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ABSTRACT. We study quasilinear systems of parabolic partial differential equa-
tions with fully nonlinear boundary conditions on bounded or exterior domains.
Our main results concern the asymptotic behavior of the solutions in the vicin-
ity of an equilibrium. The local center, center—stable, and center—unstable
manifolds are constructed and their dynamical properties are established us-
ing nonautonomous cutoff functions. Under natural conditions, we show that
each solution starting close to the center manifold converges to a solution on
the center manifold.

1. INTRODUCTION

The investigation of the long term behavior of solutions starting near an equi-
librium is an essential step in the study of the qualitative properties of a nonlinear
evolution equation. In many cases, the structure of the flow in a neighborhood
of a steady state u, is largely determined by the spectrum of the linearization at
Uy, see e.g. [4], [6], [13], [14], [16], [18], [19], [22]. In the current work we construct
local invariant manifolds for a class of nonlinear equations utilizing nonautonomous
cutoff functions.

In this paper we treat parabolic systems with nonlinear boundary conditions and
we construct local invariant C'-manifolds consisting of solutions to the nonlinear
problem. These local center, center—stable, and center—unstable manifolds are tan-
gent at wu, to the corresponding spectral subspaces of the linearization. We also
show that, under natural conditions, each solution starting close to the center man-
ifold converges exponentially to a solution living on the center manifold. In this
sense, in a vicinity of u, the dynamics of the system is reduced to the dynamics on
the center manifold which is governed by an ordinary differential equation. To be
more precise, we consider the equations

Opu(t) + A(u(t))u(t) = F(u(t)), on€, t>0,
Bj(u(t))=0, onodQ, t>0, j=1,---,m, (1.1)

u(0) = ugp, on £,
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on a (possibly unbounded) domain Q in R™ with compact boundary 92, where
the solution u(t,z) takes values in CV. The main part of the differential equation
is given by a linear differential operator A(u) of order 2m (with m € N) whose
matrix—valued coefficients depend on the derivatives of u up to order 2m — 1, and
F' is a general nonlinear reaction term acting on the derivatives of w up to order
2m — 1. Therefore the differential equation is quasilinear. Our analysis focusses on
the fully nonlinear boundary conditions

[Bj(w)](z) == b(x,u(z), Vu(z), -, V™u(z)) =0, z€dQ, j=1,--,m,

for the partial derivatives of v up to order m; < 2m — 1. We assume mild local
regularity of the coeflicients and that the linearization at a given steady state wu.,
is normally elliptic and satisfies the Lopatinskii-Shapiro condition (see Section 2).
For illustration, we give a simple example where N =1 and m = 2 (see e.g. [3] or
[12, §6] for the system case N > 1). In the case of the quasilinear heat equation
with a nonlinear Dirichlet boundary condition

Ou(t) — a(u(t))Au(t) = f(u(t)), onQ, t>0,
b(u(t)) =0, ondQ, t>0,
u(0) = up, on

we have to require that a, f € C1(R), b € C3(R) are real, and that there is a steady
state u. € W2 (Q) with a(u.) > > 0, [t/ (us)| >0 >0, and p > n + 2.

Fully nonlinear boundary conditions appear naturally in the treatment of free
boundary problems, see e.g. [5] or [9], and in the study of diffusion through in-
terfaces, see e.g. [11]. The results of the present paper do not directly cover such
problems, but we think that our methods can be generalized in order to deal with
moving boundaries and transmission problems in future work. We note that the
recent work [15] already contains the linear spectral analysis which is necessary for
applications of center manifold theory to the Stefan problem with surface tension.
Roland: We believe that our methods can also be generalized to the
investigation of the vicinity of a periodic orbit w.(¢) in which case the
linearization will become nonautonomous.

We look for solutions u of (1.1) in the space Ey = Ly ([0, T]; W2™(€;CN)) N
W ([0, T]; L,(€; CN)) for a fixed finite exponent p > n + 2m. The terms of high-
est order are thus contained in L, spaces. The solution space E; is continuously
embedded into C([0,T]; X,) for the Slobodetskii space X, = W2 2™/?(Q;CN),
and X, is the smallest space with this property. Since also X, < BC*™~1(Q; CV)
by Sobolev’s embedding theorem, the nonlinear terms in (1.1) are continuous in
(t,x) up to t = 0, and thus the initial condition can be understood in classical
sense. In particular, the initial value ug of (1.1) has to belong to X, and must
fulfill the boundary conditions B;(ug) = 0 by continuity. Moreover, the solution u
is continuous in X, on [0, T, and the norm of X, is the natural norm for our work.
So our nonlinear phase space is the C! manifold in X, given by

M ={ug € X, : Bi(ug) =0, -+, By (uo) = 0}.

In our previous work [12] we have established the local wellposedness and certain
smoothing properties of (1.1), and we have constructed the local stable and unstable
manifolds at the steady state u, assuming that the spectrum of the linearization
of (1.1) at u, does not intersect iR. At first glance, we followed an approach that
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appears to be quite “standard”. One introduces a new function v(t) = u(t) — u, in
order to transform (1.1) into the problem Roland:

Opv(t) + Awo(t) = G(u(t)) on Q, a.e.t>0,
Bj.v(t) = Hj(v(t)) ond, t>0, je{l,---,m}, (1.2)
v(0) = vo, on .

see (2.21) below. The problem (1.2) involves the linearizations A, and
Bj,, as well as the nonlinearities G and H;which have the same order as
the linear part but vanish at v = 0 together with their derivatives. The
stable, resp. unstable, manifold consist of initial values of solutions © = v — u4 to
(1.1) which belong to E;—type spaces of exponentially decaying functions on R,
resp. R_, see (2.14). Such functions v are obtained as fixed points of a Lyapunov—
Perron map composed of the solution operator of the linearized inhomogeneous
initial(final)-boundary value problem on R, (R_) and of the substitution operators
given by the nonlinearities in (1.2), cf. (4.5). The relevant definitions and results
are briefly repeated in Section 2. Modifying our methods from [12], in Theorem 4.1
we construct the stable and unstable local manifolds Mg and M, of (1.1) under the
assumption that the linearization has spectral gaps in the left and the right open
half plane, respectively. We point out that such gaps always exist if the underlying
spatial domain 2 is bounded.

However, the actual implementation of this “standard” approach faces a fun-
damental difficulty already for the stable manifold: The nonlinear compatibility
condition defining the solution manifold M obstructs a direct application of the
usual methods. It turns out that one has to construct Mg as a graph of a map
defined on the (linearly) stable part of the tangent space XS of M. This leads
to an additional term in the fixed point problem, see the additive term in (4.5).
Moreover, since we are not merely dealing with a semilinear problem, we need max-
imal regularity for the linearized initial-boundary value problem. This regularity
property is known for compact time intervals (see [8] and the references therein).
Using the spectral decompositions and semigroup theory, we could extend this re-
sult to unbounded intervals in [12, §3], cf. Propositions 2.5 and 2.6 below. We point
out that in the maximal regularity result the boundary data must be contained in
spaces involving fractional space and time regularity, see (2.14).

Yet another principal difficulty occurs when one tries to construct in a similar
way the local center—unstable and center—stable manifolds Mg, and M of (1.1),
which should complement the stable and unstable manifolds Mg and M, under the
spectral assumptions of Theorem 4.1. Here, already in the linear case, M, and M
may contain exponentially growing functions. In the corresponding function spaces
substitution operators behave badly; in particular, they are locally Lipschitz only
under very restrictive conditions. A well known trick to overcome this difficulty
is to multiply the nonlinearities in the transformed problem (1.2) by a suitable
cutoff function, called F (¢,v) below, which is equal to 1 if v is small and equal to
0 if v is large in a suitable norm (see e.g. [4], [6], [13], [14], [16], [18], [19], [21],
[22]). But here we run into severe troubles. The space for the boundary data
has to involve (fractional) time regularity which we can only control by means
of the full E;—norm of v, say, on small time intervals. As a result, the cutoff
must contain nonlocal terms of the form [|v||g, ([t—a,t+a)), €€ (3.2), and becomes
nonautonomous. This fact leads to many technical problems, but most importantly,
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it changes the nature of our evolution equation drastically: It becomes nonlocal and
even noncausal after introducing the cutoff, see (3.7). We treat these rather delicate
questions in Section 3 in detail. We add that one also needs an additional argument
(taken from [21]) in order to upgrade the invariant manifolds from being merely
Lipschitz to the class C'.

Our main results concern local center manifolds, where we use similar methods
as for M and M., (working on the time interval R instead of Ry or R_). In the
center case, we assume that the linearization has spectral gaps in both the left and
the right open halfplanes, see (2.34). It is well known that local center manifolds are
not uniquely determined, in general. (On a technical level, the nonuniqueness arises
from possible modifications of the cutoff.) We show that ‘our’ center manifold M. is
a C! manifold in X, tangent to the center subspace of the linearized problem at wu.
and that it is Lipschitz in the smaller Sobolev space X; = Wme(Q; C™). Moreover,
M = MN Mgy and McNMg = MNM,y, = {u,}. Also, M. is locally invariant
under the flow of (1.1) and it contains all small global solutions of (1.1) on R. These
facts are presented in Theorem 4.2 and Corollary 5.3. Analogous results for the
center—stable and center—unstable manifolds are proved in Theorem 5.1 and 5.2.

In Section 6 we additonally assume that there is no unstable spectrum and that
the center subspace of the linearization is finite dimensional. Moreover, u, is as-
sumed to be (Lyapunov) stable with respect to the flow on the (finite dimensional)
center manifold. Under these assumptions we show that each solution starting suf-
ficiently close to the center manifold converges exponentially to a solution living on
the center manifold; the latter solution is given by the ordinary differential equa-
tion (4.7). In particular, u, is stable with respect to the full problem (1.1). Our
proof is inspired by the arguments in [13, §9.3]. However, in contrast to [13], we
cannot work with the cutoff problem because of its nonlocality. We managed to
avoid the use of the cutoff by means of a careful analysis controlling the norms of
all relevant functions in the proof. In these calculations we need the fact that the
center manifold is Lipschitz in X; = ng(Q; C™) which follows from an additional
local regularity property of (1.1) established in the Appendix.

Center manifolds for fully nonlinear parabolic problems with linear boundary
conditions were constructed and investigated in [6], [13], and [14]. Quasilinear
equations with quasilinear boundary conditions were treated in [16] and [19]. We
emphasize that in these works inhomogeneous boundary values do not appear ex-
plicitly in the analysis so that the above mentioned difficulties are not present in
these papers. We note that in [10] the stability of a simplified Stefan type moving
boundary problem was established by means of the results from [19]. We also refer
to [12] for further literature concerning (1.1).

Notation. We set Dy, = —idy = —i0/0z;, and use the multi index notation. The
k-tensor of the partial derivatives of order k is denoted by V¥, and we let VFu =
(u, Vu, - -+, V¥u). For an operator A on a Banach space we write dom(A), ker(A),
ran(A), o(A), and p(A) for its domain, kernel, range, spectrum, and resolvent set,
respectively. B(X,Y) is the space of bounded linear operators between two Banach
spaces X and Y, and B(X) := B(X, X). A ball in X with the radius r and center at
u will be denoted by Bx (u,r). For an open set U C R™ with (sufficiently regular)
boundary oU, C*(U) (resp., BC*(U), BUC*(U), C¥(U)) are the spaces of k—
times continuously differentiable functions « on U (such that u and its derivatives
up to order k are bounded, bounded and uniformly continuous, vanish at 90U and
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at infinity (if U is unbounded), respectively), where BC*(U) is endowed with its
canonical norm. For C*(U), BC*(U), BUC*(U), we require in addition that u and
its derivatives up to order k have a continuous extension to dU. For unbounded
U, we write C§(U) for the space of u € C*(U) such that u and its derivatives up
to order k vanish at infinity. By Wzﬂ“(U ) we denote the Sobolev spaces, see e.g. [1,
Def.3.1], and by W (U) the Slobodetskii spaces endowed with the norm

o |w(y) = w(z)[”
olvs0) = Wl ) + 2 0"y [l = //U |y_x\n+op d dy,

|l =k

for s = k+ o with k € Ny and o € (0,1), see [1, Thm.7.48] or [20, Rem.4.4.1.2].
Finally, J C R is a closed interval with nonempty interior, c is a generic constant,
and ¢ : Ry — Ry is a generic nondecreasing function with e(r) — 0 as r — 0.

2. SETTING AND PRELIMINARIES

We introduce the setting of our paper; more details can be found in [12]. Let
Q) C R" be an open connected set with a compact boundary 99 of class C*™ and
outer unit normal v(x), where m € N is given by (2.5) below. Throughout this
paper, we fix a finite exponent p with

p>n+2m. (2.1)
Let E = C" with B(E) = CN*¥ for some fixed N € N. We put
Xo = Ly CY), X, = VVZ?T”(Q;(CN)7 X, = I/ng(l—l/p)(g;(CN)7

and denote the norms of these spaces by |- |o, | - |1, and | - |, respectively. Recall
that the spatial trace operator v at 92 induces continuous maps
v W CN) — WP (00; CN) (2.2)

for 1/p < s <2m if s — 1/p is not an integer. We set
Yo = L,(0CN), Yy = W2mi (0Q;CN), Y, = W2 —2m/p(9q; V),
Y1:Y11><"‘><Ym1, szyle"'XYmp
for j € {1,---,m}, m; € {0,---,2m — 1} given by (2.5), and the numbers
i 1
K;j=1—&—7- (2.3)
Here the Sobolev—Slobodetskii spaces on 92 are defined via local charts, see [1,
Thm.7.53], [20, Def.3.6.1]. We observe that X1 — X, — X, Yj1 — Yj, — Yo,
X, = O Ny, and  Yj, < ™ (00; CN) (2.4)
by (2.1), (2.3), and standard properties of Sobolev spaces, cf. [20, §4.6.1]. Our basic
equations (1.1) involve the operators given by

[A(u)v](z) = Z aq(x,u(x), Vu(zx), - - ,Vzm*lu(x)) D%(x), x€Q,

|a]=2m
[F(u)](m) :f((IJ, u(x)v vu(x)7 T ,VQm_lu(CL‘))), z €1, (25)
[B; (w)](@) =bj(z, (vu)(z), (YVu)(@), -, (vV™u)(z)), =« €I,
for j € {1,--- ,m} and functions u € X, and v € X;, where the integers m € N and

m; € {0,---,2m — 1} fixed. We set B = (B1, -, By,). We assume throughout
that the coefficients in (2.5) satisfy:



(R) aq € CHEXE™ x ---x E®"); BO(Q; B(E))) for o € N? with |a| = 2m,
a0 (2,0) — aq(00) in B(E) as x — oo, if £ is unbounded,
feCHE X E"x - x E®" ), BO((; E)),
by € C?M 1= (90 x E X E" x --- x B B for j € {1,---,m}.
Occasionally, we will need one more degree of smoothness of the coefficients as
recorded in the following hypothesis:

(RR) aq € C2(EXE" x---x E®™ ™) BO(Q;
feCEXE"x - x B, BC(
b; € 02m+2*mﬂ‘(89 X Ex E"x - x EM)E) for j€{l,---,m}.
In view of (2.4), only continuous functions will be inserted into the nonlinearites.
Thus we will omit the trace v in B;(u) and in similar expressions. We fix a num-
bering of the components of V¥ so that a partial derivative 9%u(x) of order |8] = k
is inserted at a fixed position called (3, k) into the functions a,, f, and b;. It is
not diffcult to see that

E))) for o € N§ with || = 2m,

A€ CHXp;B(X1,X0)) and F € CHXp; Xo) (2.6)
with the locally bounded derivatives
2m—1
[F" =3 3 @ N ul@), Vula), -, V2" Nu(z)) DPo(a),
k=0 |8|=k
[A (w)w]v(z) = A’(U)[v wl(z) (2.7)

Y Y G ula) - V@) (00(a), D)

|a|=2m k=0 |B|=k

for x € Q, u,v € X, and w € Xy, see [12, (25)] and the text before it. (Observe
that (0;(s,k)aa)(z, 2) : B> — E is bilinear.) We further have

Bj Ecl(Xp;Yjp)mcl(Xl;le)v J€ {1"" 7m}7 (2'8)

with the locally bounded derivatives

B Z Z (Oi(p.1b5) (@, u(x), Vu(z), -+, V™ u(z)) Dv(z),

k=0 |B|=k

where x € 02 and u,v € X, resp. u,v € X;. The continuous differentiability of
B; : X, — Y}, was shown in [12, Cor.12], and B; € C'(X;;Y1,) can be proved by
the arguments used in step (4) and (5) of the proof of [12, Prop.10], see in particular
inequality (69) in [12]. We set B'(u) = (Bi(u), -, B, (u)).

