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SURFACE GAP SOLITON GROUND STATES FOR THE NONLINEAR
SCHRODINGER EQUATION

TOMAS DOHNAL, MICHAEL PLUM, AND WOLFGANG REICHEL

ABSTRACT. We consider the nonlinear Schrodinger equation
(~A+ V(@)u=D(@)uf v, xR

with V(z) = Vi(z),T'(z) = ' (x) for 1 > 0 and V(z) = Va(z),[(z) = T'a(z) for 1 < 0,
where Vi, V5,1, 'y are periodic in each coordinate direction. This problem describes the
interface of two periodic media, e.g. photonic crystals. We study the existence of ground
state H' solutions (surface gap soliton ground states) for 0 < mino(—A + V). Using a
concentration compactness argument, we provide an abstract criterion for the existence based
on ground state energies of each periodic problem (with V.=V, I' =T and V =V, T =
I's) as well as a more practical criterion based on ground states themselves. Examples
of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the
criteria can be reduced to conditions on the linear Bloch waves of the operators — j—; +Vi(z)

and 7;_:2 + Va(x).

1. INTRODUCTION

The existence of localized solutions of the stationary nonlinear Schrédinger equation (NLS)
(1.1) (=A +V(z)u=T(2)|uff " u, zecR"

with a linear potential V' and/or a nonlinear potential I" is a classical problem of continued
interest. The present paper deals with the existence of ground states in the case of two
periodic media in R™ joined along a single interface, e.g. along the hyperplane {x; = 0} C R™.
Both the coefficients V' and I' are then periodic on either side of the interface but not in R™.
Exponentially localized solutions of this problem are commonly called surface gap solitons
(SGSs) since they are generated by a surface/interface, and since zero necessarily lies in a gap
(including the semi-infinite gap) of the essential spectrum of L := —A 4+ V. Ground states
in the case of purely periodic coefficients, where the solutions are refereed to as (spatial)
gap solitons (GSs), were shown to exist in [I7] in all spectral gaps of L. The proof of
[T7] does not directly apply to the interface problem due to the lack of periodicity in R™.
Also, in contrast to the purely periodic case the operator L in the interface problem can
have eigenvalues [B[I3]. The corresponding eigenfunctions are localized near the interface
so that it acts as a waveguide. In this paper we restrict our attention to ground states
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in the semiinfinite gap to the left of all possible eigenvalues, i.e. 0 < mino(L). Using a
concentration-compactness argument, we prove an abstract criterion ensuring ground state
existence based on the energies of ground states of the two purely periodic problems on
either side of the interface. We further provide a number of interface examples that satisfy
this criterion. Moreover, in the case n = 1 we give a sufficient condition for the criterion
using solely linear Bloch waves of the two periodic problems.

The physical interest in wave propagation along material interfaces stems mainly from the
possibilities of waveguiding and localization at the interface. The problem with two periodic
media is directly relevant in optics for an interface of two photonic crystals. Gap solitons in
nonlinear photonic crystals are of interest as fundamental ‘modes’ of the nonlinear dynamics
but also in applications due to the vision of GSs being used in optical signal processing and

computing [15].

The NLS (ILT) is a reduction of Maxwell’s equations for monochromatic waves in photonic
crystals with a p-th order nonlinear susceptibility x») when higher harmonics are neglected.
In the following let ¢ be the speed of light in vacuum and ¢, the relative permittivity of
the material. In 1D crystals, ie., e, = &,(z1), X"’ = x®(2,), equation (LI)) arises for the
electric field ansatz E(z,t) = (0, u(x),0)Te! @370 ¢ c. and the potentials become V (x1) =
k?* — “c’—jgr(:cl),F(:cl) = ‘;’—jx(p)(xl). In 2D crystals, i.e., &, = e.(x1,22),X? = X (21, 1),
the ansatz F(x,t) = (0,0,u(zy,22))Te @+tc.c. leads to V(ry,x) = —“c’—;er(:cl,@) and
[z, 2,) = “;—;X(p)(xl,m). The physical condition ¢, > 1, valid for dielectrics, however,
clearly limits the range of allowed potentials V.

On the other hand, the NLS is also widely used by physicists as an asymptotic model
for slowly varying envelopes of wavepackets in 1D and 2D photonic crystals. In cubically
nonlinear crystals the governing model is

(1.2) 100 + AL+ V(z)e +T(z1)]e’e =0,

where x| = 21 in 1D and x| = (21, 22) in 2D, see e.g. [7[10]. The ansatz p(z) = ek (z,))
then leads to (L)) with V(z) =k — V().

GSs are also widely studied in Bose-Einstein condensates, where ([L2) is the governing
equation for the condensate wave function without any approximation (with z3 playing the
role of time) [I4]. Tt is referred to as the Gross-Pitaevskii equation and the periodic potential
is typically generated by an external optical lattice.

SGSs of the 1D and 2D NLS have been studied numerically in a variety of geometries and
nonlinearities including case where only V' has an interface and I" is periodic in R™ [1016],
or vice versa [Al[6] (1D), or where both V' and I' have an interface [I1].

Optical SGSs have been also observed experimentally in a number of studies, as examples
we list: SGSs at the edge of a 1D [I9] and a 2D [25,27] photonic crystal as well as at the
interface of two dissimilar crystals [24],26].
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2. MATHEMATICAL SETUP AND MAIN RESULTS

Let V1,V5,1'1,T's : R® — R be bounded functions, p > 1, and consider the differential

operators
LZ:—A‘FV;, 221,2

on D(L;) = H*(R") C L*(R") and denote their spectra with o(L;). Our basic assumptions
are:

(H1) V4, V5, Ty, Ty are Ti-periodic in the xp-direction for &k =1,...,n with T} = 1,

(H2) esssupl; > 0,i=1,2,

(H3) 1<p<2"—1,
where, as usual, 2* = % if n >3 and 2* = oo if n = 1,2. Let us also mention a stronger
form of (H2), namely

(H2") essinfI'; >0 ,7=1,2.
Conditions (H2), (H2’) will be commented below. (H3) is commonly used in the variational
description of ground states. In order to have an energy-functional J, which is well-defined on
H'(R"), one needs 1 < p < 2*—1. The assumption p > 1 makes the problem superlinear and
the assumption p < 2* — 1 provides some compactness via the Sobolev embedding theorem.
Although we restrict our attention to 1 < p < 2* — 1, problem (1) for 0 < p < 1 or for
p>2*—1,n > 3is also of interest.

Consider the two purely periodic (stationary) nonlinear Schrodinger equations
(2.1) Liu = Ti(z)uP~'u in R™.
Their solutions arise as critical points of the functionals
1 1
] ;:/ L (1Vul? + V(o)) — ——Ty@) ™) de, e H'R).
re \ 2 p+1

If (H1), (H2’), (H3) hold and if 0 ¢ o(L;) then it is well known, cf. Pankov [I7], that the
purely periodic problem (2] has a ground state w;, i.e. a function w; € H'(R™) which is a
weak solution of (2] such that its energy ¢; := J;[w;] is minimal among all nontrivial H!
solutions. However, under the additional assumption 0 < mino(L;) a ground state of (2.1])
exists under the weaker hypotheses (H1), (H2), (H3). This can be seen from an inspection
of the proof in [I7], which we leave to the reader. In the following, we use (H1), (H2), (H3).
Of course our results are also valid under the stronger hypotheses (H1), (H2"), (H3), which
do not require any extension of [17].

In the present paper we are interested in ground states for a nonlinear Schrodinger equa-
tion modeling an interface between two different materials. For this purpose we define the

composite functions
Vi(z), = eRR%, I'(z), zeRY,
vy [ Vi@ zERL (T, seRy
Vao(z), = eR”, Io(z), zeR™,
where R} = {z € R" : £2; > 0} and the differential operator
L:=-A+V onD(L) = HXR")  LA(R").
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We will prove existence of ground states for the nonlinear Schrodinger equation of interface-
type
(2.2) Lu = T(z)|ul’'u in R,

Solutions of (Z2) are critical points of the energy functional

Ju] = /Rn (% (IVul®> + V(z)u?) — ﬁf(zﬂuv’“) dr, ué€ H'(R").

Since J is unbounded from above and below, minimization/maximization of J on all of
H'(R™) is impossible. Therefore we seek solutions of the following constrained minimization
problem:

(2.3) find w € N such that J[w| = ¢ := inf J[ul,

ueN
where N is the Nehari manifold given by

N={uec H(R") :u#0,Gu] =0}, G[u]= /Rn (\Vu|2 + V(z)u? — F(az)\u\pﬂ) dx.

Note that N contains all non-trivial H*(R™)-solutions of () and (H2) ensures that N # (][]
The stronger condition (H2’) makes N a topological sphere, i.e, Vu € H'(R")\{0} 3t > 0 such
that tu € N. Moreover, one of the advantages of NV is that the Lagrange multiplier introduced
by the constraint turns out to be zero as checked by a direct calculation. In our case of a pure
power nonlinearity one could alternatively use the constraint [p, I'(x)u[P*! dz = 1. Here the
Lagrange parameter can be scaled out a posteriori. A third possibility would be the constraint
Jge w?dz = p > 0, which generates a Lagrange parameter A(x). The additional term A(u)u
in (7)) cannot be scaled out. This approach is, moreover, restricted to 1 < p < 1—1—%, cf. [23].

