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Abstract. We determine the best constant K and extremals of the Opial-type

inequality
∫ b

a |yy′| dx ≤ K(b − a)
∫ b

a |y
′|2 dx where y is required to satisfy the

boundary condition
∫ b

a y dx = 0. The techniques employed differ from either

those used recently by Denzler to solve this problem or originally to prove the
classical inequality; but they also yield a new proof of that inequality.

1. Introduction

In 1962 C. Olech [11] gave a simplified proof of the following inequality originally
due in a slightly less general form to Zdzis law Opial 1[12].

Theorem A. If y is a real absolutely continuous function on the interval [a, b],
−∞ < a < b < ∞ and y(a) = y(b) = 0,

∫ b

a
(y′)2dx < ∞, then the best constant K

of the inequality ∫ b

a

|yy′| dx ≤ K(b− a)
∫ b

a

(y′)2 dx (1.1)

is 1/4. Equality holds in (1.1) if and only if

y(s) =

{
c(s− a) if a ≤ s ≤ a+b

2 ,
c(b− s) if a+b

2 < s ≤ b

where c is an arbitrary constant.

Embedded in Olech’s proof is the half-interval form of Opial’s inequality discov-
ered also by Beesack [2] which is satisfied by those y vanishing only at a.

Theorem B. If y is a real absolutely continuous on the interval [a, b], −∞ < a <

b < ∞, and y(a) = 0,
∫ b

a
(y′)2dx < ∞, then∫ b

a

|yy′| dx ≤ b− a

2

∫ b

a

(y′)2 dx. (1.2)

Equality holds in (1.2) if and only if y = c(s− a) for some constant c.

Since their discovery both (1.1) and (1.2) have attracted enormous interest. At
least six proofs are known and a very large number of generalizations have been
given. For a survey of the literature on Opial-type inequalities see the books of Agar-
wal and Pang [1] and Mitrinović, Pečarić, and Fink [10]. For an important recent
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boundary condition.
1Opial required that y′ be continuous and y > 0. Also he did not characterize the extremals.
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result showing that Opial inequalities are equivalent to those of Hardy-type (with-
out, however, preserving the constants) see [13]. Besides having intrinsic interest
Opial-type inequalities have proved essential in developing disconjugacy/stability
criteria for differential equations, obtaining sufficient conditions for the positivity
of eigenvalues, bounds on the spacing of zeros of a solution, or improving other
inequalities, such as the Lyapunov inequalitiy, see e.g. [4], [6], or [7].

We note that the existence of an inequality of the form (1.1) or (1.2) is quite
easy to prove. As already noticed in [12] if we apply the Cauchy-Schwarz and the
one-dimensional Poincaré inequality we find that∫ b

a

|yy′| dx ≤

(∫ b

a

y2 dx

)1/2(∫ b

a

(y′)2 dx

)1/2

≤ b− a

π

∫ b

a

(y′)2 dx. (1.3)

The nontrivial part of (1.1) is the determination of the least value of K and the
characterization of the extremals, and in all applications this knowledge has been
essential. In order to get a feeling for subtleties involved in Opial’s inequality we
sketch an argument for (1.1) which is close to Olech’s.

Outline of a proof. Let y be an absolutely continuous function such that y(a) =
y(b) = 0 and

∫ b

a
(y′)2 dx < ∞ and let p ∈ (a, b) satisfy∫ p

a

|y′| dx =
∫ b

p

|y′| dx.

Define

Y (x) =

{∫ x

a
|y′| dx if x ∈ [a, p],∫ b

x
|y′| dx if x ∈ (p, b].

Evidently Y is absolutely continuous, |y| ≤ |Y |, and |y′| = |Y ′| so that an extremal
of (1.1) (if any) will be found among the class of appropriate functions y which are
nondecreasing on (0, p], nonincreasing on (p, 1], and such that y(p) = 1. ¿From this
it follows that the extremal is a linear spline with a unique knot at p and by varying
p we find that the least value of K is 1/4. By a variation of the above argument
(see [5]) one can show that∫ b

a

|yy′| dx ≤ b− a

4

∫ b

a

(y′)2 dx,

if y(a) + y(b) = 0.

Most of the other generalizations of Opial’s inequality familiar to us involve bound-
ary conditions similar to those of (1.1) or (1.2). 2

In this paper we will consider the inequality∫ b

a

|yy′| dx ≤ K(b− a)
∫ b

a

(y′)2 dx, (1.4)∫ b

a

y dx = 0 (1.5)

2However for a discussion of Opial-type inequalities satisfying the nonhomogenous conditions

y(a) = c, y(b) = d, c, d 6= 0 see [5].
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where y again is absolutely continous and
∫ b

a
(y′)2 dx < ∞. As in the case of (1.1)

it is not difficult to show that K < ∞ in (1.4) exists. The argument (1.3) using
a form of the Wirtinger inequality [10, p. 67] shows that an upper bound for K in
(1.4), (1.5) is also 1/π. If we set y = x− (a + b)/2 a calculation shows that a lower
bound on K is 1/4.

