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Abstract

We comprehensively study a one dimensional elliptic operator degenerating of first
order at the boundary in an Lp setting. Here the coefficient of the drift term determines
the regularity and the possible boundary conditions of the problem.
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1 Introduction

The study of degenerate elliptic operators started in the fifties and has been the object of
many researches in a wide generality, since the seminal works of W. Feller [5], [6] in one
dimension and J.J. Kohn and L. Nirenberg [12] in higher dimensions. Of particular interest
is the case of degeneracy at the boundary for second-order elliptic operators, and naturally
the results heavily depend on the behavior of the coefficients at the boundary, i.e., on the
order and direction of degeneracy. The general setting is presented in the classical book
[17]. A challenging borderline case occurs if the diffusion coefficients fully degenerate of
first order in the normal direction to the boundary. In this case the drift term in normal
direction is (roughly speaking) of the same order as the diffusion part and the sign and size
of the drift coefficients play a crucial role. Here the model problem is given by the operator

L = −y∆ + b0 · ∇x + b∂y

on the halfspace Rn+ = {(x, y) ∈ Rn−1×R | y > 0}, where b0 ∈ Rn−1, b ∈ R and ∆ = ∆x+∂2y .
It was shown in [8] that−L with domainD(L) = {u ∈W 1,p(Rn+) |u(·, 0) = 0, Lu ∈ Lp(Rn+)}
generates an analytic semigroup on Lp(Rn+) if b > −1/p. (See also [11] and [14] for related
results.) We note that in the case of tangential first order degeneracy (where y∆ is replaced
by y∆x + ∂2y in the model problem) the corresponding result holds for all b ∈ R, see [9] and
[10]. The techniques of [8] heavily depend on the condition b > −1/p which allows to control
gradient terms by the operator L employing a Hardy type inequality which seems to fail for
b ≤ −1/p and without Dirichlet boundary conditions. In fact, it was noted in Example 2.11
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of [8] that the generation result of this paper breaks down for b ≤ −1/p, already in the one
dimensional case. To our knowledge, for b ≤ −1/p so far there is no investigation of the
domain of L and it is not known whether L generates an analytic semigroup on Lp, except
for the symmetric case b = −1.

In this note we study the one dimensional case, i.e., the operator

A = −xD2 + bD,

comprehensively. It turns out that in the case b ≤ −1/p the behavior of A is rather complex
and has several quite unexpected features. We want to use the gained insights in future
work on the n–dimensional case. But we are convinced that the precise results and direct
computations in the one dimensional case are of independent interest.

To simplify the analysis we work on the interval (0, 1) and impose Dirichlet boundary
conditions u(1) = 0, throughout. On the interval (ε, 1), we can equip the operator A with
Dirichlet (u(ε) = 0) or Neumann (u′(ε) = 0) boundary conditions at x = ε, letting finally
ε→ 0. In Proposition 2.4 we first recall that the Dirichlet approximation yields a generator
−Ap with domain Dp on Lp(0, 1) for all p ∈ (1,∞) and b ∈ R, cf. [2]. The generated
semigroup is analytic by Theorem 2.13, which essentially follows from known results for
spaces of continuous functions in [3] and [14]. It is clear that Ap is a restriction of the
operator A defined on the maximal domain

Dp,max =
{
u ∈ Lp(0, 1) ∩W 2,p

loc ((0, 1])
∣∣Au ∈ Lp(0, 1), u(1) = 0

}
.

For a more detailed investigation we further use the domains

Dp,en =

{
u ∈ Dp,max

∣∣∣ ∫ 1

0

x |u′|2 |u|p−2 dx <∞
}
,

Dp,reg =
{
u ∈W 1,p(0, 1)

∣∣xu′′ ∈ Lp(0, 1), u(1) = 0
}
.

We write D0
p,en and D0

p,reg if we include the condition limx→0+ u(x) = 0 in the respective
space. Mainly using the explicit expression for A−1p , in Theorems 2.9, 2.12 we show that

Dp = Dp,reg = Dp,max = Dp,en if b ≤ −1− 1
p ,

Dp = Dp,reg = Dp,en 6= Dp,max if − 1− 1
p < b ≤ −1,

Dp = D0
p,en = D0

p,max % D0
p,reg if − 1 < b ≤ −1/p,

Dp = D0
p,en = D0

p,max = D0
p,reg if b > −1/p.

There are several striking features: For b ≤ −1 we cannot impose boundary conditions at
x = 0 in the sense that any restriction of −A to a proper subset of Dp,max, respectively
Dp,en, cannot be a generator. Further, the regularity contained in the domain varies with b.
In particular we loose the W 1,p regularity precisely for b ∈ (−1,−1/p] where we still keep
the Dirichlet boundary condition at 0.

To see another surprising fact, let uε ∈ W 2,p(ε, 1) ∩W 1,p
0 (ε, 1) satisfy Auε = 1 and let

b ≤ −1/p. In Proposition 3.1 we then show that the norms ‖u′ε‖p of the approximations
explode as ε→ 0, although Dp ⊂W 1,p(0, 1) for b ≤ −1.

Motivated by these observations, in Section 3 we also study Neumann approximations of
A on (ε, 1), where we impose u′ε(ε) = 0 instead of uε(ε) = 0. It turns out that for b ≤ −1 in
the limit we obtain again Ap, but now with an approximation which is stable inW 1,p. For b ∈
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(−1,−1/p) the approximations are again stable in W 1,p, and now they give a new generator
−Ap,N of an analytic semigroup with domain D(Ap,N ) = Dp,reg. Compared to the operator
Ap constructed via Dirichlet approximations, we loose the boundary condition u(0) = 0,
but gain the optimal regularity u ∈ W 1,p(0, 1). See Proposition 3.4 and Theorem 3.6 for
these results. Guided by these results, we want to tackle the n–dimensional case in future
work via Neumann type approximations.