The symbols of the principal parts of the linear differential operators are the
matrix—valued functions given by

A#(:c,z@): Z aa(x,z)fa, Bj#(x7z7£): Z i (al(ﬁ,mj)bj)(xvz)gﬁ

lo|=2m |Bl=m

forz€Q,2€Ex - x E®" ) and € € R, resp. 2 € 9Q, 2 € E x - x E®™)
and ¢ € R™. We further set A (00,8) = 3|, 20y, da(00) £ if  is unbounded.
We introduce the normal ellipticity and the Lopatinskii-Shapiro condition for A(up)
and B’(u) at a function ug € X, as follows:
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(E) o(Ag(z, V" tug(x),€)) € {A € C: ReX > 0} =: Cy and (if Q is un-
bounded) o(Ax(c0,£)) C Cy, for x € Q and £ € R™ with || = 1.
(LS) Let x € 99, £ € R", and A\ € Cy with ¢ L v(x) and (X, &) # (0,0). The
function ¢ = 0 is the only solution in Cy(R,;CY) of the ode system
Mp(y) + Ay, V2" g (@), € +iv(2)dy)p(y) = 0,y >0, (2.9)
BJ#(l’,szuO($>7£+7,l/(l‘)8y)(p(0) :Oa .7 € {17 am} (210)
We refer to [3], [7], [8], and the references therein for more information concerning

these conditions. We can now state our basic hypothesis.

Hypothesis 2.1. Condition (R) holds, and (E), (LS) hold at a steady state u. €
X1 of (1.1), d.e.,  A(un)us, = F(us) on Q, B(u,) =0 on 0.

For the investigation of (1.1), we need several spaces of functions on J x Q and
J x 09, where J C R is a closed interval with a nonempty interior. The base space
and solution space of (1.1) are

Eo(J) = Ly(J; Lp(;,CN)) = Ly(J; Xo),
E1(J) = W, (J; Ly, CY)) N Ly (J; W™ (5, CN)) = W, (J5 Xo) N Ly(J; X1),
respectively. We equip Eq(J) with the usual p—norm and E;(J) with the norm

lulles oy = [lully oy + 1l oy + 3 10%ulysy ]

|a|=2m
Very often we use the crucial embeddings
Ei(J) < BUC(J; X,) — BUC(J;Cam(; ™)), (2.11)
see [2, Thm.I11.4.10.2] for the first and (2.4) for the second embedding. We denote
by co = ¢o(J) the norm of the first embedding in (2.11), which is uniform for J
of length greater than a fixed £ > 0. Observe that (2.11) implies that the trace
operator vy at time ¢ = 0 is continuous from E;(J) to X,, if 0 € J. The boundary
data of our linearized equations will be contained in the spaces
Fj(J) = Wy (J; (09, CN)) N Ly (J; W2 (09; CN))
:W;J(‘]aYO)mLP(‘]a)/jl)a j S {17 am}v
endowed with their natural norms, where F(J) :=F{(J) x - -+ x F,,,(J). We have
F;(J) = BUC(J;Yjp) = BUC(J x 09) and ~ € B(F;(J),Y;p) (2.13)
if 0 € J, see [8, §3] and [12, §2]. For a, 3 € R, we set e, (t) = ¢* for t € R and
define the function e, g by setting e, g(t) = eq(t) for t <0 and e, g(t) = eg(t) for
t > 0. Then we introduce the weighted spaces
Ep(Ry, ) = {v:eqww € Ex(Ry)}, F(Ry,a) ={v:eqv € F(Ry)},

Ep(o, B) = {v: eqpv € Ex(R)}, Fla, B) = {v:eqpv e FR)}, (2.14)
where k = 0,1, endowed with the canonical norms [|v||g,(r, ) = ll€avllr,®,) etc.
We also use the analogous norms on compact intervals J.

We assume that Hypothesis 2.1 holds. Due to (2.6) and (2.8), we can linearize
the problem (1.1) at the steady state u, € X; obtaining the operators defined by
A= Auy) + A (us)us — F'(uy) € B(X1, Xo),

Bj* = B;(u*) € B(Xpayjp> N B(X1>le)'
7
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We set By, = (Bis, - , Bms). We further define the nonlinear maps
G e CY(X1;Xy) and Hj € CHX,;Yj) NCHX1; Y1)
with G(0) = H;(0)=0 and G'(0) = H;(0) =0

for j € {1,---,m} by setting

G(v) = (A(us)v — A(us + 0)v) — (A(uy + V)us — A(u)u, — [A'(us)uv)
+ (F(us 4+ v) = F(uy) — F'(uy)v), (2.17)
Hj(v) = Bj(u.)v — Bj(u. +v), (2.18)

for v € X, resp. v € X,. Again, we put H(v) = (Hi(v),---,Hp(v)). The
corresponding Nemytskii operators are denoted by

G(u)(t) = G(u(®),  Hj(v)(t) = H;(v(t)),  H(v)(t) = H(v(t))  (2.19)

for v € E¢(J) (which is the space of v : J — Xy such that v € E;([a,b]) for all
intervals [a,b] C J). We recall a part of Proposition 10 from [12] describing the
mapping properties of G and H.

Proposition 2.2. Let (R) hold. Define G and H by (2.17), (2.18), (2.19) for some
ux € X1 with B(uy) =0. Take § > 0. Then we have:

G € CY(Ey([a,b)); Eo([a,b])), G € CH(Ei(Ry,+0);Eo(Ry,+6)),
H € C*(Ey([a,b]); F([a,b])), Hec CYE;(Ry,+6); F(Ry, £5)).
Moreover, G(0) =0, G'(0) =0, H(0) =0, and H'(0) = 0.

(2.16)

Theorem 14 of [12] shows that (1.1) generates a local semiflow on the solution
manifold
M= {U() S Xp . B(UO) = 0} (220)
In particular, a function uy is the initial value of the (unique) solution u € E4 ([0, T7)
of (1.1) for some T > 0 if and only if ug € M. Setting v = u — u, and vo = ug — U,
we further see that ug € M if and only if v9 € X, and B.vg = H(vo) and that
u € E1([0,T7]) solves (1.1) if and only if v € E1 ([0, T]) satisfies

Ow(t) + Awo(t) = G(u(t)) on ), ae. t>0,
Bj.v(t) = Hj(v(t)) ondQ, t>0, je{l,---,m}, (2.21)
v(0) = v, on Q.
Remark 2.3. Theorem 14(a) of [12] implies the following facts: For each given
T > 0, there is a radius p = p(T) > 0 such that for every ug = u. +vg € M

with |vg|, < p there exists a unique solution u = w, + v of (1.1) on [0,T], and
llvl|&, (jo,77) < e« [volp With a constant ¢, = c.(T') independent of ug in this ball. ¢

We now recast and extend some results from [12] regarding the solvability of the
inhomogeneous linear problem

() + A v(t) =g(t) on (), ae. telJ,
() =h(t)  ondQ, tel (2.22)
v(O) = vy, on €2,

in weighted function spaces on the unbounded interval J € {R;,R_,R}. We as-

sume that Hypothesis 2.1 holds. (Actually, when dealing only with (2.22) we do

not have to assume that u, € X; is a steady state of (1.1).) We recall from [8,
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Thm.2.1] that on a bounded interval J = [a,b] the boundary value problem ob-
tained by combining the first two lines of (2.22) with the initial condition v(a) = vg
has a unique solution v € E;([a,b]) if and only if g € Eo([a,b]), h € F([a,b]),
vo € X, and B,vg = h(a). A solution v € E¢(J) of (2.22) on J will be denoted
by v = S(vo,g,h), where J C R is any closed interval containing 0. We stress
that this notation incorporates the compatibility condition B,vy = h(0) because of
the second line in (2.22) and (2.11). Moreover, the solution S(vg, g, h) is unique if
J =Ry, but uniqueness may fail on J =R_.

As in [12, (31)], we define Ay = Auilkers, with the domain dom(Ay) =
{ue X, :Bj,u=0,j=1,...,m}, and denote by T'(-) the analytic semigroup on
Xo generated by —Ag. We further need the extrapolated semigroup T_;(-) and
its generator A_; acting on the extrapolation space X_1 of Ag; here, X_; is the
completion of Xy with respect to the norm |ug|_1 = |(+ Ao) tuplo for some fixed
€ p(—Ap). We further employ the map

II = (u + A—l)Nl € B(Yl,Xl) (223)

where M7 € B(Y1, X1) is the solution operator, N7 : ¢ + u, of the elliptic boundary
value problem (u+ As)u =0 on Q, B,u = ¢ on 99, see [12, Prop.5]. Also, by
the same Proposition 5 in [12], there exists a right inverse N, € B(Y), X,) of B,.
Due to [12, Prop.6], the function v = S(vg, g, h) is a solution of (2.22) if and only
if v € E°¢(J), v(0) = o, and the variation of constants formula

v(t) =T —7)v(r) + / [T(t—s)g(s) + T-1(t — s)ITh(s)] ds (2.24)

holds for all ¢t > 7 in J. If J = Ry (or J = [0,T7), it suffices to take 7 = 0 in (2.24),
and v(0) = vg follows from (2.24).

In order to treat solutions of (2.22) on the intervals J = Ry, we assume that the
(rescaled) semigroup {e5tT(t)}t>O is hyperbolic for § € [§1,02] for some segment
[61,02] C R (i.e., o(—Ag + ) NiR = (). Let P be the (stable) spectral projection
for —Ap + § corresponding to the part of o(—Ag + §) in the open left halfplane,
and set () = I — P. Then T'(¢) is invertible on QX with the inverse T (—¢)Q, and
efT ()P, e T (—t)Q| < ce™ for t > 0 and some € > 0.

Remark 2.4. If e;T(-) is hyperbolic on Xy then esT_1 () is hyperbolic on X_;
with projections P_; and Q_1 = I — P_; being the extensions of P and @), respec-
tively. Moreover, ()_1 maps X_; into dom(Ay), and P leaves invariant X,, Xi,
and dom(Ayp). (See [12, §2] for these facts.) O

Given (wg,g,h) € X, x Eg(Ry, ) x F(R4, 6), resp. (wo, g, h) € Xo x Eo(R_,J) x
F(R_,d), we can then define
t
L ay 00,9, 0)(0) = T(Owo + [ [Tt = 5)Pg(s) + Ta(t = ) Pallh(s)] ds
0

—/tOOTQ(t—s)Q[g(s)—i—Hh(s)} ds, >0, (225

o = — /000 To(—s5)Qlg(s) + IIh(s)] ds, resp., (2.26)

Lp a,(wo,9,h)(t) = To(t)Quo + / [T'(t — 5)Pg(s) + T-1(t — s) P_111h(s)] ds

— 00

9



0
- /t To(t — 5)Qly(s) + ITh(s)] ds, t <0, (2.27)

0
by = [ [T(—s)Pg(s) +T_1(—s)P_11Ih(s)] ds. (2.28)

(We drop the subscript ‘—1’ in the Q—integrals.) As in [12, §3|, one verifies that
these integrals in fact exist. Clearly, a function v € E°¢(.J) solves (2.22) if and only
if 9 = esv € El°(J) is a solution of the rescaled problem

ii(t) + (As — 0)(t) = eg(t) on ), ae. te,
B,o(t) = e®*h(t) on 00, teJ,
0(0) = wo, on (,

whose solution operator will be denoted by S4,_5. We characterize the solvability
of (2.22) at first in the case J = R,. Using (2.24), (2.25) and (2.26), we infer that

esSa,(vo, g, h) = Sa,-5(vo, esg, esh) (2.29)
=esT(")[Quo — &g ] + L;Aoié(on, esg,esh) (2.30)
=esT(1)[Quo — o] + egL;AO (Puvg, g, h). (2.31)

Proposition 2.5. Assume that Hypothesis 2.1 holds and that for 6 € [01,d2] C R
the semigroup esT(-) is hyperbolic with the stable projection P, and let Q =1 — P.
Suppose that (vo,g,h) € X, x Eo(R4,d) x F(R4,d) and Byvg = h(0). Using the
above notations, the following assertions are equivalent:

(a) Sa,(vo,9,h) € Eg(Ry,d).

(b) LJIS’AO (vo — ¢¢,9,h) € Eg(Ry,0).

(¢) ¢g = Quo.
If these assertions hold, then Sa,(vo,g,h) = L;AO (Pvg, g,h) € E1(Ry,0), and we
have the mazximal reqularity estimate

154, (vo, s Pl 1 ,6) < € (volp + 9llEo®y,5) + 1PIIER, 5))s (2.32)

where ¢ does not depend on vy, g, h, ord.

Proof. Using rescaling as in (2.29) and (2.31), it suffices to prove the proposition
for § = 0. For this case, assertions (b)<(c)=(a) and the last statement have been
proved in [12, Prop.8], and (a)=-(c) follows from (2.30). O

The corresponding result for J = R_ looks a bit different since in (2.27) we have
to write T'(t)Quwo rather than T'(t)wg for negative ¢. Moreover, Proposition 2.6 does
not require a compatibility condition since it deals with a final value problem on
J = R_. The next result follows by rescaling from Proposition 9 of [12].

Proposition 2.6. Assume that Hypothesis 2.1 holds and that for 6 € [61,2] C R
the semigroup esT'(+) is hyperbolic with the stable projection P, and let Q =1 — P.
Suppose that (vo,g,h) € Xo x Eg(R_,d) x F(R_,d). Using the above notations,
there is a solution v = Sy4,(vo, g, h) of (2.22) in E¢(R_,9) if and only if Pvg = ¢ .
In this case, this solution is unique, v = Lp 4 (vo,g,h) € E1(R_,0), and

1540 (v0; 9, ) [[es m—.5) < ¢ (IQuolo + llglleom_.6) + [1PllrR_5)), (2.33)

where ¢ does not depend on vy, g, h, ord.
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In order to treat the interval J = R, we assume that 7'(-) has an exponential
trichotomy, i.e., there is a splitting

o(—Ap) =0sUc.Ugy, with (2.34)

maxReo, < —ws < —w, <minReo, <0 <maxReo, < W, < w, <minReo, .
(If 2 is bounded, o(—Ay) is discrete and thus (2.34) automatically holds with
0, C R and arbitrarily small w, = @..) We take numbers o € [w,,ws] and
B € [@We,wy] and denote by Py the spectral projections for —Agy corresponding
to ok, k = s,c,u. We set Py = Py + P., Poy = P. + P, and Psy, = Ps + P,.
Then the rescaled semigroups e,T'(-) and e_gT(-) are hyperbolic on X, with stable
projections Py and P, respectively. The restriction of T'(¢) to P, X, yields a group
denoted by Tk (t), t € R, where k = ¢, u, cu. For g € Eg(a,—f), h € F(a, —f8) and
wgy € Xg, we can then define

L4, (wo, g, h)(t) = Te(t) Powo + /0 T.(t — s)P:Jg(s) + ITh(s)] ds

+ /t [T(t — s)Psg(s) + T_1(t — s)Ps,—1 +IIh(s)] ds

— 00

— /00 T (t — s)Pulg(s) + IIh(s)] ds, teR, (2.35)

0
o= [ [T(-9)Pg(s) + Tor(~9)Poalh(s) s

i /0 (=) Palg(s) + TIh(s)] ds. (2.36)

The trichotomy and the assumptions on the data imply that the integrals are well-
defined. The next result then easily follows from Propositions 2.5 and 2.6.

