n > 0, the functions Ry and R_ are continuous

functions of \ € G%, which are strictly increasing and decreasing respectively.

Proof. Let us start with the proof for Ry (\). Under the Priifer transformation, cf. Coddington &
Levinson [5]

Py A) = pla; N)sin(0(z; N), @ (25 0) = p(; A) cos(6(x; 1)),

the equation Li1, = Ap4 becomes

0 =1+ (\—V,(x)—1)sin’(h),

p'=—p(\ = Vi(z) — 1)sin(0) cos(0),
where the prime denotes differentiation in z. Clearly, 8 and p are continuous functions of both
variables z € R and A € G}/ and since R4 (\) = cot(6(0; \)), the function R4 ()) is continuous in A
provided 11 (0; \) has no zero in the interior of G;. Note that if 1, (0; \) = 0, then by evenness
of Vi and the reflection symmetry of the problem Liv¢, = A4, the solution ¢ (x; \) defined in
(3-3)) on = > 0 could be extended to a solution on z € R via ¢4 (—z;A) = —4(x; A). This solution

would decay exponentially at both infinities and A would, thus, be an eigenvalue of L, which is
impossible. Hence continuity of Ry () is proven.

Now let us prove the monotonicity. Due to the form of ¢, see (3.3]), we have

p(2dy) = /(1 (244))? + (¥, (2d,))2 = €207 p(0). (35)

Define now z(x) := %(m; A). The function z satisfies 2/ = 2(A—V(x) —1)2sin() cos(f) +sin?(9) =
—2%/2 + sin?(). Therefore,
p(o;A>>2 /x<p<m>>2 -
z(x) = z(0) + sin“(0(t; \)) dt. 3.6
0= (Gey) <0+ [ (555 swtee (30
Because cot(0) = %, and due to the periodicity zigigjii; = zigz:\\; we have 0(2d1; ) = 0(0; \)+
mm, where due to continuity the value m € Z is independent of >\[| Hence, z(2d1;A) = z(0; A).

Using (3.5)) and (3.6]), we thus obtain
pt;A)

2d4 2
=z = eld+ry LASSRATAN, IS TR : . .
2(0) = =(2d,) o+ | (p(%; A)> (6(t: 1)) dt (3.7)

n fact, it can be easily seen from Sturm oscillation theorem that m = 2n, where n is the index of the gap G;..



Because k > 0, we get 2(0) < 0 and conclude that 6(0;\) is strictly decreasing throughout G,!.
Therefore, R4 (\) = cot(6(0; \)) is strictly increasing with respect to A throughout G;'.

In order to prove strict monotonicity of R_()\), note that is replaced by p(—2d_) =
e~24-%p(0) and in the value 2d, is replaced by —2d_ both in the arguments of the func-
tions z and p and in the upper limit of the integral. This leads to the conclusion z(0) > 0 which
means that R_(\) is strictly decreasing with respect to A. O

In order to apply the intermediate value theorem and prove crossing of the graphs of Ry (\) and
R_()\), we use their continuity within each gap and their limits as A approaches a gap edge.

Lemma 3.2. Let s € {s1,59,...} be one of the boundary-points of the spectral gaps G of L
respectively. If s corresponds to a Dirichlet-eigenvalue of Ly on [0,d], then lim, o+ [Re(N)| =
|Ri(s)| = oo respectively, and if s corresponds to a Neumann-eigenvalue of Ly on [0,d] then
limy ot Re(A) = Ri(s) = 0 respectively.

Proof. We only consider the “+” case. Let A\, € G;I, A\, — s be a given sequence. Due to (3.3) the
functions 14 (-, Ax) have the form

Yoy (@5 M) = py (2 A )e ™7,

where w.l.o.g. we may assume |[p4(;; A\x)|lLe = 1, which implies [[14(:; Ag)l|Loo(j0,00)) < 1. On
every compact subinterval [0,b] C [0, 00) the H?mnorm of 9 (-, \) is uniformly bounded in k and
hence along a subsequence (again denoted by Ax) the functions 1, (-; \x) converge in H'([0,b])
(and hence, by the differential equation also in H2([0,b])) to a solution v of Lyv = sv with
]| oo (jo,p)) < 1. Since this holds for every b > 0, the function v is a bounded solution of Liv = sv
on [0,00) and therefore coincides with the bounded periodic Bloch function p;(x;s) in . The
convergence of Ry ()\) is now obvious by the embedding H?([0,b]) into C'1([0, b]). O

To make the picture of the behavior of R4+ complete, it remains to determine their behavior at
the lower end of the semi-infinite gap Goi, ie. as A — —oo.

Lemma 3.3. Let Vi be bounded potentials (not necessarily even, periodic or continuous). Then
Ri(\) — Foo as A — —o0.

Proof. The proof is, as for Lemma [3.1} shown only for R, with the one for R_ being completely
analogous. We rescale the Bloch function 14 (z; A) so that 14 (0; A\) = 1. Note that this is possible

if and only if ¥4 (0; A) # 0, which we show to be true for all A < inf V.. Suppose that ¥4 (0; A) = 0.
Testing (L4 — A\)¢4 = 0 with ¢4 over x € [0, 00), we get

/oo(w;)zd:c + /Oo(v+ —A\pidr =0
0 0

and, therefore, A > inf V.

