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ABSTRACT. We investigate sectoriality and maximal regularity in LP-L%-
Sobolev spaces for the structurally damped plate equation with Dirichlet-
Neumann (clamped) boundary conditions. We obtain unique solutions with
optimal regularity for the inhomogeneous problem in the whole space, in
the half-space, and in bounded domains of class C*. It turns out that the
first-order system related to the scalar equation on R"™ is sectorial only after
a shift in the operator. On the half-space one has to include zero boundary
conditions in the underlying function space in order to obtain sectoriality
of the shifted operator and maximal regularity for the case of homogeneous
boundary conditions. We further show that the semigroup solving the prob-
lem on bounded domains is exponentially stable.

1. INTRODUCTION AND PRELIMINARIES

In this paper, we study the linear structurally damped plate equation with
inhomogeneous Dirichlet-Neumann (clamped) boundary conditions given by

OFu + A%u — pAdyu = f, (t,z) € (0,00) X G,
u = go, (t,z) € (0,00) X OG,
(1.1) dyu = g1, (t,z) € (0,00) x OG,
uli=0 = o, T €G,
Oult=0 = 1, x e q.

Here, p > 0 is a fixed parameter and 0, stands for the normal derivative with
respect to the outer unit normal. We treat the full space G = R™ (where we
drop the boundary conditions), the half-space G = R} := {z € R" : z,, >
0}, and bounded domains G' C R with a boundary of class C*. We establish
maximal regularity of type L for the inhomogeneous problem (1.1) and discuss
sectoriality of the operator matrix governing the associated first order system.
The generated semigroup is exponentially stable for bounded G.

The undamped plate equation with p = 0 occurs as a linear model for vi-
brating stiff objects where the potential energy involves curvature-like terms
which lead to the Bi-Laplacian (—A)? as the main ‘elastic’ operator B, see
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e.g. Chapter 12 of [25] or [27]. (In the one-dimensional case one obtains the
Euler-Bernoulli beam equation.) In this model, energy dissipation is neglected
and the equation has no smoothing effect as the governing semigroup is unitary
on the canonical L?>-based phase space. One adds damping terms to incorpo-
rate the loss of energy. Structural damping describes a situation where higher
frequencies are more strongly damped than low frequencies. Here the damping
term has ‘half of the order’ of the leading elastic term, as proposed in Russell’s
seminal paper [27]. Such systems have been studied in detail also from the view-
point of dynamical systems and control theory, see e.g. [5], [20], [23], [29] and
the references therein. In the L? case, the basic generation results were already
obtained in [6]. It turned out that the underlying semigroup is analytic, which
is false if the damping operator is a fractional power of the elastic operator with
exponent strictly less than 1/2. In this sense, structural damping is a borderline
case. The case of strong damping (where the elastic operator is bounded by the
damping operator) is easier as it can be handled by perturbation arguments,
see e.g. Section VI.3.a of [14].

Structurally damped plate and wave equations can also be considered in LP-
based spaces for p # 2 (in contrast to the weaker damping given by —pdiu),
which is very convenient for the treatment of nonlinear terms in the framework
of parabolic evolution equations, see e.g. [4], [7] and [28]. However, in this con-
text the available existence results are restricted to the very special case that
the damping operator is a multiple of the square root B/2 6f the elastic op-
erator B (which we call the square oot case). On the other hand, in L? one
can treat much more general problems, [6]; but these results use the numeri-
cal range in an essential way and seem to be restricted to the L? case. In our
problem (1.1), the damping operators is a multiple of BY/? only if G = R™.
For other domains the square root case corresponds to the boundary conditions
v = Au = 0 on OG. In the square root case one can easily compute the re-
solvent of the associated generator in terms of the given operators and show
its sectoriality, see [16] and the references therein, as well as [4], [7], [8], [15],
[28] for more recent contributions. Moreover, Theorem 4.1 of [7] shows maximal
regularity in the square root case if the elastic operator B has an “R-bounded
H®-calculus’ (which can be applied to our case if G = R™). In these papers,
inhomogeneous boundary data have not been considered.

In our work we establish a fairly complete well-posedness and regularity the-
ory for (1.1) with inhomogeneous boundary conditions in an LP context, where
p € (1,00). We have chosen the (arguably most basic) situation of a clamped
plate (i.e., having Dirichlet and Neumann boundary conditions) governed by
the Bi-Laplacian and the Laplacian. We believe that our methods also apply
to analogous general systems with coefficients and other boundary conditions,
provided that appropriate ellipticity and Lopatinski-Shapiro conditions hold,
cf. e.g. [10]. For conciseness we do not investigate such generalizations here.
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The problem (1.1) on a bounded domain is reduced to corresponding equa-
tions on the full and half-space by localization, transformation and perturba-
tion, see Section 5. In our approach we use ideas from [10] and [11] where
different, more standard parabolic systems have been treated. We rewrite (1.1)
as a system of first order in time with the new state v = (u,dyu)', which is
governed by an operator matrix A(D) on R" or Aj, o on R}, see (2.2) and (4.1),
respectively. This has the advantage that one works in the framework of well
developed theories for operator semigroups, dynamical systems (cf. [5]) and con-
trol problems (cf. [23]). We further see that our problem leads to a mixed-order
boundary value problem in the sense of Douglis-Nirenberg, see e.g. Proposi-
tion 3.4 and [9]. The full and half-space problems are then solved via Laplace
transform in time and Fourier transform in space. To invert these transforms,
we mainly use Michlin’s theorem and employ its operator-valued version due to
Weis, [31], for the inversion of the Laplace transform. This step requires recently
developed methods from operator-valued harmonic analysis briefly indicated at
the end of this section.

The full space problem is solved in Theorem 2.5. In Section 2 we however focus
on a detailed study of regularity properties of the resolvent of A(D) needed later
on, see Theorem 2.3. These results are based on an analysis of the symbols
associated with (1.1) which play an essential role in our approach. We thus
present detailed proofs although some of the results could also be deduced from
e.g. [7] and [16]. In Section 3 we derive the crucial solution formula for the
parameter-dependent elliptic boundary value problem (3.1) corresponding to
(1.1) on R%} and establish the core estimates on the operators appearing there,
see Theorem 3.5 and Corollary 3.6. These facts rely on a thorough investigation
of the relevant symbols in Lemma 3.2. We further show in Proposition 3.4 that
the operator matrix A(D) with Dirichlet-Neumann boundary conditions is not
sectorial in H2(R") x LP(R') even if we allow shifts. The resolvent still exists
but it does not satisfy the sectoriality estimates. This is actually a general
phenemenon of such elliptic systems if the state space allows traces relevant to
the boundary conditions, see [9].

Theorem 4.4 then shows that the restriction Ao of A(D) to Hg}o(Rﬁ) X
LP(R? ) is sectorial after applying a shift. To derive the resolvent estimate, one
has to exploit the additional zero boundary conditions of the right-hand side,
which is done using the Hardy-type Lemma 4.1. Such techniques may also be
applied to other Douglis—Nirenberg systems on state spaces involving regularity
in future work. In Theorem 4.5 and 4.6 we then deduce well-posedness and
maximal regularity of (1.1) on R from the previous results combined with
semigroup theory and operator-valued harmonic analysis. In the last section,
we finally treat the case of bounded domains. Here we can omit many details
which are similar to, e.g., [10] and [11]. We further use standard spectral theory
of analytic semigroups to show that the semigroup solving (1.1) on a bounded
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domain is exponentially stable. (This fact was recently shown in the square
root case, [15].) We thus obtain maximal regularity on (0, c0) and not just on
bounded time intervals as for the full and half-space.

We will investigate maximal regularity in the sense of well-posedness in LP-L4-
Sobolev spaces for equation (1.1). For this, we will make use of the concept of R-
boundedness and vector-valued Fourier multiplier theorems which has become
kind of standard for LP-theory of boundary value problems. We give a short
summary of these tools, for a more detailed exposition we refer to [10] and [22].

Let X and Y be Banach spaces, and let L(X,Y") be the space of all bounded
linear operators from X to Y. For an interval J = (0,7) with T € (0, o0], we
denote by L4(J; X) the X-valued Li-space, by Hé“(J; X), k € Ny, the X-valued
Sobolev space, and by W7 (J; X) := By, (J; X), s € (0,00) \ N, the X-valued
Sobolev-Slobodeckii space (which coincides with the Besov space). Moreover,
(+,-)a,q stands for the real interpolation functor. Throughout, we let p € (1, c0).

