AN OPIAL-TYPE INEQUALITY WITH AN INTEGRAL
BOUNDARY CONDITION

RICHARD C. BROWN AND MICHAEL PLUM

ABSTRACT. We determine the best constant K and extremals of the Opial-type
inequality ff lyy’|dz < K(b— a) f;’ |y’|2 dz where y is required to satisfy the
boundary condition f; ydz = 0. The techniques employed differ from either
those used recently by Denzler to solve this problem or originally to prove the
classical inequality; but they also yield a new proof of that inequality.

1. INTRODUCTION

In 1962 C. Olech [11] gave a simplified proof of the following inequality originally
due in a slightly less general form to Zdzistaw Opial '[12].

Theorem A. If y is a real absolutely continuous function on the interval [a,b],

—0o < a<b<ooandy(a) = =0, f )2dz < oo, then the best constant K
of the inequality

b b
[ s < k-0 [0 (11)
is 1/4. Equality holds in (1.1) if and only if

_Je(s—a) ifa<s<afb
y(s)_{c(bs) if b < s <b

where ¢ is an arbitrary constant.

Embedded in Olech’s proof is the half-interval form of Opial’s inequality discov-
ered also by Beesack [2] which is satisfied by those y vanishing only at a.

Theorem B. Ify is a real absolutely continuous on the interval [a,b], —oco < a <
b < oo, and y(a —Of )2dz < oo, then

/ 'l do < 22 / (1.2)

Equality holds in (1.2) if and only if y = ¢(s — a) for some constant c.

Since their discovery both (1.1) and (1.2) have attracted enormous interest. At
least six proofs are known and a very large number of generalizations have been
given. For a survey of the literature on Opial-type inequalities see the books of Agar-
wal and Pang [1] and Mitrinovié¢, Pecari¢, and Fink [10]. For an important recent
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1Opial required that 3’ be continuous and y > 0. Also he did not characterize the extremals.
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result showing that Opial inequalities are equivalent to those of Hardy-type (with-
out, however, preserving the constants) see [13]. Besides having intrinsic interest
Opial-type inequalities have proved essential in developing disconjugacy /stability
criteria for differential equations, obtaining sufficient conditions for the positivity
of eigenvalues, bounds on the spacing of zeros of a solution, or improving other
inequalities, such as the Lyapunov inequalitiy, see e.g. [4], [6], or [7].

We note that the existence of an inequality of the form (1.1) or (1.2) is quite
easy to prove. As already noticed in [12] if we apply the Cauchy-Schwarz and the
one-dimensional Poincaré inequality we find that

b b 1/2 b 1/2
[wars ([as) ([ wra)

< b / (v')?* de. (1.3)

™

The nontrivial part of (1.1) is the determination of the least value of K and the
characterization of the extremals, and in all applications this knowledge has been
essential. In order to get a feeling for subtleties involved in Opial’s inequality we
sketch an argument for (1.1) which is close to Olech’s.

Outline of a proof Let y be an absolutely continuous function such that y(a) =
y(b) = 0 and f 2dx < oo and let p € (a,b) satisfy

/ |y|dx—/ | dz.

Y(@) = {ﬁw/wdx it 2 € fo, ],
LY dx if x € (p,b).
Evidently Y is absolutely continuous, |y| < |Y|, and |y/| = |Y”| so that an extremal
of (1.1) (if any) will be found among the class of appropriate functions y which are
nondecreasing on (0, p|, nonincreasing on (p, 1], and such that y(p) = 1. ;jFrom this
it follows that the extremal is a linear spline with a unique knot at p and by varying
p we find that the least value of K is 1/4. By a variation of the above argument
(see [5]) one can show that

b b
h—
/ lyy/|de < 22 / (v')* dz
a 4 a
if y(a) +y(b) = 0.
Most of the other generalizations of Opial’s inequality familiar to us involve bound-

ary conditions similar to those of (1.1) or (1.2). 2
In this paper we will consider the inequality

b b
/ vy do < K(b— a) / ()2 dz, (1.4)

Define

/abyda::O (1.5)

2However for a discussion of Opial-type inequalities satisfying the nonhomogenous conditions
y(a) = ¢, y(b) = d, c,d # 0 see [5].
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where y again is absolutely continous and fj(y’)2 dx < co. As in the case of (1.1)
it is not difficult to show that K < oo in (1.4) exists. The argument (1.3) using
a form of the Wirtinger inequality [10, p.67] shows that an upper bound for K in
(1.4), (1.5) is also 1/m. If we set y = x — (a +b)/2 a calculation shows that a lower
bound on K is 1/4.