We will prove the following result which was conjectured by one of the authors
in 2001 and presented as an open problem in the meeting “General Inequalities 8”
at Noszvaj, Hungary, in September 2002.

Theorem 1. The best value of K in (1.4), (1.5) is also 1/4 and all extremals are
of the form yc(x) = c(x− (a + b)/2) for any constant c.

If one assumes that there is a unique extremal for (1.4), (1.5) then it is not hard to
show that Theorem 1 is true (see [3]). In an earlier version of the present paper we
showed that the mere existence of an extremal implies Theorem 1, but could not
prove its actual existence.

While (1.4), (1.5) is simple in form it is much harder to handle than (1.1). As
in the previous case the main difficulty is caused by the absolute value signs on
the left side, but the technique we used to prove (1.1) no longer seems applicable
since it is hard to construct a piecewise monotone function y with the properties
of Y while preserving the condition

∫ b

a
y dx = 0. We will be forced therefore to

use a much more complicated technique based on transformation of variables and
variational ideas. The proof will be given in Section 3. In Section 2 we show that
an extremal of (1.4), (1.5) exists in a restricted function set where y′ is required to
have an arbitrary but finite number N of sign changes. This limited existence result
turns out to be sufficient preparation for a complete proof of the Theorem which
will be given in in Section 3. In Section 4 it will be shown how the argument for
(1.4), (1.5) will also work to give yet another proof (number 7?) of both Theorem
A and Theorem B.

We should point out that our work is now the second proof of Theorem 1. In 2003
Jochen Denzler [8] found a constructive proof of Theorem 1 on entirely different
lines from our variational method. His basic idea was to sequentially modify an
admissible function y using various rearrangements and normalizations so as to
decrease

∫ 1

0
(y′)2 dx− 4

∫ 1

0
|yy′| dx either by decreasing

∫ 1

0
(y′)2 dx while leaving the

second term fixed or by increasing
∫ 1

0
|yy′| dx while leaving the first term fixed.

However since Denzler’s approach and ours are so different, we feel justified in
giving another proof of this problem especially since the methodology underlying
our variational approach might be helpful in dealing with other inequalities, e.g., a
generalization of Theorem 1 to higher dimensions. In fact, it is likely that additional
proofs will be found just as in the case of the original Opial inequality. In particular
since both Denzler’s proof and ours are much more complicated than any proof of
Theorem A, a third simpler proof would be desirable.

We close this section with a few remarks on notation. We denote the Lebesgue
space of (equivalence classes) of real square integrable functions by L2(a, b) and the
class of absolutely continuous real functions on [a, b] by AC[a, b]. We set

H1(a, b) := {y ∈ AC[a, b] : y′ ∈ L2(a, b)},

endowed with its Hilbert space norm [‖y‖2L2(a,b) + ‖y′‖2L2(a,b)]
1/2. The class of

admissible functions for which the inequalities (1.1), (1.2), or (1.4) are defined
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is called D. It is the subspace of H1(a, b) satisfying the appropriate boundary
condition, e.g. in the case of Theorem 1

D :=

{
y ∈ H1(a, b) :

∫ b

a

y dx = 0

}
.

Finally, µ(S) denotes the Lebesgue measure of a measurable set S.

2. The existence of an extremal on a restricted function set

An essential argument in our proof of Theorem 1 will be the Euler equation for
some suitably chosen variational problem based on transformation of the indepen-
dent variable. So we (seem to) need the existence of an extremal maximizing

Q(y) :=
1

b− a
·

b∫
a

|yy′| dx

b∫
a

(y′)2 dx

on D a priori. As mentioned above, we have not been able to find such an a priori
existence proof. It turns out, however, that a priori existence of an extremal on a
restricted set involving artificial compactness (instead of the full set D) is sufficient
for our argument.

Let N ∈ N be fixed. We say that a function f ∈ L2(a, b) has at most N sign changes
on [a, b] if t1, . . . , tN ∈ [a, b] exist such that a =: t0 ≤ t1 ≤ t2 ≤ · · · ≤ tN ≤ tN+1 := b
and, for j = 1, . . . , N + 1,

f ≥ 0 a.e. on [tj−1, tj ] or f ≤ 0 a.e. on [tj−1, tj ]

(which is trivially satisfied if tj−1 = tj).

We define the restricted function set (still for N fixed)

DN := {y ∈ D : y′ has at most N sign changes on [a, b]} . (2.1)

Proposition 1. There exists y ∈ DN \ {0} which maximizes Q on DN .

