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Abstract. We study quasilinear systems of parabolic partial differential equa-

tions with fully nonlinear boundary conditions on bounded or exterior domains.
Our main results concern the asymptotic behavior of the solutions in the vicin-

ity of an equilibrium. The local center, center–stable, and center–unstable

manifolds are constructed and their dynamical properties are established us-
ing nonautonomous cutoff functions. Under natural conditions, we show that

each solution starting close to the center manifold converges to a solution on

the center manifold.

1. Introduction

The investigation of the long term behavior of solutions starting near an equi-
librium is an essential step in the study of the qualitative properties of a nonlinear
evolution equation. In many cases, the structure of the flow in a neighborhood
of a steady state u∗ is largely determined by the spectrum of the linearization at
u∗, see e.g. [4], [6], [13], [14], [16], [18], [19], [22]. In the current work we construct
local invariant manifolds for a class of nonlinear equations utilizing nonautonomous
cutoff functions.
In this paper we treat parabolic systems with nonlinear boundary conditions and

we construct local invariant C1–manifolds consisting of solutions to the nonlinear
problem. These local center, center–stable, and center–unstable manifolds are tan-
gent at u∗ to the corresponding spectral subspaces of the linearization. We also
show that, under natural conditions, each solution starting close to the center man-
ifold converges exponentially to a solution living on the center manifold. In this
sense, in a vicinity of u∗ the dynamics of the system is reduced to the dynamics on
the center manifold which is governed by an ordinary differential equation. To be
more precise, we consider the equations

∂tu(t) +A(u(t))u(t) = F (u(t)), on Ω, t > 0,

Bj(u(t)) = 0, on ∂Ω, t ≥ 0, j = 1, · · · ,m, (1.1)

u(0) = u0, on Ω,
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on a (possibly unbounded) domain Ω in Rn with compact boundary ∂Ω, where
the solution u(t, x) takes values in CN . The main part of the differential equation
is given by a linear differential operator A(u) of order 2m (with m ∈ N) whose
matrix–valued coefficients depend on the derivatives of u up to order 2m− 1, and
F is a general nonlinear reaction term acting on the derivatives of u up to order
2m− 1. Therefore the differential equation is quasilinear. Our analysis focusses on
the fully nonlinear boundary conditions

[Bj(u)](x) := b(x, u(x),∇u(x), · · · ,∇mju(x)) = 0, x ∈ ∂Ω, j = 1, · · · ,m,

for the partial derivatives of u up to order mj ≤ 2m − 1. We assume mild local
regularity of the coefficients and that the linearization at a given steady state u∗
is normally elliptic and satisfies the Lopatinskii–Shapiro condition (see Section 2).
For illustration, we give a simple example where N = 1 and m = 2 (see e.g. [3] or
[12, §6] for the system case N > 1). In the case of the quasilinear heat equation
with a nonlinear Dirichlet boundary condition

∂tu(t)− a(u(t))∆u(t) = f(u(t)), on Ω, t > 0,

b(u(t)) = 0, on ∂Ω, t ≥ 0,

u(0) = u0, on Ω,

we have to require that a, f ∈ C1(R), b ∈ C3(R) are real, and that there is a steady
state u∗ ∈W 2

p (Ω) with a(u∗) ≥ δ > 0, |b′(u∗)| ≥ δ > 0, and p > n+ 2.
Fully nonlinear boundary conditions appear naturally in the treatment of free

boundary problems, see e.g. [5] or [9], and in the study of diffusion through in-
terfaces, see e.g. [11]. The results of the present paper do not directly cover such
problems, but we think that our methods can be generalized in order to deal with
moving boundaries and transmission problems in future work. We note that the
recent work [15] already contains the linear spectral analysis which is necessary for
applications of center manifold theory to the Stefan problem with surface tension.
Roland: We believe that our methods can also be generalized to the
investigation of the vicinity of a periodic orbit u∗(t) in which case the
linearization will become nonautonomous.
We look for solutions u of (1.1) in the space E1 = Lp([0, T ];W

2m
p (Ω;CN )) ∩

W 1
p ([0, T ];Lp(Ω;CN )) for a fixed finite exponent p > n + 2m. The terms of high-

est order are thus contained in Lp spaces. The solution space E1 is continuously

embedded into C([0, T ];Xp) for the Slobodetskii space Xp = W
2m−2m/p
p (Ω;CN ),

and Xp is the smallest space with this property. Since also Xp ↪→ BC2m−1(Ω;CN )
by Sobolev’s embedding theorem, the nonlinear terms in (1.1) are continuous in
(t, x) up to t = 0, and thus the initial condition can be understood in classical
sense. In particular, the initial value u0 of (1.1) has to belong to Xp and must
fulfill the boundary conditions Bj(u0) = 0 by continuity. Moreover, the solution u
is continuous in Xp on [0, T ], and the norm of Xp is the natural norm for our work.
So our nonlinear phase space is the C1 manifold in Xp given by

M = {u0 ∈ Xp : B1(u0) = 0, · · · , Bm(u0) = 0}.

In our previous work [12] we have established the local wellposedness and certain
smoothing properties of (1.1), and we have constructed the local stable and unstable
manifolds at the steady state u∗ assuming that the spectrum of the linearization
of (1.1) at u∗ does not intersect iR. At first glance, we followed an approach that
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appears to be quite “standard”. One introduces a new function v(t) = u(t)− u∗ in
order to transform (1.1) into the problem Roland:

∂tv(t) +A∗v(t) = G(v(t)) on Ω, a.e. t > 0,

Bj∗v(t) = Hj(v(t)) on ∂Ω, t ≥ 0, j ∈ {1, · · · ,m},
v(0) = v0, on Ω.

(1.2)

see (2.21) below. The problem (1.2) involves the linearizations A∗ and
Bj∗, as well as the nonlinearities G and Hjwhich have the same order as
the linear part but vanish at v = 0 together with their derivatives. The
stable, resp. unstable, manifold consist of initial values of solutions u = v − u∗ to
(1.1) which belong to E1–type spaces of exponentially decaying functions on R+,
resp. R−, see (2.14). Such functions v are obtained as fixed points of a Lyapunov–
Perron map composed of the solution operator of the linearized inhomogeneous
initial(final)–boundary value problem on R+ (R−) and of the substitution operators
given by the nonlinearities in (1.2), cf. (4.5). The relevant definitions and results
are briefly repeated in Section 2. Modifying our methods from [12], in Theorem 4.1
we construct the stable and unstable local manifolds Ms and Mu of (1.1) under the
assumption that the linearization has spectral gaps in the left and the right open
half plane, respectively. We point out that such gaps always exist if the underlying
spatial domain Ω is bounded.
However, the actual implementation of this “standard” approach faces a fun-

damental difficulty already for the stable manifold: The nonlinear compatibility
condition defining the solution manifold M obstructs a direct application of the
usual methods. It turns out that one has to construct Ms as a graph of a map
defined on the (linearly) stable part of the tangent space X0

p of M. This leads
to an additional term in the fixed point problem, see the additive term in (4.5).
Moreover, since we are not merely dealing with a semilinear problem, we need max-
imal regularity for the linearized initial–boundary value problem. This regularity
property is known for compact time intervals (see [8] and the references therein).
Using the spectral decompositions and semigroup theory, we could extend this re-
sult to unbounded intervals in [12, §3], cf. Propositions 2.5 and 2.6 below. We point
out that in the maximal regularity result the boundary data must be contained in
spaces involving fractional space and time regularity, see (2.14).
Yet another principal difficulty occurs when one tries to construct in a similar

way the local center–unstable and center–stable manifolds Mcu and Mcs of (1.1),
which should complement the stable and unstable manifolds Ms and Mu under the
spectral assumptions of Theorem 4.1. Here, already in the linear case,Mcu andMcs

may contain exponentially growing functions. In the corresponding function spaces
substitution operators behave badly; in particular, they are locally Lipschitz only
under very restrictive conditions. A well known trick to overcome this difficulty
is to multiply the nonlinearities in the transformed problem (1.2) by a suitable
cutoff function, called 𭟋(t, v) below, which is equal to 1 if v is small and equal to
0 if v is large in a suitable norm (see e.g. [4], [6], [13], [14], [16], [18], [19], [21],
[22]). But here we run into severe troubles. The space for the boundary data
has to involve (fractional) time regularity which we can only control by means
of the full E1–norm of v, say, on small time intervals. As a result, the cutoff
must contain nonlocal terms of the form ∥v∥E1([t−a,t+a]), see (3.2), and becomes
nonautonomous. This fact leads to many technical problems, but most importantly,
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it changes the nature of our evolution equation drastically: It becomes nonlocal and
even noncausal after introducing the cutoff, see (3.7). We treat these rather delicate
questions in Section 3 in detail. We add that one also needs an additional argument
(taken from [21]) in order to upgrade the invariant manifolds from being merely
Lipschitz to the class C1.
Our main results concern local center manifolds, where we use similar methods

as for Mcs and Mcu (working on the time interval R instead of R+ or R−). In the
center case, we assume that the linearization has spectral gaps in both the left and
the right open halfplanes, see (2.34). It is well known that local center manifolds are
not uniquely determined, in general. (On a technical level, the nonuniqueness arises
from possible modifications of the cutoff.) We show that ‘our’ center manifoldMc is
a C1 manifold in Xp tangent to the center subspace of the linearized problem at u∗
and that it is Lipschitz in the smaller Sobolev space X1 =W 2m

p (Ω;CN ). Moreover,
Mc = Mcs∩Mcu and Mc∩Ms = Mc∩Mu = {u∗}. Also, Mc is locally invariant
under the flow of (1.1) and it contains all small global solutions of (1.1) on R. These
facts are presented in Theorem 4.2 and Corollary 5.3. Analogous results for the
center–stable and center–unstable manifolds are proved in Theorem 5.1 and 5.2.
In Section 6 we additonally assume that there is no unstable spectrum and that

the center subspace of the linearization is finite dimensional. Moreover, u∗ is as-
sumed to be (Lyapunov) stable with respect to the flow on the (finite dimensional)
center manifold. Under these assumptions we show that each solution starting suf-
ficiently close to the center manifold converges exponentially to a solution living on
the center manifold; the latter solution is given by the ordinary differential equa-
tion (4.7). In particular, u∗ is stable with respect to the full problem (1.1). Our
proof is inspired by the arguments in [13, §9.3]. However, in contrast to [13], we
cannot work with the cutoff problem because of its nonlocality. We managed to
avoid the use of the cutoff by means of a careful analysis controlling the norms of
all relevant functions in the proof. In these calculations we need the fact that the
center manifold is Lipschitz in X1 =W 2m

p (Ω;CN ) which follows from an additional
local regularity property of (1.1) established in the Appendix.
Center manifolds for fully nonlinear parabolic problems with linear boundary

conditions were constructed and investigated in [6], [13], and [14]. Quasilinear
equations with quasilinear boundary conditions were treated in [16] and [19]. We
emphasize that in these works inhomogeneous boundary values do not appear ex-
plicitly in the analysis so that the above mentioned difficulties are not present in
these papers. We note that in [10] the stability of a simplified Stefan type moving
boundary problem was established by means of the results from [19]. We also refer
to [12] for further literature concerning (1.1).
Notation. We set Dk = −i∂k = −i∂/∂xk and use the multi index notation. The

k–tensor of the partial derivatives of order k is denoted by ∇k, and we let ∇ku =
(u,∇u, · · · ,∇ku). For an operator A on a Banach space we write dom(A), ker(A),
ran(A), σ(A), and ρ(A) for its domain, kernel, range, spectrum, and resolvent set,
respectively. B(X,Y ) is the space of bounded linear operators between two Banach
spaces X and Y , and B(X) := B(X,X). A ball in X with the radius r and center at
u will be denoted by BX(u, r). For an open set U ⊂ Rn with (sufficiently regular)
boundary ∂U , Ck(U) (resp., BCk(U), BUCk(U), Ck

0 (U)) are the spaces of k–
times continuously differentiable functions u on U (such that u and its derivatives
up to order k are bounded, bounded and uniformly continuous, vanish at ∂U and
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at infinity (if U is unbounded), respectively), where BCk(U) is endowed with its
canonical norm. For Ck(U), BCk(U), BUCk(U), we require in addition that u and
its derivatives up to order k have a continuous extension to ∂U . For unbounded
U , we write Ck

0 (U) for the space of u ∈ Ck(U) such that u and its derivatives up
to order k vanish at infinity. By W k

p (U) we denote the Sobolev spaces, see e.g. [1,
Def.3.1], and by W s

p (U) the Slobodetskii spaces endowed with the norm

|v|pW s
p (U) = |v|pLp(U) +

∑
|α|=k

[∂αv]pWσ
p (U) , [w]pWσ

p (U) =

∫∫
U2

|w(y)− w(x)|p

|y − x|n+σp
dx dy,

for s = k + σ with k ∈ N0 and σ ∈ (0, 1), see [1, Thm.7.48] or [20, Rem.4.4.1.2].
Finally, J ⊂ R is a closed interval with nonempty interior, c is a generic constant,
and ε : R+ → R+ is a generic nondecreasing function with ε(r) → 0 as r → 0.

2. Setting and preliminaries

We introduce the setting of our paper; more details can be found in [12]. Let
Ω ⊂ Rn be an open connected set with a compact boundary ∂Ω of class C2m and
outer unit normal ν(x), where m ∈ N is given by (2.5) below. Throughout this
paper, we fix a finite exponent p with

p > n+ 2m. (2.1)

Let E = CN with B(E) = CN×N for some fixed N ∈ N. We put

X0 = Lp(Ω;CN ), X1 =W 2m
p (Ω;CN ), Xp =W 2m(1−1/p)

p (Ω;CN ),

and denote the norms of these spaces by | · |0, | · |1, and | · |p, respectively. Recall
that the spatial trace operator γ at ∂Ω induces continuous maps

γ :W s
p (Ω;CN ) →W s−1/p

p (∂Ω;CN ) (2.2)

for 1/p < s ≤ 2m if s− 1/p is not an integer. We set

Y0 = Lp(∂Ω;CN ), Yj1 =W 2mκj
p (∂Ω;CN ), Yjp =W 2mκj−2m/p

p (∂Ω;CN ),

Y1 = Y11 × · · · × Ym1 , Yp = Y1p × · · · × Ymp

for j ∈ {1, · · · ,m}, mj ∈ {0, · · · , 2m− 1} given by (2.5), and the numbers

κj = 1− mj

2m
− 1

2mp
. (2.3)

Here the Sobolev–Slobodetskii spaces on ∂Ω are defined via local charts, see [1,
Thm.7.53], [20, Def.3.6.1]. We observe that X1 ↪→ Xp ↪→ X0, Yj1 ↪→ Yjp ↪→ Y0,

Xp ↪→ C2m−1
0 (Ω;CN ), and Yjp ↪→ C2m−1−mj (∂Ω;CN ) (2.4)

by (2.1), (2.3), and standard properties of Sobolev spaces, cf. [20, §4.6.1]. Our basic
equations (1.1) involve the operators given by

[A(u)v](x) =
∑

|α|=2m

aα(x, u(x),∇u(x), · · · ,∇2m−1u(x))Dαv(x), x ∈ Ω,

[F (u)](x) =f(x, u(x),∇u(x), · · · ,∇2m−1u(x))), x ∈ Ω, (2.5)

[Bj(u)](x) =bj(x, (γu)(x), (γ∇u)(x), · · · , (γ∇mju)(x)), x ∈ ∂Ω,

for j ∈ {1, · · · ,m} and functions u ∈ Xp and v ∈ X1, where the integers m ∈ N and
mj ∈ {0, · · · , 2m − 1} fixed. We set B = (B1, · · · , Bm). We assume throughout
that the coefficients in (2.5) satisfy:
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(R) aα ∈ C1(E×En×· · ·×E(n2m−1);BC(Ω;B(E))) for α ∈ Nn
0 with |α| = 2m,

aα(x, 0) −→ aα(∞) in B(E) as x→ ∞, if Ω is unbounded,

f ∈ C1(E × En × · · · × E(n2m−1);BC(Ω;E)),

bj ∈ C2m+1−mj (∂Ω× E × En × · · · × E(nmj );E) for j ∈ {1, · · · ,m}.
Occasionally, we will need one more degree of smoothness of the coefficients as
recorded in the following hypothesis:

(RR) aα ∈ C2(E×En×· · ·×E(n2m−1);BC(Ω;B(E))) for α ∈ Nn
0 with |α| = 2m,

f ∈ C2(E × En × · · · × E(n2m−1);BC(Ω;E)),

bj ∈ C2m+2−mj (∂Ω× E × En × · · · × E(nmj );E) for j ∈ {1, · · · ,m}.
In view of (2.4), only continuous functions will be inserted into the nonlinearites.
Thus we will omit the trace γ in Bj(u) and in similar expressions. We fix a num-
bering of the components of ∇k so that a partial derivative ∂βu(x) of order |β| = k
is inserted at a fixed position called l(β, k) into the functions aα, f , and bj . It is
not diffcult to see that

A ∈ C1(Xp;B(X1, X0)) and F ∈ C1(Xp;X0) (2.6)

with the locally bounded derivatives

[F ′(u)v](x) =

2m−1∑
k=0

∑
|β|=k

ik (∂l(β,k)f)(x, u(x),∇u(x), · · · ,∇2m−1u(x)) Dβv(x),

[A′(u)w]v(x) = A′(u)[v, w](x) (2.7)

=
∑

|α|=2m

2m−1∑
k=0

∑
|β|=k

(∂l(β,k)aα)(x, u(x), · · · ,∇2m−1u(x)) [∂βv(x), Dαw(x)]

for x ∈ Ω, u, v ∈ Xp, and w ∈ X1, see [12, (25)] and the text before it. (Observe
that (∂l(β,k)aα)(x, z) : E

2 → E is bilinear.) We further have

Bj ∈ C1(Xp;Yjp) ∩ C1(X1;Yj1), j ∈ {1, · · · ,m}, (2.8)

with the locally bounded derivatives

[B′
j(u)v](x) =

mj∑
k=0

∑
|β|=k

ik (∂l(β,k)bj)(x, u(x),∇u(x), · · · ,∇mju(x)) Dβv(x),

where x ∈ ∂Ω and u, v ∈ Xp, resp. u, v ∈ X1. The continuous differentiability of
Bj : Xp → Yjp was shown in [12, Cor.12], and Bj ∈ C1(X1;Y1p) can be proved by
the arguments used in step (4) and (5) of the proof of [12, Prop.10], see in particular
inequality (69) in [12]. We set B′(u) = (B′

1(u), · · · , B′
m(u)).

The symbols of the principal parts of the linear differential operators are the
matrix–valued functions given by

A#(x, z, ξ) =
∑

|α|=2m

aα(x, z) ξ
α, Bj#(x, z, ξ) =

∑
|β|=mj

imj (∂l(β,mj)bj)(x, z) ξ
β

for x ∈ Ω, z ∈ E × · · · × E(n2m−1) and ξ ∈ Rn, resp. x ∈ ∂Ω, z ∈ E × · · · × E(nmj )

and ξ ∈ Rn. We further set A#(∞, ξ) =
∑

|α|=2m aα(∞) ξα if Ω is unbounded.

