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Abstract

We study second order elliptic operators whose diffusion coefficients degenerate at
the boundary in first order and whose drift term strongly points outward. It is shown
that these operators generate analytic semigroups in L? where they are equipped with
their natural domain without boundary conditions. Hence, the corresponding parabolic
problem can be solved with optimal regularity. In a previous work we had treated the
case of inward pointing drift terms.

Mathematics subject classification (2000): 35K65, 35J70.

1 Introduction

In this paper we study wellposedness and regularity of elliptic and parabolic partial differ-
ential equations in L?(Q2), where Q is either the halfspace or a bounded smooth domain,
assuming that the second order coefficients degenerate at the boundary of first order. Since
we are looking at second order problems, first order degeneration is a borderline case where
the drift term in normal direction is (roughly speaking) of the same ‘order’ as the diffusion
part. Thus size and direction of the drift term can influence the generation result in a crucial
way. In this sense, first order degeneration is the most interesting case in this context.

Locally, there are essentially two cases of first order degeneration at the boundary. Ei-
ther all the diffusion coefficients or only their tangential component behave as the distance
to the boundary (all other cases can be reduced to these two). For the case of tangential
degeneration, in [11] we have recently developed a wellposedness theory in LP spaces and
in spaces of continuous functions, and established various properties of the generated semi-
groups, see also [15]. In the tangential case, the size or the direction of the drift have no
effect on the generation result. This is different in the case of full degeneration of first order.
We explain the effects of the drift term on the level of the model operator

A=—yA+a -V, +bD, (1.1)
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with constant drift coefficients a € RV and b € R acting on the half space
RV = {z = (z,y) e RV 1z e RN,y > 0}.

In the paper [10] (co-authored by three of the present authors), it was proved that the
operator —A with the domain

D) = {u e WeP(®RY ) n WERRY ) |Vl y D] € PRI
generates an analytic Cy-semigroup of positive contractions on LP (Rf H) if b > —1/p and
p € (1,00). In this case the drift points inward at the boundary, or only mildly outward.
Correspondingly, one has to impose Dirichlet boundary conditions. It was also shown by a
one dimensional example that —A with domain Dg is not a generator if b < —1/p.

In the paper [16] parabolic problems with full degeneration at the boundary were studied
in a more general framework, but assuming that the drift coefficients vanish at 9Q (which
means b = 0 in the model operator above). We also refer to e.g. [18], [23], [25], [26] and
[28] for other contributions to degenerate problems, which however do not deal with the
interplay of diffusion and drift in the case of first order degeneration at the boundary.

Degenerate operators have also been deeply studied in different contexts, namely in
weighted Sobolev spaces, see e.g. [2], [6] [17], or in spaces of degenerate Holder continuous
functions, see e.g. [3], [5], [6], [7]. Interest for these investigation comes from applications to
mathematical finance (Heston volatility model) and population biology (generalized Kimura
diffusion) and is related to the stochastic counterpart of the diffusion processes under con-
sideration, as well as from applications to nonlinear equations (e.g. porous medium) and
variational inequalities. In the weighted framework the role of the drift parameter seems to
play a different role compared to our unweighted case. The proof of our main result in the
model case of the halfspace, Theorem 3.8, relies upon the L? gradient estimates in Propo-
sition 3.3. Similar gradient estimates (with @ = 0) are proved in [17], even for p # 2, with
completely different methods coming from the analysis of singular integral operators. See
in particular Section 4.3 and Theorem 4.6.5 in [17], and also the proof of Proposition 2.20
n [14]. Our proof of the gradient estimates is based on elementary variational estimates.

Let us describe our approach. To understand the situation if b < —1/p, we investigated in
detail the one dimensional case = (0, 1) in [12]. It turned out that then A = —yD,, +bD,,
exhibits a surprisingly complicated behavior. In Section 2 we recall the corresponding
results, which have been the starting point for the study in higher dimensions.

In the present paper, we establish that —A generates an analytic Cp-semigroup on L?
for each b < —1/2. Here the model operator A = —yA +a-V, +bD, on L2(RY*!) has the
domain

Dy = {ue WHRY™) nWEZRYT) -y |Vul, y| D% € LXRYH)}
which possesses optimal regularity, but imposes no boundary condition because the drift
points outward and is large enough. In addition, the operator (A, Ds) is accretive for
b < —1 and a = 0, see Proposition 3.5, but it fails to be (quasi) accretive for b € (-1, —1/2)
and a = 0, see Remark 3.7. This indicates that one cannot use form methods here.