Let now A = —v? for some v > 0, s.t. —v2 € G¢ and —v2 < inf V., and define
bu () =y (w; —17) — e " (3.8)
We have
Z = V2¢V + Viy, ¢V(0> =0. (3'9)



Since Ry (A) = Ry (—v?) = ¢/, (0; —1?) = —v+¢),(0), we need to determine the behavior of ¢/,(0)
as v — 00. Using the Green’s function, we solve (3.9)) to obtain

ou(x) = ! (e”x /93 sinh(vt) Vo (t)14 (t; —v2)dt + sinh(vz) /OO eV (1) (t; —V2)dt> .
v 0 x
Therefore, ¢,(0) = — [;° e ""V4 (t)¢4(t; —v*) dt and
/ _ Voill7oeo
16,001 < IVillelle™ 2o s (: 22 22000y = ML= s o) 20mey (3.10)

Vv

In order to estimate |94 (-; —12)||12(0,00), (.9) yields
P16, 000 = <10~ [ Vi@ o 2)oula)da
implying v2|@u 1720 00y < Vi llzoe ¥4 (5 =) 1 22(0,00) 190 ]| 22(0,00) and
1 2
P01 22(0,00) < ﬁ”VnLHLOOWJr(‘; =) 22 (0,00) (3.11)

Therefore (3.8]) and (3 - 3.11)) together give |[14(+; — )||L2(0,Oo) < \/%ﬁL%HVJFHLoo 1 ( _V2)||L2(0,oo)‘
If v2 > ||V+||Loo, we have the estimate

2]/>71/2
- < ( . .
Hw—F( TV )”LQ(O,OO) =71_ V_2H‘r+HL°° (3 12)

Finally, combining (3.12) and (3.10)), we arrive at the bound

2v) | Vol

/ 0 < ( ,

which implies Ry (—v?) = —v + ¢,,(0) — —o0 as v — oo. O
The behavior of the ratio functions R+ (\) for the two examples Vi, = V_ = sin?(r2/10) and

Vi = V_ = cos?(mx/10) is summarized in Figure |3l Note that Lemmas . . . 2l and 3 ﬂ 3.3 imply
the behavior only for A < s3. The rest in Figure [3] is obtained without a rigorous proof from
numerical computations of the gap edge eigenfunctions.

By the intermediate value theorem and based on the behavior of Ry, we now obtain the following
theorem, which has already been observed by Korotyaev [14].

Theorem 3.4. Let G, G be two gaps in the spectrum of L_ and Ly respectively, such that
G,, NG} # 0. Then the following two statements are equivalent:

(a) 3N € G, NG, such that X is an eigenvalue of L.
(b) FEither GT_L = (:U’V_L?V;-i-l)’Gj—n = (V:H—lvujn) or Gr_z = (V;—&-lvuﬁ)?G—i_ (Nr—;v 7—:_1—&-1)

In the affirmative case the eigenvalue is also unique.
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Figure 3: Behavior of the ratio functions R (\) within gaps of (L) for Vi, = V_ = sin?(72/10)
in (a) and for V. = V_ = cos?(7z/10) in (b). The arrows denote the monotonicity type.

(B)
10— 10 T
: 1§
: . ]
8] : 8 Sim ‘I'_
a4
g [
6 6 [
: .'
4l
: 4 ]"
: J'
2 E 2
0=
0
A A

Figure 4: A cartoon of the graphs of R_(\) and R (\) when the former one of the two conditions
in Theorem holds. (a) No solution to (3.4) without monotonicity of R_ (hypothetical case).
(b) Existence and uniqueness of the solution to (3.4)) on any G,, N G,, with monotonicity of Ry.

Remark. Note that besides continuity and the limit values of R4(\) their monotonicity is also
needed to fulfill the conditions of the intermediate value theorem. Without monotonicity the ranges
of the functions Ry (A\) and R_(\) on the intersection G, N G,}, could be completely distinct, see
Figure[4 (a). With monotonicity of R+ ()) we, of course, obtain also uniqueness of solutions to (3.4)).

Let us call the gap (5, I/fﬂ) a DN-gap and the gap (yfﬂ,,uff) an ND-gap. The semi-infinite
gap belongs to the class of DN-gaps. The existence part of Theorem [3.4] can then be formulated as

follows:

Whenever a DN/ND-gap of L_ intersects an ND/DN-gap of L, respectively, a unique
etgenvalue of L exists in this intersection.
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3.1.1 Example: additive interface

The additive interface problem (T.1]) with (1.4) is equivalent to (3.1)) with L_ = Lg := —02 + Vp(x)
and Ly = Lo + a.

Because (Lo + a) = 0(Lg) + a, we have G} = G,, + «, and because the Bloch functions of Lg
at the spectral parameter A\ are the same as the Bloch functions of Ly + « at A + «, to check the
conditions of Theorem one only needs to know o(Ly) and symmetries (even/odd) of the Bloch
functions of Ly at the gap edges s,.

The existence part of Theorem [3.4] can now be formulated as follows:

Whenever « shifts the spectrum of Lo so that a shifted DN/ND-gap intersects an (un-
shifted) ND/DN-gap, respectively, a unique eigenvalue of L exists in this intersection.

Theorem [3.4] has several interesting and rather specific corollaries for the additive interface case.
Firstly, clearly, if |a| < ax, where ay := inf,en(S2, — S2n—1) stands for the width of the narrowest
spectral band of Lo, the shift « is too small to make even the two gaps lying closest to each other
overlap.

Corollary 3.5. If |a| < . := inf,en(S2n — Son—1), then L has no eigenvalues.

In the rest of this section G, denotes the n-th spectral gap of Lyg. As Lemma dictates, when
Vo is strictly increasing on [0,d/2], the first finite gap G1 = (s2,s3) is an ND-gap and thus if «
shifts the semi-infinite (DN) gap Gy so that G + « intersects G, an eigenvalue exists. Obviously,
the infimal value of o > 0 achieving such an intersection is the width of the first spectral band
S$o — s1. Since Gy is semi-infinite, there is no upper bound on « and if a > so — s1, the intersection
is always nonempty. On the other hand, when Vj is decreasing on [0,d/2], G; is a DN-gap and
the intersection of Gy + « and (1 contains no eigenvalues. As the next Corollary clarifies, for
a < —(s2 — s1) the situation is similar.

Corollary 3.6. Let V be strictly increasing/strictly decreasing on |0, g] If |a| > sg — 51 then a
unique eigenvalue/no eigenvalue of L exists in G1 N (G + «) for a > 0 and in Go N (G + «) for
a < 0.

