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1 Introduction

In [3] the Sims extension of the Titchmarsh-Weyl limit-point/limit-circle classification of Sturm-
Liouville differential equations to the case of a complex potential, was further extended to the
equation

Mly] = —(py")' + qy = wy (1. 1)

on an interval [a,b), —00 < @ < b < oo. The novelty in [3] was that the coefficient p as well as ¢
was allowed to be complex-valued, and ¢ allowed to be less restricted than was the case in [11];
in [11] p = w = 1 and the imaginary part of ¢ is assumed to be semibounded. A consequence of
investigating the problem in this more general context was that interesting features which were
hidden in Sims’ case were exposed. Specifically, the three classes of Sims now involve a Sobolev-
type norm and the region in the complex plane appropriate to the theory was shown to be the
complement of a closed convex set () which contains the spectrum of the natural m-accretive
operator defined by the problem. Birger and Kalyabin ([2]) considered a system of equations of
the form 1. 1, with p = w =1 and 3[e"q(x)] < —k < 0 and established the existence of the first
of Sims’ cases involving a Sobolev-type norm when |n| = 7/2 .



Our objective in this paper is the extension of the theory in [3] to Hamiltonian systems
Jy'(z,A) = (A(z) + B(x))y(z, A) (1. 2)

on an interval [a,b), where, for each z € [a,b), J, A(z), B(x) are complex 2n X 2n matrices with
—J? = I,,,the identity 2n X 2n matrix, A(z) > 0 and B(z) may be a non-Hermitian matrix. This
will include results for scalar equations of arbitrary order with complex coefficients; a special case
is therefore the Orr-Sommerfeld equation for fluid flow. Our approach owes much to the work of
Atkinson [1], Hinton and Shaw, [5], [6] and Krall [8] on the extension of the Everitt-Kodaira theory
for general even-ordered scalar differential equations with real coefficients to Hamiltonian systems
with symmetric coefficients. The first major challenge was to determine a natural analogue of
the set @ in [3] on whose complement the Titchmarsh-Weyl-type analysis is composed. In this
case the complement is the union of sets A(k,Us,), over a set of admissible pairs (k,Us,) of
complex numbers k£ and 2n x 2n matrices Uy,. These sets turn out to be open half-planes in the
Sturm Liouville case but in general there is no reason to suppose that they are either open or
convex. For each A € A(k,Us,), a nested sequence of bounded convex sets of n x n matrices is
exhibited which converges to a limiting set D,()), the analogue of the limiting Weyl circle. The
nature of D,()\) is what determines the number of linearly independent solutions of (1. 1) lying
in a weighted space L7, , where, for each z € [a,b),Cx(z) is an n X n matrix bounded below
by a constant multiple of Us, A(z)Us,,. The space L%A incorporates the Sobolev-type norm in the
Sturm-Liouville case(and indeed, in the problem for general scalar equations ), and the analogue of
the Sims -Weyl classification of (1. 1) is expressed in terms of it. The analogue of the Titchmarsh-
Weyl M (\)-matrix is an element of the limiting set Dy(\), and, for each fixed p € A(k,Us,) and
My € Dy(p), a matrix-valued function M exists on A(k,Us,) which is equal to My when A = p.
On making a mild assumption to guarantee that A(k,Us,) is open, this function M is shown to
be analytic on A(k,Us,). Moreover, it is proved that the number of L% (a, b)- solutions of (1. 1) is
constant on each connected component of C\ @, and when there are precisely n L? (a, b)-solutions
in a connected component A., M is analytic on A.. Of course, these last properties are well-known
in the Sturm-Liouville (and general scalar equation) cases and their proofs follow readily from the
Weyl analysis. However, here we are forced to follow a circuitous route via the spectral properties
of a natural operator defined by our problem. This is proceeding in the reverse direction to that
for the Sturm-Liouville case when the analytic properties of M serve to describe the spectral
properties of an associated m-accretive operator.
There is an analogous theory for the formal adjoint of (1. 2), namely

JZ' (2, ) = (AA(z) + B*(x))2(z, ). (1. 3)

For A € A(k,Uz,) N A(k,Us"), where A(k,Us,) is an analogue of A(k,Uy,) for (1. 3), the limiting
set Dy(A) for (1. 3) is the adjoint of D,()), and intimate connections exist between quantities
associated with the Weyl-Sims-type classifications of (1. 2) and (1. 3) as outlined for (1. 2) in the

previous paragraph. The natural operator defined by the problem for (1. 3) is the adjoint of that
for (1. 2).



We shall use the following notation throughout. The set of m x n matrices will be denoted by
C™" with C™! written as C™. A superscript 7" will stand for the transpose of a vector or matrix
and * the conjugate transform. We write < -,- >, |- | for the standard inner product and norm on
C", namely,

<u,v>=v'u,  |ul =< u,u>Y?.

For M € C™" we take for its norm ||M|| the largest eigenvalue of (M*M)'/?, and define its real
and imaginary parts as Re[M] = 3(M + M*),Im[M] = 5-(M — M*). Furthermore, recall that
M >0if uwMu >0 for allu € C* and M > 0 if M > 0 and Mu = 0 implies v = 0, and hence
M™! exists. The weighted function space L%(a,b) consists of C"-valued functions (or, rather,
equivalence classes - see section 4 below) with inner product

(u,v)4 :z/ v(x)*A(z)u(z)ds

and norm ||ul|4 :== (u, u)zﬂ.

2 Preliminaries
We are concerned with the Hamiltonian system
Ty (x,3) = (\A(z) + B(x)) y(z, A) (2. 1)

where, for each = € [a,b), A(z), B(x) € C?™2" the set of complex 2n x 2n matrices, A € C and

J— ( b —Of) (2. 2)

where 0, I, are the zero and unit matrices respectively in C™". We always assume that
(i) A(z) >0 for a.e. x € [a,b)
(ii) (2. 1) is regular at the end-point a of [a, b), but may be singular at b.

We mean by the term regular that there exists a unique solution of (2. 1) which satisfies a
prescribed initial condition

Z/(a) = (Cl,---,@n)T-

If A(-) and B(-) are locally integrable on [a, b) then the regularity is guaranteed.
Let y,z € ACY[a, b), the set of 2n x 1 vector functions with absolutely continuous components
on [a,b). Then
2Ty — (J2)y = (2% Jy) (2. 3)



and, for X, Y € [a,b), this yields the Green’s formula

Y
/ {z*Jy —(Jz )*y} dz = (2*Jy)(Y) — (" Jy)(X). (2. 4)
X
If we denote the standard Euclidean inner product on C2® by < -,- > and set
[y, 2](2) = 2*(x) Jy(x) (2. 9)
then (2. 4) can be written as
Y ! !
[ A< wie > = <ugs > o= AY) - nA) 2. 6)
X

which will aid transparency when the underlying operator theory is discussed later.
Let 6(-,\), #(-, A) be the solutions of (2. 1) which satisfy

a1 —p2
O(a,\) = , JA) = 2.7
@=(2). sawn=-( ) .7
where «;, 5; € C™", 1 = 1,2, and suppose that,
(iii)
2 2
Y ajai =) BiBi=1,, (2. 8)
i=1 i=1
(iv)
1Py = apf. (2. 9)

The C?™2"_valued function Y = (0 | @) is then a fundamental matrix for (2. 1) satisfying

Y(a,\)=E = ( o = ) . (2. 10)

67 51

Note that (2. 8), (2. 9) are equivalent to E being unitary. Let n(-, A), x(-, ) be the solutions of
the adjoint problem

JZ () = (M(z) + B*(z)) 2(z,\), x € [a,b) (2. 11)
which satisfy
wan= (). dan=( ) . 12)
Ba a1
Then Z = (n | x) is a fundamental matrix for (2. 11) satisfying
Z(a\) = B = ( b —as ) (2. 13)
P2
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In fact, £ = —J(E~')*J and
Z=-JY H*J. (2. 14)
This follows from the uniqueness theorem for initial value problems, since the right-hand side of

(2. 14) can be shown to be a solution matrix of (2. 11).
It follows that

Z*JY = —JY LY = J. (2. 15)
Thus 0
N _( nJ8 n*Je _
(Z7JY)(z) = ( ST ) (z)=J (2. 16)

or, in the notation (2. 5)

(o o )= (& o) v

Throughout the paper, we exhibit dependence on A only when necessary.

3 Weyl-Sims type analysis

The definition of our Weyl-Sims sets will be motivated by that for the Weyl circles in [8, section
4] modified for our non-self-adjoint problem in a way which recovers the description in [3] for the
Sturm-Liouville case.

