A computer-assisted existence and multiplicity proof
for travelling waves in a nonlinearly supported beam
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Abstract: For a nonlinear beam equation with exponential nonlinearity, we
prove existence of at least 36 travelling wave solutions for the specific wave speed
¢ = 1.3. This complements the result in [30] stating that for almost all ¢ € (0,/2)
there exists at least one solution. Our proof makes heavy use of computer assistance:
Starting from numerical approximations, we use a fixed point argument to prove
existence of solutions “close to” the computed approximations.
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1 Introduction

Inspired by an old report of the existence of travelling waves on the Golden Gate
Bridge in San Francisco in 1938, [2], the study of travelling waves in nonlinearly
supported beams was begun in [16]. The first type of nonlinearity that was studied
was a piecewise linear one, reflecting the fact that when cables loose tension, they
do not resist compression.

The first result, in [16], was partly numerical. The equation

Ut + Ugpaer + u+ =1 (1)

was studied on R! and solutions of the form 1 + y(z — ct) were found by reducing
the partial differential equation (1) to the ordinary differential equation on the real
line

yiv + C2y” + (1 +y)+ =1

and then solving explicitly the two linear equations y™ + c?y” +vy = 0 where y > —1

and y"+c?y” = 1 where y < —1. Solutions of both equations were constructed which
matched at the boundary y = —1 and which tended to zero exponentially as | x |— oo
by showing that solutions corresponded to zeroes of a certain transcendental function.
These zeroes were then found numerically for ¢ € [¢q, ¢o] where ¢; and ¢; were certain
constants satisfying 0 < ¢; < ¢y < V2.

Later, in [9], two important developments took place. First, a rigorous proof of
the existence of solutions of (1) was given for all ¢ € (0,+/2) via the mountain pass
theorem and the method of concentrated compactness. Second, the investigation of
interaction properties of this new class of waves was begun.

As explained in [9], the piecewise nonlinearity was not very suitable for highly
accurate numerical investigations of the initial value problem for (1), although some
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numerical experiments were promising. Therefore the authors in [9] decided to change
the nonlinearity in (1) to a smoother one with many of the same characteristics. The
model they chose was to replace the piecewise (1 4+ y)* — 1 by f(y) = ¢¥ — 1. Like
the piecewise version, this tended to —1 as y — —oo, f(0) = 0 and f’(0) = 1. This
substitution led to the discovery of a large class of travelling wave solutions with
extraordinary interaction, stability, and fission properties which remain unexplained
to date, [9, 14]. Initially, these solutions were calculated by the mountain pass
algorithm, [10], although later it became clear that shooting methods were a faster
and more efficient substitute, [7].

However, the substitution of the new nonlinearity, while making for beautiful

numerical results, introduced a new problem; the existence of homoclinic solutions
of

yiv+62y//+ey_1:0 (2)
was not proven.

Numerical evidence suggested that there were many solutions of equation (2),
with many different shapes. Some were stable, some unstable. Their minima ap-
peared to go to —oo as ¢ — 0. As ¢ — /2, they appear to go to zero, but this
becomes difficult to compute since they begin to resemble a sinusoidal function, and
are supported on larger and larger sets.

Until recently, there has been little progress on the proof of existence of solutions
of equation(2). In this journal, Smets and van den Berg [30] showed that for almost
all ¢ in the interval (0,1/2), there exists at least one solution.

In this paper, we go in a different direction to prove existence of many homoclinic
solutions of equation (2) for one fixed ¢, also assuming that ¢ € (0,v/2). We first
calculate approximate solutions numerically. The next step is to verify that there
are true solutions of (2) close to each of the approximate solutions. This is done by a
fixed point argument applied to the differential equation for the error function. The
general idea for this verification is presented in Section 3.

While we recognize that this result is not ideal, it is in some sense a complement
to that of [30], emphasizing that we expect eventually to establish existence for all ¢,
and presumably with larger multiplicity. The plan of this paper is as follows: follow-
ing some notational preliminaries in section 2, we outline the existence and enclosure
theorem which is at the heart of this paper. (This is the result that allows us to
”capture” true solutions in the neighborhood of approximate solutions.) Showing
how the essential constant needed for this theorem is obtained computationally is
the subject of section 4. Although not strictly necessary for the purpose of proving
existence of the solutions, we have also calculated the Morse indices of the solutions
we have verified. By this, we mean the number of negative eigenvalues of the lin-
earization about each solution. (In calculating this index, we restrict ourselves to the
space of symmetric solutions about the origin, since otherwise the solutions would
be degenerate with an eigenvalue of zero, by translation invariance.)

Section 6 is devoted to the way we found 40 approximate solutions, first rather
crudely, via shooting, and then how we refined about them so as to allow us, for 36
of them, to capture the true solutions via the enclosure method. Section 7 describes
the verified computation of some more constants needed for the method. In section



8, we summarize our verified results on the existence of 36 solutions of equation (2)
with ¢ = 1.3. This leads eventually to our final completely verified result:

Theorem 1. Forc = 1.3, equation (2) has at least 36 solutions. Their Morse indices
are giwen in Table 1.

In reading this section, it is important to distinguish between the verified results
and the approximations. When we speak of the existence of the 36 solutions and
their Morse indices, it is clear that these have been proved. However, when we speak
of the "branches” of solutions obtained by the continuation methods, this has not
been verified and has been included more as an aid to the reader’s intuitive under-
standing of the probable big picture of the solution set supported by ”reasonable”
computational evidence.

Finally, in section 9, we mention some open problems and directions for future
research.

The computer-assisted method used in this paper has been applied successfully

to several other problems already (see e.g. [24, 25, 26, 28]). Also other research
groups have developed methods for proving results in the field of boundary value
problems for ordinary and partial differential equations by computer assistance. M.
T. Nakao and his co-workers use a splitting of the problem into a finite-dimensional
part and an infinite-dimensional “remainder”; the former is treated directly by (ver-
ified) numerical methods, the latter is captured by projection error bounds (see e.g.
[19, 20, 21]). Another more recent approach is based on the Conley index and the
numerical verification of corresponding topological conditions; it is suited for prov-
ing the existence of stationary solutions for certain classes of problems, as well as for
detecting global dynamics (see e.g. [11, 13]).
It is also worth remarking that a result of three of the authors (which is similar to
the one presented here), [5], on a long-standing open question in elliptic partial dif-
ferential equations stimulated major progress and a solution of “most” of that open
problem. Certainly, we hope that a similar result occurs for this problem.

2 Basic notation and inequalities

Here we formulate and prove some basic inequalities which we will need for our
computer-assisted existence proofs. The fourth order problem (2) will be formulated
weakly in the space HZ(R) := {u € H*(R) : u(x) = u(—x) for all z € R}, which we
endow with the inner product

(u,v) o := (W, 0" 12 + o (u, v) 2, (3)

where (-, -) 2 denotes the usual inner product in L*(R), and o > 0 is some constant to
be specified later. Indeed, the inequality [|u'||2, < ||ul|2||u”| 2 ensures that (-, )
is equivalent to the “usual” H*inner product in HZ(R); it is however better suited
for our quantitative purposes.

Our weak formulation of problem (2) reads: Find u € HZ(R) such that

/[u”g@” — ' + (e" — 1)gldr =0 for all ¢ € H2(R). (4)
R



Note that it amounts to the same if we pose the equation in (4) for all ¢ € H?(R),
since the antisymmetric part of any ¢ € H?(R) satisfies the equation automatically
(as long as u € HZ(R)).

Besides HZ(R), we will need its (topological) dual space Hg?(R), endowed with
the canonical dual norm ||-||;7-2. Functions u € L%(R) := {v € L*(R) : v(z) = v(—x)
for almost all x € R} are identified with elements in Hg?(R) by

ulyp] == / up dx for all ¢ € HZ(R),
R
and their second derivative u” € Hg?(R) is defined by

u"[p] = / up” dz for all ¢ € HA(R).
R

Riesz” Representation Lemma for bounded linear functionals shows that the mapping

o { H(R) — Hg*(R) } (ie. (Pu)lg] = (u, @)y for u,p € HER)) (5)

u— u"” 4+ ou
is an isometric isomorphism.
Lemma 1. The following inequalities hold true:
a) |lullzz < Zllull gz for u € H3(R),

b) ull-2 < Zzllullze for u € LE(R),

c) ||ulloo < 5||u||H2 for u € HZ(R), where C = % (%)3/8,

d) e* — 1€ L4(R) for u € HZ(R), and
le* =1 —ullre < 55 exp(Cllull2)llul32
e) I(e* =1 —u)— (e’ =1—w)| < %exp(émaX{HUHH% [Vl z2})-
max{||ul| g2, [v||z2} - ||u—v|| g2 for u,v € HZ(R).