Observe that our results complement those of [10] for p = 2 where the opposite condition
b > —1/2 was assumed. The approach of [10] relies on Hardy’s inequality which only works
with the Dirichlet boundary condition and under the restriction b > —1/2. We thus have
to proceed differently in the present paper.



In our previous works [10] or [11] we have approximated the model operator A on R} **
by its realization on the strip {(z,y) : = € RV, ¢ < y < 1/¢} with Dirichlet boundary
conditions. In contrast, following the analysis in [12], in the present paper we impose
Neumann boundary conditions at y = €. The resolvent equation A\u+ Au = f for u € D5 is
then solved by letting e — 07. The crucial step of our arguments are the gradient estimates
in Proposition 3.3 which ensure that Do C WH2(RY ™). They are valid for all b < —1/2,
but we need a = 0 here. So far we do not know how to extend these estimates to the case
p # 2 which is the main reason for the restriction to p = 2 in this paper. As a by-product of
these estimates we derive an inequality leading to analyticity in Proposition 3.4. The result
for b < —1 and a = 0 can then be derived in Proposition 3.5. The cases b € (—1,—1/2) and
a # 0 are treated in Proposition 3.6 and Theorem 3.8, respectively, by means of perturbation
arguments. In Proposition 3.6 we perturb the operator Ay for b = —1 and a = 0 by the drift
term (b+ 1)D,, which is relatively bounded w.r.t. Ay with precisely the constants needed to
construct the perturbed resolvent by a Neumann series. In Theorem 3.8 we use the Kalton-
Weis theorem on sums of resolvent commuting operators to finally add the tangential drift
term a - V.

Based on the properties of the model operator, we also treat the problem on a bounded
domain € in RV*!. We study an operator A in nondivergence form given in (4.1) with
continuous diffusion and drift coefficients on €, where the normal component of the drift is
strictly less than —1/2 times the normal component of the matrix of the diffusion coefficients,
see (H3) in Section 4. We then show that the negative of this operator generates an analytic
semigroup on L?(2) when equipped with the domain

D3 = {u € W2 (@) nWH(Q) : o D?ul € LA(Q)}
having optimal regularity and no boundary conditions. (Here, g is a smooth extension of the
distance function to the boundary.) By standard semigroup theory, this generation result
allows to solve the corresponding inhomogeneous parabolic partial differential equation in
optimal regularity, see Corollary 4.2.

Acknowledgments. We are grateful to the referees for valuable comments, in particular
for pointing out a mistake in the first version of the paper and for suggesting relevant
references.

2 One dimensional operators

In this section we recall the basic results of the paper [12] concerning the one dimensional
operator A = —yD,, +bD, in L?(0,1) with b € R.

First, we constructed an operator (—A, Dﬁb) by Dirichlet approximation, i.e., we solved
the resolvent equation Au + Au = f on (g,1), where A is endowed with the domain
W2P(e,1) N WyP(e,1), and then let ¢ — 07. We have shown that (=A,D],) generates
an analytic semigroup for all b € R and p € (1,00). However, the domain ng heavily de-
pends on b: If b < —1, then u € D} is contained in W'?(0,1) and satisfies yu” € L?(0,1),
but no boundary condition at y = 0 is imposed. If b € (=1, —1/p|, then Dﬁb is not contained
in W'?(0,1), but one imposes u(0) = 0 for u € D7,

We have further seen that the Dirichlet approximation is unstable in the sense that for
the solutions u. € W2P(e,1)NW, (¢, 1) of Au. = f the norms [|u’||, blow up as ¢ — 07 for
certain f € LP(0,1) and each b < —1/p (even though the limit function belongs to W17 (0,1)



if b < —1). We thus also employed Neumann approximations of A with the domains
D). ={u€W?>P(e,1): /() =0, u(l) = 0}.