We will prove the following result which was conjectured by one of the authors
in 2001 and presented as an open problem in the meeting “General Inequalities 8”
at Noszvaj, Hungary, in September 2002.

Theorem 1. The best value of K in (1.4), (1.5) is also 1/4 and all extremals are
of the form y.(x) = c(x — (a +b)/2) for any constant c.

If one assumes that there is a unique extremal for (1.4), (1.5) then it is not hard to
show that Theorem 1 is true (see [3]). In an earlier version of the present paper we
showed that the mere existence of an extremal implies Theorem 1, but could not
prove its actual existence.

While (1.4), (1.5) is simple in form it is much harder to handle than (1.1). As
in the previous case the main difficulty is caused by the absolute value signs on
the left side, but the technique we used to prove (1.1) no longer seems applicable
since it is hard to construct a piecewise monotone function y with the properties
of Y while preserving the condition f;ydx = 0. We will be forced therefore to
use a much more complicated technique based on transformation of variables and
variational ideas. The proof will be given in Section 3. In Section 2 we show that
an extremal of (1.4), (1.5) exists in a restricted function set where y’ is required to
have an arbitrary but finite number N of sign changes. This limited existence result
turns out to be sufficient preparation for a complete proof of the Theorem which
will be given in in Section 3. In Section 4 it will be shown how the argument for
(1.4), (1.5) will also work to give yet another proof (number 7?7) of both Theorem
A and Theorem B.

We should point out that our work is now the second proof of Theorem 1. In 2003
Jochen Denzler [8] found a constructive proof of Theorem 1 on entirely different
lines from our variational method. His basic idea was to sequentially modify an
admissible function y using various rearrangements and normalizations so as to
decrease fol(y’)2 dx —4 fol lyy'| dz either by decreasing fol (y")? dr while leaving the

second term fixed or by increasing fol lyy’| dz while leaving the first term fixed.

However since Denzler’s approach and ours are so different, we feel justified in
giving another proof of this problem especially since the methodology underlying
our variational approach might be helpful in dealing with other inequalities, e.g., a
generalization of Theorem 1 to higher dimensions. In fact, it is likely that additional
proofs will be found just as in the case of the original Opial inequality. In particular
since both Denzler’s proof and ours are much more complicated than any proof of
Theorem A, a third simpler proof would be desirable.

We close this section with a few remarks on notation. We denote the Lebesgue
space of (equivalence classes) of real square integrable functions by L?(a,b) and the
class of absolutely continuous real functions on [a,b] by AC[a,b]. We set

H'(a,b) := {y € AC[a,b] : v/ € L*(a,b)},

endowed with its Hilbert space norm [||yH2L2(a7b) + ||y’|\%2(a7b)]1/2. The class of
admissible functions for which the inequalities (1.1), (1.2), or (1.4) are defined
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is called D. It is the subspace of H!(a,b) satisfying the appropriate boundary
condition, e.g. in the case of Theorem 1

D:= {yEHl(a,b):/bydaij}.

Finally, 1(.S) denotes the Lebesgue measure of a measurable set S.

2. THE EXISTENCE OF AN EXTREMAL ON A RESTRICTED FUNCTION SET

An essential argument in our proof of Theorem 1 will be the Euler equation for
some suitably chosen variational problem based on transformation of the indepen-
dent variable. So we (seem to) need the existence of an extremal maximizing

b
[ lyy'| da

(y')? dx

8 —o|®

on D a priori. As mentioned above, we have not been able to find such an a priori
existence proof. It turns out, however, that a priori existence of an extremal on a
restricted set involving artificial compactness (instead of the full set D) is sufficient
for our argument.

Let N € N be fixed. We say that a function f € L%(a,b) has at most N sign changes
onla,blifty,...,ty € [a,b] exist such that a =: tg < t; <to < -+ <ty <tnyt1:=D
and, for j=1,...,N +1,

f>0a.e. on [tj_1,t;] or f <O0a.e. on [tj_1,t,]

(which is trivially satisfied if t;_1 = ¢;).