We further note that the L2 case was already studied, see [18] or [19]. The discussion in
spaces of continuous functions falls into Feller’s theory, which is reminiscent of the underlying
diffusion model even in its terminology and is based on a classification of the endpoints. We
refer to Section VI.4.c of [4] for a synthetic presentation of this theory. Concerning the
operator A, the endpoint x = 0 is entrance for b ≤ −1, regular for −1 < b < 0 and exit for
b ≥ 0. According to Feller’s theory, in order that −A generates a semigroup in C([0, 1]) no
boundary conditions have to be imposed at 0 in the entrance case and the domain of the
generator is the maximal one, whereas in the regular case general elastic barrier conditions,
which include both Dirichlet and (degenerate) Neumann conditions, can be imposed and in
the exit case Dirichlet boundary conditions can be imposed. We point out that our results
are coherent with the case C([0, 1]), which is formally obtained by letting p→∞.

2 The semigroup constructed via Dirichlet type approx-
imations

After some preparations, we first recall in Proposition 2.4 the construction of the C0-
semigroup on Lp(0, 1) associated with A via approximations of Dirichlet type. We then
study in detail the domain of its generator depending on p and b. These results finally
allow to deduce the analyticity of the semigroup from know results for spaces of continuous
functions.

Throughout, let p ∈ (1,∞) and ε ∈ (0, 1/2]. For simplicity we consider real-valued func-
tions (except when dealing with analytic semigroups where we employ the complexification
of the operators on real spaces). We set

Dp,ε = W 2,p(ε, 1) ∩W 1,p
0 (ε, 1).

We start by proving dissipativity estimates on Dp,ε being independent of ε. Here and below,
we put u∗ = u |u|p−2 for a function u.

Lemma 2.1. Let u ∈ Dp,ε. Then∫ 1

ε

Auu∗ dx = (p− 1)

∫ 1

ε

x |u′|2 |u|p−2 dx. (2.1)

Proof. For p ≥ 2, an integration by parts yields∫ 1

ε

Auu∗ dx = (p− 1)

∫ 1

ε

x |u′|2 |u|p−2 dx+ (b+ 1)

∫ 1

ε

u′u|u|p−2 dx

= (p− 1)

∫ 1

ε

x |u′|2 |u|p−2 dx+
b+ 1

p

∫ 1

ε

d

dx
|u|p dx

= (p− 1)

∫ 1

ε

x |u′|2 |u|p−2 dx.

For p ∈ (1, 2) one obtains this result by a regularization, see Theorem 3.1 in [15].
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Lemma 2.2. There exists a constant ωp > 0 such that for every u ∈ Dp,ε

ωp

∫ 1

ε

|u|p dx ≤
∫ 1

ε

Auu∗ dx. (2.2)

Proof. Let u ∈ Dp,ε, x ∈ (ε, 1), and p ≥ 2. Using Hölder’s inequality, we obtain

|u(x)|
p
2 = −

∫ 1

x

d

dy
|u(y)|

p
2 dy = −p

2

∫ 1

x

u′ u |u|
p
2−2 dy ≤ p

2

[∫ 1

x

y |u′|2 |u|p−2 dy
] 1

2
[∫ 1

x

dy

y

] 1
2

.

Equality (2.1) now implies∫ 1

ε

|u(x)|p dx ≤ p2

4

∫ 1

0

| log y| dy
∫ 1

ε

y(u′)2|u|p−2 dy = ω−1p

∫ 1

ε

Auu∗ dx,

where ω−1p = p2

4(p−1)
∫ 1

0
| log y| dy.

If p ∈ (1, 2), we start with |u(x)|
p
2 = limδ→0+(|u(x)2 + δ|

p
4 − δ

p
4 ) and estimate similarly.

Corollary 2.3. For any u ∈ Dp,ε and λ > −ωp we have

(λ+ ωp)‖u‖p ≤ ‖(λ+A)u‖p.

Moreover, (A,Dp,ε) is invertible in Lp(ε, 1) and (A− ωp, Dp,ε) is maximally accretive.

Proof. Let u ∈ Dp,ε and λ > −ωp. Multiplying the equation λu+Au = f by u∗, integrating
over (ε, 1) and using (2.2) and Hölder’s inequality, we deduce the first statement. The second
assertion is easy to check and it implies the maximal accretivity.

Proposition 2.4. For every b ∈ R there exists a subspace Dp ⊆ Dp,max such that −Ap =
(−A,Dp) generates a strongly continuous positive semigroup (T (t))t≥0 with ‖T (t)‖ ≤ e−ωpt

for t ≥ 0. In particular, (A,Dp) is invertible. Moreover, there is a sequence εn → 0 such
that for each u ∈ Dp there are un ∈ Dp,εn with Aun = Au on (εn, 1) and the 0 extension of
un converges to u in Lp(0, 1) as n→∞.

Proof. Our reasoning differs a bit from that in Theorem 3.1 of [2] since we avoid monotonicity
arguments. This has the advantage that we can use the proof given here also for Neumann
boundary conditions in Proposition 3.4, where we do not have monotonicity.

Take f ∈ Lp(0, 1) and λ > 0. For n ∈ N with n ≥ 2, let −An be the generator
in Lp(1/n, 1) obtained in Corollary 2.3 with εn = 1/n. We denote by En the extension
operator by 0 from Lp(1/n, 1) to Lp(0, 1) and by Rn the restriction operator from Lp(0, 1)
to Lp(1/n, 1). We set un = un(λ, f) = En(λ+An)−1Rnf . Observe that ‖un‖∞ ≤ λ−1 ‖f‖∞
if f is bounded. Corollary 2.3 says that (λ + ωp)‖un‖p ≤ ‖f‖p. One can now deduce from
standard elliptic regularity results that a subsequence of un converges weakly to a function
u in W 2,p

loc ((0, 1]) and strongly in W 1,p
loc ((0, 1]) and that λu+Au = f on (0, 1). It then follows

that un converges pointwise to u and u(1) = 0 (we do not relabel the subsequences).
The above subsequence may depend on f and λ, but for rational λi > 0 and a fixed

dense sequence of bounded fj we can find a diagonal sequence such that un converges for all
i, j ∈ N. Moreover, un converges to u in Lp(0, 1) as n→∞ for these λi and fj by Lebesgue’s
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theorem. By density, it follows that un → u in Lp(0, 1) as n → ∞ for all f ∈ Lp(0, 1) and
i ∈ N. Corollary 2.3 thus implies

(λ+ ωp)‖u‖p ≤ ‖f‖p = ‖λu+Au‖p (2.3)

for all f ∈ Lp(0, 1) and λ = λi. From Corollary 2.3 and Vitali’s Theorem (see Theorem
A.5 in [1]), we further deduce that En(λ+An)−1Rn converges strongly to as n→∞ for all
λ > −ωp. Hence, (2.3) holds for all λ > −ωp.