We choose U, Hi, H, € C™" such that H; and H, are Hermitian, and define

. -U H;
uQn - ( —H2 U* ) ’ (3 ]‘)
so that
Unn = (UonJ)". (3. 2)

We assume moreover that U, H,, Hy are chosen such that
Uy, J has exactly n positive and exactly n negative eigenvalues (3. 3)

which is true, e.g., if H; = H, = 0 and U is invertible, or if H; < 0, H, > 0 and U = 0.
It follows that, with Y a C?™2"_valued column-wise solution of (2. 1),

X
YU JY X = / (VU JY) dt

aX 7 '

N / (YUY + [V U Ty'Y')'} do
a x ’

= 9 / Re [Y Uy, JY | dz
aX X

= 9 / Re [V Uspn(A(2) + B(z))Y]dz = 2 / Y OYde (3. 4)
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where
Ci(z) := Re[lap (AA(z) + B(z))]. (3. 5)

The integral (3. 4) at X = b plays the role of the modified Dirichlet integral and is the analogue
of [3, (2.25)]; see Example 3.2 below. We define (k,Us,) € C x C?2" to be an admissible pair if
(3. 1)-(3. 3) hold and, for all z € [a,b),

Cr(z) = Re[lon (kA(x) + B(2))] > 0 (3. 6)
and for any admissible pair (k,Us,) we define

A(k,Usy,) :={) € C : for some 6 > 0, Re [(A — k)Usn A(2)] > 0Usp A(x)Us,, for all z € [a,b)}
(3. 7)
and suppose that

Q= C\|JA(k,Us) # C (3. 8)

where the union is over the set S of admissible pairs (k,Us,). In particular (3. 6), (3. 7), and
A > 0 imply

Ci(z) > 0forall z € [a,b), A € A(k,Ua,), (k,Usp) € S. (3. 9)
Let Y = (0 | ¢) in (3. 4) and set (see (3. 2))
. S T
Y Upn JY =: 2 ( T P ) . (3. 10)

Then, with ¢ = ( ﬁl ), where ¢1, ¢ are respectively the C™™-valued functions consisting of the
2

first and last n—components, and 61, 6, similarly defined for 6 = ( 0 >, we have

1
02

S(.X) = ReloiUth)(x) + 5 (01H:0: + 03Hobr)(0),
T(r,X) = L{6USs + 05061 + 01 iy + 63 o} (o),
Pz, N) = RelgiU(x) + 5 (61 Hion + 63Hago) (o). (3. 11)

We shall require U, Hy, Ho, and the initial values (1, 32 in (2. 7) to be such that

1
P(a) = —Re (B;Up1) + 5 (83 Hi o + B1 Hof51) > 0. (3. 12)
This generates the subset

So = {(k,Us,) € S : (3.12) is satisfied } (3. 13)
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which is the analogue of the set S(«) in [3, (2.6) and (2.7)]. In addition to (3. 9), (3. 12) we
require the following definiteness condition to hold for (k,Us,) € S, and A € A(k,Usy,): for ¢ € C,

[P(a)¢ =0 and (Cy¢)(z)¢ =0 for a.e. x € [a,b)] = ( = 0. (3. 14)
We will show in Lemma 3.5 below that this implies P(X) > 0 for X sufficiently large.

Remark 3.1 1. Since (3. 6), (3. 7) imply C\(x) > Uy A(x)Us, > 0 for all z € |a,b),
A € Ak, Usp,), (k,Usp) € S, the condition (Crg)(z)( = 0 in the premise of (3. 14) may be
replaced by

A(z)Us, ¢(z)¢ = 0. (3. 15)

2. It is an interesting observation that, for ¢ € C™ satisfying (Cx¢)(x) =0, z(x) := Uy, d(x)C
solves the adjoint problem (2. 11), since

(A + B U3, ¢¢ = —Uny (A + B)¢C = —Up J¢' ¢ = = (Usn )¢ ¢ = JU3, 6 C.
The Weyl-Sims sets for (2. 1) are defined by
Dx(A) :={l € C™ : [(0 + ¢1)* UsnJ) (0 + 61)](X) < 0}. (3. 16)
Note that, by (3. 10),
[(0 4 @) Usnd) (6 + ¢1)](X) = 2 [I* P(X)l + T(X)l + I*T*(X) + S(X)]. (3. 17)

For X sufficiently large (such that P(X) > 0, in view of Lemma 3.5 below), we use the notation

C(X,\) :== —(P'T*)(X,)), R(X,\) := (TP 'T*-5)(X,N\), (3. 18)
in which case
[(0 4 ¢1)" (Uan T) (6 + ¢)](X) = 2[(l = C)"(X)P(X)(l - C)(X) — R(X)]. (3. 19)
Thus,
Dx(\) = {leC™:(I-C(X,\))*P(X,\)(I—-C(X,)) <R(X,\)} (3. 20)
= {leC™:[—C(X,\) =P Y2(X,\NVRV2(X,))
for some V € C™", V*V < I,} (3. 21)

is some kind of generalised (Weyl) circle; note that R(X,A) > 0 will be shown in Lemma 3.5
below.



Example 3.2 We now consider the case n = 1, and make the choice

u2:<_0“ 2) (3. 22)

for some nonzero u € C, which clearly satisfies the assumption (3. 3). Note that (3. 12) here
means

Re(uBif,) < 0.

Q(ﬁ« fv>=(9\¢>*(§ 3)(0\@,

so that when P(x) > 0 by a straightforward calculation,

Equation (3. 10) gives

[u P W

P = Re(“¢;1¢2), R = AP

1 _ _
; C= _ﬁ(uqsleQ + ﬂ01¢2)a

with W = 01¢2 — 02¢1. Thus (3 20) 18

Dx(\) = {z €eC:I-C(X)|<r(X) = %}

As a special case, we consider the second-order scalar Sturm-Liouville problem
—(pv')" +qu = Awv on [a,b), (3. 23)

where p, q are complez valued functions, p # 0 a.e. on [a,b) and %, q € Lj,.[a,b), andw € L, [a,b)
is positive throughout [a,b). The equation (3. 23), interpreted in the quasi-derivative sense, can

be written in the form (2. 1) with

() (30 (2)

Choosing u = €™ (for some n € R) in (8. 22), we easily obtain

Rele” (g — \w)(x 0
Cx(x):< 7(a =)o) #Re[emp(x)])

Ip(z)[?

(3. 24)

so that (for our special choice of Us)
(k,Uy) € S & {Rele(q — kw)(x)] > 0 and Rele”p(z)] > 0 for all z € [a, b)}
a condition which is equivalent to (2. 3) in [3]. Moreover, for (k,n) such that (k,Us) € S,

A(k,Us) = {\ € C: Re[(A — k)e"] < 0}, (3. 25)

8



which corresponds to (2.4) in [3].

To show that the definiteness condition (3. 14) is always satisfied in this example, let ( €
C", y(z) := ¢(z)¢, and Cy(x)y(x) = 0 for a.e. x € [a,b). This implies y; = 0 by (3. 24), since
Re [¢"(q — Aw)(z)] > 0 (for all z € [a,b)) if X € A(k,Us), (k,Us) € S. Since y is of the form
(v, pv )7, y1 = 0 implies y = 0, and thus, = 0.

Example 3.3 Here, we consider the fourth order scalar problem

(p2v") = (mv) + pov = Aww (3. 26)

where po, p1,p2 are complez-valued functions, p; # 0 a.e. on (a,b), and w € L2 [a,b) is positive

throughout [a,b). We introduce the vector y = (v, v, vB v2)T of quasi-derivatives defined by
ol =o' o = por” 0B = — (B 4 pro.

In this notation, (8. 26), interpreted in the quasi-derivative sense, can be written in the form (2.
1) where

w —Po

A= B = —P1

with all remaining entries being zero. Choosing, for some n € R,

L —ei"lg 02
u4 Ca < 02 efinl2 ) ’

we obtain, by straightforward calculations,

1

Ci(z) = diag (Re[em(po — w)(z)], Rele""p:(2)], 0, [ pa(z) 2

Refe"()] )
Consequently, for this choice of Uy,
(k,U,) € S & Rele(py — kw)(x)] > 0, Re[e”p,(x)] > 0, and Re[e"py(x)] > 0 for all z € (a, b),

and, for (k,U,) € S,
A(k,Us) = {A € C:Re[(A—k)e"] <0} .

By a similar argument as in Example 3.2, we see that the definiteness condition (3. 14) holds.

Example 3.4 The Orr-Sommerfeld equation

(=D? + a®)?u+ iaR[V(=D* + a®>)u+ V' u] = \(=D* 4+ d®)u, D= — (3. 27)



posed on an interval I C R, is one of the governing equations of (linearised) hydrodynamic stability.
It 1s strongly related to the stable or unstable reaction of a flow, perpendicular to I, with given
real-valued flow profile V € C*(I) and Reynolds number R > 0, to a single mode perturbation with
wave number a > 0, (see, e.g., [9, 10]). Introducing the variables

= _U'” + U,QU, Y2 =1u, Ys = (—’U,” + a'zu)’a Ya = U'Ia
we find that (3. 27) is equivalent to the Hamiltonian system (2. 1) with
—a? —iaRV —iaRV"
02

A = ; B = 1 _a'2 )
02 12

all remaining entries of A being zero. Choosing the same matriz Uy (depending on a real parameter
n) as in the previous example, we calculate

a’cosn — aRV sinn — Re(Ae™) 1(aRV"iem — =)
C, = —%(aRV"z’e‘m + €M) a?cosn
05 (cosn) Iy

02

for the matriz defined in (3. 5). Consequently,

cosn >0 and

Re(A\e™) < a2 cosn — aRV (z) sinny — LBV (m)ii;rigiv (z) sin(2n)

(3. 28)

and Cx(x) > 0 if the last inequality in (3. 28) is strict. Therefore, (k,Uy) € S if and only if the
right-hand side of (3. 28) holds with k in place of A\, for all x € I. Moreover, for such k and 7,
A(k,Uy) is again the same as in the previous example. In particular, by (3. 28) and the remark
thereafter, Cx(x) > 0 (z € I) for A € A(k,Us), (k,Us) € S, so that the definiteness condition (3.
14) is satisfied.