We introduce the normal ellipticity and the Lopatinskii–Shapiro condition for A(u0)
and B′(u0) at a function u0 ∈ Xp as follows:
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(E) σ(A#(x,∇2m−1u0(x), ξ)) ⊂ {λ ∈ C : Reλ > 0} =: C+ and (if Ω is un-

bounded) σ(A#(∞, ξ)) ⊂ C+, for x ∈ Ω and ξ ∈ Rn with |ξ| = 1.

(LS) Let x ∈ ∂Ω, ξ ∈ Rn, and λ ∈ C+ with ξ ⊥ ν(x) and (λ, ξ) ̸= (0, 0). The
function φ = 0 is the only solution in C0(R+;CN ) of the ode system

λφ(y) +A#(x,∇2m−1u0(x), ξ + iν(x)∂y)φ(y) = 0, y > 0, (2.9)

Bj#(x,∇mju0(x), ξ + iν(x)∂y)φ(0) = 0, j ∈ {1, · · · ,m}. (2.10)

We refer to [3], [7], [8], and the references therein for more information concerning
these conditions. We can now state our basic hypothesis.

Hypothesis 2.1. Condition (R) holds, and (E), (LS) hold at a steady state u∗ ∈
X1 of (1.1), i.e., A(u∗)u∗ = F (u∗) on Ω, B(u∗) = 0 on ∂Ω.

For the investigation of (1.1), we need several spaces of functions on J × Ω and
J × ∂Ω, where J ⊂ R is a closed interval with a nonempty interior. The base space
and solution space of (1.1) are

E0(J) = Lp(J ;Lp(Ω;CN )) = Lp(J ;X0),

E1(J) =W 1
p (J ;Lp(Ω;CN )) ∩ Lp(J ;W

2m
p (Ω;CN )) =W 1

p (J ;X0) ∩ Lp(J ;X1),

respectively. We equip E0(J) with the usual p–norm and E1(J) with the norm

∥u∥E1(J) =
[
∥u∥pE0(J)

+ ∥u̇∥pE0(J)
+

∑
|α|=2m

∥∂αu∥pE0(J)

] 1
p

.

Very often we use the crucial embeddings

E1(J) ↪→ BUC(J ;Xp) ↪→ BUC(J ;C2m−1
0 (Ω;CN )), (2.11)

see [2, Thm.III.4.10.2] for the first and (2.4) for the second embedding. We denote
by c0 = c0(J) the norm of the first embedding in (2.11), which is uniform for J
of length greater than a fixed ℓ > 0. Observe that (2.11) implies that the trace
operator γ0 at time t = 0 is continuous from E1(J) to Xp if 0 ∈ J . The boundary
data of our linearized equations will be contained in the spaces

Fj(J) =Wκj
p (J ;Lp(∂Ω;CN )) ∩ Lp(J ;W

2mκj
p (∂Ω;CN ))

=Wκj
p (J ;Y0) ∩ Lp(J ;Yj1), j ∈ {1, · · · ,m},

(2.12)

endowed with their natural norms, where F(J) := F1(J)× · · · × Fm(J). We have

Fj(J) ↪→ BUC(J ;Yjp) ↪→ BUC(J × ∂Ω) and γ0 ∈ B(Fj(J), Yjp) (2.13)

if 0 ∈ J , see [8, §3] and [12, §2]. For α, β ∈ R, we set eα(t) = eαt for t ∈ R and
define the function eα,β by setting eα,β(t) = eα(t) for t ≤ 0 and eα,β(t) = eβ(t) for
t ≥ 0. Then we introduce the weighted spaces

Ek(R±, α) = {v : eαv ∈ Ek(R±)}, F(R±, α) = {v : eαv ∈ F(R±)},
Ek(α, β) = {v : eα,βv ∈ Ek(R)}, F(α, β) = {v : eα,βv ∈ F(R)}, (2.14)

where k = 0, 1, endowed with the canonical norms ∥v∥E0(R+,α) = ∥eαv∥E0(R+) etc.
We also use the analogous norms on compact intervals J .
We assume that Hypothesis 2.1 holds. Due to (2.6) and (2.8), we can linearize

the problem (1.1) at the steady state u∗ ∈ X1 obtaining the operators defined by

A∗ = A(u∗) +A′(u∗)u∗ − F ′(u∗) ∈ B(X1, X0),

Bj∗ = B′
j(u∗) ∈ B(Xp, Yjp) ∩ B(X1, Yj1).

(2.15)
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We set B∗ = (B1∗, · · · , Bm∗). We further define the nonlinear maps

G ∈ C1(X1;X0) and Hj ∈ C1(Xp;Yjp) ∩ C1(X1;Yj1)

with G(0) = Hj(0) = 0 and G′(0) = H ′
j(0) = 0

(2.16)

for j ∈ {1, · · · ,m} by setting

G(v) =
(
A(u∗)v −A(u∗ + v)v

)
−

(
A(u∗ + v)u∗ −A(u∗)u∗ − [A′(u∗)u∗]v

)
+
(
F (u∗ + v)− F (u∗)− F ′(u∗)v

)
, (2.17)

Hj(v) = B′
j(u∗)v −Bj(u∗ + v), (2.18)

for v ∈ X1, resp. v ∈ Xp. Again, we put H(v) = (H1(v), · · · , Hm(v)). The
corresponding Nemytskii operators are denoted by

G(v)(t) = G(v(t)), Hj(v)(t) = Hj(v(t)), H(v)(t) = H(v(t)) (2.19)

for v ∈ Eloc
1 (J) (which is the space of v : J → X0 such that v ∈ E1([a, b]) for all

intervals [a, b] ⊂ J). We recall a part of Proposition 10 from [12] describing the
mapping properties of G and H.

Proposition 2.2. Let (R) hold. Define G and H by (2.17), (2.18), (2.19) for some
u∗ ∈ X1 with B(u∗) = 0. Take δ ≥ 0. Then we have:

G ∈ C1(E1([a, b]);E0([a, b])), G ∈ C1(E1(R±,±δ);E0(R±,±δ)),
H ∈ C1(E1([a, b]);F([a, b])), H ∈ C1(E1(R±,±δ);F(R±,±δ)).

Moreover, G(0) = 0, G′(0) = 0, H(0) = 0, and H′(0) = 0.

Theorem 14 of [12] shows that (1.1) generates a local semiflow on the solution
manifold

M = {u0 ∈ Xp : B(u0) = 0}. (2.20)

In particular, a function u0 is the initial value of the (unique) solution u ∈ E1([0, T ])
of (1.1) for some T > 0 if and only if u0 ∈ M. Setting v = u−u∗ and v0 = u0−u∗,
we further see that u0 ∈ M if and only if v0 ∈ Xp and B∗v0 = H(v0) and that
u ∈ E1([0, T ]) solves (1.1) if and only if v ∈ E1([0, T ]) satisfies

∂tv(t) +A∗v(t) = G(v(t)) on Ω, a.e. t > 0,

Bj∗v(t) = Hj(v(t)) on ∂Ω, t ≥ 0, j ∈ {1, · · · ,m},
v(0) = v0, on Ω.

(2.21)

Remark 2.3. Theorem 14(a) of [12] implies the following facts: For each given
T > 0, there is a radius ρ = ρ(T ) > 0 such that for every u0 = u∗ + v0 ∈ M
with |v0|p ≤ ρ there exists a unique solution u = u∗ + v of (1.1) on [0, T ], and
∥v∥E1([0,T ]) ≤ c∗ |v0|p with a constant c∗ = c∗(T ) independent of u0 in this ball. ♢

We now recast and extend some results from [12] regarding the solvability of the
inhomogeneous linear problem

∂tv(t) +A∗v(t) = g(t) on Ω, a.e. t ∈ J,

B∗v(t) = h(t) on ∂Ω, t ∈ J,

v(0) = v0, on Ω,

(2.22)

in weighted function spaces on the unbounded interval J ∈ {R+,R−,R}. We as-
sume that Hypothesis 2.1 holds. (Actually, when dealing only with (2.22) we do
not have to assume that u∗ ∈ X1 is a steady state of (1.1).) We recall from [8,
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Thm.2.1] that on a bounded interval J = [a, b] the boundary value problem ob-
tained by combining the first two lines of (2.22) with the initial condition v(a) = v0
has a unique solution v ∈ E1([a, b]) if and only if g ∈ E0([a, b]), h ∈ F([a, b]),
v0 ∈ Xp, and B∗v0 = h(a). A solution v ∈ Eloc

1 (J) of (2.22) on J will be denoted
by v = S(v0, g, h), where J ⊂ R is any closed interval containing 0. We stress
that this notation incorporates the compatibility condition B∗v0 = h(0) because of
the second line in (2.22) and (2.11). Moreover, the solution S(v0, g, h) is unique if
J = R+, but uniqueness may fail on J = R−.
As in [12, (31)], we define A0 = A∗|kerB∗ with the domain dom(A0) =

{u ∈ X1 : Bj∗u = 0, j = 1, . . . ,m}, and denote by T (·) the analytic semigroup on
X0 generated by −A0. We further need the extrapolated semigroup T−1(·) and
its generator A−1 acting on the extrapolation space X−1 of A0; here, X−1 is the
completion of X0 with respect to the norm |u0|−1 = |(µ+A0)

−1u0|0 for some fixed
µ ∈ ρ(−A0). We further employ the map

Π = (µ+A−1)N1 ∈ B(Y1, X1) (2.23)

where N1 ∈ B(Y1, X1) is the solution operator, N1 : φ 7→ u, of the elliptic boundary
value problem (µ + A∗)u = 0 on Ω, B∗u = φ on ∂Ω, see [12, Prop.5]. Also, by
the same Proposition 5 in [12], there exists a right inverse Np ∈ B(Yp, Xp) of B∗.
Due to [12, Prop.6], the function v = S(v0, g, h) is a solution of (2.22) if and only
if v ∈ Eloc

1 (J), v(0) = v0, and the variation of constants formula

v(t) = T (t− τ)v(τ) +

∫ t

τ

[T (t− s)g(s) + T−1(t− s)Πh(s)] ds (2.24)

holds for all t ≥ τ in J . If J = R+ (or J = [0, T ]), it suffices to take τ = 0 in (2.24),
and v(0) = v0 follows from (2.24).
In order to treat solutions of (2.22) on the intervals J = R±, we assume that the

(rescaled) semigroup
{
eδtT (t)

}
t≥0

is hyperbolic for δ ∈ [δ1, δ2] for some segment

[δ1, δ2] ⊂ R (i.e., σ(−A0 + δ) ∩ iR = ∅). Let P be the (stable) spectral projection
for −A0 + δ corresponding to the part of σ(−A0 + δ) in the open left halfplane,
and set Q = I −P . Then T (t) is invertible on QX0 with the inverse TQ(−t)Q, and
∥etδT (t)P∥, ∥e−tδTQ(−t)Q∥ ≤ ce−ϵt for t ≥ 0 and some ϵ > 0.

Remark 2.4. If eδT (·) is hyperbolic on X0 then eδT−1(·) is hyperbolic on X−1

with projections P−1 and Q−1 = I −P−1 being the extensions of P and Q, respec-
tively. Moreover, Q−1 maps X−1 into dom(A0), and P leaves invariant Xp, X1,
and dom(A0). (See [12, §2] for these facts.) ♢

Given (w0, g, h) ∈ Xp×E0(R+, δ)×F(R+, δ), resp. (w0, g, h) ∈ X0×E0(R−, δ)×
F(R−, δ), we can then define

L+
P,A0

(w0, g, h)(t) = T (t)w0 +

∫ t

0

[T (t− s)Pg(s) + T−1(t− s)P−1Πh(s)] ds

−
∫ ∞

t

TQ(t− s)Q[g(s) + Πh(s)] ds, t ≥ 0, (2.25)

ϕ+0 = −
∫ ∞

0

TQ(−s)Q[g(s) + Πh(s)] ds, resp., (2.26)

L−
P,A0

(w0, g, h)(t) = TQ(t)Qw0 +

∫ t

−∞
[T (t− s)Pg(s) + T−1(t− s)P−1Πh(s)] ds
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−
∫ 0

t

TQ(t− s)Q[g(s) + Πh(s)] ds, t ≤ 0, (2.27)

ϕ−0 =

∫ 0

−∞
[T (−s)Pg(s) + T−1(−s)P−1Πh(s)] ds. (2.28)

(We drop the subscript ‘−1’ in the Q–integrals.) As in [12, §3], one verifies that
these integrals in fact exist. Clearly, a function v ∈ Eloc

1 (J) solves (2.22) if and only
if ṽ = eδv ∈ Eloc

1 (J) is a solution of the rescaled problem

∂tṽ(t) + (A∗ − δ)ṽ(t) = eδtg(t) on Ω, a.e. t ∈ J,

B∗ṽ(t) = eδth(t) on ∂Ω, t ∈ J,

ṽ(0) = v0, on Ω,

whose solution operator will be denoted by SA0−δ. We characterize the solvability
of (2.22) at first in the case J = R+. Using (2.24), (2.25) and (2.26), we infer that

eδSA0(v0, g, h) = SA0−δ(v0, eδg, eδh) (2.29)

= eδT (·)[Qv0 − ϕ+0 ] + L+
P,A0−δ(Pv0, eδg, eδh) (2.30)

= eδT (·)[Qv0 − ϕ+0 ] + eδL
+
P,A0

(Pv0, g, h). (2.31)

Proposition 2.5. Assume that Hypothesis 2.1 holds and that for δ ∈ [δ1, δ2] ⊂ R
the semigroup eδT (·) is hyperbolic with the stable projection P , and let Q = I − P .
Suppose that (v0, g, h) ∈ Xp × E0(R+, δ) × F(R+, δ) and B∗v0 = h(0). Using the
above notations, the following assertions are equivalent:

(a) SA0(v0, g, h) ∈ E0(R+, δ).
(b) L+

P,A0
(v0 − ϕ+0 , g, h) ∈ E0(R+, δ).

(c) ϕ+0 = Qv0.

If these assertions hold, then SA0(v0, g, h) = L+
P,A0

(Pv0, g, h) ∈ E1(R+, δ), and we
have the maximal regularity estimate

∥SA0
(v0, g, h)∥E1(R+,δ) ≤ c (|v0|p + ∥g∥E0(R+,δ) + ∥h∥F(R+,δ)), (2.32)

where c does not depend on v0, g, h, or δ.

Proof. Using rescaling as in (2.29) and (2.31), it suffices to prove the proposition
for δ = 0. For this case, assertions (b)⇔(c)⇒(a) and the last statement have been
proved in [12, Prop.8], and (a)⇒(c) follows from (2.30). □

The corresponding result for J = R− looks a bit different since in (2.27) we have
to write T (t)Qw0 rather than T (t)w0 for negative t. Moreover, Proposition 2.6 does
not require a compatibility condition since it deals with a final value problem on
J = R−. The next result follows by rescaling from Proposition 9 of [12].

Proposition 2.6. Assume that Hypothesis 2.1 holds and that for δ ∈ [δ1, δ2] ⊂ R
the semigroup eδT (·) is hyperbolic with the stable projection P , and let Q = I − P .
Suppose that (v0, g, h) ∈ X0 × E0(R−, δ) × F(R−, δ). Using the above notations,
there is a solution v = SA0

(v0, g, h) of (2.22) in E0(R−, δ) if and only if Pv0 = ϕ−0 .
In this case, this solution is unique, v = L−

P,A0
(v0, g, h) ∈ E1(R−, δ), and

∥SA0(v0, g, h)∥E1(R−,δ) ≤ c (|Qv0|0 + ∥g∥E0(R−,δ) + ∥h∥F(R−,δ)), (2.33)

where c does not depend on v0, g, h, or δ.
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In order to treat the interval J = R, we assume that T (·) has an exponential
trichotomy, i.e., there is a splitting

σ(−A0) = σs ∪ σc ∪ σu with (2.34)

maxReσs < −ωs < −ωc < minReσc ≤ 0 ≤ maxReσc < ωc < ωu < minReσu .

(If Ω is bounded, σ(−A0) is discrete and thus (2.34) automatically holds with
σu ⊂ iR and arbitrarily small ωc = ωc.) We take numbers α ∈ [ωc, ωs] and
β ∈ [ωc, ωu] and denote by Pk the spectral projections for −A0 corresponding
to σk, k = s, c, u. We set Pcs = Ps + Pc, Pcu = Pc + Pu, and Psu = Ps + Pu.
Then the rescaled semigroups eαT (·) and e−βT (·) are hyperbolic on X0 with stable
projections Ps and Pcs, respectively. The restriction of T (t) to PkX0 yields a group
denoted by Tk(t), t ∈ R, where k = c, u, cu. For g ∈ E0(α,−β), h ∈ F(α,−β) and
w0 ∈ X0, we can then define

LA0(w0, g, h)(t) = Tc(t)Pcw0 +

∫ t

0

Tc(t− s)Pc[g(s) + Πh(s)] ds

+

∫ t

−∞
[T (t− s)Psg(s) + T−1(t− s)Ps,−1 +Πh(s)] ds

−
∫ ∞

t

Tu(t− s)Pu[g(s) + Πh(s)] ds, t ∈ R, (2.35)

ϕ0 =

∫ 0

−∞
[T (−s)Psg(s) + T−1(−s)Ps,−1Πh(s)] ds

−
∫ ∞

0

Tu(−s)Pu[g(s) + Πh(s)] ds. (2.36)

The trichotomy and the assumptions on the data imply that the integrals are well–
defined. The next result then easily follows from Propositions 2.5 and 2.6.

Proposition 2.7. Assume that Hypothesis 2.1 holds and that T (·) has a trichotomy
as in (2.34). Take α ∈ [ωc, ωs] and β ∈ [ωc, ωu] and denote by Pk the spectral pro-
jections corresponding to σk, k = s, c, u. Suppose that (v0, g, h) ∈ X0×E0(α,−β)×
F(α,−β). Using the above notations, there is a solution v = SA0(v0, g, h) of (2.22)
in E0(α,−β) if and only if Psuv0 = ϕ0. In this case, this solution is unique, and
we have v = LA0

(v0, g, h) ∈ E1(α,−β) and
∥SA0

(v0, g, h)∥E1(α,−β) ≤ c (|Pcv0|0 + ∥g∥E0(α,−β) + ∥h∥F(α,−β)), (2.37)

where c does not depend on v0, g, h, α, or β.

3. The cutoff problem and the corresponding Nemytskii operators

In this section we introduce a nonlocal and (if J = R) time–invariant cutoff for
(2.21) and discuss the mapping properties of the corresponding Nemytskii opera-
tors. The cutoff depends on a parameter η > 0 to be fixed in the following sections.
For t ∈ R and n ∈ Z, we set

J(t) = [t− 3
2 , t+

3
2 ], Jn = [n, n+ 1], J∗

n = [n− 1
8 , n+ 9

8 ],

J ′
n = [n− 1

4 , n+ 5
4 ], and J ′′

n = [n− 2, n+ 3].