Proof: a) is trivial. b) follows from a) by the usual dual estimate

lu||gz-2 = sup

/ugpd:c‘ cp € HZR),p#0
Tl

[ullz2llellze 2 1
< P> e 2R 0 £ 0% < —|[ull o,
= Sup{ ||90||H2 2 S( > 9074 = \/E”u”L2

For proving c), we first note that H?(R) embeds continuously into the space of
bounded continuous functions on R (endowed with the sup-norm || ||) by Sobolev’s



Embedding Theorem; what we have to prove is the validity of the asserted embedding
constant C. For each x € R, we have

u(r)? =2 /uu’dt<2 / lun|dt, u(z)? = —2/uu’dt§2/|uu’|dt,

whence by addition we obtain

u(z)? < /|uu’|dt < ullzz ||« || p2- (6)

Moreover, |[u'[|2, < ||ullz2 ||u”||r2 by partial integration, which together with (6)

implies
3/2 1/2 16 3/2 3 1/2
e e T e S A ||/]-[(— )3
g
3/2 8 2 1214
_©m ] (@ et
S % + 1
3 (0 % 2 1 3 % "2
= 1(5) MM+ (2) Iz

3
1 /3\* o
- z<;> {ollullz + 12} = C*llullte,

which proves c¢).
To prove d) we note that, by Taylor’s Theorem,

1 1
|e“(x) —1—u(z)| = §e>‘9“(’“’)|u($)|2 < §€||”|I°°||U||oo lu(z)]
for each x € R and some 0 = 0(z) € [0, 1], whence
1
le* =1~ ullzz < Gell=lullo flellzz,

so that a) and ¢) give the assertion.
For proving e), we use Taylor’s Theorem again to obtain

|(e“(x) —-1- u(x)) — (e”( —1—o(z )‘ = |[ )=v(@) _ 1] (u(z) — v(x))‘
< [exp(max{|ulloo, [[v][eo}) — 1] |u(z) — U(ﬂf)\
< exp(max{||ullco, [[Vloo}) - max{|[ullo, [[V][oo} - lu(x) —v(z)],

whence again a) and c) prove the assertion. O

Remark 1. The proof shows that Lemma 1 remains true with H2(R) and L%(R)
replaced by the full spaces H?(R) and L?(R).



3 The Existence and Enclosure Theorem

In this section we will present the theorem forming the basis of our computational
existence and multiplicity proof for problem (2) (resp. (4)). Besides existence of a
solution u* € HZ(R), the theorem yields a bound for u* of the form

[u" — wllgz < o (7)

with w € HZ(R) denoting an approximate solution computed by numerical means,
and with a > 0 denoting a “small” constant provided by the theorem. By Lemma
la) and ¢), we obtain

1 .
lu" = wllz < —=a, [[u” ~wlle < Ca (8)

7

as consequences of (7).
Thus, with wy, ...,w, € HZ(R) denoting approximations such that, with oy, . .., oy
denoting the error bounds given by the theorem,

1
||wi—wj||H2 > Oéi—I—Oéj or ||w,-—wj||L2 > ﬁ(ai—l—aj)

or Jlwi — willee > Clag + ) (9)

for i,j = 1,...,k, i # j, our method yields the existence of k different solutions
ul,...,u} € H3(R) and thus, the desired multiplicity result. Note that (9) can be
checked rather directly from the numerical data.

So let w € HZ(R) denote an approximate solution to problem (4) obtained by the
numerical methods described in Section 6. We need the following two quantities:

(i) a bound ¢ > 0 for the defect (residual) of w:
|w™ + A" + e —1||g-2 < 6, (10)
the computation of which will be described in Section 7,
(ii) a constant K > 0 such that
lullz2 < K || Lul|g-2 for all u € HZ(R), (11)
with L : H2(R) — Hg*(R) denoting the linearization of (2) at w:

Lu = u® + A" + ¢“u, ie. (Lu)[yp] = / (u"@" — Pu' ¢’ + e“up)dz.  (12)

R

Clearly, K satisfying (11) is a bound for the inverse operator L~!. The calculation
of K, which is the most involved part of our method and needs computer-assisted
methods of its own, will be described in Section 4.



Theorem 2. Suppose that some o« > 0 exists such that

5<

C A
— 2_ )
5 xp(w + Ca), (13)
where @ := supw(x), and
zeR

C .
aK—exp(w+ Ca) < 1. (14)
g
Then, there exists a solution u* € HZ(R) of problem (2) resp. (4) satisfying (7).
Proof: The first step is to prove that
L: HiR) — Hg*(R) is one-to-one and onto. (15)

Indeed, L is one-to-one by (11). Moreover, L is clearly bounded, and defined on the
whole Hilbert space H2(R); hence L is closed. Therefore, L=! is closed, and moreover
bounded by (11). Thus, the domain of L™}, i.e. the range of L, is closed. For proving
(15) we are therefore left to show that the range of L is dense. Since ® defined in (5)
is an isometric isomorphism, this density requirement is equivalent to the density of
{ 'Ly : ¢ e HA(R)} in HZ(R). So let v € HZ(R) be in its orthogonal complement,
ie.

(v, L)y =0 for all p € HE(R).
By (5), this implies

0= (Lo)[o] = / (" — ' + e pv)dz = (Lv)[¢]

R

for all ¢ € HZ(R), i.e. Lv = 0. By (11), this yields v = 0 and thus, proves (15).
Via the transformation v = v — w problem (2) is therefore equivalent to

=L ' [e“(e" —1—v)+ (W' + P+ — 1)] = T, (16)
which amounts to a fixed-point equation for T': H2(R) — HZ(R). Let
D:={ve H:R): ||v]|m < a},

with « satisfying (13) and (14). Using (16), (11), Lemma 1b) and d), (10), and (13),
we obtain for v € D:

ITollgz < K [||e‘”(e” — 1 —)||g-2 + || + A"+ e — 1||H—2}

/\

1 ~
< K e 2\/_eXp(Cllv||m)||U||?ﬂ+5
G
< K %eXp(wJF(YO‘)O‘ u




i.e. TD C D. Moreover, by (16), (11), Lemma 1b) and e), we obtain for v, v € D:

[T —=Tollg2 < Klle?[(e” : L—v) = (" = 1= 0)]|lg-=
1
\/_ \/_

whence by (14) T is a contraction on D. Thus, Banach’s Fixed-Point Theorem yields
a fixed point v* € D of T. By (16), u* := w + v* is therefore a solution of problem
(2) resp. (4) satisfying ||u* — w||g2 < a. O

< < exp(Caallo — ol

Remark 2. a) Suppose that (11) holds for some “moderate” K. Then, the crucial
conditions (13) and (14) are obviously satisfied for some “small” « provided that ¢
is sufficiently small, which means according to (10) that the approximate solution w
has to be computed with sufficient accuracy! So the “hard work” of the proof is left
to the computer, a fact which describes the general idea of computer-assisted proofs.

b) For practically computing a constant « satisfying (13) and (14), we first solve
(13) (with “<” replaced by “=") approximately by a Newton iteration, starting from
a(® = (. The result of the iteration is then slightly enlarged, e.g. multiplied by 1.01,
which gives a candidate for the constant o we are looking for. The two inequalities
(13) and (14) are then checked using interval arithmetic [12, 17]. The computation
of (an upper bound for) the number @ needed for this check will be mentioned at
the beginning of Section 7.

Remark 3. If we had formulated problem (2) in the full space H?*(R) instead of
H 2(]R) it would have been impossible to compute a constant K satisfying (11) (with

HZ(R) replaced by H?*(R)), since L is (at least close to being) not one-to-one on

H2(R). In fact, supposing that a solution u* of problem (2) exists and defining L as
L by (12), but with the exact solution u* in place of the approximation w, we obtain
Lv = 0 for v := (u*), as is readily obtained by differentiating equation (2) (after
proving some higher regularity of u*). This reflects the fact that together with a
solution u*, a whole continuous family of solutions is obtained simply by translation
of u*.

Using however the space H2(R) of symmetric functions, translations of a solution
u* are no longer in the space, as well as the derivative (u*)’, whence L (and L) may
well be one-to-one on H2(R). Indeed, our numerical results based on the methods
developed in the next section prove that (11) holds true (with “moderate” K) for
the examples under consideration.

Another (minor) advantage of using the space H2(R) is the fact that the symme-
try reduces the numerical effort.

4 Computation of K

In this section, we describe how a constant K satisfying (11) can be computed
explicitly, as needed for Theorem 2. We will use analytical as well as additional
computer-assisted arguments.



With @ : H2(R) — Hg*(R) denoting the isometric isomorphism introduced in
(5), we note that

| Lul| -2 = ||~ Lul| g2 for u e HZ(R), (17)
and that, by (12),
(@' Lu,v) o = (Lu)[v] = /(u”v” — u'v' + e*uv)dx (18)
R

for u,v € HZ(R), which in particular implies that ®~1L is (-, ) g2-symmetric. Since
®~1[ is moreover defined on the whole of HZ(R), it is therefore selfadjoint (and
bounded). Thus, using (17) and the spectral decomposition of ® 'L, we see that
(11) holds if and only if

v :=min{|A| : A is in the spectrum of ® 'L} >0, (19)

and that in the affirmative case one can choose any

K>1 (20)
Y
Thus, we have to compute a positive lower bound for v (proving simultaneously that
(19) holds true). The first step is to calculate the essential spectrum e of @~ 1L
(defined as the set of all accumulation points of the spectrum, i.e. the spectrum
except isolated eigenvalues; note that eigenvalues of infinite multiplicity cannot occur
for our ODE problem). For technical simplification, we will now assume that

the approximate solution w has compact support, (21)

in coincidence with our numerical schemes described in Section 6. Recall also that
¢ € (0,4/2) throughout the paper.