Proposition 2.7. Assume that Hypothesis 2.1 holds and that T(-) has a trichotomy
as in (2.34). Take o € [w,,ws] and B € [We,wy] and denote by Py the spectral pro-
jections corresponding to oy, k = s, ¢, u. Suppose that (vo, g, h) € Xo x Eg(a, —f3) x
F(a, —p). Using the above notations, there is a solution v = Sy4,(vo, g, h) of (2.22)
in Eo(a, —fB) if and only if Pswvo = ¢o. In this case, this solution is unique, and
we have v = L a,(vo, g, h) € E1(a, =) and

1540 (v0; 9, M) |[E, (0, —8) < € (IPevolo + llgllzo(a.—8) + 2llE(a,-5)); (2.37)

where ¢ does not depend on vy, g, h, a, or 3.

3. THE CUTOFF PROBLEM AND THE CORRESPONDING NEMYTSKII OPERATORS

In this section we introduce a nonlocal and (if J = R) time-invariant cutoff for
(2.21) and discuss the mapping properties of the corresponding Nemytskii opera-
tors. The cutoff depends on a parameter 1 > 0 to be fixed in the following sections.
For t € R and n € Z, we set

J(t):[t—%,t—l—%], Jn = [n,n+ 1], J::[n—%,n—l—%],
Jy=Mn—-%n+3], and J=[n-2n+3.
We further introduce

N(t,v) = |[vllg, sty for v e€EP(R). (3.1)
11
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Given an n > 0, we take even functions y,v € C*°(R) such that 0 < x ,
0,

x(t) =1 for t € [=n,n], supp x C (=21,2n), [X[lc < 2/n, and such that ~
Je(t)dt =1, suppy C (—1/4,1/4). We now define the cutoff

<
>

Fr(t,v) =F(t0) = (v*x(N(-, ) () = /Rv(t = X105, ((s-3/2,5+3/2))) ds

(3.2)
for t € R and v € EP(R). Observe that the integrand is continuous in s and
that f (t,v) depends on the restriction of v to (t — 7/4,t + 7/4). For functions
v € E*¢(J), we define F (t,v) as in (3.2) for ¢ € [T +inf J,—% + sup J], where J is
a closed interval of length greater than 7/2.

In order to treat v € EX¢(R,) or w € E¢(R_), we further fix the extension
operators Ry : E°¢(Ry) — E°¢(R) given by

o(t), t>0, w(t), t<0,
(Riv)(t) = q (1 +t)v(=t), te[-1,0], (R-w)(t) =4 (1 —-t)w(-t), tel0,1],
0, t<—1, 0, t>1.

Occasionally, we use the notation vg := Riv in both cases. We need the elementary
estimates

R+ vllE, (—1,1) < er Vg, (0,1)) » [R-vg, (-1, < cr vl (-1,0p, (3:3)
vlle, (0,7 < ce lvllE, &) —a) lvlle,(—r.0p < cellvlle,®_0)  (3.4)

for constants cg and cg and for all T > 0 and o > 0, where c¢g depends on T and
is uniform for « in compact intervals. We then define the cutoffs

Fre(t,v) = F£(t,0) = F(t Bev) = (v + X (N (-, 0r)))(t) (3-5)

for t € R and v € EP¢(Ry.).
Finally, for v € E°¢(J) and J € {R,R;,R_}, we define the Nemytskii operators

Gras(u)(t) = Fs(t,0)G(u(t)) and Hypy()(t) =F (t,v)H(v(t), teJ, (3.6)

for the cutoffs of the nonlinear maps G' and H defined in (2.17) and (2.18), where
we assume that (R) holds and that u, € X satisfies B(u,) = 0. We also abbreviate
(Grr = GFR7 Gri = GrRi7 Hf = HFR7 and IHI/’i = HfRi' If Hypothesis 2.1 hOldS,
we consider the cutoff version of the initial-boundary value problem (2.21) given by

(t) + Ao(t) = Gy (v)(t) on (), ae. telJ,
B.v(t) = Hy ;s (v)(t) on 09, teJ, (3.7)
v(0) = vo, on Q,

where J € {R, R, R_}. We stress that the cutoff problem (3.7) is not local in time.
In particular, even for J = R, it is not a well-posed Cauchy problem. In fact, we
will only solve (3.7) globally in function spaces on J. By definition, a function
v € E°¢(J) solves (3.7) if and only if v = S(vg, g, h) is a fixed point of the solution
operator S = Sy, of the linear problem (2.22) with ¢ = G, ;(v) and h = Hy ;(v).
Hence, the compatibility condition B,vg = h(0) = Hf ;(v)(0) must hold.

We now collect several properties of cutoffs (3.2) and (3.5) for J € {R,R;,R_}.
The first remark implies that a solution v € E°¢(J) of (3.7) in fact satisfies (2.21)
on [a,b] C J if [|v]|g, (jt—2,t+2)n) is sufficiently small for each t € [a, b].

12



Remark 3.1. If v € EP°(J) satisfies |[v||g, (jt—2,t42) < 7 for some ¢ € J (where
[t| > 2 if J = Ry), then F ;(t,v) = 1. This fact follows from the properties of ~
and x in (3.2). If J =Ry and t € JN[-2,2], then ||v|g, (jt—2,421n0) < (L+cr) ™'
implies /4 (¢,v) = 1. Indeed, for J =Ry, t € 0,2], and s € [t — %, + 1] we have

[R+vlle,(1(s)) < 1B+0|lE,(s(s)nry) + [B40|E, (5 (5)nR)
< llg, (rs)nry) + cr VlE, (1(s)n10.1)
< (L +cr) [olle, (s(s)rry) <1
due to (3.3) and the fact that [0,1] C J(s) if J(s) NR_ # 0. The case J = R_ can

be treated in the same way. %

Remark 3.2. For v € EI°°(R) and J = R the cutoff is time invariant. Indeed,

F(t+to,v) = / Yt = s)xVllE, ([s+t0—3/2,54t0+3/2))) d5 = F (£, (- + 1)) (3.8)
R

for t,tp € R. As a result, if v solves the cutoff problem (3.7) on J = R with
v(0) = vp, then w = v(- + tg) solves the cutoff problem on R with w(0) = v(to).
In contrast to the case J = R, for J = R. the problem (3.7) is not translation
invariant. O

Remark 3.3. Let us suppose that f (tg,v) # 0 for some v € EP¢(R), tg € J,,
and n € Z. Then there exists a ¢t € J), such that x(N(¢,v)) # 0, and hence
vlle, (7)) < 2n. As a result, [Jv]|g, () < 27 since J;, C J(t) for each t € J),.
Similarly, if f (to,v) # 0 for some to € Jy;, then [[v]|g, (j+) < 27. O

Remark 3.4. Assume that v,u € E°(J) and t,s € J. Temporarily, we set v = vg
if J =R. Then (3.2) and (3.3) imply the Lipschitz estimates

\Fa(tv) = £t u)] < . Sl\lfmlx(llvkllxalu(s))) = X(urlle, (1))

<27 lor — ur|lg, (—7/a47/a)) < e v = ullgy (np—7/4047/47)s (3.9)

IFa(tv) = F (s, 0)| = /R('Y(t_T)_7(3_7))X(N(T»UR))CZT <clt—s|, (3.10)

where ¢ does not depend on t, s, u,v or 7. O

Remark 3.5. Let v € E°¢(R,), resp. v € E°(R_). Then f ,(t,v) = F (t,v) for
t > 7/4 and F _(t,v) = F (t,v) for t < —7/4, respectively. Moreover, (3.8) holds
for t +tg > 7/4, resp. t + tg < —7/4, and t,tg € R. (Here v(- + to) is defined on
[—to, 00), resp. on (—oo, —tg].) O

We now consider the maps Gy ; and Hy 7, see (3.6), on the spaces E; (R, Far) and
Ei (o, —f), where a, 8 > 0 (these values of «, 8 were not treated in Proposition 2.2).
We start with a preliminary result concerning the Lipschitz properties.

Proposition 3.6. Assume that (R) holds and u. € X; satisfies B(u,) = 0. Take
n € (0,d] and o, B € [0,d] for some d > 0. Then the maps Gp_. : E;(Ry, Fa) —
Eo(Ry, Fa), Gr : E1(o, =) = Eo(a, =), Hp, : E1(Ry, Fa) = F(Ry, Fa), and
Hf : Eq (o, —8) — F(a, —fB) are (globally) Lipschitz with the Lipschitz constant £(n)
for a nondecreasing function € converging to 0 as n — 0 which does not depend on
a or 8. Moreover, G ;(0) =0 and Hy ;(0) =0 for J € {R4,R_,R}.
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Proof. We show the result only for the interval J = R;. The case J = R_ then
follows by reflection, whereas the case J = R can be treated in a similar way as
J =R,. In this proof we write F instead of F ; and v instead of Riv etc. We take
a,n € (0,d] and u,v € Eq (R4, —«). In this proof € and ¢ do not depend on a, u, v,
and ¢ does not depend on 7.

(a) We first address the Lipschitz property of Gy. We consider an interval J,,
n € Ny, and estimate G (v) — G (u) on this interval. We may assume that
F (to,v) # 0 for some ty € J,, thus

lvlle, (1) < 0llE (r) < 21 (3.11)
by Remark 3.3. For t € J,,, one obtains
G (0)(8) = G (w)(B)]o < [F(E,0) = F(Eu)] |G(o(t)]o
+ P (& w] G o) = Glu(t))]o-
In the second term in the right-hand side of the last inequality we may assume
that F (to,u) # 0 for some ¢y € J, since otherwise this term is equal to zero on

Jn. Remark 3.3 then shows that |ullg,(s,) < |lullg,(s;) < 2n. Estimate (3.9) in
Remark 3.4 and Proposition 2.2 thus imply

[ 160 - & e de

n

n+1 n+1
<o e u= ol g [ 1GEEIEd e [ IGE) - Gu®)d:

< e P flealv — W], sy )07

reom awp 6/ w)
lwlley (7,) <27

<)’ lle—a(v = W)lg, (yuy »

||B(JE1 (Jn),Eo h))”” “”El(m

where ¢ and ¢ do not depend on n. Now the Lipschitz estimate for G, easily follows,
using also (3.3) and (3.4).
(b) We establish the Lipschitz property of H; . We deduce the inequality
le—a(Hp (v) —Hp ()|, @) < ceMllv — ullg,®y,—a) (3.12)

similarly to the proof given in part (a). In order to estimate e_,(Hf (v) — Hy (u))
in W*i(Ry;Yp), we fix a number j € {1,--- ,m}, and write H, F and x instead
of H;j, F; and x;. Let t € J,, n € Ny, and |t — s| < 1/8. Again, we may assume
that F (to,v) # 0 for some ty € J,,, so that (3.11) holds by Remark 3.3. Note that
s € Jr C J.. We further split:

A(t,s) == Hy (v)(t) — Hp (v)(s) — (Hy (u)(t) — Hy (u)(s))
= [F(t,v) —F(s,v) = (F (t,u) (s,u))] H(v(t))

+ 1 (tu) [H(v(t) — H(v(s)) — (H(u(t) — H(u(s)))]
+(F(s,0) = F(s,0)) (H(u(t)) — H(v(s)))

+ (F (t,u) — F (s,u)) (H(v(s)) — H(u(s))) =: S1 + S2 + S5 + Su.

In the expression S; the term in square brackets satisfies the estimate

| [t =)= (s = D)V () = XN ()
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<en't—s| sup  [N(7,0) — N(7,u)
r—t|<1/4
|7—s|<1/4

<en 't -] sup v = ulley () < en™t = sl o = ulle, )
T€[N—1/2,n+3/2]

By means of (2.13), (3.11), and Proposition 2.2, we estimate:
sup [H(v(t))lyv, < ¢[H(v)llr,) < ce(n) (vl s,y < celmn.

teJn
As a result,
1S1ly, < ce(m)lt — sl llv— ullg, (1),
and thus
1
(] et ) < cotme o~ uls
t—s|<1/8

ted,
<ce(n) le—a(v— “)||1E1(J;;)~
Next, we treat S2. We may assume that F (tg,u) # 0 for some ¢y € J,, (otherwise
Sy = 0). Hence, [lullg,(s;) < 2n by Remark 3.3. Using also (3.11) and Proposi-
tion 2.2, we derive

| 2|Y »
—atp _ mel¥e P —an _
// e dt ds) < ce {H(v) H(u)} W o)

|t s|<1/8
teJ,
—an

<ce sup  |H'(w)ll &, (7)) v = ulle, ()
llwllg, (s7)<2n
< ce(n) lle—a(v —u)llg, (1)-
Dealing with S3, we note that Remark 3.4 further yields:
1S3lv, < en™ v —ullg, () [H(v(t) = H(v(s))]o-

Therefore, we obtain

—a ‘ 3|Y % —an,, —
// tp‘t_s|1iﬁp dtdS) <ce n 1 ||U_u||E1(J,’L') [H(U)]W;(L},’L;YO)

[t—s|<1/8
teJn

<enHema( =l ) Iolley ) < ce() lle—a(v —w)lle, ()

due to (3.11) and Proposition 2.2. Finally, we estimate the expression S;. We may
assume that F (to,u) # 0 for some ¢y € J;; (otherwise Sy = 0). Then [Jullg, (jx) < 21
due to Remark 3.3. So (3.10), (2.13), (3.11), and Proposition 2.2 lead to

// eVl dtds)%ﬁce_a" sup [H(v(s)) — H(u(s))lv,

[t — s[i+rp ey
[t— s|<1/8 '
te n
< ce™ ™ ||H(v) — H(u)|lg(s)
< ce—om sup ||H,(w)||5(]E1(J7’:),F(J;;)) v — UHIEl(JJ{)

lwlley (5x)<2n
< cg(n) lle—alv = w)llg, (sz)-
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Summing up, we arrive at the inequality

o s)[y 5
// t;D |t — S|1+:2’ dtds ) < ce(n) lle—a(v — U)”]EI(J;L/).

[t—s|<1/8
ted,

Therefore, a variant of Lemma 11 of [12] and estimates (3.12), (3.3) and (3.4) imply:

[ a(Hy (v) = Hy ()]

Wr(R45Y0)
- |A (t, 5)I5, ®
< cllea(H (v) = Hp ()11, R ov0) + € z [ e o dids)
01i—s1<1/8
te€Tn
1
<ce(n) v = ulls, @y —a) + (Zce Plle-alv=wli )"
<ce(n) v — ullg, vy ,—a)- (3.13)
The Lipschitz property of Hy is a direct consequence of (3.12) and (3.13). O

Remark 3.7. Let J C Ry be a closed interval of length larger than 2 and ¢ € [a, ]
for some b > a > 0. Given r > 0, we consider functions v € Eq(.J,4d) such that
lv]|&, ((s,s4+2)) < 7 for all intervals [s, s + 2] C J. For such v and w, we have

1G(w)=G(v)llgy(16) < e(M)lw=vllg,(s8) > [H(w)—H(v)[[(s6) < e(r)llw—vl|g, (16 5
where ¢ is a nondecreasing function with e(r) — 0 as » — 0 and & does not depend
on v, w, J, or 0. Indeed, to show this fact, one extends v to v € E;(Ry,d) such
that ||9]|g,(r,.6) < cllvllg,(ss6) and [|0]|g, ((s,s+2)) < cr for all [s,s 4+ 2] C J, where
the constant ¢ does not depend on J, §, v, or s. As in the proof of Proposition 3.6
one now treats the intervals J,, separately using Proposition 2.2.