Lemma 3.5 Let A\ € A(k,Usp) for some (k,Us,) € So. Then, some Xo = Xo(\) € [a,b) exists
such that

(i) P(X, ) is non-decreasing in X, P(X,\) >0, and, for X > X,, P(X,)\) >0,
(ii) Dx()\) ?é (Z) fO’f' X Z X(),

(iii) for X > Xy, R(X, A) is non-increasing in X, and R(X,\) > 0.

Ul

Proof
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(i) From (3. 4) and (3. 10)

S T N AN A NN
(2 7)0=[ (509 ses ) (5. 29

and hence, by (3. 12) and (3. 9),

P(X) = P(a) + / Y oo (3. 30)

is positive semi-definite and non-decreasing. To prove that P(X) > 0 for X sufficiently large,
assume, on the contrary, that there exist sequences (X,,) — b and ((,) in C*, (}(n =1,
such that

i P(Xin)Gm =0 for allm € N. (3. 31)

We can extract a subsequence ((p;) such that
Cm; — G, as j — 00, (3. 32)

for some ¢ € C", (*¢ = 1. Since P is positive semi-definite and non-decreasing, (3. 31)
implies
Gy P(X)Cm; = 0 for all j € N and X € [a, X, ],

whence (3. 32) yields
("P(X)¢=0for all X € [a,b).

Thus, using (3. 30) and (3. 9), (3. 12), we obtain
¢*P(a)¢ =0, ("(¢"Cro)(x)¢ = 0for a.e. z € [a,b).

Therefore, on using (3. 9), (3. 12), and (3. 14) we arrive at the contradiction ¢ = 0.

(ii) Let X > X,. In view of (3. 3) and (3. 10), n eigenvalues of ( IL?* g ) (X) are negative .
Let the columns of ( ?Eﬁ; € C?™" be corresponding orthonormal eigenvectors. Then,
=9
- .| = . S T =X
Eor im0 (& ) o (25)) <o 5. 33)

Now, assume that some nontrivial ( € C™ exists such that =;(X){ = 0. Then, Z5(X){ # 0

since ( EIE§; ) has rank n, whence (i) yields

Z2
CE(X)*P(X)Z5(X)C > 0.
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On the other hand, the opposite inequality is obtained by multiplication of (3. 33) by (*
and ¢ from the left and the right, respectively. This contradiction implies that =;(X) is
invertible.

On multiplying (3. 33) by (£;(X) !)* and Z;(X) ! from the left and the right, respectively,

we obtain (]Ml*)(i?* ]1;)(X)<Iln>§0

for [ := (2,27 )(X). Thus, I € Dx()\) by (3. 10) and (3. 16).

(iii) On using (3. 18) and (3. 29), we obtain, for X > X,

g

!

R = TP 'T*+TP Y T*) -TP'PP'T* -8
= 0*Cr¢P 'T* + TP '¢*C\0 — TP '¢*Cr¢P'T* — 6*C\0
= —(0+¢C)"Cx(0 + ¢C).

It follows from (3. 9) that R'(X) < 0, and consequently R(X) is non-increasing in X.
Moreover, R(X) > 0 by (3. 20) and parts (i) and(ii) of the lemma. To prove that R(X) > 0,

observe that ( 5 T ) (X) is invertible by (3. 3) and (3. 10). Then, with ( Ji € C2nm

™ P
formed by the first n columns of its inverse,

(2 2)(7)=(a) o 50

This implies f = —P~'T™e and, by (3. 18),
Re = —1I,, (3. 35)

so that R is invertible, whence R > 0 (since R > 0).

Theorem 3.6 Let A € A(k,Usy,) for some (k,Usp) € S,. Then, with Xy from Lemma 3.5,

(i) X >Y = Dx() C Dy(N),

(i) X >Y = Dx(\) = C(X,)) C Dy(\) — C(V; \),

(iii) Dx () is compact and convez for all X € [Xo,b),

(iv) Cp(A) :=limx_ C(X, ) exists,

12



v)
[ [Dx() —C(X, 0] = Dy(3) = GV, (3. 36)

X€[Xo,b)
where Dy(A) == Nxepxyp Px(A),

(vi) Co(A) € Dy(N).
Proof

(i) We have for every [ € C™™ by (3. 4), after multiplying by (7, | {*) on the left and < Il" ) on

the right,

(0 + G1)* Usn) (0 + S))(X) = [(6 + 61)* UsnT)(0 + D)) (a) + 2 / Y (04 6)"Cr(0 + o) d.
This gives
le Dx(\) & / T (04 6 Cr(0 + Bl)ds < A(L) = 310+ 61)" Uan ) (0+ D) (a).
So by (3. 9), for Y < X
le Dy()) = / T (0460 Ca (0--61)dz < A(D) = / T 0181 Cr (08 de < A() = 1 € Dy (M),

(ii) We have from (3. 20) that
ke Dx —C(X) & k*"P(X)k < R(X).
By Lemma 3.5 (i),(iii), P is non-decreasing and R is non-increasing in X. Thus, for Y < X
E*P(Y)k <R(Y)
and hence k € Dy — C(Y).

(iii) Let X > X, where Xj is as in Lemma 3.5. Obviously, Dx () is closed, and by (3. 20) and
Lemma 3.5 (i), Dx(A) is bounded. The compactness follows since dim C™" < oo.

To prove convexity let I;,ly € Dx. Then l; —C = P~Y2V;RY2,  V*V; < I, by (3. 21). For
a € 0,1],

[aVi+ (1 -a)Va[<al[Vi|+(1-a)[V2]<1.

Thus (aVi + (1 — a)Vo)*(aVh + (1 — a)V,) < I, and so al; + (1 — a)ly € Dx .
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(iv) For Y > X > X, let | € Dy, so that, by (3. 21),
L=C(Y)+ (PP RY?)(Y)

for some matrix Vy with V#Vy < I,,. By the nesting property, Dy C Dx; hence [ € Dx and
so, by (3. 21),
1=C(X)+ (P Y2VxRY?)(X),

for some Vy such that ViVx < I,,. Hence
C(Y) —C(X) = (P~V2VxRY?)(X) — (PP RY?)(Y).

By Lemma 3.5 (i) and (iii), the function F' : V4 +— Vx is well-defined and is a continuous
map from the unit ball in C™" into itself. So it has a fixed point V' by Brouwer’s fixed point
theorem, and replacing V3 and Vx by V' gives

I C(X) = C(Y) [I=Il P7/2(X)VRZ(X) = PTH2(Y)VRY2(Y) ||
| P2(X)VRYZ(X) = P2V )VRYZ(X) || + || PTY2(Y)VRYA(X) = PTYA(Y)VRY2(Y) ||

<
< N PTAX) = PP [ T RVZO [+ I PT2) - T RYP(X) = RY2(Y) ] -

Both P~1/2(X) and R'/?(X) have limits as X — b, so the centres C form a Cauchy sequence
and converge.

(v) Let p € Nxexop (Dx —C(X)). Then for all X > X,
p=Ilx —C(X)

for some [x € Dx. Since C(X) — C, as X — b by (iv) we obtain Iy — I, := p + Cp, and
lp € Nx>x, Px in view of (i) and the closedness of Dx. Thus

p:lb—chDb—Cb.

Conversely let p = l, — Cy, Iy € [\xsx, Px- Then ¢(X) :=1, — C(X) — p as X — b, and
q(X) € Dx —C(X). By (ii) (and the closeness of Dy), we obtain p € [\y¢x, ;) (Dx —C(X)).

(vi) By (3. 20) and Lemma 3.5 (iii), the left-hand side of (3. 36) contains 0 € C™", whence (vi)
follows from (v).

O
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4 Square integrable solutions

Let L?%(a,b) denote the Hilbert space of measurable C"-valued functions y for which

b
|y |I§1:=/ y* Aydzr < oo. (4. 1)

Since A(z) is merely assumed to be positive semi-definite for any x € [a,b), elements of L?(a,b)
are equivalent if they are equal almost everywhere outside the set {z : A(x) is singular } =: N4
and for z € N, their difference lies in the kernel of A(x).