We define the restricted function set (still for N fixed)
Dy :={y € D : y has at most N sign changes on [a,b]} . (2.1)
Proposition 1. There exists y € Dy \ {0} which mazimizes Q on Dy.

Proof. Let

Ky:= sup Q(y),
veDN\{0}

and choose some sequence (y,,) in Dy such that
b b
/(y;)2 dr=1 (neN), /|yny;|dx L b-a)ky (n—oo).  (22)

a

Since, for each n, y/, has at most N sign changes, there exist a =: £ < ¢{™ ... <
tg\?) < tg@rl := b such that, for j=1,...,N 4+ 1,

tgi)l,tg-n)] or y, <0 a.e. on [t(n) t(»n)]. (2.3)

Yy, > 0 a.e. on [ it
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. b o .
Since fa yn dz = 0 and therefore y,, has at least one zero, (2.2) implies that (y,) is

bounded in H*'(a,b). Hence, a subsequence (denoted again by (y,)) can be chosen
such that

Yn — y (weakly) in H'(a,b) (2.4)
for some y € H'(a,b), and in addition,
tgn)ﬂtj (j=1,...,N,n — o0) (2.5)

where a =: tg < t; < to < --- <ty < tyy1 := b (2.4) implies, by Sobolev-

Kondrachev-Rellich’s Embedding Theorem,

Yn — y uniformly on [a, b] (2.6)
and

y, =y (weakly) in L?(a,b). (2.7)

The zero integral condition for y, and (2.6) imply that y has zero integral, i.e.,
y € D. To prove y € Dy we show that, for each j =1,..., N + 1,

y >0 a.e. on [tj,l,tj] ory <0 a.e. on [tj,l,tj]. (2.8)

Assuming the contrary we obtain, for some j € {1,..., N + 1}, subsets UT,U~ C
[t;—1,t;] which both have positive measure, such that 3’ > 0 on U™ and ' < 0 on
U~. Possibly after reducing U™ and U~ (but still keeping their measures positive),
we may assume that UT, U~ C [t;_1 + 6,t; — d] for some & > 0, whence (2.3) and
(2.5) imply

y,>0ae onUTUU ory, <0ae onUTUU" (2.9)

for n sufficiently large. On the other hand, with x4 denoting the characteristic
function of U™, (2.7) implies

b b
/y;dr:/y;mdxﬁ/y'mdw:/y’dfv>0,

U+ a U+

and analogously, [y, dv — f y'dx < 0. This contradicts (2.9), and thus proves
U- U-
(2.8). In particular, y € Dy.
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Furthermore, by (2.3),

(n)
b Nyl | B
JAE [ ol e
a I=E )
13R (n) (n)
= 5 20 | Wa laDE™) = (w17
j=1
1NJrl
< N Dy lonl = ylolll + 5 2 | DE) - @DE™)
j=1
o
N+41 | 7
= VDl ol = lolllo+ Y | [ ol de
I=E L
j—1
b
< O Do lond = wb o + [ oo/l

whence (2.6) (implying vy, |y.| — y|y| uniformly) and (2.2) give
b
1= 0- .
In particular, y # 0. Furthermore, f;(y/)zd:c < 1 by (2.2) and (2.7). Thus,

Q(y) > K. But also Q(y) < K since y € Dy. Hence y is the maximizer we are
looking for. O

Remark 1. The proof shows that the statement of the proposition remains true
when the zero integral condition is replaced by any set of conditions
¢ily)=0 foriel, (2.10)

with some index set I, and with ¢;(i € I') denoting some bounded linear functionals
on H'(a,b) which are such that D := {y € H'(a,b) : y satisfies (2.10)} and Dy
defined by (2.1) (using this D) contain nonzero elements, and such that the Poincaré
inequality [|ylz2(a,5) < CllY'l|22(a,p) is true for y € Dy.

Choosing e.g. ¢1[y] = y(a) and é2[y] = y(b), or just ¢1]y] = y(a), one obtains
the a priori statement of Proposition 1 for the situations underlying Theorem A or
Theorem B, respectively.