Remark. For the case of the additive interface it is possible to show that the number of eigenvalues
of L is finite for any a € R based on the asymptotic behavior of gap locations and gap widths.
Indeed, based on Theorem 4.2.2 in [7] the center of the n-th gap behaves like cn? +o(n) as n — oo
with the constant ¢ € R dependent on V. The gap widths, on the other hand, tend to 0 since
they build an [? sequence, see Theorem 3 in [8]. Therefore, asymptotically, the n—th gap has the
form cn? + J,,, where both inf(J,,) and sup(J,,) behave like o(n). For a given a € R infinitely many
eigenvalues are thus possible only if for infinitely many pairs (m,n) € N x N with n # m there exist
spn € Jy and t,, € J,, such that

en® + s, = em? + ty, + o (3.13)

As for n = m no eigenvalues exist, we can rewrite (3.13)) as

a+t, — Sy

c(n+m)= p—

Clearly, the right hand side is o(n + m) while the left hand side is not. Thus only finitely many
solutions of (3.13) exist.

12



For general interface problems (with V' (z) = x{z<0} V- () + X {20} V4 (¥)) the question of finite-
ness of the number of eigenvalues seems open. Due to Theorem 3 in [§] there are, for example, po-
tentials V_ and V. with equal gap lengths and opposite DN/ND ‘polarities’. If, in addition, the lo-
cations of the gap centers were identical, there would be an eigenvalue in each gap G,, = G}, n € N.
However, it seems to be an open problem whether such potentials V_ and V. exist.

Numerical results The point spectrum of the additive interface problem with the potential
Vo(z) = sin?(72/10) has been computed using a 4th order centered finite difference discretization.
The eigenvalues are plotted in Figure [ for a range of values of a. The shaded regions are the union
of spectral bands of Ly and Lo + «. The results agree with Theorem

(a)
3 T T T
0.1
2= 005 / 1 5 -
: o] 0 3 "
_005/ o Z;E?
3o Vom0 02 022 . /ji/’/f

Figure 5: Numerically computed point spectrum of L with Vp(x) = sin?(7x/10) for a range of
values of . The union of spectral bands of Ly and Ly + « is shaded. The inset blows up the region
near A\ = si, a = 0. Eigenfunctions for the labeled points are plotted in Figure [6]

In Figure [6] we plot eigenfunctions corresponding to nine selected eigenvalues in Figure 5] Note
that the decay rate of the eigenfunctions is often very different on either side of the origin.

For the potential Vg(x) = cos?(mx/10) it is clear from the numerically obtained Figure (b) that
the intersections G; N (Gy + «), j,k € {0,...,3} contain no eigenvalues because the gaps G and
(1 are DN-gaps and so seem to be G5 and G3. In other words, based on the numerics, the additive
interface problem (L.1)), with Vo(z) = cos?(7z/10) has no eigenvalues on (—oo, sg]. Note that

our analysis guarantees non-existence of eigenvalues in (—oo, s4].

3.2 Point Spectrum for Interface Problems Made of Dislocated Even Potentials

For the dislocation interface ((1.3]) we restrict our attention to the two representative cases t = —s
and s = 0.
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Figure 6: Eigenfunctions corresponding to the 9 labeled eigenvalues in Figure

3.2.1 Symmetric Dislocations

Here we study the eigenvalue problem (1.1)) with (1.3) in the case where t = —s, t € (0,d). This
can be done via the system

Lt oyt = =02t + Vo(x — t)pt = Mt for 2 < 0,

Lyt = =02t + Vo(z + )yt = Mt for 2 >0 (3.14)
coupled by the the C'-matching conditions
G0-) = ¢ (04)  and  gt(0-) = Lyt(04). (3.15)
dx dx

First note that the spectrum o (L;) of the operator L; := —9% + Vo(z +t) on R is identical to the
spectrum o(Lg) of Ly = —9% + Vo on R and we have G} = G,,. Moreover, the Bloch functions
Y1 of Ly for A € R\ (L) = R\ 0(Lo) are just shifts of the Bloch functions of Lo, i.e., ¥}(z; \) =
Y9(z +t;N),i = 1,2. Therefore, an L*-solution of with can only exist if A ¢ o(Lg). For
such A any localized eigenfunction 9! of with must take the form

P25 N) = X a0yl (25 X) + X om0yl (23 1),

where 9/ (z; \) are those Bloch functions of L., which decay on R*, respectively.
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As in Section [B.3] we introduce the ratio functions
TAGACIRY
Ui (zsA)
so that the matching conditions (3.15)) are equivalent to R’ (0; \) = R’ (0; A). Due to the fact, that

the Bloch functions % are just shifts of the Bloch functions 1%, we see that RY, (z;\) = R (z+t; \)
and R! (z;\) = R® (z — t; \). Thus, the matching condition (3.15) amounts to

RY(t;)) = R (—t; \).

R (z;)) =

Finally, the evenness of the potential Vi and the fact that only one linearly independent Bloch
function decaying at +oo exists, imply that 19 (z;\) = £¢° (—x; \) since A ¢ o(Ly), and hence
R (t; ) = —R% (—t; \) so that finding an eigenvalue of (1.1)) with (1.3) amounts to finding a zero
or a pole of R (t;\) for some ¢t € (0,d). This is done below via the intermediate value theorem
and monotonicity properties of the function R (t; ).

For simplicity we write in the following R(¢;\) instead of RY (t; \). First, we need to generalize
Lemma on the monotonicity and continuity of R(¢; A) or the corresponding Priifer angle 0(t; \)
as a function of ¢+ and A. Suppose ¥ € L%(0,00) solves Loy) = A\p. We apply again the Priifer
transformation given by

Yz A) = p(x; N)sin(@(z; X)), @' (@30) = p(a; ) cos((z; X)),
which transforms the equation Lgy = A\ into the system

0 =1+ (\—Vo(x) — 1)sin?(9), (3.16)
o = —p(\—Vo(x) — 1) sin() cos(6), (3.17)

where the prime denotes differentiation in z. Note that (2.1)) implies 2d-periodicity in ¢ of R(t; ).
Hence (t+2d; \) = 0(t; A\) +mm, where m is an integer which is constant in A within each spectral
gap. In fact, it can be shown by the Sturm oscillation theorem that m = 2n when A € G,.