This approximation turned out to be stable in W1? for all b < —1/p. Moreover, the limit
operator possesses the (optimal) domain

D, ={ueW'?(0,1): yu” € LP(0,1), u(1) = 0}

and generates an analytic semigroup on L?(0,1) for every p € (1,00) and b < —1/p. The
Neumann boundary condition at y = € is lost in the limit, as we impose no boundary
condition at y = 0 in D,. We checked that the two approximations yield the same operator
for b < —1, but different ones for b € (—1,—1/p). Here the Neumann approximation gives
the better regularity without any boundary condition. In the case b = —1/p the Neumann
approximation does not work and is unstable in WP, This borderline case is excluded in
our further investigations.

These one dimensional results crucially depend on properties which are not available in
higher dimensions. In particular, the full description of the domain of the generator relies
on the possibility of writing explicitly the solutions of the ordinary differential equation
Au = f; the proof of analyticity uses generation theorems from [1] and [22] in sup-norm
spaces which are based on Feller’s theory of diffusion processes on intervals, see [8] and [9].

3 Generation on the half space
In this section we establish the generation result for the model operator
A=-yA+a-V,+bD,

with constant drift coefficients a € RV and b < —1/2 acting on the half space
RVt = {z = (v,y) e RV 1z e RN,y > 0}.

This operator will be endowed with the domain

Dy = {ue WHRYH) N WZERYH) 1 7 |Vul, 4Dl € LPRY )
in L2(RY*™), which has the norm
ullp, = ||“HW1,2(RQ’+1) + ||\/§Vu||L2(Rf+1) +lly D2u||L2(Rf+1), u € Ds.

Let ¢ € (0, %} To construct the resolvent of A, we use approximating problems on the strip
S.:={(z,y) e RN .2 e RN, e <y <71},

where we equip A with the domains

DQIE ={ue WQ’Q(SE) s u(-,1/e) =0, Dyu(-,e) = 0}.

To unify the notation, we set Sy := Rf“ and Dé\fo := D5. Lemma 2.1 of [10] provides us
with the following density result.



Lemma 3.1. The set C2°(RN*1) is dense in Ds.
We first show that the operator A is accretive on DQ’E if b < —1.

Proposition 3.2. Assume that b < —1. Let ReA > 0, u € Dé\;, and 0 < e < 1/2. Set
f=Xu+ Au. We then have

(ReMlullzzes.y < Ifllz2cs0)
In particular, the operator (A, D3'.) is accretive in L*(S.).

Proof. Let first € > 0 and fix u € Dé\;. We multiply the equation Au + Au = f by u and
integrate by parts on S.. It follows

= =

/SE fu:/\||u|%2(sa)+/ss y|w|2+/ (a-un)ﬁ—&-(b—i-l)[S (Dywya.  (3.1)

Since Re ((Vu)u) = £ V|ul?, we can evaluate the last two integrals and deduce

_ b+1
Re [ fu=(ReNfulfss, + | v - L2 [ty
Se Se RN

> (ReX)[[ulf2s,)

using b < —1. On Rf“ we obtain the corresponding estimate in the same way for u €
C2°(RN*1). Due to Lemma 3.1, approximation yields the result for u € Ds. O

Our approach relies on the following gradient estimates for A with quite explicit constants
depending only on b. For technical reasons we first restrict ourselves to the case a = 0. This
restriction will be removed at the end of the section by a perturbation argument.

Proposition 3.3. Assume thata =0 andb < —%. LetReA>0,u € Dé\fs, and0 <e <1/2.
Set f = \u+ Au. We then have

[ Dyullpz(s.) < (I1f 1l z2¢s0y + [T AL lullL2(s.)) (3.2)

—b—%

2
7_1(||f||L2(SE) + [Im A| ||UHL2(SE))' (3.3)

Vet <
Vaulza(s) < <=

Proof. Let first € > 0. Take u € Dé\; and Re A > 0. Multiplying the equation Au + Au = f
by Dyu and integrating by parts in x on S., we obtain

)\/ uDyﬂf/ yDyyuDyﬁ+/ yvzu.VIDyﬂ+b/ |Dyu\2:/ fDyu.
Se Se Se Se Se

The real parts thus satisfy
Re A 1
/ Re (fD,ai) = i/ Dy|u|271m)\/ Im(uDyﬂ)ff/ yD,|Dyul?
s. 2 Js. S. 2 Js.