In the proof of Theorem 3.2 (i), we saw that [ € Dx(A) if and only if

/ (0 + ol)"CA(0 + dl)dx < A(a,Usp, ) = —%[(0 + @) (Uan J) (0 + )] ().

Hence, if [ = I()\) € Dy(\), we have that

/ (04 B Cx (0 + Bz < Ala. Uny 1(V)). (4. 2)

If A € A(k,Uyy,) for some (k,Us,) € S, it follows that, with
b(w, ) = 0z, \) + oz, VI()) € c2on (4. 3)
and A = Uy, AU,
/ ’ U Cpthdr + / bw*Awdx < 0. (4. 4)
or ¢ € Lg, (a,b) N L% (a,b).

Theorem 4.1 There are m~+n linearly independent Lg, (a,b)-solutions of (2. 1) for X € A(k,Uan),
with (k,Uon) € Sa, if and only if there are m linearly independent L, (a,b)-solutions of the form
oK, where K € C™™ is of rank m, that is if and only if m eigenvalues of P(X) remain bounded
as X —b.

There are m + n linearly independent L%(a,b)-solutions of (2. 1) for A\ € A(k,Usy,), with
(k,Usy) € S,, if and only if there are m linearly independent L2 (a, b)-solutions of the form ¢K',
where K' € C™™ s of rank m.

Proof Let there be m + n linearly independent L%/\—solutions. Thus besides the columns of 0 + ¢l
(which form n linearly independent Lg, -solutions for any fixed [ € Dy()), by (4. 2)), m additional
LQCA—solutions are given by the columns of fa + ¢33, for some «a, f € C™™ such that

rank I"a——i—
lﬁ—nm
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Multiplying the latter matrix by ( ) e C™t™™ (which has rank m) we obtain that

(0%
_Im

(0, ) [0 ) (5 )] “s

Since the columns of both (0 + ¢l)a and O+ ¢ are L%A—solutions, we obtain by subtraction that
the columns of
¢ (la—p)
are LQCA—solutions. By (4. 5), this yields m linearly independent solutions of the form ¢K.
Suppose conversely that there are m linearly independent LQCA—solutions of that form, i.e., some
K € C™™ with rank m exists such that the columns of ¢K are L%A—solutions, then the columns
of 8 + ¢l and @K altogether give m + n linearly independent L%}A—solutions, since

nkIn0—+
ra | g ) =ntm

The last part of the theorem concerning L?%-solutions follows by the same argument.

The assertion about the eigenvalues of P(X) in the first part is now obtained as follows. The
identity (3. 30) implies that, for K € C™™ with rank m, the m columns of #K being in LQCA (a,b)
is equivalent to

K*P(X)K = K*P(a)K + /X K*(¢*Cr¢)(z)Kdzx

being bounded as X — b. This implies, by the min-max principle, that the smallest m eigenvalues
of P(X) remain bounded as X — b. Conversely, let A\ (X) < (X)) < ... < Ay (X) be eigenvalues
of P(X), with A\,(X) bounded as X — b, and let K(X) € C™™ be formed column-wise by
corresponding orthonormal eigenvectors. By compactness of the unit sphere in C", K(X;) —
K € C™™ for some sequence X; — b, and K has orthonormal columns and therefore rank m.
Furthermore, by Lemma 3.5 (i),

K(X;P(Y)K(X;) < K(X;)*P(X;)K(X;) = diag (M (X}), .-y A (X))
< const. - I,, for all j and all Y € [a, X]].

Letting j — oo, we obtain the boundedness of K*P(Y)K as Y — b. O

Define
L(A) = Dy(A) — Cp(A) (4. 6)
N = U Range(N) (4. 7)
NeL()
r = max{m € {0,...,n}: N(X) contains m linearly independent vectors} (4. 8)
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Theorem 4.2 Let A € A(k,Usy), (k,Us,) € S,. Then
(i) there are at least n + v linearly independent solutions of (2. 1) in Lg, (a,b);

(ii) if R(X) 4 0, as X — b, then there are exactly n+r linearly independent solutions of (2. 1)
in L, (a,b).

Proof

(i) Let (1,...¢- € N be linearly independent. Then, ; = N;n; where N; € £L,m; € C* (i =1, ..., 7).
By Theorem 3.6 (v), for each X there exist [1(X), ..., 1,(X) € Dx such that

L,—C)(X)=N; (i=1,..r)

and therefore,
L=C)X)m=¢ (i=1,..r).
Thus, since [;(X) € Dx, (3. 20) implies that

GP(X)G<nR(X)n isboundedas X —b (i=1,..,r). (4. 9)

Let V,.(X) = [G, ..., (], the linear span of (i,...,{, and , let A (X),..., A\,(X) denote the
eigenvalues of P(X) in non-decreasing order. Then, by the min-max principle,

S GP(X)G
. ¢*P(X)C CP(X)C &
M(X) = X 22 < X <
() o T S DM T S Rm(Gram(G 4 G))
dim W=r ¢#0 ¢#0

which is bounded as X — b in view of (4. 9). Consequently, at least r eigenvalues of P(X)
are bounded as X — b, which proves the assertion, by Theorem 4.1.

(ii) Let n + s be the exact number of linearly independent L7, (a, b)-solutions. By Theorem 4.1,
the s smallest eigenvalues A\ (X), ..., \s(X) of P(X) are therefore bounded as X — b. Let
(1(X), ..., (s(X) denote orthonormal eigenvectors corresponding to A (X), ..., As(X). We now
need Lemma 4.3 below. Then extracting subsequences inductively, a common subsequence
(Xom,) (independent of i) can be extracted satisfying

G(Xmy)— G fori=1,..k,
as j — oo. This ensures that CAI, I fs € N are orthogonal and in particular linearly inde-

pendent. By the definition of r, this provides s < r. Since part (i) of the theorem yields
s > r, we obtain s = r and thus the assertion. []
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Lemma 4.3 Under the hypothesis of Theorem 4.2 (ii) we have that for each i € {1,...,s} and
any sequence (X,,) converging to b, there exists a subsequence (Xr(éz )jen such that (C,-(Xr(,ig.))jeN

converges to some (; € N, where G(X),i=1,...,8, are the orthonormal eigenvectors in part (ii)
of the proof of Theorem 4.2.

Proof Fix i € {1,...s} and let (X,,) denote some sequence tending to b. For the moment, fix
m, and regard all X-dependent terms as being evaluated at X,,. Let U; € C™" denote a unitary
matrix with columns formed by orthonormal eigenvectors of P, with (; in the first column.

Moreover, by assumption, at least one eigenvalue v of R does not tend to zero (and is therefore,
due to monotonicity, bounded away from zero) as X — b. Let U, denote a unitary matrix with
columns formed by orthonormal eigenvectors of R with an eigenvector i) corresponding to v in
the first column.

Let
l:=C+ P Y2 U RY?, (4. 10)
so that, by (3. 21),

le Dy for X =X,,. (4. 11)

Furthermore, on choosing

\s

=4/ = 4. 12
U Y (4. 12)

we obtain from (4. 10), with e; denoting the first canonical unit vector

(l o C)T] — P_1/2U1U5(\/17 - A / %d}) — \/)\»iP_l/2U1 ep = \/xip—l/QCi = C’L

Now let m vary again. Due to (4. 11) and the nesting property Theorem 3.6 (i), the sequence
[(X,,) is bounded. From (4. 12) and the fact that \;(X,,) is bounded, v(X,,) is bounded away
from zero and | ¥ |= 1, it follows that the sequence 7(X,,) is bounded. Finally, the sequence
(i(Xp) is bounded since | ; |= 1. Thus, along a subsequence (Xr(,iz)jeN, l,m,( tend to limits

1,7, ;, respectively. Moreover, since C (X) tends to C, as X — b, we obtain from (4. 13)
(I = Co)i = G (4. 13)

The nesting property Theorem 3.6 (i) and (4. 11) give [ € Dy, so that [ — C, € £. Thus, by (4.
13), ¢; € N, which proves the lemma. O]

Corollary 4.4 If r > 1, there are ezactly n + r linearly independent solutions of (2. 1) in
L% (a,b).
A

Proof This follows from Theorem 4.2 since R(X) tending to 0, implies in turn £ = {0}, N' = {0}
and r = 0. 0
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The case when R(X) — 0, as X — b remains to be investigated. To analyse this we turn to
the equation which is formally adjoint to (2. 1), namely

J2 = (M + B")z. (4. 14)

Let Z = (n | x) be the fundamental matrix for (4. 14) satisfying (2. 13) and set (cf (3. 10))

. = 2 4 4.1
ZUpn JZ =: 2 ( Fe P > (4. 15)

for some Uy, satisfying corresponding conditions (3. 2) and (3. 3) . The preceding analysis applied
to (4. 14) now requires (3. 5)-(3. 7) to be replaced by

Cr(z) = Re[(kA(z) + B(z))U,] >0 (4. 16)
A(k,Us,) = {Ae C: forsomed >0, Re[(\ — k)A(z)U,] > U A(z)Us for all z € [a,b)}.
(4. 17)