Next, we want to establish the continuous differentiability of Gy and H in
certain spaces. We start with the differentiability of . We first observe that, for
a measure space (M, ), the map q(u) = [}, [ulPdp belongs to CY(L,(M,dp)), and
that its derivative at u € L, (M, du) is given by (v,q'(u)) = [;, pRe(uv)|uP~2 du
This fact implies that for ¢ € R the map u — N(t, u) = |lullg, (7)), see (3.1), i
continuously differentiable on E; (J(t))\ {0}, and its derivative N'(¢t,u) € E, (J(t))*
is given by

(v, N'(t,u)) = ||uH t)) / /Re(uﬁ) |u\p_2alacds—|—/J75 /Re(uﬁ) [u[P~2dx ds

/ /Re (9% 8°7) |0°u|P~ deds]
J(t)

where v € E1(J(t)). Observe that ||[N'(t,u)|g, (@) < c for a constant depending
only on m. Take w,v € Eq([t —2,¢t+ 2]) and |t — s| < 1/4, where u # 0 and
lv|lg, < ||v||g,. Denoting the restrictions of v and v to J(s) C [t — 2,t + 2] by the
same symbols, we further deduce

|a| 2m

[N (s,u+v)— N(s,u) — (N'(s,u),v |—‘/ "(s,u+60v) — N'(s,u),v) dd

< ce([vlle, (rsn)IvllE, (res)) < ce(lvlle, (e—2,e+21)) 1V1E, (j1—2,642])-
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Here ¢ and € do not depend on ¢ and s since N(r,u) = N(0,u(- + 7)). As a
result, the map Ei ([t — 2,¢t +2]) 2 u > F (t,u) is C! with the derivative F'(t,u) =
[v* X (N(,uw))N'(-,u)](t), and the maps

To:u x(N(,u)) and Ty :uws F(-,u) belong to CY(Ei(J");C(J)) (3.14)

where J = [a,b] and J” = [a — 2,b+ 2]. (Here we set N'(¢,0) = 0 and note that
F(t,u) =1 and thus f'(t,u) = 0 provided [|u|g, (j1—2,t+2)) < n.) We further have

[(F'(t,u),v)| < en™ o]l (jr—2,042)) (3.15)
[(F'(t,u) — F'(s,u),0)| < en™ e — 8| [llg, (jt—2,4+2)) (3.16)

for u,v € Eq([t — 2,t+2]), t € R, |t — s] < 1/4, and constants ¢ independent of
t,s,u,v,n. Observe that the cutoffs f 4 (¢,v) = F (¢, R+v) on Ry have the analogous
differentiability properties.

Given o, 8 > 0 and u € Eq(a, —f), we introduce the linear operators G- and Hj-
acting on v € Eq(«, —3) by the formulas

(G (wol(t) = (v, F'(t,u)) G(ult)) + F (t,u)G'(u(t))v(t), (3.17)
[H (w)ol(t) = (v, F'(t,w)) H(u()) + F (&, u) H (u(t))v(t). (3.18)

Here G and H were defined in (2.17) and(2.18), and the brackets denote the scalar
product in Eq(J(t)) applied to the restriction of v to the interval J(t). We also set

Gy, (wo](t) =[G (Rew)Reo](t),  [Hy , (w)v](t) = [H (Reu)R+o](t) (3.19)

fort € Ry and u,v € Eq (R4, —«) in the case J = R, respectively, u,v € E1(R_, @)
in the case J =R_.

The maps Gy and Hy are not differentiable if the range space has the same
weight function. But, as we will see in the next proposition, they become C' maps
with the derivatives G} and G- given in (3.17), (3.18) if we take a smaller weight
function in the range space, cf. [21].

Proposition 3.8. Assume that (R) holds and that u. € X; satisfies B(u.) = 0.
Letn € (0,d], 0 <a<f<d and 0 < o < B <d for some d > 0. Define the
operators Gy, G- Hj, and Hj-y by (3.17), (3.18) and (3.19), respectively, where
1 is the paramater for the cutoff . Then the following assertions hold.

(a) The operators G} (u) : Ei(a,—a’) — Eo(B,—p"), Hi(u) : Ei(o, —a') —
F(8,-p"), Gy, (u) : E1(Ry,Fa) = Eo(Ry,Fp), and Hy  (u) : E;(Ry, Fa) —
F(Ry,FB) are all bounded with the norms €(n), where € is a nondecreasing function
converging to 0 as 1 — 0 which does not depend on u,a,c’, 3, 3.

(b) If B > a and 5/ > o, then the maps Gy : Ei(a,—a') — Eo(B8,—5'),
Hy : Ei(a,—a') = F(8,—-8"), Gr. : E1(Ry,Fa) = E¢y(Ry,F8), and Hy,
Ei(Rt, Fa) — F(Ry,F6) are continuously differentiable and the operators G
-, G, , and Hf, respectively, are their derivatives. Moreover, Gi-;(0) = 0 and
H, ,(0) =0 for J € {R,R_,R}.

Proof. As in the proof of Proposition 3.6 we restrict ourselves to the case J =R,
and we write [ instead of f 4 and v instead of Rwv.

(a) Norm estimates for G and H)-. Since the spaces with the exponential
weights form a scale, it is enough to give a proof for a := 8 =« € (0,d]. Let t € J,
for some n € Ny and n € (0,d]. If F(to,u) = 0 and F'(to,u) = 0 for all ¢y € J,,
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then G- (u)v = 0 on J,,. Otherwise, we have |lu||g, ;) < 27, cf. Remark 3.3. So
Proposition 2.2, (3.15) and (3.3) yield

IG (u)v]lgy(s,) < 07771||UH]E1(J”) e(mn +em) lvlle, 7,) < ce) vl ),

oo

IGF (Wl @, ,—a) < Z‘f*a"p IGF (wollE, s,y < cz)” D e I[ollg, ()

< ety - (3.20)

proving assertion (a) for G-. Here and below in the proof of assertion (a) all
constants are uniform for u, v, a, and 7, but may depend on d. Starting the proof
for Hj-, as in (3.20), one obtains that

He_ale(u)'Upr(R+7y1) S CE( ) ||/U||]E1(]R+,7a) .

Further, let [t — s| <1/8 and t € J,,. We fix j € {1,--- ,m} and write H, F and k
instead of Hj, F; and ;. It holds

A(t, s) := Hy (u)o(t) — Hj (u)v(s)
= (F'(t,u) = F'(s,u), v) H(u(t)) + (F'(s,u),v)[H (u(t)) — H(u(s))]
+[F(t,u) — F (s,u)|H (u(t))v(t) + F (s,u)[H (u(t))v(t !
=51+ 52+ 83+ 54

As before we can assume that ||u||g,(:) < 27, cf. Remark 3.3. By means of (3.16),
(3.15), (3.10), (2.13) and Proposition 2.2, we estimate

T
&

[S1lye < en™Ht = sl [vlle, (o) IH Wl er,ive) < cet = sl [v]le, ) 5

[Salvy < en™ [vll, gy [H (u(t)) — H(u(s))ly, ,

Ssly, < clt = s| 1H'(u)vllcs,iva) < elt = s [H (W, < ce@)lt = sl [0z, .),
[Salyy < c[H' (u(t))v(t) — H'(u(s))v(s)ly, -

Using Proposition 2.2 once more, these inequalities lead to

T iy
T = s\<1/8 [t — s|ttrp

< e [ee(m) vz oy + en™ lvlles o WIwy (1z:v0) + ¢ I (@vllwg 530
< ce(n)lle—avlle, (57
A slight variation of Lemma 11 from [12] and (3.3) now imply that
le—aHF (Wolwr @, vo) < cg() [[0]lgy &y —a)s
concluding the proof of assertion (a) in Proposition 3.8.

(b) We now assume that 8 > a. We fix u € E;(Ry,—«a) and n > 0. The
constants below do not depend on v € E; (R, —«), but possibly on u, n, or 5 — a.
(1) Differentiability of Gy : E1(Ry, —a) = Eo(R4,—8). We have to estimate
Ag(t) = F (t,u+v)G(u(t) +v(t)) — F (t,u)G(u(t))

= (F(t,w), v)G(u(t)) = F (£, )G (u(t))o(t)
for t > 0 and v € Eq (R4, —«). We first consider ¢t > ng > 2 for some ng € N to be
fixed below. Proposition 3.6 then yields

le—pAcliq (0,00 < €™ [le—a(F (- u+0)G(u+v) = F (- 0)G(w) gy )
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=+ ||€— <F/( au)7U>G(u) =+ e—aF('7U)G/(U)U”Eo([no,oo))]
< e () [[0]l sy my ) + 151 + S2llEo(1n0,000)]
where we set S = e_o(F'(-,u),v)G(u) and Sz = e_oF (-,u)G'(u)v. Let t € J, for
some n > ng. If F (tg,u) =0 and F'(tg,u) = 0 for all ¢y € J,, then S; = S5 =0 on
Jn. Otherwise, we have |ullg, sy < 27, cf. Remark 3.3. So we deduce from (3.15)
and Proposition 2.2 that
151 + S2llge(s,) < ce”*en) [Jv]lg, () < clle—avllgy )
As a result,
=P lv|lg, o) (3:21)
where ¢ does not depend on ng. Let € > 0 be given. Recalling that § > «a, we fix
no = no(e) > 2 such that the right hand side of (3.21) is less than €[|v||g, &, —a)-
Second, we treat the interval [0,ng] for the number ng just fixed. Using Propo-
sition 2.2, (3.14),(3.9) and (3.3), we infer that
le—sAc g, (0.0 < IIG(u +v) = G(u) = G (w)vllg, ((0,m0])
+ ||(F(vu + U) - F()“’) - <F/('a U),’U>) G(“)H]Eo([o,no])
+ ||(F(a U+ U) - F(7 U)) G/(U)UH]EO([O,nO])
< ce(|[vlle, (jo,no+21)) 101lE: (10,m0+2))
< ce(|lvlle, @y, —a)) IVllE, R —a) 5 (3.22)

le—sAGIEy([no,00)) < c€

where ¢ and € may depend on ng. Here and below we often use the boundedness
of the restriction operator from E; (R4, —«) to E1([0,0]), see (3.4). The asserted
differentiability of Gy now follows from (3.21) and (3.22).
(2) Differentiability of Hr : E;(Ry, —a) = F(R4, —8). This time we set
Au(t) =1 (tu+v)H(ut) + o) = F (& u)H(u(t))
(), ) H u(8)) — F (6 w) H (u()o(0)

fort > 0 and v € E; (R4, —«). As above in part (1), we obtain

le—sAmllL,®vi) < cellvlle, & ,—a) (3.23)

for each given € > 0 and all v with [|v[|g, (&, ,—a) < 7e. In the estimates for [-] s,
P

cf. (2.12), we fix j € {1,--- ,m} and write H, F and & instead of H;, F; and &;.
(i) We first consider t > ng and |t — s| < 1/8 for some ng € N with ng > 2 to be
fixed below, and split:

Ag(t) — Ag(s) = [Ft,u+v)H(u(t) +v(t)) — F(s,u+ v)H(u(s) + v(s))
— (F (t, u)H (u(t)) = F (s,u)H(u(s)))]
— [F (& w)H (u()v(t) = F (s, u)H' (u(s))v(s)]
— [(F'(t,u),v)H (u(t)) — (F'(s,u),v)H(u(s))] =: S1 + So + Ss.
The Lipschitz estimate in Proposition 3.6 shows that

1
—ﬁtp | 1|Y0 ds dt)E
/ /|t s|<1/8 |t — s|t*p

< el e (Hy (u+v) — Hy (0)lws@eive) < e D™ [v]lg, @, —a)-
19
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Take t € J, for some n > ng. If F(tg,u) = 0 (resp. F'(to,u) = 0) for all ¢y € J,
then So = 0 (resp. S3 = 0) on J;:. Otherwise, ||ullg, (s, < 27 for J;, cf. Remark
3.3. We then deduce from Proposition 2.2, (2.13), (3.10), (3.16) and (3.15) that

e Saly, < e o dem |F(tu) = F (s,w)] [H (w)vllee,:vo)
+ e [H' (u(t))v(t) — H'(u(s))v(s)] }
< eI Lelt 8]l avley 0,y + e [ (u(®)o(t) — ' (uls))o(s)]},

(/ / e—w% dsdt)%
[t—s|<1/8 |t — s|ttrP

< el ™ (|le_avllg, (1,) + €™ [H (w)olwy (12:v0))
< celo=Pmo le—avlle, () »
e85y, < e Dmoemen ([(F!(t,u) — F'(s,u),0)| [H(w)llc,:v0)
+ [(F'(s,u), 0)| [H(u(t)) — H(u(s))]y,)
< ce @™m0 le_qullg, (g (It = 5| + [H (u(t)) — H(u(s))lv,),

1

Syt 1
(/ / e_ﬁtp% ds dt)
I Jjt—s|<1/8 |t — s|ttmp

< ce@™ e _yvllg, (g (1 + [ (w)]ws (7:v0))
< cel@=Pno ||e_av||El(Jg).

These inequalities imply the estimate

00 Ay(t) — Ay(s P %
(/ e—Btp/ [An(t) 1i( i ds dt) < e |y|lg, ®, —a) »
1o |t—s|<1/8 [t = sl+er

(3.24)

where ¢ does not depend on ng or v. Since 8 > «, for a given € > 0 we can fix
ng = no(€) > 2 such that cel®=Amo < ¢ in (3.24).
(ii) Second, we take ¢, s € [0,n0] and |t — s| < 1/4 for this ng, and infer:

[Ar(t) = Ar(s)lv, < [H(u(t) +v(t) — H(u(t)) — H' (u(t))v(t)

— (H(u(s) +v(s)) = H(u(s)) — H'(u(s))v(s)) |y,
+F(tutv) = F(s,u+v)][H(u(s) +v(s) — H(u(s)) — H'(u(s))v(s)]v,
+ [(F (t,u+v) = F (t,u) = (F'(t,u), >)

= (F(s,u+v) = F(s,u) = (F'(s,u),v)) | [H (u(t)) |y,
+[F(s,utv) — F(s,u) = (F'(s,u), >||H( (1)) — H(u(s))lyv,
+F(tu+v) = F(tu) = (F(s,utv) = F(s,uw) | [H (u(t)v(t)]v,
+ |F (s,u+v) — F(s,u)| |H (u(t)v(t) — H (u(s))v(s)]y, =: S1+ -+ Se.

We set A% := H(u + v) — H(u) — H'(u)v. In the remainder of this proof, we use
Proposition 2.2, (2.13) and (3.3) without further notice, and ¢ and € may depend
on ng. In the following integrals it is always understood that s > 0. We first obtain:

— ‘ 1|y %
/ /t 5| <1/4 ﬁtpt— |1iﬂpd dt) S[Asﬁf]W;,‘([O,rm+1/4];y0)

< e(lvlle, ((0,n0+1/41)) 1VllEs ((0,m0+1/4)) < ce(lvlle, &y, —a)) IVI|E, Ry, —a)-
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Similarly, (3.10) yields

1
/ / —6tp | 2|ifi ds dt)p
t—s|<1/4 |t — s|ttrp

< cllAlleo,no+1/4v0) < ce(lvlle, @y —a)) 10)lE, Ry —a)-

Next, from (3.14) we deduce

[S3] < ¢ [[H(w)l[c(onve) [t =8l sup [X(N(7,u+v)) = x(N(7,u))
—1<7<no+1

- X/(N(T, u))<N/(T7 u),v>|

<clt = sle(llvlle, (0.no+31) 1VIE, (0,035

1
o 150 dt)g
/ /t s|<1/4 |t — s|tHmp

< ce(|[vllg; (0,n0+3)) 1VllE, ((0,m0+3) < ce(llvlE, @y, —a) (VB Ry —0)-
In the same way the inequality
1S4y, < e(llvlle, (0,m0+31) 1VIE: (10,0043 1H (u(t)) — H (u(s))]y,

implies that

1
e PP | 4‘Y° ds dt)z < ce(|lv v
A T T T

Definition (3.2) of the cutoff leads to the estimate

1Sslyo <clt—s|  sup  [N(r,u+v) = N(7,u)| [H (u)vllco,ne]:v)
—1<7<no+1

< clt = s [0, (o,n0+a)) < €lt = sl 0]E, &, -

so that

1
e~ Bt ‘ 5|Y > 5
/ /ts<1/4 e sdt)” <ol g, o)

The term Sg can be treated similarly. Therefore we have shown that

|Aw(t) — Ar(s)]y 5
/ Aﬁ |<1/4 o |t — s|Ltsp Yoddt) < ce([lvlle, @y o) Vlles s~

Putting together the estimates obtained in (i) and (ii), we conclude that for each
€ > 0 there exists a r, < r, such that if ||v[|g, (&, ,—a) < 7L, then

Au(t) — Au(s)ly
ﬁtp| " Yo <
/ /t e\<1/4 [t — s|1tsp ds dt) ellvllg, ®y,—a)-

Using [12, Lem.11] and (3.23), we obtain [e_gAnlwr®, vy) < cellvllg, ®,,~a) for
lv|lg, (®,,—a) < 7¢, finishing the proof of the differentiability of Hj .

