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Abstract. We investigate sectoriality and maximal regularity in Lp-Lq-

Sobolev spaces for the structurally damped plate equation with Dirichlet-

Neumann (clamped) boundary conditions. We obtain unique solutions with

optimal regularity for the inhomogeneous problem in the whole space, in

the half-space, and in bounded domains of class C4. It turns out that the

first-order system related to the scalar equation on Rn is sectorial only after

a shift in the operator. On the half-space one has to include zero boundary

conditions in the underlying function space in order to obtain sectoriality

of the shifted operator and maximal regularity for the case of homogeneous

boundary conditions. We further show that the semigroup solving the prob-

lem on bounded domains is exponentially stable.

1. Introduction and preliminaries

In this paper, we study the linear structurally damped plate equation with

inhomogeneous Dirichlet-Neumann (clamped) boundary conditions given by

(1.1)

∂2
t u+ ∆2u− ρ∆∂tu = f, (t, x) ∈ (0,∞)×G,

u = g0, (t, x) ∈ (0,∞)× ∂G,
∂νu = g1, (t, x) ∈ (0,∞)× ∂G,
u|t=0 = ϕ0, x ∈ G,

∂tu|t=0 = ϕ1, x ∈ G.

Here, ρ > 0 is a fixed parameter and ∂ν stands for the normal derivative with

respect to the outer unit normal. We treat the full space G = Rn (where we

drop the boundary conditions), the half-space G = Rn+ := {x ∈ Rn : xn >

0}, and bounded domains G ⊂ R with a boundary of class C4. We establish

maximal regularity of type Lp for the inhomogeneous problem (1.1) and discuss

sectoriality of the operator matrix governing the associated first order system.

The generated semigroup is exponentially stable for bounded G.

The undamped plate equation with ρ = 0 occurs as a linear model for vi-

brating stiff objects where the potential energy involves curvature-like terms

which lead to the Bi-Laplacian (−∆)2 as the main ‘elastic’ operator B, see

2000 Mathematics Subject Classification. Primary: 35K35. Secondary: 35J40, 42B15.

Key words and phrases. Structurally damped plate equation, clamped boundary condition,

R-sectoriality, optimal regularity, operator-valued Fourier multipliers, exponential stablility.

1



2 ROBERT DENK AND ROLAND SCHNAUBELT

e.g. Chapter 12 of [25] or [27]. (In the one-dimensional case one obtains the

Euler-Bernoulli beam equation.) In this model, energy dissipation is neglected

and the equation has no smoothing effect as the governing semigroup is unitary

on the canonical L2–based phase space. One adds damping terms to incorpo-

rate the loss of energy. Structural damping describes a situation where higher

frequencies are more strongly damped than low frequencies. Here the damping

term has ‘half of the order’ of the leading elastic term, as proposed in Russell’s

seminal paper [27]. Such systems have been studied in detail also from the view-

point of dynamical systems and control theory, see e.g. [5], [20], [23], [29] and

the references therein. In the L2 case, the basic generation results were already

obtained in [6]. It turned out that the underlying semigroup is analytic, which

is false if the damping operator is a fractional power of the elastic operator with

exponent strictly less than 1/2. In this sense, structural damping is a borderline

case. The case of strong damping (where the elastic operator is bounded by the

damping operator) is easier as it can be handled by perturbation arguments,

see e.g. Section VI.3.a of [14].

Structurally damped plate and wave equations can also be considered in Lp-

based spaces for p 6= 2 (in contrast to the weaker damping given by −ρ∂tu),

which is very convenient for the treatment of nonlinear terms in the framework

of parabolic evolution equations, see e.g. [4], [7] and [28]. However, in this con-

text the available existence results are restricted to the very special case that

the damping operator is a multiple of the square root B1/2 of the elastic op-

erator B (which we call the square root case). On the other hand, in L2 one

can treat much more general problems, [6]; but these results use the numeri-

cal range in an essential way and seem to be restricted to the L2 case. In our

problem (1.1), the damping operators is a multiple of B1/2 only if G = Rn.

For other domains the square root case corresponds to the boundary conditions

u = ∆u = 0 on ∂G. In the square root case one can easily compute the re-

solvent of the associated generator in terms of the given operators and show

its sectoriality, see [16] and the references therein, as well as [4], [7], [8], [15],

[28] for more recent contributions. Moreover, Theorem 4.1 of [7] shows maximal

regularity in the square root case if the elastic operator B has an ‘R-bounded

H∞-calculus’ (which can be applied to our case if G = Rn). In these papers,

inhomogeneous boundary data have not been considered.

In our work we establish a fairly complete well-posedness and regularity the-

ory for (1.1) with inhomogeneous boundary conditions in an Lp context, where

p ∈ (1,∞). We have chosen the (arguably most basic) situation of a clamped

plate (i.e., having Dirichlet and Neumann boundary conditions) governed by

the Bi-Laplacian and the Laplacian. We believe that our methods also apply

to analogous general systems with coefficients and other boundary conditions,

provided that appropriate ellipticity and Lopatinski-Shapiro conditions hold,

cf. e.g. [10]. For conciseness we do not investigate such generalizations here.
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The problem (1.1) on a bounded domain is reduced to corresponding equa-

tions on the full and half-space by localization, transformation and perturba-

tion, see Section 5. In our approach we use ideas from [10] and [11] where

different, more standard parabolic systems have been treated. We rewrite (1.1)

as a system of first order in time with the new state v = (u, ∂tu)>, which is

governed by an operator matrix A(D) on Rn or Ap,0 on Rn+, see (2.2) and (4.1),

respectively. This has the advantage that one works in the framework of well

developed theories for operator semigroups, dynamical systems (cf. [5]) and con-

trol problems (cf. [23]). We further see that our problem leads to a mixed-order

boundary value problem in the sense of Douglis-Nirenberg, see e.g. Proposi-

tion 3.4 and [9]. The full and half-space problems are then solved via Laplace

transform in time and Fourier transform in space. To invert these transforms,

we mainly use Michlin’s theorem and employ its operator-valued version due to

Weis, [31], for the inversion of the Laplace transform. This step requires recently

developed methods from operator-valued harmonic analysis briefly indicated at

the end of this section.

The full space problem is solved in Theorem 2.5. In Section 2 we however focus

on a detailed study of regularity properties of the resolvent of A(D) needed later

on, see Theorem 2.3. These results are based on an analysis of the symbols

associated with (1.1) which play an essential role in our approach. We thus

present detailed proofs although some of the results could also be deduced from

e.g. [7] and [16]. In Section 3 we derive the crucial solution formula for the

parameter-dependent elliptic boundary value problem (3.1) corresponding to

(1.1) on Rn+ and establish the core estimates on the operators appearing there,

see Theorem 3.5 and Corollary 3.6. These facts rely on a thorough investigation

of the relevant symbols in Lemma 3.2. We further show in Proposition 3.4 that

the operator matrix A(D) with Dirichlet–Neumann boundary conditions is not

sectorial in H2
p (Rn+)× Lp(Rn+) even if we allow shifts. The resolvent still exists

but it does not satisfy the sectoriality estimates. This is actually a general

phenemenon of such elliptic systems if the state space allows traces relevant to

the boundary conditions, see [9].