Lemma 2.

11+1 L(, 12+& 1
ess — | & D - - -, ma y
4 2 o 4 o 4o x o

Proof: First we show that ® 'L is a compact perturbation of ®~'L,, where the
constant coefficient operator Lo : H2(R) — Hg*(R) is given by

Lou == u" + *u” + u. (22)

Indeed, due to (21) there exists Ry > 0 such that e¥ — 1 = 0 outside [—Rq, Ry]. Now
let (u,) denote a bounded sequence in H2(R). By Sobolev-Kondrachev-Rellich’s Em-
bedding Theorem, there exists a subsequence (u,, ) which converges in L%(—Ro, Rp).
Thus, ((L — Lo)un,) = ((¢¥ — 1)u,,) converges in L%(R), and hence in Hg?(R).
Therefore, (®~(L — Lg)uy, ) converges in HZ(R), whence ®1(L — L) is compact.

9



Since the essential spectrum is invariant under relative compact perturbations
[15, Chapter IV, Theorem 5.35], the essential spectra of ®~'L and ®~!L, coincide.

So we are left to show that the essential spectrum o2 of ®~! Ly equals I, the interval

on the right-hand side of the asserted equality. An essential tool is the polynomial
family

m(s) =1 =Ns'=c?s>+1 -0 (seR, AeR). (23)
An elementary calculation shows that, for all A € R\ {1},
px has real zeroes < X € 1. (24)

To prove that 6%, C I, let A € R\ I. We show that \ is in the resolvent set of

ess

®~11, ie. that, for each r € HZ(R), there exists a unique u € HZ(R) satisfying
(@ 1Ly — Nu=r.
By (5) and (22), this equation reads

(1= Nu” +u" + (1 = Xo)u=1r" + or,
and with F denoting the Fourier transformation, it is equivalent to
pa(s)Flul(s) = (s" + o) Frl(s) (s € R). (25)

Since A € R\ [ and thus p, has order 4 and no real zeroes by (24), the rational
function ¢(s) := (s + o)/pa(s) is bounded on R, whence indeed u := F~[¢gF][r]]
solves (25), and s*|F[u](s)| < const - s*|F[r](s)| for s € R, implying u € H*(R).
Moreover, u is symmetric since F preserves symmetry and r and ¢ are symmetric.
Thus, v € HZ(R). Finally, u is the unique solution of (25) since py has no zeroes
and thus » = 0 implies u = 0.

Conversely, let A € I. First we exclude the case A = 1. Then, (24) shows that py
has at least one real zero so. We choose a function § € C'*°(R) satisfying = 1 on
(—00,0], 6 =0 on [1,00), and

up(x) := cos(spz)f(z —n)f(—x —n) (z € R, n €N).

Clearly u,, € C*°(R) with compact support in [—n — 1,n + 1], and u,(z) = cos(sox)
for z € [-n,n]. Thus, for x € [—n,n],

Loty — Au, = [s5 — sy + 1 — A(sg + 0)] cos(sox) = pa(so) cos(soz) = 0.

Consequently,

n+1
1 2
| Loty — A®uy ||%-2 < ;||L0un — \u, |7, = . / | Lottn, — A\Puy,|* dz

n

is bounded as n — oo, whence

(@ Lo — N[z is bounded as n — oo. (26)

10



Moreover,

n
lallZe > olun]2: > / cos(sor)? di

—n

tends to infinity as n — oo, which together with (26) yields that \ is in the spectrum
of ®1Ly. This implies A € o since ®' Ly has no eigenvalues, which follows from
the fact that all solutions of the constant coefficient equation Lou — APu = 0 are
linear combinations of fundamental solutions of the form z*ef* (with k € Ny, p € C)
none of which (except 0) is in HZ(R).

We are left to prove that A = 1 is in 02_. Again, since ®~' L has no eigenvalues,
it suffices to show that A = 1 is in the spectrum of ®~'L,. Indeed, if 1 were in the

resolvent set, the equation ®~'Lou —u = r, i.e.

i

Au' + (1 —o)u=r"+or,

would have a unique solution u € H2(R) for each r € H2(R), implying 7 € L%(R)
for each r € HZ(R), which is obviously false. O
Remark 4. The general assumption ¢? < 2 ensures that minoes = %(1 + %) —
\/i (1 — %)2 + % is positive.

Since besides 0o only isolated eigenvalues of ® 'L contribute to its spectrum,
we are left to compute a positive lower bound for

70 := min{|A| : \ is isolated eigenvalue of ®'L}. (27)

Since, by Lemma 2, v defined in (19) is given by

1 1 1 1\?2
= mi 14+ =)=/ (1-= — 2
yomin oo b (142 M nhel )

we then have the desired positive lower bound for ~.
For computing a lower bound for 7y, we need eigenvalue bounds. We will describe
their computation by additional computer-assisted means in the following subsection.
Mainly for numerical reasons, it turns out to be advantageous to transform the
eigenvalue problem ®~!Lu = \u as follows. We restrict the possible choices for o by
requiring

o >¢eY (with @ = supw(x)). (29)

zeR

Using (5), (12), (29) we find that, for u € HZ(R) \ {0},

(u—®Lu,u) g = (Pu — Lu) [u] = /[cz(u')2 + (0 — e“)u?]dx > 0, (30)

R

11



Le. Ipam — @ ', is positive, and hence one-to-one. The selfadjointness of ®~'L
implies the selfadjointness of

R:= <1H%(R) - (I)‘lL) " D(R) € HA(R) — H(R). (31)

Noting that, by (30), all eigenvalues of =1L are less than 1, we immediately deduce
from (31) that

\ is eigenvalue of @' < is eigenvalue of R. (32)

1—A

The spectral mapping theorem [15, ITII. Theorem 6.15] gives a corresponding relation
also for the complete (and thus, also for the essential) spectra: The essential spectrum
Yess Of R is characterized by

1
Eessu{oo} = {m HP S Uess}-

Using Lemma 2 (and the fact that 0 > 1 due to (29)), we therefore obtain

-1
1 1 1 1\?> ¢t
Eess_ 5(1_;>+\/Z(1_;> +E , 00 . (33)

Note that min Y. > 1 since ¢? < 2.
Moreover, using (31), (5), (12) we find that, for k € R,

u€ D(R), Ru=ru<suec HiR), u=k ([Hg(R) - <I>_1L> u
s u € HAR), du= k(®u — Lu)

S ue Hiy(R), u" +ou=k(—c*u" + (0 — “)u)

= H%(R), (u, )2 = KN (u, ) for all ¢ € H%(R), (34)

where

N(u, ) := / AU + (0 — e)uyp) da. (35)
R

The methods presented in the next subsection are used, in our numerical examples,
to obtain eigenvalue bounds for problem (34), (35), and thus for R. The relation
(32) then gives the desired eigenvalue bounds for @1 L.

Note that for computing a positive lower bound for v, (defined in (27)), we need
bounds for the eigenvalue(s) of ®~'I which are next to 0. Thus, (32) shows that
we need bounds for the eigenvalue(s) of problem (34), (35) which are next to 1 (and
therefore in particular are below the essential spectrum Yo of R resp. problem (34),

(35)).

12



It turns out that the best way to solve this task is to compute bounds for the n
smallest eigenvalues K1, ..., Kk, of problem (34), (35), together with a lower bound
p < kny1 (or p <inf X if no (n + 1)-st eigenvalue exists). Here, n has to be large
enough to give the desired separating distance between 1 and the eigenvalues of (34),
(35) with guarantee, which is e.g. the case if k, 1 < 1 < Kk, or if K, < 1 < p (and
the enclosing intervals are accurate enough). Note that this includes the possibility
of choosing n = 0, in which case we have to compute p < k1 (or p < inf X if no
eigenvalue exists) and need 1 < p.

4.1 Variational eigenvalue bounds

Here, we will describe variational methods for computing two-sided bounds for
the n smallest eigenvalues (with suitable n € Np), and a lower bound p for the
(n+ 1)-st eigenvalue, if it exists, of problem (34), (35), or of the more general eigen-
value problem

(u, ) = kN (u, ) for all p € H, (36)

with (H, (-,-)) denoting a separable complex Hilbert space, and N a bounded, posi-
tive and Hermitian sesquilinear form on H. Under these hypotheses, problem (36) is
equivalent to an eigenvalue problem for a selfadjoint operator in H (which is R in our
concrete case (34), (35)). In this sense the usual spectral terms are well defined for
problem (36). In particular, let o € RU {400} denote the infimum of the essential
spectrum of problem (36), and suppose that oo > 0.