A family 7 C L(X,Y) of operators is R-bounded if there exists a constant
C > 0 such that for all m € N, (T})g=1,..m C T, and (x)k=1,..m C X we have

T <O X
ngk KUk Lr([0,1;Y) — ;Tkxk

Here the Rademacher functions ry, k € N, are given by r: [0,1] — {—1,1},¢ —
sign(sin(2*7t)). If two families 7; C L(X;,Y;), 7 € {1,2}, are R-bounded, then
also 71 + T2 (if X1 = X9 and Y7 = Y5) and 7577 (if Y1 = X3) are R-bounded.
Domains of closed operators are endowed with the graph norm. A densely
defined, closed operator A: D(A) € X — X is said to have mazimal L9-
reqularity, 1 < q < oo, in the interval J = (0,T) if the Cauchy problem

Owu(t) + Au(t) = f(t), teld,

uli—o = up,

LP([0,1]:X)

has, for every f € L(J;X) and ug € (X, D(A))1-1/q,, & unique locally inte-
grable solution u : J — D(A) such that dyu, Au € L4(J; X) and

10wull La(s.x) + AUl Lagrxy < C(1fllpacr;x) + HUOH(X,D(A))l_l/q,q)

with a constant C' independent of f and ug. If J is bounded or A is invertible,
this property is equivalent to the isomorphy

(91 -+ A704) + Hy(J:X) 0 LA DA)) = LT3 X) x (X, DA 11/

where vo+: u — ult=o denotes the time trace. It is known that —A generates
an analytic Cp—semigroup if it has maximal L9-regularity. If this semigroup is
exponentially stable, then one even obtains maximal L?-regularity on (0, c0).
In the following, we use the notation ¥y := {z € C\ {0} : |argz| < ¥} for
¥ € (0,7]. Recall that a closed operator A: D(A) C X — X is called (R)-
sectorial if A has dense domain and dense range, and if there exists an angle
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¥ € (0,7) such that p(—A) D B, _y and the set {\(A+ A)~1 : X € Xy}
is (R)-bounded. In this case, the angle of (R)-boundedness is defined as the
infimum of all ¥ for which this holds.

A Banach space X is called of class HT if the vector-valued Hilbert transform
is continuous in L9((0,00); X) for some (and then any) ¢ € (1,00). Sobolev—
Slobodeckii spaces with p € (1,00) are of class HT, as well as their X—valued
analogues if X is of class HT. It was shown by Weis in [31] that a sectorial
operator in a Banach space of class HT has maximal Li-regularity for all ¢ €
(1,00) if and only if the set {\(A+ A)~!: ReX >0, A # 0} is R-bounded.

2. THE FULL SPACE CASE

In this section we solve (1.1) in the whole space G = R" (omitting the
boundary conditions). Let us remark that in this case (1.1) can be treated by
an operator-theoretic approach as it can be written in the form

P + pBl/Qﬁtu + Bu=f, t € (0,00),
(21) u‘tzo = 0,
Opuli=0 = ¢1

with the operator B: D(B) C LP(R") — LP(R"™) being defined by D(B) :=
H2(R™) and Bu := (—A)?u. Therefore, (2.1) is related to the quadratic operator
pencil V': H;‘(]R") — LP(R™),

V(A) := A2+ \pBY2 + B = (ay A+ BY?)(a_X+ B'/?),

where
2
ay = -
i /1-2 0<p<2
Defining the angle ¢ = J(p) by

2 2
9(p) = arctan 3 1-4%, 0<p<2,

0, 2<p<o0,

we can write oy = e for p < 2 and ay > 0 as p > 2. Note that argaq =
+9(p) and ¥(p) 5 for p \ 0.

By the theory of quadratic operator pencils and second-order Cauchy prob-
lems, we can invert the operator V(A) and show maximal LP-regularity, see
Theorem 3.4 of [16] and and Theorem 4.1 of [7], as well as [4] and [28]. How-
ever, a more detailed investigation of the related first-order system will be useful
for the analysis of the half-space. To this aim, we set v = (u, dyu) "
(1.1) with G = R™ as

and re-write

0

O + A(D)y = < ;

>, (t,z) € (0,00) x R",
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¥o
V=0 = < , x € R",
©1

with A(D) := Z1A(£).#, where .Z denotes the Fourier transform in R™ and
the matrix-valued symbol A(§) is given by

40 = (ige )

Note that the Fourier transform is defined by
o [ eewn, cerr,

for Schwartz functions ¢ € ./(R") and extended by duality to tempered distri-
butions. Here and in the following, we use the standard multi-index notation
and put D = —iV = —i(dy,...,0,)". We also set

(F9) (&) =

A@szx+maz(ﬁ4kgjw>-

We thus have

(2.2) A(D)_<(_OA)2 __;A) and A(D,)\)_<(_2)2 A:£A>.

Employing the spaces
E := H2(R") x LP(R™),
F:= Hy(R") x H}(R"),

we introduce the unbounded operator A,: D(A,) CE — E by D(4,) :=F and
Apu := A(D)u. Note that for the weight matrix

sie = (1Y)

the operator Si(D) = F151(¢).7 defines an isomorphism of E onto
LP(R™;C?), and we thus have the equivalence of norms || f|g = ||S1(D)f| »-
Setting S2(€) := (1 + |€|?)S1(€), one obtains Sa(D) € Lisom(F, LP(R"™; C?)) and
[ulle = [[S2(D)ul e

Remark 2.1. Below we will use Michlin’s theorem in the following variant:
Let b: (R™ x $:_9_2) \ {0} — C, (§&,)\) — b(&,N), be infinitely smooth and
homogeneous in (&, )\1/2) of degree 0. Then 550?)\7016 18 uniformly bounded for
(6,0) € (R" x Xr_y_) \ {0}, for each B € N& and v € N3 (where we identify C
with R? ). Michlin’s theorem then implies that [|NY0Y.F ~*b(-, \).F || (1o(rny) < C
with a constant C' not depending on X (see e.g. Theorem 5.2.7 of [18] and the
remarks preceding it). In fact, in this situation the family of operators

{NRF (AT A€ _y_.} C L(LP(R™))
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is even R-bounded by Corollary 3.3 in [17]. This applies to symbols of the form
As—lal)/2¢a
(A + [€[2)s/2

with s € N and |a| € {0,...,s}. We will tacitly make use of these facts in the

estimates below.

We first show that A, + X is invertible for all A in the above setting, but that
A, fails to be sectorial. Later we will see that A, + Ao is R-sectorial for every
positive shift Ag.

Proposition 2.2. a) For 0 = ¥(p) and all A € X,_y, the operator Ay, + X :
F — E s invertible.

b) The operator A, is not sectorial in E for any angle and, consequently, —A,
does not generate a bounded Cy-semigroup on E.

Proof. a) Due to the definition of the spaces, the operator A, + X\ belongs to
L(F,E) for every A € C. Let A € ¥,_y. From the identity

det A(E,A) = X + Ml * + [€]* = (agx X + [€1) (=X + [

and at\ € X, we deduce that A(, \) is invertible with inverse

L 1 A+plel? 1
(2:3) AGN) —(a+A+y§|2)(a_A+!£I2)< —lert A>'

To show that (A4, + A\)~! exists in L(E,F), we have to establish M(D,\) €
L(LP(R™;C?)) for the matrix-valued multiplier symbol

M(€, ) = S2() A, N)TH81(€)

Direct calculations lead to

o A plel 1Y
MEN = e @ (0T ) s
_ 1 ((1+ €PN+ plel?) (1 + |€|2)2>
(g A+ [€2) (a=A + [€]2) —l¢|t A1+1¢?))°
For every fixed A € 3, _y, each of the terms
L+ ¢/ A N
az A+ €27 ax A+ €)% ag )+ [€)?

can be estimated by a constant depending only on A and p. Similarly, the k-th
derivatives in ¢ of each term are bounded by a constant times |¢| %, where the
constants depend on A, p and k. Michlin’s theorem then implies M (D, \) €
L(LP(R™;C?)). Clearly, M(D,)) is the inverse of Si(D)A(D,\)S2(D)~! in
L(LP(R™;C?)), and thus assertion a) holds.

b) Assume that A, is sectorial in E of some angle, i.e., [|AN(Ap+X) " @) < C
for all A € (0, 00) with some constant C' independent of A. Similarly to a), this
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property is equivalent to the uniform boundedness of the operator My(D, \) €
L(LP(R™;C?)) with the symbol

Mo(&,2) == AS1(&)A(EN) 1516~

(24) — 1 A+ plEP) - A1+ 1)
) (e A+ €2 (a X+ [€]?) _11'%2 22 )

Since every LP-Fourier multiplier is an L*°-function (see e.g. Proposition 3.17
n [10]), we derive

Al + €) ’
(e A+ [E2) (A + [€]*) 1~

for all A > 0 and £ € R™, where the constant C' does not depend on A or £.