Proof. Let
KN := sup

y∈DN\{0}
Q(y),

and choose some sequence (yn) in DN such that

b∫
a

(y′n)2 dx = 1 (n ∈ N),

b∫
a

|yny′n|dx → (b− a)KN (n →∞). (2.2)

Since, for each n, y′n has at most N sign changes, there exist a =: t
(n)
0 ≤ t

(n)
1 · · · ≤

t
(n)
N ≤ t

(n)
N+1 := b such that, for j = 1, . . . , N + 1,

y′n ≥ 0 a.e. on
[
t
(n)
j−1, t

(n)
j

]
or y′n ≤ 0 a.e. on

[
t
(n)
j−1, t

(n)
j

]
. (2.3)
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Since
∫ b

a
yn dx = 0 and therefore yn has at least one zero, (2.2) implies that (yn) is

bounded in H1(a, b). Hence, a subsequence (denoted again by (yn)) can be chosen
such that

yn ⇀ y (weakly) in H1(a, b) (2.4)

for some y ∈ H1(a, b), and in addition,

t
(n)
j → tj (j = 1, . . . , N, n →∞) (2.5)

where a =: t0 ≤ t1 ≤ t2 ≤ · · · ≤ tN ≤ tN+1 := b (2.4) implies, by Sobolev-
Kondrachev-Rellich’s Embedding Theorem,

yn → y uniformly on [a, b] (2.6)

and

y′n ⇀ y′ (weakly) in L2(a, b). (2.7)

The zero integral condition for yn and (2.6) imply that y has zero integral, i.e.,
y ∈ D. To prove y ∈ DN we show that, for each j = 1, . . . , N + 1,

y′ ≥ 0 a.e. on
[
tj−1, tj

]
or y′ ≤ 0 a.e. on

[
tj−1, tj

]
. (2.8)

Assuming the contrary we obtain, for some j ∈ {1, . . . , N + 1}, subsets U+, U− ⊂
[tj−1, tj ] which both have positive measure, such that y′ > 0 on U+ and y′ < 0 on
U−. Possibly after reducing U+ and U− (but still keeping their measures positive),
we may assume that U+, U− ⊂ [tj−1 + δ, tj − δ] for some δ > 0, whence (2.3) and
(2.5) imply

y′n ≥ 0 a.e. on U+ ∪ U− or y′n ≤ 0 a.e. on U+ ∪ U− (2.9)

for n sufficiently large. On the other hand, with χ+ denoting the characteristic
function of U+, (2.7) implies

∫
U+

y′n dx =

b∫
a

y′nχ+ dx −→
b∫

a

y′χ+ dx =
∫

U+

y′ dx > 0,

and analogously,
∫

U−
y′n dx →

∫
U−

y′ dx < 0. This contradicts (2.9), and thus proves

(2.8). In particular, y ∈ DN .
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Furthermore, by (2.3),

b∫
a

|yny′n| dx =
N+1∑
j=1

∣∣∣∣∣∣∣∣
t
(n)
j∫

t
(n)
j−1

|yn| y′n dx

∣∣∣∣∣∣∣∣
=

1
2

N+1∑
j=1

∣∣∣(yn |yn|)(t(n)
j )− (yn |yn|)(t(n)

j−1)
∣∣∣

≤ (N + 1)
∥∥yn |yn| − y |y|

∥∥
∞ +

1
2

N+1∑
j=1

∣∣∣(y |y|)(t(n)
j )− (y |y|)(t(n)

j−1)
∣∣∣

= (N + 1)
∥∥yn |yn| − y |y|

∥∥
∞ +

N+1∑
j=1

∣∣∣∣∣∣∣∣
t
(n)
j∫

t
(n)
j−1

|y| y′ dx

∣∣∣∣∣∣∣∣
≤ (N + 1)

∥∥yn |yn| − y |y|
∥∥
∞ +

b∫
a

|yy′|dx ,

whence (2.6) (implying yn|yn| → y|y| uniformly) and (2.2) give
b∫

a

|yy′| dx ≥ (b− a)KN .

In particular, y 6= 0. Furthermore,
∫ b

a
(y′)2dx ≤ 1 by (2.2) and (2.7). Thus,

Q(y) ≥ KN . But also Q(y) ≤ KN since y ∈ DN . Hence y is the maximizer we are
looking for. �

Remark 1. The proof shows that the statement of the proposition remains true
when the zero integral condition is replaced by any set of conditions

φi[y] = 0 for i ∈ I, (2.10)

with some index set I, and with φi(i ∈ I) denoting some bounded linear functionals
on H1(a, b) which are such that D := {y ∈ H1(a, b) : y satisfies (2.10)} and DN

defined by (2.1) (using this D) contain nonzero elements, and such that the Poincaré
inequality ‖y‖L2(a,b) ≤ C‖y′‖L2(a,b) is true for y ∈ DN .

Choosing e.g. φ1[y] = y(a) and φ2[y] = y(b), or just φ1[y] = y(a), one obtains
the a priori statement of Proposition 1 for the situations underlying Theorem A or
Theorem B, respectively.