The corresponding set of admissible pairs (k,agn) is denoted by S , and S, is the subset of S for
which

P(a) = (= | o) (Usn ) ( ‘aof ) > 0. (4. 18)
We now make the special choice A
Uy = Uy} (4. 19)
in which case we obtain
Cn = UpC\UZ, forall A € C, (4. 20)
(k,Up) €S & (k,U;Y) €S, (4. 21)
Ak, U;Y) = {AeC: forsomed > 0,Re[(A — k)Usn A(z)] > 6A(z) for all z € [a,b)}.
(4. 22)
From (2. 15),
Ly,=—(JZ)JY)=—-(JY)(JZ*)=-(JYJZ*) = -ZJY*J (4. 23)
and
JZIY" = —Iy,.
Consequently,
J=2Z"]Y = —(Z'Usn JZ)J (Y U JY ) = —4 < i p ) J ( T+ p ) , (4. 24)
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and hence, with e, f from (3. 34),

e S T 1, T
J =—4( ~ ~ |J "l=—4( L |.
(7)== 5)7 ()= (5)
A straightforward calculation and use of (3. 35) now gives, in the notation of (3. 18) and its
analogue for the adjoint problem, that, for X sufficiently large and A € A(k,Uy,) N A(k,Usy,)),

¢ =cCr, (4. 25)
A
P=_R" (4. 26)
and similarly,
1 .
P= ZR*1 (4. 27)

(c.f. [8, Lemma 4.3] when B = B*). For reasons of symmetry between problems (2. 1) and its
formal adjoint (4. 14), one would expect an analogous definiteness condition to that of (3. 14) to
hold for (4. 14). We now prove that this condition

P(a)¢ = 0 and (Cyx)(z)¢ = 0 for a.e. z € [a,b)| = (=0 (4. 28)

is in fact equivalent to (3. 14).
Lemma 4.5 For each A € C, (3. 14) and (4. 28) are equivalent.

Proof By symmetry it is sufficient to show that (4. 28) implies (3. 14). So let (4. 28) hold, and
let ¢ € C" satisfy the premise of (3. 14). Then, by Remark 3.1 (2), U, ¢¢ solves (4. 14), whence

T2

Uy d(z)¢ = Z(x)n (x € [a,b)) for some n = ( . ) € C?,

On multiplying by Y(z)*J from the left and using (3. 2), (3. 10), (2. 15), we obtain 7, = 0, 7, =
2T (a)¢ =: ¢, whence R

U, $(2)¢ = x(2)C (2 € [a,b)).
From (4. 20) and Cy¢¢ = 0 a.e., we obtain

Ci(z)x(z)¢ = 0 for a.e. z € [a, b).
Moreover, since PT = T*P by (3. 18) and (4. 25), we obtain

P(a)¢ = 2P(a)T(a)¢ = 21 (a)P(a)¢ = 0.
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Thus, ¢ satisfies the premise of (4. 28), whence ¢ = 0. Consequently,

implying ¢ = 0 since ( ggzg ) has rank n by (3. 10). O

Denoting the Weyl-Sims sets associated with (4. 14) by Dx (), we have from (3. 20), (4. 25)-
(4. 27) (and the fact that K*K < I,, & KK* < I, for all K € C*?) for A € A(k,Us,) NA (K, Uy, )
and X sufficiently large

L€ Dx(N) & (I-C(X)R(X)™(I1-C(X)) < P(X)™!
& [R(X)™2(1 = (X)) P(X) /I [R(X) ™21 = (X)) P(X)*) < I,
& [R(X)™2( - (X)) P(X)?|[R(X)72(1 = (X)) P(X) /" < I,
& ("= CX))PX)(I" - C(X)) < R(X)
& I* e Dx(\) (4. 29)
(4. 30)
Hence, if Dx(A\)* := {I* : 1 € Dx(\)}, we have, for A € A(k, Uy, ) N Ak, Us"),
Dy(N) = () Dx(N) =[] Dx(N)* =: Dy(N)". (4. 31)
Moreover,
Co(A) = lim C(X) = lim C(X)* = G,(V)", (4. 32)
and from (4. 25) and (4. 31),
L) = Do) = GA) = (DuN) ~ G(N) = £()" (4. 33

It is clear from (4. 33) that » = 0 if and only if 7 = 0, where 7 is the analogue of r in (4. 8) for
problem (4. 14). It remains an open question if (4. 33) implies any other useful relation between
N()) and N'(A) (defined analogously to (4. 7)), and thus between r and 7.

While Theorem 4.2 and Corollary 4.4 give full information in the cases R(X) /4 0, (as X — b)
and r > 1 respectively, the following theorem treats the complementary cases.

Theorem 4.6 Let A € A(k,Usy) N Ak, UsY), (k,Usn) € Sa, (k,Ust) € S,. Then,
(i) if R(X) = 0, as X — b, (4. 14) has ezactly n linearly independent solutions in LC,A (a,b),
(ii) if r = 0, then 7 = 0 and at least one of the equations (2. 1), (4. 14) has exactly n linearly

independent solutions in L, (a,b), L?ﬁ& (a,b) respectively.
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Proof

(i) This is an immediate consequence of (4. 26) and Theorem 4.1.

(ii) We have already noted that r = 0 if and only if # = 0. If R(X) — 0,, then (4. 14) has
exactly n linearly independent solutions in L%A (a,b) by (i). If R(X) 4 0,, then (2. 1) has

exactly n linearly independent LéA (a, b) solutions by Theorem 4.2 (ii). O

Suppose that (2. 1) has exactly m linearly independent solutions in Lg (a,b). Then, for
X € Ak, Usyp), (k,Usy,) € S,, we have proved that

n <m < 2n, (4. 34)

where the first inequality follows from the n columns of ¢ = 0 + ¢l, | € D,()\), being in L%A (a,b).
If
Cy > §A for some § > 0, (4. 35)

then
L2, (a,8) € L4(a,b). (4. 36)

Thus, there are s € {m, m + 1, ...} solutions of (2. 1) in L%(a,b). For the Sturm-Liouville case
when n =1, it was proved in [11] and [3] that all these possibilities for s can be realized and they
constitute the Sims limit-point-limit-circle characterisation.

Remark 4.7 The condition (4. 35) holds in the following cases:
1. by (3. 6) and (3. 7), in the case
A= U AU, > v A for some v > 0, (4. 37)

2. by (4. 22), (4. 21) and (3. 6), in the case A € A(k,Uy,}).

Remark 4.8 If A\ € A(k,Usy,), then Cy > 6A for some § > 0, and hence L?:,A(a, b) C L%(a,b).
Thus, if A € Ak, Usn) N A(k, U3,

LE (a,b) U LQCAA (a,b) C LA(a,b).
Remark 4.9 The condition (4. 37) implies, by (3. 7), (4. 22), that

for (k,Usy,) € S (implying (k,U,,') € S by (4. 21)), whence Theorem 4.6 holds indeed for all
A € Ak, Uyy,). If, in addition to (4. 37), also a reverse inequality A > 5A holds for some 7 > 0,
i.e., if

Z/{QnAZ/{;n = A,

equality holds in (4. 38).
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5 Operator theoretic implications
Let A € A(k,Usy) NA(K,Us "), M(X) € Dy()), and set

vz, \) = 0(z,\) + d(z, \)M())
C(@,A) = nlz,A) + x(z, A)M*(})

where 6, ¢ are the solutions of (2. 1) satisfying (2. 7), and 7, x are the solutions of (2. 11)

satisfying (2. 12).Define

A (Y, A) a<z<y<b

N ¢
G(.ﬁC,y,)\) = { (x’/\)x*(y,)\) a<y<$<b

= o x(@ Yy, ) a<z<y<b
Gla,yd) = { C(z,\)o*(y,\) a<y<z<b
=G"(y,z; \)
and, for f € L%(a,b),

Raf@) = [ Gl VAW W)y

Raf(@) = [ Glo AW Wi

It follows from (4. 23) that JYJZ* = —1I5,, where Y = (6 | ¢) and Z = (n | x), i.e.

J(OX — on*)(x) = Iz,

and this readily yields
J(RAf) = (A + B)(R\f) + Af.

Also, by (2. 7) and (2. 9),
(o [ a3)(Raf)(a) = On
or, using (2. 12) and the notation of (2. 5),

[Rrf, x(, N)](a) = x*(a, \) JRy f(a) = 0,.