We further introduce

N(t, v) = ∥v∥E1(J(t)) for v ∈ Eloc
1 (R). (3.1)
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Given an η > 0, we take even functions χ, γ ∈ C∞(R) such that 0 ≤ χ ≤ 1,
χ(t) = 1 for t ∈ [−η, η], suppχ ⊂ (−2η, 2η), ∥χ′∥∞ ≤ 2/η, and such that γ ≥ 0,∫
R γ(t) dt = 1, supp γ ⊆ (−1/4, 1/4). We now define the cutoff

𭟋R(t, v) = 𭟋(t, v) := (γ ∗ χ(N(· , v)))(t) =
∫
R
γ(t− s)χ(∥v∥E1([s−3/2,s+3/2])) ds

(3.2)
for t ∈ R and v ∈ Eloc

1 (R). Observe that the integrand is continuous in s and
that 𭟋(t, v) depends on the restriction of v to (t − 7/4, t + 7/4). For functions
v ∈ Eloc

1 (J), we define 𭟋(t, v) as in (3.2) for t ∈ [ 74 + inf J,− 7
4 + sup J ], where J is

a closed interval of length greater than 7/2.
In order to treat v ∈ Eloc

1 (R+) or w ∈ Eloc
1 (R−), we further fix the extension

operators R± : Eloc
1 (R±) → Eloc

1 (R) given by

(R+v)(t) =


v(t), t ≥ 0,

(1 + t)v(−t), t ∈ [−1, 0],

0, t ≤ −1,

(R−w)(t) =


w(t), t ≤ 0,

(1− t)w(−t), t ∈ [0, 1],

0, t ≥ 1.

Occasionally, we use the notation vR := R±v in both cases. We need the elementary
estimates

∥R+v∥E1([−1,1]) ≤ cR ∥v∥E1([0,1]) , ∥R−v∥E1([−1,1]) ≤ cR ∥v∥E1([−1,0]) , (3.3)

∥v∥E1([0,T ]) ≤ cE ∥v∥E1(R+,−α) , ∥v∥E1([−T,0]) ≤ cE ∥v∥E1(R−,α) (3.4)

for constants cR and cE and for all T > 0 and α ≥ 0, where cE depends on T and
is uniform for α in compact intervals. We then define the cutoffs

𭟋R±(t, v) = 𭟋±(t, v) := 𭟋(t, R±v) = (γ ∗ χ(N(· , vR)))(t) (3.5)

for t ∈ R and v ∈ Eloc
1 (R±).

Finally, for v ∈ Eloc
1 (J) and J ∈ {R,R+,R−}, we define the Nemytskii operators

G𭟋J(v)(t) = 𭟋J(t, v)G(v(t)) and H𭟋J(v)(t) = 𭟋J(t, v)H(v(t)), t ∈ J, (3.6)

for the cutoffs of the nonlinear maps G and H defined in (2.17) and (2.18), where
we assume that (R) holds and that u∗ ∈ X1 satisfies B(u∗) = 0. We also abbreviate
G𭟋 = G𭟋R, G𭟋± = G𭟋R± , H𭟋 = H𭟋R, and H𭟋± = H𭟋R± . If Hypothesis 2.1 holds,
we consider the cutoff version of the initial-boundary value problem (2.21) given by

∂tv(t) +A∗v(t) = G𭟋J(v)(t) on Ω, a.e. t ∈ J,

B∗v(t) = H𭟋J(v)(t) on ∂Ω, t ∈ J,

v(0) = v0, on Ω,

(3.7)

where J ∈ {R,R+,R−}. We stress that the cutoff problem (3.7) is not local in time.
In particular, even for J = R+ it is not a well–posed Cauchy problem. In fact, we
will only solve (3.7) globally in function spaces on J . By definition, a function
v ∈ Eloc

1 (J) solves (3.7) if and only if v = S(v0, g, h) is a fixed point of the solution
operator S = SA0 of the linear problem (2.22) with g = G𭟋J(v) and h = H𭟋J(v).
Hence, the compatibility condition B∗v0 = h(0) = H𭟋J(v)(0) must hold.
We now collect several properties of cutoffs (3.2) and (3.5) for J ∈ {R,R+,R−}.

The first remark implies that a solution v ∈ Eloc
1 (J) of (3.7) in fact satisfies (2.21)

on [a, b] ⊂ J if ∥v∥E1([t−2,t+2]∩J) is sufficiently small for each t ∈ [a, b].
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Remark 3.1. If v ∈ Eloc
1 (J) satisfies ∥v∥E1([t−2,t+2]) ≤ η for some t ∈ J (where

|t| ≥ 2 if J = R±), then 𭟋J(t, v) = 1. This fact follows from the properties of γ
and χ in (3.2). If J = R± and t ∈ J ∩ [−2, 2], then ∥v∥E1([t−2,t+2]∩J) ≤ (1+ cR)

−1η

implies 𭟋±(t, v) = 1. Indeed, for J = R+, t ∈ [0, 2], and s ∈ [t− 1
4 , t+

1
4 ] we have

∥R+v∥E1(J(s)) ≤ ∥R+v∥E1(J(s)∩R+) + ∥R+v∥E1(J(s)∩R−)

≤ ∥v∥E1(J(s)∩R+) + cR ∥v∥E1(J(s)∩[0,1])

≤ (1 + cR) ∥v∥E1(J(s)∩R+) ≤ η

due to (3.3) and the fact that [0, 1] ⊂ J(s) if J(s) ∩R− ̸= ∅. The case J = R− can
be treated in the same way. ♢

Remark 3.2. For v ∈ Eloc
1 (R) and J = R the cutoff is time invariant. Indeed,

𭟋(t+ t0, v) =

∫
R
γ(t− s)χ(∥v∥E1([s+t0−3/2,s+t0+3/2])) ds = 𭟋(t, v(·+ t0)) (3.8)

for t, t0 ∈ R. As a result, if v solves the cutoff problem (3.7) on J = R with
v(0) = v0, then w = v(· + t0) solves the cutoff problem on R with w(0) = v(t0).
In contrast to the case J = R, for J = R± the problem (3.7) is not translation
invariant. ♢

Remark 3.3. Let us suppose that 𭟋(t0, v) ̸= 0 for some v ∈ Eloc
1 (R), t0 ∈ Jn,

and n ∈ Z. Then there exists a t ∈ J ′
n such that χ(N(t, v)) ̸= 0, and hence

∥v∥E1(J(t)) ≤ 2η. As a result, ∥v∥E1(J′
n)

≤ 2η since J ′
n ⊂ J(t) for each t ∈ J ′

n.
Similarly, if 𭟋(t0, v) ̸= 0 for some t0 ∈ J∗

n, then ∥v∥E1(J∗
n)

≤ 2η. ♢

Remark 3.4. Assume that v, u ∈ Eloc
1 (J) and t, s ∈ J . Temporarily, we set v = vR

if J = R. Then (3.2) and (3.3) imply the Lipschitz estimates

|𭟋J(t, v)−𭟋J(t, u)| ≤ sup
|t−s|≤1/4

|χ(∥vR∥E1(J(s)))− χ(∥uR∥E1(J(s)))|

≤ 2η−1 ∥vR − uR∥E1([t−7/4,t+7/4]) ≤ cη−1 ∥v − u∥E1(J∩[t−7/4,t+7/4]), (3.9)

|𭟋J(t, v)−𭟋J(s, v)| =
∣∣∣ ∫

R
(γ(t− τ)− γ(s− τ))χ(N(τ, vR)) dτ

∣∣∣ ≤ c |t− s|, (3.10)

where c does not depend on t, s, u, v or η. ♢

Remark 3.5. Let v ∈ Eloc
1 (R+), resp. v ∈ Eloc

1 (R−). Then 𭟋+(t, v) = 𭟋(t, v) for
t ≥ 7/4 and 𭟋−(t, v) = 𭟋(t, v) for t ≤ −7/4, respectively. Moreover, (3.8) holds
for t + t0 ≥ 7/4, resp. t + t0 ≤ −7/4, and t, t0 ∈ R. (Here v(· + t0) is defined on
[−t0,∞), resp. on (−∞,−t0].) ♢

We now consider the mapsG𭟋J andH𭟋J , see (3.6), on the spaces E1(R±,∓α) and
E1(α,−β), where α, β ≥ 0 (these values of α, β were not treated in Proposition 2.2).
We start with a preliminary result concerning the Lipschitz properties.

Proposition 3.6. Assume that (R) holds and u∗ ∈ X1 satisfies B(u∗) = 0. Take
η ∈ (0, d] and α, β ∈ [0, d] for some d > 0. Then the maps G𭟋± : E1(R±,∓α) →
E0(R±,∓α), G𭟋 : E1(α,−β) → E0(α,−β), H𭟋± : E1(R±,∓α) → F(R±,∓α), and
H𭟋 : E1(α,−β) → F(α,−β) are (globally) Lipschitz with the Lipschitz constant ε(η)
for a nondecreasing function ε converging to 0 as η → 0 which does not depend on
α or β. Moreover, G𭟋J(0) = 0 and H𭟋J(0) = 0 for J ∈ {R+,R−,R}.
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Proof. We show the result only for the interval J = R+. The case J = R− then
follows by reflection, whereas the case J = R can be treated in a similar way as
J = R+. In this proof we write 𭟋 instead of 𭟋+ and v instead of R+v etc. We take
α, η ∈ (0, d] and u, v ∈ E1(R+,−α). In this proof ε and c do not depend on α, u, v,
and c does not depend on η.
(a) We first address the Lipschitz property of G𭟋. We consider an interval Jn,

n ∈ N0, and estimate G𭟋(v) − G𭟋(u) on this interval. We may assume that
𭟋(t0, v) ̸= 0 for some t0 ∈ Jn, thus

∥v∥E1(Jn) ≤ ∥v∥E1(J′
n)

≤ 2η (3.11)

by Remark 3.3. For t ∈ Jn, one obtains

|G𭟋(v)(t)−G𭟋(u)(t)|0 ≤ |𭟋(t, v)−𭟋(t, u)| |G(v(t))|0
+ |𭟋(t, u)| |G(v(t))−G(u(t))|0.

In the second term in the right-hand side of the last inequality we may assume
that 𭟋(t0, u) ̸= 0 for some t0 ∈ Jn since otherwise this term is equal to zero on
Jn. Remark 3.3 then shows that ∥u∥E1(Jn) ≤ ∥u∥E1(J′

n)
≤ 2η. Estimate (3.9) in

Remark 3.4 and Proposition 2.2 thus imply∫
Jn

|G𭟋(v)(t)−G𭟋(u)(t)|p0e−αtp dt

≤ cη−pe−αnp ∥u− v∥pE1(J′′
n )

∫ n+1

n

|G(v(t))|p0 dt+ e−αnp

∫ n+1

n

|G(v(t))−G(u(t))|p0 dt

≤ cη−p ∥e−α(v − u)∥pE1(J′′
n ) ε(η)

pηp

+ e−αnp sup
∥w∥E1(Jn)≤2η

∥G′(w)∥pB(E1(Jn),E0(Jn))
∥v − u∥pE1(Jn)

≤ cε(η)p ∥e−α(v − u)∥pE1(J′′
n ) ,

where c and ε do not depend on n. Now the Lipschitz estimate for G𭟋 easily follows,
using also (3.3) and (3.4).
(b) We establish the Lipschitz property of H𭟋. We deduce the inequality

∥e−α(H𭟋(v)−H𭟋(u))∥Lp(R+;Y1) ≤ cε(η)∥v − u∥E1(R+,−α) (3.12)

similarly to the proof given in part (a). In order to estimate e−α(H𭟋(v)−H𭟋(u))
in Wκj (R+;Y0), we fix a number j ∈ {1, · · · ,m}, and write H, F and κ instead
of Hj , Fj and κj . Let t ∈ Jn, n ∈ N0, and |t − s| ≤ 1/8. Again, we may assume
that 𭟋(t0, v) ̸= 0 for some t0 ∈ Jn, so that (3.11) holds by Remark 3.3. Note that
s ∈ J∗

n ⊂ J ′
n. We further split:

∆(t, s) := H𭟋(v)(t)−H𭟋(v)(s)− (H𭟋(u)(t)−H𭟋(u)(s))

=
[
𭟋(t, v)−𭟋(s, v)− (𭟋(t, u)−𭟋(s, u))

]
H(v(t))

+𭟋(t, u)
[
H(v(t))−H(v(s))− (H(u(t))−H(u(s)))

]
+
(
𭟋(s, v)−𭟋(s, u)

) (
H(v(t))−H(v(s))

)
+
(
𭟋(t, u)−𭟋(s, u)

) (
H(v(s))−H(u(s))

)
=: S1 + S2 + S3 + S4.

In the expression S1 the term in square brackets satisfies the estimate∣∣∣ ∫
R
(γ(t− τ)− γ(s− τ))(χ(N(τ, v))− χ(N(τ, u))) dτ

∣∣∣
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≤ cη−1|t− s| sup
|τ−t|≤1/4
|τ−s|≤1/4

|N(τ, v)−N(τ, u)|

≤ cη−1|t− s| sup
τ∈[n−1/2,n+3/2]

∥v − u∥E1(J(τ)) ≤ cη−1|t− s| ∥v − u∥E1(J′′
n ).

By means of (2.13), (3.11), and Proposition 2.2, we estimate:

sup
t∈Jn

|H(v(t))|Y0
≤ c ∥H(v)∥F(Jn) ≤ cε(η) ∥v∥E1(Jn) ≤ cε(η)η.

As a result,

|S1|Y0
≤ cε(η)|t− s| ∥v − u∥E1(J′′

n ),

and thus ( ∫∫
|t−s|≤1/8

t∈Jn

e−αtp
|S1|pY0

|t− s|1+κp
dt ds

) 1
p ≤ cε(η)e−αn ∥v − u∥E1(J′′

n )

≤ cε(η) ∥e−α(v − u)∥E1(J′′
n ).

Next, we treat S2. We may assume that 𭟋(t0, u) ̸= 0 for some t0 ∈ Jn (otherwise
S2 = 0). Hence, ∥u∥E1(J′

n)
≤ 2η by Remark 3.3. Using also (3.11) and Proposi-

tion 2.2, we derive( ∫∫
|t−s|≤1/8
t∈Jn

e−αtp
|S2|pY0

|t− s|1+κp
dt ds

) 1
p ≤ ce−αn

[
H(v)−H(u)

]
Wκ

p (J′
n;Y0)

≤ ce−αn sup
∥w∥E1(J′

n)≤2η

∥H′(w)∥B(E1(J′
n),F(J′

n))
∥v − u∥E1(J′

n)

≤ cε(η) ∥e−α(v − u)∥E1(J′
n)
.

Dealing with S3, we note that Remark 3.4 further yields:

|S3|Y0
≤ cη−1 ∥v − u∥E1(J′′

n ) |H(v(t))−H(v(s))|0 .
Therefore, we obtain( ∫∫

|t−s|≤1/8
t∈Jn

e−αtp
|S3|pY0

|t− s|1+κp
dt ds

) 1
p ≤ ce−αnη−1 ∥v − u∥E1(J′′

n )

[
H(v)

]
Wκ

p (J′
n;Y0)

≤ cη−1 ∥e−α(v − u)∥E1(J′′
n ) ε(η) ∥v∥E1(J′

n)
≤ cε(η) ∥e−α(v − u)∥E1(J′′

n )

due to (3.11) and Proposition 2.2. Finally, we estimate the expression S4. We may
assume that 𭟋(t0, u) ̸= 0 for some t0 ∈ J∗

n (otherwise S4 = 0). Then ∥u∥E1(J∗
n)

≤ 2η
due to Remark 3.3. So (3.10), (2.13), (3.11), and Proposition 2.2 lead to( ∫∫

|t−s|≤1/8
t∈Jn

e−αtp
|S4|pY0

|t− s|1+κp
dt ds

) 1
p ≤ ce−αn sup

s∈J∗
n

|H(v(s))−H(u(s))|Y0

≤ ce−αn ∥H(v)−H(u)∥F(J∗
n)

≤ ce−αn sup
∥w∥E1(J∗

n)≤2η

∥H′(w)∥B(E1(J∗
n),F(J∗

n))
∥v − u∥E1(J∗

n)

≤ cε(η) ∥e−α(v − u)∥E1(J∗
n)
.
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Summing up, we arrive at the inequality( ∫∫
|t−s|≤1/8

t∈Jn

e−αtp
|∆(t, s)|pY0

|t− s|1+κp
dt ds

) 1
p ≤ cε(η) ∥e−α(v − u)∥E1(J′′

n ).

Therefore, a variant of Lemma 11 of [12] and estimates (3.12), (3.3) and (3.4) imply:[
e−α(H𭟋(v)−H𭟋(u))

]
Wκ

p (R+;Y0)

≤ c ∥e−α(H𭟋(v)−H𭟋(u))∥Lp(R+;Y0) + c
( ∞∑

n=0

∫∫
|t−s|≤1/8

t∈Jn

e−αtp
|∆(t, s)|pY0

|t− s|1+κp
dt ds

) 1
p

≤ cε(η) ∥v − u∥E1(R+,−α) +
( ∞∑

n=0

cε(η)p∥e−α(v − u)∥pE1(J′′
n )

) 1
p

≤ cε(η) ∥v − u∥E1(R+,−α). (3.13)

The Lipschitz property of H𭟋 is a direct consequence of (3.12) and (3.13). □

Remark 3.7. Let J ⊂ R+ be a closed interval of length larger than 2 and δ ∈ [a, b]
for some b > a ≥ 0. Given r > 0, we consider functions v ∈ E1(J, δ) such that
∥v∥E1([s,s+2]) ≤ r for all intervals [s, s+ 2] ⊂ J . For such v and w, we have

∥G(w)−G(v)∥E0(J,δ) ≤ ε(r)∥w−v∥E1(J,δ) , ∥H(w)−H(v)∥F(J,δ) ≤ ε(r)∥w−v∥E1(J,δ) ,

where ε is a nondecreasing function with ε(r) → 0 as r → 0 and ε does not depend
on v, w, J , or δ. Indeed, to show this fact, one extends v to ṽ ∈ E1(R+, δ) such
that ∥ṽ∥E1(R+,δ) ≤ c ∥v∥E1(J,δ) and ∥ṽ∥E1([s,s+2]) ≤ cr for all [s, s + 2] ⊂ J , where
the constant c does not depend on J , δ, v, or s. As in the proof of Proposition 3.6
one now treats the intervals Jn separately using Proposition 2.2.

Next, we want to establish the continuous differentiability of G𭟋 and H𭟋 in
certain spaces. We start with the differentiability of 𭟋. We first observe that, for
a measure space (M,µ), the map q(u) =

∫
M

|u|pdµ belongs to C1(Lp(M,dµ)), and

that its derivative at u ∈ Lp(M,dµ) is given by ⟨v, q′(u)⟩ =
∫
M
pRe(uv)|u|p−2 dµ.

