One-dimensional degenerate operators in LP—spaces
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Abstract

We comprehensively study a one dimensional elliptic operator degenerating of first
order at the boundary in an L? setting. Here the coefficient of the drift term determines
the regularity and the possible boundary conditions of the problem.
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1 Introduction

The study of degenerate elliptic operators started in the fifties and has been the object of
many researches in a wide generality, since the seminal works of W. Feller [5], [6] in one
dimension and J.J. Kohn and L. Nirenberg [12] in higher dimensions. Of particular interest
is the case of degeneracy at the boundary for second-order elliptic operators, and naturally
the results heavily depend on the behavior of the coefficients at the boundary, i.e., on the
order and direction of degeneracy. The general setting is presented in the classical book
[17]. A challenging borderline case occurs if the diffusion coefficients fully degenerate of
first order in the normal direction to the boundary. In this case the drift term in normal
direction is (roughly speaking) of the same order as the diffusion part and the sign and size
of the drift coefficients play a crucial role. Here the model problem is given by the operator

L=—yA+1by- YV, +bd,

on the halfspace R = {(z,y) € R* ' xR |y > 0}, where by € R*~', b € Rand A = A, +9;.
It was shown in [8] that —L with domain D(L) = {u € W'P(R%) |u(-,0) =0, Lu € LP(R"})}
generates an analytic semigroup on LP(R"}) if b > —1/p. (See also [11] and [14] for related
results.) We note that in the case of tangential first order degeneracy (where yA is replaced
by yA, + 97 in the model problem) the corresponding result holds for all b € R, see [9] and
[10]. The techniques of [8] heavily depend on the condition b > —1/p which allows to control
gradient terms by the operator L employing a Hardy type inequality which seems to fail for
b < —1/p and without Dirichlet boundary conditions. In fact, it was noted in Example 2.11
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of [8] that the generation result of this paper breaks down for b < —1/p, already in the one
dimensional case. To our knowledge, for b < —1/p so far there is no investigation of the
domain of L and it is not known whether L generates an analytic semigroup on LP, except
for the symmetric case b = —1.

In this note we study the one dimensional case, i.e., the operator

A=—2D?+bD,

comprehensively. It turns out that in the case b < —1/p the behavior of A is rather complex
and has several quite unexpected features. We want to use the gained insights in future
work on the n—dimensional case. But we are convinced that the precise results and direct
computations in the one dimensional case are of independent interest.

To simplify the analysis we work on the interval (0,1) and impose Dirichlet boundary
conditions u(1) = 0, throughout. On the interval (g,1), we can equip the operator A with
Dirichlet (u(e) = 0) or Neumann (u/(¢) = 0) boundary conditions at x = ¢, letting finally
€ — 0. In Proposition 2.4 we first recall that the Dirichlet approximation yields a generator
—A, with domain D, on LP(0,1) for all p € (1,00) and b € R, cf. [2]. The generated
semigroup is analytic by Theorem 2.13, which essentially follows from known results for
spaces of continuous functions in [3] and [14]. It is clear that A, is a restriction of the
operator A defined on the maximal domain

Dypmax = {u € LP(0,1) N W2P((0,1]) | Au € LP(0,1),u(1) = 0}.

For a more detailed investigation we further use the domains

1
Dp,en = {U S Dp,max / X |Ul|2 |U|pi2 de < OO} R
0

Dy reg = {u € WHP(0,1) |zu” € LP(0,1), u(1) = 0}.

We write Dg,cn and Dg,mg if we include the condition lim, ,o+ u(xz) = 0 in the respective

space. Mainly using the explicit expression for A L in Theorems 2.9, 2.12 we show that
Dp = Dp,reg = Dp,max = Dp,en if b<-1- %v
Dy =Dpreg = Dpen # Dpmax if —1— % <b< -1,
D,=DY . =D} o po if —1<b<-—1/p,

p,en p,max 2= " p,reg
—no _ no _ o :
Dp - Dp,en - Dp,max - Dp,reg if b> _1/p'

There are several striking features: For b < —1 we cannot impose boundary conditions at
z = 0 in the sense that any restriction of —A to a proper subset of D) max, respectively
Dy, en, cannot be a generator. Further, the regularity contained in the domain varies with b.
In particular we loose the WP regularity precisely for b € (—1,—1/p] where we still keep
the Dirichlet boundary condition at 0.

To see another surprising fact, let u. € W2P(g,1) N Wol’p(s, 1) satisfy Au. = 1 and let
b < —1/p. In Proposition 3.1 we then show that the norms |[u.||, of the approximations
explode as ¢ — 0, although D, ¢ W?(0,1) for b < —1.