Let λ, µ > 0 and f ∈ Lp(0, 1). We set R(λ)f := u. Clearly, λR(λ) is uniformly bounded.
We observe that R(λ) ≥ 0 since un, and hence u, are positive if f ≥ 0. The resolvent
equation and RnEn = I yield

En(µ+An)−1Rn − En(λ+An)−1Rn = (λ− µ)En(µ+An)−1RnEn(λ+An)−1Rn.

In the strong limit n → ∞, we conclude that {R(λ);λ > 0} is a pseudo resolvent. Take
v ∈ C2(0, 1) with support in [a, b] ⊂ (0, 1) and set g = (λ + A)v ∈ Lp(0, 1). We then
have un as above. For 1/n ∈ (0, a), the function v − un belongs to the kernel of λ + An,
and hence v = un for all 1/n ∈ (0, a). Therefore, R(λ)g = v and R(λ) has dense range.
Since R(λ) is injective, Proposition III.4.6 of [4] then shows that R(λ) = (λ + Ap)

−1 for
an operator −Ap with dense domain Dp which generates a contraction semigroup T (·) on
Lp(0, 1) by the Hille–Yosida theorem. The positivity of the resolvent implies the positivity
of the semigroup. From the above results we also infer that Dp ⊂W 2,p

loc ((0, 1]) and Apu = Au
for u ∈ Dp. Finally, (2.3) implies that Ap − ωp is accretive, and hence maximally accretive,
so that ‖T (t)‖ ≤ e−ωpt for all t ≥ 0.

To describe Dp we use the spaces

Dp,max =
{
u ∈ Lp(0, 1) ∩W 2,p

loc ((0, 1])
∣∣Au ∈ Lp(0, 1), u(1) = 0

}
,

Dp,en =

{
u ∈ Dp,max

∣∣∣ ∫ 1

0

x |u′|2 |u|p−2 dx <∞
}
,

Dp,reg =
{
u ∈W 1,p(0, 1)

∣∣xu′′ ∈ Lp(0, 1), u(1) = 0
}
.

(Here the subscript ‘en’ stands for ‘energy’.) The superscript 0 will indicate that we include
the condition limx→0+ u(x) = 0 in the respective space. We continue with several simple
observations, omitting the straightforward proof of the next lemma.

Lemma 2.5. The kernel of A on Dp,max is spanned by the functions ϕb(x) = xb+1 − 1 if
b 6= −1 and by ϕb(x) = log x if b = −1. The limit of ϕb(x) as x → 0 exists if and only if
b > −1, and it is then equal to −1. Moreover,

ϕb ∈ Lp(0, 1) ⇐⇒ ϕb ∈ Dp,max ⇐⇒ b > −1− 1

p
,

ϕb ∈ Dp,en ⇐⇒ b > −1,

ϕb ∈ Dp,reg ⇐⇒ b > −1

p
.

Lemma 2.6. Let b ∈ R. We have Dp ⊆ Dp,en ⊆ Dp,max.
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Proof. We only have to show the first inclusion. Let u ∈ Dp. From Proposition 2.4 we know

that u is the limit in Lp(0, 1) and in W 1,p
loc ((0, 1]) of (0 extensions of) functions un ∈ Dp,εn

with Aun = f . Equality (2.1), Hölder’s inequality and Corollary 2.3 yield

(p− 1)

∫ 1

εn

x |u′n|2 |un|p−2 dx =

∫ 1

εn

Aun u
∗
n dx ≤ ‖Aun‖p ‖un‖p−1p ≤ ω1−p

p ‖f‖pp.

Letting n→∞, we deduce from Fatou’s Lemma that

(p− 1)

∫ 1

0

x |u′|2|u|p−2 dx ≤ ω1−p
p ‖f‖pp < +∞.

Lemma 2.5 implies that for certain values of b some of the above inclusions are in fact
equalities.

Lemma 2.7. We have Dp = Dp,en = Dp,max for b ≤ −1− 1
p , and Dp = Dp,en 6= Dp,max for

−1− 1
p < b ≤ −1.

Proof. Let b ≤ −1 − 1
p . Then A is injective on Dp,max by Lemma 2.5. Since it is bijective

on Dp by Proposition 2.4, the asserted equalities now follow from Lemma 2.6. Similarly,
A is injective on Dp,en for −1 − 1

p < b ≤ −1 and hence Dp = Dp,en. On the other hand,

ϕb ∈ Dp,max \Dp,en for these values of b.

Since (A,Dp) is invertible for any b, we obtain an explicit representation of the functions
in Dp solving the ordinary differential equation Au = f for f ∈ Lp(0, 1). This formula will
be crucial for our further results. To this aim, we first observe that the function

uc(x) =


c

b+ 1
(xb+1 − 1)− 1

b+ 1

∫ 1

x

f(y) dy +
xb+1

b+ 1

∫ 1

x

f(y)

yb+1
dy, if b 6= −1,

c log x−
∫ 1

x

f(y) log
y

x
dy, if b = −1,

(2.4)

where c ∈ R, is the general solution of the equation Au = f satisfying u(1) = 0. In the
following results we find the value of c that gives the solution in Dp. We treat the cases
b ≤ −1 and b > −1 separately.

Proposition 2.8. Let b ≤ −1. For every f ∈ Lp(0, 1), the unique solution in Dp of Au = f
is given by formula (2.4) with c replaced by

c̄ = −
∫ 1

0

f(x)

xb+1
dx.