Theorem 4.4 then shows that the restriction Ap,0 of A(D) to H2
p,0(Rn+) ×

Lp(Rn+) is sectorial after applying a shift. To derive the resolvent estimate, one

has to exploit the additional zero boundary conditions of the right-hand side,

which is done using the Hardy-type Lemma 4.1. Such techniques may also be

applied to other Douglis–Nirenberg systems on state spaces involving regularity

in future work. In Theorem 4.5 and 4.6 we then deduce well-posedness and

maximal regularity of (1.1) on Rn+ from the previous results combined with

semigroup theory and operator-valued harmonic analysis. In the last section,

we finally treat the case of bounded domains. Here we can omit many details

which are similar to, e.g., [10] and [11]. We further use standard spectral theory

of analytic semigroups to show that the semigroup solving (1.1) on a bounded
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domain is exponentially stable. (This fact was recently shown in the square

root case, [15].) We thus obtain maximal regularity on (0,∞) and not just on

bounded time intervals as for the full and half-space.

We will investigate maximal regularity in the sense of well-posedness in Lp-Lq-

Sobolev spaces for equation (1.1). For this, we will make use of the concept ofR-

boundedness and vector-valued Fourier multiplier theorems which has become

kind of standard for Lp-theory of boundary value problems. We give a short

summary of these tools, for a more detailed exposition we refer to [10] and [22].

Let X and Y be Banach spaces, and let L(X,Y ) be the space of all bounded

linear operators from X to Y . For an interval J = (0, T ) with T ∈ (0,∞], we

denote by Lq(J ;X) the X-valued Lq-space, by Hk
q (J ;X), k ∈ N0, the X-valued

Sobolev space, and by W s
q (J ;X) := Bs

qq(J ;X), s ∈ (0,∞) \ N, the X-valued

Sobolev-Slobodeckii space (which coincides with the Besov space). Moreover,

(·, ·)θ,q stands for the real interpolation functor. Throughout, we let p ∈ (1,∞).

A family T ⊂ L(X,Y ) of operators is R-bounded if there exists a constant

C > 0 such that for all m ∈ N, (Tk)k=1,...,m ⊂ T , and (xk)k=1,...,m ⊂ X we have∥∥∥ m∑
k=1

rkTkxk

∥∥∥
Lp([0,1];Y )

≤ C
∥∥∥ m∑
k=1

rkxk

∥∥∥
Lp([0,1];X)

.

Here the Rademacher functions rk, k ∈ N, are given by rk : [0, 1]→ {−1, 1}, t 7→
sign(sin(2kπt)). If two families Tj ⊂ L(Xj , Yj), j ∈ {1, 2}, are R–bounded, then

also T1 + T2 (if X1 = X2 and Y1 = Y2) and T2T1 (if Y1 = X2) are R–bounded.

Domains of closed operators are endowed with the graph norm. A densely

defined, closed operator A : D(A) ⊂ X → X is said to have maximal Lq-

regularity, 1 < q <∞, in the interval J = (0, T ) if the Cauchy problem

∂tu(t) +Au(t) = f(t), t ∈ J,
u|t=0 = u0,

has, for every f ∈ Lq(J ;X) and u0 ∈ (X,D(A))1−1/q,q, a unique locally inte-

grable solution u : J → D(A) such that ∂tu,Au ∈ Lq(J ;X) and

‖∂tu‖Lq(J ;X) + ‖Au‖Lq(J ;X) ≤ C
(
‖f‖Lq(J ;X) + ‖u0‖(X,D(A))1−1/q,q

)
with a constant C independent of f and u0. If J is bounded or A is invertible,

this property is equivalent to the isomorphy(
∂t +A, γ0,t

)
: H1

q (J ;X) ∩ Lq(J ;D(A))→ Lq(J ;X)× (X,D(A))1−1/q,q,

where γ0,t : u 7→ u|t=0 denotes the time trace. It is known that −A generates

an analytic C0–semigroup if it has maximal Lq-regularity. If this semigroup is

exponentially stable, then one even obtains maximal Lq-regularity on (0,∞).

In the following, we use the notation Σϑ := {z ∈ C \ {0} : | arg z| < ϑ} for

ϑ ∈ (0, π]. Recall that a closed operator A : D(A) ⊂ X → X is called (R)-

sectorial if A has dense domain and dense range, and if there exists an angle
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ϑ ∈ (0, π) such that ρ(−A) ⊃ Σπ−ϑ and the set {λ(λ + A)−1 : λ ∈ Σπ−ϑ}
is (R)-bounded. In this case, the angle of (R)-boundedness is defined as the

infimum of all ϑ for which this holds.

A Banach space X is called of class HT if the vector-valued Hilbert transform

is continuous in Lq((0,∞);X) for some (and then any) q ∈ (1,∞). Sobolev–

Slobodeckii spaces with p ∈ (1,∞) are of class HT, as well as their X–valued

analogues if X is of class HT. It was shown by Weis in [31] that a sectorial

operator in a Banach space of class HT has maximal Lq-regularity for all q ∈
(1,∞) if and only if the set {λ(λ+A)−1 : Reλ ≥ 0, λ 6= 0} is R-bounded.

2. The full space case

In this section we solve (1.1) in the whole space G = Rn (omitting the

boundary conditions). Let us remark that in this case (1.1) can be treated by

an operator-theoretic approach as it can be written in the form

(2.1)

∂2
t u+ ρB1/2∂tu+Bu = f, t ∈ (0,∞),

u|t=0 = ϕ0,

∂tu|t=0 = ϕ1

with the operator B : D(B) ⊂ Lp(Rn) → Lp(Rn) being defined by D(B) :=

H4
p (Rn) and Bu := (−∆)2u. Therefore, (2.1) is related to the quadratic operator

pencil V : H4
p (Rn)→ Lp(Rn),

V (λ) := λ2 + λρB1/2 +B = (α+λ+B1/2)(α−λ+B1/2),

where

α± =


ρ
2 ±

√
ρ2

4 − 1, ρ ≥ 2,

ρ
2 ± i

√
1− ρ2

4 , 0 < ρ < 2.

Defining the angle ϑ = ϑ(ρ) by

ϑ(ρ) :=

arctan 2
ρ

√
1− ρ2

4 , 0 < ρ < 2,

0, 2 ≤ ρ <∞,

we can write α± = e±iϑ for ρ ≤ 2 and α± > 0 as ρ ≥ 2. Note that argα± =

±ϑ(ρ) and ϑ(ρ)↗ π
2 for ρ↘ 0.