Definition 1. The following terminology will be used throughout the paper.
(a) A bound state is a weak solution of 211 in H'(R").

(b) A ground state is a bound state such that its energy is minimal among all nontrivial
bound states.
(¢c) A strong ground state is a solution to (23).

Note that a strong ground state is a also a ground state because N contains all non-trivial
bound states.

For the success in solving (2.3) we need to assume additionally to (H1)—(H3) that 0 <
min o (L), which is, e.g., satisfied if there exists a constant vy > 0 such that V;, V5 > vg. Note
that o(L) D o(Ly) U o(Ls), and hence the assumption 0 < mino (L) implies in particular
0 < mino(L;) for i = 1,2. The additional spectrum of L may be further essential spectrum
or, as described in [5], so-called gap-eigenvalues.

As we show in Lemma [[4], one always has ¢ < min{cy, co}. Our main result shows that if
the strict inequality holds, then strong ground states exist.

IFor a proof, construct a sequence (ux)rey in H'(R™) which converges in LPT!(R™) to the character-
istic function of {z € R™ : I'(z) > 0,|z| < R} for some large R. For sufficiently large k£ € N one finds
Jan T(@)|ug[PT! dz > 0 and thus 3¢ > 0 such that tuy € N.
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Theorem 2. Assume (H1)-(H3) and 0 < mino(L). If ¢ < min{ey, e}, where ¢ is defined
in 23) and ¢y, co are the ground state energies of the purely periodic problems ([2.11), then ¢
is attained, i.e., there exists a strong ground state for the interface problem (22).

Remark 1. We state the following two basic properties of every strong ground state ug of
@22).
(1) wg is exponentially decaying. The proof given in [17] can be applied.
(ii) Up to multiplication with —1, wq is strictly positive. For the reader’s convenience a
proof is sketched in Lemma A2 of the Appendiz.

Let us also note a result which excludes the existence of strong ground states.

Theorem 3. Assume (H1)-(H3) and 0 < mino(L). If Vi < Vy and T’y > 'y and if one of
the inequalities is strict on a set of positive measure, then there exists no strong ground state
of [22).

Remark 2. The non-existence result in Theorem[3 can be extended to more general interfaces

Y (not necessarily manifolds) as follows. Let ¥ separate R™ into two disjoint sets (11 and Sy
with Q1 unbounded such that R™ = QU Qy and X = 0y = 08y and suppose

Vi(z), x € Qy, Iy(z), =€y,
Vi) = { Va(z), €, (x) = { To(z), € Qo

Then the previous non-existence result holds if there exists a sequence (g;)jen i €3 N zZn)
such that dist(g;, Q) — 00 as j — oo, where ZM =7 x ToZ % ...x T,7Z.

This is, for instance, satisfied if there exists a cone Cy in R™ such that outside a sufficiently
large ball Bg the cone lies completely within the region )y, i.e., there is a sufficiently large
radius R > 0 such that

CinN BE C Q.
In the case n = 2, where the cone becomes a sector, an example of such an interface is plotted
in Figure .

FIGURE 1. An example of a curved interface in 2D
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Note that (to the best of our knowledge) the fact that no strong ground state exists does
not preclude the existence of a ground state. Moreover, under the assumptions of Theorem
there may still exist bound states of (22, i.e. critical points of J in H'(R"), cf. [4[6].

To verify the existence condition ¢ < min{cy, o} of Theorem [ it suffices to determine a
function u € N such that J[u] < min{c;, cy}. The following theorem shows that a suitable
candidate for such a function is a shifted and rescaled ground state corresponding to the
purely periodic problem with the smaller of the two energies. Using an idea of Arcoya,
Cingolani and Gémez [3], we shift the ground state far into the half-space representing the
smaller ground state energy. The rescaling is needed to force the candidate to lie in V.

The following theorem thus offers a criterion for verifying existence of strong ground states.

Theorem 4. Assume (H1)-(H3) and 0 < mino(L). Let w; be a ground state of (21I) for
i =1,2 and let ey be the unit vector (1,0,...,0) € R™.

(a) If ¢ < ¢ and

(24) (p+ 1)/ (Va(z) — Vi(2))wi(z — tey)* do < 2/ (Ty(x) — Ty (z))|wi (z — teg) [P da
R" R"
for all t € N large enough, then ¢ < min{cy,ca} and therefore ([Z2) has a strong
ground state. Condition (2.4) holds, e.g., if esssup(Vo — Vi) < 0.
(b) If ca < ¢y, then in the above criterion one needs to replace wy(x —tey) by wo(x +tey),
integrate over R, and switch the roles of Vi, Va and 'y, T's.

Using the criterion in Theorem [l we have found several classes of interfaces leading to the
existence of strong ground states. These are listed in the following theorems.

The first example considers potentials related by a particular scaling.

Theorem 5. Assume (H1)-(H3), 0 < mino(L), and Vi(z) = k*Va(kx), T1(x) = +*Ty(kx)
for some k € N as well as

n+2-p(n—2)
(2.5) sup Vo < E? inf Vo,  and k% < fypfl_
[0,1]" [0,1]™

Then (Z2) has a strong ground state.
The next theorem guarantees existence for interfaces with a large jump in I'.

Theorem 6. Assume (H1)-(H3), 0 < mino(L).

(a) Let esssup(Vo — Vy) < 0. Then there exists a value By > 0 depending on ¢z such that
if T1(z) > Bo almost everywhere, then ([22) has a strong ground state.
(b) A similar result holds for esssup(Va — Vi) > 0 and I'y(x) > By with By = Bo(cy).

Finally, for the case n = 1 we provide sufficient conditions for criterion (2.4]). Instead
of ground states wi, wy themselves the new sufficient conditions use solely the linear Bloch
modes of the operators L, Ly on a single period. The coefficient I' in front of the nonlinear
term has no influence in this criterion besides allowing the correct ordering between ¢; and
¢. Moreover, we show that if 0 is sufficiently far from o(L), these conditions can be easily
checked from the behavior of V; and V5 near z = 0.
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Theorem 7. Let n =1 and consider the operator L = —% +V(z)—X onD(L) = H*(R) C
L*(R) with A € R. Assume (H1)-(H3) and 0 < mino(L). Fori = 1,2 define by ¢; the ground
state energy of (—% + Vi(z) — Nu = Ti(x)|u|P~'u on R and assume ¢; < cy.
(a) A sufficient condition for the existence of a strong ground state for Lu = T'(z)|u[P~ u
mn R is
0
(2.6) / (1/2<x) - vl(x)) p_(2)%e¥ dz < 0,
-1

where p_(x)e"™ is the Bloch mode decaying at —oo of —% + Vi(z) — A

(b) If for some ¢ > 0 the potentials Vi, Vs are continuous in [—¢,0) and satisfy Va(x) <
Vi(x) for all x € [—¢,0), then condition [28) holds for A\ sufficiently negative. In
particular, if Vi, Vo are C'-functions near x = 0, then

(2.7) V2(0) < V1(0) or  V3(0) = Vi(0) and V;(0) > V/(0)
implies (226)) for \ sufficiently negative.

Remark 3. In the case co < ¢ the condition corresponding to (2.0) is

/01 <V1(33) - Va(x))m(af)%_m dx <0,

where py(x)e™"* is the Bloch mode decaying at 400 of —% + Va(z) — X, It holds if Vi, Vs
satisfy the conditions of continuity and Vi(x) < Va(z) in (0,¢] for some e > 0. The condition
corresponding to (21) is

Vi(0) < V2(0)  or VA(0) = V2(0) and V5(0) > V{(0).
Note that the condition on the derivatives is the same as in (21).

In Section [@ we apply Theorem [7 to a so-called ‘dislocation’ interface where Vj(z) =
Vo(z + 1), Va(z) = Vo(x — 7) with 7 € R.

The rest of the paper is structured as follows. In Section [, using a concentration com-
pactness argument, we prove the general criteria for existence/nonexistence of strong ground
states in R™, i.e. Theorems 2, Bl and @ Our two n—dimensional examples (Theorems [ and
[6), which satisfy these criteria, are proved in Section @l In Section B we prove Theorem [7]
i.e. a refinement of Theorem [ for the case n = 1. Section [(] firstly presents a 1D example
(n = 1), namely a dislocation interface, satisfying the conditions of Theorem [, and secondly
provides a heuristic explanation of the 1D existence results for A sufficiently negative. Fi-
nally, Section [0 discusses some open problems and the application of our results to several
numerical and experimental works on surface gap solitons.