This fact implies that for t ∈ R the map u 7−→ N(t, u) = ∥u∥E1(J(t)), see (3.1), is
continuously differentiable on E1(J(t))\{0}, and its derivative N ′(t, u) ∈ E1(J(t))

∗

is given by

⟨v,N ′(t, u)⟩ = ∥u∥1−p
E1(J(t))

[ ∫
J(t)

∫
Ω

Re(uv) |u|p−2dx ds+

∫
J(t)

∫
Ω

Re(u̇v̇) |u̇|p−2dx ds

+
∑

|α|=2m

∫
J(t)

∫
Ω

Re(∂αu ∂αv) |∂αu|p−2 dx ds
]
,

where v ∈ E1(J(t)). Observe that ∥N ′(t, u)∥E1(J(t))∗ ≤ c for a constant depending
only on m. Take u, v ∈ E1([t − 2, t + 2]) and |t − s| ≤ 1/4, where u ̸= 0 and
∥v∥E1 < ∥u∥E1 . Denoting the restrictions of u and v to J(s) ⊂ [t− 2, t+ 2] by the
same symbols, we further deduce

|N(s, u+ v)−N(s, u)− ⟨N ′(s, u), v⟩| =
∣∣∣ ∫ 1

0

⟨N ′(s, u+ θv)−N ′(s, u), v⟩ dθ
∣∣∣

≤ cε(∥v∥E1(J(s)))∥v∥E1(J(s)) ≤ cε(∥v∥E1([t−2,t+2])) ∥v∥E1([t−2,t+2]).
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Here c and ε do not depend on t and s since N(τ, u) = N(0, u(· + τ)). As a
result, the map E1([t− 2, t+ 2]) ∋ u 7→ 𭟋(t, u) is C1 with the derivative 𭟋′(t, u) =
[γ ∗ χ′(N(·, u))N ′(·, u)](t), and the maps

Γ0 : u 7→ χ(N(·, u)) and Γ1 : u 7→ 𭟋(·, u) belong to C1(E1(J
′′);C(J)) (3.14)

where J = [a, b] and J ′′ = [a − 2, b + 2]. (Here we set N ′(t, 0) = 0 and note that
𭟋(t, u) = 1 and thus 𭟋′(t, u) = 0 provided ∥u∥E1([t−2,t+2]) < η.) We further have

|⟨𭟋′(t, u), v⟩| ≤ cη−1 ∥v∥E1([t−2,t+2]), (3.15)

|⟨𭟋′(t, u)−𭟋′(s, u), v⟩| ≤ cη−1|t− s| ∥v∥E1([t−2,t+2]) (3.16)

for u, v ∈ E1([t − 2, t + 2]), t ∈ R, |t − s| ≤ 1/4, and constants c independent of
t, s, u, v, η. Observe that the cutoffs 𭟋±(t, v) = 𭟋(t, R±v) on R± have the analogous
differentiability properties.
Given α, β ≥ 0 and u ∈ E1(α,−β), we introduce the linear operators G′

𭟋 and H′
𭟋

acting on v ∈ E1(α,−β) by the formulas

[G′
𭟋(u)v](t) = ⟨v,𭟋′(t, u)⟩G(u(t)) +𭟋(t, u)G′(u(t))v(t), (3.17)

[H′
𭟋(u)v](t) = ⟨v,𭟋′(t, u)⟩H(u(t)) +𭟋(t, u)H ′(u(t))v(t). (3.18)

Here G and H were defined in (2.17) and(2.18), and the brackets denote the scalar
product in E1(J(t)) applied to the restriction of v to the interval J(t). We also set

[G′
𭟋±

(u)v](t) = [G′
𭟋(R±u)R±v](t), [H′

𭟋±
(u)v](t) = [H′

𭟋(R±u)R±v](t) (3.19)

for t ∈ R± and u, v ∈ E1(R+,−α) in the case J = R+, respectively, u, v ∈ E1(R−, α)
in the case J = R−.

The maps G𭟋 and H𭟋 are not differentiable if the range space has the same
weight function. But, as we will see in the next proposition, they become C1 maps
with the derivatives G′

𭟋 and G′
𭟋 given in (3.17), (3.18) if we take a smaller weight

function in the range space, cf. [21].

Proposition 3.8. Assume that (R) holds and that u∗ ∈ X1 satisfies B(u∗) = 0.
Let η ∈ (0, d], 0 ≤ α ≤ β ≤ d, and 0 ≤ α′ ≤ β′ ≤ d for some d > 0. Define the
operators G′

𭟋, G′
𭟋± H′

𭟋, and H′
𭟋± by (3.17), (3.18) and (3.19), respectively, where

η is the paramater for the cutoff 𭟋. Then the following assertions hold.
(a) The operators G′

𭟋(u) : E1(α,−α′) → E0(β,−β′), H′
𭟋(u) : E1(α,−α′) →

F(β,−β′), G′
𭟋±

(u) : E1(R±,∓α) → E0(R±,∓β), and H′
𭟋±

(u) : E1(R±,∓α) →
F(R±,∓β) are all bounded with the norms ε(η), where ε is a nondecreasing function
converging to 0 as η → 0 which does not depend on u, α, α′, β, β′.

(b) If β > α and β′ > α′, then the maps G𭟋 : E1(α,−α′) → E0(β,−β′),
H𭟋 : E1(α,−α′) → F(β,−β′), G𭟋± : E1(R±,∓α) → E0(R±,∓β), and H𭟋± :
E1(R±,∓α) → F(R±,∓β) are continuously differentiable and the operators G′

𭟋
H′

𭟋, G′
𭟋±

, and H′
𭟋±

, respectively, are their derivatives. Moreover, G′
𭟋J(0) = 0 and

H′
𭟋J(0) = 0 for J ∈ {R+,R−,R}.

Proof. As in the proof of Proposition 3.6 we restrict ourselves to the case J = R+,
and we write 𭟋 instead of 𭟋+ and v instead of R+v.

(a) Norm estimates for G′
𭟋 and H′

𭟋. Since the spaces with the exponential
weights form a scale, it is enough to give a proof for a := β = α ∈ (0, d]. Let t ∈ Jn
for some n ∈ N0 and η ∈ (0, d]. If 𭟋(t0, u) = 0 and 𭟋′(t0, u) = 0 for all t0 ∈ Jn,
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then G′
𭟋(u)v = 0 on Jn. Otherwise, we have ∥u∥E1(J′

n)
≤ 2η, cf. Remark 3.3. So

Proposition 2.2, (3.15) and (3.3) yield

∥G′
𭟋(u)v∥E0(Jn) ≤ cη−1∥v∥E1(J′′

n ) ε(η)η + ε(η) ∥v∥E1(Jn) ≤ cε(η) ∥v∥E1(J′′
n ),

∥G′
𭟋(u)v∥

p
E0(R+,−a) ≤

∞∑
n=0

e−anp ∥G′
𭟋(u)v∥

p
E0(Jn)

≤ cε(η)p
∞∑

n=0

e−anp ∥v∥pE1(J′′
n )

≤ cε(η)p ∥v∥pE1(R+,−a), (3.20)

proving assertion (a) for G′
𭟋. Here and below in the proof of assertion (a) all

constants are uniform for u, v, a, and η, but may depend on d. Starting the proof
for H′

𭟋, as in (3.20), one obtains that

∥e−aH′
𭟋(u)v∥

p
Lp(R+;Y1)

≤ cε(η) ∥v∥E1(R+,−a) .

Further, let |t− s| ≤ 1/8 and t ∈ Jn. We fix j ∈ {1, · · · ,m} and write H, F and κ
instead of Hj , Fj and κj . It holds

∆(t, s) := H′
𭟋(u)v(t)−H′

𭟋(u)v(s)

= ⟨𭟋′(t, u)−𭟋′(s, u), v⟩H(u(t)) + ⟨𭟋′(s, u), v⟩[H(u(t))−H(u(s))]

+ [𭟋(t, u)−𭟋(s, u)]H ′(u(t))v(t) +𭟋(s, u)[H ′(u(t))v(t)−H ′(u(s))v(s)]

=: S1 + S2 + S3 + S4.

As before we can assume that ∥u∥E1(J∗
n)

≤ 2η, cf. Remark 3.3. By means of (3.16),
(3.15), (3.10), (2.13) and Proposition 2.2, we estimate

|S1|Y0
≤ cη−1|t− s| ∥v∥E1(J′′

n )∥H(u)∥C(Jn;Y0) ≤ cε(η)|t− s| ∥v∥E1(J′′
n ) ,

|S2|Y0 ≤ cη−1 ∥v∥E1(J′′
n ) |H(u(t))−H(u(s))|Y0 ,

|S3|Y0
≤ c |t− s| ∥H′(u)v∥C(Jn;Y0) ≤ c |t− s| ∥H′(u)v∥F(Jn) ≤ cε(η)|t− s| ∥v∥E1(Jn),

|S4|Y0
≤ c |H ′(u(t))v(t)−H ′(u(s))v(s)|Y0

.

Using Proposition 2.2 once more, these inequalities lead to(∫
Jn

∫
|t−s|≤1/8

e−atp
|∆(t, s)|pY0

|t− s|1+κp
ds dt

)1/p

≤ e−an
[
cε(η) ∥v∥E1(J′′

n ) + cη−1 ∥v∥E1(J′′
n )[H(u)]Wκ

p (J∗
n;Y0) + c ∥H′(u)v∥Wκ

p (J∗
n;Y0)

]
≤ cε(η)∥e−av∥E1(J′′

n ).

A slight variation of Lemma 11 from [12] and (3.3) now imply that

[e−aH′
𭟋(u)v]Wκ

p (R+;Y0) ≤ cε(η) ∥v∥E1(R+,−a),

concluding the proof of assertion (a) in Proposition 3.8.
(b) We now assume that β > α. We fix u ∈ E1(R+,−α) and η > 0. The

constants below do not depend on v ∈ E1(R+,−α), but possibly on u, η, or β − α.
(1) Differentiability of G𭟋 : E1(R+,−α) → E0(R+,−β). We have to estimate

∆G(t) = 𭟋(t, u+ v)G(u(t) + v(t))−𭟋(t, u)G(u(t))

− ⟨𭟋′(t, u), v⟩G(u(t))−𭟋(t, u)G′(u(t))v(t)

for t ≥ 0 and v ∈ E1(R+,−α). We first consider t ≥ n0 ≥ 2 for some n0 ∈ N to be
fixed below. Proposition 3.6 then yields

∥e−β∆G∥E0([n0,∞)) ≤ e(α−β)n0
[
∥e−α(𭟋(·, u+ v)G(u+ v)−𭟋(·, u)G(u))∥E0(R+)

18



+ ∥e−α⟨𭟋′(·, u), v⟩G(u) + e−α𭟋(·, u)G′(u)v∥E0([n0,∞))

]
≤ e(α−β)n0

[
ε(η) ∥v∥E0(R+,−α) + ∥S1 + S2∥E0([n0,∞))

]
,

where we set S1 = e−α⟨𭟋′(·, u), v⟩G(u) and S2 = e−α𭟋(·, u)G′(u)v. Let t ∈ Jn for
some n ≥ n0. If 𭟋(t0, u) = 0 and 𭟋′(t0, u) = 0 for all t0 ∈ Jn, then S1 = S2 = 0 on
Jn. Otherwise, we have ∥u∥E1(J′

n)
≤ 2η, cf. Remark 3.3. So we deduce from (3.15)

and Proposition 2.2 that

∥S1 + S2∥E0(Jn) ≤ ce−αnε(η) ∥v∥E1(J′′
n ) ≤ c ∥e−αv∥E0(J′′

n ).

As a result,

∥e−β∆G∥E0([n0,∞)) ≤ ce(α−β)n0∥v∥E1(R+,−α), (3.21)

where c does not depend on n0. Let ϵ > 0 be given. Recalling that β > α, we fix
n0 = n0(ϵ) ≥ 2 such that the right hand side of (3.21) is less than ϵ∥v∥E1(R+,−α).

Second, we treat the interval [0, n0] for the number n0 just fixed. Using Propo-
sition 2.2, (3.14),(3.9) and (3.3), we infer that

∥e−β∆G∥E0([0,n0]) ≤ ∥G(u+ v)−G(u)−G′(u)v∥E0([0,n0])

+ ∥(𭟋(·, u+ v)−𭟋(·, u)− ⟨𭟋′(·, u), v⟩)G(u)∥E0([0,n0])

+ ∥(𭟋(·, u+ v)−𭟋(·, u))G′(u)v∥E0([0,n0])

≤ cε(∥v∥E1([0,n0+2])) ∥v∥E1([0,n0+2])

≤ cε(∥v∥E1(R+,−α)) ∥v∥E1(R+,−α) , (3.22)

where c and ε may depend on n0. Here and below we often use the boundedness
of the restriction operator from E1(R+,−α) to E1([0, b]), see (3.4). The asserted
differentiability of G𭟋 now follows from (3.21) and (3.22).
(2) Differentiability of H𭟋 : E1(R+,−α) → F(R+,−β). This time we set

∆H(t) = 𭟋(t, u+ v)H(u(t) + v(t))−𭟋(t, u)H(u(t))

− ⟨𭟋′(t, u), v⟩H(u(t))−𭟋(t, u)H ′(u(t))v(t)

for t ≥ 0 and v ∈ E1(R+,−α). As above in part (1), we obtain

∥e−β∆H∥Lp(R+;Y1) ≤ cϵ ∥v∥E1(R+,−α) (3.23)

for each given ϵ > 0 and all v with ∥v∥E1(R+,−α) ≤ rϵ. In the estimates for [ · ]
W

κj
p
,

cf. (2.12), we fix j ∈ {1, · · · ,m} and write H, F and κ instead of Hj , Fj and κj .
(i) We first consider t ≥ n0 and |t− s| ≤ 1/8 for some n0 ∈ N with n0 ≥ 2 to be

fixed below, and split:

∆H(t)−∆H(s) = [𭟋(t, u+ v)H(u(t) + v(t))−𭟋(s, u+ v)H(u(s) + v(s))

− (𭟋(t, u)H(u(t))−𭟋(s, u)H(u(s)))]

− [𭟋(t, u)H ′(u(t))v(t)−𭟋(s, u)H ′(u(s))v(s)]

− [⟨𭟋′(t, u), v⟩H(u(t))− ⟨𭟋′(s, u), v⟩H(u(s))] =: S1 + S2 + S3.

The Lipschitz estimate in Proposition 3.6 shows that(∫ ∞

n0

∫
|t−s|≤1/8

e−βtp
|S1|pY0

|t− s|1+κp
ds dt

) 1
p

≤ e(α−β)n0 [e−α(H𭟋(u+ v)−H𭟋(u))]Wκ
p (R+;Y0) ≤ ce(α−β)n0 ∥v∥E1(R+,−α).
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Take t ∈ Jn for some n ≥ n0. If 𭟋(t0, u) = 0 (resp. 𭟋′(t0, u) = 0) for all t0 ∈ J∗
n,

then S2 = 0 (resp. S3 = 0) on J∗
n. Otherwise, ∥u∥E1(Jn∗) ≤ 2η for J∗

n, cf. Remark
3.3. We then deduce from Proposition 2.2, (2.13), (3.10), (3.16) and (3.15) that

|e−βtS2|Y0 ≤ e(α−β)n0
{
e−αn |𭟋(t, u)−𭟋(s, u)| ∥H′(u)v∥C(Jn;Y0)

+ e−αn [H ′(u(t))v(t)−H ′(u(s))v(s)]
}

≤ e(α−β)n0
{
c|t− s| ∥e−αv∥E1(Jn) + e−αn [H ′(u(t))v(t)−H ′(u(s))v(s)]

}
,(∫

Jn

∫
|t−s|≤1/8

e−βt
|S2|pY0

|t− s|1+κp
ds dt

) 1
p

≤ ce(α−β)n0
(
∥e−αv∥E1(Jn) + e−αn [H′(u)v]Wκ

p (J∗
n;Y0)

)
≤ ce(α−β)n0 ∥e−αv∥E1(J∗

n)
,

|e−βtS3|Y0 ≤ e(α−β)n0e−αn
(
|⟨𭟋′(t, u)−𭟋′(s, u), v⟩| ∥H(u)∥C(Jn;Y0)

+ |⟨𭟋′(s, u), v⟩| |H(u(t))−H(u(s))|Y0

)
≤ ce(α−β)n0 ∥e−αv∥E1(J′′

n )

(
|t− s|+ |H(u(t))−H(u(s))|Y0

)
,(∫

Jn

∫
|t−s|≤1/8

e−βtp
|S3|pY0

|t− s|1+κp
ds dt

) 1
p

≤ ce(α−β)n0∥e−αv∥E1(J′′
n ) (1 + [H(u)]Wκ

p (J∗
n;Y0))

≤ ce(α−β)n0 ∥e−αv∥E1(J′′
n ).

These inequalities imply the estimate(∫ ∞

n0

e−βtp

∫
|t−s|≤1/8

|∆H(t)−∆H(s)|pY0

|t− s|1+κp
ds dt

) 1
p ≤ ce(α−β)n0∥v∥E1(R+,−α) ,

(3.24)

where c does not depend on n0 or v. Since β > α, for a given ϵ > 0 we can fix
n0 = n0(ϵ) ≥ 2 such that ce(α−β)n0 ≤ ϵ in (3.24).
(ii) Second, we take t, s ∈ [0, n0] and |t− s| ≤ 1/4 for this n0, and infer:

|∆H(t)−∆H(s)|Y0 ≤ |H(u(t) + v(t))−H(u(t))−H ′(u(t))v(t)

− (H(u(s) + v(s))−H(u(s))−H ′(u(s))v(s))|Y0

+ |𭟋(t, u+ v)−𭟋(s, u+ v)| |H(u(s) + v(s))−H(u(s))−H ′(u(s))v(s)|Y0

+ |(𭟋(t, u+ v)−𭟋(t, u)− ⟨𭟋′(t, u), v⟩)
− (𭟋(s, u+ v)−𭟋(s, u)− ⟨𭟋′(s, u), v⟩)| |H(u(t))|Y0

+ |𭟋(s, u+ v)−𭟋(s, u)− ⟨𭟋′(s, u), v⟩| |H(u(t))−H(u(s))|Y0

+ |𭟋(t, u+ v)−𭟋(t, u)− (𭟋(s, u+ v)−𭟋(s, u))| |H ′(u(t))v(t)|Y0

+ |𭟋(s, u+ v)−𭟋(s, u)| |H ′(u(t))v(t)−H ′(u(s))v(s)|Y0
=: S1 + · · ·+ S6.

We set ∆′
H := H(u + v) − H(u) − H′(u)v. In the remainder of this proof, we use

Proposition 2.2, (2.13) and (3.3) without further notice, and c and ε may depend
on n0. In the following integrals it is always understood that s ≥ 0. We first obtain:(∫ n0

0

∫
|t−s|≤1/4

e−βtp
|S1|pY0

|t− s|1+κp
ds dt

) 1
p ≤ [∆′

H ]Wκ
p ([0,n0+1/4];Y0)

≤ ε(∥v∥E1([0,n0+1/4])) ∥v∥E1([0,n0+1/4]) ≤ cε(∥v∥E1(R+,−α)) ∥v∥E1(R+,−α).
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Similarly, (3.10) yields(∫ n0

0

∫
|t−s|≤1/4

e−βtp
|S2|pY0

|t− s|1+κp
ds dt

) 1
p

≤ c ∥∆′
H∥C([0,n0+1/4];Y0) ≤ cε(∥v∥E1(R+,−α)) ∥v∥E1(R+,−α).

Next, from (3.14) we deduce

|S3| ≤ c ∥H(u)∥C([0,n0];Y0) |t− s| sup
−1≤τ≤n0+1

|χ(N(τ, u+ v))− χ(N(τ, u))

− χ′(N(τ, u))⟨N ′(τ, u), v⟩|
≤ c|t− s| ε(∥v∥E1([0,n0+3])) ∥v∥E1([0,n0+3]),(∫ n0

0

∫
|t−s|≤1/4

e−βtp
|S3|pY0

|t− s|1+κp
ds dt

) 1
p

≤ cε(∥v∥E1([0,n0+3])) ∥v∥E1([0,n0+3]) ≤ cε(∥v∥E1(R+,−α)) ∥v∥E1(R+,−α).