By the theory of quadratic operator pencils and second-order Cauchy prob-

lems, we can invert the operator V (λ) and show maximal Lp-regularity, see

Theorem 3.4 of [16] and and Theorem 4.1 of [7], as well as [4] and [28]. How-

ever, a more detailed investigation of the related first-order system will be useful

for the analysis of the half-space. To this aim, we set v = (u, ∂tu)> and re-write

(1.1) with G = Rn as

∂tv +A(D)v =

(
0

f

)
, (t, x) ∈ (0,∞)× Rn,
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v|t=0 =

(
ϕ0

ϕ1

)
, x ∈ Rn,

with A(D) := F−1A(ξ)F , where F denotes the Fourier transform in Rn and

the matrix-valued symbol A(ξ) is given by

A(ξ) :=

(
0 −1

|ξ|4 ρ|ξ|2

)
.

Note that the Fourier transform is defined by

(Fφ)(ξ) :=
1

(2π)n/2

∫
Rn

e−ixξφ(x)dx, ξ ∈ Rn,

for Schwartz functions φ ∈ S (Rn) and extended by duality to tempered distri-

butions. Here and in the following, we use the standard multi-index notation

and put D = −i∇ = −i(∂1, . . . , ∂n)>. We also set

A(ξ, λ) := λ+A(ξ) =

(
λ −1

|ξ|4 λ+ ρ|ξ|2

)
.

We thus have

(2.2) A(D) =

(
0 −I

(−∆)2 −ρ∆

)
and A(D,λ) =

(
λ −I

(−∆)2 λ− ρ∆

)
.

Employing the spaces

E := H2
p (Rn)× Lp(Rn),

F := H4
p (Rn)×H2

p (Rn),

we introduce the unbounded operator Ap : D(Ap) ⊂ E→ E by D(Ap) := F and

Apu := A(D)u. Note that for the weight matrix

S1(ξ) :=

(
1 + |ξ|2 0

0 1

)
the operator S1(D) := F−1S1(ξ)F defines an isomorphism of E onto

Lp(Rn;C2), and we thus have the equivalence of norms ‖f‖E ∼= ‖S1(D)f‖Lp .

Setting S2(ξ) := (1 + |ξ|2)S1(ξ), one obtains S2(D) ∈ LIsom(F, Lp(Rn;C2)) and

‖u‖F ∼= ‖S2(D)u‖Lp .

Remark 2.1. Below we will use Michlin’s theorem in the following variant:

Let b : (Rn × Σπ−ϑ−ε) \ {0} → C, (ξ, λ) 7→ b(ξ, λ), be infinitely smooth and

homogeneous in (ξ, λ1/2) of degree 0. Then ξβ∂βξ λ
γ∂γλb is uniformly bounded for

(ξ, λ) ∈ (Rn×Σπ−ϑ−ε) \ {0}, for each β ∈ Nn0 and γ ∈ N2
0 (where we identify C

with R2). Michlin’s theorem then implies that ‖λγ∂γλF−1b(·, λ)F‖L(Lp(Rn)) ≤ C
with a constant C not depending on λ (see e.g. Theorem 5.2.7 of [18] and the

remarks preceding it). In fact, in this situation the family of operators{
λγ∂γλF−1b(·, λ)F : λ ∈ Σπ−ϑ−ε

}
⊂ L(Lp(Rn))
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is even R-bounded by Corollary 3.3 in [17]. This applies to symbols of the form

λ(s−|α|)/2ξα

(λ+ |ξ|2)s/2

with s ∈ N and |α| ∈ {0, . . . , s}. We will tacitly make use of these facts in the

estimates below.

We first show that Ap +λ is invertible for all λ in the above setting, but that

Ap fails to be sectorial. Later we will see that Ap + λ0 is R-sectorial for every

positive shift λ0.

Proposition 2.2. a) For ϑ = ϑ(ρ) and all λ ∈ Σπ−ϑ, the operator Ap + λ :

F→ E is invertible.

b) The operator Ap is not sectorial in E for any angle and, consequently, −Ap
does not generate a bounded C0-semigroup on E.

Proof. a) Due to the definition of the spaces, the operator Ap + λ belongs to

L(F,E) for every λ ∈ C. Let λ ∈ Σπ−ϑ. From the identity

detA(ξ, λ) = λ2 + λρ|ξ|2 + |ξ|4 = (α+λ+ |ξ|2)(α−λ+ |ξ|2)

and α±λ ∈ Σπ, we deduce that A(ξ, λ) is invertible with inverse

(2.3) A(ξ, λ)−1 =
1

(α+λ+ |ξ|2)(α−λ+ |ξ|2)

(
λ+ ρ|ξ|2 1

−|ξ|4 λ

)
.

To show that (Ap + λ)−1 exists in L(E,F), we have to establish M(D,λ) ∈
L(Lp(Rn;C2)) for the matrix-valued multiplier symbol

M(ξ, λ) := S2(ξ)A(ξ, λ)−1S1(ξ)−1.

Direct calculations lead to

M(ξ, λ) =
1

detA(ξ, λ)
S2(ξ)

(
λ+ ρ|ξ|2 1

−|ξ|4 λ

)
S1(ξ)−1

=
1

(α+λ+ |ξ|2)(α−λ+ |ξ|2)

(
(1 + |ξ|2)(λ+ ρ|ξ|2) (1 + |ξ|2)2

−|ξ|4 λ(1 + |ξ|2)

)
.

For every fixed λ ∈ Σπ−ϑ, each of the terms

1 + |ξ|2

α±λ+ |ξ|2
,

λ

α±λ+ |ξ|2
, and

|ξ|2

α±λ+ |ξ|2

can be estimated by a constant depending only on λ and ρ. Similarly, the k-th

derivatives in ξ of each term are bounded by a constant times |ξ|−k, where the

constants depend on λ, ρ and k. Michlin’s theorem then implies M(D,λ) ∈
L(Lp(Rn;C2)). Clearly, M(D,λ) is the inverse of S1(D)A(D,λ)S2(D)−1 in

L(Lp(Rn;C2)), and thus assertion a) holds.

b) Assume that Ap is sectorial in E of some angle, i.e., ‖λ(Ap+λ)−1‖L(E) ≤ C
for all λ ∈ (0,∞) with some constant C independent of λ. Similarly to a), this
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property is equivalent to the uniform boundedness of the operator M0(D,λ) ∈
L(Lp(Rn;C2)) with the symbol

M0(ξ, λ) := λS1(ξ)A(ξ, λ)−1S1(ξ)−1

=
1

(α+λ+ |ξ|2)(α−λ+ |ξ|2)

(
λ(λ+ ρ|ξ|2) λ(1 + |ξ|2)

− λ|ξ|4
1+|ξ|2 λ2

)
.(2.4)

Since every Lp-Fourier multiplier is an L∞-function (see e.g. Proposition 3.17

in [10]), we derive ∣∣∣ λ(1 + |ξ|2)

(α+λ+ |ξ|2)(α−λ+ |ξ|2)

∣∣∣ ≤ C
for all λ > 0 and ξ ∈ Rn, where the constant C does not depend on λ or ξ.