It remains to establish the continuity of the maps u — G- (u) and u — Hj-(u) in
BEi(R: —a),Eo(Ry — ) and B(Eq(Ry, —a),F(R4, —f3)), respectively. This can
be done by similar arguments as above. [
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4. STABLE, UNSTABLE AND CENTER MANIFOLDS

We first construct and study the local stable manifold Mg, resp. the local unstable
manifold M,,, assuming that o(—Ay) has a spectral gap in the open left, resp. right,
halfplane. These manifolds are of class C! in X,,, and are tangent at u, to PSXZ(,)
and P,X, respectively. These results are established in Theorem 4.1 which is
actually a somewhat simpler variant of Theorem 17 in [12] where the hyperbolic
case iR C p(—Ap) has been addressed. Next, in our main Theorem 4.2, we consider
the case of trichotomy, assuming that o(—Ap) has spectral gaps in both the left
and the right open halfplanes, cf. (2.34).

We choose the formulation of the spectral conditions for Theorem 4.1 in view of
the situation in Theorem 4.2. We assume the existence of numbers wsg, Wy, Wey, Wes >
0 such that at least one of the following assertions holds:

o(—Ap) =0sUoe  with maxReos < —ws < —we, < minRe oy, , (4.1)
o(—Ag) =0esUo, with maxReo.s < wes < w, <minReo, . (4.2)

We denote by P the spectral projections for —Ag corresponding to oy, k €
{s,es,cu,u}. As noted in Remark 2.4, we have P, Xy C P.,Xo C dom(4p), and
thus on P, X the norms in Xy, X, and X; are equivalent. Finally, we recall the
notation Xg ={z € Xp i Bozg = 0} for the tangent space at u, to the nonlinear
phase space M = {ug € X, : B(ug) = 0} for (1.1), and that P = I — N, B, projects
X, onto X)), see the remarks before Theorem 14 in [12].

Theorem 4.1. Assume Hypothesis 2.1. Then there are numbers r > p > 0 and
po > 0 such that the following assertions hold.
(a) Let (4.1) hold and take any o € (wey,ws). Then there are BC'-maps

¢s : PsX) N Bx,(0,p0) = PuXo and 95 : P.X) N Bx,(0,p0) = PsX,,
such that ¢5(0) = 94(0) = 0, ¢.(0) = 9,(0) =0, and
M = {uo = Uy + 20 + Vs(20) + ¢s(20) € Bx, (ux,p) : 20 € PSXS N BXP(O,pO)}
= {uo € MNBx, (ux, p) : 3 solution u of (1.1) on Ry with
[u(t) —uelp <7 VYt >0 and |u(t) —uss <ce @ V> 1}. (4.3)

In (4.3) we can take ¢ = ¢|u(0)—u.|p for a constant € independent of ug, t, o, and we
have u = u,+® (PP (ug—u.)) for a map &, € BC'(P.X)NBx, (0, po); E1 (R4, ).
If ug € My and the forward solution u of (1.1) stays in B(us,p) on [0,t] for some
t > 0, then u(t) € Ms. If ug € Mg and there is a backward solution u of (1.1)
staying in B(u., p) on [t,0] for some t <0, then u(t) € Ms.

(b) Let (4.2) hold and take any 8 € (wes,wy). Then there is a BC'-map

(bu : PuXO N BXp (07P0) — Pchp
such that ¢,,(0) =0, ¢/,(0) =0, and

My = {Uo = Uy + 20 + du(20) € Bx, (ux,p) : 20 € PuXo N BX,,(O,po)}
= {uo € MNBx, (ux, p) : 3 solution u of (1.1) on R_ with |u(t) — u.|p, <r
and |u(t) — u.|; < cePt Vi< 0}. (4.4)
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In (4.4) we can take ¢ = ¢|u(0) — us|o for a constant ¢ independent of ug,t, 3,
and we have u = u, + P, (Pu(up — us)) for a map ®, € BCY(P,Xo N
Bx,(0,p0); E1(R_,—3)). The dimension of M, is equal to the dimension of P, Xo.
If ug € My and the forward solution u of (1.1) stays in B(u.,p) on [0,t] for some
t > 0, then u(t) € My. If ug € My and the solution u from (4.4) stays in
B(ux, p) on [t,0] for some t < 0, then u(t) € My. Moreover, if o, # 0, then u,
is (Lyapunov) unstable in X, for (1.1). In addition, if (RR) holds, then the map
¢u : PuXo N Bx, (0, po) = Pes X1 is Lipschitz.

Proof. We provide only a sketch of the proof referring to [12, Thm.17] for missing
details. The basic idea is to look for solutions v of (2.21) on Ry and R_ which
satisfy the decay properties of (4.3) and (4.4), respectively. The maps ¢, U5 and
¢, will then be defined in terms of the initial, respectively, final value v(0) of (2.21).

(a) We define the Lyapunov-Perron map L,: P X) x Ei(Ry,a) = Ei(Ry, a) by

Ls (ZO7 U) = L;g,AO (’ZO + PsNP’YOH(v)? G(U)a H(U)), (45)

cf. (2.25), the discussion after (2.23), and also [12, (82)]. By means of Propo-
sitions 2.2 and 2.5, (2.13) and the implicit function theorem, we find numbers
ro,po > 0 and a BC'-map @, : PSXS N Bx,(0,p0) — Ei(R4,«) such that
®,(0) = 0 and ®,(20) is the unique solution of v = L,(20,v) for [|[v||g, & .a) < T0
and |zo|p < po. Set v = DPy(20), u = v+ us, and ug = v(0) +u,. Then u solves (1.1)
on Ry with u(0) = ug = us + ®5(20)(0). Using also [12, Prop.15] and (2.11), we see
that u satisfies the properties listed in (4.3) with ¢ = ¢|u(0) — u.|, and r = ¢’ |2,
for some constants ¢,¢ > 0. We further define the maps

V¥s(20) = PsNpyoH(Ps(20)) and
¢S(ZO) = Pcu’YOq)s(ZO) = 7/0 T. (7T)PCU[G(¢S(ZO))(T) + HH((I)e(ZO))(T)] dr,

which are of class BC! from PSXg N Bx, (0, po) to P.X, and P Xo, respectively,
and fulfill ¢4(0) = 95(0) = 0 and ¢,(0) = ¥,(0) = 0. Observe that zg = Ps(ug —
s — NpH (ug — us)) = PP (ug — uy) since H(ug — uy) = By(ug — uy).

Let u be a solution of (1.1) with |ug—u.|p < p, |u(t) —u|p <7, and |u(t) —u|p <
ce™® for all t > 0 and some ¢ > 0 and & € (Wey, ws). Put v = u — u,. Take 0 >0
with @ — 0 € (Wey,ws). Hence, d = o/(2a) € (0,1). For N € N and sufficiently
small » > 0, Remark 2.3 yields

N-1
Hea—aUHEI([QND < Z cel@=o)ne ||U||§1(Jn)

T
- o

IN

cel@—o)np |U(n)|ﬁp |v(n)|1()1_d)p < cr,

3
Il
o

where the constants do not depend on N. Therefore v € Eq (R4, & — o) with norm
less than erd, and so v = LJISS’A0 (Psv(0),G(v),H(v)) due to Proposition 2.5. Set
zp = Ps(v(0)—N,H (v(0))). Then |z], < ¢|v(0)], < ep < po for sufficiently small p.
We thus have the solution w = ®4(z) € E1(R4, «) of the equation w = L4(z0, w).
As in the proof of assertion (ii) of [12, Thm.17] we infer that v = w for sufficiently
small 7. As a result, (4.3) holds. The invariance properties of My follow from (4.3).

(b) All but two last assertions for My, can be shown in a similar way using (2.27)
and Proposition 2.6, cf. [12, Thm.17]. The remaining two are proved as follows.
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If o, # 0, then there exists a function ug € M, \ {u.} with a corresponding
solution w of (1.1) on R_ from (4.4). Hence, for each 6 > 0 there is a t = ¢(§) > 0
such that [u(—t) — u.|, < ce Pt < 8. Let € = |ug — ux|p/2 > 0 and set w = u(- —t).
Then w solves (1.1) on [0,¢t], and we have |w(0) — us|p, = |u(—t) — uslp, < & but
|w(t) — uslp = Juo — uslp > €. As a result, u, is (Lyapunov) unstable in X,.

Let (RR) hold and take zp,Zo € PyXo N Bx,(0,p0). Then we have solutions
u="v+u, and T =T+ u, of (1.1) on R_ given by v = ®,(z9) and 7 = ®,,(Zy) for
a BC'-map @, from P, Xy N Bx,(0,p0) to E1(R_, —3). Employing Theorem A.1
and (2.11), we then obtain

[$u(20) — du(Zo)l1 = |Pes(v(0) = T(0))1 < cfv(—1) —T(-1)],
< c|[Pu(z0) — Pu(Z0) e, & ,—p) < cl20 — Zolp

for constants independent of zy and Zy, possibly after decreasing py > 0. O

We now establish the main result of this paper where we construct a local center
manifold M, and show some of its basic properties. In particular, M, is a C'—
manifold in X, being tangent to P. X at u,. Further properties of M, are described
in Corollary 5.3 and Theorem 6.1. We assume that the spectrum of —Ay has the
decomposition described in (2.34), and recall that this assumption automatically
holds if the spatial domain 2 is bounded.

Theorem 4.2. Assume that Hypothesis 2.1 and (2.34) hold. Let the projections
Py and the numbers wy, be given by (2.34). Take any o € (w,,ws) and B € (We,wy)-
Then there is a number 1. > 0 such that for each n € (0,7.] there exists a radius
p = p(n) > 0 such that the following assertions hold, where the cutoff I is defined
in (3.2) for the chosen n € (0,n.].

(a) There exists a map ¢. € Cl(PCXO;Pqup) with a bounded derivative such
that ¢.(0) =0, ¢.(0) =0, and

M, = {uo = Uy + 20 + ¢c(20) : 20 € PCXO}
= {up = us +v(0) : 3 solution v € Ey (o, —B) of (3.7) on J =R}.  (4.6)

If ug € MVC, then u, + v(t) € M., for each t € R and v = ®.(P.(ug — ux)) =
P.v+ ¢.(Pv) for a map @, € CH(P.Xo;Ei(a, —3)) having a bounded derivative,
where v is the solution of the cutoff problem (3.7) given by (4.6).

(b) We define M, = MCQBXP (uy, p). Let ug € M. and v be given by (4.6) with
ug = v(0)+u.. Then F (t,v) =1 and v solves the original equation (2.21) (at least)
fort € [-3,3], so that M. C M. The dimension of M. is equal to dim P.Xj.

(c) Letug € M. and v be given by (4.6). If the forward solution u of (1.1) exists
and stays in Bx,(u«, p) on [0,to] for some to > 0, then u(t) = v(t) + u. € M. for
0 <t <to. If the function @ = v +u, stays in Bx, (u.,p) on [to,0] for somety <0,
then u(t) € M. and @ solves (1.1) forto <t <0.

(d) Let ug = us +v9 € M. and let v be given by (4.6). Assume that v(t) + u. €
M, for allt € (a,b) and some a < 0 < b. Then y = P.v salisfies the equations

y(t) = —AoPey(t) + PILH (y(t) + ¢c(y(t))) + PeG(y(t) + de(y(t))),
y(0) = Pe(up — uy),
on P.Xy fort € (a,b). Moreover, v € C((a,b); X1) and

B*¢C(PCU0) = Byvg = H<UO)7 (48)
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Pou(Asvg — G(v9)) = ¢(Pevo) Pe(Asvo — G(v))- (4.9)

(e) If u solves (1.1) on R with |u(t) — u.|p, < p for allt € R, then u(t) € M. for
allt € R.

(f) In addition, assume that (RR) holds. Then there is a pg > 0 such that the
map ¢ : PeXo N Bx,(0,po) = PauX1 is Lipschitz.

Proof. We first construct a manifold Mvc consisting of solutions on R in a weighted
E,-space, similarly to Theorem 4.1. However, since T.(-), in general, is an un-
bounded group, we must work in spaces containing exponentially growing functions.
Therefore we have to treat the modified problem (3.7) with the cutoff F. The de-
sired center manifold M. is then obtained by restriction to small balls.

(a) We define the Lyapunov-Perron map L. : P, Xy x E;(a, =) = E;(a, —3) by

EC(ZO’ U) = La, (Zo, Gr (’U)vHF(U))v

where the operators Ly4,, Gy and Hy are given by (2.35) and (3.6). Due to Propo-
sitions 2.7 and 3.8, the map LY : v > L.(z0,v) is C! from E(a/, —B') to Ey(a, =)
for o € (w,,a) and B’ € (W,, 3) and the derivative of £° is bounded by c1e(n)
in the norm of both B(E1(c/, —3")) and B(Eq(«, —8)), independent of zy € P.Xj.
Moreover, £ is Lipschitz in E1(a/, —3') with Lipschitz constant c;e(n) independent
of z9 € P.Xy by Proposition 3.6. Finally, the map 2o — L.(z0,v) is affine from
P. Xy to Eq(¢/, — ") with the derivative T'(-)Pk.

We now fix n = . > 0 such that ¢;e(n) < 1/2. (Note that this estimate
holds for every ' € (0,7).) Then Theorem 3 of [21] (with Yy = Y = E4(o/, —0')
and Y7 = Eq(a,—p)) shows that for each zy € P.X, there exists a unique so-
lution v = ®.(z9) € Ei(a/,—f") of the equation v = L.(z9,v), where &, €
Cl(P.X¢;Eq(a, —)) and ®.(0) = 0. Employing [21, (4.4)], it is easy to check
that @/ (z9) € B(P:Xo,E1(a, —3)) is bounded uniformly in zo. We further define

0

$c(20) = Y0 Psu®Pe(20) =/ Ta (=7) Bs[Gr (Pc(20))(7) + TH (Pe(20))(7)] dr

- /OOO Te(=7)Pu[Gr (Pe(20))(T) + TLHf (Dc(20))(7)] dT

for zg € P.Xo. Taking also into account (2.13), we see that ¢. € C1(P.X¢; PsuXp),
that ¢/, is bounded, and that ¢.(0) = 0 and ¢/,(0) = 0. Equality (4.6) follows from
Proposition 2.7. If ug € M, with the corresponding solution v of (3.7) and t € R,
then w = v(- +t) solves (3.7) with the initial condition w(0) = wv(¢) thanks to
Remark 3.2. This means that u, +v(t) € M., and thus v(t) = P (t) + ¢e(Pev(t)).

(b) Let up € ./Wc N Bx, (us,p). Set vg = ug — Ux, 20 = Pevg, and v = ®.(20).
From (3.4) and part (a) we infer that

lvlle, (5.5 < cllvllg(a,—p) = cl|Pc(20) — Pc(0)lE, (a,—p)
< ¢lzolo < evolp < dp. (4.10)

If we take p < n/c’, Remark 3.1 implies that £ (t,v) = 1 for ¢ € [—3,3], so that v
solves (2.21) on [—3, 3] in this case.

(c) Take ug € M, and let u be the forward solution of (1.1). Part (b) and the
uniqueness of (1.1) yield that uw = v 4 u, on [0, 2], where v is given by (4.6). Thus
u(t) = v(t) + u. € M. by part (a) for t € [0,2]. If u(t) € Bx, (u., p) for t € [0, t]
and £y < 2, we thus obtain u(t) € M, for ¢t € [0,%o]. If ¢y > 2, this argument can be
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iterated as long as u stays in Bx, (u«,p). The assertions concerning the backward
invariance of M, are direct consequences of parts (a) and (b).