1
+f/ yDy\qu|2—|—b/ |Dyul?.
2 Js. Se



Integrating by parts in y, we then compute

1

/Re(fpya)z—RiA |u(a:,6)|2—1m/\/ Im(uDya)——/ Dyu (2, 1) 2
S, 2 RN Se 25 RN €

1 1
- E/ \Vmu(x,€)|2 - f/ |Vzu|2 + b+ = / |Dyu|2.
2 Jp~ 2 s, 2 s,

After multiplying by —1, we derive

1 1
3 [ el = (b+3) [ Pz [
2 Se 2 Se Se

< (IIfllz2csy + 1T A lull 2 (s.)) 1 Dyul| 2 s,y

Re (fDyu) — Im)\/ Im (uDyu)
Se

A

so that (3.2) holds. Consequently,

1 1 2
! / Vot < — 2 (1 less) + | Tm Al fullz2gs.y) s
2 Js. b1

as asserted. If ¢ = 0, the previous estimates can be performed for u € C®(RN*1). By
density (see Lemma 3.1), the inequalities (3.3) and (3.2) then also hold in Ds. O

Again for b < —1, we next establish a sectoriality estimate for (—A, Ds).

Proposition 3.4. Assume thata =0 and b < —1. Let A € C with ReA >0, u € Dé\fe, and
0 <e<1/2. We then have

I A fulz(s.y < —(4b+3) [|hu + Aull s,

Proof. If € = 0, as before we first take u € C°(RN*1) and then derive the assertion by
approximation. We use the equation (3.1) with @ = 0 that was shown in the proof of
Proposition 3.2. Taking the imaginary parts in (3.1), we obtain

/SE Im(fu) = (Im X) ||UH%2(SE) + b+ 1)/ Im(aDyu).

€

Using that b + 1 < 0, we estimate

T )22 s, < /S Ful — (b+ 1) /S [uDyul

< ullzaese) (Ifllzacs.) = 0+ 1) [1Dyull2s,)),

I A ullz2(s.) < Iflle2esy = (0+1) [[DyullL2(s.)- (3-4)
Set 1= ;%575 € [0,1). The inequalities (3.4) and (3.2) yield
[T Al ullz2(s.) < (1 +B) 1fllz2(s.) + B [Tm Al flullL2(s.)-
The asserted estimate now follows since —4b —3 = (1 + 8)/(1 — ). O

We can now derive our basic generation result for the case b < —1 and a = 0.



Proposition 3.5. Assume that b < —1 and a = 0. The operator (—A, D3) then gener-
ates a bounded analytic Co—semigroup of positive contractions on L? (Rf“). The operator
(A, Dy) is self-adjoint if b= —1.

Proof. Let € € (0,1/2), A > 0 and f € L?*(S.). We first look for u € DJ'_ satisfying
Au+ Au = f. Since one has mixed boundary conditions on an unbounded domain, it is hard
to find references for the needed results though they are known in principle. So we sketch a
proof. Let u,v € V.= {v € WH2(S.) : v =0 for y = 1/c}. We define the sesquilinear form

a(u,v) = /s [yVu- Vo + (b+ 1)(Dyu)v].

Observe that Poincaré’s inequality holds in V', and hence

b+1
Rea(uw) = [ [pVul-+252Dyfuf] > e Vallias, 5= | o) do > cclulfonas,

Se

by b < —1. The form a thus satisfies the conditions in Section 4.1 of [24] with constant
w = 0. Proposition 1.22 of [24] now yields the invertibility of A + A, for the operator A,
in L2(S.) induced by a. Since the positive part of Reu also belongs to V, the resolvent
(A + A.)~ ! is positive for A > 0 due to Theorem 4.2 and Proposition 2.1 of [24].

It remains to show that the range (A + A-)"'L?(S.) = D(A.) is contained in D3, for
some, and hence all, A\ > 0. To this aim, we set u = (A + A.)"'f and fix a function
0<¢eC>®(el/e]) with ¢ =1 on [g,1/2] and ¢ = 0 on [1,1/¢]. For all v € V we have
Au|v) + a(u,v) = (f|v), where (-|-) is the standard inner product in L?(S.). It follows that
Agu|v) + a(pu,v) = (g|v) for g := ¢ f + bp'u — y(¢"u + 2¢/ Dyu) € L*(S:). Extending ¢u
and g by 0 and a(y) = y by 1/e from S. to H. := {(z,y) € R¥*!:y > ¢}, we thus obtain