However, setting λ = k−2 and |ξ| = k−1 with k ∈ N, the expression on the

left-hand side equals k2+1
(α++1)(α−+1) which tends to ∞ as k →∞. �

Although Ap is not sectorial, certain λ-dependent estimates for the inverse

operator are valid in each sector Σπ−ϑ−ε with ε > 0. One could formulate the

next result more concisely within homogeneous Sobolev spaces, but for simplic-

ity we avoid this setting. We often denote the vector-valued space Lp(Rn;Cm)

also by Lp(Rn), for any m ∈ N.

Theorem 2.3. Let ε ∈ (0, π − ϑ), λ ∈ Σπ−ϑ−ε, and h = (h1, h2)> ∈ E. Set

v := (v1, v2)> := (Ap + λ)−1h. Let k ∈ {0, 1, 2}, α ∈ Nn0 with |α| = k, γ ∈ N2
0,

and δ ∈ Nn0 with |δ| = 2. Then there is a constant Cε > 0 such that∥∥∥λ1− k
2

(
DαDδv1

Dαv2

)∥∥∥
Lp(Rn)

≤ Cε
(
‖∆h1‖Lp(Rn) + ‖h2‖Lp(Rn)

)
,(2.5)

‖λ2− k
2Dαv1‖Lp(Rn) ≤ Cε

(
‖λh1‖Lp(Rn) + ‖h2‖Lp(Rn)

)
.(2.6)

Moreover, the families of operators

(2.7)
{
λγ∂γλ

[
λ1− k

2

(
DαDδ 0

0 Dα

)
A(D,λ)−1

]
: λ ∈ Σπ−ϑ−ε

}
in L(E, Lp(Rn)) and{

λγ∂γλ

[
λ1− k

2

(
DαDδ 0

0 Dα

)
A(D,λ)−1

(
(λ−∆)−1 0

0 1

)]
: λ ∈ Σπ−ϑ−ε

}
,(2.8)

{
λγ∂γλ

[
(λ−∆)2− k

2
(
Dα 0

)
A(D,λ)−1

(
(λ−∆)−1 0

0 1

)]
: λ ∈ Σπ−ϑ−ε

}
(2.9)

in L(Lp(Rn)) are R–bounded.

Proof. We proceed as in the proof of Proposition 2.2, where we replace the

matrices Si(ξ) by

Ṡ1(ξ) :=

(
|ξ|2 0

0 1

)
and Ṡ(2+k)/2(ξ) := |ξ|kṠ1(ξ)
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and use the symbols

Ṁk(ξ, λ) := λ1− k
2 Ṡ(2+k)/2(ξ)A(ξ, λ)−1Ṡ1(ξ)−1

=
λ1− k

2 |ξ|k

(α+λ+ |ξ|2)(α−λ+ |ξ|2)

(
λ+ ρ |ξ|2 |ξ|2
−|ξ|2 λ

)
for k ∈ {0, 1, 2}, cf. (2.3). We fix ε ∈ (0, π−ϑ) and take λ ∈ Σπ−ϑ−ε and ξ ∈ Rn.

Observe that then the expressions

λ

α±λ+ |ξ|2
and

|ξ|2

α±λ+ |ξ|2

are uniformly bounded. Moreover, 2 |λ|
1
2 |ξ| ≤ |λ| + |ξ|2 and ∇|ξ| = ξ |ξ|−1.

Therefore the terms ξβ∂βξ λ
γ∂γλ Ṁk(ξ, λ) are bounded by a constant depending

on |α|, |γ| and ε, but not on λ ∈ Σπ−ϑ−ε and ξ ∈ Rn. A result by Girardi and

Weis (Corollary 3.3 in [17]) now says that the family of operators

{λγ∂γλṀk(D,λ) : λ ∈ Σπ−ϑ−ε} ⊂ L(Lp(Rn))

is R-bounded for each ε > 0. Since the symbols ξα |ξ|−|α| and |ξ|2(1 + |ξ|2)−1

also satisfy the assumptions of Michlin’s theorem, the estimate (2.5) and the

assertion about (2.7) follow.

In the definition of Ṁk one can replace Ṡ1(ξ)−1 by the symbol(
(λ+ |ξ|2)−1 0

0 1

)
and then establish the R–boundedness of the operator family (2.8) as above.

By means of the symbols(
λ1−k/2ξα(λ+ ρ|ξ|2)

(α+λ+ |ξ|2)(α−λ+ |ξ|2)
,

λ2−k/2ξα

(α+λ+ |ξ|2)(α−λ+ |ξ|2)

)
,

(λ+ |ξ|2)2−k/2ξα

(α+λ+ |ξ|2)(α−λ+ |ξ|2)

(
λ+ ρ|ξ|2

λ+ |ξ|2
, 1

)
,

we finally derive (2.6) and the R–boundedness of (2.9) from (2.3) and Michlin’s

theorem as before. �

Although the operator Ap is not sectorial, the above theorem contains precise

resolvent estimates. By the next result, the singularity for λ→ 0 disappears if

we consider the shifted operator Ap + λ0 with λ0 > 0.

Proposition 2.4. For every λ0 > 0, the operator Ap + λ0 is R-sectorial with

R-angle ϑ(ρ).

Proof. As in the proof of Proposition 2.2 b), we have to consider M0(ξ, λ) from

(2.4) with ξ ∈ Rn and λ ∈ λ0 + Σπ−ϑ−ε for fixed λ0 > 0 and ε ∈ (0, π − ϑ).
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However, as α±λ cannot approach zero, now the term

λ(1 + |ξ|2)

(α+λ+ |ξ|2)(α−λ+ |ξ|2)

is uniformly bounded for λ ∈ λ0 + Σπ−ϑ−ε. The same holds for all other terms

of M0(ξ, λ) and for ξβ∂βξM0(ξ, λ) with β ∈ Nn0 . Using Corollary 3.3 in [17], we

deduce that Ap + λ0 is R-sectorial in E. �

Proposition 2.4 allows us to solve (1.1) in optimal regularity. Part b) of the

next result would also follow from Theorems 2.1 and 4.1 of [7].