(d) Let up = us +v9 € M. and let v be given by (4.6). By parts (a)-(c), the
function v = y + ¢.(y) solves (2.21) on (a,b). Theorem 14 of [12] thus shows that
v is continuous in X;. Moreover,

y(t) = Poo(t) = Pe[—-Asv(t) + G(v(t))]
= —Pe(u+ A,)(v(t) = N1H (v(t))) + pPev(t) + P.G(v(t))
= —AoPey(t) + PITH (y(t) + ¢c(y(1))) + PG (y(t) + ¢c(y(t)))-
Equality (4.8) is clear since B,P. = 0 and vg € M. We further have
0(t) = —Aw(t) + G(o(t),
5(8) = Pu=A.0(t) + G(o(8))) + GL(Pav(t) Pe(— A,u(t) + G(u(1))),

so that (4.9) follows by taking ¢ = 0.

(e) For a global solution u of (1.1) staying in By, (u«, p), Remark 2.3 implies
that ||ul|g, (t—2,¢4+2)) < csp for each ¢ € R (possibly after decreasing p > 0). In
particular, u € Eq (o, —f). Taking p < n/c., we further deduce that v = u — wu,
solves (3.7) on J = R using Remark 3.1. So (e) follows from the definition of M..

(f) We first note that (4.10) and (2.11) imply |v(0)|, < ¢|z0]o for up = v(0)+us €
/A\//lc with v = ®.(z9). Hence, there is a number pg such that ug = u« + 20+ ¢c(20) €
M. if zg € P.Xo N Bx, (ux,po). Then v solves (2.21) on [~1,0]. So we can show
assertion (f) as the final assertion in Theorem 4.1(b). O

Remark 4.3. Given r > p > 0, the manifolds Mg and M, from Theorem 4.1
are uniquely determined by (4.3) and (4.4) as sets of initial values of exponentially
decaying solutions of (1.1). There is no such description for M, from Theorem 4.2.
In fact, there are simple ODEs in dimension two admitting infinitely many locally
invariant manifolds which are tangent to P.X( at u, and satisfy M. N Mg =
M. N My = {u.} (cf. Corollary 5.3). However, if u, is stable in forward and
backward time, then Theorem 4.2(e) implies that our M, is the only manifold in
Bx, (ux, p) with these properties. %

5. CENTER STABLE AND CENTER UNSTABLE MANIFOLDS

In this section we go back to the situation of Theorem 4.1. In Theorem 5.1 we
construct a local center—stable manifold Mcs assuming (4.2), and in Theorem 5.2
we construct a local center—unstable manifold M, assuming (4.1). These manifolds
are of class C! in X, and are tangent to PCSXS, resp. to P,y Xy, at u.. They will
be used to prove further properties of the center manifold in Corollary 5.3. Recall
that P =1 — N, B,.

Theorem 5.1. Assume Hypothesis 2.1 and (4.2). Take any B € (wes,wy). Then
there is a number n.s > 0 such that for each n € (0,1n.s] there exists a radius
p = p(n) > 0 such that the following assertions hold, where the cutoff F 1 is defined
in (3.5) for the chosen n € (0,ncs].

(a) There exist maps ¢os € Cl(PCSXZ?; P,Xo) and 9.5 € CI(PCSXS;PCSXP) with
bounded derivatives such that ¢.s(0) = Uc5(0) =0, ¢L,(0) = 9.,(0) =0, and

Mcs = {UO = Usx + 20 + 1905(20) + ¢CS(ZO) 120 € PCSXI?}

= {ug = ux + v(0) : I solution v € By (Ry,—5) of (3.7) on J=R;}. (5.1)
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Moreover, the function v in (5.1) is given by v = Pes(PesP(ug — uy)) for a map
o, € C! (PCSXS;]El(RJr, —0B)) having a bounded derivative.

(b) We define M s = MCS N Bx, (us,p). Let ug € Mes and v be the function
from (5.1) with ug = v(0)+u.. Then F (t,v) =1 and v solves the original equation
(2.21) (at least) for t € [0,4].

(c) Let ug € M.s and v be given by (5.1). Assume that a forward or a backward
solution u of (1.1) ewists and stays in Bx,(u«,p) on [0,to] or on [~tg,0] for some
to > 0. Set v(t) = u(t) — ux for —tog <t < 0 in the second case. Then u(t) =
Us + V(t) =ty + Pesv(t) + des(PesPv(t)) + Oes(PesPu(t)) € Mes for 0 <t < tg or
—to <t <0, respectively.

(d) We have Mcs N My = {u.}.

Proof. We follow the strategy of the construction of the stable manifold in Theo-
rem 4.1, but now we must work in the space E; (R, —f) containing exponentially
growing functions. Thus, as in Theorem 4.2, we have to involve the cutoff F ; which
leads to various technical difficulties.

(a) We define the map Les : Pes X)) x E1(Ry, —f) = E1(Ry, —f) by

Les(20,v) = L 4, (20 + PesNpyoHy  (v), Gr  (v), Hy , (v), (5-2)

where the operators L;CS,AO’ Gy, and Hy, are given by (2.25) and (3.6). Observe
that the semigroup e_gT'(-) is hyperbolic with the stable projection P.s. Due to
Propositions 2.5 and 3.8 and the embedding (2.13), the map £° : v > Ls(20,v)
is C1 from Eq(Ry,—f') to Eq(Ry,—0) for B € (wes,B) and the derivative of £°
is bounded by ¢i1e(n) in the norm of both B(E,(Ry,—03')) and B(E,(R4, —2)),
independent of zy € Pchg- Moreover, £° is Lipschitz in Ej(Ry,—3") with the
Lipschitz constant ¢ie(n) independent of zy € PchS by Proposition 3.6. Finally,
the map zy — Les(20,v) is affine from Py X)) to Ei(Ry, —f’) with the derivative
T(-)Pes.

We now fix 7 = 1.5 > 0 such that c;e(n) < 1/2. (Note that this inequality also
holds for each ' € (0,7).) Then Theorem 3 of [21] (with Y5 =Y = E;(Ry,-03')
and Y7 = E;(Ry,—p)) shows that for each zp € PCSXZ? there exists a unique
solution v = ®5(20) € E1(Ry, —p’) of the equation v = L.s(20,v), where
P € CH(Pes X Eq(Ry, —f)) and ®.4(0) = 0. Due to [21, (4.4)], the derivatives
P! (20) € B(Pes X)), E1(Ry, —f3)) are bounded uniformly in z. We then introduce

Ves(20) = Pcsz’YOHF+ (®es(20)) and

oo

bes(20) = Y0 PuPes(20) = _/O Tu(_T)Pu[GF+ (Pes(20))(T) + IHy (@es(20))(7)]dT,

for 2o € PsX,). Taking also into account (2.13), we see that ¢, € C' (Pes X)); Pu X))
and Y, € C’l(PCSXg; P, X,) with bounded derivatives and that ¢¢s(0) = J¢5(0) =0
and ¢..(0) = 9/,(0) = 0. The inclusion ‘C’ in (5.1) is clear by the above def-
initions, with v = ®.4(29). Moreover, zg = P,Pv(0) = PsP(ug — us). Con-
versely, let v € E;(R;,—f) solve (3.7) on J = R;. Proposition 2.5 then im-
plies v = L 4 (Pesv(0),Gy, (v),Hy, (v)). Setting 20 = PesPv(0) and using
B.v(0) = HE+(U)(O), we obtain Pev(0) = zo + PesNpyoHy  (v). Therefore
v = L5(20,v) which entails v = ®.4(zp). This fact leads to v(0) + u, € M.
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(b) Take uy € Mes N Bx, (ux, p) for some p > 0 and the corresponding solution
v of (3.7) on J =R, given by (5.1). From part (a) we deduce that

[Vlles &1 —8) = [|Pes(20) = Pes(O)l|ey 1, —p) < €l20lp < clo(0)fp  (5:3)
for constants independent of v. So (3.4) yields

lv]l&, (0,6 < €'p (5.4)
for a constant ¢’ that does not depend on v and p. We take
Ui
<pp=——— 5.5
P = p1 Cl(l—f—CR)’ ( )

cf. (3.3). Then F 4+ (t,v) =1 for 0 <t <4 by Remark 3.1. As a result, v solves the
original problem (2.21) on [0, 4].

(c.i) Let ug € Mg and denote by w the solution of (1.1) on [0, to] with u(0) = ug,
for some typ > 0. We set w = u — u,. Let v € E1(R4, —3) be the solution of (3.7)
with v(0) = ug — u, given by (5.1). We assume that |w(t)|, < p for 0 <t < t;. We
want to show that w(t) = v(t) and u(t) € M for 0 < t < ¢;. First we consider
the case when ¢y < 2. Part (b) shows that F 1 (¢,v) = 1 and that v solves (2.21) for
0 <t <typ. Then w(t) =wv(t) for 0 <t <ty by the uniqueness of (1.1). We further
set 0(t) = v(t + to) for t > 0. Remark 3.5 yields that F (¢t,0) = F +(t + to,v)
for t > 2. Further, we have ||9||g, (p—24+2rry) < [|vllg, (o6 < 1/(1 + cr) for
0 <t < 2due to (5.4) and (5.5). Remark 3.1 thus implies that F (¢,0) = 1
for 0 <t < 2. Finally, F(t 4+ tg,v) = 1 for 0 < ¢t < 2 by part (b). Therefore
Fi(t,0) = F4(t + to,v) for all t > 0, and so v € E(Ry,—03) solves (3.7) on
J =R with 5(0) = v(to). This means that v(t) 4w, € Mes N Bx, (4, p) = Mcs.
Since we can replace here to by t € [0,%], (the proof of) part (a) yields u(t) =
Uy 4 0(t) = Uy + Pogt(t) + Ges(PosP(t)) + Des(PosPo(t)) € Meg for 0 < t < to. If
to > 2, we obtain the assertion by a finite iteration of this argument.

(c.ii) Let up € Mcs and assume that there is a solution u of (1.1) on [—tg, 0] with
u(0) = wup, for some t¢ > 0. We set w(t) = u(t) —u. and assume that |w(t)|, < p for
—tgp <t <0. Let v € E;(Ry, —f) be the solution of (3.7) with v(0) = up — u. given
by (5.1). We want to show that u(t) € Mg for —tg <t < 0. To this aim, we set
w(t) = v(t) and z(t) = w(t —to) for t > 0. Clearly, z € E1(Ry, —8), 2(0) = w(—to),
and z satisfies the first two equations in (2.21) on [0,%y + 2] since w and v solve
(2.21) on [—to, 0] and [0, 2], respectively. Take ¢t € [0,to+2] and s with [t—s| < 1/4.
Note that [0,1] C J(s) if J(s) NR_ # (. We thus deduce from (3.3) that

1R+ 2[lEy (1(s)) < 2llE (r(s)n0.t0]) + 1211Es (2(5)n1t0,00)) + [ B+2]Es (1 (5)n[-1,0])
< (L4 cr) (lw(- = to)lles (rs)nostol) + 10C = to) Ik, ((5)nlt0,00)) )
= (14 cr) (llwlle, (s(s=to)ni=to,0n) + IVI|E, (s(s=t)RL))-
Since w solves (2.21) on J(s — to) N [—ty,0] =: [a,b] and |w(a)|, < p, Remark 2.3

with T' = 3 yields |[wl|g, ((a,0)) < c+p as soon as p > 0 is sufficiently small. Moreover,
lv]|&, (7(s—to)nR.) < ¢'p because of (5.4) and J(s —to) "Ry C [0,4]. As a result,

n
1+cr)(es+ )
and so fF 1 (t,z) =1 for 0 <t < tp+ 2. (Observe that py is less than the number
p1 given by (5.5).) The function z thus satisfies (3.7) for 0 < t < ¢y + 2. For
t > to+ 2, we have F (t,z) = F +(t — to,v) by Remark 3.5. In particular, z
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fulfills the equations (3.7) also for ¢t > ¢y + 2. Summing up, z solves (3.7) on R,
and so u, + 2(0) = u(—tg) € Mcs N Bx, (us,p) = Mcs. Replacing here —to by
t € [~to, 0] and writing v(t) = w(t) for —tp <t <0, we arrive at u(t) = us +v(t) =
Uy + Pesv(t) + ¢os(PesPo(t)) + Ves(PesPo(t)) € Mg for —to <t <0.

(d) Assume that ug = ux +v9 € Mes N My,. We take 8+ € € (B,w,). Let
v € E1(Ry,—3) be the solution of (3.7) with v(0) = vy given by (5.1). Due to
Theorem 4.1(b), there is a solution w of (2.21) on R_ with w(0) = v, satisfying

lw(t)], < e v, < ep (5.7)

for all t < 0 if p > 0 is sufficiently small. We choose p < p3 := pa/¢ (see (5.6))
and take ¢ < 0. Then part (c.ii) of the proof implies that u, + w(t) € Mcs and
that the function z; € E;(R4, —/3) given by z(7) = w(t + 7) for 7 € [0,—¢] and
zt(7) = v(t+ 1) for 7 > —t solves (3.7) on J = Ry. From (5.3) we deduce that

Iztlles ®y —p) < l2e(0)]p = clw(®)lp, (5.8)
where the constants do not depend on ¢ < 0. Using (2.11), (5.8) and (5.7), we have
[volp = €™ Pz ()] < e [z ley - p) < ce” P (Bl < celo(0)],
with the constants independent of t. Letting ¢t — —oo, we have ug—u, =vo =0. O

Theorem 5.2. Assume Hypothesis 2.1 and (4.1). Take any o € (Wew,ws). Then
there is a number 1, > 0 such that for each n € (0,n.,] there exists a radius
p = p(n) > 0 such that the following assertions hold for the cutoff F _ defined for
the chosen 1 € (0, ey

(a) There exists a map ¢e, € C* (PouXo; PsXp) with a bounded derivative such
that ¢c,(0) =0, ¢.,,(0) =0, and

My = {UO = Ux + 20 + ¢cu(zo) 120 € PcuXO}
= {ug = us +v(0) : 3 solution v € E;(R_, ) of (3.7) on J =R_}. (5.9)

Moreover, the function v in (5.9) is given by v = Poy(Peu(uo — uy)) for a map
.y € CH(PeuX0; E1(R_, @) having a bounded derivative.

(b) Define M, = Mcu N Bx, (ux, p). Let ug € Mey and v be the function from
(5.9) with ug = v(0) + u.. Then F _(t,v) = 1 and v solves the original equation
(2.21) (at least) for t € [—4,0]. The dimension of Mcy is equal to dim Pe, Xp.

(c) Let ug € My and v be given by (5.9). If the forward solution u of (1.1) exists
and stays in Bx,(u«, p) on [0,to] for some tg > 0, then u(t) = u, +v(t) € Mcy for
0 <t < tg. If the function @ = u, +v stays in Bx, (us,p) on [to,0] for some ty <0,
then 4(t) = us + v(t) € Mey and 4 solves (1.1) for to < t < 0. In particular,
V(t) = Peuv(t) + deu(Peyv(t)) for t € [0,t0], resp. t € [to,0].

(d) We have My N Mg = {u.}.

(e) Assume, in addition, that (RR) holds. Then there is a pg > 0 such that the
map ¢ey : PeuXo N Bx, (0, po) — PsX1 is Lipschitz.

Proof. Parts (a)—(d) of the following proof are similar to the proof of the previous
theorem so we can omit some details and focus on the differences.