In the subsequent arguments we use the following result on differential inequalities, cf. Wal-
ter [22], which we quote in a slightly simplified way. Functions v,w satisfying (3.18)) below are
called sub-, supersolutions, respectively.

Lemma 3.7. Let f : [a,b] x R — R be continuous and continuously differentiable with respect to
the second variable. If v,w € C'[a,b] satisfy

v < f(tv), w > f(t,w) on [a,b] with v(a) < w(a), (3.18)

then v < w in [a,b]. More precisely, either v < w in (a,b] or there exists ¢ € (a,b] such that v =w
on [a,c] and v < w on (c,b]. Moreover, if one of the differential inequalities holds strictly almost
everywhere in [a,b], then v(t) < w(t) holds for all t € (a,b].

Lemma 3.8 (Monotonicity in \). Let Gy, = (82n, S2n+1),1 > 0 be a fized gap. For (t,\) € [0,d]x G,
the function R is continuous except in the set S = Ute[o,d] S¢, where for each t either Sy = 0 or
St = {(t, )\t)} and

lim R(t;\) = +oo, AEESJF R(t; \) = —o0. (3.19)

A— A —

For a fixed t the function R(t; \) is strictly increasing for A\ € Gy, if Sy = 0, and strictly increasing
for X € (san, At) and for X € (M, san+1) if St = {(t,\t)}. Moreover, if \,n € Gy, and Sy # 0, then
A < A\ < poimplies R(t; \) > R(t; ). Consequently, for all t € [0,d] we have that X # p implies
R(t; \) # R(t; p).
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Proof. As we have seen in Lemma the Priifer-variables 6§ and p are continuous functions of
both ¢t € R and A € G,,. Since R(t; \) = cot(6(t; N)), the function R(t; \) is continuous except for
those values, where 0(t; \) passes through km,k € Z. Since R(t;\) is strictly increasing in A at
points of continuity by Lemma the relation follows. The fact that there is at most one
blow-up point Ay, with respect to A will follow from the next statement. Let )\;, be a pole and
A < Ay, < p and suppose for contradiction that R(tp; A\) < R(to; p). By lowering u if necessary and
keeping the order A < A\, < p, we may achieve R(to; \) = R(to; ), i.e., there exists k € Z such
that 0(to; \) = 0(to; ) + km. Note that

0'(t;N) =1+ (N—Vo(t)

— 1)sin?(0(t; \)),
0'(t;p) =1+ (u—Vo(t) - 1

)sin?(0(t; ) > 14 (A = Vo(t) — 1) sin®(6(£; )
for almost all ¢ > ¢3. By the comparison principle of Lemma we obtain 0(t; \) < 0(t; u) + km

for all ¢t > ty. Here we have used that 6 and 6 + k7 solve the same differential equation. It follows
in particular, that

O(to; A) +mm = 0(to + 2d; X) < O(to + 2d; ) + km = O(to; ) + (m + k)m
contradictory to our assumption 6(to; A) = 0(to; 1) + km. This proves the lemma. O

Corollary 3.9. Fort = —s the number of dislocation eigenvalues in any gap Gn,n >0, is 0, 1 or
2. If there are 2 eigenvalues, then one of them has an even and the other one an odd eigenfunction.

Proof. Tt follows from Lemma that for fixed ¢ the function R(¢;\) as a function of A can have
at most one zero and at most one pole. ]

Lemma 3.10 (Monotonicity in t). Suppose Vy is an even, d—periodic C'-function. Let G, =
(S2n, S2n+1),n > 0, be a fixed gap and let X € OG,,.

(a) If Vy is strictly increasing on [0, %], then either 0(t; \) is strictly increasing for t € [0,d] or

there exists to € (0, %) such that 0(t; \) is strictly increasing for t € [0,to] U [d — to,d] and

strictly decreasing for t € [to,d — to].

(b) If Vy is strictly decreasing on [0, %], then either 0(t; \) is strictly increasing for t € [0,d] or
there exists to € (0, %l) such that 0(t; \) is strictly decreasing for t € [0,t9] U [d — to,d] and
strictly increasing for t € [to,d — to].

Note that in both cases, 0(t; ) can change monotonicity with respect to t only once on [0,d/2].

Proof. We give the proof in case (a). The proof for case (b) needs only minor modifications. Recall
from Lemma [2.1| that for A € G, the evenness of Vj implies 9(%; A) = k% for some k € Z. Hence

we have J J J
0<2+s;)\) :k:7r—9<2—s;)\> Vs € [0,2}

since both sides satisfy the differential equation (3.16)) with Vy(z) = Vp(d/2+ s) = Vp(d/2 —s), and
have the same initial values at s = 0. In particular

d d d
/ — : = / — — S -
0 (2 +5,A> 0 <2 S,A> Vs € [0,2] (3.20)
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due to the evenness of Vy(z) about x = d/2 (implied by d—periodicity and evenness about = = 0).
In any of the two cases, the monotonicity of 6 in [0, 4] has its counterpart in [4,d]. Differentiation

29
of (3.16) with respect to t yields
(") = 2(\ — V() — 1) sin(f) cos(0)8' — Vj(t) sin®(6).

If 0'(to) > 0 for some ty € (0,d/2], then by also 0'(d — typ) > 0, so that Lemma applied
to v := 0 and w := 0 on [d — ty,d] (note that Vj < 0 a.e. on [d/2,d]) implies 8’ > 0 on (d — t¢, d]
and by also on [0,ty). Below we show that such ¢y exists. Let ty be chosen maximal with
these properties. If tyg = d/2, then 6 is strictly increasing on [0,d]. If ¢ty < d/2, then #'(tg) = 0
and Lemma [3.7] applied to v := 0" and w := 0 on [ty, d/2] (note that Vj > 0 a.e. on [0,d/2]) gives
0’ < 0 on (tp,d/2] and by also on [d/2,d — tp). Consequently, 8 > 0 on [0,to) U (d — to, d],
and ¢’ < 0 on (to,d — to).