3. PROOF OF THEOREM 1
For fixed N € N, we define
cither (i) D := Dy, or (ii) D := D, (3.1)
and

K:= sup Qy). (32)
yeD\{0}
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We will prove for both alternatives in (3.1):

If y € D\{0} is a maximizer of Q on D, i.e. Q(y) = K, (3:3)
then K = 1 and y(z) = c(z — %) for some ¢ € R. '

The proof of Theorem 1 is then easy: Using the alternative (i) in (3.1), and Propo-
sition 1, we obtain from (3.3) that K = K = 1/4. This holds for every N € N.
Moreover, UX¥_,Dy is dense in D with respect to the H'(a, b)-norm, since for any
given y € D, the density of C[a,b] in L?(a,b) in combination with Weierstrass’
Approximation Theorem gives a sequence (@) of polynomials converging to ¢y’ in
L?(a,b), whence defining

a@%—]@wm&wiaj ]@medt (z € [a,b], nEN),

and noting that f; y(z)dz = 0 implies

T t

mmz/y@M—;gj [veis|a @ela),

a a

we obtain P, — y in H'(a,b), and P, € [Jy_, Dn for each n € N.
This density result proves that sup{Q(y) : y € D\{0}} is also 1/4, and thus the
first part of Theorem 1. The second part about the form of extremals follows

immediately from (3.3) when using the alternative (ii) in (3.1).

To prove (3.3) we proceed in a series of Lemmas. We restrict ourselves to the case
a =0, b =1; the general case then follows by a change of variables.

So let y € D\{0} be a maximizer of Q on D. We normalize y by

1
/Iy’IQdfv =1, (3.4)
0

so that (3.2) gives

1
1
E/Iyy’ldx =1 (3.5)
0

Let
My :={z€[0,1]:y(z) >0}, M_:={ze[0,1]:y(z) <0}
Since y has zero integral, we have
/yda::—/ydx>0. (3.6)
My M_
With no loss of generality (possibly after replacing y by —y) we may assume that
(M) < p(My), (3.7)
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whence in particular

1
0<p(M-)< 3. (3.8)
Lemma 1. Let
1 1 )
_ - dr — /12 d
T Ty K/\yylx /Iylx
My My My
1 1 ,
= = dx — '1*d 3.9
o | [ e [ e (39)
M_ M- M_
where the last equality follows from (3.4), (3.5), (3.6). Then,
ly'|> =1+2yy a.e.on [0,1]. (3.10)
Proof. Let ¢ € C0,1] be fixed, and choose £y > 0 such that, for € € (—eg, &9),
min(1 -+ £¢) > /(1 +ep)ydz >0, /(1 +ep)yda < 0
’ M,y M_
(note (3.6)). Define for x € [0, 1]
J(1+ep)d
o (r) i= i s
J@+ep)d
0
which both are increasing C'-mappings of [0, 1] onto itself. Set
/\;y(\lls(z)) if v € d.(My),
ye(x) == ¢ AZy(Pe(2)) itex e ®. (M), (3.11)
0 otherwise,
where
1 1
ANF— o AT= 3.12
c J A +ep)ydx c J 1 +ep)ydx (812)

M M_

Since y is continuous and thus vanishes on OMy N (0,1) and on OM_N(0,1), y.
vanishes on 0®. (M, )N (0,1) and on 9P, (M_)N(0,1), and is therefore in H*(0,1).
Furthermore, M, N(0,1) and M_N(0, 1) are both disjoint unions of open intervals,
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whence we can use the transformation ¢ = ¥.(z) to obtain

/1 w@)de =3 [y [y ds
0

<I>E(M+) <I>E(M,)

=\ [ [y

My M_

1
= Aj/(l+5gp)ydt+>\;/(1+s<p)ydt =0

1
JA+ep)dt | a1, M_
0

by (3.12), whence y. € D, i.e. y. € D in case of the alternative (i) in (3.1). In
case of the alternative (i), there exist a =: tp < t; < .-+ <ty < ty41 := b such
that ¥’ > 0 a.e. on [tj_1,t;] or ¢/ <0 a.e. on [tj_1,t;], for each j =1,...,N + 1.
Hence (3.11) and the positivity of A}, AZ and ¥’ show that, for j =1,..., N + 1,
yL > 0 ae. on [P (tj_1), D (t;)] or y. < 0 a.e. on [P (tj_1), Pc(t;)]. This gives
Ye € Dy, ie. ye € D also in this case.