Motivated by these observations, in Section 3 we also study Neumann approximations of
A on (g,1), where we impose u.(g) = 0 instead of u.(e) = 0. It turns out that for b < —1 in
the limit we obtain again A,, but now with an approximation which is stable in W*. For b €



(—1,—1/p) the approximations are again stable in W1 and now they give a new generator
—A, n of an analytic semigroup with domain D(Ap n) = Dp reg. Compared to the operator
A, constructed via Dirichlet approximations, we loose the boundary condition u(0) = 0,
but gain the optimal regularity « € W1?(0,1). See Proposition 3.4 and Theorem 3.6 for
these results. Guided by these results, we want to tackle the n—dimensional case in future
work via Neumann type approximations.

We further note that the L? case was already studied, see [18] or [19]. The discussion in
spaces of continuous functions falls into Feller’s theory, which is reminiscent of the underlying
diffusion model even in its terminology and is based on a classification of the endpoints. We
refer to Section VI.4.c of [4] for a synthetic presentation of this theory. Concerning the
operator A, the endpoint = = 0 is entrance for b < —1, regular for —1 < b < 0 and ezit for
b > 0. According to Feller’s theory, in order that —A generates a semigroup in C([0, 1]) no
boundary conditions have to be imposed at 0 in the entrance case and the domain of the
generator is the maximal one, whereas in the regular case general elastic barrier conditions,
which include both Dirichlet and (degenerate) Neumann conditions, can be imposed and in
the exit case Dirichlet boundary conditions can be imposed. We point out that our results
are coherent with the case C([0, 1]), which is formally obtained by letting p — oc.

2 The semigroup constructed via Dirichlet type approx-
imations

After some preparations, we first recall in Proposition 2.4 the construction of the Cjp-
semigroup on LP(0,1) associated with A via approximations of Dirichlet type. We then
study in detail the domain of its generator depending on p and b. These results finally
allow to deduce the analyticity of the semigroup from know results for spaces of continuous
functions.

Throughout, let p € (1,00) and € € (0,1/2]. For simplicity we consider real-valued func-
tions (except when dealing with analytic semigroups where we employ the complexification
of the operators on real spaces). We set

Dy =W?P(e,1) N W, P (e, 1).

We start by proving dissipativity estimates on D, . being independent of €. Here and below,
we put u* = u |[u[P~2 for a function wu.

Lemma 2.1. Letu € D, .. Then

1 1
/ Auu® dz = (p — 1)/ x|u | [uP~? d. (2.1)

Proof. For p > 2, an integration by parts yields

1 1 1
/ Auu*dr = (p — 1)/ x| julP~2dx + (b + 1)/ u'ululP~? dx
€ € >4

1 1
b+1 d
:(p—l)/ J;\u’\z\u|p72dar:—|—i — |ulP dx
- P . dx
1
— 1) [ o2 e
€
For p € (1,2) one obtains this result by a regularization, see Theorem 3.1 in [15]. O



Lemma 2.2. There exists a constant w, > 0 such that for every uw € Dy, .

1 1
w ulP dz < Auu* dx. 2.2
p [ lul

Proof. Let w € Dy, x € (¢,1), and p > 2. Using Holder’s inequality, we obtain

1 1 1 3 1 3

4 d 4 p/, 2_9 p{/ 2 -2 r‘{/ dy}z

wx)|z2 == —|u 2dy=—= | vululz27dy < = o |ulP~*d )
)l == [ =5 [wuptay < B [ypRp2a) | [ 2

Equality (2.1) now implies
1 2 [ 1 1
[ u@rae< B [ogslay [ ytPur2dy =t [ Ava i,
€ 0 £ €

_ : 1
where w, ' = ﬁ Jo [ogy| dy.
If p € (1,2), we start with |u(x)]

5 = limy_,o+ (Ju(x)? + 6|% — %) and estimate similarly.

O

Corollary 2.3. For any u € Dy and A > —w, we have
A+ wp)llully < [[A+ Aullp.
Moreover, (A, D, ) is invertible in LP(e,1) and (A — wp, Dy ) is mazimally accretive.

Proof. Let u € D, . and A > —w,. Multiplying the equation Au+ Au = f by u*, integrating
over (e,1) and using (2.2) and Holder’s inequality, we deduce the first statement. The second
assertion is easy to check and it implies the maximal accretivity. O

Proposition 2.4. For every b € R there exists a subspace Dy C Dp max such that —A, =
(—A, D,,) generates a strongly continuous positive semigroup (T(t))e>o with || T(t)]| < e~ “»t
fort > 0. In particular, (A, Dp) is invertible. Moreover, there is a sequence €, — 0 such
that for each w € D,, there are u, € D, ., with Au, = Au on (e,,1) and the 0 extension of
u, converges to u in LP(0,1) as n — oo.

Proof. Our reasoning differs a bit from that in Theorem 3.1 of [2] since we avoid monotonicity
arguments. This has the advantage that we can use the proof given here also for Neumann
boundary conditions in Proposition 3.4, where we do not have monotonicity.