However, setting A = k=2 and |[¢| = k~! with k € N, the expression on the

mﬁiﬁ which tends to co as k — oo. O

Although A, is not sectorial, certain A\-dependent estimates for the inverse
operator are valid in each sector X;_y_. with € > 0. One could formulate the
next result more concisely within homogeneous Sobolev spaces, but for simplic-

ity we avoid this setting. We often denote the vector-valued space LP(R™; C™)
also by LP(R"), for any m € N.

left-hand side equals

Theorem 2.3. Let € € (0,7 — V), A € Xy_g_c, and h = (h1,hs)" € E. Set
v = (v1,v9)" := (Ap + A)"th. Let k € {0,1,2}, a € NJ with |a| =k, v € N,
and 6 € Nj with |§| = 2. Then there is a constant C. > 0 such that

DaD6
@3 |8 (o) ey = G U8kl + el

Do Lr(R™)
ko
: ViliLe(Rn) = Ce LilLP (R™) 21lLP(R™))
(2.6) IX%72 D%y | < Ce([IAn]| + ||z )
Moreover, the families of operators
DeD?
(2.7) {ma} [)\1*3 ( . £a> A(D,A)*l} e EHH}

in L(E, LP(R™)) and

(28) {xa [A1—§<DQOD6 l;)a)A(D,A)‘l(()\ _OA)_I ‘D] AeT),

(2.9) {ma} [(A — A)25 (D 0)A(D,\) ! <(A _OA)_l ?) ] e z,r_ﬂ_e}
in L(LP(R™)) are R—bounded.

Proof. We proceed as in the proof of Proposition 2.2, where we replace the
matrices S;(§) by

(o (€70 ' etk
S1(&) == 0 1 and  Siaqp)2(8) = [£]751(E)
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and use the symbols

Mp(€,X) = )\1_55(2%)/2(5)14(5, A) St
_ N5 gl <A+pa2|ﬂ3
(A + €2 (X +[¢2) \ —lf A
for k € {0,1,2}, cf. (2.3). We fixe € (0,7—9) and take A € X, _y_. and £ € R™.

Observe that then the expressions

A+ e A+ e

are uniformly bounded. Moreover, 2|)\\% €] < A + [ and V|¢| = £]¢]7E
Therefore the terms &7 8? A9 M, (&, \) are bounded by a constant depending
on |al, |v| and €, but not on A € ¥;_y_. and £ € R™. A result by Girardi and
Weis (Corollary 3.3 in [17]) now says that the family of operators

(N8 My(D,\) : A € Br_y_c} C L(LP(R™))

is R-bounded for each ¢ > 0. Since the symbols £* [¢]~1%l and |€|2(1 + |£]?)~!
also satisfy the assumptions of Michlin’s theorem, the estimate (2.5) and the
assertion about (2.7) follow.

In the definition of Mj, one can replace S1(£)~! by the symbol

((A + !5\2)1 (1)>

and then establish the R-boundedness of the operator family (2.8) as above.
By means of the symbols

)\l—k/2§a()\+p|§‘2) AQ—k/ngz
(g A+ [E2) (@ A+ [€17) 7 (ap A+ [€P7) (- A+ [€7) )7

(A + [¢]*)?~* 2 Atplel
(@ A+ [EP (@A +[EP) \ A+ )

we finally derive (2.6) and the R—boundedness of (2.9) from (2.3) and Michlin’s
theorem as before. O

Although the operator A, is not sectorial, the above theorem contains precise
resolvent estimates. By the next result, the singularity for A — 0 disappears if
we consider the shifted operator A, + Ao with \p > 0.

Proposition 2.4. For every Ao > 0, the operator A, + Ao is R-sectorial with
R-angle 9(p).

Proof. As in the proof of Proposition 2.2 b), we have to consider My(&, A) from
(2.4) with £ € R” and A € Ao + X,_y_. for fixed \yg > 0 and € € (0,7 — ¥).



10 ROBERT DENK AND ROLAND SCHNAUBELT

However, as a4\ cannot approach zero, now the term
AL+ [€P)
(ap A+ €2 (A + [£[?)
is uniformly bounded for A € A\g + X,;_y_.. The same holds for all other terms
of My(&,A) and for §B8§’3Mg(§, A) with g € Njj. Using Corollary 3.3 in [17], we
deduce that A, + Ao is R-sectorial in E. O

Proposition 2.4 allows us to solve (1.1) in optimal regularity. Part b) of the
next result would also follow from Theorems 2.1 and 4.1 of [7].

Theorem 2.5. a) The operator —A, generates an analytic Cy-semigroup on E
and has mazimal Li-regularity on bounded time intervals for every q € (1,00).

b) Let f € LP((0,T); LP(R™)) =: &€ for some T > 0, pg € W;l_wp(R”) and
1 € WpQ_Q/p(]R"). Then there is a unique solution

w € Hy((0,7); L"(R")) N LP((0,T); Hy (R")) =: F
of (1.1) on G =R", and there is a constant C,,(T') > 0 such that
Jullz < CoT)(1Flle + 90l 1o gy + 1911z 7o g

c) Let f =0, ¢o € HE(R”) and @1 € LP(R™). Then there exists a unique
solution u of (1.1) on G = R™ with

Fu, 0, V*u, Viu € C(Je, 00), LF(R™))

for each € > 0 and
dwu, Vu € C([0,00), LP(R™)).
If vy € H;}(R”) and 1 € Hg(R”), we can take € = 0.

Proof. Assertion a) follows from Proposition 2.4, Theorem 4.2 in [31] and rescal-
ing, since we have J(p) < 5. In the context of part b) we thus obtain a unique
solution v = (v1,v2)" € H((0,T);E) N LP((0,T);F) =: X of the first-order
problem

dw+ AD)w=(0,f)", t>0,

(2.10) N

v(0) = (o0, ¢1
Moreover, [l < CplT) (17 llcr) + 1160, 01)ll g2/ gy -2 gy o1 s0OME
constant Cp,(T) > 0. (See e.g. Theorems 1.14.5 and 2.4.2/2 in [30] for the
relevant properties of real interpolation spaces.) We set u := v;. The first com-
ponent of (2.10) then yields 0,u = vo which easily implies that u belongs to F,
solves (1.1) and satisfies the estimate in b). Conversely, if u € F solves (1.1),
then v := (u,du) " belongs to H}((0,T); E) N LP((0,T);F) and fulfills (2.10).
We recall that F < H, (J; H}(R™)). (This fact can be found, e.g., in Lemma 4.3
of [12].) Hence, assertion b) holds. Part c) can similarly be shown using that
—A,, generates an analytic Cp-semigroup on E. U
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3. THE STATIONARY PROBLEM IN THE HALF-SPACE CASE

In this section we treat the model problem in the half-space R’}. We start
with a homogeneous right-hand side and inhomogeneous boundary conditions.
We thus study the parameter-dependent boundary value problem

A(D,N)v =0 in R,
(3.1) v=go  onR"
—0OpV1 = g1 on Rn_l,
for A\ € ¥,_y and given functions gy and g; on R”™!, say in the Schwartz class.
Following a standard approach in parameter-elliptic theory, we apply the

partial Fourier transform .%’ in the tangential variables 2’ := (x1,...,2,_1)'.
We set w(zy,) := w(, xpn, A) := (F'v)(&, x4, ) and

/ — A _1

Problem (3.1) then leads to the family of ordinary differential equations

(3.2) A€, Dy, Nw(zxy,) = 0, Tp >0,
(3.3) w1(0) = (F'g0)(§),
(3.4) ~0hw1(0) = (F'g1)(&),

on the half-line Ry, where ¢ € R"~!. Equation (3.2) gives wy = Aw; for the
solution wy of

(3.5) Nwi(an) + Ap(I€']* = Op)wi(wn) + (1€ = ) *wi(wn) =0, 2> 0.
To solve this equation, we consider its characteristic polynomial
P(r) = N 4 Ml —7) + (€7 — )2,

Straightforward calculations show that the roots of this polynomial are given
by 7 = £4/[¢'|2 + ax\. We know from the beginning of Section 2 that arg ay =
4+, and hence |¢'|?> + az) € (—o0,0) for A € ¥ _y. The above square root is
thus well-defined. The roots with positive real part are given by

=N = V&2 +arh and =7 N) = V|2 +a

We have 71 # m for p # 2, while in the case p = 2 the root 7 = 7 has
multiplicity 2. For fixed ¢ > 0, we obtain Re7; > C|7;| and

(3.6) CUE + A2 < (€, )| < C'(E P+ 1A)?

for all ¢ € R* ! and A\ € ¥,_y_.. Our arguments below also involve the points
7(r, &\ A) = 7(r) == 11+ (12 — 1) € Br_e)j2, 7 € [0,1], on the straight line
between 7 and 7o, which also satisfy

(3.7) CUEP + MDY < |r(r, &, ) < C'(E'P + A2
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for all r € [0,1], ¢ € R} and A € ¥;_y_.. Here, the upper inequality directly
follows from (3.6). For the lower one, the above estimates yield
|7(r)] > Rer(r)=(1—r)Remy +rRemns > C (1 —7)|mi| +7|m|)
> C(IE'F + [A)M2.