(a) We define the Lyapunov—Perron map L., : Py Xo X E1(R_, ) — E;(R_, a)
by setting Ley(20,v) = Ly a,(20,Gr_(v),Hf _(v)), where the operators Lp 4,
Gy _ and Hy _ are given by (2.27) and (3.6). Using Propositions 2.6, 3.6 and
3.8, we find 7., > 0 such that the assumptions of Theorem 3 of [21] hold for the
cutoff F _ with the parameter n € (0,7c,]. As a result, for each zg € P, X/ there
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exists a unique solution v = ®.,(z0) € E1(R_, ') of the equation v = L., (20, v),
where ®., € C1(P.yXo;E1(R_,q)), ®.,(0) = 0, and the derivatives @, (z) €
B(PeyXo,E1(R_, «)) are bounded uniformly in zy. We then introduce the map

0
beu(20) = Y0 PsPeu(20) = / T(=7)B[Gr _(Peu(20))(7) + TLH  _(Peu(20))(7)] dT,
for 29 € PeyuXo. Due to (2.13), we obtain that ¢., € C'(PeyXo; PsX,) with a
bounded derivative and that ¢.,(0) = 0 and ¢.,(0) = 0. Equality (5.9) follows
from Proposition 2.6, where v = ®.,,(20) and zg = Pey(ug — ).

(b) Take uy € My N Bx, (ux, p) for some p > 0 and the corresponding solution
v of (3.7) given by (5.9). From (3.4) and part (a) we deduce

[0l5, (-6,01) < e VllE, & a) < cck |20lp < ¢ [0(0)], < c'p (5.10)
with the constants independent of v and a. We take

.
d(1+cr)’
cf. (3.3). Then F _(t,v) =1 for —4 <t < 0 by Remark 3.1. As a result, v solves
the original problem (2.21) on [—4,0].

(c.i) Take ug € M,y such that the solution u of (1.1) on [0,%o] with u(0) = ug
stays in Bx, (u«, p) for some p,to > 0. We set w = u—u,. Let v € E;(R_, ) be the
solution of (3.7) on J = R_ with v(0) = up — u, given by (5.9). We further define
w(t) = v(t) and z(t) = w(t + to) for t < 0. Clearly, z € E1(R_, @), 2(0) = w(to),
and z satisfies the first two equations in (1.1) on [~y —2, 0] since w and v solve (1.1)
on [0,%] and [—2,0], respectively. Take ¢t € [—to — 2,0] and s with |t — s| < 1/4.
As in part (c.ii) if the proof of Theorem 5.2, we deduce from (3.3) that

p<p:= (5.11)

IR_ 2|, (ssy) < (1 + cr) (lw(- + to) e, (1(s)ni=to,0n) + 10 + t0) &y (1(s)n (=00, —t0]))
= (1+ cr) (lwllg, (s (s+t0)n(0,t0)) T NVIIEL (F(5tt0)R_))-

Remark 2.3 shows that ||w||g, ([a,5)) < c«p for sufficiently small p > 0 since w solves
(1.1) on J(s +t9) N[0, o] =: [a,b]. Using (J(s+to) NR_) C [—4,0] and (5.10), we
estimate ||v||g, (s(s+t0)nr_) < ¢’p. Consequently,

n
(I +cr)(cx + )

and hence F _(t,z) =1 for —tg —2 <t < 0. The function z thus satisfies (3.7) for
—tg — 2 < t < 0. Moreover, Remark 3.5 yields that F _(¢,z) = F _(t + tg,v) for
t < —to — 2; and so z fulfills the equations (3.7) for ¢t < —ty — 2. Summing up, we
have shown that z solves (3.7) on R_, and so u. + 2(0) = u(tg) € Mcy.

(c.ii) Let up € Mcy and v be given by (5.9). Assume that & = u. + v stays in
Bx, (us, p) on [tg, 0] for some ¢y < 0. We first consider the case when ¢y € [~2,0).
Part (b) shows that F _(¢t,v) = 1 and v solves (2.21) on [ty,0]. We further set
0(t) = v(t+1to) for ¢ < 0. From Remark 3.5 it follows that f _(¢,0) = F —(t + to,v)
for t < —2.. Since ||0]|g, (t-2.t420nr_) < [|[VllE,(~6.0) < n/(1 +cR) for =2 <1 <0
by (5.3), Remark 3.1 yields F _(¢,0) =1 for —2 <¢ < 0. Finally, F _(t +to,v) =1
for —2 <t < 0 due to part (b); so that f _(¢,0) = F _(t + tg,v) for all t < 0. As a
result, 0 € Eq(R_, a) solves (3.7) on J = R_ with ©(0) = v(tg). This means that
v(t) + ux € My for each ¢ € [to, 0], as asserted. The general case ty < —2 is then
established by repeating the arguments for the first case finitely many times.
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(d) Assume that ug = us +v9 € Mey N Ms. Let v € Eq(R_, «) be the solution
of (3.7) with v(0) = vg given by (5.9). For a + € € (a,ws), there is a solution
w of (2.21) on R, with w(0) = vy satisfying |w(t)|, < ce™(@+9|yy|, < Ep for all
t > 0 if p > 0 sufficiently small, due to Theorem 4.1(a). Set w(t) = v(t) for ¢ < 0.
If we choose p < p3 := pa/¢ (see (5.12)), then part (c.i) of the proof shows that
Uux +w(t) € Mgy for ¢ > 0 and that the function z, = w(- +t) € E1(R_, a) solves
(3.7) on J = R_. So estimate (5.10) yields ||z¢||g,&_,a) < c|w(t)|,, where the
constant does not depend on ¢ > 0. Using also (2.11), we arrive at

[volp = e [e* Tz (1)l < ce® [|zillz, ) < ce™w(t)], < ce”[0(0)],

for constants independent of t > 0. Letting ¢ — oo, we deduce ug — u, = vg = 0.
(e) Assertion (e) can be shown as the last assertion in Theorem 4.1(b). O

Corollary 5.3. Assume that Hypothesis 2.1 and (2.34) hold. Then there is a
number p > 0 such that M. N B; = Mes N Mcy N By, Mo N Mg N Bs = {u,}, and
MMy N B = {u.}. Here, By = Bx,(ux,p) and My, k € {s,c,cs,cu,u}, are
the manifolds obtained in Theorems 4.1, 4.2, 5.1, and 5.2.

Proof. We set n = min{n., es, Newt > 0 and let p’ be less than or equal to the
minimum of the numbers p(n) obtained in Theorems 4.2, 5.1, and 5.2. For ug €
M:N Bx, (ux, p'), there exists the function v from (4.6) with v(0) = ug —u., where
F(t,v) =1for |t| < 2. For s € [0,9/4] and o € [-9/4,0], we have || Ry vlg, (s(s)) <
CIR ||UH]E1([O,4]) and ||R_U||E1(J(o-)) < CIR ||U||]E1([,470]) for some constant C/R' In view
of (4.10), we can decrease p’ > 0 in order to obtain F 4 (t,v) = 1 for ¢ € [0, 2] and
F_(t,v) =1for t € [-2,0]. Thus F(t,v) = F +(t,v) for t € Ry by Remark 3.5,
and so the restrictions of v to Ry and R_ belong to ./,\7103 and //\7lcu by (5.1) and
(5.9), respectively. As a result, ug € Mcs N Me,. The converse inclusion can be
shown similarly, thereby fixing a possibly smaller p’ =: p. The last two equalities
then follow from Theorems 5.1 and 5.2. (]

Remark 5.4. We now sketch an alternative construction of a local center man-
ifold M. as the intersection of M5 and Mgy, cf. [4]. Let the assumptions of
Theorem 4.2 hold. Then Theorems 5.1 and 5.2 can be proved as above so that we
have local center—stable and center—unstable manifolds M.s and M., with corre-
sponding maps ¢.s, ¥.s and ¢,,. For technical reasons, we need another description
of Mcs. To this aim, we solve the fixed point problem

U= LJISCS7AO (ZO + Psz’}/oH/’+ (’U), Gf+ (’U), Hf+ (’l))) (513)

for zo € PesX)) and v € Ey(Ry,—f). As in Theorem 5.1, for sufficiently small
n < nes We obtain a solution map @, : zo +— v for (5.13), and so we can define
Vels(20) = PsNpyoHy , (Pejs(20)) € PuXp and des(20) = Y0 Pes(20) — 20 —Vefs(20) €
P, X, for z9 € PCSXI()). We now fix the same 7 in the construction of M. It is
possible to show that j\ch = {uo = ux + 20 + V¢ s (20) + des(20) : 20 € Pch,?}~ For
Tg € PSXS, y € P.Xy and z € P, Xy with norms less than py > 0, we further set

\Ij(ya (1'0; Z)) = (xO - ¢cu(y + Z) + PszH(y +z+ ¢cu(y + Z)) - ¢c|s(x0 + y)) .

)2

Observe that Bi¢eu(y + 2) = Bu(y + 2 + ¢eu(y + 2)) = H(y + 2 + deuly + 2)) =

B.PN,H(y + z + ¢cu(y + 2)) since vg = y + 2z + ¢cu(y + 2)) is the final value

of a solution v to the cutoff problem satisfying F _(0,v) = 1 if py > 0 is small
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enough. Hence, ¥ maps into the set V := PSX;)J x Py, Xo. Because of ¥(0,0) =0
and DU (0,0) = Iy, there exist r,p > 0 and ¢ = (¢¥5,%s) € C'(Bx,(0,p) N
P.Xo, Bx,(0,7)NV) such that (zg, z) = ¢(y) is the unique solution of the equation
U(y, (zg,2)) = 0 in these balls. We now introduce

Ge(y) = Vs (y) + Deps(y + Vs (1)) + 1Y),
M, = {us +y+ qgc(y) 1y € Bx,(0,p) N P X, }.

Then ;#50 et (Bx,(0,p) N PeXo; PsuXp), (/50(0) =0, (}5'0(0) = 0, and one can check
that ﬂc = Mcs N Mey N Bx, (ux, p) for a sufficiently small p > 0. (Here it is
useful to work with the new description of Mcs.) Finally it can be seen that
M, has analogous properties as those stated for M in Theorem 4.2(b)—(f) and
Corollary 5.3. We point out that in this approach //\\/lC is not constructed as the
restriction of a global object such as /A\/JlC in Theorem 4.2(a). In particular, for
/\/>lC there is no counterpart for the description given by (4.6) and the invariance
property of M. stated in Theorem 4.2(a). %

6. STABILITY AND ATTRACTIVITY OF THE CENTER MANIFOLD

We now investigate the stability of the steady state u, of (1.1) and the attractivity
of M. As in Theorem 4.2, we assume that Hypothesis 2.1 and (2.34) hold. In
parabolic problems, the center—unstable manifold is finite dimensional in many
cases; e.g., if the spatial domain €2 is bounded. Moreover, there are important
applications where M., consists of equilibria only, see e.g. [10, Prop.6.4], [15].
Thus it is quite possible that one can check the stability of u, with respect to the
semiflow on M., generated by (1.1) without knowing a priori that u, is stable
with respect to the full semiflow of (1.1) on M. In Theorem 6.1 below we show
that wu, is stable on M under the following conditions: s(—Ag) < 0, u, is stable
on Mg, = M., P,y = P, has finite rank, and the additional regularity assumption
(RR) holds. In fact, we establish a stronger result saying that each solution starting
sufficiently close to u, converges exponentially to a solution on M.. Here we can
assume that s(—Ag) < 0 without loss of generality since by Theorem 4.1 —Ag has
no spectrum in the open right halfplane if u, is stable and P, has finite rank.

Theorem 6.1. Let Hypothesis 2.1 and (RR) hold. Assume that the spectrum of
—Ag admits a splitting o(—Ag) = 05 U o, corresponding to the spectral projections
Ps and P. such that P. has finite rank, o. C iR, and there is a number « with
max Reos < —a < 0. Suppose that for each r > 0 there is a p > 0 such that for ug €
M with | Pe(uo—uy)|o < p the solution u of (1.1) exists and u(t) € McNBx, (ux,7)
for allt > 0. Then there is a p > 0 such that for every ug = us +vg € M with
lvolp < P the solution u = u, +v of (1.1) exists on Ry and there is a solution T of
(1.1) on Ry such that u(t) € M. for allt >0 and

lu(t) —a(t)]; < ce™™ |Powy — &c(Pevo)lp (6.1)

fort > 1 and a constant ¢ independent of ug. As a result, u, is stable for (1.1),
i.e.: For each v > 0 there exists a p' > 0 such that for every ug € M NBx, (ux,p)
the solution u of (1.1) exists on Ry and u(t) € Bx,(u«,r) for all t > 0.

Proof. Let uw = u. + v solve (1.1) with the initial value ug = us + v9 € M. We
proceed in three steps: First, we derive a forward evolution equation in P, X, for the
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function w = Psw — ¢.(P.v) on a certain interval [0, T] and estimate w employing
this equation. Second, we take the solution z on M. with P.z(T) = P.v(T) and
estimate the function y = P.(v — z) on an interval [tg, T] by means of a backward
evolution equation in P.Xq for y. Third, using the stability of M. we show that
these estimates hold for all T > t5 > 1 and construct the desired solution @ = u, +7%
on M. by letting T' — oo.

Step 1. Set —ws; = maxReos; < 0 and take constants N > 1 and ¢ € (0,w,)
such that [[e 40P P[5,y < Ne ® for all t < 0. Using Theorem 4.2, we fix a
radius p. > 0 such that ¢. is globally Lipschitz with the Lipschitz constant ¢ as
a map from P.Xo N Bx,(0, pc) to X; and X,,, and such that ||¢(£)||(x,) < ¢ for
¢ € P.XoN Bx,(0,p.). We set

e1(R) = weXTI?‘iSR{||GI($)||B(X1,X0) H' ()| vn) b (6.2)

Due to (2.16), we can fix a (small) number R > 0 such that
4= Ney(R)(1+ [ PoTl sy, 00)) (1 + | Pellsocoxa)) < s — 5, (63)
RHPC||B(XU7X1) < pec- (6.4)
Then there exists a number r > 0 having the following properties:

() 7(1+ Ol Pellsr, ) < R/2 and 7| Pellsx, o) < pe

(b) If |zo|, < r or |Pxolo < r, then the solution z on M. with P.xg = P.z(0)
exists on [—2,00) and |z(¢)|; < R for all t > —2.

(c) If wo+u, € M and |wg|, < r, then the solution w of (2.21) with w(0) = wo
exists for ¢ € [0,2], ||wllg,(o,2)) < csr and |w(1)]; < R (where c, is the
constant given by Remark 2.3 with 7" = 2).

(d) eea(cacpr) < 1/2, where cp = (1 4+ €)(||Pells(x,) + |1 PellB(x0))s € is defined
below in (6.8) and e2(+) is the Lipschitz constant from Remark 3.7.