Take f € LP(0,1) and A > 0. For n € N with n > 2, let —A,, be the generator
in LP(1/n,1) obtained in Corollary 2.3 with &, = 1/n. We denote by E, the extension
operator by 0 from LP(1/n,1) to LP(0,1) and by R,, the restriction operator from LP(0,1)
to LP(1/n,1). We set u, = u,(\, f) = En(A+A,) 1R, f. Observe that ||tun|leoc < A7 f]loo
if f is bounded. Corollary 2.3 says that (A + wp)||unllp < || f]]p. One can now deduce from
standard elliptic regularity results that a subsequence of u,, converges weakly to a function
win W2P((0,1]) and strongly in W,-?((0,1]) and that Au+ Au = f on (0,1). It then follows
that wu, converges pointwise to u and u(1) = 0 (we do not relabel the subsequences).

The above subsequence may depend on f and A, but for rational \; > 0 and a fixed
dense sequence of bounded f; we can find a diagonal sequence such that u,, converges for all
i,j € N. Moreover, u,, converges to u in LP(0,1) as n — oo for these A; and f; by Lebesgue’s



theorem. By density, it follows that u,, — u in LP(0,1) as n — oo for all f € LP(0,1) and
1 € N. Corollary 2.3 thus implies

A+ wp)llully < [[fllp = [1Au+ Aull, (2.3)

for all f € LP(0,1) and A = A;. From Corollary 2.3 and Vitali’s Theorem (see Theorem
A.5 in [1]), we further deduce that E, (X + A,,) "' R,, converges strongly to as n — oo for all
A > —w,. Hence, (2.3) holds for all A > —wy,.

Let \,p > 0 and f € L?(0,1). We set R(A)f := u. Clearly, AR()) is uniformly bounded.
We observe that R(\) > 0 since u,, and hence u, are positive if f > 0. The resolvent
equation and R, E, = I yield

Eo(p+A) 'Ry —E, (AN +A4,) 'Ry = (A= p)En(n+ A)) 'RyE, (N + An) 'R,

In the strong limit n — oo, we conclude that {R(A); A > 0} is a pseudo resolvent. Take
v € C%(0,1) with support in [a,b] C (0,1) and set g = (A + A)v € LP(0,1). We then
have u,, as above. For 1/n € (0,a), the function v — wu,, belongs to the kernel of A\ + A,,
and hence v = u, for all 1/n € (0,a). Therefore, R(\)g = v and R(\) has dense range.
Since R()) is injective, Proposition I11.4.6 of [4] then shows that R(\) = (A + A4,)~! for
an operator —A, with dense domain D, which generates a contraction semigroup 7'(-) on
L?(0,1) by the Hille-Yosida theorem. The positivity of the resolvent implies the positivity
of the semigroup. From the above results we also infer that D, C W2”((0,1]) and A,u = Au
for w € D,,. Finally, (2.3) implies that A, —w,, is accretive, and hence maximally accretive,
so that ||T(t)|| < e~*rt for all ¢ > 0. O

To describe D,, we use the spaces

Dypmax = {u € LP(0,1) N W2P((0,1]) | Au € LP(0,1),u(1) = 0},

loc

1
Dp,cn = {U S D‘mmax / X |U/‘2 |U|p72 dr < OO} s
0

Dy reg = {u € WHP(0,1) |zu” € LP(0,1), u(1) = 0}.

(Here the subscript ‘en’ stands for ‘energy’.) The superscript 0 will indicate that we include
the condition lim,_,o+ u(z) = 0 in the respective space. We continue with several simple
observations, omitting the straightforward proof of the next lemma.

Lemma 2.5. The kernel of A on Dy max s spanned by the functions p(x) = 2Pt — 1 if
b# —1 and by p(x) = logz if b = —1. The limit of pp(x) as x — 0 exists if and only if
b > —1, and it is then equal to —1. Moreover,

1
wp € LP(0,1) <= ¢ € Dpmax <= b>—1— e

©p € Dpen <= b>—1,

1
©b € Dpreg <= b> —];.

Lemma 2.6. Let b € R. We have Dy C Dy en € Dp max-



Proof. We only have to show the first inclusion. Let v € D,. From Proposition 2.4 we know
that u is the limit in L?(0,1) and in W,2P((0,1]) of (0 extensions of) functions u, € D,

loc

with Au,, = f. Equality (2.1), Holder’s inequality and Corollary 2.3 yield

1 1
(- 1)/ @ up | [un [P~ da :/ Ay, iy, da < || Au [ [Junllf ™ < w77 [ F]15-
g g

n n

Letting n — oo, we deduce from Fatou’s Lemma that
1
(p— 1)/ x| PulP~? dx < wéfp I £1I5 < +o0. O
0

Lemma 2.5 implies that for certain values of b some of the above inclusions are in fact
equalities.

Lemma 2.7. We have Dy = Dy en = Dp max forb < —1— %, and Dy = Dy en # Dp max for
—1-2<b< 1.