/ [A(¢u)w+aw¢u).vw+(b+1)Dy(¢u)m]:/ go,  VweWW2(H), (3.5)

€ €

since we can replace here w by ®w for a map 0 < ¢p € C*([g,00)) with ¢ = 1 on [g, 1]
and ¢ = 0 on [2,1/¢]. In WH2(H.) only ¢u fulfills (3.5), again by Section 4.1 and Propo-
sition 1.22 of [24]. On the other hand, for all sufficiently large A > 0 there is a function
v e W22(H,) solving (A + A)v = g on H. and Dyv =0 for y = ¢, due to e.g. Theorem 5.6
or (5.63) of [27]. Hence, also v satisfies (3.5), and so ¢u = v € W22(H,). Analogously one
shows that (1 — ¢)u € W23 (RN+1 \ Hy,.), and therefore u belongs to DY..

Let A > 0 and f € L2(RY ') be fixed. For every e € (0,1/2), we have found u. € Dy,
solving Au + Au = f, and u. > 0 if f > 0. Propositions 3.2 and 3.3 with A > 0 yield

||UEHL2(S€) < At ”f”mmf“)a ||VUEHL2(S€) <K ||f||L2(Rf+1)v (3.6)

where the constant K only depends on b. For each k € N, the norm of u. in Wl’Q(Sl/k N
B(0,k)) is thus bounded uniformly in ¢ € (0,1/k). By means of the compact Sobolev
embedding, one can construct a (diagonal) sequence u,, which converges in LfOC(Rf ) to
a function u, where g, — 0 as n — oo. Hence, u > 0 if f > 0. Due to local elliptic regularity
(see e.g. Theorem 9.11 in [13]), the functions u., are uniformly bounded in W22(S; /N
B(0,k)) for all ,, € (0,1/k) and each fixed k € N. Using also weak compactness, we obtain

another subsequence (again denoted by u., ) which tends weakly in each W22(S; ,,NB(0, k))



to a function w € Wi’f(RfH). Therefore, u = w € Wi’f(RfH) and u satisfies the equation

A+ Au = f in RY ™!, Estimate (3.6) implies that u € WH2(RY*!) and
HUHLz(Rf“) <A ||f||L2(Rf+1)a ||Vu||L2(RI+V+1) <K ||f||L2(Rf+1)- (3.7)

It follows that Au € L*(RY™') and thus yAu € L*RY*!). To control yD?u, for each
k € N we take n € C*(R) such that n = 1 in [0,]61], n = 01in [2k,400), 0 < n < 1,
17 [|oe < ek~ and [|"[|cc < ck™2. Then v = ynu € W, ’2(Rf+1) and Av € LH(RY ™). Set
Q= RY x (0,k). Applying the Calderén-Zygmund estimate to v (see e.g. Lemma 9.12 in
[13]), we derive

lyD3ull 2 () + 1y Ve Dyu + Vaul 20, + lyDyu + 2Dyul L2y
< VB D] 120, < VBID] pagrssy < O A0 agaveny
< QC(HUZJAUHH(JM“) + ||77/yDy“HL2(Rf+1) + ||77/U||L2(Rf+1) + ||77Dyu||L2(Rf+1)
+ "y ull 2+
for a positive constant C' depending only on N. In the sequel, C' may change from line to
line. Since both 7’ and 7 are supported in [k, 2k], we conclude
lyD3ull L2 () + 1YV Dyu + Voul 20, + lyDyu + 2Dyul 2,
< O(HyA“HB(Rf“) + ||Dyu||L2(]Rf+1) + kilHUHp(RfH)).

The estimate (3.7) then yields

lyD?ull 20, < llyDaull 29, + 1y VaDyull L2 ) + lyDjull L2 (ay)
= C(”f”L?(Rf“) +llyAull o g1y + k_1||“HL2(RQ’+1))'

Observe that yAu = Au + bDyu — f. Letting k — +oo and using (3.7), we thus infer
2
|yD UHL2(RQ’+1) < CHf”m(ugf“)'

To conclude that u € D, it remains to show that /5 |Vu| € L2 (RY*!). We apply the
interpolative estimates (iii) and (iv) of Lemma 2.7 in [10] to the truncated functions uy =
nu € Ds. As above, we deduce /g |Vu| € L2(RY ™) letting k — +o0, and hence u € Ds.