In the same way the inequality

|S4|Y0
≤ ε(∥v∥E1([0,n0+3])) ∥v∥E1([0,n0+3]) |H(u(t))−H(u(s))|Y0

implies that(∫ n0

0

∫
|t−s|≤1/4

e−βtp
|S4|pY0

|t− s|1+κp
ds dt

) 1
p ≤ cε(∥v∥E1(R+,−α)) ∥v∥E1(R+,−α).

Definition (3.2) of the cutoff leads to the estimate

|S5|Y0 ≤ c |t− s| sup
−1≤τ≤n0+1

|N(τ, u+ v)−N(τ, u)| ∥H′(u)v∥C([0,n0];Y0)

≤ c |t− s| ∥v∥2E1([0,n0+3]) ≤ c|t− s| ∥v∥2E1(R+,−α)

so that (∫ n0

0

∫
|t−s|≤1/4

e−βtp
|S5|pY0

|t− s|1+κp
ds dt

) 1
p ≤ c ∥v∥2E1(R+,−α).

The term S6 can be treated similarly. Therefore we have shown that(∫ n0

0

∫
|t−s|≤1/4

e−βtp
|∆H(t)−∆H(s)|pY0

|t− s|1+κp
ds dt

) 1
p ≤ cε(∥v∥E1(R+,−α)) ∥v∥E1(R+,−α).

Putting together the estimates obtained in (i) and (ii), we conclude that for each
ϵ > 0 there exists a r′ϵ ≤ rϵ such that if ∥v∥E1(R+,−α) ≤ r′ϵ, then(∫ ∞

0

∫
|t−s|≤1/4

e−βtp
|∆H(t)−∆H(s)|pY0

|t− s|1+κp
ds dt

) 1
p ≤ ϵ ∥v∥E1(R+,−α).

Using [12, Lem.11] and (3.23), we obtain [e−β∆H ]Wκ
p (R+;Y0) ≤ cϵ∥v∥E1(R+,−α) for

∥v∥E1(R+,−α) ≤ r′ϵ, finishing the proof of the differentiability of H𭟋.
It remains to establish the continuity of the maps u 7→ G′

𭟋(u) and u 7→ H′
𭟋(u) in

B(E1(R+ −α),E0(R+ − β)) and B(E1(R+,−α),F(R+,−β)), respectively. This can
be done by similar arguments as above. □
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4. Stable, unstable and center manifolds

We first construct and study the local stable manifold Ms, resp. the local unstable
manifold Mu, assuming that σ(−A0) has a spectral gap in the open left, resp. right,
halfplane. These manifolds are of class C1 in Xp, and are tangent at u∗ to PsX

0
p

and PuX0, respectively. These results are established in Theorem 4.1 which is
actually a somewhat simpler variant of Theorem 17 in [12] where the hyperbolic
case iR ⊂ ρ(−A0) has been addressed. Next, in our main Theorem 4.2, we consider
the case of trichotomy, assuming that σ(−A0) has spectral gaps in both the left
and the right open halfplanes, cf. (2.34).
We choose the formulation of the spectral conditions for Theorem 4.1 in view of

the situation in Theorem 4.2. We assume the existence of numbers ωs, ωu, ωcu, ωcs >
0 such that at least one of the following assertions holds:

σ(−A0) = σs ∪ σcu with maxReσs < −ωs < −ωcu < minReσcu , (4.1)

σ(−A0) = σcs ∪ σu with maxReσcs < ωcs < ωu < minReσu . (4.2)

We denote by Pk the spectral projections for −A0 corresponding to σk, k ∈
{s, cs, cu, u}. As noted in Remark 2.4, we have PuX0 ⊂ PcuX0 ⊂ dom(A0), and
thus on PcuX0 the norms in X0, Xp and X1 are equivalent. Finally, we recall the
notation X0

p = {z0 ∈ Xp : B∗z0 = 0} for the tangent space at u∗ to the nonlinear
phase space M = {u0 ∈ Xp : B(u0) = 0} for (1.1), and that P = I−NpB∗ projects
Xp onto X0

p , see the remarks before Theorem 14 in [12].

Theorem 4.1. Assume Hypothesis 2.1. Then there are numbers r ≥ ρ > 0 and
ρ0 > 0 such that the following assertions hold.
(a) Let (4.1) hold and take any α ∈ (ωcu, ωs). Then there are BC1-maps

ϕs : PsX
0
p ∩BXp

(0, ρ0) → PcuX0 and ϑs : PsX
0
p ∩BXp

(0, ρ0) → PsXp ,

such that ϕs(0) = ϑs(0) = 0, ϕ′s(0) = ϑ′s(0) = 0, and

Ms :=
{
u0 = u∗ + z0 + ϑs(z0) + ϕs(z0) ∈ BXp

(u∗, ρ) : z0 ∈ PsX
0
p ∩BXp

(0, ρ0)
}

=
{
u0 ∈ M∩BXp

(u∗, ρ) : ∃ solution u of (1.1) on R+ with

|u(t)− u∗|p < r ∀ t ≥ 0 and |u(t)− u∗|1 ≤ ce−αt ∀ t ≥ 1
}
. (4.3)

In (4.3) we can take c = c |u(0)−u∗|p for a constant c independent of u0, t, α, and we
have u = u∗+Φs(PsP(u0−u∗)) for a map Φs ∈ BC1(PsX

0
p∩BXp

(0, ρ0);E1(R+, α)).
If u0 ∈ Ms and the forward solution u of (1.1) stays in B(u∗, ρ) on [0, t] for some
t > 0, then u(t) ∈ Ms. If u0 ∈ Ms and there is a backward solution u of (1.1)
staying in B(u∗, ρ) on [t, 0] for some t < 0, then u(t) ∈ Ms.
(b) Let (4.2) hold and take any β ∈ (ωcs, ωu). Then there is a BC1-map

ϕu : PuX0 ∩BXp
(0, ρ0) → PcsXp

such that ϕu(0) = 0, ϕ′u(0) = 0, and

Mu :=
{
u0 = u∗ + z0 + ϕu(z0) ∈ BXp

(u∗, ρ) : z0 ∈ PuX0 ∩BXp
(0, ρ0)

}
=

{
u0 ∈ M∩BXp

(u∗, ρ) : ∃ solution u of (1.1) on R− with |u(t)− u∗|p < r

and |u(t)− u∗|1 ≤ ceβt ∀ t ≤ 0
}
. (4.4)
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In (4.4) we can take c = c |u(0) − u∗|0 for a constant c independent of u0, t, β,
and we have u = u∗ + Φu(Pu(u0 − u∗)) for a map Φu ∈ BC1(PuX0 ∩
BXp

(0, ρ0);E1(R−,−β)). The dimension of Mu is equal to the dimension of PuX0.
If u0 ∈ Mu and the forward solution u of (1.1) stays in B(u∗, ρ) on [0, t] for some
t > 0, then u(t) ∈ Mu. If u0 ∈ Mu and the solution u from (4.4) stays in
B(u∗, ρ) on [t, 0] for some t < 0, then u(t) ∈ Mu. Moreover, if σu ̸= ∅, then u∗
is (Lyapunov) unstable in Xp for (1.1). In addition, if (RR) holds, then the map
ϕu : PuX0 ∩BXp

(0, ρ0) → PcsX1 is Lipschitz.

Proof. We provide only a sketch of the proof referring to [12, Thm.17] for missing
details. The basic idea is to look for solutions v of (2.21) on R+ and R− which
satisfy the decay properties of (4.3) and (4.4), respectively. The maps ϕs, ϑs and
ϕu will then be defined in terms of the initial, respectively, final value v(0) of (2.21).

(a) We define the Lyapunov-Perron map Ls :PsX
0
p × E1(R+, α) → E1(R+, α) by

Ls(z0, v) = L+
Ps,A0

(z0 + PsNpγ0H(v),G(v),H(v)), (4.5)

cf. (2.25), the discussion after (2.23), and also [12, (82)]. By means of Propo-
sitions 2.2 and 2.5, (2.13) and the implicit function theorem, we find numbers
r0, ρ0 > 0 and a BC1–map Φs : PsX

0
p ∩ BXp

(0, ρ0) → E1(R+, α) such that
Φs(0) = 0 and Φs(z0) is the unique solution of v = Ls(z0, v) for ∥v∥E1(R+,α) < r0
and |z0|p < ρ0. Set v = Φs(z0), u = v+u∗, and u0 = v(0)+u∗. Then u solves (1.1)
on R+ with u(0) = u0 = u∗+Φs(z0)(0). Using also [12, Prop.15] and (2.11), we see
that u satisfies the properties listed in (4.3) with c = c |u(0)− u∗|p and r = c′ |z0|p
for some constants c, c′ > 0. We further define the maps

ϑs(z0) = PsNpγ0H(Φs(z0)) and

ϕs(z0) = Pcuγ0Φs(z0) = −
∫ ∞

0

Tcu(−τ)Pcu[G(Φs(z0))(τ) + ΠH(Φs(z0))(τ)] dτ,

which are of class BC1 from PsX
0
p ∩ BXp

(0, ρ0) to PsXp and PcuX0, respectively,
and fulfill ϕs(0) = ϑs(0) = 0 and ϕ′s(0) = ϑ′s(0) = 0. Observe that z0 = Ps(u0 −
u∗ −NpH(u0 − u∗)) = PsP(u0 − u∗) since H(u0 − u∗) = B∗(u0 − u∗).
Let u be a solution of (1.1) with |u0−u∗|p < ρ, |u(t)−u∗|p < r, and |u(t)−u∗|p ≤

ce−ᾱt for all t ≥ 0 and some c > 0 and ᾱ ∈ (ωcu, ωs). Put v = u− u∗. Take σ > 0
with ᾱ − σ ∈ (ωcu, ωs). Hence, d = σ/(2ᾱ) ∈ (0, 1). For N ∈ N and sufficiently
small r > 0, Remark 2.3 yields

∥eᾱ−σv∥pE1([0,N ]) ≤
N−1∑
n=0

ce(ᾱ−σ)np ∥v∥pE1(Jn)

≤
N−1∑
n=0

ce(ᾱ−σ)np |v(n)|dpp |v(n)|(1−d)p
p ≤ crdp,

where the constants do not depend on N . Therefore v ∈ E1(R+, ᾱ− σ) with norm
less than crd, and so v = L+

Ps,A0
(Psv(0),G(v),H(v)) due to Proposition 2.5. Set

z0 = Ps(v(0)−NpH(v(0))). Then |z0|p ≤ c |v(0)|p ≤ cρ < ρ0 for sufficiently small ρ.
We thus have the solution w = Φs(z0) ∈ E1(R+, α) of the equation w = Ls(z0, w).
As in the proof of assertion (ii) of [12, Thm.17] we infer that v = w for sufficiently
small r. As a result, (4.3) holds. The invariance properties of Ms follow from (4.3).
(b) All but two last assertions for Mu can be shown in a similar way using (2.27)

and Proposition 2.6, cf. [12, Thm.17]. The remaining two are proved as follows.
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If σu ̸= ∅, then there exists a function u0 ∈ Mu \ {u∗} with a corresponding
solution u of (1.1) on R− from (4.4). Hence, for each δ > 0 there is a t = t(δ) > 0
such that |u(−t)−u∗|p ≤ ce−βt < δ. Let ϵ = |u0 −u∗|p/2 > 0 and set w = u(· − t).
Then w solves (1.1) on [0, t], and we have |w(0) − u∗|p = |u(−t) − u∗|p < δ but
|w(t)− u∗|p = |u0 − u∗|p ≥ ϵ. As a result, u∗ is (Lyapunov) unstable in Xp.
Let (RR) hold and take z0, z0 ∈ PuX0 ∩ BXp(0, ρ0). Then we have solutions

u = v + u∗ and u = v + u∗ of (1.1) on R− given by v = Φu(z0) and v = Φu(z0) for
a BC1–map Φu from PuX0 ∩ BXp

(0, ρ0) to E1(R−,−β). Employing Theorem A.1
and (2.11), we then obtain

|ϕu(z0)− ϕu(z0)|1 = |Pcs(v(0)− v(0))|1 ≤ c |v(−1)− v(−1)|p
≤ c ∥Φu(z0)− Φu(z0)∥E1(R−,−β) ≤ c |z0 − z0|p

for constants independent of z0 and z0, possibly after decreasing ρ0 > 0. □

We now establish the main result of this paper where we construct a local center
manifold Mc and show some of its basic properties. In particular, Mc is a C1–
manifold inXp being tangent to PcX0 at u∗. Further properties ofMc are described
in Corollary 5.3 and Theorem 6.1. We assume that the spectrum of −A0 has the
decomposition described in (2.34), and recall that this assumption automatically
holds if the spatial domain Ω is bounded.

Theorem 4.2. Assume that Hypothesis 2.1 and (2.34) hold. Let the projections
Pk and the numbers ωk be given by (2.34). Take any α ∈ (ωc, ωs) and β ∈ (ωc, ωu).
Then there is a number ηc > 0 such that for each η ∈ (0, ηc] there exists a radius
ρ = ρ(η) > 0 such that the following assertions hold, where the cutoff 𭟋 is defined
in (3.2) for the chosen η ∈ (0, ηc].

(a) There exists a map ϕc ∈ C1(PcX0;PsuXp) with a bounded derivative such
that ϕc(0) = 0, ϕ′c(0) = 0, and

M̃c :=
{
u0 = u∗ + z0 + ϕc(z0) : z0 ∈ PcX0

}
=

{
u0 = u∗ + v(0) : ∃ solution v ∈ E1(α,−β) of (3.7) on J = R

}
. (4.6)

If u0 ∈ M̃c, then u∗ + v(t) ∈ M̃c for each t ∈ R and v = Φc(Pc(u0 − u∗)) =
Pcv + ϕc(Pcv) for a map Φc ∈ C1(PcX0;E1(α,−β)) having a bounded derivative,
where v is the solution of the cutoff problem (3.7) given by (4.6).

(b) We define Mc = M̃c∩BXp
(u∗, ρ). Let u0 ∈ Mc and v be given by (4.6) with

u0 = v(0)+u∗. Then 𭟋(t, v) = 1 and v solves the original equation (2.21) (at least)
for t ∈ [−3, 3], so that Mc ⊂ M. The dimension of Mc is equal to dimPcX0.
(c) Let u0 ∈ Mc and v be given by (4.6). If the forward solution u of (1.1) exists

and stays in BXp
(u∗, ρ) on [0, t0] for some t0 > 0, then u(t) = v(t) + u∗ ∈ Mc for

0 ≤ t ≤ t0. If the function û = v+u∗ stays in BXp
(u∗, ρ) on [t0, 0] for some t0 < 0,

then û(t) ∈ Mc and û solves (1.1) for t0 ≤ t ≤ 0.
(d) Let u0 = u∗ + v0 ∈ Mc and let v be given by (4.6). Assume that v(t) + u∗ ∈

Mc for all t ∈ (a, b) and some a < 0 < b. Then y = Pcv satisfies the equations

ẏ(t) = −A0Pcy(t) + PcΠH(y(t) + ϕc(y(t))) + PcG(y(t) + ϕc(y(t))),

y(0) = Pc(u0 − u∗),
(4.7)

on PcX0 for t ∈ (a, b). Moreover, v ∈ C((a, b);X1) and

B∗ϕc(Pcv0) = B∗v0 = H(v0), (4.8)
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Psu(A∗v0 −G(v0)) = ϕ′c(Pcv0)Pc(A∗v0 −G(v0)). (4.9)

(e) If u solves (1.1) on R with |u(t)− u∗|p < ρ for all t ∈ R, then u(t) ∈ Mc for
all t ∈ R.

(f) In addition, assume that (RR) holds. Then there is a ρ0 > 0 such that the
map ϕc : PcX0 ∩BXp(0, ρ0) → PsuX1 is Lipschitz.

Proof. We first construct a manifold M̃c consisting of solutions on R in a weighted
E1–space, similarly to Theorem 4.1. However, since Tc(·), in general, is an un-
bounded group, we must work in spaces containing exponentially growing functions.
Therefore we have to treat the modified problem (3.7) with the cutoff 𭟋. The de-
sired center manifold Mc is then obtained by restriction to small balls.
(a) We define the Lyapunov-Perron map Lc : PcX0×E1(α,−β) → E1(α,−β) by

Lc(z0, v) = LA0(z0,G𭟋(v),H𭟋(v)),

where the operators LA0
, G𭟋 and H𭟋 are given by (2.35) and (3.6). Due to Propo-

sitions 2.7 and 3.8, the map L0 : v 7→ Lc(z0, v) is C
1 from E1(α

′,−β′) to E1(α,−β)
for α′ ∈ (ωc, α) and β′ ∈ (ωc, β) and the derivative of L0 is bounded by c1ε(η)
in the norm of both B(E1(α

′,−β′)) and B(E1(α,−β)), independent of z0 ∈ PcX0.
Moreover, L0 is Lipschitz in E1(α

′,−β′) with Lipschitz constant c1ε(η) independent
of z0 ∈ PcX0 by Proposition 3.6. Finally, the map z0 7→ Lc(z0, v) is affine from
PcX0 to E1(α

′,−β′) with the derivative T (·)Pc.
We now fix η = ηc > 0 such that c1ε(η) ≤ 1/2. (Note that this estimate

holds for every η′ ∈ (0, η).) Then Theorem 3 of [21] (with Y0 = Y = E1(α
′,−β′)

and Y1 = E1(α,−β)) shows that for each z0 ∈ PcX0 there exists a unique so-
lution v = Φc(z0) ∈ E1(α

′,−β′) of the equation v = Lc(z0, v), where Φc ∈
C1(PcX0;E1(α,−β)) and Φc(0) = 0. Employing [21, (4.4)], it is easy to check
that Φ′

c(z0) ∈ B(PcX0,E1(α,−β)) is bounded uniformly in z0. We further define

ϕc(z0) = γ0PsuΦc(z0) =

∫ 0

−∞
T−1(−τ)Ps[G𭟋(Φc(z0))(τ) + ΠH𭟋(Φc(z0))(τ)] dτ

−
∫ ∞

0

Tc(−τ)Pu[G𭟋(Φc(z0))(τ) + ΠH𭟋(Φc(z0))(τ)] dτ

for z0 ∈ PcX0. Taking also into account (2.13), we see that ϕc ∈ C1(PcX0;PsuXp),
that ϕ′c is bounded, and that ϕc(0) = 0 and ϕ′c(0) = 0. Equality (4.6) follows from

Proposition 2.7. If u0 ∈ M̃c with the corresponding solution v of (3.7) and t ∈ R,
then w = v(· + t) solves (3.7) with the initial condition w(0) = v(t) thanks to

Remark 3.2. This means that u∗+ v(t) ∈ M̃c, and thus v(t) = Pcv(t)+ϕc(Pcv(t)).

(b) Let u0 ∈ M̃c ∩ BXp
(u∗, ρ). Set v0 = u0 − u∗, z0 = Pcv0, and v = Φc(z0).