3. Proof of Theorem 1

For fixed N ∈ N, we define

either (i) D̃ := DN , or (ii) D̃ := D, (3.1)

and

K := sup
y∈D̃\{0}

Q(y). (3.2)
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We will prove for both alternatives in (3.1):

If y ∈ D̃\{0} is a maximizer of Q on D̃, i.e. Q(y) = K,

then K = 1
4 and y(x) = c(x− a+b

2 ) for some c ∈ R.
(3.3)

The proof of Theorem 1 is then easy: Using the alternative (i) in (3.1), and Propo-
sition 1, we obtain from (3.3) that K = KN = 1/4. This holds for every N ∈ N.
Moreover, ∪∞N=0DN is dense in D with respect to the H1(a, b)-norm, since for any
given y ∈ D, the density of C[a, b] in L2(a, b) in combination with Weierstrass’
Approximation Theorem gives a sequence (Qn) of polynomials converging to y′ in
L2(a, b), whence defining

Pn(x) :=

x∫
a

Qn(s)ds− 1
b− a

b∫
a

 t∫
a

Qn(s)ds

 dt (x ∈ [a, b], n ∈ N) ,

and noting that
∫ b

a
y(x)dx = 0 implies

y(x) =

x∫
a

y′(s)ds− 1
b− a

b∫
a

 t∫
a

y′(s)ds

 dt (x ∈ [a, b]) ,

we obtain Pn → y in H1(a, b), and Pn ∈
⋃∞

N=0DN for each n ∈ N.

This density result proves that sup{Q(y) : y ∈ D\{0}} is also 1/4, and thus the
first part of Theorem 1. The second part about the form of extremals follows
immediately from (3.3) when using the alternative (ii) in (3.1).

To prove (3.3) we proceed in a series of Lemmas. We restrict ourselves to the case
a = 0, b = 1; the general case then follows by a change of variables.

So let y ∈ D̃\{0} be a maximizer of Q on D̃. We normalize y by

1∫
0

|y′|2 dx = 1, (3.4)

so that (3.2) gives

1
K

1∫
0

|yy′| dx = 1. (3.5)

Let

M+ := {x ∈ [0, 1] : y(x) > 0}, M− := {x ∈ [0, 1] : y(x) < 0}.

Since y has zero integral, we have∫
M+

y dx = −
∫

M−

y dx > 0. (3.6)

With no loss of generality (possibly after replacing y by −y) we may assume that

µ(M−) ≤ µ(M+), (3.7)
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whence in particular

0 < µ(M−) ≤ 1
2
. (3.8)

Lemma 1. Let

γ :=
1∫

M+

y dx

 1
K

∫
M+

|yy′| dx−
∫

M+

|y′|2 dx



≡ 1∫
M−

y dx

 1
K

∫
M−

|yy′| dx−
∫

M−

|y′|2 dx

 (3.9)

where the last equality follows from (3.4), (3.5), (3.6). Then,

|y′|2 = 1 + 2γy a.e. on [0, 1]. (3.10)

Proof. Let ϕ ∈ C[0, 1] be fixed, and choose ε0 > 0 such that, for ε ∈ (−ε0, ε0),

min
[0,1]

(1 + εϕ) > 0,

∫
M+

(1 + εϕ)y dx > 0,

∫
M−

(1 + εϕ)y dx < 0

(note (3.6)). Define for x ∈ [0, 1]

Φε(x) :=

x∫
0

(1 + εϕ)dt

1∫
0

(1 + εϕ) dt

, Ψε := Φ−1
ε ,

which both are increasing C1-mappings of [0, 1] onto itself. Set

yε(x) :=


λ+

ε y(Ψε(x)) if x ∈ Φε(M+),
λ−ε y(Ψε(x)) if x ∈ Φε(M−),
0 otherwise,

(3.11)

where

λ+
ε :=

1∫
M+

(1 + εϕ)y dx
, λ−ε := − 1∫

M−

(1 + εϕ)y dx
. (3.12)

Since y is continuous and thus vanishes on ∂M+ ∩ (0, 1) and on ∂M− ∩ (0, 1), yε

vanishes on ∂Φε(M+)∩ (0, 1) and on ∂Φε(M−)∩ (0, 1), and is therefore in H1(0, 1).
Furthermore, M+∩ (0, 1) and M−∩ (0, 1) are both disjoint unions of open intervals,
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whence we can use the transformation t = Ψε(x) to obtain