Note that the case 8 < 0 throughout (0,d) is impossible since then 6(0) # 6(d) and thus 6(s)
is a multiple of m for some s € [0,d] (because §(0) and 6(d) are multiples of § by the remarks
before Lemma , whence ¢ > 0 in some neighborhood of s due to the differential equation for
6, contradicting 6’ < 0 on (0,d). This proves the lemma. O

Theorem 3.11. Suppose Vi satisfies the basic assumptions, i.e., it is even, d-periodic and contin-
uous. Let s = —t in (1.3) and consider the semi-infinite gap Gy = (—00, 81).

(a) If Vi is strictly increasing on [0,d/2], then there is no/exactly one dislocation eigenvalue in
Go fort €10,d/2] / (d/2,d) respectively.

(b) If Vi is strictly decreasing on [0,d/2], then there is exactly one/no dislocation eigenvalue in
Go fort € (0,d/2) /[d/2,d] respectively.

Proof. Tt suffices to prove part (a), since (b) follows from (a) via shifting the potential by the
half-period ¢ due to the evenness of Vy(x) about x = d/2. Recall that the first band edge s
is a Neumann eigenvalue. The first Neumann eigenfunction u is positive, and hence, due to the
d—periodicity and evenness of Vp it has an extremum at x = d/2. It can be thus viewed as the first
Neumann eigenfunction on the interval = € [0,d/2], i.e., the minimizer of the energy

a2 /2
/ V" 4 Vo(x)v? dz,  where v € H'(0,d/2) with / vidr = 1.
0 0

As the decreasing rearrangement u* of u decreases the energy, u has to be decreasing, i.e., v/(z) <0,
on [0,d/2]. In fact, v'(x) < 0 on (0,d/2). If v/(£) = 0 for some & € (0,d/2), then due to positivity
of u the function R satisfies R(0;s1) = R(§;s1) = R(d/2;s1) = 0, hence R, and in turn 6, change
monotonicity at least three times on (0,d/2), which is impossible by Lemma Therefore
R(t;s1) <0 for t € (0,d/2), R(t;s1) >0 for t € (d/2,d), and R(t;s1) =0 for t € {0,d/2,d}.

Recall now from Lemma that R(t;\) = R, (0;\) — —oc as A — —oc for any ¢ € [0,d].
Moreover, R(t; \) is continuous in A € Gy because continuity can be broken only by a pole. But
because R(t;\) — —oo as A — —oo and R(t; \) is increasing in A within each continuity segment,
a pole would mean that R(¢; \) takes the same value for some A\; # Ay € Gy, which is impossible
by Lemma (3.8

As a result R(; \) stays negative for ¢ € (0,d/2) throughout A € Gy, goes through 0 once for
t € (d/2,d), and takes the zero value at A = s ¢ G for t = d/2. O
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Theorem 3.12. Suppose Vj is an even, d-periodic C*-function, let s = —t in (1.3 and consider
the first finite gap G1 = (s2, s3).

(a) Suppose Vy is strictly increasing on [0, %] Then Gy = (v2, 1), and the second Neumann-

eigenfunction is strictly monotone on [0,d]. For the first Dirichlet-eigenfunction u we have
the alternative:

(al) w is strictly monotone on [0, g] Then there is exactly one dislocation-eigenvalue in G

fort € (0,d)\ {4} and none fort = 4.
d

(a2) u changes monotonicity on [0, %] ezxactly once at the extremal point dy € (0,4%). Then
the number of dislocation-eigenvalues in G is as follows:

dislocation parameter | t € (0,dy) | t € [do, %], te (g, d—dy) |t€[d—do,d) | t=d
number of eigenvalues 1 0 2 1 0

b) Suppose Vy is strictly decreasing on |0, 4. Then Gy = wi,v2), and the first Dirichlet-eigen-
2
function is strictly monotone on [0, %] For the second Neumann-eigenfunction u we have the
alternative:

(b1) w is strictly monotone on [0, g] Then there is exactly one dislocation-eigenvalue in Gq

fort € (0,d)\ {4} and none fort = 4.

(b2) u changes monotonicity on [0, %] exactly once at the extremal point dy € (0, g) Then

the number of dislocation-eigenvalues in Gy is as follows:

SIfSY
~
m

—

NGlISi
ISH

|
IS
=)

SN—

t € [d— do, d]
0

dislocation parameter | ¢t € (0,dp) | t € [do, g), t
number of eigenvalues 2 1

ol |l
—_

Proof. As in Theorem it suffices to prove part (a) when, in addition, the roles of v5 and py are
switched in the proof of (b). The strict monotonicity of the second Neumann eigenfunction and
the fact that G; = (9, u1) was already stated in Lemma For the monotonicity alternative of
the first Dirichlet eigenfunction u (which can be assumed positive on (0, d)) recall that

w(@) = p(@; ) sin(z; ), u'(z) = p(x; pa) cos O(x; ).

We can assume that §(0;u1) = 0, 0(%;u1) = I and that (x;u1) ranges in [0,7) for = € [0, 2.

According to the monotonicity alternative for # in Lemma there are two possibilities: either
0(x; 1) is increasing and hence cos(6(z; p1)) > 0 for x € (0, g), or O(x; 1) is strictly increasing for
t € [0,t0] and strictly decreasing for t € [to, g] In the latter case 0(x; 1) crosses the value 7 at
some dy € (0,%9) and hence u/ > 0 on [0,do) and u' < 0 on (do, 3). This proves the monotonicity

alternative (al), (a2), and it remains to discuss the number of dislocation eigenvalues.