Theorem 2.5. a) The operator −Ap generates an analytic C0-semigroup on E
and has maximal Lq-regularity on bounded time intervals for every q ∈ (1,∞).

b) Let f ∈ Lp((0, T );Lp(Rn)) =: E for some T > 0, ϕ0 ∈ W 4−2/p
p (Rn) and

ϕ1 ∈W 2−2/p
p (Rn). Then there is a unique solution

u ∈ H2
p ((0, T );Lp(Rn)) ∩ Lp((0, T );H4

p (Rn)) =: F

of (1.1) on G = Rn, and there is a constant Cp(T ) > 0 such that

‖u‖F ≤ Cp(T )
(
‖f‖E + ‖ϕ0‖W 4−2/p

p (Rn)
+ ‖ϕ1‖W 2−2/p

p (Rn)

)
.

c) Let f = 0, ϕ0 ∈ H2
p (Rn) and ϕ1 ∈ Lp(Rn). Then there exists a unique

solution u of (1.1) on G = Rn with

∂2
t u, ∂t∇2u, ∇4u ∈ C([ε,∞), Lp(Rn))

for each ε > 0 and

∂tu, ∇2u ∈ C([0,∞), Lp(Rn)).

If ϕ0 ∈ H4
p (Rn) and ϕ1 ∈ H2

p (Rn), we can take ε = 0.

Proof. Assertion a) follows from Proposition 2.4, Theorem 4.2 in [31] and rescal-

ing, since we have ϑ(ρ) < π
2 . In the context of part b) we thus obtain a unique

solution v = (v1, v2)> ∈ H1
p ((0, T );E) ∩ Lp((0, T );F) =: X of the first-order

problem

(2.10)
∂tv +A(D)v = (0, f)>, t > 0,

v(0) = (ϕ0, ϕ1)>.

Moreover, ‖v‖X ≤ Cp(T ) (‖f‖E(T ) + ‖(ϕ0, ϕ1)‖
W

4−2/p
p (Rn)×W 2−2/p

p (Rn)
) for some

constant Cp(T ) > 0. (See e.g. Theorems 1.14.5 and 2.4.2/2 in [30] for the

relevant properties of real interpolation spaces.) We set u := v1. The first com-

ponent of (2.10) then yields ∂tu = v2 which easily implies that u belongs to F ,

solves (1.1) and satisfies the estimate in b). Conversely, if u ∈ F solves (1.1),

then v := (u, ∂tu)> belongs to H1
p ((0, T );E) ∩ Lp((0, T );F) and fulfills (2.10).

We recall that F ↪→ H1
p (J ;H2

p (Rn)). (This fact can be found, e.g., in Lemma 4.3

of [12].) Hence, assertion b) holds. Part c) can similarly be shown using that

−Ap generates an analytic C0-semigroup on E. �
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3. The stationary problem in the half-space case

In this section we treat the model problem in the half-space Rn+. We start

with a homogeneous right-hand side and inhomogeneous boundary conditions.

We thus study the parameter-dependent boundary value problem

(3.1)

A(D,λ)v = 0 in Rn+,

v1 = g0 on Rn−1,

−∂nv1 = g1 on Rn−1,

for λ ∈ Σπ−ϑ and given functions g0 and g1 on Rn−1, say in the Schwartz class.

Following a standard approach in parameter-elliptic theory, we apply the

partial Fourier transform F ′ in the tangential variables x′ := (x1, . . . , xn−1)>.

We set w(xn) := w(ξ′, xn, λ) := (F ′v)(ξ′, xn, λ) and

A(ξ′, Dn, λ) =

(
λ −1

(|ξ′|2 − ∂2
n)2 λ+ ρ(|ξ′|2 − ∂2

n)

)
.

Problem (3.1) then leads to the family of ordinary differential equations

A(ξ′, Dn, λ)w(xn) = 0, xn > 0,(3.2)

w1(0) = (F ′g0)(ξ′),(3.3)

−∂nw1(0) = (F ′g1)(ξ′),(3.4)

on the half-line R+, where ξ′ ∈ Rn−1. Equation (3.2) gives w2 = λw1 for the

solution w1 of

(3.5) λ2w1(xn) + λρ(|ξ′|2 − ∂2
n)w1(xn) + (|ξ′|2 − ∂2

n)2w1(xn) = 0, xn > 0.

To solve this equation, we consider its characteristic polynomial

P (τ) := λ2 + λρ(|ξ′|2 − τ2) + (|ξ′|2 − τ2)2.

Straightforward calculations show that the roots of this polynomial are given

by τ = ±
√
|ξ′|2 + α±λ. We know from the beginning of Section 2 that argα± =

±ϑ, and hence |ξ′|2 + α±λ 6∈ (−∞, 0) for λ ∈ Σπ−ϑ. The above square root is

thus well-defined. The roots with positive real part are given by

τ1 = τ1(ξ′, λ) :=
√
|ξ′|2 + α+λ and τ2 = τ2(ξ′, λ) :=

√
|ξ′|2 + α−λ.

We have τ1 6= τ2 for ρ 6= 2, while in the case ρ = 2 the root τ1 = τ2 has

multiplicity 2. For fixed ε > 0, we obtain Re τj ≥ C|τj | and

(3.6) C(|ξ′|2 + |λ|)1/2 ≤ |τj(ξ′, λ)| ≤ C ′(|ξ′|2 + |λ|)1/2

for all ξ′ ∈ Rn−1 and λ ∈ Σπ−ϑ−ε. Our arguments below also involve the points

τ(r, ξ′, λ) = τ(r) := τ1 + r(τ2 − τ1) ∈ Σ(π−ε)/2, r ∈ [0, 1], on the straight line

between τ1 and τ2, which also satisfy

(3.7) C(|ξ′|2 + |λ|)1/2 ≤ |τ(r, ξ′, λ)| ≤ C ′(|ξ′|2 + |λ|)1/2
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for all r ∈ [0, 1], ξ′ ∈ Rn−1, and λ ∈ Σπ−ϑ−ε. Here, the upper inequality directly

follows from (3.6). For the lower one, the above estimates yield

|τ(r)| ≥ Re τ(r) = (1− r) Re τ1 + rRe τ2 ≥ C ((1− r) |τ1|+ r |τ2|)

≥ C(|ξ′|2 + |λ|)1/2.

Here and below, C,C ′, . . . stand for generic constants which may be different

in each appearance and which are independent of ξ′, λ, and yn (but which may

depend on ε and ρ).

Lemma 3.1. Let ξ′ ∈ Rn−1 and λ ∈ Σπ−ϑ. We define the fundamental solutions

ω(i) = (ω
(i)
j (ξ′, ·, λ))j=1,2 : (0,∞)→ C2 for i ∈ {0, 1} by

ω
(0)
1 (ξ′, xn, λ) = 1

τ1−τ2 (−τ2e
−τ1xn + τ1e

−τ2xn),

ω
(1)
1 (ξ′, xn, λ) = 1

τ1−τ2 (−e−τ1xn + e−τ2xn),

ω
(i)
2 = λω

(i)
1

for ρ 6= 2. For ρ = 2 we set

ω
(0)
1 (ξ′, xn, λ) = (1 + τxn)e−τxn ,

ω
(1)
1 (ξ′, xn, λ) = xne

−τxn ,

ω
(i)
2 = λω

(i)
1 ,

where τ := τ1 = τ2. Then ω(i) is a solution of (3.2) with the initial values

ω
(0)
1 (0) = 1, ∂nω

(0)
1 (0) = 0

and

ω
(1)
1 (0) = 0, ∂nω

(1)
1 (0) = 1,

respectively. In particular, {ω(0), ω(1)} is a basis of the space of all stable solu-

tions of (3.2).