1∫
0

yε(x) dx = λ+
ε

∫
Φε(M+)

y(Ψε(x)) dx + λ−ε

∫
Φε(M−)

y(Ψε(x)) dx

= λ+
ε

∫
M+

y(t)Φ′ε(t) dt + λ−ε

∫
M−

y(t)Φ′ε(t) dt

=
1

1∫
0

(1 + εϕ) dt

λ+
ε

∫
M+

(1 + εϕ)y dt + λ−ε

∫
M−

(1 + εϕ)y dt

 = 0

by (3.12), whence yε ∈ D, i.e. yε ∈ D̃ in case of the alternative (ii) in (3.1). In
case of the alternative (i), there exist a =: t0 ≤ t1 ≤ · · · ≤ tN ≤ tN+1 := b such
that y′ ≥ 0 a.e. on [tj−1, tj ] or y′ ≤ 0 a.e. on [tj−1, tj ], for each j = 1, . . . , N + 1.
Hence (3.11) and the positivity of λ+

ε , λ−ε and Ψ′
ε show that, for j = 1, . . . , N + 1,

y′ε ≥ 0 a.e. on [Φε(tj−1), Φε(tj)] or y′ε ≤ 0 a.e. on [Φε(tj−1), Φε(tj)]. This gives
yε ∈ DN , i.e. yε ∈ D̃ also in this case.

Therefore, since y maximizes Q on D̃, Q[yε] ≤ Q[y] for ε ∈ (−ε0, ε0). Moreover,
λ+

0 = λ−0 by (3.6) and (3.12), implying that y0 = λ+
0 y and hence Q[y0] = Q[y].

Consequently,

d

dε
Q[yε] |ε=0 = 0, (3.13)

provided that the derivative exists, which however will follow from the calculations
below. The next step is to compute Q[yε] and d

dεQ[yε] |ε=0. By (3.11),

1∫
0

|yεy
′
ε| dx = (λ+

ε )2
∫

Φε(M+)

|y(Ψε(x))y′(Ψε(x))| Ψ′
ε(x) dx

+ (λ−ε )2
∫

Φε(M−)

|y(Ψε(x))y′(Ψε(x))| Ψ′
ε(x) dx

= (λ+
ε )2

∫
M+

|y(t)y′(t)| dt + (λ−ε )2
∫

M−

|y(t)y′(t)| dt

=: f(ε). (3.14)
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Moreover,

1∫
0

(y′ε)2 dx = (λ+
ε )2

∫
Φε(M+)

y′(Ψε(x))2Ψ′
ε(x)2 dx

+ (λ−ε )2
∫

Φε(M−)

y′(Ψε(x))2Ψ′
ε(x)2 dx

= (λ+
ε )2

∫
M+

y′(t)2
1

Φ′ε(t)
dt + (λ−ε )2

∫
M−

y′(t)2
1

Φ′ε(t)
dt

=

1∫
0

(1 + εϕ) dt

(λ+
ε )2

∫
M+

|y′|2

1 + εϕ
dt + (λ−ε )2

∫
M−

|y′|2

1 + εϕ
dt


=: g(ε). (3.15)

By (3.12),

dλ+
ε

dε
= −(λ+

ε )2
∫

M+

ϕy dx,
dλ−ε
dε

= (λ−ε )2
∫

M−

ϕy dx,

whence (3.14) and (3.15) (and the fact that λ+
0 = λ−0 =: λ0) give

f ′(0) = −2(λ+
0 )3

∫
M+

|yy′| dx

∫
M+

ϕy dx + 2(λ−0 )3
∫

M−

|yy′| dx

∫
M−

ϕy dx

= 2λ3
0

− ∫
M+

|yy′| dx

∫
M+

ϕy dx +
∫

M−

|yy′| dx

∫
M−

ϕy dx

 ,

and

g′(0) =

1∫
0

ϕ dx

(λ+
0 )2

∫
M+

|y′|2 dx + (λ−0 )2
∫

M−

|y′|2 dx


− 2(λ+

0 )3
∫

M+

|y′|2 dx

∫
M+

ϕy dx + 2(λ−0 )3
∫

M−

|y′|2 dx

∫
M−

ϕy dx

− (λ+
0 )2

∫
M+

ϕ|y′|2 dx− (λ−0 )2
∫

M−

ϕ|y′|2 dx

= λ2
0

 1∫
0

ϕ dx−
1∫

0

ϕ|y′|2 dx


+ 2λ3

0

− ∫
M+

|y′|2 dx

∫
M+

ϕy dx +
∫

M−

|y′|2 dx

∫
M−

ϕy dx


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(note (3.4)). Since Q[yε] = f(ε)/g(ε) and f(0)/g(0) = K, condition (3.13) amounts
to g′(0)− 1

K f ′(0) = 0, i.e.,

1∫
0

ϕ[1− |y′|2] dx + 2λ0


 1

K

∫
M+

|yy′| dx−
∫

M+

|y′|2 dx

 ∫
M+

ϕy dx

−

 1
K

∫
M−

|yy′| dx−
∫

M−

|y′|2 dx

 ∫
M−

ϕy dx

 = 0. (3.16)