We may suppose that the second Neumann eigenfunction is strictly decreasing on [0, d] with its
unique zero at 3. Thus 0(¢; v2) ranges within [3, 27] with 0(%;10) = 7, 0'(4;15) = 1. Therefore, 0
increases near d/2 and taking into account Lemma (a), we find that 6 must be strictly increasing
on [0,d] and hence R(t;vs) is strictly decreasing in ¢t on [0,d/2) and on (d/2,d] with

d

d
R(0+;12) =0—, R <2—; Vz) =-o00, R <2+;V2> =400, R(d—;12) =0+. (3.21)
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Case (al): We may suppose that the first Dirichlet eigenfunction is strictly increasing and positive
on [0, 4] and even around 4. In this case 6(t; 1) ranges through [0, 2] for t € [0, 4] with 6(d/2, j1) =
T and through (%, 7] for ¢ € [, d]. Hence ¢'(d/2; u1) > 0, and again Lemma [3.10(a) implies that ¢

is strictly increasing on [0, d] and hence R(t; u11) is strictly decreasing in ¢ with
d d
R(0+; 1) = +o00, R 5| = 0+, R §+§M1 =0—, R(d—;u1)= —oc.

For t € (0,%) we have R(t;v2) < 0 < R(t; 1) and hence by Lemma there is no pole \; (i.e.
Sy = () and there exists a value A € (vq, 1) with R(¢;A) = 0, and this is the only zero. Thus
we have the uniqueness of the dislocation eigenvalue. For ¢t = %l, the zero appears at A\ =
which is not inside the gap, i.e., there is no dislocation eigenvalue. Finally, for ¢t € (%, d) we have
R(t;v2) > 0 > R(t; 1) and hence by Lemma there exists a value A\; € (va, 1), where R(t; \)
has a pole. No further poles or zeros can exists, which shows again uniqueness of the dislocation

eigenvalue.

Case (a2): We may suppose that the positive Dirichlet eigenfunction is strictly increasing on [0, dg],
strictly decreasing on [dp, %] and even around %. In this case 6(t; 1) has the following properties:

increasing from 0 to 5 for ¢ € [0, dy, increasing from § to 6* for ¢ € [do, to],
decreasing from 0* to § for t € [to, %}, decreasing from 7 to 6, for t € [%, d — t),
increasing from 6, to § for t € [d —tg,d — dp], increasing from § to m for t € [d — do, d]

for some ty € (doy,d/2), which translates into the following behavior of R(¢; u11):

decreasing from +oo to 0 for ¢ € [0, dy], decreasing from 0 to R,  for ¢ € [dp, to],
increasing from R, to 0 for t € [to, 3], increasing from 0 to R*  for t € [4,d — o],
decreasing from R* to 0  for ¢t € [d — tg,d — do|, decreasing from 0 to —oo for t € [d — do, d].

If we combine this information with (3.21)), we conclude:

(i) For t € (0,dp) we have R(t;12) < 0 < R(t; 1) and hence by Lemma [3.8) there exists a value
A € (va, 1) with R(t; A) = 0. No other zero or pole can occur, which shows the uniqueness of the
dislocation eigenvalue.

(ii) For t = dy the zero has moved to the right-end of the gap, i.e., R(dy; 1) = 0.

(iii) Next, we claim that
R(t;v2) < R(t; 1) < 0 for all ¢ € (dp,d/2) (3.22)

This is obvious for ¢ near dy and has to hold by continuity for all ¢t € (dy, g) since equality is
excluded by Lemma Moreover, also implies that there cannot be a pole of R(t;\) for
A € (v2, 1) by Lemma 3.8, Thus, R(t; \) increases continuously from R(t;12) to R(t; u1) as A runs
through (v9, 1) with no zero or pole, i.e., there is no dislocation eigenvalue for ¢ € [do, 2).

(iv) For t = % dislocation eigenvalues are excluded since R(d/2;v9+) = —o0, R(d/2; u1) = 0 and
R(d/2; \) is strictly increasing for A € [va, p1]. In fact, t = % leads to a perfectly periodic V (z) due
to the symmetry of Vp(z) about z = 4. As a result, t = ¢ is no dislocation.

(v) Next we consider ¢t € (%, d — dp). For such t we claim that R(t;ve) > R(t; 1) > 0. Whereas
positivity is obvious, the ordering is clear for ¢ near g, cf. (3.21)), and has to hold by continuity for
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all t € ( %, d — dy) since equality is excluded by Lemma Hence, there exists a pole \; € (v2, 1)
of R(t;A\) and also a zero Ao € (A, pu1), which yields exactly two dislocation eigenvalues for ¢ €
(%a d— dO)

(vi) For t = d — dp, the previous argument still shows the existence of a pole, but the zero has
moved to the right end of the interval (v, 1) leaving us with only one dislocation eigenvalue.

(vii) Next, consider ¢ € (d — do,d). For such ¢ we have R(t;v2) > 0 > R(t; 1) which forces the
existence of a pole at some value \; € (19, u1) with no further poles or zeros, i.e., there is exactly
one dislocation eigenvalue.

(viii) Finally, ¢ = d is the same as ¢ = 0 and corresponds to no dislocation and hence there are
no eigenvalues. This completes the verification of the number of dislocation eigenvalues. O

Finally, we give a partial answer to the question which of the cases (al), (a2) or (bl), (b2) for a
given potential Vj actually occur. The condition given in the next theorem is a sufficient condition
on the potential Vj for (a2), (b2) to occur.

Theorem 3.13. Suppose Vy satisfies the basic assumptions, i.e., it is even, d-periodic, and con-
tinuous.

(i) Assume that Vj is strictly increasing on [0,d/2] and

2
Vo(z) <V(z) :== B+ (a—fB) (2; - 1> for all z € [0,d/2],

where 3 := Vo(%) and o € R is arbitrary. If
(3 — a)d? > 80(13 — 2v/37) ~ 66.75, (3.23)

then only the case (a2) of Theorem occurs, i.e., the first Dirichlet-eigenfunction on [0, d]
is even around %l but changes its monotonicity at some dy € (0, %l)

(ii) Assume that Vj is strictly decreasing on [0,d/2] and

Vo(z) <V (z) =B+ (o — B)%ﬁ for all z € [0,d/2],

where B := Vy(0) and o € R is arbitrary. If
(3 — a)d? > 80(13 — 2v/37) ~ 66.75, (3.24)

then only the case (b2) of Theorem occurs, i.e., the second Neumann-eigenfunction on
[0, d] is odd around % but changes its monotonicity at some dy € (0, %).