Poincaré’s min-max principle [31, Chapter 2| is the basis of obtaining upper eigen-
value bounds via the well-known

Rayleigh-Ritz method (see, e.g. [29, Theorem 40.1 and Remarks 40.1, 40.2,
39.10]) Let n € N and vy,...v, € H be linearly independent trial functions. Define
the matrices

Ao = ((0i,05))ij=1,.m, A1 := (N(vi,9}))ij=1,..n (37)
and let k1 < Ry < --- < R, denote the eigenvalues of

Then, if k, < 09, there are at least n eigenvalues of (36) below g, and the n smallest
of these (counted by multiplicity), ordered by magnitude and denoted by K1, ..., Kn,
satisfy

Since the matrix eigenvalues ki,...,k, can be enclosed by more direct methods
combining numerical linear algebra ideas with interval analysis (see [3]), the Rayleigh-
Ritz method provides a rather direct access to upper eigenvalue bounds.

For computing lower bounds we use the method given by the following theorem.
In its original form, it is due to Lehmann [18], and later it has been considerably
improved by Goerisch (see e.g. [4]) in its range of applicability. The following version
(admitting essential spectrum) can be extracted from [32, Theorem 2.4].
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Theorem 3. Let (X,b(-,-)) denote a complex Hilbert space and T : H — X an
isometric linear operator, i.e., b(Typ, TV) = {p, ) for all p,vb € H. Let vy,...,v, €
H be linearly independent. Let wy, ..., w, € X satisfy

(T, w;) = N(p,v;) for all ¢ € H. (40)
In addition to Ay and Ay in (37), define the matriz
Ay == (b(wi, w5))ij=1,...n- (41)

Let some p € (0, 0¢] be chosen such that there are at most finitely many eigenval-
ues of (36) below p, and such that

[v € spanf{vy, ..., v, } and (v, ) = pN(v, ) for all p € H] = v =0. (42)

Let 11 < -+ < 713, < 0 denote the negative eigenvalues (counted by multiplicity) of
(AO — pAl).T = T(AO — 2pA1 + p2A2>CC (43)

(here, the matriz on the right-hand side is positive definite). Then, there are at
least k eigenvalues of problem (36) below p, and the k largest of these (counted by
multiplicity), denoted by kf < kh_| < -+ < K{(< p), satisfy

P
1—Tj

Kf > p— (1=1,...,k). (44)

Proof: As mentioned above, Theorem 3 follows essentially from [32, Theorem
2.4]. Only for proving that problem (36) has at least k eigenvalues below p, we need
a little additional argument. Indeed, since (43) has k negative eigenvalues and the
matrix on its right-hand side is positive definite, the matrix Ay — pA; has at least k
negative eigenvalues. Thus, problem (38) has at least k eigenvalues below p, whence
the assertion follows from the Rayleigh-Ritz method. O

To obtain two-sided eigenvalue bounds for problem (36), together with the guar-
antee that no eigenvalue has been missed between the enclosing intervals, we first
compute approximate eigenelements vq,...,v, € H by numerical means, which we
use as trial function for the Rayleigh-Ritz method and for Theorem 3. Here, n is
chosen such that &, the largest eigenvalue of problem (38), turns out to be less than
00; if this is false even for n = 1 (which never happens in our examples), we try n = 0
in the following, putting formally kg := —oo. If however n > 1, the Rayleigh-Ritz
method gives at least n (smallest) eigenvalues k1, ..., k, of (36) below og, which
satisfy (39). If furthermore we choose p such that

’%n <p S 0o (45)

(which in particular implies condition (42)), and such that there are at most finitely
many eigenvalues of (36) below p, the matrix on the left-hand side of problem (43)
is clearly negative definite, whence problem (43) has k = n negative eigenvalues
7 <--- <7, <0, and thus Theorem 3 gives the lower bounds (44) for the n largest
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eigenvalues of (36) below p. We know that these are the n smallest eigenvalues
K1, ..., Ky provided that

p S Kn41 (46)

if an (n + 1)-st eigenvalue Kk, 1 < 0¢ exists, or if p < gy (as already stated in (45))
if such an eigenvalue does not exist. Then, (44) yields

P -

Kj>p— (j=1,...,n), (47)

- I —Tny1y
which together with (39) gives the desired two-sided bounds for the n smallest eigen-
values of (36).

The task of deciding whether &, exists, and (in the affirmative case) of comput-
ing a lower bound for it which allows to choose p satisfying (45) and (46), is not easy.
In particular, note that (46) requires a lower eigenvalue bound as an assumption for
Theorem 3, while Theorem 3 is just aiming at lower eigenvalue bounds. However, a
rather rough lower bound for k,; is sufficient in (46) (to produce very precise lower
bounds for k1, ..., k, by Theorem 3). Such rough lower eigenvalue bounds can often
be obtained by a homotopy method, as explained in the next subsection.

In the course of this homotopy, we will make strong use of the following corollary
which is readily obtained from Theorem 3 by choosing n = 1 (and noting that (42)
then follows from condition (48) below).

Corollary 1. Let X,b,T as in Theorem 3. Letv € H, v # 0, and w € X such that
(40) holds (with w,v instead of w;,v;). Moreover, let p € (0, 00| be chosen such that
there are at most finitely many eigenvalues of (36) below p, and

{v,0)

N(w.v) < p. (48)

Then, there is an eigenvalue k of problem (36) satisfying

pN(v,v) — (v, v)
pb(w, w) — N(v,v) S K< (49)

We close this subsection by commenting how we choose the terms X, b, T (and
wy, ..., w, € X) needed for Theorem 3, for our concrete problem (34), (35) (and for
the problems (60) below, with obvious changes to be made in the following). Let

= LA(R) x I4(R), Ty := (f:) for ¢ € HZ(R),

<< > ( gg >> = (D, &V 2 + o (w® @) . (50)
(R) —

Clearly, T : H%( X, b(-,-)) is isometric. Condition (40) now requires that, for

1=1,.
(", w2 + o (o, w2 = (0, =0 + (0 — €)v;) 12 (51)
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for all ¢ € HZ(R). So we need to choose

wi! € HY(R), (52)
and (51) is then equivalent to prescribing
1 w
w® =~ (") = )+ (o= ey (53)

In principle, every choice for wél) satisfying (52) is possible, but a more detailed

analysis of the proof of Theorem 3 shows that “good” eigenvalue bounds can be
expected (only) if one chooses

w; ~ ij,L, (54)
where the “Lehmann choice” w; € H2(R) is the solution of
(@, w; 1) = N, v;) for all o € HA(R). (55)

(The fact that (55) is usually not solvable in closed form is the reason why
Goerisch’s extension via X, b, T is so helpful!) If we now assume again that vy,..., v,
are approximate eigenfunctions to problem (34), with corresponding approximate
eigenvalues &1, ..., k,, we see that (55) gives w; | ~ Faj_lvj, whence (54) requires

m

1
wi’ ~ —vl. (56)

J Yj
Kj

(Note that the second approximate equation w@) ~ R_lvj in (54) cannot be used

)

because w ) is fixed by (53)). In general, w;’ cannot be chosen equal to &; v ! due

to condition (52). So one needs to approzimate &5 v} in HZ(R) to obtain w; 0 , which
in our practical examples we do by mterpolatlng Rj -t vy in the finite dlmensmnal

subspace of H2(R) which we use for numerical approx1mations (see Section 6).

4.2 A homotopy method

In this subsection, we will describe a method for computing a constant p satisfying
(45), (46), as needed for our eigenvalue enclosures. For this purpose, we use a
homotopy method which connects our given problem (36) to a “base problem” with
some knowledge on its spectrum. In fact, the version of the homotopy method
described here is new (on a general level); compared with the versions e.g. in [22,
23, 27], it needs much less computational effort.