. I, I, )
Since v =Y < Vi ) and ( =7 ( e ) we derive from (2. 15) that

BEN: NI = (I [ M) (40 ) =0

23

(5. 3)

(5. 12)



and

66 A S NIE0 = (1| M) ) () =1, 5. 13
Hence
B, CCNI0) = B0 = iy [ C@NAG) =0, 5. 14

since ((-, \) € L%& (a,b) C L*(a,b).
For the adjoint problem we obtain similarly

J(Brf) = (AA+ BY)(Baf) + Af (5. 15)
[Raf, (-, M)](a) =0, (5. 16)
[Raf, (- M) (b) = 0. (5. 17)

Theorem 5.1 Let f € L2(a,b) and A € A(k,Usn) N A(k,Us,"). Then, with ® = Ryf and A =
uZnAu;n:

1
I e, +oll @ G<ell @+ 1 /I (5. 18)
for any 0 < e <0, with § = 0(A\) as in (3. 7), and
1
@ lla< 5 11 F I (5. 19)

Thus, if A > A for some v >0, Ry is bounded on L% (a,b).

Proof Let fx = f on [a,X], fx =0 on (X,b), and ®x = R)fx. Then, from (2. 4) and (5. 9)
(c.f. (3. 4))

X X
2 / 4 C\Pxdr = Olon JOx |X —2 / Re[®% Usn A fxdz. (5. 20)

Let T1(x), To(z) be the quantities

Ti(z) == /zx*Afxdy, To( / C*Afxdy.

Then, by (5. 3),

_ _ T
¢X_¢T1+¢T2_Y<MT1+T2)’

so that, by (3. 10),

* _ Tl ' S T Tl
(I)X(UQ’”J)(I)X_2<MT1+T2> (T* P)<MT1+T2>.
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Since T5(X) = 0, we have, for X sufficiently large,

[®% UsnT) Bx] (X) = 2T7(X)[S+TM + M*T* + M*PM] (X)Ty(X)
= 2TH(X) [(M + P7'T*)*P(M + P~'T*) = TP~'T* + 5] (X)T1(X)
0

by (3. 20) and (3. 18), since M € Dy(A) C Dx(A). Moreover, since T} (a) = 0,
[ (UsnT) O] (a) = 2 (T3 PT3) (a) > 0
from (3. 12). On substituting in (5. 20) and noting that
| DU Afx | = |< Afx, Uy, ®x >|< < Afx, fx >V2< AU;, O x, Us, By >1?
(fxAfx)/* (@5 A2x)'?,

IN

we obtain

X X
0 < / % Cr\Pxdr < / Re[®% Uy, Af]dx

( / : f*A fdx) 1/2 ( / : @;A@Xda:>

1
I el I

1/2

IN

IN

Hence, by (3. 7),

x X
N 1

As X = b, &x — ® = R, f, and when € < §, (5. 18) follows by Fatou’s Lemma. This yields (5.
19) by choosing € = 6. O
Hereafter we shall assume that

Unn AU, =< A (5. 21)
so that by Remark 4.9, A(k,Us,) = /A\(k,Z/IQ_nl). We note that (5. 21) is true if
_ —e”’[n On _ A11 On
Uy — ( S ) and A= ( o ) (5. 22)

as in all our examples in section 3.

Lemma 5.2 Let A\, u € A(k,Usy,), (k,Usy) € S,. Then

(@, p) = P2, A) = o2, )C + (1 = A) (Bt (-, 1) () (5. 23)

where C = (-, p), C(+, N)](b). If (2. 1) has precisely n linearly independent solutions in L%(a,b),
then

[(, 1), C( M) (b) = 0. (5. 24)
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Proof By (2. 1),
JY (1) = AA+ B (1) + (= N (-, ),

whence (5. 9) implies

() =P A0+ 65 Ao + (1= A BAP(-, ).

Pre-multiplication by (of | o3) yields C; = I,, by (2. 7)-(2. 9) and (5. 10). Pre-multiplying byby
¢(X,\)J and using (5. 12)-(5. 14), we obtain Cy = —[¢(+, ), ((-, A)](b), whence (5. 23). The
last part follows since v, Ry\t(-, ) € L% (a,b), whereas ¢(-, A\)C only does if C = 0, on account of
Theorem 4.1. [J

In the case where (2. 1) has more than n linearly independent solutions in L?(a,b), the set
Dy () may contain more than one element, and (5. 24) can then only be true if the right selection
of M(X) € Dy(A\) and M(u) € Dy(p) (forcing C in (5. 23) to be zero) has been made. Theorem
5.4 below shows that such a selection is always possible. For proving it, we first need Lemma 5.3.

Lemma 5.3 Let \, p € A(k,Usy,), (k,Usp) € S,, and Xy = Xo(N) from Lemma 3.5. Moreover,
let My € Dy(p) and ¢(-, 1) :==n(-, )+ x(-, p)Mg. Then, for X > X, the (reqular) boundary value
problem

Jy = (M + B)y on (¢, X), x*(a, ) Jy(a) =0, ¢*(X,u)Jy(X)=0 (5. 25)
has only the trivial solution y = 0.

Proof Let y be a solution of (5. 25), whence y = 0(-,\)7 + ¢(-, A\)v for some 9,v € C™. Since
X*(a, p)JO(a, \) = I, and x*(a, u)Jp(a, A) = 0, by (2. 7)-(2. 12), the boundary condition for y at
a yields o = 0. Moreover, with (-, ) := 6(-, ) + ¢ (-, p) My, (5. 12) yields ¢*(X, p) J (X, u) = 0,.
Since both (X, p) and ¥(X, ) have full rank, the boundary condition for y at X therefore shows
that

y(X) = (X, p)w for some w € C".

Consequently, since My € Dy(1) C Dx (1), (3. 16) yields

whence, by (3. 10),
0> v"¢" (X, MUz J(X, N)v = 20" P(X, N,
giving v = 0 by Lemma 3.5 (i). O
Theorem 5.4 Let p € A(k,Usy,), (k,Us,) € Sy and My € Dy(u) be fized. Then, there ezists a

function M : A(k,Us,) — C™" such that M(u) = My and, for all A € A(k,Us,), M(N\) € Dy(N)
and

MO =M= 0= ) [ et e = 0 ) [ ¢ VA, 6.2
where Y(-,A) := 0(-, A) + d(-, )M (X)) and C(-, A) :=n(-, A) + x(-, \) M (X)*. Moreover,
[ (-, A), CC w)l(0) = [0, ), €+, A)](b) = O for all A € Ak, Usn). (5. 27)
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Proof Let ¥(-, p) := 0(-, u) + ¢(-, u) My and (-, ) := n(-, u) + x(+, p) M§. For all X € A(k,Usy,)
and X > X, with Xo = Xo(A) from Lemma 3.5, the matrix (*(X, u)J¢(X, A) is invertible, since
otherwise some v € C™"\{0} would exist such that y := @(-, A)v solves the boundary value problem
(5. 25), contradicting Lemma 5.3. Consequently

L (A) = —[C*(X, 1) T (X, N7 [CH (X, 1) JO(X, M) (5. 28)
is well defined for these X, and

Px (5 A) = 0(, A) + 8(, A)lx(A) (5. 29)
satisfies the condition
¢ (X, 1) T (X, A) = 0 (5. 30)
Moreover, (5. 12) yields
C*(Xa N)Jd](X’ N’) = 0p. (5 31)

All three matrices ((X, u), ¥x (X, A), ¥ (X, u) have rank n, so (5. 30) and (5. 31) together imply
that the ranges of ¥x (X, \) and (X, p) coincide, i.e., that

for some (invertible) Q € C™™. This yields
D (X5 A) Uan T )thx (X, A) = Q" (X, ) Uan T )9 (X, ) 162 (5. 32)

By (3. 16), the matrix in brackets on the right-hand side in (5. 32) is non-positive, since M, €
Dy(p) € Dx(u). Thus, the left-hand side of (5. 32) is non-positive, which in turn, again by (3.
16), shows that

Ix(A) € Dx(N). (5. 33)
Defining, analogously to (5. 29),
Cx (5 A) =05 A) + x (5 Aix (V) (5. 34)
we obtain from(2. 15) that
C (X, N) by (X, A) = O (5. 35)

Since all three matrices (X, A), (x(X, A),¥x (X, A) have rank n, (5. 30) and (5. 35) show that
the ranges of ((X, 1) and (x (X, \) coincide. In particular, the (n-dimensional) range of (x (X, \)
is independent of A (as long as X > X())), whence (5. 35) implies

Co(X, N JYx (X, A) =0, for all \, A € A(k,Us,), and X > max{X,()), Xo(A)}. (5. 36)
On using (2. 1) and (2. 11), we obtain
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Integrating from a to X, and using (5. 36) and (2. 10), (2. 13), (2. 15), we obtain

I () = Lx (3 / ¢t (2, N A(2)vx (2, \)da (5. 37)

A second formula of this kind is obtained by interchanging A and A Putting then A= /4 in both
these formulas yields, on noting that Ix(u) = My by (5. 28) and (5. 13) (and a corresponding
calculation for #),

Ix(A) = Mo = (A — N)/ ¢, W Alx)hx (@, Ndz = (A - u)/ Cx (2, N A(@)Y(z, p)dz (5. 38)

for each A € A(k,Usy), kept fixed for the rest of the proof, and all X > max {X()), Xo(u)}-

To achieve convergence in (5. 38) as X — b (at least along a sequence), we define 9x (-, \) :=
Yx (-, A) on [a, X], ¥x (-, \) := 0 on (X,b), and show that (¢x (-, M) xe(xo,p) is bounded in L% (a, b).
Indeed, (3. 6), (3. 7), (5. 21) yield a constant k£ = k() such that

/%(SEA )Pz, Ndz = / Wi (2, N A(@)x (2, \)de
< k / W (2, \) O (@) (2, N da

= P X U ox (X, ) — (0, 2 U T)x (3, V)],

by (3. 4). Here, the first boundary term is non-positive by (3. 16) and (5. 33), and the second is
bounded (with respect to X € [Xy,b)) by (5. 29), since Ix(\) € Dx(A) C Dx,(A\) and the latter
set is bounded by Theorem 3.6 (iii). This yields the desired boundedness property.