Moreover, Dp ⊂W 1,p(0, 1) and for every u ∈ Dp one has lim
x→0+

x−bu′(x) = 0.

Proof. Assume first that b < −1. Let f ∈ Lp(0, 1) be fixed. By Proposition 2.4 the unique
solution u ∈ Dp of Au = f is the limit of the solutions vε ∈ Dp,ε of Avε = f . (We write
ε→ 0 instead of εn → 0, for simplicity.) Using (2.4) and imposing uc(ε) = 0, we find

cε :=
1

εb+1 − 1

(∫ 1

ε

f(x) dx− εb+1

∫ 1

ε

f(x)

xb+1
dx

)
, (2.5)
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so that vε = ucε . We thus have to show that lim
ε→0

cε = c̄. It holds

cε − c̄ =
1

εb+1 − 1

(∫ 1

ε

f(x) dx+ εb+1

∫ ε

0

f(x)

xb+1
dx−

∫ 1

0

f(x)

xb+1
dx

)
.

Moreover, εb+1 tends to infinity as ε→ 0 since b+ 1 < 0, and

εb+1

∫ ε

0

|f(x)|
xb+1

dx ≤
∫ 1

0

|f(x)| dx.

So we derive the claim, implying

u(x) = − x
b+1

b+ 1

∫ x

0

f(y)

yb+1
dy − 1

b+ 1

∫ 1

x

f(y) dy +
1

b+ 1

∫ 1

0

f(y)

yb+1
dy.

It follows that

u′(x) = −xb
∫ x

0

f(y)

yb+1
dy = −

∫ 1

0

f(sx)

sb+1
ds, (2.6)

and hence

‖u′‖p ≤
∫ 1

0

1

sb+1

(∫ 1

0

|f(sx)|p dx
) 1

p

ds ≤ ‖f‖p
∫ 1

0

1

sb+1+ 1
p

ds < +∞

because of b+ 1 + 1
p <

1
p < 1. From (2.6) we further deduce that lim

x→0+
x−bu′(x) = 0.

Let b = −1. Then cε = −
∫ 1

ε
f(y) dy + (log ε)−1

∫ 1

ε
f(y) log y dy. Hölder’s inequality

yields∣∣∣∣∫ 1

ε

f(x) log x dx

∣∣∣∣ ≤ ‖f‖p(∫ 1

0

| log x|p
′
dx

) 1
p′

< +∞

so that again cε tends to c̄. Equation (2.6) now also holds for b = −1, and the remaining
assertions are consequences of the previous computations with b = −1.

We point out that for b ≤ −1 the solutions in Dp of the elliptic equation Au = f enjoy
the best regularity one may expect, thanks to Dp ⊂ W 1,p(0, 1). However, Dp contains
functions which do not vanish at 0 though each u ∈ Dp is limit of solutions to Dirichlet
problems. We summarize the results obtained so far in the following theorem.

Theorem 2.9. If b ≤ −1, then Dp = Dp,reg. Moreover, x−bu′(x) converges to 0 as x→ 0+

for u ∈ Dp. We further have

Dp = Dp,reg = Dp,max = Dp,en if b ≤ −1− 1
p ,

Dp = Dp,reg = Dp,en 6= Dp,max if − 1− 1
p < b ≤ −1.

No restriction of −A to a proper subspace of Dp,max (if b ≤ −1 − 1
p), resp. of Dp,en (if

−1 − 1
p < b ≤ −1) is a generator. In this sense, we cannot impose boundary conditions at

x = 0 if b ≤ −1.
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Proof. Proposition 2.8 yields Dp ⊂ Dp,reg. On the other hand, A is injective on Dp,reg by
Lemma 2.5 and b ≤ −1, so that Dp = Dp,reg. The other results have been shown before or
follow easily.

To treat the case b > −1, we need further preparations.

Lemma 2.10. For u ∈ Dp,max and b > −1, the following assertions hold.

(i) If −1 < b < −1/p, then x−bu′(x) converges as x→ 0+.

(ii) If b = −1/p then x−b(log x)−1u′ is bounded on (0, 1/2).

(iii) If b > − 1
p , then u ∈ Dp,reg.

Proof. Let f = Au. For a suitable c ∈ R, equation (2.4) yields

x−bu′(x) = c+

∫ 1

x

f(y)y−b−1 dy. (2.7)

If −1 < b < −1/p, by Hölder’s inequality the last integral converges as x→ 0 and therefore

lim
x→0

x−bu′(x) = c+

∫ 1

0

f(y)y−b−1 dy.

This proves (i). For b = −1/p, the integral in (2.7) diverges at most logarithmi-
cally and (ii) follows. If b > −1/p, then the functions xb and v belong to Lp(0, 1)

where v(x) = xb
∫ 1

x
f(y)y−b−1 dy. In fact, extending f to zero outside [0, 1], we derive

v(x) =
∫∞
1
f(sx)s−b−1 ds and then

‖v‖p ≤
∫ ∞
1

s−b−1
(∫ ∞

0

|f(sx)|p dx
) 1

p

ds ≤ ‖f‖p
∫ ∞
1

s−b−1−
1
p ds <∞,

using the integral version of Minkowski’s inequality. Hence, u′ = cxb + v ∈ Lp(0, 1).

For b > −1 we can now show that the generator −Ap = (−A,Dp) incorporates Dirichlet
boundary conditions at x = 0.

Proposition 2.11. Let b > −1. For every f ∈ Lp(0, 1), the unique solution u in Dp of
Au = f is given by formula (2.4) with c replaced by

ĉ = −
∫ 1

0

f(x) dx.

Moreover, u(x) tends to 0 as x→ 0.