Suppose that a bounded, positive, Hermitian sesquilinear form Ny on (H, (-,+))
is at hand such that

No(u,u) > N(u,u) for all u € H, (57)

and moreover, some py € R and some ny € Ny are known such that the “base
problem”

(u, @) = kO Ny(u, @) for all ¢ € H (58)
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has precisely ng eigenvalues mﬁm < ... < figl%) (counted by multiplicity) in (0, po),
and such that py < 0(()0) (with 0(()0) denoting the infimum of the essential spectrum

of (58)). For simplicity of presentation, we assume moreover that the infima of the
essential spectra of problems (36) and (58) coincide, i.e. 0((,0) = 0. We define

Ng(u,v) := (1 — 8)No(u,v) + sN(u,v) for u,v € H, s €0,1], (59)
and consider the family of eigenvalue problems
(u, ) = k¥ N, (u, ) for all p € H. (60)

By (57) and (59), Ng(u,u) is non-increasing in s, for each fixed v € H. Thus,
Poincaré’s min-max principle shows, since 0(()0) = 09, that the infimum of the essential
spectrum of (60) equals o for all s € [0, 1], and that, with Hss) < /Qgs) < --- denoting

the eigenvalues of (60) below g, we have for 0 < s <t < 1:
/@'gs) < /@'gt) for all j such that /@'gt) exists (implying that /@'gs) exists). (61)

To start the homotopy (in the case ng > 1) we suppose that the gap between

/Q%OO) and pg is not too small. For some s; > 0, we compute approximate eigenpairs

<R§.sl), ﬁ§31)> (j =1,...,ng) of problem (60), with #™”, ..., &% ordered by magni-

tude. Indeed, if s; is not too large, we may expect that (and easily check if) we find
the “full” number ng of a%jproximate eigenpairs such that, in addition, the Rayleigh
(

quotient formed with 117({901 which approximately equals F@ifol)) satisfies

<~(81) ~(81)>

Ung " Ung

< £o-
N31 <a£lsol)7 a%%l))

(62)

Corollary 1, applied to problem (60) with s = s; and with v := 117({?), therefore yields

the existence of an eigenvalue x**) of that problem in the interval given by (49), the
lower bound of which we now denote by p;, i.e. we obtain

p1 < kB < py. (63)

Furthermore, since problem (58) has precisely ng eigenvalues in (0, po), property (61)
shows that problem (60) (with s = s1) has at most ngy eigenvalues in (0, po), which
together with (63) implies:

problem (60), with s = sy, has at most ng — 1 eigenvalues in (0, py). (64)

Let s1 be chosen “almost” maximal with property (62), so that the inequality in (62)
is “almost” an equality (or that s; = 1, in which case the argumentation further
below completes the homotopy). The structure of p; (given as the lower bound

in (49)), and the choice of our test functions then show that also p; is “not far”

ifolll and Kﬁfol) exist and are “well separated” (as can be

(s1)

no—1

below py. Consequently, if &

guessed on the basis of the approximations & and Fiffol)), we expect that the (only)
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eigenvalue in (63) is /17({901), and thus, that problem (60) (with s = s;) has precisely

no — 1 eigenvalues in (0, p1). (We could check if this expectation is true, using the
“hard” statement (64) and a Rayleigh-Ritz computation, but this is not necessary.
We simply continue on the basis of this expectation, and the final Rayleigh-Ritz
computation at the end of the homotopy will either prove it a posteriori, or show
that the homotopy was not successful. Of course, we will not use this expectation
for proving further intermediate “hard” statements like (66) below.)

In the second homotopy step (taking place if ng > 2 and s; < 1), we repeat the
above procedure with sy in place of 0, ng — 1 in place of ngy, and p; in place of py: For
some So > s1 (to be chosen “almost” maximal) we compute approximate eigenpairs

(/%§32),ﬁ§32)) (j=1,...,n9— 1) of problem (60) such that

(ﬂ(SQ) a(sz) >

nog—1?r “no—1
< pP1, (65)
N52 </17"52302217 a’EL()Qll)

whence Corollary 1 gives an eigenvalue x(2) in the interval [ps, p1), with py denoting
the lower bound now occuring in (49). Furthermore, (64) and (61) show that problem
(60) (with s = s2) has at most ng — 1 eigenvalues in (0, p1), whence altogether

problem (60), with s = sy, has at most ng — 2 eigenvalues in (0, ps). (66)

As before, we see that, if 55230222 and /iffozll are “well separated”, we may expect that

(60) (with s = s5) has precisely nog — 2 eigenvalues in (0, p).

We go on with this algorithm until, for some r € Ny, either s, = 1 and r < ny.
or s, < 1 and r = ng (in which case the homotopy cannot be continued beyond s, );
here, we formally put sq := 0. In both cases, we obtain in analogy to (64), (66), that
problem (60), with s = s,, has at most ny — r eigenvalues in (0, p,). Using (61) in
the case s, < 1, we obtain the same statement with s, replaced by 1. Thus, in both
cases,

problem (36) has at most ng — r eigenvalues in (0, p,.),

which gives (46) for p := p, and n :=ng —r.
Finally, if n > 1, we perform a Rayleigh-Ritz computation for problem (36) and
check if condition (45) is satisfied (as it will be if our “expectations” mentioned before

are correct, including the well-separatedness of £ and po, /iffolll and kY, 55150222

and /@7(180221 etc., and if the numerics are sufficiently accurate).

If this check is successful, i.e. (45) and (46) are satisfied, we can compute the
desired two-sided bounds for the n smallest eigenvalues of problem (36) as described
after Theorem 3.

Remark 5. Note that the additional numerical effort needed for this version of the
homotopy method consists mainly of approzimate computations (for problem (60)
with s = $1, 89, ..., 8,) which are comparatively cheap, and a rigorous check only of
the simple conditions (62), (65) etc. In particular, there is no need for the rigorous
(interval analytic) solution of larger matrix eigenvalue problems during the homotopy,
as it was the case in earlier versions [22, 23, 27].
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Remark 6. In all our numerical examples, the assumptions that /@7(2)) and po, K

and k5, 55230222 and /@,(180221 etc., are “well separated”, which we made in the above de-

scription, are satisfied; the smallest distance occurring in this context in the examples
is about 0.001, which is still enough separation.

If in other applications this assumption happens to be violated, we need to apply,
in the course of the homotopy, Theorem 3 with n “locally” equal to the number
of clustered eigenvalues, instead of n = 1 (i.e. Corollary 1). Then, at each of the
points si, So, ..., the whole cluster occurring there is “dropped” (and the number
of eigenvalues to continue with is reduced correspondingly), instead of the single

cigenvalue k5 resp. /1,(180221

We are left to describe the choice of the form Nj, defining the base problem (58).
for our concrete problem (34), (35). We choose points 0 < & < --- < & such that
supp(w) C [—&, &k (compare assumption (21)), and compute values wy, ..., w, € R
such that (with & := 0)

(s1)

no—1

etc.

w(x) >wjforz e [§1,&], j=1,... k. (67)

We define the step-function w € L%(R) by

(o) i { w; forzel&a,&), j=1,... .k } (68)

- 0 forx € [, 0)

and w(z) := w(—x) for z < 0. The form Ny is now defined as N in (35), but with
w in place of w. Since w > w on R, condition (57) is satisfied. So we are left to
compute (enclosures for) all eigenvalues k() of the base problem (58), i.e. of

ue HER), u®+ou=rO(=u" + (0 — e2)u) (69)

in (0, pg), where now we choose py in (1, Xegs], Xess given by (33), large enough
to justify the expectation that at the end of the homotopy there is still enough
information about the spectral points of (34),(35) neighboring 1, see Figure 2.
Note that w has compact support, so that the proof of Lemma 2 and the arguments
following it work as well with w in place of w, i.e. the essential spectrum of the base
problem (69) is also given by (33).

First we calculate a rough lower bound for all eigenvalues of problem (69): Con-
dition (29) gives 0 < ¢¥ < ¢¥ < g, whence |0 — ¢¥||oc < 0. Thus, with (k) u)
denoting an eigenpair of (69), we find (with ® given by (5))

lulliz = (|Pull-2 = £Ol = u" + (0 — )ul| -2

1 (0) (0)

v 2 N
Jo

K
I = c*u" + (0 = e2ulle < —= [¢*|u"]| 2 + o]|ull2]

NG

IN

(0)
< = Vel

and thus, £© > <% + 1)

D=
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So we have to compute (enclosures for) all eigenvalues of problem (69) in the
interval

ct = 1 1 1 1\* ¢
I=||—+1 - 1-= —{1—= —
<0’+) ’ 2< U>+\/4( 0') +4U

On each of the intervals (§;-1,&;),7 = 1,...,k, and on (&, 00), problem (69) has
constant coefficients by (68), whence a (k(”-dependent) fundamental system of the
differential equation in (69) can be put up in closed form on each of these k + 1
intervals. On (&, 00), precisely two of the four fundamental solutions happen to
decay (exponentially) at oo, for each x© € I. On (0,&), precisely two of the four
fundamental solutions have vanishing first and third derivative at 0, for each k(® € I.

So each eigenfunction u of problem (69), which is automatically in H2(R) by equa-
tion (69) itself, and satisfies v’(0) = «”"(0) = 0 by symmetry, is a linear combination
of two (k(®)-dependent) fundamental solutions on (0, &) and on (&, 00), respectively,
and of four (k®-dependent) fundamental solutions on each of the remaining intervals
(&-1,&) (j = 2,...,k). The H*-smoothness requires four matching conditions at
each of the points &), ..., &. This generates a (4k x 4k)-determinant D(k(®), with
k(©-dependent but explicitly known entries, which has to vanish in order to give an
eigenvalue k.

To find all zeroes of D in the interval I (including the information that these
zeroes are simple), we use interval analytical means, in particular, interval bisection
and the interval Newton algorithm; for details, see [1, 12]. These methods give the
precise number of eigenvalues of problem (69) in [/, which in our examples varies
between 11 and 23, with a choice of k, the number of breakpoints, between 5 and 12.

-1

5 Morse index

The eigenvalue enclosures for problem (34), (35), which are needed for our computer-
assisted existence proof, also give a rather direct access to the Morse index of the
enclosed solutions.