3. n DIMENSIONS: GENERAL EXISTENCE RESULTS
3.1. Proof of Theorem 2l According to Pankov [I7] ground states w; € H*(R") for the
purely periodic problem (Z1]) are strong ground states, so that they are characterized as
w; € N;  such that  J;[w;] = ¢; := inf J;[u]
ue

i
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with N; being the Nehari-manifold
Ny ={uec H'R") :u#0,Gul =0}, Giu] = / (|Vu|2 + Vi(z)u?® — I’i(x)|u|p+1) dx
R?’L

for i = 1,2. The proof of Theorem Pl consists in showing that a strategy similar to that of [17]
for purely periodic problems is successful in finding strong ground states of (Z2) provided
the basic inequality ¢ < min{cy, co} for the corresponding minimal energy levels holds.

In the following we use the scalar product (p, 1) =[5, V- Vip+pi dx for ¢, € H'(R™).
For u € H'(R") the bounded linear functional .J'[u] can be represented by its gradient denoted
by VJ[ul, i.e.

J'[u)lp = (VJ[u], o) for all p € H'(R™).
Lemma 8. There exists a sequence (uy)gen on the Nehari-manifold N such that J[ug] — ¢

and J'[ug] — 0 as k — oco. Moreover, (ug)gen is bounded and bounded away from zero in
H'(R™), i.e., there exists €, K > 0 such that € < ||ug|| grgny < K for all k € N.

Proof. Let |[|u]|]* = [5. |Vu|*+V (z)u?dz. Clearly |||-]]| is equivalent to the standard norm
on H'(R™) since min o(L) > 0. Note that for u € N one finds J[u] = n|||u|||* withn = %—ﬁ.

This explains why every minimizing sequence of J on N has to be bounded. Moreover every
element u € N satisfies |[|u]||* = [, T'(z)|ulPt!de < C||u||§’;iRn) < C||ul|[P™, and since
u # 0, the lower bound on u follows.

Now consider a sequence 0 < ¢, — 0 and a minimizing sequence (vg)reny of J on N such
that J[vi] < ¢+ €;. By using Ekeland’s variational principle, cf. Struwe [22], there exists a
second minimizing sequence (uy)gen in N such that J{ug] < J[v] and

Jug] < Ju] + egllu — upl|mreny for all w € N, u # .
Consider the splitting V.J[uy] = s, + tx with s, € (Ker G'[ug])* and t), € Ker G'[ug]. Due to
the following Lemma [ we know that |||z @mn) < €. Note that the range Rg G'[u;] = R
because G'[ug]ur = (1 — p)|||ux]||?> # 0. Furthermore, span(VG|uy]) = (Ker G'[ug])*. Hence
there exist real numbers o € R such that s, = —0, VGlugl, i.e.,
(VJ[uk], uk> +ak<VG[uk], uk> = <tk, uk>
-0
Thus,
ol (p = Dl usl[1* < €l en.

which shows that o, — 0 as k — oo since |||ug||| is bounded away from zero. Hence we have
proved that VJ[uy] = sp +tr, — 0 as k — oo. O

Lemma 9. Suppose € > 0 and ug € N are such that J{ug] — J{u] < €|lug — ul[gr@ny for all
we N. If Vug| = s+t with s € (Ker G'[ug))* and t € Ker G'[ug], then ||t]|mign) < €.

Proof.  We split uw € HY(R") such that u = Tug + v with v € span(ug)t. The Fréchet
derivative G'[ug] may be split into the partial Fréchet derivatives 0y Gluo] := G'[uo]|span(uo)
82G[u0] = G/[UOHSpan(uo)ia so that

(3.1) G'uol(Tug + v) = 701 Gluglug + 0aGug)v.
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Since G'[uplug = (1 — p)||Juol||* # 0, we have that 9;Guy] is bijective, and hence by the
implicit function theorem there exists a ball B(0) C span(up)* and a C'-function 7 : B(0) —
R such that
G(T(v)up +v) =0, 7(0) =1

and
(3.2) (7' (0)v)ug = —(01Gluo]) " 92Gug)v for all v € span(ug)™.
Define the linear map ¢ : span(ug)* — H*(R™) by

() == (7'(0)v)ug +v, v € span(ug)*.
We claim that ¢ is a bijection between span(ug)* and Ker(G'[ug]). First note that indeed
¢ maps into Ker(G'[ug]), which can be seen from (32]). Let us prove that ¢ is injective: if
o(v) = (7(0)v)up+v = 0, then clearly v = 0. To see that ¢ is surjective, take u € Ker(G'[ug])
and write u = fug + v for some § € R and some v € span(ug)*. Then, by B1) and ([B.2)

Oug = —(01Gug)) ' 02Guelv = (7/(0)v)ug.

Hence u = ¢(v), and we have proved the bijectivity of the map ¢. Next, we compute for
u € N near ug, where u = 7(v)ug + v with v € B(0) C span(ug)*, that

u—ug = (7(v) = Dug +v = (7(0)v)ug + v + o(v) = p(v) + o(v) as v — 0.

Therefore

(3.3) Jug] — J[u] = J'[up](ug — u) + o(u — ug) = —J' [uglp(v) + o(v)
and
(3.4 Tluo] = Jle) < ellto = wlln ey = ello(o) ey + o(v)

by assumption. Setting v = A\ with ¥ € span(ug)® and letting A\ — 0+, we obtain from

B.3), B4

—J'[uo)o(0) < €|(0) || i (rny for all © € span(up)™.
Due to the bijectivity of ¢ and by considering both v and —v we get
| J [uglw] < €||w]| g1 @ny for all w € Ker(G'[ug)),

which implies the claim. 0

Theorem 2] will follow almost immediately from the next result.

Proposition 10. Foré > 0 let S5 = (—§,0) x R*™! C R" denote a strip of width 26. If there
exists & > 0 such that for the sequence of Lemmal§ one has liminfyey ||ug| s,y = 0, then
¢ > min{cy, co}.

Proposition [I0] will be proved via some intermediate results. We define a standard one-
dimensional C*° cut-off function such that

Xs(t)=1fort >4, xs(t)=0fort <0
and 0 < x5 <1, x5 > 0. From xs we obtain further cut-off functions
Xi(2) = xs(z1), x5 (2) :=xs(—21), x=(21,...,2,) ER".
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Note that Xf;t is supported in the half-space R’} and fo;t is supported in the strip S;.

Lemma 11. Let (uy)ren be a bounded sequence in H'(R™) such that ||ug|pis,) — 0 as
k — oo and define

v(2) = u(2)x§ (2),  wi(z) = u(z)x; (2).
Then
(i) [Jurll®* = ||vel|® + [|wel|? + o(1) where || - || can be the L?-norm or the H'-norm on R™,

(i) Jug] = Jilve] + J2wy] + o(1),

(i) J'[ug] = Jilvk] + J5[wg] + o(1),
where o(1) denotes terms converging to 0 as k — oo and convergence in (iii) is understood
in the sense of H-Y(R") := (H'(R"))*.

Proof. (i): First note that

up = up(x§ X)) Fup(l— x5 — X))+ 2ui(xd x5 — X —xG)
= vp+wiFud(l—xg —x5)7 20 (g +xg) (= x5 = xG )
Furthermore, since
(3.5) Vu, = Vo + Vg + (1 — x5 — x5 ) Vur — wi.V(X§ + x5 ),
we find
[Vur* =|Vu|* + [Vwe* + (1 = xi§ — x5 Vue* + i (IVXF 2+ Vg )
—2u(1 = x5 — x5)Vur - V(x§ +x3)-

Integrating these expressions over R” and observing that terms involving (1 — x5 — x5 ) or
V(xy + x;) are supported in Ss, where [Jug||z1(s,) tends to zero, and that the sequences
() ken, (Wi)ren are bounded in H'(R™), we obtain the claim (i).

(ii): Let us compute

/ [(2)|ug P do = / Do (2)|we [P do + / Ly (2)|vp P do + 1,
Rn R™ R”

where

I :/ T(@) (Jugl™' — [l — JoelP*Y) da,
Ss

By the assumption that [lug||z1(s,) tends to zero and by the Sobolev-embedding theorem I
converges to 0 as k — co. A similar computation shows

/ V(z)ui dr = / Va(2)wi dw + / Vi(x)vi dz + o(1) as k — oo.

R}

Together with (i) we get the claim in (ii).



SURFACE GAP SOLITON GROUND STATES FOR THE NLS 11
(iii): Using (B.3), we obtain
Sugle = J'[velp + J'Twi]e

+L;OVM-V¢+V@MWM1—XH@—XAm>—WV¢«Vﬁcw+v%medx

+fk(90),

where
fk(so) = /5 ['(x) (|uk|p_1uk — |o|P oy — |wk|p_1wk) pdr,
and hence I, tends to 0 in ]-(SI*I(R") as k — oo. Thus
J'[urlp = Ji[vlp + Js[wile + fk(@) + /s ((al(x)vuk + a2($)uk) -V + as(z)upp dz,
s
where the functions aj, ... ,as are bounded on Ss5. Using I, — 0 in H—'(R") and once more

that uy, — 0 in H'(S;) as k — oo we obtain the claim of (iii). O

In order to proceed with the proof of Proposition [I0, we quote the following famous concen-
tration-compactness result, cf. Lions [9]. With a minor adaptation of the proof given in
Willem [28] one can state the following version.