Here and below, C,C’, ... stand for generic constants which may be different
in each appearance and which are independent of ', A, and y,, (but which may
depend on ¢ and p).

Lemma 3.1. Let & e R and \ € X,_y. We define the fundamental solutions
W@ = (W€, N)j12: (0,00) = C2 fori € {0,1} by

w%O) ({’, Tn, )\) — T1i7—2 (_TQe—TMn + 7'16_7250”)7
wgl) (5’7 xn, )\) = T1i7—2 (_G*Tlﬁn + 677'21‘”),
wéi) _ )\wlz')

for p#£2. For p =2 we set
wio) (€ 2, N) = (14 T25)e ™,

w§1)(§/7 Tn,y A) - xne_Txnv
wg) = )\wy),
where T := 11 = 9. Then w® is a solution of (3.2) with the initial values

W0) =1, 0,0{”(0)=0

and
WN0) =0, 9,0M(0) =1,

0)

respectively. In particular, {w( ,w(l)} s a basis of the space of all stable solu-

tions of (3.2).

Proof. We first consider the case p # 2. Then every stable solution of (3.2
has the form w(x,) = (w1(zn),w2(x,)) " with wa(z,) = Awi (x,) and wy(z,) =
c1e” % 4 coe”"2%n The initial values are given by

w(O) =c1+c and (anOJ)(O) = —T1C1 — T2C2.

The formulas for the fundamental solutions now follow directly from the initial
conditions.

Similarly, in the case p = 2, we have a double root 7 =7 = 70 = \/|[&'|2 + A,
and every stable solution is of the form wi(z,) = (¢1 + zpc2)e” ™. The ini-
tial conditions wi(0) = ¢; and (9pw1)(0) = —7c1 + ¢ then yield the asserted
expression for the fundamental solutions. O

The following technical result will be the basis for the a priori estimate of the
solutions of the half-space problems.
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Lemma 3.2. a) For fired e > 0, k € N and ¢ € 7Z, we define the function
fk,f: R (07 OO) X Yr_y9—e — C by
oy (Tfe_m" — 7'246_7””), P+ 2,

Sro(&, an, A) = {Tl_m

ghtlrle=Ton p=2 (witht =1 =T7).

Then for all v € N2 and B’ € NJ™ we obtain

‘)\’yaz(él)ﬂ,aglfkj(f/awna)‘)‘ < C(‘§/’2 + ’)\’)(f—k—l)/2.

b) Letw® i e {0,1}, be the fundamental solutions from Lemma 3.1. Further,
lete >0, ke{0,1,2,3,4} and o = (!, ) € N} with |a| = k. Then for all
vyeN3, B e Ng_l, Tp >0, A\E X _y_o, m €Ny, and & € R"! the inequality

N1G(EN 9 | N5 () (€, N+ [€P) ] | < €
holds for j € {0,1}.

Proof. a) We only consider p # 2, the case p = 2 is treated in the same way (it
is actually a bit simpler). We define

¢

0: 82— C T gk rte=Ton,
Recall that 7(r) = 71 + 7(12 — 71) € B(r_ey2 for 7 € [0,1]. We start with
the case |y| = |8'| = 0. Using the elementary estimate |(7x,)™e """ < C for

T € X(r_e)/2 and x, > 0, we obtain

| fre(€s2n, M| = ‘M‘ = ‘/01 @' (11 4 (72 —Tl))dr‘

T — T2
< Csup [[(zam(r))Fe 7O 4 (a7 (r) e O [ ()|
re(0,1]
<O s [T S COEP + D
rell,

In the last step we employed inequality (3.7). The statement in the case 3’ # 0
and v = 0 follows iteratively from the recursion formula

O¢; frp = fj( LY +lfke—2 — fk+1,£—1)~

T2

This formula can directly be checked observing that 0,7 = 573 for 7 = 7, 0.

For the A-derivatives we note that dy,7 = 5= and 9y,7 = 5=. We compute

1
Oz, fre = Oy, / o (m+r(e—m))dr
0

1
(e} ro_ roa
= / (r+r(n =) (5 + 5 — T ar.
0 27 279 21
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We set o = (|€/|2 4 |\|)'/2. Estimate (3.7) yields

A1 5 g
Mo el < 02 gp ZW ()2~ < O sup [r(r)|E
(o} 0<r<1 0<r<1

< C(IE + IAI)(H_1 2.

The Ao—derivative is treated in the same way so that we have shown a) for

|v] =1 and B’ = 0. The remaining cases can now be established by recursion.
b) For p # 2 and i = 0, we write
72

A€ 0, N) = =T

T — T2 T — T2
= (1 — L) —T1%n + (1 +

T1—T2 7'1 7'2 )

= (e 4 e = fou(€ wn, A).

71 —ToTn

e

—T2X
6271

It follows
2O (O wa, A) = (—1)0rH (g e nan
(3.8) + gLt g _ St tantj41(&s Tn, >\)>

The first term on the right hand side can be estimated by
le+171an+]€—711n ’ — |7_1 ‘an—i—j—m—l | (Tlxn)m+1€_7—1w" ‘

< O(IE]? + A entimm=1r2,
Derivatives with respect to & and A can be handled as in a), and we infer

(3.9) ‘)\731(5/)6/35 [$21+1Tlan+j6_ﬁm"] < O(|€']2 + |A|)lenti—m=1)/2,

The same inequality holds for the second term in (3.8), and due to part a) also
for the third one.
For p # 2 and i = 1, we have wgl)(f’,xn, A) = fo,0(¢,zn, A) and hence

2O I (€ 20, ) = (<D™ fint,a,45 (€ 2, A).
Assertion a) then implies

‘)\’yaz(é'/)ﬁ’ag, [x;n‘i’lagn‘i"ngl) (5/7.%,”7 A)] ’ S C(’§/|2 4 ’A|)(an+jfm72)/2.

In the case p = 2 (where 77 = 79 = 7) the situation is similar. For
w%o) (& xn, A) = (1 + 72,)e ™, Leibniz’ formula yields
‘:L,nm-l—lagn—&—ngﬁ) (5/’$n> | _ ‘xm—l—l an+j(1 —a, — ] + T:L’n)e_T:C"’

< O/ + A entimm=br2,

The derivatives with respect to ¢ and A can then be controlled as in (3.9).

In the same way, we estimate w%l)(g’,xn, A) = xpe” 7. In all cases, we have
established

Ma;/(f/)ﬁlﬁg [ m+1604n+jw( )(5 ffn,)\)]‘ <C(e)? + W)(anﬂ'—i—m—l)/g
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The statement in b) now follows from Leibniz’ rule and the observation
[VTOR(ENT 0 ()™ N < C(IE!? - A1 T2, 0

In the next result, we introduce the solution operators L;i)()\) for the
parameter—dependent boundary value problem (3.1) and establish the crucial
a priori bounds for these operators. For s > 0 and A € C we will use the
parameter-dependent shift operators (A — A")* = (F')"H (A +|¢/|?)*.F' on R*~!
and (A — A)* = (F) YA + |€2)5.F on R™.