Without the imposition of symmetry on our solution space, all our solutions
would be degenerate since they are translation invariant. By removing the translation
invariance, we arrive at a linearized eigenvalue problem in which there are a finite
number of negative eigenvalues. Our initial hope in doing this calculation was that
this might throw some light on stability properties of the waves. So far, this has not
been successful.

This is in marked contrast with parabolic problems like the Swift-Hohenberg
equation, which are first-order in time, where the Morse index directly determines
the stability of steady states. (Of course, the general methods of this paper apply
equally well to stationary solutions of such parabolic equations.)

For computing the Morse index, we have to find the number of negative eigen-
values of the problem

ue HYR), Lu= \u, (70)
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with L : HA(R) € LZ(R) — L%(R) defined by

A

Lu = u™ 4 u” + e* u, (71)

where u* € H3(R) denotes the solution under consideration. Let L : HYR) —
HZ*(R) be defined by the same differential expression as L.

Lemma 3. L and ® 'L have the same finite number of negative eigenvalues.

Proof: First we note that
- c
Oess (L) C [1 vy oo), (72)

which can be seen as follows. L is a relatively compact perturbation of i)o, defined
as L but with 1 in place of %", because for each sequence (u,) in H4(R) such that
(u,) and (Lou,) are bounded in LE(R), [|u” |22 = (Lotn, tn) 12 — (2" + Uy, tp) 12 <
Cy + Collull|| 2, and so (uy) is bounded in HZ(R), whence for each compact interval
[-N,N] (N € N) a subsequence converges in L%(—N, N), and so a diagonal-type
subsequence (uy, ) converges in L%(—N, N) for every N, which implies convergence
of ((e* — 1) up,) in L%(R) since u* — 0 as z — £o00. Consequently, L and Ly have
the same essential spectrum. The characteristic polynomial py(s) = s* —c2s? +1—\
of Lo — A (arising by Fourier transformation) has no real zeroes (1 e. A belongs to
the resolvent set of Lo; compare the proof of Lemma 2) if A < 1 — <, which implies
(72).

By similar arguments (see also the proof of Lemma 2), we obtain ces(® L) to
be the interval given in Lemma 2. In particular, our general assumption ¢ < /2
implies that the minima of the essential spectra of L and of @11 are both positive.
X Consequently, L and ® 1L both have at most finitely many negative eigenvalues
AN < < )\ and A\; < --- < A\, respectively, with corresponding eigenfunctions
Uty ,ﬁm € HY(R) and dy, ..., 45 € H3(R). The eigenvalue equation itself shows
that a fortiori @y, ..., 4y € H(R). Moreover, for each u € H(R),

~ ~

(D Lu,u) g2 = (Lu)u] = (Lu, u) 2,

and thus, if m > 1,

5 , (&~ Lu, u) o
M, = min max —_—
UCHZ(R) subspace ueU\{0} <u’ u>H2
dim U=m .
Lu,u)p2
< max u

u€span {U1,...,0x }\{0} <u, u>H2
<0,
whence Poincaré’s min-max principle and the positivity of min aess(@_li) show that

JESES ;\m, and in particular m > m. Trivially, this also holds if m = 0.
The reverse inequality m > m follows analogously. O
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So we are left to compute the number of negative eigenvalues of ®~1L. For this
purpose, let w € H2(R) denote the approximate solution from which u* was obtained
via our computer-assisted proof, with error bound « (satisfying (7), (8)) obtained
from Theorem 2. Moreover, let L be given by (12), i.e. as L, but with e in place of
e, Let 0g := Min Oegs (P L) = min 0ess (P L), where the latter equality holds since
®'L and ®'L are compact perturbations of each other. oy is known by Lemma 2.
Finally, with C given in Lemma 1c¢) and @ defined in Theorem 2, let

1 .
ni=—e (eco‘ - 1) : (73)
o
Note that n is “small” when the error bound « is “small”.

Lemma 4. Let \; < --- <\, denote the m smallest eigenvalues of @~ L (counted by
multiplicity), and suppose that Ny, +n < 0g. Then, ®LL has at least m etgenvalues
below oy, the m smallest of which, denoted by Ay < -+ < Ap (and counted by
multiplicity) satisfy

If there is no (m + 1)-st eigenvalue of O~1L below og, then there is no (m + 1)-st
eigenvalue of ®~1L which in addition is below oy — 1.

Proof: Using (8) and (73) we obtain
e = el = [l (¢ = 1) [l < € (el 2% 1) < o, (75)
Moreover, for all u € HZ(R),
(O Lu, u) e = (Lu)[u] = / [(u")? = A (u)? + e“u?] d,
R
and correspondingly for @' L. Together with (75) (and (3)) this gives

@l Oty (B ) (76)
{u, u) g (u, u) g {u, u) 2

for all u € H2(R), whence (74) follows from Poincaré’s min-max principle.
Supposing now that ® 'L has an (m + 1)-st eigenvalue which is below oq — 7,

we obtain from the first inequality in (76), using the min-max principle again, that

®~1[ has an (m + 1)-st eigenvalue below oy. This completes the proof. O

Corollary 2. Let \q,..., A\, as in Lemma 4, and suppose that A\, +n < 0, and that
n < 0g. Suppose moreover that either

i) there exists an (m+ 1)-st eigenvalue Ny of ®1L (such that Ay, ..., Amy1 are
the m + 1 smallest ones), and A\ypy1 — 1 > 0, Api1 + 1 < 0o,

or
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i) there is no (m + 1)-st eigenvalue of ®~1L below oy.
Then, ® 1L has precisely m negative eigenvalues.

Proof: The assertion is an immediate consequence of Lemma 4 (applied with
m + 1 in place of m in case 7)). O

By the bounds computed for the eigenvalues of problem (34), (35) in the course
of our computer-assisted existence proof, we have a direct access to bounds for the
eigenvalues Ay, ..., \u(, A1) of 1L needed for Corollary 2, by the equivalences
(32) and (34). So if 1 defined in (73) is sufficiently small (as indeed it turns out to
be in our concrete examples), Corollary 2 and Lemma 3 together yield the precise
number of negative eigenvalues of problem (70), i.e. the Morse index of u*.

6 Computation of approximations

In this section, we give a brief description of the numerical methods we used to
compute approximate solutions w € HZ(R) for the given problem (2) or (4), and
approximate eigenpairs for problem (34), (35) or (60), (59), respectively. Finding
“many” approximate solutions for problem (2) (and avoiding the trivial solution) is
not easy. We use a shooting method introduced in [8] for this purpose, which we de-
scribe in Subsection 6.1. To obtain defect bounds § (see (10)) which are small enough
to satisfy (13) and (14) (compare Remark 2a)), we need to improve the accuracy of
the shooting approximations. Starting from these, we use a Newton iteration, and
a spectral collocation method (in a trigonometric approximation space) for the lin-
ear subproblems, to obtain highly accurate approximations; see Subsection 6.2. To
compute the approximate eigenpairs needed, we use an approximate Rayleigh-Ritz
procedure, described in Subsection 6.3.

6.1 The shooting method

As in [7], in order to compute starting approximations for problem (2), we apply a
shooting method introduced in [8]. Let us first rewrite the fourth order equation as
a first order system. We denote z = (2, 21, 22, 23)7 = (v, %/, v",y"")T and write

2 = (21,20, 23, —C2p — e + 1)T =: f(2) . (77)

We seek solutions with an even symmetry, therefore we complement (77) by the
boundary conditions

2(—0) =0, 21(0) = 23(0) =0, (78)

and consider (77) on (—oc,0]. For ¢* € (0,2) the Jacobi matrix Df(z)|.—o has
exactly two eigenvalues with positive real parts (hence (78) represents four boundary
conditions). Since they are complex conjugate, there exist real unit vectors vy, v such
that vy £ ivy are the corresponding eigenvectors.
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Let € > 0 be a small fixed number. After omitting terms of higher order in € the
boundary condition at infinity can be approximated by z(—R) = ev, where R > 0
is some unknown number and v € span{vy, v} is a unit vector. System (77) will be
solved numerically on the finite interval (—R,0) with this new boundary condition.
Since R is an unknown parameter, a transformation of variables £ = (R + z)/R,
w(&) = z(x) is performed in order to work on the unit interval (0,1). We obtain a
new problem

w) = Rwy, w) = Rw,, w)= Rws, wh= R(—c*wy —e"° +1), (79)

subject to w(0) = e(vy cosn + vo siny) |

where 1 chooses a unit vector in span{v;,vs}. Hence for ¢ fixed and a choice of
parameters R and 7, (79) represents an initial value problem that can be solved
using some standard numerical integration technique. Let us denote w(&; R, n) the
solution of this initial value problem given by R and 7. Our goal is to find R
and 7 such that the solution also satisfies the two remaining boundary conditions
wi(1; R, m) = ws(1; R,m) = 0.