Proof. We proceed as in the proof of Proposition 2.8 and show that cε tends to ĉ, cf. (2.5).
To this aim, we observe that

xb+1

∫ 1

x

|f(y)|
yb+1

dy ≤ xb+1‖f‖p
(∫ 1

x

y−(b+1)p′ dy

) 1
p′

= ‖f‖p
(
x

∫ 1

x

t(b+1)p′−2 dt

) 1
p′

,
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which implies lim
x→0

xb+1

∫ 1

x

|f(y)|
yb+1

dy = 0. Therefore lim
ε→0

cε = ĉ by (2.5), and (2.4) yields

u(x) = − x
b+1

b+ 1

∫ 1

0

f(y) dy +
1

b+ 1

∫ x

0

f(y) dy +
xb+1

b+ 1

∫ 1

x

f(y)

yb+1
dy. (2.8)

All terms in this representation tend to 0 as x→ 0.

We can now complete the description of Dp for the case b > −1.

Theorem 2.12. If b ∈ (−1,−1/p], we have Dp = D0
p,en = D0

p,max % D0
p,reg. If b > −1/p,

we have Dp = D0
p,en = D0

p,max = D0
p,reg.

Proof. Let b > −1. Proposition 2.11 and Lemma 2.6 imply that Dp ⊂ D0
p,en ⊂ D0

p,max, and
the equalities follow from the injectivity of A on D0

p,max, see Lemma 2.5. It is clear that
D0
p,reg ⊂ D0

p,max. For b > −1/p, the converse holds due to Lemma 2.10(iii). Finally, let

−1 < b ≤ − 1
p . We choose f = 1 in (2.8). Then u′(x) = −xb + xb(x−b− 1)/b which does not

belong to Lp(0, 1).

We finally show that the semigroup generated by (−A,Dp) is analytic in Lp(0, 1), using
the corresponding result in spaces of continuous functions and an interpolation argument.

Theorem 2.13. The semigroup (T (t))t≥0 constructed in Proposition 2.4 with generator
(−A,Dp) is analytic in Lp(0, 1).

Proof. Case b ≤ −1. Let

D∞ = {u ∈ C1([0, 1]) ∩ C2(]0, 1])
∣∣u(1) = 0, lim

x→0
xu′′(x) = 0}. (2.9)

Proposition 3.1 and Theorem 3.5 of [14] imply that (−A,D∞) generates an analytic semi-
group T (z), z ∈ C+ = {z ∈ C : |Arg z| < π/2}, in C([0, 1]). Since D∞ ⊂ Dp by Theorem 2.9,
the resolvents of A in Lp(0, 1) and C([0, 1]), hence the semigroups, coincide on C([0, 1]). The
assertion follows from the Stein interpolation theorem, as stated in Theorem 6.5 and the
subsequent observations of [13], once we have proved that T (z) can be extended to an ana-
lytic semigroup in L∞(0, 1) which is bounded near 0. Let t > 0, f ∈ L∞(0, 1) and (fn) be
a sequence of continuous functions such that fn → f in Lp(0, 1) and ‖fn‖∞ ≤ ‖f‖∞. Then
‖T (t)fn‖∞ ≤ ‖f‖∞ and T (t)fn is bounded in C1([0, 1]), since T (t) is analytic in C([0, 1])
and D∞ embeds continuously into C1([0, 1]). Because T (t)fn → T (t)f in Lp(0, 1), we infer
that T (t)f ∈ C([0, 1]). This shows that for every t > 0, T (t) maps L∞(0, 1) into C([0, 1])
and that ‖T (t)f‖∞ ≤ ‖f‖∞. Therefore T (z) = T (z− ε)T (ε), Re z ≥ 2ε, defines an analytic
semigroup in L∞(0, 1) for z ∈ C+ which is bounded in a neighbourhood of 0 .

Case b > −1. Here we impose Dirichlet boundary conditions at x = 0 and therefore we
work in C0(0, 1). We set

D0
∞ = {u ∈ C0(0, 1) ∩ C2(]0, 1])

∣∣Au ∈ C0(0, 1)}.

Theorem 3.1 of [3] implies that (−A,D0
∞) generates an analytic semigroup in C0(0, 1). (We

remark that though Theorem 3.1 in [3] states the result in C([0, 1]), the corresponding result
in C0(0, 1) is an immediate consequence.) Since D0

∞ ⊂ Dp by Theorem 2.12, it follows that
the resolvents of A in Lp(0, 1) and C([0, 1]) coincide on C([0, 1]), hence the semigroups too.
Then the assertion is a consequence of the Stein interpolation theorem, as above, using the
compactness of the embedding of D0

∞ into C0(0, 1) which follows from Lemma 3.2 of [3].
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3 The semigroup constructed via Neumann type ap-
proximations

By Theorems 2.9 and 2.12 the semigroup T (·) constructed via the Dirichlet approximation
solves the parabolic problem for A with full space regularity (i.e., T (t)u0 ∈ Dp,reg for all
t > 0 and u0 ∈ Lp(0, 1)) if and only if b ≤ −1 or b > −1/p. For the intermediate range
b ∈ (−1,−1/p] we have less regularity, but Dirichlet boundary conditions. Hence, there
could exist another semigroup solving the parabolic problem for A with full space regularity
but different boundary conditions at x = 0 if b ∈ (−1,−1/p]. In fact, we shall construct
such a semigroup for b ∈ (−1,−1/p) by means of a Neumann type approximation. For such
b this approximation procedure thus behaves differently, and in some sense better than the
Dirichlet type approximation of the previous section. The next result also indicates another
drawback of the Dirichlet approximation: It is unstable in W 1,p for b ≤ − 1

p although all the

approximations un = A−1n f converge in Lp(0, 1) to functions in W 1,p(0, 1).

Proposition 3.1. Let uε ∈W 2,p(ε, 1) solve Auε = f with uε(ε) = uε(1) = 0 for ε ∈ (0, 1).
These functions are uniformly bounded in W 1,p(0, 1) (after extension by 0) for each f ∈
Lp(0, 1) if and only if b > −1/p.

Proof. Let f and uε be given as in the statement. We first take b 6= −1. Formula (2.4)
yields

u′ε(x) = cεx
b + xb

∫ 1

x

f(y)

yb+1
dy.