Proof. Let b < —1 — %. Then A is injective on D) max by Lemma 2.5. Since it is bijective
on D, by Proposition 2.4, the asserted equalities now follow from Lemma 2.6. Similarly,
A is injective on D) o for —1 — % < b < —1 and hence D, = Dp¢n. On the other hand,
©b € Dp max \ Dp en for these values of b. O

Since (A4, D)) is invertible for any b, we obtain an explicit representation of the functions
in D, solving the ordinary differential equation Au = f for f € L?(0,1). This formula will
be crucial for our further results. To this aim, we first observe that the function

c a1t fy)
_E(ghH1 / e dy, i b£ 1,
b+1 Cb+1 b +1/, ytt!
uo(z) = . 4 (2.4)
clogx —/ ) 1og;dy, if b=—1,

where ¢ € R, is the general solution of the equation Au = f satisfying u(1) = 0. In the
following results we find the value of ¢ that gives the solution in D,. We treat the cases
b < —1 and b > —1 separately.

Proposition 2.8. Let b < —1. For every f € L?(0,1), the unique solution in D, of Au= f
is given by formula (2.4) with ¢ replaced by

1 /() dx.

Sy abtl

Moreover, D, C W'?(0,1) and for every u € D, one has lim 2z~ "u/(x) = 0.
z—0+

Proof. Assume first that b < —1. Let f € LP(0,1) be fixed. By Proposition 2.4 the unique
solution u € D, of Au = f is the limit of the solutions v. € D, . of Av. = f. (We write
¢ — 0 instead of €, — 0, for simplicity.) Using (2.4) and imposing u.(¢) = 0, we find

1
Ce 1= sb“ </ f(z €b+1/€ ilgfzdx), (2.5)



so that ve = u._. We thus have to show that HI% c. = ¢. It holds
e—

_ f(z L
Ce —C= Eb+1 (/ fx)de + 5b+1/ b+1 - /0 ngfz dsr:) :

Moreover, e**! tends to infinity as € — 0 since b+ 1 < 0, and

€ 1
eb+1/0 glgﬁ'dgcg/o |f(z)| dx.

So we derive the claim, implying

2 T () 1 [ fly)
u@) = =377 o ybHd _b+1/ F@)dy+ 5= o g W

It follows that

T 1
/ . b f(y) o f(Sl’)

u'(z) = —x o dy = — | ds, (2.6)

and hence
1 1 z 1
li

ol < [ ([ 1raran) " as<irl [y ds <

because of b+ 1+ ]% < % < 1. From (2.6) we further deduce that lim+ 7%/ (z) = 0.
z—0
Let b = —1. Then ¢, = —f;f( )dy + (loge)™ f f(y)logydy. Holder’s inequality
yields
1 / o
x)logx dz| < | fll, (/ | log x|P dx) < 400
0

so that again ¢, tends to ¢. Equation (2.6) now also holds for b = —1, and the remaining
assertions are consequences of the previous computations with b = —1. O

We point out that for b < —1 the solutions in D,, of the elliptic equation Au = f enjoy
the best regularity one may expect, thanks to D, C W'P(0,1). However, D, contains
functions which do not vanish at 0 though each v € D, is limit of solutions to Dirichlet
problems. We summarize the results obtained so far in the following theorem.

Theorem 2.9. Ifb < —1, then D, = Dy yeq. Moreover, z~bu'(z) converges to 0 as x — 0%
foru e D,. We further have

Dp = Dp,reg = Dp,max = Dp,en Zf b < —-1- %a

Dp=Dpreg =Dpen # Dpmax if —1— % <b< -1

No restriction of —A to a proper subspace of Dy max (if b < —1 — %), resp. of Dpen (if

-1- 117 < b< —1) is a generator. In this sense, we cannot impose boundary conditions at
x=01b< —1.



Proof. Proposition 2.8 yields D, C D, ;eq. On the other hand, A is injective on D), ;eq by
Lemma 2.5 and b < —1, so that D, = D), ;s. The other results have been shown before or
follow easily. O

To treat the case b > —1, we need further preparations.
Lemma 2.10. For u € Dy max and b > —1, the following assertions hold.
(i) If =1 < b < —1/p, then z~°u (z) converges as x — 07.
(ii) If b= —1/p then z~°(logx) =/ is bounded on (0,1/2).
(i) Ifb> 7, then u € Dy reg.

Proof. Let f = Au. For a suitable ¢ € R, equation (2.4) yields

1
e = et [ f@ Tty (2.7)

If —1 < b < —1/p, by Holder’s inequality the last integral converges as  — 0 and therefore

1
lim 2~/ (z) = ¢ + / f(y)y=tdy.
0

z—0
This proves (i). For b = —1/p, the integral in (2.7) diverges at most logarithmi-
cally and () follows. If b > —1/p, then the functions x* and v belong to LP(0,1)
Where v(z) = xb f f(y)y=*"tdy. In fact, extending f to zero outside [0, 1], we derive
fl f(sx)s™0~1 ds and then

i 0o
ol < / b(/ If(sw)l”dx) ds <l [t Has <o

using the integral version of Minkowski’s inequality. Hence, u’ = cx® 4+ v € L?(0,1). O

For b > —1 we can now show that the generator —A, = (—A, D,) incorporates Dirichlet
boundary conditions at x = 0.