Proposition 3.3. Fori,j € {0,1} and X\ € X,_y, we define the operator L;i)()\)
by

(L (V@) (-, n) = — /f(ﬁ'rlazw&”(-,xn + 4, N (F' D) yn)dyn, a0 > 0,

for all functions ¢ : R} — C which are restrictions of Schwartz functions on
R™. Here the ‘dot’ refers to ' or §’ in R"™1. Then the following assertions hold.
a) Set v\ = LY (N0 + L (N)g and v = 7 XN T for i € {0,1}.
Then vgz)(',xn) = (9’)_1w§l)(~,xn, MN(ZF'9)(-,0) for zy, >0 and
AD, oD =0 in RT, i=0,1,
,Ug))('v 0) = ¢(>O)a 8WU§O)(>O) =0 on Rn_la
v(,00=0, 901,00 =¢(-,0)  on R*L

b) Let e € (0,7 —9), v € N3, k € {0,1,2,3,4} and o € N? with |a| = k.
Then the set of operators in L(LP(R'))

(V8 [A2R2DLY ) (A - AN N e sy L)
is (well-defined and) R-bounded.

Proof. a) Integrating by parts in the integral defining L?(A) , we obtain the
first assertion. The properties of w%i) shown in Lemma 3.1 then yield the second
part of assertion a).

b) Let zp,yn > 0, A € Xp gy ., & € R~y € Ng, k € Nog, o € Nj and
B e Ni~'. Lemma 3.2 b) yields with m = 0
C

/ / _k o aa - I i
X336 05 [\ 5 (€)Y 0 e (€ nym, NOHIER) TR <

where C' does not depend on x,,, y,, A or £’. The Michlin-type Corollary 3.2 in
[17] thus shows that the family of operators

{(g/)—l)\'ya;\y [)\2—%(6/)@/83”4-]'0011')(5/7xn + Un, )\)()\ + |5/’2)(i—j—3)/2} 97/ .
A€ Srg_c} CLILPR™)

is R-bounded with R-bound not greater than mniyn’ for all z,,y, > 0. As the

1
Tn+Yn

Proposition 4.12 in [10] to derive the statement. O

scalar integral operator in LP(R ) with kernel is bounded, we can apply



16 ROBERT DENK AND ROLAND SCHNAUBELT

Based on the above result, we now investigate the inhomogeneous parameter-
dependent boundary value problem

A(D,Nv="h in R,
(3.10) v=go  onR"
—0pV1 = g1 on Rn_l,

for A € ¥;_y and given functions h = (hy,hs) T in R" and go, g1 on R"™1. Due
to the structure of the matrix A(D), the natural choice of spaces is

Ei := H}(R?) x LP(R%),

F, = Hy(R}) x H(R?),

G := W VPR x Wi Vp(R),

We remark that (3.10) is a mixed-order boundary value problem in the sense

of Douglis-Nirenberg, see e.g. [1]. The boundary conditions can be written in
matrix form as B(D)v = g where

B(D) =0 (_gn 8) .

Here vp: v + v|gn—1 denotes the trace onto the boundary R"~! of RY.
By standard trace results (see e.g. Theorem 2.9.1 in [30]), the operator
(A(D,X),B(D)): Fy — E; x G is continuous. As usual, the LP-realization
Ap+: D(A,+) C Ef — E4 of the boundary value problem (A(D), B(D)) is
defined by

D(A,+) ={veF;:BDjv=0} and A, v:=A(D)v.

Note that we can write the domain of this operator in the form D(A, ;) =
(Hy(R:) N H?(R)) x HA(R%), where for k € N we define

HE(R) == {u € HE(R™) : qou = 7o8hu = - = 7005~ u = 0}.

Before stating precise a priori estimates for the solution, we note that \g +
Ap + is not sectorial on E for any shift A\g > 0.

Proposition 3.4. For each Ao > 0, the operator A, . + Ao is not sectorial in
E4 and, consequently, does not generate a Cy-semigroup.

Proof. The mixed-order system (A(D) + Ao, B(D)) fits into the framework
of Section 3.2 of [9] with the Douglis-Nirenberg structure (si,s2) = (0,2),
(m1,m2) = (2,0), and (ry,72) = (—2,—1). By Theorem 3.8 in [9], for every
h € E; and vy € D(A4, ) with A(D,X)ux = h for A € (0,00), the estimate
SUP)e(0,00) [[AVAllE, < oo implies Y0h1 = 4dph1 = 0. Therefore, the desired
resolvent estimate does not hold for h € E; with B(D)h # 0. O
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The proof of the last result indicates that zero boundary conditions have to
be included in the basic space E, . In Section 4 we will indeed obtain a sectorial
operator in this way.

To solve the inhomogeneous boundary value problem (3.10), we make use
of restriction and extension operators. Let eq: LP(R}) — LP(R™) denote the
trivial extension by zero and 7, : LP(R™) — LP(R") the restriction onto R’}.
Instead of the trivial extension ey, we will also consider a global coretraction
ey of ry which satisfies ey € L(H,(R%}), H;(R")) and ryey = idps(ry) for all
s € Ny (see e.g. Section 4.4 of [3]). A parameter-dependent extension operator
from R™! to R’ is defined by

(Bxg)(s20) = (F) " exp (= A+ 1E1) P20) F'9 - (wn > 0).

This extension was studied in [2] and [19], for instance. In particular, Propo-

sition 2.3 of [2] yields (after a minor modification) that E) belongs to
k-1 _ .

LW, " P(R21), HE(R?)) and that By = idyy 1/ gy for all k € N and

A € X _y. We further deduce that

(3.11) OnBErd = —(A— AV2E\G, e WiTHPRTY),

Theorem 3.5. For all A € Xy, h € Ey and g € G, there exists a unique
solution v € Fy of (3.10). Moreover, this solution can be written in the form

v=RN\erh+T(NExg, TN =TON3,+TWD(N)

with operators R(\) and TW(X), j = 0,1 , which have the following R-boun-
dedness property: Let € > 0. Then for all k € {0,1,2}, |a| = k, |6] = 2, and
v E Ng the families of operators

{ma} [Al’épa (%6 (1)> R(\) ((A _OA)l ?) ] A zﬂﬁs}

in L(LP(R™), LP(R7Y)) and

{ma} Al=z pe (D ' O) TU(N) <(A - AR X > ] :

0 1 0 (A — AN (=i=2)/2
in L(LP(RY)) are R-bounded.

A€ 27'('—’[9—6 }

Proof. (i) Let A € Xy, h € Ey and g € G. Weset v/ :=r; (A,+ )" lesh € Fy
(see Proposition 2.2 a)) and write v = v'4+v"”. Then v” has to solve the boundary
value problem

A(D, M) =0 in RY,

3.12
(3:12) B(D)v" = g— B(D)V on R™ 1,
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The function § := (go,g1)" := Exg — ( ) is an extension of g — B(D)v' to

a /
R’ . By Proposition 3.3, a solution of (3.12 ) is given by

(3.13)
! (0) (1)
DG with TO) — [ L A =L ()
;OT (Noy g with TW(N) ()\LS.O)(A) ALgl)(A)>

v =T(\)g:

We remark that the operators L(i) (A) were defined in Proposition 3.3 for restric-

tions of Schwartz functions to R’} , but Proposition 3.3 b) shows that LY L ( )on
can continuously be extended to an operator in L(H, '(R%), H,(R})) for
i,j € {0,1}. In the same proposition, the equalities A(D, \)T ()\)g = 0 and
B(D)T(A\)g = ~og were shown for restrictions of Schwartz functions, and by
continuity this identities also hold for the extended operators. As a result, the
function v := v' 4+ v” € F solves (3.10).

If z € F4 is another solution of (3.10), then ¢ := v — z € Fy solves this
problem with h = 0 and g = 0. In particular, ¢1 belongs to Hp%O(R?r) SO
that g2 = Ap1 € HZO(R") Therefore, egep is contained in HZ(R™;C?) C E
and satisfies A(D, \)egp = 0. This means that A2eqp; = (pA — Negpz in R?
which yields egp1 € Hy (R") and hence egy € F. Proposition 2.2 a) now implies
ep = 0 and thus the uniqueness of the solution of (3.10).