The constant cε is determined by the boundary condition uε(ε) = 0 and is given by (2.5),
so that we obtain

u′ε(x) =
xb

εb+1 − 1

(∫ 1

ε

f(y) dy − εb+1

∫ 1

ε

f(y)

yb+1
dy

)
+ xb

∫ 1

x

f(y)

yb+1
dy (3.1)

for x ∈ (ε, 1). We now take f = 1. For b 6= 0, it follows

u′ε(x) =
1

b
+ xb

b− bε− ε+ 1

b(εb+1 − 1)
=:

1

b
+ β(ε)xb.

Observe that β(ε) tends to − b+1
b as ε → 0 if b > −1 and that it behaves like b+1

b ε−b−1 as
ε→ 0 if b < −1. Moreover,

‖β(ε)xb‖p =

{
|bp+ 1|−

1
p β(ε)|1− εbp+1|

1
p , if b 6= − 1

p ,

β(ε)| log ε|
1
p , if b = − 1

p .

As a result, for b < −1 the norms ‖u′ε‖p behave like ε−b−1εb+1/p as ε→ 0, and hence tend
to infinity. For b ∈ (−1,−1/p) or b = −1/p, we have ‖u′ε‖p ∼ εb+1/p or ‖u′ε‖p ∼ | log ε|1/p,
respectively, and the norms again tend to infinity as ε→ 0.

We next consider the case b = −1. For f = 1, we deduce from (2.4)

u′ε(x) =
cε
x

+
1

x

∫ 1

x

log y dy =
cε
x
− 1

x
+ 1− log x,
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0 = uε(ε) = cε log ε−
∫ 1

ε

log
y

ε
dy = cε log ε+ 1− ε+ log ε,

arriving at

u′ε(x) =
1

x

ε− 1− 2 log ε

log ε
+ 1− log x

for x ∈ (ε, 1). Hence, ‖u′ε‖p ∼ ε
1
p−1 tends to infinity as ε→ 0, also for b = −1.

To treat the case b > −1/p, we go back to (3.1) for any given f ∈ Lp(0, 1). We first note
that the norms of xb in Lp(ε, 1) converge to (bp+ 1)−1 and εb+1 → 0 as ε→ 0. Moreover,∣∣∣∣εb+1

∫ 1

ε

f(y)

yb+1
dy

∣∣∣∣ ≤ ‖f‖1 ≤ ‖f‖p.
The p-norm of last summand in (3.1) can be estimated as follows. Extend f by 0 to R+

and write

xb
∫ ∞
x

f(y)

yb+1
dy =

∫ ∞
1

f(sx)

sb+1
ds.

Using Minkowski’ inequality and Fubini’s theorem, we further compute

(∫ ∞
0

∣∣∣ ∫ ∞
1

f(sx)

sb+1
ds
∣∣∣p dx)1/p ≤ ∫ ∞

1

ds

sb+1

(∫ ∞
0

|f(sx)|p dx
)1/p

= ‖f‖p
∫ ∞
1

ds

sb+1+1/p
=
‖f‖p
b+ 1/p

.

As a consequence, ‖u′ε‖p ≤ c ‖f‖p for a constant c > 0 and all ε ∈ (0, 1/2) and f ∈ Lp(0, 1).
Since uε(1) = 0, we further have |uε(x)| ≤ ‖u′ε‖1 ≤ ‖u′ε‖p for all x ∈ (ε, 1), so that uε is
bounded in W 1,p(ε, 1) by c ‖f‖p if b > −1/p, as asserted.

Motivated by the above observations we now study approximating problems with Neu-
mann boundary conditions, employing the domains

DN
p,ε = {u ∈W 2,p(ε, 1)

∣∣u′(ε) = 0, u(1) = 0}.

Lemma 3.2. Let u ∈ DN
p,ε and b ∈ R. We have∫ 1

ε

Auu∗ dx = (p− 1)

∫ 1

ε

x |u′|2 |u|p−2 dx− b+ 1

p
|u(ε)|p. (3.2)

Let b ≤ −1. Then (A,DN
p,ε) is accretive and∫ 1

ε

x |u′|2 |u|p−2 dx ≤
‖f‖p ‖u‖p−1p

p− 1
. (3.3)

Proof. The estimate (3.2) can be shown exactly as (2.1), and it implies the remaining results
for b ≤ −1.

The next result shows that the Neumann approximation is stable in W 1,p if b < −1/p.
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Lemma 3.3. Let b < −1/p and f ∈ Lp(0, 1). There exists uε ∈ DN
p,ε such that Auε = f . It

then holds

‖uε‖p ≤
1

−b− 1
p

‖f‖p and ‖u′ε‖p ≤
1

−b− 1
p

‖f‖p. (3.4)

Moreover, for b ∈ (−1,−1/p) we have∫ 1

ε

x |u′|2 |u|p−2 dx ≤ 1

p− 1

(
‖f‖p ‖u‖p−1p +

b+ 1

p(−b− 1
p )p
‖f‖pp

)
. (3.5)

Proof. Let b < −1/p and f ∈ Lp(0, 1). The first assertion is clear. We drop the subscript ε
in the rest of the proof. We multiply the equation Au = f by (u′)∗ = |u′|p−2u′ and integrate
over (ε, 1). An integration by parts then yields∫ 1

ε

fu′ |u′|p−2 dx = −
∫ 1

ε

xu′′ u′ |u′|p−2 dx+ b

∫ 1

ε

u′ u′ |u′|p−2 dx

= −1

p

∫ 1

ε

x
d

dx
|u′|p dx+ b ‖u′‖pp

=
(
b+

1

p

)
‖u′‖pp −

1

p
|u′(1)|p

since u′(ε) = 0. We thus obtain

−
(
b+

1

p

)
‖u′‖pp ≤ −

∫ 1

ε

fu′ |u′|p−2 dx ≤ ‖f‖p ‖u′‖p−1p

by means of Hölder’s inequality. Because of u(1) = 0, we also have

|u(x)| ≤ ‖u′‖1 ≤ ‖u′‖p ≤
1

−b− 1
p

‖f‖p

for all x ∈ (ε, 1). Therefore, (3.4) holds. Combining the above estimate with (3.2) and
Hölder’s inequality, we arrive at (3.5).