Proposition 2.11. Let b > —1. For every f € L?(0,1), the unique solution u in D, of
Au = f is given by formula (2.4) with ¢ replaced by

é:—/olf(x)dx

Moreover, u(x) tends to 0 as x — 0.
Proof. We proceed as in the proof of Proposition 2.8 and show that c. tends to ¢, cf. (2.5).
To this aim, we observe that

1 1

b+1 1|f(y)| b+1 ! —(b+1)p’ (b+1)p’ —2 v
o [y < s, ([t ) =, /t ar)”




1
which implies hn}J sz/ )] dy = 0. Therefore hrn ce = ¢ by (2.5), and (2.4) yields

ybt1
2 )
= Ydy + —— —dy. 2.8
b+1/f y+b+1/f Thri ), g (28)
All terms in this representation tend to 0 as x — 0. O

We can now complete the description of D, for the case b > —1.

Theorem 2.12. Ifb € (—1,—1/p], we have D, = DY = D? 2 DY If b > —1/p,

0 0 0 p,en p,max #* -~ p,reg-
we have Dy, = Dy o, = Dp, 10y = D) g

Proof. Let b > —1. Proposition 2.11 and Lemma 2.6 imply that D, C Dp en C Dg max> and
the equalities follow from the injectivity of A on DY . . see Lemma 2.5. It is clear that
D) s C Dg max- For b > —1/p, the converse holds due to Lemma 2.10(iii). Finally, let
-1<b< —5 We choose f = 1in (2.8). Then v/(z) = —2® + 2®(z=% — 1) /b which does not

belong to L?(0,1). O

We finally show that the semigroup generated by (—A, D,,) is analytic in LP(0, 1), using
the corresponding result in spaces of continuous functions and an interpolation argument.

Theorem 2.13. The semigroup (T(t))i>0 constructed in Proposition 2.4 with generator
(—A, Dy) is analytic in LP(0,1).

Proof. Case b < —1. Let

Do = {u € C'([0,1]) N C?(]0,1]) | u(1) = O,iii%xu”(x) =0} (2.9)

Proposition 3.1 and Theorem 3.5 of [14] imply that (—A, D) generates an analytic semi-
group T'(z), z € Cy = {z € C: |Argz| < m/2}, in C([0,1]). Since Do, C D, by Theorem 2.9,
the resolvents of A in L?(0,1) and C(]0, 1]), hence the semigroups, coincide on C([0, 1]). The
assertion follows from the Stein interpolation theorem, as stated in Theorem 6.5 and the
subsequent observations of [13], once we have proved that T'(z) can be extended to an ana-
lytic semigroup in L°°(0,1) which is bounded near 0. Let ¢t > 0, f € L*°(0,1) and (f,,) be
a sequence of continuous functions such that f, — f in LP(0,1) and || fullco < || f]lco- Then
IT#) frlloo < Iflloe and T'(t) fr is bounded in C*([0,1]), since T'(¢) is analytic in C([0,1])
and D, embeds continuously into C*([0,1]). Because T'(t)f, — T(t)f in LP(0,1), we infer
that T'(t)f € C(]|0,1]). This shows that for every ¢t > 0, T'(t) maps L*(0, 1) into C([0, 1])
and that [|T(t) f|lco < ||fllco. Therefore T(z) = T'(z — &)T'(¢), Re z > 2¢, defines an analytic
semigroup in L*>°(0, 1) for z € C4 which is bounded in a neighbourhood of 0 .

Case b > —1. Here we impose Dirichlet boundary conditions at x = 0 and therefore we
work in Cy(0,1). We set

DY, = {u € Cy(0,1) N C*(]0,1]) | Au € Cy(0,1)}.

Theorem 3.1 of [3] implies that (—A, D) generates an analytic semigroup in Cp(0,1). (We
remark that though Theorem 3.1 in [3] states the result in C([0, 1]), the corresponding result
in Cp(0, 1) is an immediate consequence.) Since DY C D, by Theorem 2.12, it follows that
the resolvents of A in L?(0,1) and C(]0, 1]) coincide on C([0, 1]), hence the semigroups too.
Then the assertion is a consequence of the Stein interpolation theorem, as above, using the
compactness of the embedding of DY into Cy(0, 1) which follows from Lemma 3.2 of [3]. O



3 The semigroup constructed via Neumann type ap-
proximations

By Theorems 2.9 and 2.12 the semigroup T'(+) constructed via the Dirichlet approximation
solves the parabolic problem for A with full space regularity (i.e., T'(t)ug € D req for all
t >0 and ugp € L?(0,1)) if and only if b < —1 or b > —1/p. For the intermediate range
b € (—1,—1/p] we have less regularity, but Dirichlet boundary conditions. Hence, there
could exist another semigroup solving the parabolic problem for A with full space regularity
but different boundary conditions at z = 0 if b € (—1,—1/p]. In fact, we shall construct
such a semigroup for b € (—1,—1/p) by means of a Neumann type approximation. For such
b this approximation procedure thus behaves differently, and in some sense better than the
Dirichlet type approximation of the previous section. The next result also indicates another
drawback of the Dirichlet approximation: It is unstable in W1 for b < —% although all the

approximations u,, = A, ! f converge in L”(0,1) to functions in W1?(0,1).