Lemma 12 (P.L.Lions, 1984). For 0 < a < oo let S, = (—a,a) x R"'. Let 0 < r < a,
so € [2,2%) and assume that (uy)ren is a bounded sequence in H'(Ssy,) such that

lim sup (/ |ug|* dx) =0.
k%oogesa 1"(6)
Then u, — 0 as k — oo in L*(S,) for all s € (2,2%).

Proof of Proposition[I: By assumption we may select a subsequence (again denoted by (uy))
from the sequence of Lemma [ such that limy_,q ||ux||m1(s;) = 0. Recall that w;, € N satisfies

mmwzérwmwwx

and that |||ug||| is bounded and bounded away from 0 by Lemma 8 Hence no subsequence of
|| || Lp+1 (mmy converges to 0 as k — oo. By the concentration-compactness result of Lemma [I2]
with a = oo we have that for any r > 0 there exists € > 0 such that

lim inf sup / ui dx > 2e,
k‘eN &'eRn Br(g)

and hence that there exists a subsequence of uy (again denoted by ux) and points & € R”
such that

(3.6) / ui dr > e for all k € N.
Br(gk)

Next we choose vectors z, € Z(" = TVZ x TyZ x ... x T,,Z such that (2, — & )ren is bounded
(recall that T} = 1,T5,...,T, > 0 denote the periodicities of the functions Vi, V5, 'y, 'y in
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the coordinate directions xy, ..., x,). Then there exists a radius p > r + SUDLen |z — & | such
that
(3.7) / ui dx > e for all k € N.

Bp(zk)

We show that (zx)ren is unbounded in the x;-direction. Assume the contrary and define for
r €R"

() = up(z +2), 2= (0, (2r)2, - -, (21)n)-
By the boundedness of (z;); there exists a radius R > p such that

(3.8) / u; dx > e for all k € N.
Br(0)

By taking a weakly convergent subsequence i, — @y in H'(R") and using the compactness
of the embedding H'(Br(0)) — L*(Bg(0)), we have g # 0. Moreover, if ¢ € C5°(R™) and if
we set @i () := p(x — 2.), then we can use the periodicity of V,I" in the directions zo, ..., z,
to see that
o(1) = J'Turlox = J'[u]p as k — oo,

where the first equality is a property of the sequence (uy)ren as stated in Lemma 8 On one
hand, [;. Vi - Vo + V(2)uppdr — [, Vg - Vo + V(x)tgp dz by the weak convergence
of the sequence @y, — . On the other hand, by the compact Sobolev embedding H'(K) —
LPH(K) with K = suppyp and the continuity of the Nemytskii operator u + |u|P~!u as a map

from LPT(K) to L%(K), cf. Renardy-Rogers [I8], we find that [, I'(z)|ag|P upe do —
Jan T()|6o[P~ gy dz. Hence we have verified that the limit function @ is a weak solution of
Lig = T'()|t|" '@ in R”. Standard elliptic regularity implies that @ is a strong W;24(R")-

oc
solution for any ¢ > 1. Since we also know that g = 0 on S5, we can apply the unique
continuation theorem, cf. Schechter, Simon [20] or Amrein et al. [2], to find the contradiction

iy = 0 in R™. Thus, (2x)ren is indeed unbounded in the z;-direction.
Let vy, wy, be defined as in Lemma [I1] and define

Up(x) = vp(r + 2x), wi(z) :=wp(r+25), x€R"

and observe that both v, and wj, are bounded sequences in H'(R"). Moreover, for almost all

k we have Ve
_ € _ €
1orllz2(8r0) 2 3~ or lWellz2(sao) = =5
by Lemma [[1}(i) and (B.8]). Taking weakly convergent subsequences, we get that v, — vy and
wy, — wo where vy # 0 or wy # 0. Since z;, is unbounded in the z;-direction, we may assume
that either (zz); — 400 or (2); — —o0 as k — oco. In the first case wy — 0 while in the
second case vy — 0 as k — oo. In the following, let us consider only the case (z;); — +o0.
Then, from Lemma [Tl and the periodicity of V4, V5, I'1, I's we have for any bounded sequence

or € HY(R™) that
(3.9) o(1) = J'lug)or = Ji[vk]ew + Jolwi]pr + o(1)

!

= Ji[or)or(- + z1) + Jylw]or (- + 2i) + o(1) as k — oo.
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If we apply (B3) to pr(x) := p(z — 2i), where ¢ € C5°(R"™), then
o(1) = Ji[ve]p + Jy[wx]e + o(1) = Ji[vk]e + o(1)

since wy — 0 as k — oo (where we have again used the compact Sobolev embedding and
the continuity of the Nemytskii operator). From this we can deduce that v, is a nontrivial
solution of

(3.10) L1t = T'y(2)|0o[P~ 10 in R™.
Applying (8.9) with ¢ = uy, one obtains
o(1) = J'uglur, = Ji[vr]ug + Jo[wi]ug + o(1)
= Ji[ve]vr + J5[wi]wy, + o(1)
= Ji[v]vy, + Jolwy]wy, + o(1),
which together with (B.10) implies
11%16%\Inf(J1 (U] + Jo[wy])

keN

-~

=o(1) &S k—o0

. . _ _ 1 JT— 11— T — —
— liminf (J1 ] + ] = = (oo + [wk]wk))

. 1 1 _ _ _ _

> (% - ]ﬁ) [ 190 + Vi(a)ed de
= Ji[vo].
Lemma [TJ(ii) also implies
Jug] = Jifvg] + Jo[wi] + o(1) = Ji[vg] + Jo|wy] 4+ o(1) as k — oo,
which together with ([BI1]) yields the result
c= l};rgo Jug] > Ji[vo] > 1.
In the case where (z;); — —oo we would have obtained ¢ = limy_,o J[ug] > co. Hence, in

any case we find ¢ > min{c;, co}, which finishes the proof of Proposition O

Proof of Theorem [2: As in Lemma [ let (ug)reny be a minimizing sequence of J on the
Nehari-manifold N such that J'[ux] — 0 as k& — oo. From Proposition [0 we know that
lim infren ||ugl|gresy) > 0 for any 6 > 0. Let us fix § > 0. By the following Lemma I3 we
know that for 0 < R < 24

(3.12) lim inf sup </ |uk|2d:p) > 0.
REN geshs \JBr(9)

Thus, there exist centers & € Sgs and € > 0 such that

/ u%d:pZeforallkeN,
Br (k)
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and by choosing suitable vectors z, € Z™ with (2;); = 0 and a radius p > R, we may
achieve that

/ u%d:pZeforallkeN.
Bp(zk)

Setting
() == up(x + 2,), x€R",
we find

/ u; dr > e for all k € N.
By(0)

Taking a weakly convergent subsequence u; — g in H'(R"™), we obtain by the argument given
in the proof of Proposition [0 that g is a non-trivial weak solution of Lty = T'(x)|tg|P g
in R™. Finally, as seen before in the proof of Proposition [I0, one obtains

. . ]- /
c= kh_)rrolo J[ug] —kh_>nolo (J[uk] — mJ [uk]uk)

. _ 1 -
:kh_glo (J[uk] — mj’[uk]uk)

) 1 1 N _
=t (5 5g) [ (v Vi)

> (% — ]ﬁ) /n (Vo> + V(z)ug) dx

Since g is non-trivial, it belongs to the Nehari manifold N. Thus, equality holds in the last
inequality and ug is a strong ground state. ([l

Lemma 13. With the notation of the proof of Theorem 2

BI12) lim inf sup </ |uk|2d:c) > 0.
Br(§)

keN £€Ss5

Proof.  Otherwise, by concentration-compactness Lemma [2 with a = 26 we find a sub-
sequence such that [jug|rss,,) — 0 as & — oo for all s € (2,2*). This is impossible as
the following argument shows. Since J'[u] — 0 in (H'(R"))* and 0 ¢ o(L), there exists a
sequence (Cx)gen in H'(R™) such that L{, = J'[ug] in R™ and ||yl grgny — 0 as k — oo. In
particular 0y := u, — (j is a weak solution of

(3.13) LO, = T(z)|ug [P uy in R™
and
(3.14) k| Lo (Sns) > |0k L5 (505) — 0 as kB — oo for all s € (2,27).
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As 0 ¢ o(L), we may use the fact L™ : LY(R") — W24(R") is a bounded linear operator for
all ¢ € (1,00). This fact may be well known; for the reader’s convenience we have given the
details in the appendix, cf. Lemma Al. Thus, due to the boundedness of (ug)pey in H'(R™),

. 2, 2*
(3.15) 10kl wagny < const. [[ul zowm = O(1) if € [max {1, ]_)}, ;).