From (3.4) and part (a) we infer that

∥v∥E1([−5,5]) ≤ c ∥v∥E1(α,−β) = c ∥Φc(z0)− Φc(0)∥E1(α,−β)

≤ c |z0|0 ≤ c |v0|p ≤ c′ρ. (4.10)

If we take ρ ≤ η/c′, Remark 3.1 implies that 𭟋(t, v) = 1 for t ∈ [−3, 3], so that v
solves (2.21) on [−3, 3] in this case.
(c) Take u0 ∈ Mc and let u be the forward solution of (1.1). Part (b) and the

uniqueness of (1.1) yield that u = v + u∗ on [0, 2], where v is given by (4.6). Thus

u(t) = v(t) + u∗ ∈ M̃c by part (a) for t ∈ [0, 2]. If u(t) ∈ BXp
(u∗, ρ) for t ∈ [0, t0]

and t0 ≤ 2, we thus obtain u(t) ∈ Mc for t ∈ [0, t0]. If t0 > 2, this argument can be
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iterated as long as u stays in BXp(u∗, ρ). The assertions concerning the backward
invariance of Mc are direct consequences of parts (a) and (b).
(d) Let u0 = u∗ + v0 ∈ Mc and let v be given by (4.6). By parts (a)–(c), the

function v = y + ϕc(y) solves (2.21) on (a, b). Theorem 14 of [12] thus shows that
v is continuous in X1. Moreover,

ẏ(t) = Pcv̇(t) = Pc[−A∗v(t) +G(v(t))]

= −Pc(µ+A∗)(v(t)−N1H(v(t))) + µPcv(t) + PcG(v(t))

= −A0Pcy(t) + PcΠH(y(t) + ϕc(y(t))) + PcG(y(t) + ϕc(y(t))).

Equality (4.8) is clear since B∗Pc = 0 and v0 ∈ M. We further have

v̇(t) = −A∗v(t) +G(v(t)),

v̇(t) = Pc(−A∗v(t) +G(v(t))) + ϕ′c(Pcv(t))Pc(−A∗v(t) +G(v(t))),

so that (4.9) follows by taking t = 0.
(e) For a global solution u of (1.1) staying in BXp(u∗, ρ), Remark 2.3 implies

that ∥u∥E1([t−2,t+2]) ≤ c∗ρ for each t ∈ R (possibly after decreasing ρ > 0). In
particular, u ∈ E1(α,−β). Taking ρ ≤ η/c∗, we further deduce that v = u − u∗
solves (3.7) on J = R using Remark 3.1. So (e) follows from the definition of Mc.

(f) We first note that (4.10) and (2.11) imply |v(0)|p ≤ c |z0|0 for u0 = v(0)+u∗ ∈
M̃c with v = Φc(z0). Hence, there is a number ρ0 such that u0 = u∗+z0+ϕc(z0) ∈
Mc if z0 ∈ PcX0 ∩ BXp(u∗, ρ0). Then v solves (2.21) on [−1, 0]. So we can show
assertion (f) as the final assertion in Theorem 4.1(b). □

Remark 4.3. Given r ≥ ρ > 0, the manifolds Ms and Mu from Theorem 4.1
are uniquely determined by (4.3) and (4.4) as sets of initial values of exponentially
decaying solutions of (1.1). There is no such description for Mc from Theorem 4.2.
In fact, there are simple ODEs in dimension two admitting infinitely many locally
invariant manifolds which are tangent to PcX0 at u∗ and satisfy Mc ∩ Ms =
Mc ∩ Mu = {u∗} (cf. Corollary 5.3). However, if u∗ is stable in forward and
backward time, then Theorem 4.2(e) implies that our Mc is the only manifold in
BXp

(u∗, ρ) with these properties. ♢

5. Center stable and center unstable manifolds

In this section we go back to the situation of Theorem 4.1. In Theorem 5.1 we
construct a local center–stable manifold Mcs assuming (4.2), and in Theorem 5.2
we construct a local center–unstable manifold Mcu assuming (4.1). These manifolds
are of class C1 in Xp, and are tangent to PcsX

0
p , resp. to PcuX0, at u∗. They will

be used to prove further properties of the center manifold in Corollary 5.3. Recall
that P = I −NpB∗.

Theorem 5.1. Assume Hypothesis 2.1 and (4.2). Take any β ∈ (ωcs, ωu). Then
there is a number ηcs > 0 such that for each η ∈ (0, ηcs] there exists a radius
ρ = ρ(η) > 0 such that the following assertions hold, where the cutoff 𭟋+ is defined
in (3.5) for the chosen η ∈ (0, ηcs].
(a) There exist maps ϕcs ∈ C1(PcsX

0
p ;PuX0) and ϑcs ∈ C1(PcsX

0
p ;PcsXp) with

bounded derivatives such that ϕcs(0) = ϑcs(0) = 0, ϕ′cs(0) = ϑ′cs(0) = 0, and

M̃cs :=
{
u0 = u∗ + z0 + ϑcs(z0) + ϕcs(z0) : z0 ∈ PcsX

0
p

}
= {u0 = u∗ + v(0) : ∃ solution v ∈ E1(R+,−β) of (3.7) on J = R+}. (5.1)
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Moreover, the function v in (5.1) is given by v = Φcs(PcsP(u0 − u∗)) for a map
Φcs ∈ C1(PcsX

0
p ;E1(R+,−β)) having a bounded derivative.

(b) We define Mcs = M̃cs ∩ BXp
(u∗, ρ). Let u0 ∈ Mcs and v be the function

from (5.1) with u0 = v(0)+u∗. Then 𭟋+(t, v) = 1 and v solves the original equation
(2.21) (at least) for t ∈ [0, 4].
(c) Let u0 ∈ Mcs and v be given by (5.1). Assume that a forward or a backward

solution u of (1.1) exists and stays in BXp
(u∗, ρ) on [0, t0] or on [−t0, 0] for some

t0 > 0. Set v(t) = u(t) − u∗ for −t0 ≤ t ≤ 0 in the second case. Then u(t) =
u∗ + v(t) = u∗ + Pcsv(t) + ϕcs(PcsPv(t)) + ϑcs(PcsPv(t)) ∈ Mcs for 0 ≤ t ≤ t0 or
−t0 ≤ t ≤ 0, respectively.

(d) We have Mcs ∩Mu = {u∗}.

Proof. We follow the strategy of the construction of the stable manifold in Theo-
rem 4.1, but now we must work in the space E1(R+,−β) containing exponentially
growing functions. Thus, as in Theorem 4.2, we have to involve the cutoff 𭟋+ which
leads to various technical difficulties.
(a) We define the map Lcs : PcsX

0
p × E1(R+,−β) → E1(R+,−β) by

Lcs(z0, v) = L+
Pcs,A0

(z0 + PcsNpγ0H𭟋+
(v),G𭟋+

(v),H𭟋+
(v)), (5.2)

where the operators L+
Pcs,A0

, G𭟋+
and H𭟋+

are given by (2.25) and (3.6). Observe

that the semigroup e−βT (·) is hyperbolic with the stable projection Pcs. Due to
Propositions 2.5 and 3.8 and the embedding (2.13), the map L0 : v 7→ Lcs(z0, v)
is C1 from E1(R+,−β′) to E1(R+,−β) for β′ ∈ (ωcs, β) and the derivative of L0

is bounded by c1ε(η) in the norm of both B(E1(R+,−β′)) and B(E1(R+,−β)),
independent of z0 ∈ PcsX

0
p . Moreover, L0 is Lipschitz in E1(R+,−β′) with the

Lipschitz constant c1ε(η) independent of z0 ∈ PcsX
0
p by Proposition 3.6. Finally,

the map z0 7→ Lcs(z0, v) is affine from PcsX
0
p to E1(R+,−β′) with the derivative

T (·)Pcs.
We now fix η = ηcs > 0 such that c1ε(η) ≤ 1/2. (Note that this inequality also

holds for each η′ ∈ (0, η).) Then Theorem 3 of [21] (with Y0 = Y = E1(R+,−β′)
and Y1 = E1(R+,−β)) shows that for each z0 ∈ PcsX

0
p there exists a unique

solution v = Φcs(z0) ∈ E1(R+,−β′) of the equation v = Lcs(z0, v), where
Φcs ∈ C1(PcsX

0
p ;E1(R+,−β)) and Φcs(0) = 0. Due to [21, (4.4)], the derivatives

Φ′
cs(z0) ∈ B(PcsX

0
p ,E1(R+,−β)) are bounded uniformly in z0. We then introduce

ϑcs(z0) = PcsNpγ0H𭟋+
(Φcs(z0)) and

ϕcs(z0) = γ0PuΦcs(z0) = −
∫ ∞

0

Tu(−τ)Pu[G𭟋+
(Φcs(z0))(τ) + ΠH𭟋+

(Φcs(z0))(τ)]dτ,

for z0 ∈ PcsX
0
p . Taking also into account (2.13), we see that ϕcs ∈ C1(PcsX

0
p ;PuXp)

and ϑsc ∈ C1(PcsX
0
p ;PcsXp) with bounded derivatives and that ϕcs(0) = ϑcs(0) = 0

and ϕ′cs(0) = ϑ′cs(0) = 0. The inclusion ‘⊂’ in (5.1) is clear by the above def-
initions, with v = Φcs(z0). Moreover, z0 = PcsPv(0) = PcsP(u0 − u∗). Con-
versely, let v ∈ E1(R+,−β) solve (3.7) on J = R+. Proposition 2.5 then im-
plies v = L+

Pcs,A0
(Pcsv(0),G𭟋+

(v),H𭟋+
(v)). Setting z0 = PcsPv(0) and using

B∗v(0) = H𭟋+
(v)(0), we obtain Pcsv(0) = z0 + PcsNpγ0H𭟋+

(v). Therefore

v = Lcs(z0, v) which entails v = Φcs(z0). This fact leads to v(0) + u∗ ∈ M̃cs.
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(b) Take u0 ∈ M̃cs ∩ BXp
(u∗, ρ) for some ρ > 0 and the corresponding solution

v of (3.7) on J = R+ given by (5.1). From part (a) we deduce that

∥v∥E1(R+,−β) = ∥Φcs(z0)− Φcs(0)∥E1(R+,−β) ≤ c |z0|p ≤ c |v(0)|p (5.3)

for constants independent of v. So (3.4) yields

∥v∥E1([0,6]) ≤ c′ρ (5.4)

for a constant c′ that does not depend on v and ρ. We take

ρ ≤ ρ1 :=
η

c′(1 + cR)
, (5.5)

cf. (3.3). Then 𭟋+(t, v) = 1 for 0 ≤ t ≤ 4 by Remark 3.1. As a result, v solves the
original problem (2.21) on [0, 4].

(c.i) Let u0 ∈ Mcs and denote by u the solution of (1.1) on [0, t0] with u(0) = u0,
for some t0 > 0. We set w = u − u∗. Let v ∈ E1(R+,−β) be the solution of (3.7)
with v(0) = u0 − u∗ given by (5.1). We assume that |w(t)|p < ρ for 0 ≤ t ≤ t0. We
want to show that w(t) = v(t) and u(t) ∈ Mcs for 0 ≤ t ≤ t0. First we consider
the case when t0 ≤ 2. Part (b) shows that 𭟋+(t, v) = 1 and that v solves (2.21) for
0 ≤ t ≤ t0. Then w(t) = v(t) for 0 ≤ t ≤ t0 by the uniqueness of (1.1). We further
set ṽ(t) = v(t + t0) for t ≥ 0. Remark 3.5 yields that 𭟋+(t, ṽ) = 𭟋+(t + t0, v)
for t ≥ 2. Further, we have ∥ṽ∥E1([t−2,t+2]∩R+) ≤ ∥v∥E1([0,6]) ≤ η/(1 + cR) for
0 ≤ t ≤ 2 due to (5.4) and (5.5). Remark 3.1 thus implies that 𭟋+(t, ṽ) = 1
for 0 ≤ t ≤ 2. Finally, 𭟋+(t + t0, v) = 1 for 0 ≤ t ≤ 2 by part (b). Therefore
𭟋+(t, ṽ) = 𭟋+(t + t0, v) for all t ≥ 0, and so ṽ ∈ E1(R+,−β) solves (3.7) on

J = R+ with ṽ(0) = v(t0). This means that v(t0)+ u∗ ∈ M̃cs ∩BXp
(u∗, ρ) = Mcs.

Since we can replace here t0 by t ∈ [0, t0], (the proof of) part (a) yields u(t) =
u∗ + v(t) = u∗ + Pcsv(t) + ϕcs(PcsPv(t)) + ϑcs(PcsPv(t)) ∈ Mcs for 0 ≤ t ≤ t0. If
t0 > 2, we obtain the assertion by a finite iteration of this argument.

(c.ii) Let u0 ∈ Mcs and assume that there is a solution u of (1.1) on [−t0, 0] with
u(0) = u0, for some t0 > 0. We set w(t) = u(t)−u∗ and assume that |w(t)|p < ρ for
−t0 ≤ t ≤ 0. Let v ∈ E1(R+,−β) be the solution of (3.7) with v(0) = u0−u∗ given
by (5.1). We want to show that u(t) ∈ Mcs for −t0 ≤ t ≤ 0. To this aim, we set
w(t) = v(t) and z(t) = w(t− t0) for t ≥ 0. Clearly, z ∈ E1(R+,−β), z(0) = w(−t0),
and z satisfies the first two equations in (2.21) on [0, t0 + 2] since w and v solve
(2.21) on [−t0, 0] and [0, 2], respectively. Take t ∈ [0, t0+2] and s with |t−s| ≤ 1/4.
Note that [0, 1] ⊂ J(s) if J(s) ∩ R− ̸= ∅. We thus deduce from (3.3) that

∥R+z∥E1(J(s)) ≤ ∥z∥E1(J(s)∩[0,t0]) + ∥z∥E1(J(s)∩[t0,∞)) + ∥R+z∥E1(J(s)∩[−1,0])

≤ (1 + cR)
(
∥w(· − t0)∥E1(J(s)∩[0,t0]) + ∥v(· − t0)∥E1(J(s)∩[t0,∞))

)
= (1 + cR)

(
∥w∥E1(J(s−t0)∩[−t0,0]) + ∥v∥E1(J(s−t0)∩R+)

)
.

Since w solves (2.21) on J(s − t0) ∩ [−t0, 0] =: [a, b] and |w(a)|p < ρ, Remark 2.3
with T = 3 yields ∥w∥E1([a,b]) ≤ c∗ρ as soon as ρ > 0 is sufficiently small. Moreover,
∥v∥E1(J(s−t0)∩R+) ≤ c′ρ because of (5.4) and J(s− t0) ∩ R+ ⊂ [0, 4]. As a result,

∥R+z∥E1(J(s)) ≤ (1 + cR)(c∗ + c′)ρ ≤ η for ρ ≤ ρ2 :=
η

(1 + cR)(c∗ + c′)
, (5.6)

and so 𭟋+(t, z) = 1 for 0 ≤ t ≤ t0 + 2. (Observe that ρ2 is less than the number
ρ1 given by (5.5).) The function z thus satisfies (3.7) for 0 ≤ t ≤ t0 + 2. For
t ≥ t0 + 2, we have 𭟋+(t, z) = 𭟋+(t − t0, v) by Remark 3.5. In particular, z
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fulfills the equations (3.7) also for t ≥ t0 + 2. Summing up, z solves (3.7) on R+

and so u∗ + z(0) = u(−t0) ∈ M̃cs ∩ BXp
(u∗, ρ) = Mcs. Replacing here −t0 by

t ∈ [−t0, 0] and writing v(t) = w(t) for −t0 ≤ t ≤ 0, we arrive at u(t) = u∗+ v(t) =
u∗ + Pcsv(t) + ϕcs(PcsPv(t)) + ϑcs(PcsPv(t)) ∈ Mcs for −t0 ≤ t ≤ 0.
(d) Assume that u0 = u∗ + v0 ∈ Mcs ∩ Mu. We take β + ϵ ∈ (β, ωu). Let

v ∈ E1(R+,−β) be the solution of (3.7) with v(0) = v0 given by (5.1). Due to
Theorem 4.1(b), there is a solution w of (2.21) on R− with w(0) = v0 satisfying

|w(t)|p ≤ ce(β+ϵ)t|v0|p ≤ cρ (5.7)

for all t ≤ 0 if ρ > 0 is sufficiently small. We choose ρ ≤ ρ3 := ρ2/c (see (5.6))
and take t ≤ 0. Then part (c.ii) of the proof implies that u∗ + w(t) ∈ Mcs and
that the function zt ∈ E1(R+,−β) given by zt(τ) = w(t + τ) for τ ∈ [0,−t] and
zt(τ) = v(t+ τ) for τ ≥ −t solves (3.7) on J = R+. From (5.3) we deduce that

∥zt∥E1(R+,−β) ≤ c |zt(0)|p = c |w(t)|p , (5.8)

where the constants do not depend on t ≤ 0. Using (2.11), (5.8) and (5.7), we have

|v0|p = e−βt|e−β(−t)zt(−t)|p ≤ ce−βt ∥zt∥E1(R+,−β) ≤ ce−βt|w(t)|p ≤ ceϵt|v(0)|p
with the constants independent of t. Letting t→ −∞, we have u0−u∗ = v0 = 0. □

Theorem 5.2. Assume Hypothesis 2.1 and (4.1). Take any α ∈ (ωcu, ωs). Then
there is a number ηcu > 0 such that for each η ∈ (0, ηcu] there exists a radius
ρ = ρ(η) > 0 such that the following assertions hold for the cutoff 𭟋− defined for
the chosen η ∈ (0, ηcu].
(a) There exists a map ϕcu ∈ C1(PcuX0;PsXp) with a bounded derivative such

that ϕcu(0) = 0, ϕ′cu(0) = 0, and

M̃cu :=
{
u0 = u∗ + z0 + ϕcu(z0) : z0 ∈ PcuX0

}
= {u0 = u∗ + v(0) : ∃ solution v ∈ E1(R−, α) of (3.7) on J = R−}. (5.9)

Moreover, the function v in (5.9) is given by v = Φcu(Pcu(u0 − u∗)) for a map
Φcu ∈ C1(PcuX0;E1(R−, α)) having a bounded derivative.

(b) Define Mcu = M̃cu ∩BXp(u∗, ρ). Let u0 ∈ Mcu and v be the function from
(5.9) with u0 = v(0) + u∗. Then 𭟋−(t, v) = 1 and v solves the original equation
(2.21) (at least) for t ∈ [−4, 0]. The dimension of Mcu is equal to dimPcuX0.
(c) Let u0 ∈ Mcu and v be given by (5.9). If the forward solution u of (1.1) exists

and stays in BXp
(u∗, ρ) on [0, t0] for some t0 > 0, then u(t) = u∗ + v(t) ∈ Mcu for

0 ≤ t ≤ t0. If the function û = u∗+v stays in BXp(u∗, ρ) on [t0, 0] for some t0 < 0,
then û(t) = u∗ + v(t) ∈ Mcu and û solves (1.1) for t0 ≤ t ≤ 0. In particular,
v(t) = Pcuv(t) + ϕcu(Pcuv(t)) for t ∈ [0, t0], resp. t ∈ [t0, 0].
(d) We have Mcu ∩Ms = {u∗}.
(e) Assume, in addition, that (RR) holds. Then there is a ρ0 > 0 such that the

map ϕcu : PcuX0 ∩BXp
(0, ρ0) → PsX1 is Lipschitz.