Using (3.12), (3.6), and (3.9), we find that (3.16) is equivalent to

1∫
0

ϕ[1− |y′|2 + 2γy] dx = 0

which implies (3.10) since ϕ ∈ C[0, 1] is arbitrary. �

Lemma 2. Let f be any function in H1(0, 1) such that f > 0 on M+, f < 0 on
M−, and |f ′| ≤ 1 a.e. on [0, 1]. Then,∫

M+

f dx ≤ 1
2
µ(M+)2, (3.17)

with equality holding if and only if M+ is an interval and f(x) = |x − ξ| on M+,
with ξ denoting one of the endpoints of M+. Correspondingly,

−
∫

M−

f dx ≤ 1
2
µ(M−)2,

with equality holding if and only if M− is an interval and f(x) = −|x− η| on M−,
with η denoting one of the endpoints of M−.

Proof. Since y is continuous, M+∩(0, 1) is the disjoint union of finitely or countably
many open intervals Ii. For each fixed i, the function f vanishes at least at one
endpoint ξi of Ii, since f is continuous and at least one endpoint of Ii does not
belong to M+. Thus, since |f ′| ≤ 1 a.e. on [0, 1],

f(x) ≤ |x− ξi| on Ii, (3.18)

which implies∫
Ii

f dx ≤
∫
Ii

|x− ξi| dx =
1
2
µ(Ii)2 ≤

1
2
µ(M+) · µ(Ii), (3.19)

with equality holding (everywhere in this chain) if and only if equality holds in
(3.18), and µ(Ii) = µ(M+). Summation over i in (3.19) yields (3.17), with equality
holding if and only if there is just one interval Ii and equality holds in (3.18). The
corresponding statement on M− follows analogously. �
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Lemma 3. γ ≥ 0, and

Γ := γ

∣∣∣∣∣∣∣
∫

M−

y dx

∣∣∣∣∣∣∣ ≤ min
{µ

2
, 1− 2µ

}
(3.20)

where µ := µ(M−) (cf. (3.8)).

Proof. We use again (as in the proof of Lemma 2) the subdivision of M+ ∩ (0, 1)
and of M− ∩ (0, 1) into disjoint open intervals {I+

i } and {I−j }, respectively, and
the fact that, for each i and j, y vanishes at least at one endpoint of I+

i and I−j ,
respectively.

Using the half interval inequality (1.2) in Theorem B, we obtain for each i that∫
I+

i

|yy′| dx ≤ 1
2
µ(I+

i )
∫
I+

i

|y′|2 dx ≤ 1
2
µ(M+)

∫
I+

i

|y′|2 dx,

whence summation over i gives∫
M+

|yy′| dx ≤ 1
2
µ(M+)

∫
M+

|y′|2 dx. (3.21)

Since K ≥ 1
4 (which follows from (3.2) and Q[ỹ] = 1

4 for ỹ(x) = x − 1
2 ), (3.21)

further implies that

1
K

∫
M+

|yy′| dx ≤ 2µ(M+)
∫

M+

|y′|2 dx ≤ 2(1− µ)
∫

M+

|y′|2 dx.

Analogously,

1
K

∫
M−

|yy′| dx ≤ 2µ(M−)
∫

M−

|y′|2 dx = 2µ

∫
M−

|y′|2 dx.

By (3.9), we therefore obtain

γ

∫
M+

y dx ≤ (1− 2µ)
∫

M+

|y′|2 dx ≤ 1− 2µ (3.22)

(cf. (3.8)), as well as

γ

∫
M−

y dx ≤ (2µ− 1)
∫

M−

|y′|2 dx ≤ 0

by (3.8), whence (3.6) proves γ ≥ 0. Moreover (3.10) implies

γ

∫
M−

y dx =
1
2

∫
M−

|y′|2 dx− µ(M−)

 ≥ −µ

2
,

which together with (3.6) and (3.22) gives (3.20). �
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Now we want to “solve” the differential equation (3.10). Formally (i.e. with-
out regarding zeroes of 1 + 2γy), (3.10) yields

∣∣∣ 1γ (√1 + 2γy
)′∣∣∣ = 1 if γ 6= 0, i.e.

1
γ

√
1 + 2γy = z(+const) for some function z such that |z′| ≡ 1. A “natural” speci-

fication for the constant is 1
γ , since then

z =
1
γ

[√
1 + 2γy − 1

]
gives z ≡ y in the limit γ → 0, whence |z′| ≡ 1 in every case.
For a rigorous proof, we have to circumvent differentiability problems (and possible
multiple solutions of initial value problems) when 1 + 2γy has zeroes. For this
purpose, we “regularize” the above function z by a parameter ε > 0, which leads
to the definition (3.23) below.

Lemma 4. µ(M+) = µ(M−) = 1
2 , γ = 0, and K = 1

4 .