Proposition 3.1. Let u. € W?P(g, 1) solve Au. = f with uc(¢) = u-(1) =0 fore € (0,1).
These functions are uniformly bounded in WP(0,1) (after extension by 0) for each f €
L?(0,1) if and only if b > —1/p.

Proof. Let f and u. be given as in the statement. We first take b # —1. Formula (2.4)
yields

! O

b+1 !
y+

ul(z) = coa® + 2°
.

The constant ¢ is determined by the boundary condition u.(¢) = 0 and is given by (2.5),
so that we obtain

b 1 1 1
i) = i ([ -t [ I8 ay) o [0 (3.1)

for z € (¢,1). We now take f = 1. For b # 0, it follows

L1 b—be—e+1 1 ,

Observe that 3(c) tends to —%1 as e — 0 if b > —1 and that it behaves like &L =01 as
e — 01if b < —1. Moreover,

-3 _ ool s _1
lbp + 1|77 B(e)[1 — ™[>, if b# —,

b _
1l = {mmogaﬁ, irh=—.

As a result, for b < —1 the norms |ju’||, behave like e *~1e?+1/P as ¢ — 0, and hence tend
to infinity. For b € (—1,—1/p) or b = —1/p, we have [ju’||, ~ /P or ||ul], ~ |loge|*/?,
respectively, and the norms again tend to infinity as ¢ — 0.

We next consider the case b= —1. For f =1, we deduce from (2.4)

c 1! c 1
u'e(ac)zf—i—;/ logydyzi—;—&—l—logm,
x
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1
0 =uc(e) :cglogsf/ loggdy:celogeJrlfsquoga,

arriving at

1e—1—2loge
! - - "o 111
ue() x loge * o8e
for z € (¢,1). Hence, ||uL|l, ~ 7! tends to infinity as ¢ — 0, also for b= —1.

To treat the case b > —1/p, we go back to (3.1) for any given f € LP(0,1). We first note
that the norms of x° in LP(e, 1) converge to (bp + 1)~! and ! — 0 as ¢ — 0. Moreover,

e f§+3 dy] < 1flh < 1l

€

The p-norm of last summand in (3.1) can be estimated as follows. Extend f by 0 to Ry

and write
b+1 / b+1

Using Minkowski’ inequality and Fubini’s theorem, we further compute

1/p 0 g e} 1/p
(1ol [ ([ weorad
p 1 gb+1+1/p b+ 1/]9.
As a consequence, ||u.||, < c||fl, for a constant ¢ > 0 and all ¢ € (0,1/2) and f € LP(0,1).

Since u.(1) = 0, we further have |uc(x)| < ||ul|li < ||ulll, for all € (e,1), so that u. is
bounded in WP (e, 1) by | f|l, if b > —1/p, as asserted. O

Motivated by the above observations we now study approximating problems with Neu-
mann boundary conditions, employing the domains

D). ={ueW?>P(e,1)|u'(c) =0, u(1) = 0}.

Lemma 3.2. Let u € DN and b € R. We have

1 1 ) ) b"‘ 1
/ Auw® dz = (p— 1)/ 2 W P2 de — L ey . (3.2)
c . P
Let b < —1. Then (A,D}.) is accretive and

1 U p—1
o -2 o < W 1l 53
€ pP— 1

Proof. The estimate (3.2) can be shown exactly as (2.1), and it implies the remaining results
for b < —1. ]

The next result shows that the Neumann approximation is stable in WP if b < —1/p.
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Lemma 3.3. Let b < —1/p and f € LP(0,1). There exists u. € D)Y_ such that Au. = f. It
then holds

1 1
Jucly < == 17l and < —— Il (3.4
P P
Moreover, for b € (—1,—1/p) we have
1
1 b+1

xu’2up*2dm<7(f ullPt o ——— fp). 3.5

/E || [ul S — £ 1lp llullp p(_b_%)p\l 5 (3.5)

Proof. Let b < —1/p and f € LP(0,1). The first assertion is clear. We drop the subscript &
in the rest of the proof. We multiply the equation Au = f by (u/)* = |u/|P~2u/ and integrate
over (g,1). An integration by parts then yields

1 1 1
/ fu WP dr = —/ zu” v’ |u'|p_2dx+b/ u'u' | |P2 de
€ € €
1 [t d
— [ o do b
1>
1 1
b= ) 'l = = ' (1)
( p Poop

since u/(g) = 0. We thus obtain

1 1
(o) Wl <= [ e <
g

by means of Holder’s inequality. Because of u(1) = 0, we also have

1

[u(@)] < flu'lls < T'lly < ——

7 £l
p
for all x € (e,1). Therefore, (3.4) holds. Combining the above estimate with (3.2) and
Holder’s inequality, we arrive at (3.5). O