Therefore, along a sequence X,, — b, ¥x, (-, \) converges weakly in L2(a,b) to some F €
L%(a,b), i.e., for every g € L%(a,b),

/ g (2)A(z)Vx,, (z, N)dz — / 9" (x)A(z)F(z)dz as m — oo. (5. 39)

Moreover, since (Ix(A))xe[xop) is bounded in C™", the sequence (X,,) can be chosen such that

simultaneously
Ix,, (A\) = M()X) asm — o0 (5. 40)

for some M(\) € C™™, which by (5. 33) and Theorem 3.6 lies in Dj(A).

Taking compact support functions g in (5. 39) and noting that, by (5. 40) and (5. 29),
¥x,, (-, A) converges uniformly to (-, \) = 0(-, A) + é(-, \)M()\) on compact subintervals of [a, b),
we obtain

F =1(-,\) in L(a,b).
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Thus, choosing ¢ := (-, p) in (5. 39),

Xm

"z, u)A(z)x,, (z, \)dz —)/ C*(z, p)A(z)p(z, N)dz as m — oc. (5. 41)

a

In a completely analogous way, we can extract a sequence (which we may assume to be (X,,)
again, by successive subsequence extraction) such that

Xm

Cx,, (@, N A(x)Y(z, p)dz — / C(z, N A(2)Y(z, p)dz as m — oo.

a

Together with (5. 40) and (5. 41), this gives (5. 26) from (5. 38).
To show (5. 27), we use (2. 1) and (2. 11) again to obtain

(T 2) = (A= )¢ (W AB(, A),
whence integration from a to X provides, by (2. 10), (2. 13) and (2. 15),

wu»xummm+M@ww@=u—m/‘cmmmmw@nm.

Here, the right-hand side converges as X — b since ((-,p) and 9(-,\) are in L%(a,b). This
establishes the existence of the limit [¢(-, A), ((+, #)](b), and comparison with (5. 26) provides
[W(-,A),C(+, #)](b) = 0. The second equality in (5. 27) follows analogously. [J

Hereafter in this section we assume that (k,Us,) € S, is fixed and that the function M and
the selected value p are as in Theorem 5.4. Moreover, we assume now that R, and R, defined in
(5. 6) and (5. 7) are one-to-one as operators from L? (a,b) into itself, i.e., that

f € L%(a,b), A(R,f) =0 a.e.on (a,b) = Af = 0 a.e. on (a,b), (5. 42)
g € L%(a,b), A(R,g) =0 a.e. on (a,b) = Ag = 0 a.e. on (a,b). (5. 43)

Later, it will become clear that the same conditions then hold when p is replaced by any A €
A(k,Usy,). We are now able to define the natural operators associated with our analysis. Set

D(L):= {ye L%(a,b):y € AC)y.[a,b),
ly= Jy, — By = Af a.e. for some f € L124(a’ b)a [y: X('a ﬂ)](a) =0, [y: g(a M)](b) = O}a
(5. 44)
Ly := f for y € D(L) satisfying ly = Af a.e. on (a,b),
D(L):= {z€ L%(a,b): z € ACyla,b),
lz=Jz — B*z = Ag a.e. for some g € L%(a,b), [z ¢(-, w)](a) = 0, [z,¥(-, w)](b) = 0},
(5. 45)
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Lz := g for z € D(L) satisfying [z = Ag a.e. on (a, b).

More precisely, D(L) and D(L) consist of all equivalence-classes in L% (a, b) such that at least one
representative of the class satisfies the conditions after the colons in D(L) and D(L), respectively.
In fact, conditions (5. 42) and (5. 43) ensure that this representative is always unique, and so, in
particular, L and L are well defined: Suppose that y; and y, are two representatives in the same
equivalence-class (i-e., A(y1 —y2) = 0 a.e. on (a, b)), both satisfying the conditions after the colon
in D(L), with two functions fi, fo € L%(a,b). For y := y; — yo and f := f; — f> we then obtain
Ay =0 a.e. on (a,b) and Jy = By+Af = (uA+ B)y+ Af, whence y = R, f +0(-, u)o + ¢ (-, p)v
for some ¥,v € C". The boundary condition [y, x(-, #)](a) yields o = 0, by (5. 11) and (2. 7)-(2.
12), and the boundary condition [y, (-, #)](b) provides v = 0, by (5. 14) and (5. 13). Thus,
y=R,f, and Ay =0 a.e. on (a,b), whence Af =0 a.e. on (a,b), by (5. 42). Hence (5. 6) shows

that y = R, f = 0, providing the desired uniqueness.
Theorem 5.5 Let

D, = {y € L%(a,b) : y € ACipcla,b),ly = Jy — By = Af for some f € L%(a,b), [y, x(-, 1)](a) = 0}

(5. 46)
D, = {z € I%(a,b) : z € ACcla,b),lz = Jz — B*z = Ag for some g € L%(a,b), [z, ¢(-, p)](a) = 0}
(5. 47)
Then,
D1 = D(L)+o( m)ley, (5. 48)

Dy = D(L)Fx(, m)i

where [¢(-, u)] 2 denotes the space of functions ¢(-, u)c (with ¢ € C*) which are in L% (a,b). In
particular D(L) = Dy if (2. 1) (for X\ = p) has precisely n linearly independent solutions in
L%(a,b); in other words, there are no boundary conditions at b in this case.

Proof Let u € D; so that lu = Af for some f € L%(a,b). Then (I — pA)u = Ag for g := —pu+ f.
Furthermore, v := R,g € D(L) satisfies

(= pA)v—-u)=0, [v—ux(,wla)=0,

whence v — u = 0(-, u)é + ¢(-, u)c for some ¢, ¢ € C", and é = 0 since [0(-, u), x(+, u)](a) = I,
and [(-, ), X(, #)](a) = 0,. Moreover, v — u € L%(a,b), implying v — u € [¢(-, )] 2, Whence
the result for D; since D(L) C Dy and [¢(-, 1)]zz, C Di; the sum in (5. 48) is indeed direct since
¢(-, )c € D(L) implies ¢ = 0, by (5. 13). The result concerning D; follows similarly. O

Lemma 5.6 Denoting the resolvent sets of L and I~/~ by p(L) and p(L), respectively, we have
pep(L),pe p(L), (L—p) =R, and (L —p) ' = R,. Moreover, L and L are closed.
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Proof L — y is one-to-one, since y € D(L), (L — p)y = 0 implies Jy = (uA + B)y, whence
y=0(-, )0 + ¢(-, p)v for some v,v € C". By (2. 7)-(2. 12) and (5. 13), the boundary conditions
for y yield ¥ = v = 0 and thus, y = 0.

For f € L?(a,b), (5. 9),(5. 11) and (5. 14) give R,f € D(L), and (L — u)R,f = f. Thus, the
range of L — p1 is L% (a,b), and (L — p)~' = R,,. Therefore, (L — p)~" is bounded by Theorem 5.1,
whence p € p(L).

In particular, (L — p) ! is closed, implying that L is closed. The statements for L and Ru
follow analogously. .

Lemma 5.7 The space D(L) is dense in L% (a,b). Also L = L*, the adjoint of L.

Proof By (5. 5) and the boundedness of R, and R,, we have R, = R}, the (-,-)2-adjoint of
R,. Thus, (5. 43) shows that R is one-to-one, whence the range of R, is dense in L% (a,b). By
Lemma 5.6, this range equals D(L).

Moreover, Lemma 5.6 and R, = R}, together imply (L = i)™" = ((L — p)™")*, whence L = L*.
4

Theorem 5.8 We have A(k,Us,) C p(L) and, for A € A(k,Usy,),
Ry=(L-XN""

A corresponding statement holds for Ry and L.