Proposition 3.4. a) Let b < −1/p. Then Ap,N = (A,Dp,reg) is invertible. Moreover,
u = A−1p,Nf satisfies the estimates (3.3)–(3.5) (depending on b) for ε = 0 and each f ∈
Lp(0, 1). In particular, the Neumann type approximation of Ap,N is stable in W 1,p, cf.
Proposition 3.1. Finally, for b ≤ −1 the operator Ap,N is maximally accretive.

b) If b ≥ −1/p, there are f ∈ Lp(0, 1) such that ‖uε‖p → ∞ as ε → 0 for the functions
uε ∈ DN

p,ε with Auε = f . Hence, the Neumann approximation does not work in this case.

Proof. a) Let b < −1/p. As in the proof of Proposition 2.4 we obtain a function u ∈
W 2,p

loc ((0, 1]) with u(1) = 0 satisfying Au = f on (0, 1). It is the limit in W 1,p
loc ((0, 1]) of

sequence of functions uε as in Lemma 3.2 and 3.3. (We note that the uniform bound needed
in the proof of Proposition 2.4 here follows from (3.4) since |uε(x)| ≤ ‖u′ε‖p ≤ c ‖f‖p.)
Fatou’s lemma then implies that the estimates (3.3)–(3.5) hold for u on (0, 1). In particular,
u belongs to W 1,p(0, 1) and hence to Dp,reg. Since A is injective on Dp,reg by Lemma 2.5,
we obtain the invertibility of Ap,N = (A,Dp,reg). Moreover, for b ≤ −1 the operator Ap,N
is accretive due to (3.2).
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b) Let b > −1/p. The function f(x) = xb then belongs to Lp(0, 1). We consider again
the function uε ∈ DN

p,ε such that Auε = f . Due to formula (2.4), this function is given by

uε(x) =
cε
b+ 1

(xb+1 − 1)− 1

b+ 1

∫ 1

x

yb dy +
xb+1

b+ 1

∫ 1

x

yb

yb+1
dy

=
cε
b+ 1

(xb+1 − 1) +
xb+1 − 1

(1 + b)2
− xb+1 log x

b+ 1

Since 0 = u′ε(ε) = cεε
b − εb log ε, we infer that cε = log ε and

uε(x) =
log ε

b+ 1
(xb+1 − 1) +

xb+1 − 1

(1 + b)2
− xb+1 log x

b+ 1
.

As a result, the norms ‖uε‖p ≥ c (1 + | log ε|) explode as ε→ 0.

Finally, let b = −1/p. We now consider f(x) = x
− 1
p (− log x

2 )−1. Observe that f belongs
to Lp(0, 1). Proceeding as for b > −1/p, we obtain that cε = C + 1

2 log(− log( ε2 )) and that
‖uε‖p behaves like cε and thus tends to infinity as ε→ 0.

Remark 3.5. The case b = −1/p in some sense borderline. Indeeed, Dirichlet conditions
at 0 can be imposed, but the domain Dp of the generator is larger than D0

p,reg for b = −1/p
and it is equal to D0

p,reg for b > −1/p. Moreover, for b = −1/p the Neumann approximation
looses its stability which holds for b < −1/p.

Theorem 3.6. For b < −1/p, the operator −Ap,N = (−A,Dp,reg) generates a positive
analytic C0–semigroup TN (·) on Lp(0, 1). For b ≤ −1, the operator −Ap,N coincides with
the generator −Ap from Theorem 2.9, and hence TN (·) = T (·). For b ∈ (−1,−1/p), the
operator Ap,N differs from Ap, hence TN (·) 6= T (·), and we have Dp,reg $ Dp,en = Dp,max.

Proof. 1) Theorem 2.9 says that Dp = Dp,reg if b ≤ −1 and hence Ap = Ap,N in this case.
So the asserted generation results for b ≤ −1 were already shown in Proposition 2.4 and in
Theorem 2.13.

2) Let b ∈ (−1,−1/p). Then there are functions in Dp \Dp,reg by Theorem 2.12, so that
Ap,N 6= Ap. We first give a short proof of the generation result for the special case p = 2,
where b ∈ (−1,−1/2). Here we treat A2,N as the perturbation A2,N = A0 +(b+1)Dx of the
operator A0 = −xD2

x −Dx with domain D(A0) = D2,reg that corresponds to b = −1. Take
u ∈ D2,reg and Au = f . It is straightforward to check that A0,ε = (A0, D2,ε) is self adjoint
on L2(ε, 1). Hence, the resolvents (λ+A0,ε)

−1, and by approximation also (λ+A0)−1, are
symmetric for λ > 0, cf. Proposition 2.4. As a result, A0 is self adjoint so that

‖A0(λ+A0)−1‖ ≤ sup
τ≥0

τ

|τ + λ|
≤ sup

τ≥0

τ

τ + Reλ
≤ 1,

‖λ(λ+A0)−1‖ ≤ sup
τ≥0

|λ|
|τ + λ|

≤ 1

for all λ ∈ C+ = {z ∈ C | Re z > 0}. Due to Proposition 3.4, estimate (3.4) holds for A0

leading to

‖(b+ 1)Dx(λ+A0)−1‖ ≤ b+ 1

1− 1
2

‖A0(λ+A0)−1‖ ≤ 2(b+ 1) =: β < 1.
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Since A = A0 +(b+1)Dx, these estimates easily imply that λ ∈ ρ(−A) and ‖λ(λ+A)−1‖ ≤
1/(1− β) for all λ ∈ C+. Thus −A2,N = (−A,D2,reg) generates an analytic semigroup. We
remark that this argument can be extended to p ∈ (1,∞) if b ∈ (−1,−1/p) is sufficiently
close to −1.