Proof. Let ε > 0, and define z ∈ H1(0, 1) by

z :=

{
1
γ

[√
1 + ε + 2γy −

√
1 + ε

]
if γ 6= 0,

y√
1+ε

if γ = 0.
(3.23)

(Note that 1 + 2γy ≥ 0 by (3.10)). Therefore, in both cases,
√

1 + ε + 2γy =√
1 + ε + γz, implying

γz ≥ −
√

1 + ε on [0, 1] (3.24)

and

y = z

(√
1 + ε +

1
2
γz

)
. (3.25)

(3.24) shows in particular that
√

1 + ε+ 1
2γz > 0 on [0, 1], whence (3.25) gives z > 0

on M+ and z < 0 on M−. Moreover, (3.23) and (3.10) imply

|z′| =
|y′|√

1 + ε + 2γy
=
√

1 + 2γy

1 + ε + 2γy
≤ 1 a.e. on [0, 1], (3.26)

so that by Lemma 2

2

∣∣∣∣∣∣∣
∫

M−

z dx

∣∣∣∣∣∣∣ ≤ µ(M−)2 = µ2. (3.27)

Furthermore using (3.25),∫
M−

yz dx− 1
µ

∫
M−

y dx

∫
M−

z dx =
1

2µ

∫
M−×M−

∫
[y(x)− y(x̃)][z(x)− z(x̃)] dx dx̃

=
1

2µ

∫
M−×M−

∫
[z(x)− z(x̃)]2

[√
1 + ε +

1
2
γ(z(x) + z(x̃))

]
dx dx̃

which is non-negative by (3.24). Thus,∫
M−

yz dx ≥ 1
µ

∣∣∣∣∣∣∣
∫

M−

y dx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∫

M−

z dx

∣∣∣∣∣∣∣ . (3.28)
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In addition by (3.25) and Lemma 3, y ≥
√

1 + ε z on [0, 1], whence |y| ≤√
1 + ε |z| on M−, and thus,∫

M−

z2 dx ≥ 1√
1 + ε

∫
M−

yz dx. (3.29)

Moreover, with x0 ∈ M+ chosen such that z(x0) = max{z(x) : x ∈ M+} =: zmax,
(3.26) implies

z(x) ≥ zmax − |x− x0| for x ∈ [0, 1]. (3.30)

Since z has at least one zero, (3.30) shows that at least one of the two intervals
(x0 − zmax, x0) and (x0, x0 + zmax) is completely contained in M+. Thus, with I
denoting this interval, (3.30) gives∫

M+

z(x) dx ≥
∫
I

z(x) dx ≥
∫
I

[zmax − |x− x0|] dx =
1
2
z2
max. (3.31)

Finally, since γ ≥ 0 (by Lemma 3) and
1∫
0

y dx = 0, (3.25) implies that
1∫
0

z dx ≤ 0,

i.e.,
∫

M+

z dx ≤

∣∣∣∣∣ ∫M−

z dx

∣∣∣∣∣, whence (3.31) gives

zmax ≤

2

∣∣∣∣∣∣∣
∫

M−

z dx

∣∣∣∣∣∣∣


1
2

. (3.32)

Now, using (3.5), (3.25), (3.24), (3.26), and (3.6) we obtain

K =

1∫
0

|yy′| dx =

1∫
0

|y| |z′|
(√

1 + ε + γz
)

dx

≤
√

1 + ε

1∫
0

|y| dx + γ

1∫
0

|y|z dx

= −2
√

1 + ε

∫
M−

y dx + γ

− ∫
M−

yz dx +
∫

M+

yz dx



= −2(1 + ε)
∫

M−

z dx + γ

−√1 + ε

∫
M−

z2 dx−
∫

M−

yz dx +
∫

M+

yz dx

 .
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Thus, going on with estimating according to (3.29), (3.28), (3.32), and using γ ≥ 0
and Γ defined in Lemma 3, we obtain

K ≤ −2(1 + ε)
∫

M−

z dx + γ

−2
∫

M−

yz dx + zmax

∫
M+

y dx



≤ −2(1 + ε)
∫

M−

z dx + γ

− 2
µ

∣∣∣∣∣∣∣
∫

M−

y dx

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
∫

M−

z dx

∣∣∣∣∣∣∣+

2

∣∣∣∣∣∣∣
∫

M−

z dx

∣∣∣∣∣∣∣


1
2
∣∣∣∣∣∣∣
∫

M−

y dx

∣∣∣∣∣∣∣


= (1 + ε− 1
µ

Γ) · 2

∣∣∣∣∣∣∣
∫

M−

z dx

∣∣∣∣∣∣∣+ Γ

2

∣∣∣∣∣∣∣
∫

M−

z dx

∣∣∣∣∣∣∣


1
2

.

Since 1 + ε− 1
µΓ ≥ 0 due to (3.20), we go on using (3.27) to obtain

K ≤ (1 + ε− 1
µ

Γ)µ2 + Γµ = (1 + ε)µ2.