Proposition 3.4. a) Let b < —1/p. Then Ap Ny = (A, Dpreg) is tnvertible. Moreover,
u = A;}Vf satisfies the estimates (3.3)—(3.5) (depending on b) for ¢ = 0 and each f €
LP(0,1). In particular, the Neumann type approzimation of A, n is stable in WP, cf.
Proposition 3.1. Finally, for b < —1 the operator A, n is mazimally accretive.

b) If b > —1/p, there are f € LP(0,1) such that ||uc|l, — 0o as € — 0 for the functions

Us € Dé\; with Aue. = f. Hence, the Neumann approximation does not work in this case.

Proof. a) Let b < —1/p. As in the proof of Proposition 2.4 we obtain a function u €
W2P((0,1]) with u(1) = 0 satisfying Au = f on (0,1). Tt is the limit in W,57((0,1]) of
sequence of functions u. as in Lemma 3.2 and 3.3. (We note that the uniform bound needed
in the proof of Proposition 2.4 here follows from (3.4) since |uc(z)] < ||ulll, < ¢l fllp-)
Fatou’s lemma then implies that the estimates (3.3)—(3.5) hold for u on (0, 1). In particular,
u belongs to W'(0,1) and hence to Dy ,ee. Since A is injective on Dj, yeg by Lemma 2.5,
we obtain the invertibility of A, n = (A, Dy reg). Moreover, for b < —1 the operator A, n

is accretive due to (3.2).
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b) Let b > —1/p. The function f(x) = z® then belongs to LP(0,1). We consider again

the function u, € D]JXE such that Au. = f. Due to formula (2.4), this function is given by

c 1 1 xb+1 1 b
ue(z) = —— (2" = 1) Y’ dy + / ﬁ dy

T b+l b1/, b+ 1
_c (@ — 1)+ abtt =1 2P lloga
b+1 (1+0)? b+1

b

Since 0 = u’(g) = c.e® — b loge, we infer that c. = loge and

B logs( by 21 2bllogx

ue(®) = 533 1+b)2 b+l

As a result, the norms ||uc||, > ¢ (1 + |loge|) explode as e — 0.
1

Finally, let b = —1/p. We now consider f(z) =z 7 (—log%)~'. Observe that f belongs
to LP(0,1). Proceeding as for b > —1/p, we obtain that c. = C + 3 log(—log(£)) and that
||luell, behaves like ¢. and thus tends to infinity as € — 0. O

Remark 3.5. The case b = —1/p in some sense borderline. Indeeed, Dirichlet conditions
at 0 can be imposed, but the domain D,, of the generator is larger than Dg,reg forb=—1/p
and it is equal to DJ . for b > —1/p. Moreover, for b = —1/p the Neumann approximation

looses its stability which holds for b < —1 /.

Theorem 3.6. For b < —1/p, the operator —A, N = (—A,Dpres) generates a positive
analytic Co—semigroup Tn(-) on LP(0,1). For b < —1, the operator —A, n coincides with
the generator —A, from Theorem 2.9, and hence Tn(-) = T(-). For b € (—1,—1/p), the
operator Ay, n differs from Ay, hence T () # T(-), and we have Dy reg G Dpen = Dpmax-

Proof. 1) Theorem 2.9 says that D, = Dp e if b < —1 and hence A, = A, x in this case.
So the asserted generation results for b < —1 were already shown in Proposition 2.4 and in
Theorem 2.13.

2) Let b € (—1,—1/p). Then there are functions in D, \ D, ,eg by Theorem 2.12, so that
Ap.n # Ap. We first give a short proof of the generation result for the special case p = 2,
where b € (—1,—1/2). Here we treat A n as the perturbation A y = Ao+ (b+1)D,, of the
operator Ay = —ng — D, with domain D(A4g) = D5 1ce that corresponds to b = —1. Take
U € Dy e and Au = f. It is straightforward to check that Ay . = (Ao, D2..) is self adjoint
on L?(g,1). Hence, the resolvents (A + Ap.)~', and by approximation also (A + Ag)~!, are
symmetric for A > 0, cf. Proposition 2.4. As a result, A is self adjoint so that

.
Ao\ + Ag) Y| < sup ——— <sup ——— < 1,
140 ) ‘|—szor+/\|—72%r+Re/\—

Al
A+ A9)7 Y < su | <1
A+ 40) 7] < sup 2 <

for all A € C; = {z € C| Rez > 0}. Due to Proposition 3.4, estimate (3.4) holds for A
leading to

- b+
[0+ 1D)Da (A + Ao) M| < 5

1
=AM+ Ao) M <200+ 1) = B < 1.
2
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Since A = Ag+ (b+1)D,, these estimates easily imply that A € p(—A) and [|[A(A+A)7Y| <
1/(1=p) for all A € C;.. Thus —As n = (—A, D2 cg) generates an analytic semigroup. We
remark that this argument can be extended to p € (1,00) if b € (—=1,—1/p) is sufficiently
close to —1.