(ii) In this part we fix £ > 0 and consider A € ¥;_y_.. We have seen in part
(i) of the proof that the unique solution v of (3.10) is given by v = R(\)erh +
T(X)Exg where T'(\) is defined in (3.13) and

(3.14) RO\ = ri(Ay+ N1 = T(\) <_1an 8) ro(Ay+ )7

Let |a] = k € {0,1,2}, |§] = 2 and v € N3. By Theorem 2.3, the family

{ma} [Al—’fﬂpa (135 (D (A, + N1 <(A _OA)_I [1)) } e zﬁ_ﬁ_s}

in L(LP(R™)) is R-bounded, i.e., the first term in (3.14) is R-bounded as as-
serted in the theorem. For the second term, we use (3.13) and write

L) L) (= A 0

‘(A= ANU)/2 B
) (azfu_mo+2>/2 o) AN

Let i,j € {0,1}, |o| = k € {0,...,4} and v € N2. The desired statement about
the R-boundedness for the second term in (3.14) now follows from Leibniz’ rule,
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from the R-boundedness of the family
(3.15) {Xyag NF2DLD () (A - ANE3/2] 1y e E,HH}
in L(LP(R")), see Proposition 3.3 b), and from the R-boundedness of the family

{)\vaz [ (A= A)2F2D> 0) (4, +A) 7 (()\ —OA)l (1)> } Y= E,Hgg}

in L(LP(R™)), see Theorem 2.3.
The R-boundedness of the second operator family in the theorem is deduced
from Proposition 3.3 b) and (3.11) in the same way. O

Corollary 3.6. For eache > 0 and \g > 0 there ezists a constant C = C(e, \g)
sucht that for all o] = k € {0,1,2}, |0] = 2 and all A € A\g+X,_y—c the estimate

INF2 D], < C(\Ihlhm +llglle + A2 o)

9_1 3_1
+ I3 lgoll ety + NP il ioeny)

holds for all h = (h1,hs)" € By and g = (go,91)" € G, where v is the unique
solution of (3.10).

Proof. We use the parameter-dependent norms |[|¢[lsprr = |9l Hy®?) +
|)\|5/2||<1>HLP(R1), ¢ € H3(R"), for s € [0,00) and its analogues in R™ and R™!.
By Michlin’s theorem the norm ||¢|spr~ is equivalent to ||(A — A)5/2¢||Lp(Rn)
where the constants of the equivalence may be chosen independent of \ &€
Ao+ Y-

Due to Theorem 3.5, the problem (3.10) has a solution v satisfying

IAH2 D, < C(H()\ — A)eghalLo@ny + lleshllewny + ([l mzey)
+ (A = A)2Exgoll o can) + 1A = A2 Brgullogen))

<0(lim

2pky + [hllEy) + [1Exgollapry + [Exgr |||3,p,R1>-

(We also use the equation Av; = va+h; and the lower bound for |A| in the shifted
sector to deal with zero order part of the norm in E, .) Now the statement follows
from the fact that E) is continuous with respect to the parameter-dependent
norms in the sense that || Exd||s prr < Cs[|9lls—1/pprn—1 forall A € Ez_y_+ Ao,

se€Nand ¢ € W;_l/p(Rn_l), cf. Proposition 2.3 of [2]. O

4. SECTORIALITY AND MAXIMAL REGULARITY OF THE EVOLUTION
EQUATION ON THE HALF-SPACE

In this section we solve the inhomogeneous problem (1.1) on R’} in optimal
regularity. As a first step we discuss the sectoriality of the operator matrix A,
governing the associated first order system.
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We have seen in the previous section that the operator A, is not sectorial
in the basic space E;. As indicated in Theorem 3.8 of [9], see the proof of
Proposition 3.4, one has to include zero boundary conditions already in the
basic spaces. We thus use the spaces

Eo := Hyo(R}) x LP(RY),
Fo := (Hy(R}) N Ho(R})) x HYo(R%).

We will see below that it is advantageous to replace the 0—extension operator
eo from Ej to E by the odd extension es € L(Eg, E) which is defined by

(esf)(x) = {f($)’ it z,, >0,

—f(2,—xy,), ifz, <O0.

The LP-realization Apo: D(Apo) C Eg — Eg of the boundary value problem
(A(D), B(D)) in the space Eg is defined by

(4.1) D(App) :=Fy and A,ov:= A(D)v.
For the analysis of this operator, we start with a Hardy-type result.

Lemma 4.1. Let X be a Banach space and let M be the operator of multi-
plication with t, i.e., (Mf)(t) := tf(t) for functions f: (0,00) — X. For all
f e HZ((0,00); X) we then obtain M~2f € LP((0,00); X) and

1M 72 fll 2o (0.00):%) < CILF" 1 Ep((0,00):) -
In particular, M~2 € L(Hg}o((O,oo);X),Lp((O,oo);X)).

Proof. As f(0) = f'(0) =0, we can write f(¢) fo Jo f"(r)drds and compute

_ _ 1/p
M2 oo = (7 1F015at)

/ (2 ( /t/sHf”(r)HXdrds)pdt)l/p
/0 (// el " dS) dt>1/p
(
(

< (
< (
([ //uwwwp))”
([ //Wm&m@@@

where we substituted p = r/s and o = s/t. With Minkowski’s inequality, we

conclude
/p
12 1| 1o 000x) < // /Hﬂmmm@ dpdo

I/p dp do
// P
// /an )
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p 2
= <p — 1) £ 1 L ((0,00);) - O

Remark 4.2. Let M,, denote the operator of multiplication with x,. Then for
every f € HiO(R’}_) we have M2 f € LP(R™) by Lemma 4.1. This gives addi-
tional information on the Fourier transform of esf because of 0> Fes M2 f =
—Fesf. To see this equality, we may assume that f € Z(R%) by density, and
write

. 1 .
aﬁzn / e_zgnxnxig(fj/%f)({/axn)dxn == / e_zgnxn(y/%f)(g/,xn)dwn-
R n R

We exploit the above observation in the next lemma which will provide the
main step of the proof of the following sectoriality result.

Lemma 4.3. Let e € (0,7 —9) and b: (R" x ¥,_y_.) \ {0} — C be infinitely
smooth and homogeneous of degree 0 in (&, )\1/2). We set

bo(€, ) = —(A + [€')DRb(E, M),
bi(&, A) = —2i(A +[€'[%)20,0(, ),
b2(&,A) :=b(§, A)

for (§,)) € (R x X, _y_.) \ {0}. We then obtain

2
re F (N Fesf =Y ML= A) T2 F (- N) F e M,
£=0

forall f € Hg,o(Ri) and
[+ 7 oo (-, N F el ppr@nyy < C - (£=0,1,2).
Moreover, the operator families
(N F oy(\ N Fes 1 A€ Sry_.} C L(LP(RY))
are R-bounded for every v € N2 and £ = 0,1,2.

Proof. Set fP .= M;2f € LP(R}) for f € P(RL). Let z, > 0. Using Re-
mark 4.2 and integrating by parts, we deduce

F' [re T (N Fes f] (-, mn)

N \/127 /]R eixn{nb('v Ens N(Fesf) (5 &) dn

= _\/127 R eix"E”b(Hgna A)aﬁ(ffesfm)(-, &n) dén

- _\/12? /Ra?l [Cizn&nb('v &ns )‘)] (ﬂesfm)(-, &n) dén
1

_ 1nén | 927/ . ; .
= e [anb(,gn,A)wmnanb(,én,A)

— 2b(, &0 V)| (Fes ), 6n) e
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2
=Y ab F' N = AR T () Fes B (- an).
=0
By density the first assertion follows. As b is homogeneous of degree 0, the same
holds for by with £ = 0, 1, 2. Remark 2.1 thus yields the remaining assertions. [

We now establish the sectoriality of the shifted operator matrix on Eqg which
governs the associated first order system.

Theorem 4.4. For every \g > 0, the operator Apo + Ao is R-sectorial in Eq
with R-angle 9¥(p).