Remark. It will become clear from the proof that and are not the only conditions
that lead to the conclusion of the theorem. In fact, by choosing different upper bounds V and a
different candidate function w(x) in the proof below, one may obtain sufficient conditions which
are different from (3.23) and (3.24)). Since there are manifold ways to derive such conditions, we
decided to give only the simplest one. Nevertheless, and are already sufficient to cover
example potentials such as Vp(x) = sin?(rz/10) and Vo(z) = cos? (72 /10), respectively.
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Proof. Suppose Vj is increasing on [0,4]. Let z; be the first Dirichlet eigenvalue on [0,d] with
corresponding positive eigenfunction u. Then puy = kpn, where kpn denotes the first eigenvalue
on [0, %] with Dirichlet boundary condition at 0 and Neumann boundary condition at %. Let 0 be
the Priifer-angle for v normalized by 6(0) = 0, which implies 9(%) = 5. The non-monotonicity of u
can be shown by proving that ¢’ (%) <0, i.e., 0 > 7 in a left-neighborhood of %. By the differential

equation for 8 we obtain

0'(5) =1+ (1 — Vo (§) = 1)sin®0 (§) = i — Vo () -
Using the variational characterization of u3 = kpy, it suffices to find one function w € H 1(0, %)
with w(0) = 0 such that
d
J? w'? + Vo(x)w? dx

d
f02 w? dx

<V (4) =5 (3.25)

Using the upper bound Vy(z) < V(x) and the quadratic candidate function w(z) = x(2¢ — x) with
¢ € R to be determined, condition (3.25)) amounts to

d d
/2 w' + V(z)w? dx —ﬁ/2 w? da
0 0
3360

If v > 120, then ((3.26) can always be achieved by an appropriate choice of ¢. If v < 120, then the

optimal choice for c is ¢ = ggjﬁg; and hence (3.26) amounts to

56(120 — v)c® — 14(240 — v)c + (560 — 7)d*) < 0,  where v := (8 — a)d*. (3.26)

d®(? — 2080 + 134400)
8-3360(120 — )

<0,

which is fulfilled for v € (80(13 — 2v/37),120) = (66.75,120). Altogether, the statement (i) of the
theorem holds true for v = (8 — a)d? > 80(13 — 24/37). This concludes the proof of statement (i).
Part (ii) can be obtained from part (i) by reflecting the interval [0, %] O

Numerical Results We present results of numerical computations of the point spectrum of L
with the dislocation interface (1.3)) with s = —t and Vg = sin?(72/10) as well as V = cos?(7x/10).

As one can see in Figure [7] bottom, the number of eigenvalues in the semi-infinite gap agrees
with Theorem Regarding eigenvalues in the first finite gap G = (s2, s3), note first that since
Vo = sin?(7x/10) satisfies the conditions of Theorem (with § =1 and, for instance, a = 0.3),
we know that the first Dirichlet eigenfunction changes monotonicity at some dy € (0,d/2) = (0, 5).
The case (a2) of Theorem therefore, applies. We obtain numerically dg ~ 2.16, see Fig. [7|top.
The number of eigenvalues in the gap G agrees with the theory at each t € (0,d), see Figure
bottom. Eigenvalues in the gaps G2 and G3 are also plotted; note that for these our analysis
provides no explanation other than the statement of Corollary

Figure [§] shows the eigenfunctions corresponding to the 9 labeled eigenvalues in Figure [7}

The results for Vp(x) = cos?(mz/10), as an example of a potential that falls in the case (b) of
Theorem are, in fact, contained in the lower part of Figure [7] because cos?(w(x — t)/10) =
sin?(m(z — (t +5))/10). As cos?(mx/10) satisfies the conditions of Theorem (with § =1 and,
for instance, a = 0.3), we know that the alternative (b2) has to apply.
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Figure 7: top: the first three band edge Bloch functions of Ly with Vy(z) = sin?(72/10); bottom:
point spectrum of L for (1.3) with s = —t and Vj = sin?(7z/10) for ¢ € [0,d). The spectral bands

of L are shaded. Eigenfunctions for the labeled points are plotted in Figure
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3.2.2 One-sided Dislocations

As the second representative example of the dislocation problem (1.1)) with (1.3) we choose s =
0,t € (0,d), which is equivalent to the system

LO At i= —02! 4 Vo (a)ht = Mt for x < 0,

Lyt := =024 + Vo(z + )9t = Mt forz >0 (3.27)

coupled by the the C'-matching conditions (3.15). Localized eigenfunctions 1, once again, exist
only for A ¢ o(Lg) and have the form

O3 N) = X(aeop ¥ (3 A) + X(as0p ¥ (23 M),

where ¢° (z; \) and 9% (z; ) are those Bloch functions of Ly and L; = —92+ Vy(z+t), which decay
on R~ and R™, respectively. The matching condition (3.15)) now becomes

RY.(t;\) = RV (0; ),

where RY (0; )\) is the same as R_(\) defined in ([3.4).

Because R? (0;)\) is decreasing and continuous in each gap (Lemma [3.1)) and given the analysis
of RY (t; A) in Section determining intersections of RJ (t; A) and RY (0; A) in Gy and Gy is now
straightforward.

Lemma 3.14. For s = 0 the number of dislocation eigenvalues in any gap Gp,n >0, is 0,1 or 2.

Proof. Rg(t; A) is strictly increasing and continuous in A on each continuity segment and its conti-
nuity can be broken only at one point (pole) in G, see Lemma As R° (0; \) is continuous and
decreasing throughout G, only up to 2 intersections of RY (t; A) and R (0; \) can occur. O

Theorem 3.15. Suppose Vy satisfies the basic assumptions, i.e., it is continuous, even and d-
periodic, and let s =0 in (1.3)), and consider the semi-infinite gap Gy = (—o0, s1).