Because 1 < p < 2* — 1, we can choose 2 <t < 2%, n2—f2 < t' < 2 with % +t—1/ = 1 such that ¢’
lies in the range given in (3.15)). Therefore

(3.16) /5 O dz < |10k e (5290 1Okl (5,5) < N0kt (299 100 2.0 gy = 0(1) a8 b — 00
26

because of ([B.I4) and (BI5]). Define a C§°-function £ : R — R with support in [—26, 2] with
0<¢<1and |54 = 1 and use the test-function {(x1)0 in (BI3). This leads to

55 526

0
gan - [ D) P s — V()02 — 0, 2

YVE w1
axlg dx

00y,

< T Moo Ikl 2o (52s) 10k | o (5,5 + 1V llocl1O 1725, + (3 P[5t AL (Y VTN

where £ + & =1, 2 + L = 1. Since 1 < p < 2* — 1, we may arrange that ps,s’ €

(2,2*). Furthermore we can choose r in the range given in ([BI5) and additionally ' €
(2,2*). Estimating H@k LS/(S%) < CHQkHHl(Rn) < C’(HukHHl(Rn) + ”CkHHl(R”)) = O(l) and
122 5y < 15l ey = O(1) by (BI5) and using (BT, GIH), we deduce from EIT)
that |0k m1(s,) — 0 as k — oo, which together with u;, = 6y + ¢ and ||Cg g2 @ny — 0 yields

|l ug || 1 (s;) — 0 as k — oo in contradiction to Proposition [0l Hence we now know that (3.12)
holds. O

3.2. Proof of Theorem Bl First we prove ¢ = ¢; by showing the two inequalities ¢ < ¢y,
¢ > ¢;. The first inequality follows from the next lemma and holds always (independently of
the ordering of Vi, V5 and I'y, 'y assumed in Theorem [3)).

Lemma 14. Assume (H1)-(H3) and 0 < mino(L). Then ¢ < min{cy, ca}.
Proof. Let wy be a ground state for the purely periodic problem with coefficients V;, I'y and

define w;(z) := wy(z — te1),t € N. Then (setting n =1 — Iﬁ) we compute
/ (Vs> + V() Jug|PT do = / (|Vw|* + Vi(2)w]) dx + / (Va(x) — Vi(x)) uf dx
R™ R™ R™
&1
=—+o(l
p (1)

and

/n [ (2)|w|Pt do = /Rn Ty () Jug|PH do + / (To(z) — Ti(z)) [P do = % +0(1)

R™
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since the integrals over R™ converge to 0 as ¢ — oco. Note that ¢; = n [, (|[Vu|* +
Vi(z)ui)dz > 0 because 0 < mino(L;). Thus for large ¢ we find [p, |T'(2)|w Pt dz > 0
and hence we can determine s € R such that su; € N, i.e.,

e VP + V(@) da
N Jon D(@) [P+ de

p—1

Thus
fRn |Vug|> + V(x)u? d:c) 1
(fon D (@) ||+ d) 7

J[suy] :7752/ \Vu|? +V(z)u? de = 'r](
Rn

p+1

1 —1
= (cr/n+o(1)” — 1 ast — oo.

_2

(c1/m+ o(1))rT
This shows that ¢ < ¢q. Similarly, if ws is a ground state of the purely periodic problem with
coefficients V3, I'y, we can define wy(x) := wy(x + teg) with ¢ € N. Letting ¢ tend to oo, we
can see as above that ¢ < ¢. O

Next we prove that under the assumptions of Theorem [3] one has ¢; < ¢. Let u € N. Then

/ [y (z)uP™ dz > / [ (x)|u[Pt! do = / |Vul? + V(2x)u*dr > 0
R™ R™ R™

and therefore we can determine 7 € R such that Tu € Ny, i.e.,

:fRn \Vul? + Vi(z)u? dx

" fRn [y (z)[ulptt do
_Jan D@+ (Vi) — V(@) u® do
fR" [y (z)|ulptt dx
<1

since I' <T'y and V; <V in R™. Therefore

c1 < Ji[rul :777'2/ (Vul? + Vi(z)u® dz
R

gn/ |Vul? + V(2)u? do
R”
=J[u] since u € N.

Since u € N is arbitrary, we see that ¢; < ¢. Now suppose for contradiction that a minimizer
g € N of the functional J exists. Then the value 7 s.t. Tuy € N; in the above calculation is
strictly less than 1 since we may assume g > 0 almost everywhere on R™ (cf. Remark [Il and
Lemma A2) and also I' < I'y and/or V; < V on a set of nonzero measure. However, 7 < 1
implies ¢; < Jy[rug] < J[ug] = ¢, which contradicts Lemma [[4l This shows that no strong
ground state of (Z2)) can exist and the proof of Theorem [Bis thus finished. O
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We explain next the statement of Remark The distance of g; to €y diverges to oo
as j — oo and we can thus use the same argument as in the proof of Theorem [B with
u(x) == wi(x — q;),7 > 1 and with R” replaced by 2, cf. Figure 2

FIGURE 2. An example of the sequence of points g;.

3.3. Proof of Theorem [l Let us first treat the case ¢; < ¢o. Similarly to the approach of
Arcoya, Cingolani and Gamez [3] we consider uy(x) := wy(x — tey) for large t € N, i.e., we
shift the ground state w, far to the right. Recall from [17] that

(3.18) jwy ()] < Ce Ml for appropriate C, X > 0.
As in the proof of Lemma [I4] we have [, I'(z)|u,[’™ dz = ¢1/n+ o(1) > 0 for large t € N.

Therefore we can determine s € R such that su; € N, i.e.,
fRn |Vu1t|2 + V(z)u? drx

3.19 Pl —
( ) S f]R" |ut|p+1 dx

1

Next we compute (using again n = % m)

+

o V> +V d
Jsu) =ns® | [Vu|* + V(2)ui de = n (o [Veul® + V(@)u? IQ)
. (f]Rn ) [ug [Pt d:v) p—1

(o |90+ Vit o+ J, (Vole) — Vi) )
L L

(fio Da@urlr e+ f (Do) = Pue)) o dr) ™

14 B8 o [Vl Vi) da] e (Vo) = o)) da(1 +0(1)

U1 e D@ da] e (Do) = Tyl de(1 +0(1)

[un

Y
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where o(1) — 0 as t — oo. The last equality holds since both integrals over R" converge to
Oast—ooand (14+¢e)* =1+ as(l+o0(1)) as ¢ — 0. Hence, we obtain J[su] < ¢ if

(3.20) (p+1)/

RZ

(Va(z) — Vi(z))wy (x — tey)* do < 2/ (Dy(x) — Ty (z))|wi (z — tey) [P do

RZ

for sufficiently large ¢t € N. This establishes condition (Z4]). Moreover, rewriting (3:20) as
/ wi(z —ter)? ((p+1)0V (z) — 26T (z)|wi(z — ter)|P~) da < 0
R?

with 0V =V, — V] and 6I' = I'y — I’y and using the decay ([BI8]) of wy, we see that the above
condition is always satisfied for large ¢ € N provided esssup oV < 0.

The case ¢y < ¢; is symmetric to that above. One simply needs to shift a ground state
wy to the left. Hence, the proof is the same but with wq, V4,11, ¢1,t and R™ replaced by
wy, Vo, 'y, cp, —1, and R7. O

4. n DIMENSIONS: EXAMPLES

Let us state the assumptions on the coefficients once for all the examples below. Namely,
we take for V;,V5, Ty and 'y bounded functions such that (H1)-(H2) are satisfied. The
exponent p is assumed to satisfy (H3).

4.1. Proof of Theorem [Bl (Left and Right States Related by Scaling). Due to the
specific scaling of Vi, V5 and I'y, 'y the ground states wq, wy of the purely periodic problems
270 are related as follows: given a ground state wy the transformation

wi(z) = (5) & ws (kz)

v

R

produces a corresponding ground state w;. Hence, with n = % 7 we find

c1 :77/ |V |* + Vi (2)w] do
Rn

=
=n (—) k? |Vws|?(kz) + Va(kx)ws (kx) dx

8 R™
k 4
p—1
-(5) e
. nt2-p(n—2) 4 4o p 4 . .
By assumption k= »-T = kr1 < 4»=1. Then min{c;, 2} = ¢;. Now we can achieve

in Theorem M for large ¢ € N if we assume esssup, 12 (V2 — V1) < 0. In our case, where
in Theorem [ for 1 N if o (Ve — Vi) < 0. 1 h
Vi(x) = k*Vy(kz), this is ensured by assumption (Z3). O
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4.2. Proof of Theorem [6] (Large Enough Jump in I'). We start this section by a lemma,
which explains that the ground-state energy of the periodic problem Liu = T’y |ul[P~'u depends
monotonically on the coefficient I'y if essinf I';y > 0 and if we keep V; fixed. To denote the
dependence on the coefficient I'y, let us write ¢;(I'y) for the ground-state energy, wy(x; ')
for a ground-state, N;(I';) for the Nehari-manifold, and J;[u; I'y] for the energy-functional.