Proof Let A € A(k,Us,). For all f € L%(a,b) we have, by (5. 9),

[(RAf) = AIMRAS) + f]. (5. 49)
Furthermore, by (5. 11) (and x(a, A) being independent of A),

[Baf, x (- w)](a) = 0. (5. 50)

Next we prove that
(B f, ¢ (- m)l(b) =0, (5. 51)

first restricting ourselves to compact support functions f. With X; chosen such that f vanishes
for X > X, (5. 3) and (5. 6) give

(mNX) =606 [ XN AN Wy for X = X,

whence

Raf, CCo m)](8) = [0 N), € )]0) / N Af ) =0,
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by Theorem 5.4. To obtain (5. 51) for general f € L?(a,b), we choose a sequence (f,,) of compact
support functions f,, € L%(a,b) converging to f in L%(a,b). Using (2. 4) (for z := (-, p) and
y = R\(f — fin)) we obtain

[RAFoCCmICY) = [afs CC )+ [RA(S = i), G (@)
[ 0= 0 @A — £a)(@) + ¢ (o)A@ = Fu) @)l

As X — b, the first term on the right-hand side tends to 0, since (5. 51) holds for compact support
functions. Thus,

Baf,Cl8) = [Ba(f — fis CCo (@)
4 / (O = 0)C* (@ ) A@) RS — fur) () + € (2 W) A@)(f — fo) (@),

Since f — f;, — 0 in L%(a,b) implies Ry\(f — fm) — 0 in L%(a,b) by Theorem 5.1, and Ry(f —
Fu)(@) = 0 by (5. 6), (5. 51) follows.
Now, (5. 49),(5. 50) and (5. 51) yield R)f € D(L) and

(L =N (Baf) =, (5. 52)

implying that the range of L — A is L% (a,b). Analogously, the range of L — Xis IL%(a,b). Since
L — X = (L—)\)* by Lemma 5.7, this implies that L — X is one-to-one. Consequently, from (5.
52), Ry = (L — A\)7!, and since R, is bounded by Theorem 5.1, we have that A € p(L). O

6 Properties of () and M

In this final section, we require the conditions on (k,Us,) assumed so far (namely, (3. 1)-(3. 3),(3.
6),(3. 12),(3. 14), (4. 18),(4. 19),(5. 21),(5. 42),(5. 43)) to hold for every (k,Us,) € S, such that
A(k,Uszp) # 0, and that values u = pg s, and functions M = My, have been selected according
to Theorem 5.4, for all these (k,Us,). Furthermore, we will now need the following additional
condition implying in particular that the sets A(k,Us,) are open: For every (k,Us,) € S, such
that A(k,Usy,) # 0, some vy = 7y(k,Uap,) > 0 exists such that

Re[e“ Uy, A(7)] > —7 - Usn A(x)Us,, for all p € [0,27),z € (a,b). (6. 1)
We note that (6. 1) is satisfied in the case (5. 22).

Theorem 6.1 For each A\ € C, let N(\) denote the precise number of linearly independent solu-
tions of (2. 1) in L%(a,b). Then, N is constant on each connected component of C\Q (cf. (3.

8)).
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Proof Let A, denote any of the connected components of C\Q. It is sufficient to prove that N is
locally constant on A, since then the result follows by standard connectivity arguments.

Thus, let Ay € A, and select any (k,Us,) € S, such that Ay € A(k,Us,). Take 6y := §(\g)
from (3. 7). Then, for each A € C such that | A — Ay |< d/(27) (with v from (6. 1)), we have
A € A(k,Usy,), and 0(A) := /2 can be chosen in (3. 7). Theorem 5.1 and (5. 21) therefore give

5
| By [l < ko forall A€ C, [ A=) |< % (6. 2)

with ko independent of A\. Now, fix € > 0 such that

ﬁ 1

5 3 ) (6. 3)

€ < min{

We shall prove that N(\) = N()\') for all A\, \" in the e—neighbourhood of )\g, which establishes
the result.
Thus, let | A — Ao |[< €, | AN =Xy |< e. By symmetry, it is sufficient to prove that

N(\) > N). (6. 4)

The case N(\) = n is trivial since Theorem 4.2 yields N(\') > n. So let s := N(\) —n > 0. By
Theorem 4.1, we obtain s linearly independent L?-solutions of (2. 1) as the columns of ¢(-, \) K,
with K € C™*® having rank s. Since

Jo( VK] = (N A+ B)p(-, ) K + (A — N)Ag(-, VK,
(5. 9) gives

$( NK =0 \)K + (-, N)K + (A= X)Ry[o(-, N K], (6. 5)

with K', K' € C™*. Evaluation at a and pre-multiplication by (o | of) yields K = 0, by (2.
7)-(2. 9) and (5. 10). Now (6. 5) shows that the columns of ¢ (-, \')K  are in L?(a, b).

If K" had rank less than s, some v € C*\{0} would exist such that K'v =0 (but Kv # 0 since
K has rank s), whence by (6. 5)

¢(- \)Kv = (A — X )Ry [d(-, \) K. (6. 6)
By (6. 2), this implies that
1 VK 12, <[ A=A [ Ko [l $( N Kw ||z,
which contradicts (6. 3) and | A — X" |< 2¢; note that ¢(-, \)Kv # 0 since Kv # 0, whence (6. 6)

and (5. 6) yield ¢(-, \)Kv # 0 in L%(a,b).

33



Therefore, K has rank s, whence the columns of ¢(-,\')K provide s linearly independent
L?-solutions of problem (2. 1) at \'". Using Theorem 4.1 again, we obtain (at least) n+s = N())
linearly independent solutions of problem (2. 1) at X', i.e., (6. 4). O

It is worth noting that, if there are precisely n linearly independent solutions of (2. 1) in
I2(a,b), for A € A(k,Usy) N A(K',U,,), then

My, (A) = Mk’,uén (A)- (6. 7)
For in this case
0, ) + (2, )M, (\) = {6(2, 2) + $la, VM (VYK

for some K(\) € C™", and (6. 7) follows from (2. 7)-(2. 9). Thus, if there are precisely n linearly
independent L%-solutions of (2. 1) in a connected component A, of C\Q (note Theorem 6.1), then
we can define M on A, by

M(N) = Myzs, (A), A€ A(k,Usy) N A. (6. 8)

We now address the question of analyticity of the function M.

Theorem 6.2 For each (k,Us,) € Sy, M = My y,, is analytic throughout A(k,Usy,). If there are
precisely n solutions of (2. 1) in L*(a,b) on a connected component A, of C\Q, then M defined
by (6. 8) is analytic on A..

Proof Theorem 5.4, Lemma 5.2 and Theorem 5.8 readily yield

M(A) = Mo+ (A—p) / ¢, ) A@)y (@, p)de + (A = w)* (L = N) 7%, 1), CCo 1)y, (6. 9)

whence the analyticity of M since (L — \)~! is analytic on p(L) D A(k,Us,) (cf. [7, TIT Theorem
6.7]). The last statement follows from the fact that, for (k,Us,), (k',U,,) € S, such that V :=
AN A(k,Uon) N A(K ,Uy,) # 0, the analytic functions My, and My coincide on the open set
v.O "

Corollary 6.3 For each (k,Us,) € Sa, (6. 9) defines an analytic extension of M = My, to the
resolvent set of L = Ly s, .

Theorem 6.4 Let (k,Usy) € S and pp = peps,, M = Myy,,, L = Liu,,. Suppose that all

solutions of (2. 1) (at X = u) are in L%(a,b). Then, (6. 9) defines a meromorphic extension of
M to the whole of C. The poles of M are eigenvalues of L.
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Proof Since all solutions of (2. 1) at p are in L?%(a,b), (5. 3) and (5. 6) show that R, is a
Hilbert-Schmidt operator, and thus compact. By Theorem 5.8, (L — u)~! is compact, whence the
spectrum of L consists only of isolated eigenvalues with finite algebraic multiplicity, and (L —\)™!
is compact for all A\ € C except at these eigenvalues. The meromorphicity of (L — \)™!, with
poles precisely at the eigenvalues of L, follows e.g. from [7, III, Section 5], and (6. 9) gives the
corresponding statement for M. [

Lemma 6.5 If all solutions of (2. 1) and (2. 11) are in L%(a,b) for some N € C, then all
solutions of (2. 1) are in L*(a,b) for all X € C.

Proof By the variation of constants formula, any solution of

Ty (z,)) = (AA(2) + B(2))y(z, )

= (NA(z)+ B@)y(z, ) + (A= N)A(z)y(z, \)
can be written as
y(z,N) = 0(z,\)C+ d(z,\)D— (A= X\)Y(z,\) /x Y (s, N)JA(s)y(s, \)ds
= 0(z,\)C + ¢(z,\)D — (A= \)Y(z, /\')J/I Z*(s, N )A(s)y(s, N)ds,
for some C, D € C™ and any c € [a,b), where Y and Z are the fundamental matrices of (2. 1) and
(2. 11) respectively.: for this we have used [4, Chapter 3, (3.2)] and (2. 14). A standard argument

now yields the lemma (cf.[4, Chapter 9, Theorem 2.1] ). O
An immediate consequence of Theorem 5.4 is

Theorem 6.6 If all solutions of (2. 1) are in L(a,b), then, for any (k,Usy,) € Sa, M = My,
satisfies

M) = [L—(—p) / C* (1) Alx) (e, N) ] !
Mo+ (A — ) / ¢* (. 1) A(2)0(, \)da].
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