(a) If Vi is strictly increasing on [0,d/2], then there is no/exactly one dislocation eigenvalue in
Gy fort €10,d/2] / (d/2,d) respectively.

(b) If Vo is strictly decreasing on [0,d/2], then there is exactly one/no dislocation eigenvalue in
Gy fort € (0,d/2) / [d/2,d] respectively.

Proof. We, once again, present the proof only of (a) as (b) follows by shifting the potential in z
(or t) by d/2. As explained in the proof of Theorem s1 is a Neumann eigenvalue and the
corresponding eigenfunction can be taken positive on [0,d/2] with v’ < 0 on (0,d/2) and with a
point of even symmetry at x = d/2.

By Lemmas and the function R? (0;\) decreases continuously from oo at A — —oo
to 0 at A = s;. The behavior of Rg(t; A) is explained in the proof of Theorem It follows
that R (0;A\) and RY (¢ \) intersect in G exactly once for ¢ € (d/2,d) and do not intersect for
t €[0,d/2]. O

Theorem 3.16. Suppose Vy is an even, d-periodic C'-function, let s = 0 in (1.3), and consider
the first finite gap G1 = (s2, s3).

23



(a) If Vi is strictly increasing on |0, %], and hence G1 = (va, 1), then there is exactly one
dislocation-eigenvalue in G for all t € (0,d).

(b) If Vy is strictly decreasing on [0,%], and hence Gi1 = (u1,12), then we have the following
alternative for the second Neumann-eigenfunction u:

(b1) w is strictly monotone on [0, g] Then there is exactly one dislocation-eigenvalue in Gy

forallt € (0,4d).
d

u changes monotonicity on |0, 5| exactly once at the extremal point dy € (0, 5). en
b2) u ch tonicit 0,4 tl t the extremal point dy € (0,%). Th
the number of dislocation-eigenvalues in G is as follows:

dislocation parameter | ¢t € (0,dp) | t € [do,d —do) | t € [d — do,d)
number of eigenvalues 2 1 0

Proof. Case (a): As explained in the proof of part (a) of Theorem for ¢ € (0,d/2] we have
RY (t;vo+) < 0 and RY(t; \) continuous and increasing in A € Gy. Therefore, RY (t;\) intersects
R%(0; \) exactly once, as RY (0; \) decreases continuously from 0 at A\ = vo+ to —oco at A\ = u;—,

see Lemmas

Next, as the proof of Theorem (a) shows, for t € (d/2,d) the function RY (¢; \) has a pole at
some \; € G1 and increases continuously on the interval (v2, A¢) with RY (¢;v2) > 0, R (t; \\—) = 00
and on the interval (\;, p1) with R (¢; \;+) = —oo. The functions RY (£; A) and R (0; ), therefore,
intersect exactly once on A € (A, p1) and they do not intersect on A € (v, \r).

Case (b): In the case of Vj strictly decreasing on [0,d/2] the function R® (0; ) is continuous and
strictly decreasing from oo at A = vo+ to 0 at A = 1, see Lemmas We obtain below the
behavior of RY (t;\) from that of R(¢;A) in the proof of Theorem (a) by the shift of d/2 in ¢
and switching of the roles of p; and vs.

Case (b1): For t € (0,d/2) we have R%.(t;u1) > 0 > RY(t;v2) and R (f;\) has one pole in
A within Gi. R°(0;\) thus intersects RY (t; \) exactly once on Gy. For ¢ € [d/2,d) the function
RY (t; \) is continuous on Gy and RY (t; 1) < 0 < RY(t;v2—). Exactly one intersection of RY (¢; )
and RY (0; \) thus exists.

Case (b2): For t € (0,dp) the function RY (t;\) behaves in \ like R(t;\) on ¢t € (d/2,d — dy)
in (v) in the proof of Theorem (a2). Note that dy here corresponds to d/2 — dy in the
proof of Theorem Namely, we get RO (t;p1) > RY(t;r2) > 0 and a pole of RY(t;)) at
some \; € Gy. Two intersections of R} (t;\) and RY(0;\) thus exist. For ¢ € [do,d — dp) the
behavior of the eigenfunction and hence of R} (¢;)) is qualitatively the same as in (bl) of this
proof and precisely one eigenvalue thus appears in Gj. Finally, for ¢ € [d — dy,d) the function
RY(t;\) behaves in A like R(t;\) on t € [dg,d/2) in (iii) in the proof of Theorem (a2).
Therefore, R) (¢; 1) < RY.(t;12) < 0 and RY (¢ \) is continuous throughout Gi. No intersections
of RY(t;\) and RY (0;\) thus occur. Finally, ¢t = d corresponds to no dislocation resulting in a
purely continuous spectrum of L. ]

Numerical Results Results of numerical eigenvalue computations with the dislocation interface
(T.3) with s = 0 and Vj = sin?(72/10) are displayed in Figure @ They agree with Theorems
and Figure[I0]shows the eigenfunctions corresponding to the 6 labeled eigenvalues in Figure [0
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As expected, they lack symmetry in contrast with the eigenfunctions of the symmetric dislocation
in Figure

s. 5 1.5

Figure 9: Point spectrum of L for (1.3) with s = 0 and V}
labeled points are plotted in Figure

= sin?(72/10). Eigenfunctions for the
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Figure 10: Eigenfunctions corresponding to the 6 labeled eigenvalues in Figure [9}

The results for Vo(z) = cos?(mx/10), as an example of a potential that falls in the case (b)
of Theorem [3.16, appear in Figures [11] and As we know from Section the potential
cos?(mx/10) falls into the case (b2) and the second Neumann eigenfunction thus changes mono-
tonicity on (0,d/2), see Figure 11| top. Agreement of the numerics with Theorems and is,

once again, observed.
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Figure 11: top: the first three band edge Bloch functions of Ly with V(z) = cos?(7x/10); bottom:
point spectrum of L for (1.3) with s = 0 and Vy = cos?(7z/10) for t € [0,d). The spectral bands
of L are shaded. Eigenfunctions for the labeled points are plotted in Figure
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