Proof. We first consider the case ρ 6= 2. Then every stable solution of (3.2)

has the form ω(xn) = (ω1(xn), ω2(xn))> with ω2(xn) = λω1(xn) and ω1(xn) =

c1e
−τ1xn + c2e

−τ2xn . The initial values are given by

ω(0) = c1 + c2 and (∂nω)(0) = −τ1c1 − τ2c2.

The formulas for the fundamental solutions now follow directly from the initial

conditions.

Similarly, in the case ρ = 2, we have a double root τ = τ1 = τ2 =
√
|ξ′|2 + λ,

and every stable solution is of the form ω1(xn) = (c1 + xnc2)e−τxn . The ini-

tial conditions ω1(0) = c1 and (∂nω1)(0) = −τc1 + c2 then yield the asserted

expression for the fundamental solutions. �

The following technical result will be the basis for the a priori estimate of the

solutions of the half-space problems.
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Lemma 3.2. a) For fixed ε > 0, k ∈ N and ` ∈ Z, we define the function

fk,` : Rn−1 × (0,∞)× Σπ−ϑ−ε → C by

fk,`(ξ
′, xn, λ) :=

{
xkn

τ1−τ2 (τ `1e
−τ1xn − τ `2e−τ2xn), ρ 6= 2,

xk+1
n τ `e−τxn , ρ = 2 (with τ = τ1 = τ2).

Then for all γ ∈ N2
0 and β′ ∈ Nn−1

0 we obtain∣∣∣λγ∂γλ(ξ′)β
′
∂β
′

ξ′ fk,`(ξ
′, xn, λ)

∣∣∣ ≤ C(|ξ′|2 + |λ|
)(`−k−1)/2

.

b) Let ω(i), i ∈ {0, 1}, be the fundamental solutions from Lemma 3.1. Further,

let ε > 0, k ∈ {0, 1, 2, 3, 4} and α = (α′, αn) ∈ Nn0 with |α| = k. Then for all

γ ∈ N2
0, β′ ∈ Nn−1

0 , xn > 0, λ ∈ Σπ−ϑ−ε, m ∈ N0, and ξ′ ∈ Rn−1 the inequality∣∣∣λγ∂γλ(ξ′)β
′
∂β
′

ξ′

[
λ2− k

2 (ξ′)α
′
xm+1
n ∂αn+j

n ω
(i)
1 (ξ′, xn, λ)(λ+ |ξ′|2)(i−j+m−3)/2

]∣∣∣ ≤ C
holds for j ∈ {0, 1}.

Proof. a) We only consider ρ 6= 2, the case ρ = 2 is treated in the same way (it

is actually a bit simpler). We define

ϕ : Σ(π−ε)/2 → C; τ 7→ xknτ
`e−τxn .

Recall that τ(r) = τ1 + r(τ2 − τ1) ∈ Σ(π−ε)/2 for r ∈ [0, 1]. We start with

the case |γ| = |β′| = 0. Using the elementary estimate |(τxn)me−τxn | ≤ C for

τ ∈ Σ(π−ε)/2 and xn > 0, we obtain

|fk,`(ξ′, xn, λ)| =
∣∣∣ϕ(τ1)− ϕ(τ2)

τ1 − τ2

∣∣∣ =
∣∣∣ ∫ 1

0
ϕ′(τ1 + r(τ2 − τ1)) dr

∣∣∣
≤ C sup

r∈[0,1]

[
|(xnτ(r))ke−τ(r)xn |+ |(xnτ(r))k+1e−τ(r)xn |

]
|τ(r)|`−k−1

≤ C sup
r∈[0,1]

|τ(r)|`−k−1 ≤ C(|ξ′|2 + |λ|)(`−k−1)/2.

In the last step we employed inequality (3.7). The statement in the case β′ 6= 0

and γ = 0 follows iteratively from the recursion formula

∂ξjfk,` = ξj

( fk,`
τ1τ2

+ `fk,`−2 − fk+1,`−1

)
.

This formula can directly be checked observing that ∂ξjτ =
ξj
τ for τ = τ1, τ2.

For the λ–derivatives we note that ∂λ1τ = α±
2τ and ∂λ2τ = iα±

2τ . We compute

∂λ1fk,` = ∂λ1

∫ 1

0
ϕ′(τ1 + r(τ2 − τ1)) dr

=

∫ 1

0
ϕ′′(τ1 + r(τ2 − τ1))

(α+

2τ1
+
rα−
2τ2
− rα+

2τ1

)
dr.
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We set σ = (|ξ′|2 + |λ|)1/2. Estimate (3.7) yields

|λ1∂λ1fk,`| ≤ C
|λ1|
σ

sup
0≤r≤1

2∑
j=0

|yk+j
n τ(r)`+j−2e−τ(r)yn | ≤ Cσ sup

0≤r≤1
|τ(r)|`−k−2

≤ C(|ξ′|2 + |λ|)(`−k−1)/2.

The λ2–derivative is treated in the same way so that we have shown a) for

|γ| = 1 and β′ = 0. The remaining cases can now be established by recursion.

b) For ρ 6= 2 and i = 0, we write

ω
(0)
1 (ξ′, xn, λ) = − τ2

τ1 − τ2
e−τ1xn +

τ1

τ1 − τ2
e−τ2xn

= (1− τ1
τ1−τ2 )e−τ1xn + (1 + τ2

τ1−τ2 )e−τ2xn

= (e−τ1xn + e−τ2xn)− f0,1(ξ′, xn, λ).

It follows

xm+1
n ∂αn+j

n ω
(0)
1 (ξ′, xn, λ) = (−1)αn+j

(
xm+1
n ταn+j

1 e−τ1xn

+ xm+1
n ταn+j

2 e−τ2xn − fm+1,αn+j+1(ξ′, xn, λ)
)
.(3.8)

The first term on the right hand side can be estimated by∣∣xm+1
n ταn+j

1 e−τ1xn
∣∣ = |τ1|αn+j−m−1

∣∣(τ1xn)m+1e−τ1xn
∣∣

≤ C(|ξ′|2 + |λ|)(αn+j−m−1)/2.

Derivatives with respect to ξ′ and λ can be handled as in a), and we infer

(3.9)
∣∣∣λγ∂γλ(ξ′)β

′
∂β
′

ξ′
[
xm+1
n ταn+j

1 e−τ1xn
]∣∣∣ ≤ C(|ξ′|2 + |λ|)(αn+j−m−1)/2.

The same inequality holds for the second term in (3.8), and due to part a) also

for the third one.