(To obtain (b) and (c), we use the stability of u. in M., Theorem 4.2, and [12,
Prop.15].) Take ug = vg + ux € M with |vg|, < p < p1 < r, where p; > 0 is chosen
such that the solution v of (2.21) exists on [0,4] and |v(¢)|, < r for 0 < ¢t < 4.
(Use Remark 2.3 and (2.11).) Hence, |[v(t)[1 < R for 1 <t <4 and |P.v(t)]o < pe
for 0 < ¢t < 4 by Properties (¢) and (a). Let T > 4 be the supremum of all ¢/
such that the solution v exists on [0,¢] and |v(t)|, < r for all ¢ € [0,¢']. Seeking a
contradiction, we suppose that T' < co. Then T is in fact the maximum of all ¢’ as
above, and |v(t)]y < R for 1 <t < T, due to Property (c). Define

w = Psw — ¢o(Pev), wy=w(0), x=v—w= P+ ¢.(Pev) (6.5)

on [0,T]. Observe that u, + x(t) € M. and P.x(t) = Pov(t) for ¢t € [0,T] and that,
in general, x is not a solution of (2.21). Recall the definition of Ag, A7 and II, cf.
(2.23). Using (2.21), (4.8), (4.9), (6.5), we deduce that

) =

Baw(t) = H(v(t)) — Bege(Pea(t)) = H(v(t)) — H(z(t)) = h(t), (6.6)
w(t) = Po(=Awv(t) + G(u(t))) = de(Pev(t)) Pe[G(v(t)) — Asv(t)]

— @e(Pex(t)) Pe[Ax ( ) — G(a(t ))] + Bo(Asx(t) — Gz(1)))

—Pi(Ao + p)(w(t) = Mih(t)) + pPaw(t) + B(G(u(t) — G(x(t)))

+ @e(Pev(t)) Pe[(Ao + u)(w(t) J\f h(t)) — pw(t) + G(z(t)) = G(o(1))]
= —AoPaw(t) + PIIA(t) + Ps(G(u(t)) — G(z(1)))
— ¢e(Pev(t)) Pe[TTh(t) + G(v(t)) — G(a(1))]
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for t € (0,T], where we also employed (6.6) in the second part and w(t) exists in
Xo. Setting g = G(v) — G(z) — ¢.(P.v)P[lIh + G(v) — G(z)], we obtain

w(t) =Tt —7)Psw(r) + / T_1(t — o) Ps[g(o) + ITh(o)] do

for 0 <7<t <T. Wetake 7 € [0,T — 2] and « € (0,ws). In view of (6.6) and the
exponential stability of e,T'(-)Ps, we can argue as in the proof of Proposition 8 in
[12] (see inequality (43)) and estimate:

e Tllwle, (ir,11,0) < €0 [lw(T)lp + €™ lgllzg(r71,0) + € TlAlE((r,11,00]5  (6.7)
with a constant ¢y independent of 7, T', r, p, and chosen uniformly for « contained in
compact intervals in (0,ws). Since |Pv(t)|o < p. for ¢ € [0,T] by (a), formula (6.5)
yields ||z[|g, .y < cp ||v||g, (s) for intervals J C [0, 7], where cp = (14+€) (|| Pe||(x,)+
| PellB(xo))- So we conclude from (6.7) and Remarks 2.3 and 3.7 that

e Mlwlle, (fr.11,0) < Colw(T)lp + e2(cucpr)e™ T |[wllg, (r,11,0) »
where ¢, is the constant given by Remark 2.3 and
¢:= o 2+ L[ Pellsixo) + 1Pl vy, x0))]- (6.8)
Hence, for 0 < 7 <t < T with T'—7 > 2, Property (d) above and (2.11) imply that

e wll, (r11,0) < Colw(T)lp + 3 €™ Tlwlley (r77,0) »
D w(t)]p < coe” T wllg, (fr11,0) < 2¢060 [w(T)]p - (6.9)
Step 2. By Property (b), there exists a number a < T — 2 and a solution
z2(5T, Po(T)) = 2 = Pez+¢c(Pez) on M, of (2.21) on [a, T| with P.z(T) = P.v(T).
Also, there is a minimal number to € [1,7 — 2] such that z(¢) € M, exists and
|z(t)|1 < R for to <t <T. We set y = P.(v — z) and note that
vV—2z=y4+w+ ¢c(Pev) — ¢pc(Pez). (6.10)
Since v and z solve (2.21), we obtain
B.(v(t) — 2(t)) = H(v(t)) — H(2(t)) =: ha (1),
§(t) = Pe(=Ax(v(t) = 2(1))) + Pe(G(u(t)) — G(2(1)))
= —Fe[(Ao + ) (v(t) — 2(t) = Niha (t) — p(v(t) — 2(8)] + Pega(t)
= 7A0Pcy(t) + PeIlhy (t) + Peg1 (t) (611)

for t € [to, T, where ¢1(t) := G(v(t))—G(2(¢)). Since y(T') = 0 and |v(¢)|1,|2(t)|]1 <
R, equation (6.11) implies (cf. (6.2)) that

T
y(t) = - / e~ =D AP P (g, (7) + TThy (7)) dr,

T
@l < [ Ne D Py )1 (R) o) — 2(r)a dr
t

Recalling the definition of d in (6.3) and setting do = d (1 + £ || P.||p(x0,x,)) ", we
then deduce from (6.10) and (6.4) that

T T
My(t)o < d / e y(r)o dr + do / &7 w(r)y dr.
t t
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Gronwall’s inequality and Fubini’s theorem thus yield

T T T
etly()o gdo/ 07 |w(r)|1d7+ddo/ ed“*t)/ % lw(o)|y do dr
t t T

T T o
= do/ e lw(T)|y dr + ddo/ e w(o)l|y / e dr do
¢ ¢ ¢

T
= do/ e ()| do.
¢
There is an « € (d + 6,w;) due to (6.3). Holder’s inequality and (6.9) thus lead to

T
o <do [ IO u(o) 1 do < e fuls, o) < clu®ly (612
t
for t € [to,T] with T —t > 2. Here and below the constants ¢ do not depend
on t,tg,T,v,p. Observe that z = P.(v — y) + ¢c(Pe(v — y)). Employing (6.4),
lv(to)]p <, Property (a), (6.12) (6.9) and (6.5), we then estimate:

|z(to)|l1 < (1 +£) (I1PellB(x0,x1) [¥(t0)lo + | PellB(x,,x1) [v(t0)]p)
<clw(to)lp + R/2 < clw(0)], + R/2 < cl|vo|p + R/2.

So we can find ps € (0, p1] such that |z(to)[1 < 3R/4if |vglp < p < p2. As a result,
to =1 and

[Pez(Dlo < ly(Dlo + [Peo(D)]o < ¢ (Jw(D)]p + [0(1)]p) < efo(L)], < Elvolp, (6.13)

where we used (6.12), (6.5), Remark 2.3, and (2.11). In view of (6.13) and the
assumed stability of M., there exists a p3 € (0, p2] such that |2(T)|, < r/2 if
lvolp < p < p3. From (6.10), (6.12) and (6.9), we then deduce

[o(T)lp < [2(T)lp + [y(T)lp + L1y(T)]o + [w(T)]p < 5+ cfw(0)]p < 5+ cluolp <,

if we take |vg|, < p < py for a sufficently small ps € (0, ps]. This fact contradicts
the choice of r so that T' = oo; i.e., v solves (2.21) on Ry and |v(t)|, < r for all
t > 0. Therefore (6.9) and (6.12) hold for all T > 4 with uniform constants.

Step 3. In (6.13) we have seen that P.z(1) = P.z(1;T, P.v(T)) is bounded by
¢ |vglp for all T > 4. We fix p € (0, ps] with ¢p < r and take vy with |v|, < p < p.
Since P, has finite rank, there are T,, — oo such that P.z(1; Ty, P.v(T},)) converges
to some ¢ € P. Xy with |C|o < ¢p < r. Let Z be the solution on M, with P.z(1) = .
By Property (b) and (6.4), Z(t) € M, exists for all t > 0 and |P.Z(¢)|o < p.. The
functions Pz and Pez(+; Ty, Pov(Ty,)) satisfy the ode (4.7) so that

P.z(t) = lim P.z(t;1, Pz(1; Ty, Pov(Ty))) = lim Pez(t; Ty, Pov(Th)).
n—00 n—00
Estimates (6.12) and (6.9) thus yield
|Pe(v(t) —2(t))lo = nh_{I;O |Pe(v(t) — 2(t; T, Pov(Tn)))|o < clw(®)], < Ce_at|w0|p
for t > 1. Combining this inequality with (6.5) and (6.9), we also obtain
|Ps(v(t) = 2(1)]p < [w(t)]p + [$e(Pev(t)) — de(Pez(t))|p < ce™ fwolp-

Inequality (6.1) now follows from the two preceeding estimates and Theorem A.1.

Moreover, |v(t)|, < |v(t) —Z(t)|, + [2(t)]p < ep+ |Z(t)|p for ¢ > 0. Since |(|o < ©p,

the stability of u, is a consequence of the stability of M.. O
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APPENDIX A. AN ADDITIONAL REGULARITY RESULT

We now establish an improved version of Proposition 15 of [12] needed to show
that the center, center-unstable and unstable manifolds are Lipschitz in X7.

Theorem A.1. Assume hypothesis (RR), and that (E) and (LS) hold at a function
uyp € X, with B(ug) = 0. Fiz a number T > 0 which is strictly smaller than the
mazimal existence time t¥ (ug) of the solution uw of (1.1) such that conditions (E)
and (LS) hold at the function u(t) for each t € [0,T]. Then there exists a p > 0
such that for each initial value vy € M with |vg — uolp, < p the solution v of (1.1)
with v(0) = vy satisfies
[0 = )|, (fo.17) < ¢lvo — wolp, (A1)
where the constant c is independent of vy but may depend on u,T, p. In particular,
for each T € (0,T) we have
v — u”Cl—l/T’([T,T];Xl) < o(7) [vo — uolp- (A2)

Proof. The existence of a solution v with the initial value vg € Bx, (uo, p) was shown
in [12, Thm.14] for sufficiently small p > 0, whereas the number T > 0 exists due to
Remark 1 of [12]. Similarly, there is an € € (0,1/2) such that 7" = (1+€)T < t* (ug)
and (E), (LS) hold at all functions u(t) for t € J' = [0,T']. We set z(t) = v(t)—u(t),
zo = Vg — g, and wy (t) = v(At) —u(At) fort € J=1[0,T] and A € (1 —¢,1+¢€). As
in Section 2 of [12], we define A.(t), B.(t), G(t,-), and H(t,-) as in (2.15), (2.17),
and (2.18) replacing u, by u(t). Note that z solves the resulting version of equation
(2.21) with A, replaced by A,(t) and B, replaced by B.(t). Moreover, we denote
by S the solution operator of the corresponding version of equation (2.22), see [12,
Thm.2]. Then wy satisfies:

Orw (t) = AM(o(At) — a(At))
= M—=A.(At)(v(At) — u(At)) + G(At,v(At) — u(At))), on Q,t >0,
B.(At)wy(t) = H(At, v(At) —u(At)), on 9Q,t >0,
wx(0) = zp, on .
So wy, solves the initial-boundary value problem
Ow(t) + Ac(H)w(t) = G(A,w)(t), on Nt >0,
B.(H)w(t) = H(A\, w)(t), on 0Nt >0, (A.3)
wo = zpg, on £,
where we introduced the maps
G\ w)(t) = (Ax(t) = MAL(A))w(t) + AG(At, w(t)),
H(A, w)(t) = (B«(t) — Bi(At))w(t) + H(At, w(t)),
forw e Ey(J), t € J,and A € (1 —¢€,1+ €). We observe that
G\, w)(t) = Au(®)w(t) + A'(u(t)[w(t), u(t)] — F' (u(t))w(t)
— AM(u(At) + w(t)) (u(At) + w(t)) + AA(u(At))u(At)
+ AF (u(At) +w(t)) — AF (u(At)), (A.4)
H(\, w)(t) = B’ (u(t))w(t) — Bu(At) + w(t)). (A.5)
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We claim that the map A +— u(\-) belongs to C*((1 —¢,1 +¢),E{(J)). Indeed, for
A€ (l—¢14¢€) C(1/2,3/2) we have:

u(pt) — u(Mt) — (u — Ntu' (M) = L}\)\ /01 At (u' (N +0(pu — N)t) — o/ (At)) do

= ’%A 01 (((A + 00— N (A +60( = N)t) — )\tu’()\t)) o (A.6)
(=N [ ot /
D /0 [()\—s-e(u_)\))t}()‘t+9(#*)\)t)u (Mt +0(u — A)t) db.

We note that the expression in the square brackets in the last interval is contained
in [0,2], and recall that tu’ € E1(J’) due to [12, Thm.14]. Moreover, the dilation
operators T, given by T, f(t) = f(at) on E;(R.) are strongly continuous in a > 0.
(Below, we extend u from Eq(J') to Eq(R) to use the strong continuity.) Thus
(A.6) yields

e = w(h) = (= N () e, )
< 20— Ale(Blu— A) + el — A < i — M =(i— A,
showing that dyu(A-) = tu’(A-) in E;(J). Since also
(M) — () = A~ (Mt (M) — pat (ut)) + (A1 — )t (),

the map A\ — wu(X) € E{(J) is continuously differentiable. Combining this fact
with the observations in [12, §2], we see that the map (A, w) — G(A, w) € E¢(J) is
continuously differentiable with G(1, w) = G(w), 2G(1,w) = G'(w), and
G, w) = (Au) — A(u+ w))u — A(u + w)w + F(u+w) — F(u)
(A () — A+ w) [t 0] — A+ w)ftd, ] (A7)
+ (A(u) — A(u + w))tu' + (F'(u+ w) — F'(u))tu'.
We claim that B’'(u) € B(E{(J),F(J)). Indeed, due to Proposition 10(Ib) of [12]
with u, = 0 we only need to check that B'(0) € B(E1(J),F(J)) which follows from
(16) and (17) in [12] and [17, Thm.4.6.4.1]. Proposition 10 of [12] then implies

that the map v — B(v) belongs to C'(E1(J),F(J)). Therefore the map (A, w)
H(\, w) is contained in C*((1 —€,1 +€) x E1(J),F(J)) with

H(1,w) = H(w), 8H(1l,w)=H(w)

01 H(1,w) = —B'(u+ w)tu' = (B'(u) — B'(u + w))tu’,
using that B(u(At)) = 0, and hence 0 = & B(u()\-)) = B'(u(\))tv’. In order to
solve (A.3), we set

LA, w) =w—S(z0 — NpyH (0, 20) + NpyoH(A, w), G\, w), H(A, w)), (A.9)

where N, € B(Y,,X,) is a right inverse of B'(up) = B.(0) (see [12, Prop.5]).
Because of B(ug + 2z9) = 0, we infer:

B.(0)[z0 = NpH (0, 20) + NpyoHI(A, w))] = H(A, w)(0).

Therefore Theorem 2 of [12], (2.13), and the properties of G and H, established
above, show that £ € C1((1 —¢,1+¢€) x E1(J),Eq(J)) and that

L(1,2) =2z — S(20,G(2),H(2)) =0,
02L(1,2) = I — S(NpyoH'(2), G'(2), H'(2)).
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Since [|2]|g, () < clz0lp < cp by [12, Thm.14], Theorem 2 and Proposition 10 of [12]
and (2.13) imply that 9,L£(1, 2) is invertible if p is sufficiently small. So we obtain
a function ¥ € C1((1—¢,1+¢€),E1(J)) for some 0 < ¢ < € satisfying ¥(1) = 2 and
LA, ¥(A)) =0. Set wo(A) = ¥(N)(0). Using [12, Cor.12] in the estimate, we derive

wo(A) — 2o = Np(H(A, ¥(A))(0) — H(0, 20)) (A.10)
= Np(B'(ug)wo(X) — Blug + wo(N)) — B’ (ug)20 + B(uo + 20))
= —N,(B(ug + wo(N)) — B(ug + 20) — B’ (ug + 2z0)(wo(A) — 20))
+ Ny (B (uo) — B'(uo + 20))(wo(N) — 20),
lwo(A) = 2olp < ez(]20 — wo(A)|p) [wo(A) = z0lp + ce(|20lp) [wo(A) — 2olp-

Observe that |20 — wo(A)[p < cllz — W(A)[|g,(s) by (2.11). Decreasing é > 0 and
p > 0 if necessary, we thus conclude that wo(A) = zo. Hence, ¥(X) solves (A.3) due
to (A.10) and (A.9). Possibly after decreasing é > 0 once more, we deduce that
U(A\) = wy from (A.3) and Theorem 2 and Proposition 10 of [12]. As a result,

to—a) =V (1) = - L(1,2) 11 L(1, 2)
= 02L(1,2) ' S(Nyyodi H(1, 2), 0:G(1, 2), 0, H(1, 2)).
Theorem 2 of [12], (A.7), (A.8), (2.7), (RR), and Lemma A.2 below now yield

(0 — )|, (1) < c(|01G(1, 2)|lge sy + [[O1H(L, 2)[lr ()
<clzlg, < clvo—uolp,

which is (A.1). Finally, for 7 € (0,7)) Sobolev’s embedding theorem implies that

v = ullor-1m(rryx,) < cllv = ullwrrmx,) < e(0)|[t0 = tillg, ) + cllv — ullg, (1)
< e(7) Jvo — uolp - O

The proof of the following lemma is omitted. It uses arguments from the proof
of Proposition 10 in [12].

Lemma A.2. Assume that (RR) holds and J = [0,T]. Then the map v — B'(v) €
B(E,(J),F(J)) is locally Lipschitz on Eq(J).
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