Lemma 15. Assume I'y > I't with essinf I'} > 0. Then
cl(Fl) S Cl(FT)

Proof. Let us select s such that swi(;I'7) € Ny(I'y), i
Jon T (@) Jwy (2 F*)|p+1dx

P =
fRn [y (2)|wy (z; TF) [pHde

Clearly, s < 1 and thus we get
ci(lh) < Jilswi(5T7);TH]

= / Vs (2: TP + Vi) (wn (2 T2

s*Ji[wi (- T7); T7]
Jiwi (5 T7); ] = e (I7).

IA

g

Now we can give the proof of Theorem By assumption we have V; > V5 almost ev-
erywhere. Once we have checked ¢;(I'1) < ¢o(I'2), then we can directly apply Theorem @l to
deduce the existence of a strong ground state. Using essinf I'y > [y and applying Lemma [I5]
with I'f = By, we get

e (T) < e1(fo) = B3 Pea(L).

w=(30)”

we obtain ¢;(I'1) < ¢3(T'y). This finishes the proof of Theorem [G O

Hence, by choosing

5. ONE DIMENSION: GENERAL EXISTENCE RESULT (PROOF OF THEOREM [7))

In the case of one dimension we introduce a spectral parameter A € R into the problem,
i.e., we consider the differential operator
2

(5.1) Lyi=—=5+V—XAon D(Ly) = H*(R) C L*(R)
and look for strong ground states of
(5.2) Lyu = T(z)ulP~'u in R.

The functions V and I' are defined via the bounded periodic functions Vi, V5, I'1, I'y as before.
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The statement of Theorem [ uses Bloch modes of the linear equation
(5.3) —u"+V(@)u=0mnR

with a l-periodic, bounded function V. We define them next. If we assume that 0 <
min a(—% + V(z)), then (53) has two linearly independent solutions (Bloch modes) of the
form

us(x) = p(z)e™™
for a suitable value k > 0 and 1-periodic, positive functions po. We use the normalization
[p]loe = 1.

We summarize next the structure of the proof of Theorem [{l According to Theorem Ml in

the case ¢; < ¢y, we have to check the condition
0 0

54)  (p+ 1)/ SV () (z — 1) dz < 2/ ST(2)wi(x — ) da for t > 1,
where 0V (z) = Vo(z) — Vi(z) and 0I'(z) = [y(z) — 'y (z). We first show in Lemma [I§] via
a comparison principle, that for 2 — oo ground states w; behaves like the Bloch mode u
of (BI). Then in Lemma [[9 we compute the asymptotic behavior of the two sides of the
inequality (5.4)) as t — oo. Since the left hand side behaves like e=2** whereas the right-hand
side behaves like e~ P*Y%t the verification of (5.4]) may be reduced to

0
/ SV (x)wy(x —t)*dx < 0 for t > 1.

In fact, Lemma provides an asymptotic formula for the left hand side of (5.4]) where
w (x —t) is replaced by the Bloch mode u_(x —t) = p_(x — t)e**~*) and, using a geometric
series, the integral over the interval (—oo,0) is replaced by a single period (—1,0). As a
result, (5.4]) is equivalent to (2.6]). This finishes the proof of part (a) of Theorem [7l

In order to prove part (b) of Theorem [0 for A < —1, we show in Lemma that
k — /A = O(1/+/]\]) and that the periodic part p_ of the Bloch mode u_ converges
uniformly to 1 as A — —oo. As a result, for A < —1 the sign of the integral in (26 is
dominated by the local behavior of Va(z) — Vi (z) near x = 0 as detailed in Lemma 23

We begin our analysis with the following version of the comparison principle.

Lemma 16. (Comparison principle) Assume that V:R > Ris bounded, 1-periodic such
that 0 < min a(—% + V(x)). Let pLe™™* be the Bloch modes for the operator —% + V(z)

SUPjo,1] P+
infio 1) p+

(a) Let u >0, u € H'(R) solve
—u" + V(x)u <0 for |z| > |z >0
for some fized o € R. If we set P := max{P., P_}, then

0 < u(z) < Perlel=lwol) max u for all x € R,

and set Py :=

where I = [—|xo|, |zo]].
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(b) Let u >0, u e HY(R) solve
—u" + V(x)u >0 for |z| > |z >0

for some fized xo € R. If we set Q) := min{P—i, P—l_}, then

u(z) > Qe rllzl=lwol) mlinu for all z € R.

Proof. The proof is elementary and may be well known. We give the details for the reader’s
convenience. Let us concentrate on the case (a) and the estimate on the interval [zg,c0)
and suppose that xo > 0. The estimate for the interval (—oo, —x¢] is similar. Due to the
assumption 0 < min a(—% + V(x)) we have the positivity of the quadratic form, i.e.,

(5.5) / O+ V(z)p?dz > 0 for all o € H'(R).
R
Let ¢ := u — suy with uy (z) = py(z)e " being a Bloch mode satisfying
d? ~
(— — + V(:c))u+ =0 on R,

dx?

and choose

KXo

e maxy u

5=
inf(o 1) p+

so that 1 (x¢) < 0. Since 1) satisfies
—Qﬁ” + V(l’)’ll) S 0 on (l’o, OO)?
testing with " := max{¢, 0} yields
/ W V) ) de = / U V() da, <0

which, after extending ¢* by 0 to all of R, together with the positivity of the quadratic form
in (50 yields ¢»* = 0. This implies the claim in case (a). In case (b) on the interval [z, 00)
one considers the function ¢ = v — su, with

KXQ

e mingy u
§i=—
SUPpo,1) P+
and shows that ¥~ = max{—1,0} = 0 similarly as above. O

For the next result note that the Wronskian

det(ufr uf ) = w,
(T

constructed from the linearly independent Bloch modes uy of (5.3)), is a constant.
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Lemma 17. Assume that V : R — R is bounded, 1-periodic such that 0 < min o(—%+f/(:p))

and let pye™™* be the Bloch modes for the operator —% +V(x). If f(z) = O(e=®1*) for
|z| = 0o with o > k and if u is a solution of

—u" +V(z)u = f(z) on R, lim u(z)=0,

|z|—o00

then

lim u(z) = l/Oo ux(s)f(s)ds.

T—+0o UL (1‘) W J_so

Proof. By the variation of constants formula for inhomogeneous problems we obtain

we) =+ ([ s i)+ L ([T e@reas) e,

where the boundary condition lim,|_,. u(x) = 0 is satisfied because u(x) — 0 as x — F00
and the integrals are bounded as functions of z € R due to the assumption f(z) = O(e~ll)
with a > k. The claim of the lemma follows since again the assumption o > x implies

| woseds

xT

ui(z) o
u+(x)—>0asx—>ooand /Oou_(s)f(s)dsu_(x)—)()asx% _

u_(x)

t

Now we can describe the behavior of ground states w; of ([2I) for i = 1 with Vj replaced
by Vi — A

Lemma 18. Assume that V; : R = R is bounded, 1-periodic and let A\ < min a(—dd—;—i—vl(x)).
If Ty : R = R is bounded and if z > 0 is a solution (not necessarily a ground state) of

P (Vi(x) = Nz =T1(x)z" in R, | llim z(z) =0,

—00

then

1 2z) = lim Ax) :l Oou s s)z(s)P ds
da2) = tim 2= = [ TGy s

where uy are the Bloch modes of —% + Vi(z) — A\
Proof. Let € > 0. Then there exists xy = z((€) such that

—2" + (Vi(z) = A =€)z <0 for |z| > |zo].
By the comparison principle of Lemma [I6 we get the estimate

2(z) < const. ||z||soe+ (120D for all € R.

Since the map A — k) is continuous, cf. Allair, Orive [I], we can choose ¢ > 0 so small that
PRase > ky. Hence the assumptions of Lemma [T with f(z) = I'y(z)z(z)P are fulfilled and
the claim follows. O
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Lemma 19. The integrals in (5.4]) have the asymptotic form

’ 2 2 (A;w1) 2 o2
/ SV (z)wi(z —t)*dx = e ( T / oV (x " dr + 0(1)) ;
p+1

a
_ et 1)t
/ ST (x)|wy (z — )P dr = e (1 = (p+1)

where o(1) — 0 as t — oo, t € N.

5F( )p—(x )p“e(pﬂ)’“dero(l)),

—1

Remark. Note that the resulting integrals on the right hand side are independent of the
nonlinear ground state.

Proof. For exponents r > 2 and a 1-periodic bounded function ¢ let us write

I - / o(2)wi (z — )" da

0
(5.6) — A ) / a(x)u_(z — )" de + E(t).
For an estimation of the error term E(t) we use Lemma [I8 Given € > 0, there exists

K = K(€) > 0 such that
lwy ()" —d_ (A wy) u_(z)"] <eu_(x)" forall z < —K,
ie.,
lwi(x —t)" —d_(Njw) u_(x—1t)"| <eu_(z—1t) forallz <0,t > K.

Hence, for t > K

0
E(t) < ellall / p_ (& — ) e dy

e*?‘lit

< ellalle o1z, .
=1

Le., E(t) =e ™ 0(1) as t — oco. Next we compute the integral for t € N

/O g(z)u_(z —t) daz—eth/ D)

—00

efT‘lit

LA / (@@ d.