We have thus proved that A+ A : Dy — LQ(RfH) is surjective. Since (—A, D7) is dissi-
pative by Proposition 3.2, this operator generates a contractive Cy—semigroup on L? (Rf +1).
This semigroup is bounded analytic due to Proposition 3.4 and e.g. Theorem I1.4.6 in [4].
Moreover, u = (A+ A)~1f >0 for A > 0 and f > 0 so that the semigroup is positive by e.g.
Theorem VI.1.8 in [4].

Finally, we show the self-adjointness of (A, Dy) for b = —1. Let u,v € C®(RN*1).
Integrating by parts, we compute

/ —(yAu + Dyu)v = / (yVu - Vi + (Dyu)t + uDyv) — / uv
RY*! RY T RN x {0}

/ (—yulAv — 2uD, v + uDyv) + / (ud — ud)
RY T RN x {0}



= uAD, 3.8
/ o (35)

where some boundary terms vanish due to the factor y. Lemma 3.1 allows to extend this
equality to u,v € Dy so that (A, Dy) is symmetric. Since (A, Ds) is a negative generator of
a bounded analytic semigroup, its spectrum is contained in a sector strictly contained in the
right halfplane (see Theorem I11.4.6 in [4]). Therefore, (A, Ds) is self-adjoint if b = —1. O

As in [12] we use a perturbation argument to extend the generation result to the range
b e (—1,-1/2). We point out that the gradient estimate (3.2) precisely gives the needed
smallness condition.

Proposition 3.6. Assume that b € (—1,—1/2) and a = 0. The operator (—A, Ds) then
generates a positive bounded analytic Cy—semigroup on LQ(R_IXH),

Proof. We first show that —A = (—A, D5) generates a bounded analytic Chy—semigroup. We
write A = Ay + (b+ 1)D,, where Ay = —yA — D, is endowed with the domain D, and
corresponds to b = —1. Due to the previous result, — Ay is self-adjoint and dissipative, so
that o(—Ag) C R_. Let A € C with Re A > 0. Then A + Ay is invertible. Fix » = Re A and
set f(s) = (r+s)/(A+s) for s > 0. Since |f(s)| < 1, the functional calculus for self-adjoint
operators yields ||(r + Ag)(A + Ag)~!|| < 1. Combining this estimate with (3.2) for e = 0
and b = —1, we derive

||Dy(>‘+AO)71fHL2(]Rf+1) = ||Dy(7’+A0)71(T+AO)(>\+AO)71]E”L2(R$+1) S 2 ||f||L2(Rf+1)?
for every f € L*(RY ™). Since b € (—1,—1/2), it follows
I(6+ 1)Dy A+ Ao) U <26+ 1) = A < 1, (3.9)

and hence the operator I + (b+ 1)D, (X + Ag)~! is invertible. From the identity

A+ A= (I+(b+1)Dy()\+A0)‘1)()\+A0) (3.10)
we infer that A € p(=A) and |(A + A) 7| < Z5[l(A+ A0) 7' < 125 P\I for some M > 0.
Therefore —A = (—A, Ds) generates a bounded analytic Cp—semigroup 7T'(+).

To show the positivity, we approximate the resolvent arguing as in the proof of Propo-
sition 3.5. Let 0 < f € L2(RY™) and A > 0. For every ¢ € (0,1/2), we again find a unique
positive solution u. € Dé\; of Au 4+ Au = f. Note that we cannot use Proposition 3.2 to
obtain a uniform bound on ||u.||2(g,) since b > —1. Using the boundary conditions in Dé\;,
as in (3.8) one checks check that Ag. = (Ao, D3'.) is symmetric, and thus selfadjoint, on
L3(S.). Since (A+s)~ <1/ for s > 0, we deduce ||[(A+Aoc) | < 1/X from the functional
calculus for self-adjoint operators. Moreover, the estimate (3.9) holds with Ag replaced with
Apc. Setting A. = (A, D3,), the identity (3.10) is true for A. and Ag.. These relations
imply

10+ 497 < 72500+ 40 < 751

which means that 1

1
uellzz(s.) < mx”,f”LQ(Rfﬁ—l).