For ρ 6= 2 and i = 1, we have ω
(1)
1 (ξ′, xn, λ) = f0,0(ξ′, xn, λ) and hence

xm+1
n ∂αn+j

n ω
(1)
1 (ξ′, xn, λ) = (−1)αn+jfm+1,αn+j(ξ

′, xn, λ).

Assertion a) then implies∣∣∣λγ∂γλ(ξ′)β
′
∂β
′

ξ′
[
xm+1
n ∂αn+j

n ω
(1)
1 (ξ′, xn, λ)

]∣∣∣ ≤ C(|ξ′|2 + |λ|)(αn+j−m−2)/2.

In the case ρ = 2 (where τ1 = τ2 = τ) the situation is similar. For

ω
(0)
1 (ξ′, xn, λ) = (1 + τxn)e−τxn , Leibniz’ formula yields∣∣xm+1

n ∂αn+j
n ω

(0)
1 (ξ′, xn, λ)

∣∣ =
∣∣xm+1
n ταn+j(1− αn − j + τxn)e−τxn

∣∣
≤ C(|ξ′|2 + |λ|)(αn+j−m−1)/2.

The derivatives with respect to ξ′ and λ can then be controlled as in (3.9).

In the same way, we estimate ω
(1)
1 (ξ′, xn, λ) = xne

−τxn . In all cases, we have

established∣∣∣λγ∂γλ(ξ′)β
′
∂β
′

ξ′
[
xm+1
n ∂αn+j

n ω
(i)
1 (ξ′, xn, λ)

]∣∣∣ ≤ C(|ξ′|2 + |λ|)(αn+j−i−m−1)/2.
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The statement in b) now follows from Leibniz’ rule and the observation∣∣λγ∂γλ(ξ′)β
′
∂β
′

ξ′ [(ξ
′)α
′
λ2−k/2]

∣∣ ≤ C(|ξ′|2 + |λ|)(|α′|+4−k)/2. �

In the next result, we introduce the solution operators L
(i)
j (λ) for the

parameter–dependent boundary value problem (3.1) and establish the crucial

a priori bounds for these operators. For s ≥ 0 and λ ∈ C we will use the

parameter-dependent shift operators (λ−∆′)s = (F ′)−1(λ+ |ξ′|2)sF ′ on Rn−1

and (λ−∆)s = (F )−1(λ+ |ξ|2)sF on Rn.

Proposition 3.3. For i, j ∈ {0, 1} and λ ∈ Σπ−ϑ, we define the operator L
(i)
j (λ)

by

(L
(i)
j (λ)φ)(·, xn) := −

∫ ∞
0

(F ′)−1∂jnω
(i)
1 (·, xn + yn, λ)(F ′φ)(·, yn)dyn, xn > 0,

for all functions φ : Rn+ → C which are restrictions of Schwartz functions on

Rn. Here the ‘dot’ refers to x′ or ξ′ in Rn−1. Then the following assertions hold.

a) Set v
(i)
1 = L

(i)
0 (λ)∂nφ + L

(i)
1 (λ)φ and v(i) = (v

(i)
1 , λv

(i)
1 )> for i ∈ {0, 1}.

Then v
(i)
1 (·, xn) = (F ′)−1ω

(i)
1 (·, xn, λ)(F ′φ)(·, 0) for xn > 0 and

A(D,λ)v(i) = 0 in Rn+, i = 0, 1,

v
(0)
1 (·, 0) = φ(·, 0), ∂nv

(0)
1 (·, 0) = 0 on Rn−1,

v
(1)
1 (·, 0) = 0, ∂nv

(1)
1 (·, 0) = φ(·, 0) on Rn−1.

b) Let ε ∈ (0, π − ϑ), γ ∈ N2
0, k ∈ {0, 1, 2, 3, 4} and α ∈ Nn0 with |α| = k.

Then the set of operators in L(Lp(Rn+)){
λγ∂γλ

[
λ2−k/2DαL

(i)
j (λ)(λ−∆′)(i−j−3)/2

]
: λ ∈ Σπ−ϑ−ε,

}
is (well-defined and) R-bounded.

Proof. a) Integrating by parts in the integral defining L
(i)
j (λ) , we obtain the

first assertion. The properties of ω
(i)
1 shown in Lemma 3.1 then yield the second

part of assertion a).

b) Let xn, yn > 0, λ ∈ Σπ−ϑ−ε, ξ
′ ∈ Rn−1, γ ∈ N2

0, k ∈ N0, α ∈ Nn0 and

β′ ∈ Nn−1
0 . Lemma 3.2 b) yields with m = 0∣∣λγ∂γλ(ξ′)β

′
∂β
′

ξ′
[
λ2− k

2 (ξ′)α
′
∂αn+j
n ω

(i)
1 (ξ′, xn+yn, λ)(λ+|ξ′|2)(i−j−3)/2

]∣∣ ≤ C

xn+yn
,

where C does not depend on xn, yn, λ or ξ′. The Michlin-type Corollary 3.2 in

[17] thus shows that the family of operators{
(F ′)−1λγ∂γλ

[
λ2− k

2 (ξ′)α
′
∂αn+j
n ω

(i)
1 (ξ′, xn + yn, λ)(λ+ |ξ′|2)(i−j−3)/2

]
F ′ :

λ ∈ Σπ−ϑ−ε
}
⊂ L(Lp(Rn−1))

is R-bounded with R-bound not greater than C
xn+yn

, for all xn, yn > 0. As the

scalar integral operator in Lp(R+) with kernel 1
xn+yn

is bounded, we can apply

Proposition 4.12 in [10] to derive the statement. �
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Based on the above result, we now investigate the inhomogeneous parameter-

dependent boundary value problem

(3.10)

A(D,λ)v = h in Rn+,

v1 = g0 on Rn−1,

−∂nv1 = g1 on Rn−1,

for λ ∈ Σπ−ϑ and given functions h = (h1, h2)> in Rn+ and g0, g1 on Rn−1. Due

to the structure of the matrix A(D), the natural choice of spaces is

E+ := H2
p (Rn+)× Lp(Rn+),

F+ := H4
p (Rn+)×H2

p (Rn+),

G := W 4−1/p
p (Rn−1)×W 3−1/p

p (Rn−1).

We remark that (3.10) is a mixed-order boundary value problem in the sense

of Douglis-Nirenberg, see e.g. [1]. The boundary conditions can be written in

matrix form as B(D)v = g where

B(D) := γ0

(
1 0

−∂n 0

)
.

Here γ0 : v 7→ v|Rn−1 denotes the trace onto the boundary Rn−1 of Rn+.

By standard trace results (see e.g. Theorem 2.9.1 in [30]), the operator

(A(D,λ), B(D)) : F+ → E+ × G is continuous. As usual, the Lp-realization

Ap,+ : D(Ap,+) ⊂ E+ → E+ of the boundary value problem (A(D), B(D)) is

defined by

D(Ap,+) := {v ∈ F+ : B(D)v = 0} and Ap,+v := A(D)v.