1—e
This result shows that for large values of ¢ the dominating part in (5.6) is played by the

integral w.r.t. the Bloch mode, since in comparison the error term can be made arbitrarily
small. This is the claim of the lemma. U

The above computation explains why it is possible to replace the existence condition (5.4))
by (Z8). The reason is that the quadratic term on the left side of (5.4]) decays like e~ 2~
whereas the term on the right side decays like e~ TV as t — oo.
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At this stage note that by Lemma [[9 we have proved part (a) of Theorem [7l It remains
to consider part (b), i.e., to decide on the sign of

(5.7) SV (x)p_(z)*e** dx

—1

as A — —oo. First we investigate the behavior of the linear Bloch modes for A — —oco. We
begin by stating a relation between the spectral parameter and the coefficient of exponential
decay of the Bloch modes.

Lemma 20. Let k = k(\) be the coefficient of exponential decay of the Bloch modes for
—% + Vi(x) — X. Then for \ sufficiently negative we have

~IVilloo Vil
VAl <k-JPl< Willoo

K+/|A K+ /||

Proof.  We prove the estimate of the difference between x and 4/|A| via the comparison
principle. The Bloch modes us(z) = pi(x)e™* satisfy

L+ (|[Villoo = Ntz > 0 and — vl + (—||Villse — Ntz < 0.
Hence, using the comparison principle of Lemma [0 we get for A < —|| V]|l

CreVIVille=de <oy () < CpemVIMille2e g6 2 € R,

This implies

VIVillee = A > & > v/ —[[Villoo — A

from which the statement easily follows. O

Next we give a representation of the periodic part of the Bloch mode u_(z) = p_(z)e".

Lemma 21. The periodic part p_ of the Bloch mode u_ of the operator —% + Vi(z) = A
satisfies the differential equation
p” + 2kp_ + (K2 + N)p- = Vi(x)p- on [=1,0]
with periodic boundary conditions and therefore
SO, etV _(5)Vi(s) ds

o) = | 2= L[ =My, (a1 () ds | e(=rv/PDe
) = | P LY s | e

10 (n+\/m)s d x
n Joue p-(s)Vi(s) s_ 1 6(“+\/W)Sp_(s)\/1(s)ds e=r=V/ADe.

2/ (e VIN — 1) 2V Al J—1
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Proof.  Starting from the solutions e=" TV Dz, er=VINZ of the homogeneous equation
"+ 2kp" + (k2 + A)p = 0, we get via the variation of constants

(6—ﬁ VD (5)V <>ds> el v/,

Inserting the periodicity conditions p_(0) = p_(—1) and p’ (0) = p’ (—1), we obtain the
claim. ]

Now we can state the asymptotic behavior of p_ as A — —o0.

Lemma 22. As A\ - —oo, we have that p_ — 1 uniformly on [—1,0]. More precisely

lp— = 1]|ec = O (ﬁ) as A — —o0

and, wn addition,

\/W(/{—\/W)—%/jvl(s)ds:O(ﬁ> as X — —o0.

Proof. First one checks by a direct computation using Lemma 2] that ||p’ ||« = O(1/+/|A])
as A\ — —oo. Hence, by the normalization ||p_||.c = 1 and by continuity of p_ we have
p—(&\) = 1 for some &, € [—1,0]. By the mean value theorem

[p— () = 1 < [P llocle = & = O(1/V/IA])

as A — —oo uniformly for x € [—1,0]. This proves the first part of the lemma. For the
second part one first finds again by direct estimates from Lemma 20 and Lemma 2]

_f VN (s)i(s)ds
(5.8) p—(z) = |)\|( 7@_1) e +O(\/|T)

s)ds
‘f P- +0 <L) ,
|/\|(f€ Y |)\|) VPl
where we have used that e¢~VIDG=2) — 1 ¢ O(1/+4/|A]) uniformly in s,z € [—1,0]. Next

we observe by Lemma 20 that /|A|(k — 4/|}\|) is bounded in absolute value by ||V}]|s, and
hence has accumulation points as A\ — —oo. Every accumulation point d satisfies

1 0

1= 2 | Vl(s) ds.
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If we set v, := LLW\/S)TT; then vy — 1 = O(1/+/|\|) by (£.8) and thus

IAI(
VIN(E — VTN = ;/lws)moa/m),

which is the second claim of the lemma. U
Finally, we can determine the behavior of the integral in (&.7).

Lemma 23. Let Vi, V5 be bounded and 1-periodic and 0V := Vo — Vi. If there exists € > 0
such that 0V is continuous and negative in [—e,0), then for sufficiently negative A

0
SV (x)p_(z)*e** dx < 0.

—1

Proof. Since 0V is continuous and negative on [—¢, 0), there exist v > 0 such that §V (z) <
—a for x € [—¢,—¢/2]. Using that p_(z)*> — 1= O(1/+/|)\)]), we estimate

/_0 SV (2)p_(x)*e** dx

1

—&/2 —e/2
< / oV (x) 2"“dx+/ 5V (z)(p-(z)* — 1) dx

1
—&/2

78/2 1
S/ SV ()62 oy — / deHMVHwO(\/—W)/l Q2w g

[0Vllse e @, e I
2ke __ KE _ o 2KE SV Oo()
e (e )+ 1V10 (7

e*liE

IN

672115

- = <||5V||oo+oz—oze + V10 (

L))
VIAl
which is negative for A < —1 because k — 00 as A — —oo. This proves the claim. O

With this the proof of Theorem [1is complete.

6. ONE DIMENSION: EXAMPLES AND HEURISTICS

6.1. A Dislocation Interface Example. As a particular example of a one-dimensional
interface we consider so-called dislocated potentials, i.e., if Vg, 'y are bounded 1-periodic
functions, then we set

- Volx +71), >0, B Lo(z+7), >0,
V<x>_{VO(x—T), x <0, r( )—{FO(ZL‘—T), x <0,

where 7 € R is the dislocation parameter. We consider problem (5.2)) and analogously to
the notation in (1)) we define Ly; := —% +Volx +7) — A, Lyo = —% + Volx — 1) — A,
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['(z) :=To(xz + 1), and I'y(x) := T'o(x — 7). Note that ¢; = ¢y in this case. The following is
then a direct corollary of Theorem [ and Remark [3l

Corollary 24. Assume that Vy, Ty are bounded 1-periodic functions on the real line with
esssup ['g > 0. Assume moreover that 0 < mino(Ly) and 1 < p < oo.
(a) Problem (52) in the dislocation case with T € R has a strong ground state provided

(6.1) /0 (Vo(x —7)—Volz + T))p_(l‘ +7)2e* dr < 0

-1
or

(6.2) /01 <V0(:1: +7)—Vo(z — T)>p+(:c —7)%e " dy < 0,

where py (x)e™* with kK > 0 are the Bloch modes of the operator —% + Vo(z) — .
(b) For A < 0 sufficiently negative at least one of the conditions (6.1), (6.2) is fulfilled
provided Vy is a C*-potential and

(6.3) Vo(=7) # Vo(T) or  Vo(=7) =Vo(r) and Vi(—7) > Vi(7).
For || sufficiently small the above condition ([6.3)) on Vo is fulfilled if
(6.4) V5 (0) #0 or V5(0) =0 and sign7 V;'(0) < 0,

where for the second part of the condition one needs to assume that Vy is twice differ-
entiable at 0.

Remarks. (1) The case where Vj(0) = 0 and sign7V}’(0) > 0 is not covered by the above
theorem. We believe that for this case strong ground states do not exist.
(2) One can also consider the dislocation problem with two parameters, i.e,

Vox+7), x>0, Lol +0), x>0,
V():{VO(JT—T), x <0, ():{Fo(x—a), <0

where 7,0 € R are the dislocation parameters. If V;, 'y are even, bounded 1-periodic
functions and if w; is a ground state for Ly jw; = T'y(z)|w|P" 1wy in R, then wq(x) := w;(—x)
is a ground state for the problem L) owy; = [a(x)|wa|P"twy in R. One then easily sees that
again we have ¢; = Czﬁ. The result of Corollary 24] (a) immediately applies. For the result of
Corollary 24] (b) one only needs to take the second parts of (€3], (6.4]) into account.