Therefore, since y maximizes Q on D, Q[y.] < Q[y] for € € (—&¢, o). Moreover,
A = Ay by (3.6) and (3.12), implying that yo = A\Jy and hence Q[yo] = Qly].
Consequently,

d

%Q[ys] |€:0 = Oa (313)

provided that the derivative exists, which however will follow from the calculations
below. The next step is to compute Qy.] and 4 Q[y.] |.—o. By (3.11),

/ eyl | da = (AF)? / (V. (2))y (Vo) () do
0

P (M)

®. (M)
— ()2 / (b (8)] dt -+ (A7) / w(t)y' (1) dt
M, M_

= (o). (3.14)



10 BROWN AND PLUM

Moreover,
1
/ )2 / Y (0. (2))? 0 (2)? da
0 (M)
+(A0)? / J (T2 (2))2 W (2)? da
®.(M_)
1 1
_ +\2 / 2 —\2 / 2
M, M_
/ v/ P? 2
= [a dt | (\)? / Y )2 / Y
Jasepa|one [ aroor [
0 M,
=:g(e)
By (3.12),
d)\;r - 2 d)\; 2
d€ - 7()‘5) /goydam d€ - ()‘s) /Sﬁyd%
My M_

whence (3.14) and (3.15) (and the fact that \J = Ay =: \o) give

F1(0)=-2(x0)? /Iyyldfﬂ/wydﬂH? Ao) /Iyyld:v/cpydw

My M, M_
=2)5 /\yyldﬂc/wyder/lyyldx/wydx :
My M M_

and

1

g'(0) = /apda: (A2 /|y |>dz + (\y) /\y % dx
0

M,
2(0¢)? /|y |2dx/<pydx+2 /|y |2dx/apydm
M, M M_
~00? [ elPae- 050 [ el s
M, M_

(3.15)
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(note (3.4)). Since Q[y.] = f(e)/g(e) and f(0)/g(0) = K, condition (3.13) amounts
to ¢'(0) — £ f(0) =0, i.e.,

1

1
/s@[l—\y’\g]dﬂﬂr%o g/lyy’ldw—/ly’Ide /@ydw

0 M, M, M,

1
— ?/|yy’|dx—/|y’|2dx /gpydm =0. (3.16)
M- M-

M_

Using (3.12), (3.6), and (3.9), we find that (3.16) is equivalent to

1
/w[l WP+ 29y de = 0
0

which implies (3.10) since ¢ € C[0, 1] is arbitrary. O

Lemma 2. Let f be any function in H'(0,1) such that f >0 on My, f <0 on
M_, and |f'| <1 a.e. on[0,1]. Then,

[ 1o < gutan? (3.17)
My

with equality holding if and only if M, is an interval and f(z) = |z — &| on My,
with € denoting one of the endpoints of M. Correspondingly,

- / fr < Sp(M)?,
M_

with equality holding if and only if M_ is an interval and f(z) = —|z —n| on M_,
with n denoting one of the endpoints of M_.

Proof. Since y is continuous, M4 N (0, 1) is the disjoint union of finitely or countably
many open intervals I;. For each fixed 4, the function f vanishes at least at one
endpoint & of I;, since f is continuous and at least one endpoint of I; does not
belong to M. Thus, since |f'| <1 a.e. on [0,1],

f(x) <z =& on I (3.18)

which implies

1 1
[ o< [l ldo = Ju(? < JuOL) - u(t), (3.19)
I; I;

with equality holding (everywhere in this chain) if and only if equality holds in
(3.18), and p(I;) = p(M4). Summation over ¢ in (3.19) yields (3.17), with equality
holding if and only if there is just one interval I; and equality holds in (3.18). The
corresponding statement on M_ follows analogously. (]
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Lemma 3. v > 0, and

=~ /ydm gmin{g,1—2/¢} (3.20)

where p = p(M_) (cf. (3.8)).

Proof. We use again (as in the proof of Lemma 2) the subdivision of M, N (0,1)
and of M_ N (0,1) into disjoint open intervals {I;"} and {I ; }» respectively, and
the fact that, for each ¢ and j, y vanishes at least at one endpoint of Ij‘ and I,
respectively.