Proof. Parts (a)–(d) of the following proof are similar to the proof of the previous
theorem so we can omit some details and focus on the differences.
(a) We define the Lyapunov–Perron map Lcu : PcuX0 × E1(R−, α) → E1(R−, α)

by setting Lcu(z0, v) = L−
Ps,A0

(z0,G𭟋−(v),H𭟋−(v)), where the operators L−
Pcu,A0

,

G𭟋− and H𭟋− are given by (2.27) and (3.6). Using Propositions 2.6, 3.6 and
3.8, we find ηcu > 0 such that the assumptions of Theorem 3 of [21] hold for the
cutoff 𭟋− with the parameter η ∈ (0, ηcu]. As a result, for each z0 ∈ PcuX0 there
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exists a unique solution v = Φcu(z0) ∈ E1(R−, α
′) of the equation v = Lcu(z0, v),

where Φcu ∈ C1(PcuX0;E1(R−, α)), Φcu(0) = 0, and the derivatives Φ′
cu(z0) ∈

B(PcuX0,E1(R−, α)) are bounded uniformly in z0. We then introduce the map

ϕcu(z0) = γ0PsΦcu(z0) =

∫ 0

−∞
T (−τ)Ps[G𭟋−(Φcu(z0))(τ) + ΠH𭟋−(Φcu(z0))(τ)] dτ,

for z0 ∈ PcuX0. Due to (2.13), we obtain that ϕcu ∈ C1(PcuX0;PsXp) with a
bounded derivative and that ϕcu(0) = 0 and ϕ′cu(0) = 0. Equality (5.9) follows
from Proposition 2.6, where v = Φcu(z0) and z0 = Pcu(u0 − u∗).

(b) Take u0 ∈ M̃cu ∩BXp
(u∗, ρ) for some ρ > 0 and the corresponding solution

v of (3.7) given by (5.9). From (3.4) and part (a) we deduce

∥v∥E1([−6,0]) ≤ cE ∥v∥E1(R−,α) ≤ ccE |z0|p ≤ c′ |v(0)|p ≤ c′ρ (5.10)

with the constants independent of v and α. We take

ρ ≤ ρ1 :=
η

c′(1 + cR)
, (5.11)

cf. (3.3). Then 𭟋−(t, v) = 1 for −4 ≤ t ≤ 0 by Remark 3.1. As a result, v solves
the original problem (2.21) on [−4, 0].
(c.i) Take u0 ∈ Mcu such that the solution u of (1.1) on [0, t0] with u(0) = u0

stays in BXp
(u∗, ρ) for some ρ, t0 > 0. We set w = u−u∗. Let v ∈ E1(R−, α) be the

solution of (3.7) on J = R− with v(0) = u0 − u∗ given by (5.9). We further define
w(t) = v(t) and z(t) = w(t + t0) for t ≤ 0. Clearly, z ∈ E1(R−, α), z(0) = w(t0),
and z satisfies the first two equations in (1.1) on [−t0−2, 0] since w and v solve (1.1)
on [0, t0] and [−2, 0], respectively. Take t ∈ [−t0 − 2, 0] and s with |t − s| ≤ 1/4.
As in part (c.ii) if the proof of Theorem 5.2, we deduce from (3.3) that

∥R−z∥E1(J(s)) ≤ (1 + cR)
(
∥w(·+ t0)∥E1(J(s)∩[−t0,0]) + ∥v(·+ t0)∥E1(J(s)∩(−∞,−t0])

)
= (1 + cR)

(
∥w∥E1(J(s+t0)∩[0,t0]) + ∥v∥E1(J(s+t0)∩R−)

)
.

Remark 2.3 shows that ∥w∥E1([a,b]) ≤ c∗ρ for sufficiently small ρ > 0 since w solves
(1.1) on J(s+ t0) ∩ [0, t0] =: [a, b]. Using (J(s+ t0) ∩R−) ⊂ [−4, 0] and (5.10), we
estimate ∥v∥E1(J(s+t0)∩R−) ≤ c′ρ. Consequently,

∥R−z∥E1(J(s)) ≤ (1 + cR)(c∗ + c′)ρ ≤ η for ρ ≤ ρ2 :=
η

(1 + cR)(c∗ + c′)
, (5.12)

and hence 𭟋−(t, z) = 1 for −t0 − 2 ≤ t ≤ 0. The function z thus satisfies (3.7) for
−t0 − 2 ≤ t ≤ 0. Moreover, Remark 3.5 yields that 𭟋−(t, z) = 𭟋−(t + t0, v) for
t ≤ −t0 − 2; and so z fulfills the equations (3.7) for t ≤ −t0 − 2. Summing up, we
have shown that z solves (3.7) on R−, and so u∗ + z(0) = u(t0) ∈ Mcu.
(c.ii) Let u0 ∈ Mcu and v be given by (5.9). Assume that û = u∗ + v stays in

BXp
(u∗, ρ) on [t0, 0] for some t0 < 0. We first consider the case when t0 ∈ [−2, 0).

Part (b) shows that 𭟋−(t, v) = 1 and v solves (2.21) on [t0, 0]. We further set
ṽ(t) = v(t+ t0) for t ≤ 0. From Remark 3.5 it follows that 𭟋−(t, ṽ) = 𭟋−(t+ t0, v)
for t ≤ −2.. Since ∥ṽ∥E1([t−2,t+2]∩R−) ≤ ∥v∥E1([−6,0]) ≤ η/(1 + cR) for −2 ≤ t ≤ 0
by (5.3), Remark 3.1 yields 𭟋−(t, ṽ) = 1 for −2 ≤ t ≤ 0. Finally, 𭟋−(t+ t0, v) = 1
for −2 ≤ t ≤ 0 due to part (b); so that 𭟋−(t, ṽ) = 𭟋−(t+ t0, v) for all t ≤ 0. As a
result, ṽ ∈ E1(R−, α) solves (3.7) on J = R− with ṽ(0) = v(t0). This means that
v(t) + u∗ ∈ Mcu for each t ∈ [t0, 0], as asserted. The general case t0 < −2 is then
established by repeating the arguments for the first case finitely many times.
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(d) Assume that u0 = u∗ + v0 ∈ Mcu ∩Ms. Let v ∈ E1(R−, α) be the solution
of (3.7) with v(0) = v0 given by (5.9). For α + ϵ ∈ (α, ωs), there is a solution
w of (2.21) on R+ with w(0) = v0 satisfying |w(t)|p ≤ ce−(α+ϵ)t|v0|p ≤ cρ for all
t ≥ 0 if ρ > 0 sufficiently small, due to Theorem 4.1(a). Set w(t) = v(t) for t ≤ 0.
If we choose ρ ≤ ρ3 := ρ2/c (see (5.12)), then part (c.i) of the proof shows that
u∗ + w(t) ∈ Mcu for t ≥ 0 and that the function zt = w(· + t) ∈ E1(R−, α) solves
(3.7) on J = R−. So estimate (5.10) yields ∥zt∥E1(R−,α) ≤ c |w(t)|p , where the
constant does not depend on t ≥ 0. Using also (2.11), we arrive at

|v0|p = eαt|eα(−t)zt(−t)|p ≤ ceαt ∥zt∥E1(R−,α) ≤ ceαt|w(t)|p ≤ ce−ϵt|v(0)|p
for constants independent of t ≥ 0. Letting t→ ∞, we deduce u0 − u∗ = v0 = 0.
(e) Assertion (e) can be shown as the last assertion in Theorem 4.1(b). □

Corollary 5.3. Assume that Hypothesis 2.1 and (2.34) hold. Then there is a
number ρ > 0 such that Mc ∩Bρ = Mcs ∩Mcu ∩Bρ, Mc ∩Ms ∩Bρ = {u∗}, and
Mc ∩Mu ∩ Bρ = {u∗}. Here, Bρ = BXp(u∗, ρ) and Mk, k ∈ {s, c, cs, cu,u}, are
the manifolds obtained in Theorems 4.1, 4.2, 5.1, and 5.2.

Proof. We set η = min{ηc, ηcs, ηcu} > 0 and let ρ′ be less than or equal to the
minimum of the numbers ρ(η) obtained in Theorems 4.2, 5.1, and 5.2. For u0 ∈
Mc∩BXp

(u∗, ρ
′), there exists the function v from (4.6) with v(0) = u0−u∗, where

𭟋(t, v) = 1 for |t| ≤ 2. For s ∈ [0, 9/4] and σ ∈ [−9/4, 0], we have ∥R+v∥E1(J(s)) ≤
c′R ∥v∥E1([0,4]) and ∥R−v∥E1(J(σ)) ≤ c′R ∥v∥E1([−4,0]) for some constant c′R. In view
of (4.10), we can decrease ρ′ > 0 in order to obtain 𭟋+(t, v) = 1 for t ∈ [0, 2] and
𭟋−(t, v) = 1 for t ∈ [−2, 0]. Thus 𭟋(t, v) = 𭟋±(t, v) for t ∈ R± by Remark 3.5,

and so the restrictions of v to R+ and R− belong to M̃cs and M̃cu by (5.1) and
(5.9), respectively. As a result, u0 ∈ Mcs ∩ Mcu. The converse inclusion can be
shown similarly, thereby fixing a possibly smaller ρ′ =: ρ. The last two equalities
then follow from Theorems 5.1 and 5.2. □

Remark 5.4. We now sketch an alternative construction of a local center man-
ifold M̂c as the intersection of Mcs and Mcu, cf. [4]. Let the assumptions of
Theorem 4.2 hold. Then Theorems 5.1 and 5.2 can be proved as above so that we
have local center–stable and center–unstable manifolds Mcs and Mcu with corre-
sponding maps ϕcs, ϑcs and ϕcu. For technical reasons, we need another description
of Mcs. To this aim, we solve the fixed point problem

v = L+
Pcs,A0

(z0 + PsNpγ0H𭟋+
(v),G𭟋+

(v),H𭟋+
(v)) (5.13)

for z0 ∈ PcsX
0
p and v ∈ E1(R+,−β). As in Theorem 5.1, for sufficiently small

η ≤ ηcs we obtain a solution map Φc|s : z0 7→ v for (5.13), and so we can define
ϑc|s(z0) = PsNpγ0H𭟋+(Φc|s(z0)) ∈ PsXp and ϕc|s(z0) = γ0Φc|s(z0)−z0−ϑc|s(z0) ∈
PuX0 for z0 ∈ PcsX

0
p . We now fix the same η in the construction of Mcs. It is

possible to show that M̃cs = {u0 = u∗ + z0 + ϑc|s(z0) + ϕc|s(z0) : z0 ∈ PcsX
0
p}. For

x0 ∈ PsX
0
p , y ∈ PcX0 and z ∈ PuX0 with norms less than ρ0 > 0, we further set

Ψ(y, (x0, z)) =
(
x0 − ϕcu(y + z) + PsNpH(y + z + ϕcu(y + z)), z − ϕc|s(x0 + y)

)
.

Observe that B∗ϕcu(y + z) = B∗(y + z + ϕcu(y + z)) = H(y + z + ϕcu(y + z)) =
B∗PsNpH(y + z + ϕcu(y + z)) since v0 = y + z + ϕcu(y + z)) is the final value
of a solution v to the cutoff problem satisfying 𭟋−(0, v) = 1 if ρ0 > 0 is small
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enough. Hence, Ψ maps into the set V := PsX
0
p × PuX0. Because of Ψ(0, 0) = 0

and D2Ψ(0, 0) = IV , there exist r, ρ > 0 and ψ = (ψs, ψu) ∈ C1(BXp(0, ρ) ∩
PcX0, BXp(0, r)∩V ) such that (x0, z) = ψ(y) is the unique solution of the equation
Ψ(y, (x0, z)) = 0 in these balls. We now introduce

ϕ̂c(y) = ψs(y) + ϑc|s(y + ψs(y)) + ψu(y),

M̂c = {u∗ + y + ϕ̂c(y) : y ∈ BXp
(0, ρ) ∩ PcXp}.

Then ϕ̂c ∈ C1(BXp
(0, ρ) ∩ PcX0;PsuXp), ϕ̂c(0) = 0, ϕ̂′c(0) = 0, and one can check

that M̂c = Mcs ∩ Mcu ∩ BXp(u∗, ρ) for a sufficiently small ρ > 0. (Here it is
useful to work with the new description of Mcs.) Finally it can be seen that

M̂c has analogous properties as those stated for Mc in Theorem 4.2(b)–(f) and

Corollary 5.3. We point out that in this approach M̂c is not constructed as the

restriction of a global object such as M̃c in Theorem 4.2(a). In particular, for

M̂c there is no counterpart for the description given by (4.6) and the invariance

property of M̃c stated in Theorem 4.2(a). ♢

6. Stability and attractivity of the center manifold

We now investigate the stability of the steady state u∗ of (1.1) and the attractivity
of Mc. As in Theorem 4.2, we assume that Hypothesis 2.1 and (2.34) hold. In
parabolic problems, the center–unstable manifold is finite dimensional in many
cases; e.g., if the spatial domain Ω is bounded. Moreover, there are important
applications where Mcu consists of equilibria only, see e.g. [10, Prop.6.4], [15].
Thus it is quite possible that one can check the stability of u∗ with respect to the
semiflow on Mcu generated by (1.1) without knowing a priori that u∗ is stable
with respect to the full semiflow of (1.1) on M. In Theorem 6.1 below we show
that u∗ is stable on M under the following conditions: s(−A0) ≤ 0, u∗ is stable
on Mcu = Mc, Pcu = Pc has finite rank, and the additional regularity assumption
(RR) holds. In fact, we establish a stronger result saying that each solution starting
sufficiently close to u∗ converges exponentially to a solution on Mc. Here we can
assume that s(−A0) ≤ 0 without loss of generality since by Theorem 4.1 −A0 has
no spectrum in the open right halfplane if u∗ is stable and Pcu has finite rank.

Theorem 6.1. Let Hypothesis 2.1 and (RR) hold. Assume that the spectrum of
−A0 admits a splitting σ(−A0) = σs ∪ σc corresponding to the spectral projections
Ps and Pc such that Pc has finite rank, σc ⊂ iR, and there is a number α with
maxReσs < −α < 0. Suppose that for each r > 0 there is a ρ > 0 such that for u0 ∈
Mc with |Pc(u0−u∗)|0 < ρ the solution u of (1.1) exists and u(t) ∈ Mc∩BXp(u∗, r)
for all t ≥ 0. Then there is a ρ > 0 such that for every u0 = u∗ + v0 ∈ M with
|v0|p ≤ ρ the solution u = u∗ + v of (1.1) exists on R+ and there is a solution u of
(1.1) on R+ such that u(t) ∈ Mc for all t ≥ 0 and

|u(t)− u(t)|1 ≤ ce−αt |Psv0 − ϕc(Pcv0)|p (6.1)

for t ≥ 1 and a constant c independent of u0. As a result, u∗ is stable for (1.1),
i.e.: For each r > 0 there exists a ρ′ > 0 such that for every u0 ∈ M∩BXp

(u∗, ρ
′)

the solution u of (1.1) exists on R+ and u(t) ∈ BXp
(u∗, r) for all t ≥ 0.

Proof. Let u = u∗ + v solve (1.1) with the initial value u0 = u∗ + v0 ∈ M. We
proceed in three steps: First, we derive a forward evolution equation in PsXp for the
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function w = Psv − ϕc(Pcv) on a certain interval [0, T ] and estimate w employing
this equation. Second, we take the solution z on Mc with Pcz(T ) = Pcv(T ) and
estimate the function y = Pc(v − z) on an interval [t0, T ] by means of a backward
evolution equation in PcX0 for y. Third, using the stability of Mc we show that
these estimates hold for all T ≥ t0 ≥ 1 and construct the desired solution u = u∗+z
on Mc by letting T → ∞.
Step 1. Set −ωs = maxReσs < 0 and take constants N ≥ 1 and δ ∈ (0, ωs)

such that ∥e−tA0PcPc∥B(X0) ≤ Ne−δt for all t ≤ 0. Using Theorem 4.2, we fix a
radius ρc > 0 such that ϕc is globally Lipschitz with the Lipschitz constant ℓ as
a map from PcX0 ∩ BX0

(0, ρc) to X1 and Xp, and such that ∥ϕ′c(ξ)∥B(X0) ≤ ℓ for

ξ ∈ PcX0 ∩BX0
(0, ρc). We set

ε1(R) = max
x∈X1,|x|1≤R

{∥G′(x)∥B(X1,X0) , ∥H
′(x)∥B(X1,Y1)}. (6.2)

Due to (2.16), we can fix a (small) number R > 0 such that

d := Nε1(R)(1 + ∥PcΠ∥B(Y1,X0))(1 + ℓ ∥Pc∥B(X0,X1)) < ωs − δ, (6.3)

R ∥Pc∥B(X0,X1) ≤ ρc . (6.4)

Then there exists a number r > 0 having the following properties:

(a) r(1 + ℓ)∥Pc∥B(Xp,X1) ≤ R/2 and r ∥Pc∥B(Xp,X0) ≤ ρc.
(b) If |x0|p ≤ r or |Pcx0|0 ≤ r, then the solution z on Mc with Pcx0 = Pcz(0)

exists on [−2,∞) and |z(t)|1 ≤ R for all t ≥ −2.
(c) If w0+u∗ ∈ M and |w0|p ≤ r, then the solution w of (2.21) with w(0) = w0

exists for t ∈ [0, 2], ∥w∥E1([0,2]) ≤ c∗r and |w(1)|1 ≤ R (where c∗ is the
constant given by Remark 2.3 with T = 2).

(d) ĉε2(c∗cP r) ≤ 1/2, where cP = (1 + ℓ)(∥Pc∥B(X1) + ∥Pc∥B(X0)), ĉ is defined
below in (6.8) and ε2(·) is the Lipschitz constant from Remark 3.7.