This holds for every ε > 0, whence K ≤ µ2. On the other hand, K ≥ 1
4 . So by

(3.8) we obtain

K =
1
4
, and µ = µ(M−) =

1
2
.

Now (3.7) shows that also µ(M+) = 1
2 , and finally (3.20) gives Γ = 0, and hence

γ = 0. �

It is now easy to complete the proof of (3.3). Lemma 4 and (3.10) give

|y′| = 1 a.e. on [0, 1], (3.33)

so Lemma 2 provides ∫
M+

y dx ≤ 1
8
, −

∫
M−

y dx ≤ 1
8
. (3.34)

Moreover, by (3.5), (3.33) and Lemma 4,

1
4

= K =

1∫
0

|y| dx =
∫

M+

y dx−
∫

M−

y dx.

So equality must hold in both inequalities in (3.34). Therefore, Lemma 2 implies
that both M+ and M− must be intervals (of length 1

2 ), i.e.,

M+ ∩ (0, 1) =
(
0, 1

2

)
, M− ∩ (0, 1) =

(
1
2 , 1
)

(3.35)

or vice versa, and that

y(x) = x or 1
2 − x on

(
0, 1

2

)
, y(x) = x− 1 or 1

2 − x on
(

1
2 , 1
)

in the case (3.35), and

y(x) = −x or x− 1
2 on

(
0, 1

2

)
, y(x) = 1− x or x− 1

2 on
(

1
2 , 1
)
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in the opposite case. Since y is continuous, we obtain y(x) = x − 1
2 or 1

2 − x on
[0, 1].

4. A new proof of Theorems A and B

The following is by no means the easiest or shortest proof of Opial’s inequality
or its half interval version3. However it is a new argument and we include it since
the technique may be useful in the proof of other inequalities. Again, it suffices to
consider the case a = 0, b = 1.
Using Remark 1 after Proposition 1, it is sufficient to prove a statement correspond-
ing to (3.3), with the obvious changes concerning the value of K and the form of
extremals. So, with D̃ defined correspondingly, let y ∈ D̃\{0} be a maximizer of

Q[z] :=

1∫
0

|zz′| dx

1∫
0

(z′)2 dx

on D̃, normalized by (3.4), (3.5), with K given by (3.2). Let ϕ ∈ C[0, 1] be fixed,
and choose ε0 > 0 such that, for ε ∈ (−ε0, ε0),

min
[0,1]

(1 + εϕ) > 0,

and define again

Φε(x) :=

x∫
0

(1 + εϕ)dt

1∫
0

(1 + εϕ)dt

on [0, 1], Ψε := Φ−1
ε ,

and this time

yε(x) := y(Ψε(x)) on [0, 1].

Since Ψε(0) = 0 and Ψε(1) = 1, yε lies in D̃ in both Theorem A and B (by the
same argument as given in the proof of Lemma 1), whence

d

dε
Q[yε] |ε=0 = 0. (4.1)

Also because
1∫

0

|yεy
′
ε| dx =

1∫
0

|y(Ψε(x))y′(Ψε(x))|Ψ′
ε(x) dx =

1∫
0

|yy′| dt,

1∫
0

(y′ε)2 dx =

1∫
0

y′(Ψε(x))2Ψ′
ε(x)2 dx =

1∫
0

y′(t)2
1

Φ′ε(t)
dt

=

1∫
0

(1 + εϕ)dt

1∫
0

(y′)2

1 + εϕ
dt,

3This distinction probably belongs to Mallows whose proof of Theorem B takes two lines. The
proofs of Olech and Levinson are also short. See [1, pp. 5–9].
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(4.1) amounts to

0 =
d

dε

 1∫
0

(1 + εϕ)dt

1∫
0

(y′)2

1 + εϕ
dt

∣∣∣∣∣∣
ε=0

=

1∫
0

ϕ dt−
1∫

0

ϕ(y′)2 dt

(note (3.4)). Since ϕ ∈ C[0, 1] is arbitrary, we obtain

|y′| = 1 a.e. on [0, 1], (4.2)

and (3.5) gives

K =

1∫
0

|y| dx. (4.3)

Now to distinguish between the two theorems we wish to prove, we set ỹ :=
min{x, 1 − x} for Theorem A and ỹ := x for Theorem B. Property (4.2) and the
condition y(0) = y(1) = 0 for Theorem A or y(0) = 0 for Theorem B imply that
|y| ≤ ỹ on [0, 1], whence

1∫
0

|y| dx ≤
1∫

0

ỹ dx = Q[ỹ] ≤ K. (4.4)

Now (4.3) shows that equality must hold everywhere in the inequality chain (4.4),
so that K = Q[ỹ] = 1

2 in Theorem B (= 1
4 in Theorem A), and |y| = ỹ on [0, 1],

whence by continuity y = ỹ or y = −ỹ. �
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