Using the half interval inequality (1.2) in Theorem B, we obtain for each 4 that

1 1
[Jlode < Sux) [P do < Suas) [ 1y da.
I+ It It

whence summation over ¢ gives

1
[ w1ds < Suasy [ 1P ds. (321)
M, My

Since K > % (which follows from (3.2) and Q[y] = i for g(z) = « — %), (3.21)

further implies that
1
i [ wlde <20n) [WPde <20 [P
My My My

Analogously,

By (3.9), we therefore obtain
'y/ydxg(l—Qu) / ly' |2 de <1 —2u (3.22)
My My
(cf. (3.8)), as well as
v / ydr < (2u—1) / Y/ [>dz <0
M_ M-

by (3.8), whence (3.6) proves v > 0. Moreover (3.10) implies

1
v [wd=5 | [ WPde -] =4,

M_ M_

which together with (3.6) and (3.22) gives (3.20). O
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Now we want to “solve” the differential equation (3.10). Formally (i.e. with-
%(\/W)” = 1ify #0, ie.
%m = z(+const) for some function z such that |z’| = 1. A “natural” speci-
fication for the constant is %, since then

1
ZZ; {\/1+2’yy—1}

gives z = y in the limit v — 0, whence |z/| = 1 in every case.

For a rigorous proof, we have to circumvent differentiability problems (and possible
multiple solutions of initial value problems) when 1 + 2yy has zeroes. For this
purpose, we “regularize” the above function z by a parameter € > 0, which leads
to the definition (3.23) below.

Lemma 4. pu(My) =p(M_)=1,v=0, and K = 1
Proof. Let ¢ > 0, and define z € H'(0, 1) by
{i[\/1+6+27y—\/1+5] if v #£ 0,
z =

out regarding zeroes of 1 + 2vy), (3.10) yields

(3.23)

if v =0.

j@

14¢
(Note that 1+ 2yy > 0 by (3.10)). Therefore, in both cases, /1 +¢ec+ 2vy =
Vv 1+ e+ vz, implying

vz > —V1+¢on [0,1] (3.24)
and
=z (\/1 +e+ ;vz) . (3.25)

(3.24) shows in particular that /1 + &4 37z > 0 on [0, 1], whence (3.25) gives z > 0
on My and z < 0 on M_. Moreover, (3.23) and (3.10) imply

12| = e 1+2yy
V1+e+2vyy 1+e+2vyy

so that by Lemma 2

<1 ae. on0,1], (3.26)

2 /zdx < pu(M_)? = p? (3.27)

Furthermore using (3.25),

/yzd:z:ff /yd:z:/zdx——u //[y(x)fy(f)][z(x)fz(f)]d:z:df

M_xM_
// {M+ —(2(z )+z(§))} dx d7

M XM_

which is non-negative by (3.24). Thus,

/yzdmZ% /ydm /zdx. (3.28)
M
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In addition by (3.25) and Lemma 3, y > +/1+¢ z on [0,1], whence |y| <
V1+e¢|z| on M_, and thus,

/z2dx2\/%/yzd:c. (3.29)
M-

M_

Moreover, with zop € M, chosen such that z(xo) = max{z(z) : * € M1} = Zmax,
(3.26) implies

2(x) > zZmax — | — x| for x € [0,1]. (3.30)

Since z has at least one zero, (3.30) shows that at least one of the two intervals
(o — Zmax, o) and (xg, To + Zmax) 1S completely contained in M. Thus, with T
denoting this interval, (3.30) gives

/ 2(z) dx > /z(x) dx > /[zmax — |z — 20|} dx = %Zﬁlax' (3.31)

My T T

1 1
Finally, since v > 0 (by Lemma 3) and [ydz = 0, (3.25) implies that [ zdz <0,
0 0

ie, [ zdx<
My

[ zdx
M_

, whence (3.31) gives

Zmax < |2 /Zd:E . (3.32)
1_

Now, using (3.5), (3.25), (3.24), (3.26), and (3.6) we obtain

=
[

1 1
/Iyy’lda?:/\yl 12| (VI+e+rz) da
0 0

IN

1 1
\/1+5/\y|dx+’y/\y|zdx
0 0

= —2\/1+5/ydx+'y —/yzdx—f—/yzdx
M-

M_ My

_2(1+g)/zdm+7 —\/1+s/z2dx—/yzdm+/yzdx
M-

M- My

M_
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Thus, going on with estimating according to (3.29), (3.28), (3.32), and using v > 0
and I' defined in Lemma 3, we obtain

K < —2(1+E)/2d$+’}/ —Q/Qde‘i‘Zmax/ydx

M_ | M My
2
< —2(1+5)/zd1‘+’y . /ydm /de + |2 /zdx /yda:

M_ _ _ _ _

1
(1+z—:f;1“)~2 /zdm +I (2 /zd:c

Since 1 +¢ — iF > 0 due to (3.20), we go on using (3.27) to obtain
1
K<(1+e- ;I‘),uz—kfuz (1+e)u?.