(To obtain (b) and (c), we use the stability of u∗ in Mc, Theorem 4.2, and [12,
Prop.15].) Take u0 = v0 + u∗ ∈ M with |v0|p ≤ ρ ≤ ρ1 ≤ r, where ρ1 > 0 is chosen
such that the solution v of (2.21) exists on [0, 4] and |v(t)|p ≤ r for 0 ≤ t ≤ 4.
(Use Remark 2.3 and (2.11).) Hence, |v(t)|1 ≤ R for 1 ≤ t ≤ 4 and |Pcv(t)|0 ≤ ρc
for 0 ≤ t ≤ 4 by Properties (c) and (a). Let T ≥ 4 be the supremum of all t′

such that the solution v exists on [0, t′] and |v(t)|p ≤ r for all t ∈ [0, t′]. Seeking a
contradiction, we suppose that T <∞. Then T is in fact the maximum of all t′ as
above, and |v(t)|1 ≤ R for 1 ≤ t ≤ T , due to Property (c). Define

w = Psv − ϕc(Pcv), w0 = w(0), x = v − w = Pcv + ϕc(Pcv) (6.5)

on [0, T ]. Observe that u∗ + x(t) ∈ Mc and Pcx(t) = Pcv(t) for t ∈ [0, T ] and that,
in general, x is not a solution of (2.21). Recall the definition of A0, N1 and Π, cf.
(2.23). Using (2.21), (4.8), (4.9), (6.5), we deduce that

B∗w(t) = H(v(t))−B∗ϕc(Pcx(t)) = H(v(t))−H(x(t)) =: h(t), (6.6)

ẇ(t) = Ps(−A∗v(t) +G(v(t)))− ϕ′c(Pcv(t))Pc[G(v(t))−A∗v(t)]

− ϕ′c(Pcx(t))Pc[A∗x(t)−G(x(t))] + Ps(A∗x(t)−G(x(t)))

= −Ps(A0 + µ)(w(t)−N1h(t)) + µPsw(t) + Ps(G(v(t))−G(x(t)))

+ ϕ′c(Pcv(t))Pc[(A0 + µ)(w(t)−N1h(t))− µw(t) +G(x(t))−G(v(t))]

= −A0Psw(t) + PsΠh(t) + Ps(G(v(t))−G(x(t)))

− ϕ′c(Pcv(t))Pc[Πh(t) +G(v(t))−G(x(t))]
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for t ∈ (0, T ], where we also employed (6.6) in the second part and ẇ(t) exists in
X0. Setting g = G(v)−G(x)− ϕ′c(Pcv)Pc[Πh+G(v)−G(x)], we obtain

w(t) = T (t− τ)Psw(τ) +

∫ t

τ

T−1(t− σ)Ps[g(σ) + Πh(σ)] dσ

for 0 ≤ τ ≤ t ≤ T . We take τ ∈ [0, T − 2] and α ∈ (0, ωs). In view of (6.6) and the
exponential stability of eαT (·)Ps, we can argue as in the proof of Proposition 8 in
[12] (see inequality (43)) and estimate:

e−ατ∥w∥E1([τ,T ],α) ≤ ĉ0
[
|w(τ)|p + e−ατ∥g∥E0([τ,T ],α) + e−ατ∥h∥F([τ,T ],α)

]
, (6.7)

with a constant ĉ0 independent of τ , T , r, ρ, and chosen uniformly for α contained in
compact intervals in (0, ωs). Since |Pcv(t)|0 ≤ ρc for t ∈ [0, T ] by (a), formula (6.5)
yields ∥x∥E1(J) ≤ cP ∥v∥E1(J) for intervals J ⊂ [0, T ], where cP = (1+ℓ)(∥Pc∥B(X1)+
∥Pc∥B(X0)). So we conclude from (6.7) and Remarks 2.3 and 3.7 that

e−ατ∥w∥E1([τ,T ],α) ≤ ĉ0|w(τ)|p + ĉε2(c∗cP r)e
−ατ∥w∥E1([τ,T ],α) ,

where c∗ is the constant given by Remark 2.3 and

ĉ := ĉ0 [2 + ℓ(∥Pc∥B(X0) + ∥PcΠ∥B(Y1,X0))]. (6.8)

Hence, for 0 ≤ τ ≤ t ≤ T with T − τ ≥ 2, Property (d) above and (2.11) imply that

e−ατ∥w∥E1([τ,T ],α) ≤ ĉ0|w(τ)|p + 1
2 e

−ατ∥w∥E1([τ,T ],α) ,

eα(t−τ)|w(t)|p ≤ c0e
−ατ∥w∥E1([τ,T ],α) ≤ 2c0ĉ0 |w(τ)|p . (6.9)

Step 2. By Property (b), there exists a number a ≤ T − 2 and a solution
z(·;T, Pcv(T )) = z = Pcz+ϕc(Pcz) onMc of (2.21) on [a, T ] with Pcz(T ) = Pcv(T ).
Also, there is a minimal number t0 ∈ [1, T − 2] such that z(t) ∈ Mc exists and
|z(t)|1 ≤ R for t0 ≤ t ≤ T . We set y = Pc(v − z) and note that

v − z = y + w + ϕc(Pcv)− ϕc(Pcz). (6.10)

Since v and z solve (2.21), we obtain

B∗(v(t)− z(t)) = H(v(t))−H(z(t)) =: h1(t),

ẏ(t) = Pc(−A∗(v(t)− z(t))) + Pc(G(v(t))−G(z(t)))

= −Pc[(A0 + µ)(v(t)− z(t)−N1h1(t))− µ(v(t)− z(t))] + Pcg1(t)

= −A0Pcy(t) + PcΠh1(t) + Pcg1(t) (6.11)

for t ∈ [t0, T ], where g1(t) := G(v(t))−G(z(t)). Since y(T ) = 0 and |v(t)|1, |z(t)|1 ≤
R, equation (6.11) implies (cf. (6.2)) that

y(t) = −
∫ T

t

e−(t−τ)A0PcPc(g1(τ) + Πh1(τ)) dτ,

|y(t)|0 ≤
∫ T

t

Ne−δ(t−τ)(1 + ∥PcΠ∥B(Y1,X0))ε1(R) |v(τ)− z(τ)|1 dτ .

Recalling the definition of d in (6.3) and setting d0 = d (1 + ℓ ∥Pc∥B(X0,X1))
−1, we

then deduce from (6.10) and (6.4) that

eδt|y(t)|0 ≤ d

∫ T

t

eδτ |y(τ)|0 dτ + d0

∫ T

t

eδτ |w(τ)|1 dτ.
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Gronwall’s inequality and Fubini’s theorem thus yield

eδt|y(t)|0 ≤ d0

∫ T

t

eδτ |w(τ)|1 dτ + dd0

∫ T

t

ed(τ−t)

∫ T

τ

eδσ|w(σ)|1 dσ dτ

= d0

∫ T

t

eδτ |w(τ)|1 dτ + dd0

∫ T

t

eδσ|w(σ)|1
∫ σ

t

ed(τ−t) dτ dσ

= d0

∫ T

t

ed(σ−t)eδσ|w(σ)|1 dσ.

There is an α ∈ (d+ δ, ωs) due to (6.3). Hölder’s inequality and (6.9) thus lead to

|y(t)|0 ≤ d0

∫ T

t

e(d+δ)(σ−t)|w(σ)|1 dσ ≤ ce−αt ∥w∥E1([t,T ],α) ≤ c |w(t)|p (6.12)

for t ∈ [t0, T ] with T − t ≥ 2. Here and below the constants c do not depend
on t, t0, T, v, ρ. Observe that z = Pc(v − y) + ϕc(Pc(v − y)). Employing (6.4),
|v(t0)|p ≤ r, Property (a), (6.12) (6.9) and (6.5), we then estimate:

|z(t0)|1 ≤ (1 + ℓ) (∥Pc∥B(X0,X1) |y(t0)|0 + ∥Pc∥B(Xp,X1) |v(t0)|p)
≤ c |w(t0)|p +R/2 ≤ c |w(0)|p +R/2 ≤ c |v0|p +R/2.

So we can find ρ2 ∈ (0, ρ1] such that |z(t0)|1 ≤ 3R/4 if |v0|p ≤ ρ ≤ ρ2. As a result,
t0 = 1 and

|Pcz(1)|0 ≤ |y(1)|0 + |Pcv(1)|0 ≤ c (|w(1)|p + |v(1)|p) ≤ c |v(1)|p ≤ c |v0|p , (6.13)

where we used (6.12), (6.5), Remark 2.3, and (2.11). In view of (6.13) and the
assumed stability of Mc, there exists a ρ3 ∈ (0, ρ2] such that |z(T )|p ≤ r/2 if
|v0|p ≤ ρ ≤ ρ3. From (6.10), (6.12) and (6.9), we then deduce

|v(T )|p ≤ |z(T )|p + |y(T )|p + ℓ |y(T )|0 + |w(T )|p ≤ r
2 + c |w(0)|p ≤ r

2 + c |v0|p < r,

if we take |v0|p ≤ ρ ≤ ρ4 for a sufficently small ρ4 ∈ (0, ρ3]. This fact contradicts
the choice of r so that T = ∞; i.e., v solves (2.21) on R+ and |v(t)|p ≤ r for all
t ≥ 0. Therefore (6.9) and (6.12) hold for all T ≥ 4 with uniform constants.
Step 3. In (6.13) we have seen that Pcz(1) = Pcz(1;T, Pcv(T )) is bounded by

c |v0|p for all T ≥ 4. We fix ρ ∈ (0, ρ4] with c ρ ≤ r and take v0 with |v0|p ≤ ρ ≤ ρ.
Since Pc has finite rank, there are Tn → ∞ such that Pcz(1;Tn, Pcv(Tn)) converges
to some ζ ∈ PcX0 with |ζ|0 ≤ cρ ≤ r. Let z be the solution on Mc with Pcz(1) = ζ.
By Property (b) and (6.4), z(t) ∈ Mc exists for all t ≥ 0 and |Pcz(t)|0 ≤ ρc. The
functions Pcz and Pcz(·;Tn, Pcv(Tn)) satisfy the ode (4.7) so that

Pcz(t) = lim
n→∞

Pcz(t; 1, Pcz(1;Tn, Pcv(Tn))) = lim
n→∞

Pcz(t;Tn, Pcv(Tn)).

Estimates (6.12) and (6.9) thus yield

|Pc(v(t)− z(t))|0 = lim
n→∞

|Pc(v(t)− z(t;Tn, Pcv(Tn)))|0 ≤ c |w(t)|p ≤ ce−αt|w0|p

for t ≥ 1. Combining this inequality with (6.5) and (6.9), we also obtain

|Ps(v(t)− z(t))|p ≤ |w(t)|p + |ϕc(Pcv(t))− ϕc(Pcz(t))|p ≤ ce−αt|w0|p.

Inequality (6.1) now follows from the two preceeding estimates and Theorem A.1.
Moreover, |v(t)|p ≤ |v(t)− z(t)|p + |z(t)|p ≤ cρ+ |z(t)|p for t ≥ 0. Since |ζ|0 ≤ cρ,
the stability of u∗ is a consequence of the stability of Mc. □
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Appendix A. An additional regularity result

We now establish an improved version of Proposition 15 of [12] needed to show
that the center, center-unstable and unstable manifolds are Lipschitz in X1.

Theorem A.1. Assume hypothesis (RR), and that (E) and (LS) hold at a function
u0 ∈ Xp with B(u0) = 0. Fix a number T > 0 which is strictly smaller than the
maximal existence time t+(u0) of the solution u of (1.1) such that conditions (E)
and (LS) hold at the function u(t) for each t ∈ [0, T ]. Then there exists a ρ > 0
such that for each initial value v0 ∈ M with |v0 − u0|p ≤ ρ the solution v of (1.1)
with v(0) = v0 satisfies

∥t(v̇ − u̇)∥E1([0,T ]) ≤ c |v0 − u0|p, (A.1)

where the constant c is independent of v0 but may depend on u, T, ρ. In particular,
for each τ ∈ (0, T ) we have

∥v − u∥C1−1/p([τ,T ];X1) ≤ c(τ) |v0 − u0|p. (A.2)

Proof. The existence of a solution v with the initial value v0 ∈ BXp(u0, ρ) was shown
in [12, Thm.14] for sufficiently small ρ > 0, whereas the number T > 0 exists due to
Remark 1 of [12]. Similarly, there is an ϵ ∈ (0, 1/2) such that T ′ = (1+ϵ)T < t+(u0)
and (E), (LS) hold at all functions u(t) for t ∈ J ′ = [0, T ′]. We set z(t) = v(t)−u(t),
z0 = v0 − u0, and wλ(t) = v(λt)− u(λt) for t ∈ J = [0, T ] and λ ∈ (1− ϵ, 1+ ϵ). As
in Section 2 of [12], we define A∗(t), B∗(t), G(t, ·), and H(t, ·) as in (2.15), (2.17),
and (2.18) replacing u∗ by u(t). Note that z solves the resulting version of equation
(2.21) with A∗ replaced by A∗(t) and B∗ replaced by B∗(t). Moreover, we denote
by S the solution operator of the corresponding version of equation (2.22), see [12,
Thm.2]. Then wλ satisfies:

∂twλ(t) = λ(v̇(λt)− u̇(λt))

= λ(−A∗(λt)(v(λt)− u(λt)) +G(λt, v(λt)− u(λt))), on Ω, t > 0,

B∗(λt)wλ(t) = H(λt, v(λt)− u(λt)), on ∂Ω, t > 0,

wλ(0) = z0, on Ω.

So wλ solves the initial-boundary value problem

∂tw(t) +A∗(t)w(t) = G(λ,w)(t), on Ω, t > 0,

B∗(t)w(t) = H(λ,w)(t), on ∂Ω, t > 0,

w0 = z0, on Ω,

(A.3)

where we introduced the maps

G(λ,w)(t) = (A∗(t)− λA∗(λt))w(t) + λG(λt, w(t)),

H(λ,w)(t) = (B∗(t)−B∗(λt))w(t) +H(λt, w(t)),

for w ∈ E1(J), t ∈ J , and λ ∈ (1− ϵ, 1 + ϵ). We observe that

G(λ,w)(t) = A(u(t))w(t) +A′(u(t))[w(t), u(t)]− F ′(u(t))w(t)

− λA(u(λt) + w(t))(u(λt) + w(t)) + λA(u(λt))u(λt)

+ λF (u(λt) + w(t))− λF (u(λt)), (A.4)

H(λ,w)(t) = B′(u(t))w(t)−B(u(λt) + w(t)). (A.5)
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We claim that the map λ 7→ u(λ·) belongs to C1((1− ϵ, 1 + ϵ),E1(J)). Indeed, for
µ, λ ∈ (1− ϵ, 1 + ϵ) ⊆ (1/2, 3/2) we have:

u(µt)− u(λt)− (µ− λ)tu′(λt) =
µ− λ

λ

∫ 1

0

λt(u′(λt+ θ(µ− λ)t)− u′(λt)) dθ

=
µ− λ

λ

∫ 1

0

(
((λ+ θ(µ− λ))t)u′((λ+ θ(µ− λ))t)− λtu′(λt)

)
dθ (A.6)

− (µ− λ)2

λ

∫ 1

0

[ θt

(λ+ θ(µ− λ))t

]
(λt+ θ(µ− λ)t)u′(λt+ θ(µ− λ)t) dθ.

We note that the expression in the square brackets in the last interval is contained
in [0, 2], and recall that tu′ ∈ E1(J

′) due to [12, Thm.14]. Moreover, the dilation
operators Ta given by Taf(t) = f(at) on E1(R+) are strongly continuous in a > 0.
(Below, we extend u from E1(J

′) to E1(R+) to use the strong continuity.) Thus
(A.6) yields

∥u(µ·)− u(λ·)− (µ− λ)tu′(λ·)∥E1(J)

≤ 2 |µ− λ| ε(θ|µ− λ|) + c |µ− λ|2 ≤ |µ− λ| ε(|µ− λ|),

showing that ∂λu(λ·) = tu′(λ·) in E1(J). Since also

tu′(λt)− tu′(µt) = λ−1(λtu′(λt)− µtu′(µt)) + (λ−1 − µ−1)µtu′(µt),

the map λ 7→ u(λ·) ∈ E1(J) is continuously differentiable. Combining this fact
with the observations in [12, §2], we see that the map (λ,w) 7→ G(λ,w) ∈ E0(J) is
continuously differentiable with G(1, w) = G(w), ∂2G(1, w) = G′(w), and

∂1G(1, w) = (A(u)−A(u+ w))u−A(u+ w)w + F (u+ w)− F (u)

+ (A′(u)−A′(u+ w))[tu′, u]−A′(u+ w)[tu′, w]

+ (A(u)−A(u+ w))tu′ + (F ′(u+ w)− F ′(u))tu′.

(A.7)

We claim that B′(u) ∈ B(E1(J),F(J)). Indeed, due to Proposition 10(Ib) of [12]
with u∗ = 0 we only need to check that B′(0) ∈ B(E1(J),F(J)) which follows from
(16) and (17) in [12] and [17, Thm.4.6.4.1]. Proposition 10 of [12] then implies
that the map v 7→ B(v) belongs to C1(E1(J),F(J)). Therefore the map (λ,w) 7→
H(λ,w) is contained in C1((1− ϵ, 1 + ϵ)× E1(J),F(J)) with

H(1, w) = H(w), ∂2H(1, w) = H′(w)

∂1H(1, w) = −B′(u+ w)tu′ = (B′(u)−B′(u+ w))tu′,
(A.8)

using that B(u(λt)) = 0, and hence 0 = d
dλB(u(λ·)) = B′(u(λ·))tu′. In order to

solve (A.3), we set

L(λ,w) = w − S(z0 −NpH(0, z0) +Npγ0H(λ,w),G(λ,w),H(λ,w)), (A.9)

where Np ∈ B(Yp, Xp) is a right inverse of B′(u0) = B∗(0) (see [12, Prop.5]).
Because of B(u0 + z0) = 0, we infer:

B∗(0)[z0 −NpH(0, z0) +Npγ0H(λ,w))] = H(λ,w)(0).

Therefore Theorem 2 of [12], (2.13), and the properties of G and H, established
above, show that L ∈ C1((1− ϵ, 1 + ϵ)× E1(J),E1(J)) and that

L(1, z) = z − S(z0,G(z),H(z)) = 0,

∂2L(1, z) = I − S(Npγ0H′(z),G′(z),H′(z)).
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Since ∥z∥E1(J) ≤ c|z0|p ≤ cρ by [12, Thm.14], Theorem 2 and Proposition 10 of [12]
and (2.13) imply that ∂2L(1, z) is invertible if ρ is sufficiently small. So we obtain
a function Ψ ∈ C1((1− ϵ̂, 1 + ϵ̂),E1(J)) for some 0 < ϵ̂ < ϵ satisfying Ψ(1) = z and
L(λ,Ψ(λ)) = 0. Set w0(λ) = Ψ(λ)(0). Using [12, Cor.12] in the estimate, we derive

w0(λ)− z0 = Np(H(λ,Ψ(λ))(0)−H(0, z0)) (A.10)

= Np(B
′(u0)w0(λ)−B(u0 + w0(λ))−B′(u0)z0 +B(u0 + z0))

= −Np(B(u0 + w0(λ))−B(u0 + z0)−B′(u0 + z0)(w0(λ)− z0))

+Np(B
′(u0)−B′(u0 + z0))(w0(λ)− z0),

|w0(λ)− z0|p ≤ cε(|z0 − w0(λ)|p) |w0(λ)− z0|p + cε(|z0|p) |w0(λ)− z0|p.

Observe that |z0 − w0(λ)|p ≤ c ∥z − Ψ(λ)∥E1(J) by (2.11). Decreasing ϵ̂ > 0 and
ρ > 0 if necessary, we thus conclude that w0(λ) = z0. Hence, Ψ(λ) solves (A.3) due
to (A.10) and (A.9). Possibly after decreasing ϵ̂ > 0 once more, we deduce that
Ψ(λ) = wλ from (A.3) and Theorem 2 and Proposition 10 of [12]. As a result,

t(v̇ − u̇) = Ψ′(1) = −∂2L(1, z)−1∂1L(1, z)
= ∂2L(1, z)−1S(Npγ0∂1H(1, z), ∂1G(1, z), ∂1H(1, z)).

Theorem 2 of [12], (A.7), (A.8), (2.7), (RR), and Lemma A.2 below now yield

∥t(v̇ − u̇)∥E1(J) ≤ c (∥∂1G(1, z)∥E0(J) + ∥∂1H(1, z)∥F(J))
≤ c ∥z∥E1 ≤ c |v0 − u0|p ,

which is (A.1). Finally, for τ ∈ (0, T ) Sobolev’s embedding theorem implies that

∥v − u∥C1−1/p([τ,T ];X1) ≤ c∥v − u∥W 1
p ([τ,T ];X1) ≤ c(τ)∥tv̇ − tu̇∥E1(J) + c∥v − u∥E1(J)

≤ c(τ) |v0 − u0|p . □

The proof of the following lemma is omitted. It uses arguments from the proof
of Proposition 10 in [12].

Lemma A.2. Assume that (RR) holds and J = [0, T ]. Then the map v 7→ B′(v) ∈
B(E1(J),F(J)) is locally Lipschitz on E1(J).
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