Proof. Let h € Eg, € € (0,7 — ) and X\ € A\g + X,_y—c. As in part (i) of the
proof of Theorem 3.5, one sees that the equation A(D,\)v = h with boundary
condition B(D)v = 0 has the unique solution v given by

1 0
—0p 0
To check the asserted R-bound, we can restrict ourselves to h belonging to
the dense subset Z(R") of Eg. As esh € E, the function v := (4, + A\)"tesh
belongs to F and solves the equation A(D,\)v = esh in R™. Since esh is odd,
also the map x — —v(z’, —x,) satisfies this equation. Because of uniqueness,
the function v is odd, and we obtain y9v’ = 0 for v’ := rv. Therefore, we may
assume that go = 0 in (3.13) and replace the second term in (4.2) by

(4.3)
L (o —1W (1 0 -
Z (0 )\LJ(;)((;)) oy (—(% 0) ri(Ap+ )" tesh

J
1 1 2 )
:< ) SN LONOF I F Y a (N Feshy =t St (A1 + S2(Aha,

(4.2) v =RM\)esh =r (A, +\) tesh —T()\) < > ry(Ap + N tesh.

where we denote the first line of A(&,\)~! by (a11(€,\), a12(&, ), ie.,

> > — Atplg[? 1
(@116, 81206, )) = (Gxeefie s woreme )
see (2.3). Since . ~1a1x(-, \) Feshy is a Schwartz function, we can write
(4) LW T (e, N Feshy,
= L) — AR 2 F g, 2 (0 + €)1 2, (6, 3) Feghy
for j € {0,1} and k € {1,2}. The functions
915 (6 0) = (€0)* T A+ E1) a6, 1)
A+ plEP) (i€n)* 7 (A + [€17)7
(e A+ [§2) (a-A + [€]?)
(ifn)2_j(/\+ ‘51’2)1+j/2
(e A+ [E2) (a-A + [€]%)

if k=1,

if k=2,
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are smooth and homogeneous of degree 0 in (&, A/ 2) and therefore satisfy Mich-
lin’s condition. As a result, for k£ = 2 the set
(4.5) {X’@Kﬁrﬂ_lggj(-, N Fes: N € Eﬂ_g_e} C L(LP(RY))

is R-bounded for j € {0,1} and v € N3.

As we will see below, in the case k = 1 we need a more refined representation
formula which exploits that h; € Hp%o(RjL) and not only that hy € H2(Ry). To
this aim, we apply Lemma 4.3 and obtain as above that

L NOZr, F a1 (-, \) Feshy

J
= LYV = A2 T gy (L N Feshn

2
(4.6) = S LI &) T g (- N) Tk
£=0

where h[lﬂ := M 2hy, the functions g1j¢ are given by

grje(€, ) = (i6)* T (A + 1€ 7)Y 2 an14(€, ),

and ai1¢ are defined as by in Lemma 4.3 with b replaced by a11. By homogeneity,
for the corresponding Fourier multipliers the set of operators

(4.7) N F L g1j0( N) Fes : A € Sr_y_o} C L(LP(RY))

is R-bounded for ¢ € {0,1,2}, j € {0,1} and v € N3.

To prove the theorem, we have to estimate \v = AR(\)esh in the space
Eo. For the first term in (4.2), the R-boundedness of {riA(A, + ) 7les : A €
Ao+2r_9—c} in L(Ep) follows directly from Proposition 2.4. To treat the second
term in (4.2), we first use (4.3) and (4.4). For the summands with k£ = 2,
Proposition 3.3 and (4.5) imply that {Sa(\) : A € Ao + Xr_y_c} is R-bounded
in L(LP(R"),Eo).

It remains to consider the summands with & = 1 in (4.3). In view of the
definition of the space Eo, the representation (4.6) and the R-bound (4.7), we
have to show that

(4.8) (A2lel2pe LM () (A — A)TIHR2EI2NE N € Mg+ Spgc)

in L(LP(R7)) is R-bounded for || <2, ¢ € {0,1,2} and j € {0,1}.
For ¢ = 0, this fact is stated in Proposition 3.3 b). For £ > 0, we follow the
lines of the proof of Proposition 3.3 and write

N2 De LI () (A = AT ()
== [ e+ 3 NE )
with
M€, Tn+yn, A) 1= NI (A |¢[2) 712732y L gentantD (€ + o, V)



24 ROBERT DENK AND ROLAND SCHNAUBELT

for Zn,yn > 0, a = (/, o), and ¢ € R™L. Since ¢!, < (2, + yn)* for z,, > 0,
Lemma 3.2 b) shows that (z, + yn)m(:, Zn + yn, \) satisfies Michlin’s condi-
tion. The R-boundedness of (4.8) can thus be established as in the proof of
Proposition 3.3. U

The R-boundedness results above enable us to solve the instationary problem
(1.1) on R} with inhomogeneous right-hand sides, i.e.,

Ofu+ A%u—poAu=f inJxR%,
You=gp onJ xR
(4.9) YOu=g; onJx R
ult=0 = o in Ria
Ouli—o = @1 in R},

Here J = (0,7), T € (0,00), is a finite time interval, and we recall that p > 0
is fixed. The natural spaces for the right-hand sides are given by

f €&y =LP(J; LP(RY)),
g0 € Go = WY/ (J; LP(R"1)) 0 LP(J; WP (R™1)),
g1 € G = WP VCP (I LP R N L2 (J; WP R),
o € Yo =W, 2P(RY),

p1 €Y1 =W ?P(RY).

The analogues of these spaces for the time interval R are denoted by &4 (R) etc.
The data have to satisfy the compatibility conditions

golt=0 = Y00,

91lt=0 = Y000,
0t90li=0 = Y01 if p>3,
091 lt=0 = Y001 if p>3.

(4.10)

The solution will belong to the space
w€ Fy=H}(J;LP(R)) N LP(J; Hy(R)).

We recall that Fy — H)(J; H2(R')). This is stated, e.g., in Lemma 4.3 of
[12] for R™ instead of R’}, and follows for R’ by the existence of a universal
extension operator (see Lemma 2.9.1/1 in [30]). For ¢ € {0, 1}, we will write ¢G;
for the subspace of all g; € G; which satisfy (4.10) with ¢9 = ¢1 = 0.

We first state the result for homogeneous boundary conditions which follows
from Theorem 4.4 as in the proof of Theorem 2.5. (For the initial values in part
a) one now needs an interpolation result essentially due to Grisvard, see e.g.
Theorem 4.9.1 and Example 4.9.3 in [3].)
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Theorem 4.5. a) The operator —B, o generates an analytic Cy-semigroup on
Eo with mazimal Li-reqularity on bounded time intervals for every q € (1,00).

b) Let f € £+, g =0, and let pg € Yo, o1 € Y1 satisfy (4.10) with g = 0. Then
there is a unique solution w € Fy of (4.9), and there is a constant Cp(T) > 0
such that

lullz, < Co(@) (I flle. + lleollvo + il ).

c)Let f=0,9g=0, ¢ € Hﬁo(Ri) and @1 € LP(R"). Then there exists a
unique solution u of (4.9) with

02, 9,V2u, V*u € C([e, 00), LP(R™))

for each € > 0 and
Ou, V*u € C([0,00), LP(R)).
If ¢ € HE(RZ’F) N Hz,o(Ri) and @1 € H370(R1), we can take e = 0.

Based on Theorems 4.5 and 3.5, we can now solve (4.9) by inverting the
Banach space valued Fourier transform in time, where we proceed as in [11],
for instance.

Theorem 4.6. Let T € (0,00) and p € (1,00) with p ¢ {3/2,3}. Then for
every (f, 90,91, 00,¢1) € E+ X Go X G1 x Yy x Y1 satisfying the compatibility
conditions (4.10), there exists a unique solution w € Fy of (4.9). Conversely,
if u € Fy is a solution of (4.9), then the right-hand sides of (4.9) belong to the
spaces indicated above and satisfy the compatibility conditions (4.10). Finally,
there is a constant C,(T') > 0 such that

lull 7, < Cp(T)(If lles + lpollye + lenllvi + llgollgo + llgrlla)-

Proof. The necessity of the regularity and compatibility conditions (4.10) fol-
lows from standard spatial and temporal trace theorems, see e.g. Corollary 2.8 in
[21] in a more general setting. The uniqueness is a consequence of Theorem 4.5.

To show existence, let data (f, go, 91, Yo, p1) € E+ X Go X G1 X Yy X Y7 be given
which satisfy (4.10). Extending f, @0 and ¢; to R™ and applying Theorem 2.5,
we obtain a solution v’ € F of

O + A% — poyAu' = f in J xR,

UI\t:O =0 1in Ria

Op'lt=0 = 1 in R}
which satisfies the asserted estimate with gg = g1 = 0. We set gg = go—7ou’ and
91 = g1 — 70,u'. Again standard trace theory and (4.10) yield that gy € 0Gx

for k € {0,1}. Moreover, ||gkllg, < Cp(T) (lgllg, + llw'llF)-

Considering u — u/, we may therefore assume in the following that the data
in (4.9) satisfy f =0, oo = 1 = 0 and gx € oG for k € {0,1}. Note that test

functions on (0,00) x R"~! are dense in (G, see Theorem 4.7.1 in [3]. Since
we will show that the solution operator ¢ = (go,g1)' ~ u is continuous from
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0G0 X 0G1 — F4, we may restrict ourselves to test functions gg and g;. We
extend them by 0 to functions on R, using the same symbol. We now employ
similar arguments as in Proposition 4.5 of [11] (see also the proof of Lemma 3.4
of [26] for a more detailed exposition in a somewhat different situation).