Proof of Corollary[24): In the dislocation case the unperturbed energy levels of ground states
satisfy ¢; = ¢o and thus both versions of Theorem [7] are available. If u_(x) = p_(x)e" is the

Bloch mode decaying at —oo of —% 4+ Vo(x) — A, then p_(z + 7)e®®*+7) is the corresponding
Bloch mode of the operator L) ;. Therefore, condition (2.6]) of Theorem [1l amounts to

0
62/47/ (VO(SU —7) = Vilz + T))p,(:c +7)2e* dx < 0,

-1

2Note that the A-dependence of ¢; = ¢ has been dropped.
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which is equivalent to (6.1) of the Corollary 24l Likewise (2.7) amounts to Vo(—7) < Vo(7)
or Vo(—7) = Vo(7r) and Vj(—7) > Vj (7). If we apply the version of Theorem [ given in
Remark B], then we get ([62]) instead of (1)) and Vo(7) < Vo(—7) or Vo(—7) = Vy(7) and
Vy(—=7) > V(7). This explains ([6.1)), ([6.2) as well as (6.3). The final condition (6.4 follows

via Taylor-expansion
Vo(7) = Vo(=7) = 27V5(0) + o(7), V(1) = Vo(=7) = 27V('(0) + o(7)
from (6.3)). O

6.2. A Heuristic Explanation of Theorem [T[(b) and Corollary 24|(b) for \ Suffi-
ciently Negative. We provide next a heuristic explanation of the existence results in the
1D interface problem for A < —1 in Theorem [7[(b) and thus Corollary 241 (b). In the following
we show how to quickly find a function in N with energy smaller than ¢;(< ¢3) so that the
criterion of Theorem [ for the existence of ground states is satisfied.

We restrict the discussion to the case I'y = I'y. The heuristic part of the analysis is the use
of the ‘common wisdomT] that as A — —oc each ground state of the purely periodic problem

—u" +Vi(x)u = y(2)|ul/f uin R

is highly localized and concentrates near a point xo(\). We assume xo(\) — zf € (0, 1] as
A — —oo and that zf is a point, where V; assumes its minimum. Moreover, we assume below
that even at a small distance (e.g. one half period of V;) from the concentration point the
ground state decays exponentially fast with increasing distance from .

Consider a ground state wy(z; A). The function sw; lies in N if

- ffooo w'12 + (V(z) — Nwidx
n f_oooo [(x)|w; [PHdz

Because I'y = I'; and w; € Ny, the denominator equals ffooo Ty (z)|w[PHde = f_oooo w{z +

(Vi(z) — Nwidz. Therefore
1 — Jo wi® + (Vi(z) = Nwide + ffoo w? + (Va(z) — Nwidz
- T wi? + (Valz) - Nwida -

Due to the concentration of wy near zf; > 0 as A — —oo and its fast decay as |x — x| grows,
we see that s < 1 if Va(x) < Vi(x) in a left neighborhood of 0.
Finally,

Jlsw] = / 2 (w4 (V(x) = Mud) — ZD (o)
2 (1 1 - 12 2
=5 (4 m)/ Wi+ (V(w) — Nwide
0

= |t + (3= 54) [ 0460 - Vi)t

—00

3In [12] this common wisdom has been proved under similar, but not identical assumptions.
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where the second equality follows from sw; € N. We get J[swy] < Jijwi] = ¢; if Va(z) <
Vi(z) in a left neighborhood of 0, see Figure B for a sketch. Note that this calculation does
not, however, imply that the function sw; is a ground state of the interface problem (G5.2I)
(with Ty = T).

Swq

VQ Vl

FIGURE 3. An example of a function in N attaining smaller energy than ¢;(<
¢y) for the 1D interface problem (5.2]). Heuristically, the ground state existence
conditions of Theorem [2] are thus satisfied.

In the dislocation case, i.e., Corollary (b), where ¢; = ¢y, the discussion applies
analogously if we restrict attention to the case I' = I'y = const. We denote again zj; =

limy_, o 2o(\) as the point of concentration of a ground state of the purely periodic prob-
lem, which now may be any point (left or right of zero) where 1} attains its global minimum.
Thus J[swq] < ¢1 = ¢y is satisfied if Vy(x—7) < Vo(z+7) for x in a left neighborhood of 0 and
if we take zf > 0. Likewise, in the case where Vo(x —7) > Vo(z+7) for x in a right neighbor-
hood of 0 we may take x; < 0. The three possible scenarios, namely V;(0) # 0, V;(0) = 0 and
Vo having a local minimum at z = 0, and finally V{(0) = 0 and V; having a local maximum at
x = 0 are depicted schematically in Figure [dl The full green lines in the columns 7 > 0 and
7 < 0 depict functions sw; € N with energy smaller than ¢; = ¢,. As the above calculations
show, the candidate positioned the closest to = 0 produces the smallest energy and has the
smallest s. It is therefore plotted with the smallest amplitude.

Finally, we mention that in the dislocation case with two dislocation parameters 7, o (cf.
Remark 2 after Corollary 24]) the above considerations apply if Vi, 'y are even potentials and
if we set 0 = 0 so that I';(z) = I'g(x) = T's(x). In this setting only cases (b) and (c) of
Figure @ apply.

7. DiscussioN, OPEN PROBLEMS

The above analysis describes the existence of ground state surface gap solitons of (L)
in the case of two materials meeting at the interface described by the hyperplane z; = 0.
It would be of interest to generalize this analysis to curved interfaces as well as to several
intersecting interfaces with more than two materials.

Besides looking for strong ground states, i.e. global minimizers of the energy J within the
Nehari manifold /V, one can also pose the question of existence of bound states, i.e. general
critical points of J in H'(R"), including possibly ground states, i.e. minimizers of J within
the set of nontrivial H! solutions. The existence of such more general solutions is not covered
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T=0 T>0 T<0

T>0 T<0

T>0 T<0

FIGURE 4. Cases (a), (b) and (c) correspond to Vy € C' with V;(0) # 0, V;
having a local minimum and Vj having a local maximum at z = 0, respectively.
In the column 7 = 0 the ground states are plotted in black. In the columns
7 # 0 the green full and red dashed curves are functions sw; € N with energy
smaller and larger than ¢; = ¢y respectively.

by our results. It is also unclear whether the ground states found in the current paper are
unique (up to multiplication with —1 and translation by Trex for kK = 2,...,n) and what their
qualitative properties are. In particular, it would be interesting to determine the location
where the above ground states are ‘concentrated’. Although their existence is shown using
candidate functions shifted along the x;-axis to 400 or —oo, we conjecture that the ground
states are concentrated near the interface at z; = 0.

The conditions of our non-existence result in Theorem [3] and Remark 2] agree with the
set-up of several optics experiments as well as numerical computations in the literature if
one neglects the fact that the periodic structures used in these are finite. In [25] the authors
consider an interface of a homogeneous dielectric medium with €, = o > 0 and a photonic
crystal with €, = a4+ Q(z),Q > 0 and provide numerics and experiments for surface gap
solitons (SGSs) in the semi-infinite gap of the spectrum. The nonlinearity is cubic (p = 3)
and I" = const. The observed SGSs cannot be modelled as strong ground states of ([22]) due
to the ordering of V4, V5 and I'y, I's, which enables the application of Theorem [Bl They could,
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possibly, be strong ground states if the structure was modelled as a finite block of a photonic
crystal with e, = a + Q(z),Q > 0 embedded in an infinite dielectric with €, = a but this
situation is outside the reach of our model.

A similar situation arises in [24], which studies the interface of two cubically nonlinear
photonic crystals with I'y = I'y and either V; > V5 or V} < V5, with a strict inequality on
a set of nonzero measure. Likewise, in the computations of [4.[6], where ([2.2) is considered
in 1D with V; = V5 and I'1, T’y = const., I’y # 'y, the SGSs computed in the semi-infinite
spectral gap cannot correspond to strong ground states of ([2.2]). The findings of [416]24]25]
show that despite the absence of strong ground states bound states may still exist.

APPENDIX

Lemma Al. Let V € L* and L = —A + V(x) such that 0 € o(L). If 1 < q¢ < oo then
L=t LY(R™) — W29(R"™) is a bounded linear operator.

Proof. Since the spectrum of L is stable in L4(R™) with respect to ¢ € [1,00], cf. Hempel,
Voigt [§], we have for all v € D(L) C LY(R") that |[u|ramr) < C||Lu||Lamn). We need to
check that D(L) = W29(R"). Here we restrict to 1 < ¢ < oco. Note that since V € L*, for
u € D(L) we have that Lu, Vu and hence —Awu all belong to LI(R™). Therefore

—Au+u=(1—-V)u+ Lu
and with the help of the Green function G_a 1 we find
u=G ap1 % ((1=V)u+ Lu).

By the mapping properties of the Green function (cf. mapping properties of Bessel potentials,
Stein [21]), it follows that u € W%4(R") and

lullweagny < C(I1(1 = V)ull o) + Ll pagny) < Cll L]l agzn.
Since trivially W24(R") C D(L), the proof is done. O

Lemma A2. Let V.I' € L™ and let L = —A + V(x) be such that 0 < mino(L). If
1 <p < 2*—1, then every strong ground state uy of (1) is either positive in R™ or negative
in R™.

Sketch of proof. Let uy be a strong ground state. Then @y := |ug| is also a strong ground
state and uy Z 0. Due to the subcritical growth of the nonlinearity we have that locally
is a Ch-function. If we define Z = {x € R" : 4y(x) = 0}, then Z¢ = R™\ Z is open and
Vg = 0 on Z. If we assume that Z is nonempty, then there exists an open ball B C Z¢
such that 9B N Z # (). This contradicts Hopf’s maximum principle. Thus %y > 0 in R" and
therefore either ug > 0 in R™ or ug < 0 in R™. O
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