3a) We next prove the generation result for p € (1,00) and b € (—1, f%). Proposition 3.1
and Theorem 3.5 of [14] imply that —A, = (—A, Do), defined in (2.9), on Do C Dp reg N
C'([0,1]) generates a bounded, positive, analytic semigroup of angle Z on L>°(0,1), cf. the
proof of Theorem 2.13, case b < —1. In view of Lemma 2.5, the operator A, is injective
and thus invertible. Observe that its inverse is the restriction of the operator A; }V obtained
in Proposition 3.4. Let A € C4 and 0 < f € L*°(0,1). From e.g. Corollary 3.11.3 of [1] we
deduce that

A+ Aw) U] < (Red+ A) " f < AL = ATL T,

As a result, (A + Ay) "t = R(\, —Aw) can be extended to a uniformly bounded pseusore-
solvent {R(A);A € C;} on LP(0,1) for all p € (—3,00). It holds R(0) = A;}V, and thus
R(A) has the range Dp e = A;}VLP(O, 1), due to e.g. Lemma II1.4.5 of [4]. We can now
compute

]
A =1

A+ ApN)RD) = (A + Apn)[A, ;= A, N ROV
=T+ AMA y — R(\) — M R(
for all A € C4. In the same way, one sees that R(A\)(A + A, n) = I. It follows that
Ci C p(—Apn) and (A+ A, n)~! = R()) for all A € C is uniformly bounded and positive
for A >0 and all p € (—3,00).
Fix now p € (1,00), b € (—1, —%), and q € (—%,p). Interpolating between L? and L
we derive

IO+ Ar ) 7l < e A3 (3.6)

for all A € C, and the operator norm in L"(0,1) with 7 = 4¢. In the next step we will
improve this estimate to |(A + A, n) 7|l < ¢|A|7!. We can then repeat the procedure,

interpolating between L? and L*? | to obtain the sectoriality estimate for r = 16¢/7. In
finitely many steps we arrive at ||(A + A, n) 7! < ¢|A|7! for all A € C4. The operator
—A, n thus generates a positive analytic Cp—semigroup.
For later use, we first derive another estimate. Let V = (1/2,1), r = 4¢, A € C and
f e L0,1). Set n = |X\|~'/2. Interpolation yields
1D (A + A )~ fllrov)
< con D2+ Arn) " fllery + e A+ Arn) T Il
< 2¢on [AN+ Ar N) " fllrvy + colbln | Da(N + Ar 8) 7 Fllrv)
+en A+ Ann) T oy

for some constants cp,c; > 0. Choosing 7 < 19 := (2¢9) ™ < (2¢0[b]) 1, we derive from the
above estimates

1D (A + AT’N)_lfHL”'(V) (3.7
<deo ATV F = MO+ A n) T Lz + 20 A2+ A ) T fll o)
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<cAITV2f

Lr(0,1) +¢ A1/ Ifller1) <c YA £ L7(0,1)

for some constants ¢ > 0 and all A € C,. with || > 4¢j.

3b) We define the operator A = —zD? + bD, on Dy eg = {v € WIP(0,00) |2v” €
LP(0,00)}. To construct and estimate the resolvent of A, we use our operator A, y and
the restriction A™ of A to the domain ﬁ;reg = {v e WhP(1/2,00) |v(1/2) = 0, av" €
LP(1/2,00)}. One shows that —A™ generates an analytic semigroup on LP(1/2,00) as in
Proposition 6.1 of [16], using Theorem 2.7 of [7] for the spatial domain R. As in (3.7), one
can then derive

1Dz A+ A) " fllervy < e A2 fller 172,000 (3-8)

for all A € C. with |A] > rg for some ro > 0. Thanks to (3.6), (3.7), (3.8) and the
sectoriality of A, (a slight variant of) Proposition 5.5 of [16] implies that (3.6) holds for A
and all A € C; with |A| > ry for some r; > 0.

We next use a scaling argument from [16]. Let s > 0. The map J, : L?(0,00) — L?(0, o0)
given by (Jsu)(z) = u(sz) is linear, has the inverse J,—1 and satisfies ||Jul, = s~/ ||ul|,
for all u € LP(0,00). Observe that sJ,AJ; ' = A. Let w € C, with |w| = 7 and X = sw.
It follows A\ + A = sJ,(w + A)J; " and thus ||\ + A)7Y| < A7 Jw(w + A)7H| < e[\
for all A € C,. This sectoriality estimate again implies the version of (3.8) for A. Asin
Proposition 5.7 of [16], we then deduce that —A, y generates an analytic semigroup on
L7(0,1). This fact was missing to complete the proof in step 3a). O
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