Let .#; be the temporal Fourier transform and put § := %;¢. In view of
Theorem 3.5, setting A = i7 with 7 € R, we define 0(i7) := T'(i7) E;;§ and recall
that 9(i7) = i701(i1) for 7 € R. We write v := %, 10 and u := vy, observing
also that dyu = .Z; ! (it01(iT)) = vy. Taking into acount (3.13), (3.11) and that
FE;. g is rapidly decaying, we can compute

1 .
507 i ir — AN (=i—3)/2 0
(4.11)  o(iT) = ZOT(J)()\) <( 3 (it — A/)(jg)/z) Fy
]:
_ (i _A/)(j+3)/2 0 B A
.ﬂ} 1 [( 0 (Z . _A/)(jJrg)/z 8% JEl-.g (7—)
1 A AN (—j—3)/2
_ () (it — A)
= ZOT J ()\) < 0 (iT _ A/)(jg)/z) Fy
]:

i1 g [ (1 —A)? 0 X
.(—1)]"‘ yt |:< 0 (i-—A/)3/2 FEi. g (7’)

We further note that E;;g(-,x,) = e‘x”(iT_A/)l/2g(iT, ) for z, > 0 and
7 € R since the Dunford calculus for sectorial operators and Fourier multi-
pliers coincide here. The operator L = 9; — A’ with domain H} (R, LP(R"~1))N
LP(R, Hg(R”_l)) is sectorial of angle /2 in LP(R, LP(R™ ")), hence —L'/? gen-
erates an analytic semigroup. Because of .Z; '(A +i- —A)"LF = (A + L)}
for Re A < 0, we can use the Dunford calculus to deduce

. _ 1/2
-1 (Z : —A’)Q 0 R Le ol Lgo
7y K 0 (i - —N)3/2 Ei.g| (zn) = LV2e=enlM 2 g )

The norm in &; of these functions is bounded by C (||gollg, + llg1llg,)- Here,
for the first component we use Lemma 3.5 of [11] and for the second that
Lgy € (LP(R+, LP(R™1)), D(L))1_ 1, = (LP(Ry, LP(R™1)), D(LY/?)), 1 , by
Lemma 3.1 of [11] and the reiteratipon theorem, see e.g. Theorems 1.10.5 and
1.15.2 in [30]. In the first part of (4.11) we employ our Proposition 3.3 and the
operator-valued Fourier multiplier theorem (Theorem 3.4 of [31]) and conclude

(4.12) 167 ulle, gy + IV ulle, @) < ¢ (llgollgy + llgnllg,)-

Since g have support in (0, c0) and since the symbols involved have a holomor-
phic extension to the half-plane {r € C : Im7 < 0}, all Fourier multipliers (with
respect to t) have the Volterra property in the sense of Section 2 in [13]. Hence,
the function u vanishes on (—o0,0), so that u and d;u have trace 0 at ¢t = 0. In
particular, (4.12) implies that [lullg, ;) < ¢(T) (llgollgo + ll91llg,) which yields
the asserted estimate ||ul|z, sy < ¢(T) (llgollg, + llg1llg,)- Finally, @(it) solves
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(3.10) with A = i7 and boundary data ¢(i7). So the first component u = vy of
the inverse Fourier transform in time of ¢ is the desired solution of (4.9). O

5. THE EVOLUTION EQUATION IN A BOUNDED DOMAIN

In this section we consider a bounded domain G C R™ with boundary of class
C*. We use the analogous spaces as in the previous section, replacing R% by
G, which we denote by £(G) etc. Moreover, we allow for 7' = oo in the time
intervals. As before, we define D(A, o) = Fo(G) and A, gv = A(D)wv.

Theorem 5.1. Let G C R™ be a bounded domain with boundary of class C*
and p > 0. The operator Ay is R-sectorial of angle ¥(p) in Eq(G). Moreover,
—Ap o generates an exponentially stable, analytic Co-semigroup on Eo(G) with
mazimal L-regularity on (0,00) for every q € (1,00).

Proof. The R-sectoriality of A\; + A, for sufficiently large A\; > 0 is shown by a
standard localization argument based on the R—bounds shown in Theorems 2.3
and 3.5. For details we refer to Section 8 of [10]. Via localization, transformation
to the half-space and perturbation, one can reduce the problem to equations
on R" and R} having constant coefficients and no lower order terms. Choosing
appropriate transformations, these model problems turn out to be those studied
in Theorems 2.3 and 3.5, cf. p. 102 of [10]. In this argument plenty of lower order
terms appear which can be absorbed adding a large A1 > 0. There are also top-
order perturbations both in G and in the boundary conditions which are treated
by means of the continuity of the coefficients of the transformed operators and
by choosing sufficiently small neighborhoods in the localization. Here one has
to exploit the full power of the regularity results in Theorems 2.3 and 3.5.

As in the proof of Theorem 2.5, it now follows that —A,( generates an an-
alytic semigroup on Eq(G) with maximal L?-regularity on bounded time in-
tervals. Because of standard theory of analytic semigroups, it thus remains to
show that the spectrum of — A, o is contained in the open right half-plane. Since
Fo(G) is compactly embedded in Eq(G), the spectrum is a discrete set of eigen-
values contained in the complement of A\; + ¥,_y. If v is an eigenfunction for
Ay o and some ¢ € (1,00), then it is also an eigenvalue for A, for all p € (1,¢)
and the same eigenvalue. The case of p > ¢ is treated by a standard bootstrap
argument using the invertibility of u 4 A, for large > 0 and r > ¢. We can
thus restrict ourselves to p = 2. We then define the scalar product in Ey(G) by

(v, w>E0(G) = (Avy, Aw1>L2(G) + (v1, w1>L2(G’) + <U2’w2>L2(G)v v,w € Eo(G).

Let Av + Aggv = 0 for some A € C and 0 # v = (v1,v9)" € D(Azp). Taking
the scalar product with v in Ey(G), integrating by parts and taking the real
part, we deduce

0 = Re(A\v + A2 v, v)Ey(q) = (ReA) / (JAv1|? + |v2|?) dz + p/ Vg |? da
G G
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thanks to the boundary conditions. Hence, Re A is non-positive. If Re A = 0,
then vy € H3 (G) has to vanish, so that (—A)?v; = 0 because of Av+ Az gv = 0.
Since v; € H3(G) N H3 o(G), we obtain v; = 0 and the contradiction v = 0. As
a result, Re A < 0. O

We can now state our final result on the solvability and regularity of the
inhomogeneous damped plate equation (1.1).

Theorem 5.2. Let G C R™ be a bounded domain with boundary of class C*
and p > 0. Then the following assertions hold.

a) Let f=0,90 =91 =0, o € HgyO(G) and p1 € LP(G). Then there exists
a unique solution u of (1.1) with

O, 0,V*u, Viu € Cy([e,00), LP(G))

for each € > 0 and
dru, V2u € Cy([0,00), LP(G)).

If oo € Hy(G) N H(G) and @1 € H2 ((G), we can take e = 0.

b) Let T € (0,00] and p € (1,00) with p ¢ {3/2,3}. Then for every
(f,90: 91,90, 1) € E(G) x Go(G) x G1(G) x Yo(G) x Y1(G) satisfying the com-
patibility conditions (4.10) on G, there exists a unique solution u € F(G) of
(1.1). Conwversely, if u € F(G) is a solution of (1.1), then the right-hand sides
of (1.1) belong to the spaces indicated above and satisfy the compatibility con-
ditions (4.10). Finally, there is a constant Cp, > 0 such that

lull 7@y < Co(Ilflle@) + leollvoe) + letllvia) + lgollgoie) + 191l (@))-

Proof. We omit the details the proof which follows a fairly standard pattern,
based on our results above. Assertion a), the uniqueness in b) and the case
go = g1 = 0 in b) follow from Theorem 5.1 and standard semigroup theory.
The necessity in b) is a consequence of trace theorems again. The main step of
the proof is the existence part of b) for f = 0 and ¢y = ¢1 = 0 on finite time
intervals. This can be done by localization, transformation to the half-space and
perturbation as in Section 5 of [11], using the R—bounds of Theorems 2.3 and
3.5. Since —A,, o generates an exponentially stable analytic semigroup by The-
orem 5.1, one can extend the existence statement and the maximal regularity
estimate to the time interval (0,00) as in Proposition 8 of [24]. O
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