Proposition 3.3 further yields a constant K such that
”VU'EHLZ(SE) < K Hf”L?(Rf‘“)'

There thus exists a sequence €,, — 0 and a positive function u € Wl’Q(RfH) N I/Vlif (Rf“)

such that u., converges to u weakly in Wlif (RY*') and strongly in L2, (Rf *1). Moreover,

Au+ Au = f. As in the proof of Proposition 3.5 one can see that u € Ds, and hence
(A + A)~1f =u > 0. So the semigroup 7'(-) is positive by e.g. Theorem VI.1.8 of [4]. [

Remark 3.7. Ifb € (—1,—1/2), then the operator (A, D3) is not quasi—accretive (i.e., A4+w
is not accretive for any w € R).

Proof. We only look at the one dimensional operator A = —yD? + bD on the half line
(0, +00). (For the general case, consider functions of the form u(z)v(y) with u € C°(RY).)
If A were quasi—accretive in L?(0,+00), then there would exist a constant w € R such that

Re (Au-u) > w||u||2L2(0,+oo) (3.11)

for every u € Dy. Fix n € C%(R) with = 1 in (—o0, (4e?)7 1], n = 0 in [(2¢?)7!, +00) and
0 <n<1. Forsmall 6 >0 and « € (0,1/2), we define

us(y) = n(y)(—log(y +4))".
Then us € Ds. Integrating by parts, (3.11) yields

o0 o0
) < [ [ (312

The functions us converge pointwise to ug = n(—log)® as § — 0 and u? < u? € L'(0, +00).
Hence, us tend to ug in L?(0,+oc). Moreover, y(uj)? converge pointwise to y(ug)?. We
estimate

y (—log(y+9))2>2
y+9 y+0

< 204277(y)2(_log(j))m_2 + 2y (0 () (— log(y)>* =: v(y),

y(uh(y))® < 20°n(y)> +2y(n () (— log(y + 8))>

using that the function H(t) = t~!(—log(t))?*~2 is decreasing in (0,e~?) and that 7
vanishes on [(2¢?)!,+00). Since v € L'(0,+00), the norms ||\/Ju}|lr2(0,+00) tend to
Ilv/¥uoll 2 (0,400) @s & = 0. Letting 6 — 0, we get a contradiction in (3.12). O

We conclude the section by proving the generation result in the case a # 0.

Theorem 3.8. Assume that b < —1/2 and a € RN. The operator (—A, Dy) then generates
an analytic Cy—semigroup on L? (Rf“). This semigroup is positive and bounded.

Proof. We write A = B+C, where B = —yA+bD,,, C = a-V, and D(C) = {u € L*(RY ™) :
Cu e LQ(Rf“)} D Ds. Propositions 3.5 and 3.6 show that (—B, Ds) generates a positive,
bounded, analytic Co-semigroup T'(-) on L2(RY*1). Tt is known that (C, D(C)) generates
the positive, contractive Co—group S(-) on L2(RY*!) given by (S(t)f)(z,y) = f(z + at,y).
This formula implies that S(t)Dy C Dy and BS(t)v = S(t)Bv for v € Dy and t > 0. We
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thus deduce (A + B)~1S(t) = S(t)(A + B)~! for A > 0 and then T(¢)S(t) = S(¢t)T'(t), using
the resolvent approximation formula for T'(¢) from e.g. Corollary III.5.5 in [4]. Since the
semigroups commute, the resolvents of B and C also commute and the closure of A = B+C
(initially defined on Ds) generates the Ch—semigroup given by U(t) = T'(¢)S(t) for ¢t > 0.
See Paragraph I1.2.7 in [4] for these facts. Observe that the operators U(t) are positive and
uniformly bounded.

In a next step we show that A is actually closed on Dy using a theorem on operator
sums by Kalton and Weis. We refer to [19] for the relevant background information. Due to
e.g. Theorem 11.5 in [19], the m—accretive operator —C' has a bounded H *°—calculus of any
angle we > 7/2. The operator —B is R—sectorial of an angle wg < 7/2 because it generates
a bounded analytic semigroup on a Hilbert space, cf. p.75 and 76 of [19]. Theorem 12.13 of
[19] now shows that A = B + C is closed on Dy. Hence, the graph norm of A is equivalent
to the norm of Dy which in turn is equivalent to the graph norm of B. The analyticity of
U(-) then follows from that of T'(-) because of