Newton’s method will be used to find the shooting parameters R and 7. Denote

R wi(1; R, m) )
0= , d(0) = ) .
Given an initial guess (), we generate a sequence of improved guesses

-1

o+ = g — [DB(0™)] " B(6™) | (80)

such that ®(#™) — 0 as n — oo. The derivatives

Qwi  Odwy

n)\ __ OR o}

DRO™) = | S s
OR O ) ey =RV p=n(®)

can be obtained by appending additional equations to system (79). Define

ow; ow; ,
wj+4=a—RJ, wj+8=a—n] j€10,1,2,3} .

After differentiating these new variables with respect to £ we get

/ / /
Wy = Rw5+w1, Wy = Rw6+w2, Wg :Rw7+w3,
wh = R(—c*ws — €"°wy) — cPwy — ™0 + 1, (81)
/ / / / 2 w
wy = Rwy, wy = Rwy, wyy = Rwyy, w) = R(—c wy — e wg)

subject to w;j14(0) =0, w;15(0) = e(—vy;sinn+ vy cosn), j€{0,1,2,3},
where the new initial conditions were obtained by taking a derivative of the initial
conditions in (79) with respect to R and 7.

For given shooting parameters R and 1 systems (79) and (81) can be integrated
from £ =0 up to £ = 1. Then the Newton step (80) can be evaluated.
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6.2 The spectral Newton-collocation method

In this section we are describing how we improve the accuracy of the relatively
rough approximations obtained by the shooting method. We look for high accuracy
approximations in the space

Vry :=span {ppi: ke {l,...,M}}

for fixed (“large”) R > 0 and M € N, where, for k =1,..., M,

o sin (755 sin ((2k — 1)7%EE)  for [#] < R
Prulr) = { 0 for x| > R [~ (82)

Clearly Ve C HZ(R), since ppi(£R) = Crip(ER) = 0 and pri(z) = Yri(—1)
forall z € R, k € {1,..., M}. The first step is to subject the (discrete) shooting
approximations to an interpolation process to obtain approximations wy in Vg s,
which are then used to start a Newton iteration (n =0,1,2,...):

(i) Find v, € Vg such that

O+ U 4 e, & — (W + w4 e — 1), (83)

(il) Wpi1 = wy + Vp,

until “convergence” is achieved (in the sense that some suitable norm of v, is below
some tolerance).

The approximate solution of the linear subproblems in (83) is carried out by
collocation at equidistant collocation points §; := (ﬁ — 1) R(G=1,...,M), ie.
v, € Vg is required to satisfy the linear differential equation in (83) at these
collocation points; note that for symmetry reasons no additional collocation points
in (0, R) are needed. Rewriting ¢pr s on [—R,0] as a difference of two cos-functions,
we see that these collocation conditions lead to the linear algebraic system

[C(D? = D) — C(D — D) + Wy (C — O)|b, = Ry, (84)
with M x M matrices C,C, D, D, W,,, and R, € RM defined by

Cjy := cos ((k’ — 1)j%) , éjk = COS (k‘jl) ,

M
2 B 2
D = diag ((k - 1)2%> . D:=diag <k2%> , (85)

W, = diag (¢")), R, ;= =2 [l + Py + e — 1] (&),

n

which all are very simple to compute.

Since in our 36 successful examples it turns out that M between 1200 and 2500 is
sufficient, problem (84) can be solved directly by Gaussian elimination. The solution
vector 9, € RM defines the approximate solution v, of (83) by

M
Un = Y Onk Prik- (86)
k=1
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6.3 Computation of approximate eigenpairs

In principle, we could use the (simple) collocation method described above also for
the eigenvalue problems (34), (35) or (60), (59), respectively. This would however
destroy the symmetry of the arising matrices. For this reason, we prefer to use a
Rayleigh-Ritz procedure for this task. First we give a description for problem (34),
(35). We choose some R > R (e.g. R =2R), with R denoting the value used in (82)
to compute the approximation w, and calculate (approximations to) the integrals
(j,k=1,...,M)

Ajp = _SO%,J- Crirt OPR; SOR,k] dzx,

Bji = _02 go'RJ Crp T (0—¢”) op; gpgyk] dz. (87)

:ltﬂ'\;g :ltﬂ'\;g

For this purpose, we compute an approximation p € Vi 5, to e¥ — 1 by interpolation,
and replace e¥ by 14 p in (87). Now, all integrals in (87) can be calculated in closed
form.

The matrix eigenvalue problem

Az = KBz, (88)

with A = (Ajx), B = (Bjk), is the Rayleigh-Ritz approximation to problem (34),
(35) in Vg 5. We solve (88) (approximately) by standard numerical methods. The
results give approximate eigenpairs to (34), (35), using a formula analogous to (86)
for the eigenfunctions.

For problem (60), (59), with N, defined as described after (68), we form the
additional matrix B = (B,;) given by

R
Byoim [ [ ¢y it (0= ) pny i o (59)
"R
which is possible in closed form since w (defined in (68)) is piecewise constant. The
matrix eigenvalue problem

Az = k¥[(1 — s)B + sB|z (90)
is the Rayleigh-Ritz approximation to problem (60), (59), and is again solved (ap-
proximately) by standard methods.

7 Some verified computations

In several places in the previous sections, the rigorous computation of certain terms
is required, in order to preserve the proof character of our method. For many of these
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terms, it suffices to evaluate them simply in interval arithmetic [12, 17] instead of
standard arithmetic, e.g. the constants in Lemma 1, the right hand side of (13) and
the left-hand side of (14), the infimum of o (Lemma 2) and of Yo (33), etc. Some
other terms need additional effort, e.g. the constant @ needed in Theorem 2 and in
(29), (73), and the constants w; in (67) (which we obtain by grid point evaluation of
w and rough bounds for ', all in interval arithmetic), and the matrix eigenvalues &
of problem (38) and 7; of problem (43). For the verified solution of these eigenvalue
problems, we use the methods in [3] providing enclosures for eigenvalues of symmetric
interval matrix eigenvalue problems. For putting up the matrices for these problems
(see (37), (41)), as well as for evaluating the left-hand sides of (48), (49), (62), (65)
etc., we need verified (interval) evaluations of expressions of the form

(0,0)gr2, N(v,0), No(v,0), blw,w), (91)

with given (approximate eigenfunctions) v, o € V ,, w and w of the form (52), (53),
and with N, Ny, and b defined by (35), the lines after (68), and (50), respectively.
Again, after approximating e* — 1 by some p € Vg, (e.g. by interpolation), and
replacing e¥ by 1+ p in N(v,?) and in b(w, @), all integrals in (91) can be computed
in closed form, using interval evaluations of sin and cos. The error in N(v,?) caused
by the approximation is less than or equal to

le¥ =1 = plloolll 2 |0]] 2

and can therefore be bounded by standard techniques (involving higher derivatives
of e and p, to be bounded by interval arithmetical tools). Analogously, the ap-
proximation error in b(w, w) is bounded. Taking these error bounds into account we
obtain the desired enclosures for the terms in (91).

Finally, we comment on the verified computation of a defect bound § (see (10)).
In view of Remark 2a), it is worth putting some effort into this computation in order
to obtain a “small” bound §. Again we start with a (high accuracy) approximation
p € Vrm to e® — 1, and a bound 9, for the error:

e =1 —pllrz < . (92)
Let v := ®~! [w“’ + 2w +p] € HZ(R), i.e., v is the solution in H2(R) of

v 4 ov=w" + 20" +p (in Hg?*(R)). (93)

Since w and p are in Vg y, a special (symmetric) solution ¢ of (93) on [—R, R] can
easily be calculated. Using fundamental systems on (—oo, —R], [— R, R], and [R, c0),
respectively, we find that the general piecewise solution of (93) which is symmetric
and decays at £00, is given by

e®[Acos(arx) + Bsin(ar)] (—oco <z < —R),
v(xz) = ¢ 0(x) + Ccosh(ax) cos(ax) + D sinh(ax)sin(az) (—R <z < R),
e”“[Acos(ax) — Bsin(az)] (R <z < 00),
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with a := 0%/\/5, and free constants A, B,C, D. Since (93) is required to hold in
HZ*(R), we find four matching conditions at R:

v(R—=0)—v(R+0)=v(R-0)—v(R+0)=0,
V' (R—0) = 0" (R+0)=w"(R—-0), v"(R—0)—v"(R+0)=u"(R-0),

which determine A, B, C, D uniquely. The corresponding matching conditions at —R
are then automatically satisfied by symmetry. Consequently, v is known in closed
form, and (an upper bound for) ||v|| g2 can be computed.

Now the desired defect bound can easily be obtained, using (93), Lemma 1b),
and (92), by

[w" + W+ e — 1| g2 < W + AW+ plla—2 + e =1 = pllu—
. 1 1
< va + O"UHH—Z + ﬁ”ew I p||L2 < ||v||H2 + %(52 =: 9. (94)

Note that, in realistic applications, the approximation error bound 05 is much smaller
than the essential term ||v|| 52, whence the defect bound § in (94) is close to the true
defect norm.