This holds for every ¢ > 0, whence K < p2. On the other hand, K > %. So by
(3.8) we obtain

1 1
K= T and p=p(M-) = 3
Now (3.7) shows that also p(M;) = 1, and finally (3.20) gives I' = 0, and hence
v =0. ([l
It is now easy to complete the proof of (3.3). Lemma 4 and (3.10) give
ly'| =1 a.e. on [0, 1], (3.33)
so Lemma 2 provides
1 1
/ydx < 3 - / ydr < 3 (3.34)
My M-

Moreover, by (3.5), (3.33) and Lemma 4,

1
1
Z:K:/|y|dx:/ydx—/ydm.
0

M, M_

So equality must hold in both inequalities in (3.34). Therefore, Lemma 2 implies
that both M, and M_ must be intervals (of length 3), i.e.,

Min(0,1)=(0,3), M_n(0,1)=(3,1) (3.35)
or vice versa, and that
yi)=zori—=zon (0,3), yl@)=z—1lori—-=zon (31)
in the case (3.35), and

Ya) = —worz—Yon (03), wie)=1-wora—bon (1)
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in the opposite case. Since y is continuous, we obtain y(z) =z — % or L — 2 on

2 2
[0,1].
4. A NEW PROOF OF THEOREMS A AND B

The following is by no means the easiest or shortest proof of Opial’s inequality
or its half interval version®. However it is a new argument and we include it since
the technique may be useful in the proof of other inequalities. Again, it suffices to
consider the case a =0, b= 1.

Using Remark 1 after Proposition 1, it is sufficient to prove a statement correspond-
ing to (3.3), with the obvious changes concerning the value of K and the form of
extremals. So, with D defined correspondingly, let y € 15\{0} be a maximizer of

|z2'| dx
Qls) = 4——
(2)2 dx

o |o— .

on D, normalized by (3.4), (3.5), with K given by (3.2). Let ¢ € C[0,1] be fixed,
and choose ¢ > 0 such that, for € € (—&g, &p),

in(1 >0,
l[fg}f]l( +ep)

and define again

(1+ep)dt
on [0,1], V¥_:=o !

O () := -
(1+ep)dt

O | O —&

and this time
Ye(x) := y(¥.(z)) on [0, 1].

Since W.(0) = 0 and W.(1) = 1, y. lies in D in both Theorem A and B (by the
same argument as given in the proof of Lemma 1), whence

LQlye] oz =0, (4.1

Also because

1
/Iysyél dx
0

Jura = [y@@peers= [yorgg o
0 0 0 )

1

[ 1@y o) ) de = [y ar
0

1 1
(v')?
= 1 dt dt
Jaep [ 10t
0 0

3This distinction probably belongs to Mallows whose proof of Theorem B takes two lines. The
proofs of Olech and Levinson are also short. See [1, pp. 5-9].
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(4.1) amounts to
p 1 1 W) 1 1
Y N2
0=— 1 dt | ———dt = dt — dt
e /(+fw)l/1+€¢ /w /w@)
0 0 =0 0 0
(note (3.4)). Since ¢ € C]0, 1] is arbitrary, we obtain

ly'| =1 a.e. on [0, 1], (4.2)
and (3.5) gives
1
K:/|y|dm. (4.3)
0

Now to distinguish between the two theorems we wish to prove, we set y :=
min{z,1 — z} for Theorem A and y := x for Theorem B. Property (4.2) and the
condition y(0) = y(1) = 0 for Theorem A or y(0) = 0 for Theorem B imply that
ly| <7 on [0, 1], whence

1 1

/MMS/?MZQMSK (4.4)
0 0

Now (4.3) shows that equality must hold everywhere in the inequality chain (4.4),
so that K = Q[y] = 3 in Theorem B (= 1 in Theorem A), and |y| = 7 on [0,1],
whence by continuity y =y or y = —v. O
Acknowledgements: The authors are grateful to Jochen Denzler and to two
anonymous referees for useful suggestions.
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