JAU (@) f s gaveny < e (IBTOSOF L pagrsny + ITOSO )
< (SO Ly + ITOSE fll o)

-1
<ct ||f||L2(Rf+1)

for t € (0,1], f € L*(RY™") and some constants ¢ > 0. O

4 Generation on bounded domains

Let €2 be a bounded open subset of RN*! with C? boundary and let o be a function in
C?(Q) such that ¢ > 0 in Q, o = 0 on 9Q and V(&) = v(£), for every £ € 9. Here, v(£)
is the inward unitary normal vector to 92 at £&. We consider the operator

N+1 N+1

A= —0 Z a,;jDij + Z szy, (41)

ij=1 i=1

and set a(§) = (aij(f))m and

s g OO
ceo0 (a(§)v (), v(€))

Assume that

H1) a;; are real continuous functions on €, a;; = a;;, and satisfy the ellipticity condition
J 15 J j
(a(€)¢,¢) > al¢|? for every € € Q, ¢ € RV*! and some a > 0.

(H2) b; are real continuous functions on 2.
(H3) k< —1/2.
We endow A with the domain

D = {ue W2 nW'(Q) : o|D%u| € L*() }.

11



Theorem 4.1. Under assumptions (H1), (H2) and (H3) the operator (—A, DS}) generates
an analytic Co—semigroup on L*(Q).

The proof is based on Theorem 3.8. It follows the lines of the arguments in Lemma 2.13,
Corollary 2.14 and Section 3 of [10]. We thus omit the proof, but briefly indicate the
main ideas which are developed with full details in [10]. One first extends Theorem 3.8 to
operators on Rf +1 where one replaces yA by a term y > ; @ij Dij with constant coefficients.
Then one localises the operator A on € around suitably chosen points &1, -« -, &, € 02 and
&o € Q and for j > 1 one transforms the localised operators to the half space Rf *1in such a
way that the normal is preserved at £;. In particular, the factor ¢ transforms into functions
¢; that behave like y. One freezes the coeflicients of the transformed operators and replaces
@; by y, thus obtaining operators as in the indicated extension of Theorem 3.8. Condition
(H3) then yields that the resulting normal drift coefficient is strictly less than —1/2. (In [10]
we had the opposite sign.) For these operators with frozen coefficients one has a resolvent
in L? (Rf H) with the regularity properties established in the previous section. Using this
regularity, the backward transformation, perturbation and partitions of unity, one can now
construct the resolvent of A on €2 that satisfies the appropriate estimates.

The above theorem enables to solve the parabolic problem on €2 corresponding to A in
optimal regularity. We thus consider the evolution equation

Opu(t) + Au(t) = f(t) on Q, t>0,

u(0) = ug on . (4.2)

We next collect a few immediate consequences from the theory of analytic semigroups.
More refined regularity results for (4.2) can be found in the monograph [20], for instance.
We use the real interpolation space (L2(Q2), D§})1 /2,2, see [21] or [28].

Corollary 4.2. Assume that (H1), (H2), (H3) hold. Take T > 0.

a) Let ug € L?(Q) and f € C*([0,T], L?(Q)) for some a > 0. Then the problem (4.2)
has a unique solution u € C*((0,T); L2(Q))NC((0,T]; D$)NC([0, T], L?(K2)), which belongs
to C*([0,T]; L2(2)) N C([0, T]; DY) if uo € DS

b) Let ug € (L*(),D$)122 = V and f € L*((0,T); L*()). Then the evolution
equation (4.2) has a unique solution v € W2((0,T); L2(2)) N L2((0,T); DE)NC([0,T]; V).

Proof. The assertions in a) follow from Theorem 4.3.1 in [20]. Next, let v € V and
f € L*((0,7); L?(2)). Corollary 1.14 of [21] shows that the space E := W2((0,T); L?(2))N
L2((0,T); DY) is embedded in C([0,T];V). By a standard argument (see e.g. Proposi-
tion 4.1.2 in [20]) one sees that a solution v € E of (4.2) is given by

u(t) =T (t)uo + /0 T(t—s)f(s)ds,

where T'() is the semigroup generated by (—A, D§!). The existence of a solution to (4.2) in
E is then a consequence of Corollary 1.7 of [19] and Proposition 6.2 of [21]. O
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