8 Numerical results

In this section, we report on the numerical results obtained, which finally prove the
desired existence and multiplicity result for problem (2) with the specific choice

c=13. (95)

A large number of numerical solutions was found using the shooting method, as Fig.
1 shows. The graphs show profiles of travelling waves with the fixed value of speed
¢ = 1.3. The shooting method provided even more numerical solutions. For example,
there seems to be a family of solutions with large amplitudes. Here we included only
the simplest two of these, number 12 (lower and upper branch) in the Figure 1.
The 40 shooting approximations plotted in Fig. 1 were investigated in detail accord-
ing to our method.
Starting from these shooting approximations, we applied the Newton-collocation
method with R between 70 and 110 and M between 1200 and 2500. In all 40 cases,
the Newton iteration “converged” within about 6 steps, with a tolerance of 1077, to
highly accurate approximations w.
Applying the methods described in Subsections 4.1 and 4.2, we computed enclosures
for the lowest eigenvalues of problem (34), (35), providing a separation between 1 and
the spectrum of (34), (35). Figure 2 illustrates the course of the homotopy algorithm
leading to these eigenvalue enclosures for one particular of the 40 approximations.

So we were able to compute the constants K satisfying (11), via (20), (28), (27)
(32), (34).

The results are displayed in Table 1, as well as the defect bounds 0 (see (10))
computed according to Section 7, and the error bounds a provided by Theorem 2;

i

28



the crucial conditions (13), (14) are satisfied in 36 of the 40 cases. In the remaining
4 cases, the constant K is too large, and no « satisfying (13), (14) could be found
for the values of d obtained within our approximation quality.

Let us discuss briefly why the solution-pairs 9 and 11 fail. Consider an approx-
imate solution w symmetric about x = 0. One way to produce a new approximate
solution is to superimpose w(x + L) and w(xz — L). This gives a symmetric function,
and if L is large, one that we can imagine as a plausible approximate solution. As
we vary L continuously, we get a one-parameter family of approximate solutions.
This at least suggests that if we linearize about this approximate solution, at least
one eigenvalue would be very close to 0, and verification would fail. This is what we
think is going on in solution-pairs 9 and 11, where two symmetric copies of solution
pair 1 are “glued” together. This is one possible explanation why the verification
failed for these pairs.

Of course, another possibility is that our calculations were not accurate enough.
Using higher M (e.g., M = 3500) does not help much because then rounding errors
prevent smaller defect bounds d. So we would need, in addition, an arithmetic with
longer mantissa to make ¢ substantially smaller. We did however not carry this out,
and are content with 36 verified solutions.

The last column of Table 1 shows the Morse index of the respective solution u*
obtained according to Section 5.

It should be remarked that the defect bounds ¢ obtained in the 36 cases are not
directly comparable because different approximation accuracies (i.e. different M and
R in the approximation space Vg ) have been used in order to satisfy conditions
(13), (14). E.g. for solution 6 (upper branch) we used M = 2500 to manage the
large constant K.

Finally, it is easy to check that condition (9) holds true. This completes the
desired existence and multiplicity result, i.e. the proof of Theorem 1.
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lower branch upper branch
Solution K | 0 ‘ o ‘ Morse Index K ‘ 0 ‘ Q | Morse Index
1 1.51e401 | 5.36e-08 | 8.05e-07 1 2.48e+01 | 4.21e-08 | 1.05e-06 1
2 6.52e+01 | 4.56e-08 | 2.97e-06 2 1.27e4-02 | 4.40e-08 | 5.59e-06 3
3 1.22e4-02 | 2.06e-08 | 2.50e-06 1 6.21e+01 | 4.62e-08 | 2.87e-06 2
4 3.61e+02 | 4.87e-08 | 1.76e-05 2 8.55e+02 | 4.41e-08 | 3.80e-05 3
5 8.06e+02 | 5.32e-08 | 4.33e-05 1 1.09e4-02 | 4.02e-08 | 4.37e-06 2
6 2.11e+403 | 5.18e-08 | 1.18e-04 2 5.24e+03 | 6.53e-11 | 3.42¢-07 3
7 5.11e+03 | 4.70e-08 | 4.33e-05 1 3.48e+02 | 4.33e-08 | 1.51e-05 2
8 3.19e+04 | 1.13e-10 | 3.72¢-06 1 2.07e+03 | 1.62e-10 | 3.34e-07 2
9 7.87e4+04 | 1.57e-10 - - 1.99e+05 | 5.37e-10 - -
10 3.19e+04 | 1.57e-10 | 5.21e-06 1 1.30e4-04 | 2.62e-10 | 3.44e-06 2
11 1.87e406 | 7.69e-11 — - 8.12e+04 | 3.08e-10 - -
12 9.20e+01 | 5.18e-08 | 4.77e-06 2 1.14e402 | 2.65e-08 | 3.02e-06 3
13 1.20e4-02 | 4.69¢-08 | 5.62e-06 3 2.35e+02 | 4.40e-08 | 1.04e-05 4
14 2.65e+02 | 2.03e-08 | 5.35e-06 2 1.65e4-02 | 4.47e-08 | 7.35e-06 3
15 7.00e+02 | 5.25e-08 | 3.71e-05 3 1.56e4-03 | 1.67e-08 | 2.61e-05 4
16 3.80e+02 | 4.85e-08 | 1.85e-05 2 2.32e+02 | 4.62e-08 | 1.07e-05 3
17 1.45e+02 | 4.97e-08 | 7.16e-06 3 2.23e+02 | 1.65e-08 | 3.65e-06 4
18 1.97e402 | 2.11e-08 | 4.16e-06 4 3.70e+02 | 1.73e-08 | 6.38e-06 )
19 4.12e+03 | 5.50e-08 | 4.16e-06 4 6.81e+03 | 3.34e-09 | 2.37e-05 5
20 2.43e+03 | 7.36e-08 | 2.02¢-04 4 2.17e+02 | 6.38e-10 | 3.34e-07 5

Table 1: Verified upper bounds for the crucial constants K, «, . The 40 approxi-
mations (36 of which are verified) are ordered as in Figure 1.

9 Concluding remarks and open questions

In addition to the shooting computations for ¢ = 1.3, a numerical continuation was
performed. Figure 3 shows parts of curves in the plane given by ¢ on the horizontal
axis and the H2-norm |ul|g2 = (||ul|?, + ||u”||2,)"/? on the vertical axis. As in [7],
we observe that the two branches marked by 1 in Fig. 3 appear to bifurcate from
uw = 0 at ¢ = /2 (this is difficult to compute). The rest of the curves consist of
two branches (lower and upper) that persist up to a certain value of ¢ < v/2. To
prevent the figure from being too cluttered, only a small part of the curves close to
the respective turning point is shown. It was numerically observed, however, that
for decreasing values of ¢ the branches seem to exist and to become unbounded as
c— 0.

We are not claiming that we have completely solved the problem of describing
the solution set of equation (2) for all values of ¢ in (0,1/2). We now know that (2)
has at least one solution for almost all ¢ in (0,+/2). We also know that for ¢ = 1.3,
there are at least 36 solutions. Many questions remain.

e The most obvious question is whether at least one solution exists for all ¢ in

(0, v2).
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e Next, of course, can one prove that there is more than one solution for all ¢
in (0,4/2)? It appears that near ¢ = v/2 there are exactly two solutions but it
is very difficult to compute as the solutions tend to spread out and resemble
sinusoidal functions.

We wish to remark that at least in principle (i.e. up to problems of numerical
accuracy or computing time), an extension of our method (see [26]) is able to
prove existence of solution branches (uc)ceje, eo], With [c1, ¢2] denoting a compact
subinterval of (0,4/2). In this way, large parts of the bifurcation diagram in
Figure 3 could possibly be verified. We have not tried this yet, mainly for
reasons of numerical effort.

e One suspects that the branches which we have shown in Figure 3 continue all
the way to ¢ = 0, perhaps with more branches accumulating in the process.
Can one prove that as ¢ — 0, the number of solutions goes to infinity?

e The most vexing question of all, barely mentioned in this paper, is the question
of the stability, fusion, and interaction (soliton) properties of these travelling
waves. For more on these properties, the reader is referred to [7, 14].

e Is there any connection between the Morse index of a solution and its other
properties, such as for example, its shape?

e For the piecewise linear model that preceded equation (2), transversality ar-
guments are used in [6] to generate solutions by essentially patching together
a primary solution and a translate by a large distance and showing there is
a true solution close to this approximate solution. Also with the exponential
nonlinearity of this paper, there is a temptation to produce many approximate
solutions by gluing together widely separated single solutions. As mentioned
earlier, we suspect that any time we try to produce true solutions by apply-
ing our method to this candidate to obtain a verified solution, we will find an
eigenvalue very close to 0, which we expect to cause the enslosure method to
fail. So for the exponential, as opposed to the piecewise linear model, some
new techniques appear to be needed for this type of gluing to work.
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as ¢ — 0. What this paper proves is that at ¢ = 1.3, 36 solutions exist.
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