3a) We next prove the generation result for p ∈ (1,∞) and b ∈ (−1,− 1
p ). Proposition 3.1

and Theorem 3.5 of [14] imply that −A∞ = (−A,D∞), defined in (2.9), on D∞ ⊂ Dp,reg ∩
C1([0, 1]) generates a bounded, positive, analytic semigroup of angle π

2 on L∞(0, 1), cf. the
proof of Theorem 2.13, case b ≤ −1. In view of Lemma 2.5, the operator A∞ is injective
and thus invertible. Observe that its inverse is the restriction of the operator A−1p,N obtained
in Proposition 3.4. Let λ ∈ C+ and 0 ≤ f ∈ L∞(0, 1). From e.g. Corollary 3.11.3 of [1] we
deduce that

|(λ+A∞)−1f | ≤ (Reλ+A∞)−1f ≤ A−1∞ f = A−1p,Nf.

As a result, (λ + A∞)−1 = R(λ,−A∞) can be extended to a uniformly bounded pseusore-
solvent {R(λ);λ ∈ C+} on Lp(0, 1) for all p ∈ (− 1

b ,∞). It holds R(0) = A−1p,N , and thus

R(λ) has the range Dp,reg = A−1p,NL
p(0, 1), due to e.g. Lemma III.4.5 of [4]. We can now

compute

(λ+Ap,N )R(λ) = (λ+Ap,N )[A−1p,N − λA
−1
p,NR(λ)]

= I + λ[A−1p,N −R(λ)− λA−1p,NR(λ)] = I.

for all λ ∈ C+. In the same way, one sees that R(λ)(λ + Ap,N ) = I. It follows that
C+ ⊂ ρ(−Ap,N ) and (λ+Ap,N )−1 = R(λ) for all λ ∈ C+ is uniformly bounded and positive
for λ > 0 and all p ∈ (− 1

b ,∞).
Fix now p ∈ (1,∞), b ∈ (−1,− 1

p ), and q ∈ (− 1
b , p). Interpolating between Lq and L∞

we derive

‖(λ+Ar,N )−1‖r ≤ c |λ|−3/4 (3.6)

for all λ ∈ C+ and the operator norm in Lr(0, 1) with r = 4q. In the next step we will
improve this estimate to ‖(λ + Ar,N )−1‖r ≤ c |λ|−1. We can then repeat the procedure,
interpolating between Lq and L4q , to obtain the sectoriality estimate for r = 16q/7. In
finitely many steps we arrive at ‖(λ + Ap,N )−1‖ ≤ c |λ|−1 for all λ ∈ C+. The operator
−Ap,N thus generates a positive analytic C0–semigroup.

For later use, we first derive another estimate. Let V = (1/2, 1), r = 4q, λ ∈ C+ and
f ∈ Lr(0, 1). Set η = |λ|−1/2. Interpolation yields

‖Dx(λ+Ar,N )−1f‖Lr(V )

≤ c0η ‖D2
x(λ+Ar,N )−1f‖Lr(V ) + c1η

−1 ‖(λ+Ar,N )−1f‖Lr(V )

≤ 2c0η ‖A(λ+Ar,N )−1f‖Lr(V ) + c0|b| η ‖Dx(λ+Ar,N )−1f‖Lr(V )

+ c1η
−1 ‖(λ+Ar,N )−1f‖Lr(V )

for some constants c0, c1 > 0. Choosing η ≤ η0 := (2c0)−1 ≤ (2c0|b|)−1, we derive from the
above estimates

‖Dx(λ+Ar,N )−1f‖Lr(V ) (3.7)

≤ 4c0 |λ|−1/2 ‖f − λ(λ+Ar,N )−1f‖Lr(0,1) + 2c1 |λ|1/2 ‖(λ+Ar,N )−1f‖Lr(0,1)
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≤ c |λ|−1/2 ‖f‖Lr(0,1) + c |λ|−1/4 ‖f‖Lr(0,1) ≤ c |λ|−1/4 ‖f‖Lr(0,1)

for some constants c > 0 and all λ ∈ C+ with |λ| ≥ 4c20.
3b) We define the operator Ã = −xD2

x + bDx on D̃p,reg = {v ∈ W 1,p(0,∞) |xv′′ ∈
Lp(0,∞)}. To construct and estimate the resolvent of Ã, we use our operator Ap,N and

the restriction Ã+ of Ã to the domain D̃+
p,reg = {v ∈ W 1,p(1/2,∞) | v(1/2) = 0, xv′′ ∈

Lp(1/2,∞)}. One shows that −Ã+ generates an analytic semigroup on Lp(1/2,∞) as in
Proposition 6.1 of [16], using Theorem 2.7 of [7] for the spatial domain R. As in (3.7), one
can then derive

‖Dx(λ+ Ã)−1f‖Lr(V ) ≤ c |λ|−1/2 ‖f‖Lr(1/2,∞) (3.8)

for all λ ∈ C+ with |λ| ≥ r0 for some r0 > 0. Thanks to (3.6), (3.7), (3.8) and the
sectoriality of Ã+, (a slight variant of) Proposition 5.5 of [16] implies that (3.6) holds for Ã
and all λ ∈ C+ with |λ| ≥ r1 for some r1 > 0.

We next use a scaling argument from [16]. Let s > 0. The map Js : Lp(0,∞)→ Lp(0,∞)
given by (Jsu)(x) = u(sx) is linear, has the inverse Js−1 and satisfies ‖Jsu‖p = s−1/p ‖u‖p
for all u ∈ Lp(0,∞). Observe that sJsÃJ

−1
s = Ã. Let ω ∈ C+ with |ω| = r1 and λ = sω.

It follows λ + Ã = sJs(ω + Ã)J−1s and thus ‖(λ + Ã)−1‖ ≤ |λ|−1 ‖ω(ω + Ã)−1‖ ≤ c |λ|−1.
for all λ ∈ C+. This sectoriality estimate again implies the version of (3.8) for Ã. As in
Proposition 5.7 of [16], we then deduce that −Ar,N generates an analytic semigroup on
Lr(0, 1). This fact was missing to complete the proof in step 3a).
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