Note that we can write the domain of this operator in the form D(Ap,+) =

(H4
p (Rn+) ∩H2

p,0(Rn+))×H2
p (Rn+), where for k ∈ N we define

Hk
p,0(Rn+) := {u ∈ Hk

p (Rn+) : γ0u = γ0∂nu = · · · = γ0∂
k−1
n u = 0}.

Before stating precise a priori estimates for the solution, we note that λ0 +

Ap,+ is not sectorial on E+ for any shift λ0 ≥ 0.

Proposition 3.4. For each λ0 ≥ 0, the operator Ap,+ + λ0 is not sectorial in

E+ and, consequently, does not generate a C0-semigroup.

Proof. The mixed-order system (A(D) + λ0, B(D)) fits into the framework

of Section 3.2 of [9] with the Douglis-Nirenberg structure (s1, s2) = (0, 2),

(m1,m2) = (2, 0), and (r1, r2) = (−2,−1). By Theorem 3.8 in [9], for every

h ∈ E+ and vλ ∈ D(Ap,+) with A(D,λ)vλ = h for λ ∈ (0,∞), the estimate

supλ∈(0,∞) ‖λvλ‖E+ < ∞ implies γ0h1 = γ0∂nh1 = 0. Therefore, the desired

resolvent estimate does not hold for h ∈ E+ with B(D)h 6= 0. �
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The proof of the last result indicates that zero boundary conditions have to

be included in the basic space E+. In Section 4 we will indeed obtain a sectorial

operator in this way.

To solve the inhomogeneous boundary value problem (3.10), we make use

of restriction and extension operators. Let e0 : Lp(Rn+) → Lp(Rn) denote the

trivial extension by zero and r+ : Lp(Rn) → Lp(Rn+) the restriction onto Rn+.

Instead of the trivial extension e0, we will also consider a global coretraction

e+ of r+ which satisfies e+ ∈ L(Hs
p(Rn+), Hs

p(Rn)) and r+e+ = idHs
p(Rn

+) for all

s ∈ N0 (see e.g. Section 4.4 of [3]). A parameter-dependent extension operator

from Rn−1 to Rn+ is defined by

(Eλφ)(·, xn) := (F ′)−1 exp
(
− (λ+ |ξ′|2)1/2xn

)
F ′φ (xn > 0).

This extension was studied in [2] and [19], for instance. In particular, Propo-

sition 2.3 of [2] yields (after a minor modification) that Eλ belongs to

L(W
k−1/p
p (Rn−1), Hk

p (Rn+)) and that γ0Eλ = id
W

k−1/p
p (Rn−1)

for all k ∈ N and

λ ∈ Σπ−ϑ. We further deduce that

(3.11) ∂nEλφ = −(λ−∆′)1/2Eλφ, φ ∈W 1−1/p
p (Rn−1).

Theorem 3.5. For all λ ∈ Σπ−ϑ, h ∈ E+ and g ∈ G, there exists a unique

solution v ∈ F+ of (3.10). Moreover, this solution can be written in the form

v = R(λ)e+h+ T (λ)Eλg, T (λ) = T (0)(λ)∂n + T (1)(λ)

with operators R(λ) and T (j)(λ), j = 0, 1 , which have the following R-boun-

dedness property: Let ε > 0. Then for all k ∈ {0, 1, 2}, |α| = k, |δ| = 2, and

γ ∈ N2
0 the families of operators{
λγ∂γλ

[
λ1− k

2Dα

(
Dδ 0

0 1

)
R(λ)

(
(λ−∆)−1 0

0 1

)]
: λ ∈ Σπ−ϑ−ε

}
in L(Lp(Rn), Lp(Rn+)) and{

λγ∂γλ

[
λ1− k

2Dα

(
Dδ 0

0 1

)
T (j)(λ)

(
(λ−∆′)(−j−3)/2 0

0 (λ−∆′)(−j−2)/2

)]
:

λ ∈ Σπ−ϑ−ε

}
in L(Lp(Rn+)) are R-bounded.

Proof. (i) Let λ ∈ Σπ−ϑ, h ∈ E+ and g ∈ G. We set v′ := r+(Ap+λ)−1e+h ∈ F+

(see Proposition 2.2 a)) and write v = v′+v′′. Then v′′ has to solve the boundary

value problem

(3.12)
A(D,λ)v′′ = 0 in Rn+,

B(D)v′′ = g −B(D)v′ on Rn−1.



18 ROBERT DENK AND ROLAND SCHNAUBELT

The function g̃ := (g̃0, g̃1)> := Eλg −
( v′1
−∂nv′1

)
is an extension of g − B(D)v′ to

Rn+. By Proposition 3.3, a solution of (3.12) is given by

(3.13)

v′′ = T (λ)g̃ :=
1∑
j=0

T (j)(λ)∂1−j
n g̃ with T (j)(λ) :=

(
L

(0)
j (λ) −L(1)

j (λ)

λL
(0)
j (λ) −λL(1)

j (λ)

)

We remark that the operators L
(i)
j (λ) were defined in Proposition 3.3 for restric-

tions of Schwartz functions to Rn+, but Proposition 3.3 b) shows that L
(i)
j (λ)∂1−j

n

can continuously be extended to an operator in L(H4−i
p (Rn+), H4

p (Rn+)) for

i, j ∈ {0, 1}. In the same proposition, the equalities A(D,λ)T (λ)g̃ = 0 and

B(D)T (λ)g̃ = γ0g̃ were shown for restrictions of Schwartz functions, and by

continuity this identities also hold for the extended operators. As a result, the

function v := v′ + v′′ ∈ F+ solves (3.10).

If z ∈ F+ is another solution of (3.10), then ϕ := v − z ∈ F+ solves this

problem with h = 0 and g = 0. In particular, ϕ1 belongs to H2
p,0(Rn+) so

that ϕ2 = λϕ1 ∈ H2
p,0(Rn+). Therefore, e0ϕ is contained in H2

p (Rn;C2) ⊂ E
and satisfies A(D,λ)e0ϕ = 0. This means that ∆2e0ϕ1 = (ρ∆ − λ)e0ϕ2 in Rn
which yields e0ϕ1 ∈ H4

p (Rn) and hence e0ϕ ∈ F. Proposition 2.2 a) now implies

e0ϕ = 0 and thus the uniqueness of the solution of (3.10).

(ii) In this part we fix ε > 0 and consider λ ∈ Σπ−ϑ−ε. We have seen in part

(i) of the proof that the unique solution v of (3.10) is given by v = R(λ)e+h+

T (λ)Eλg where T (λ) is defined in (3.13) and

(3.14) R(λ) := r+(Ap + λ)−1 − T (λ)

(
1 0

−∂n 0

)
r+(Ap + λ)−1.

Let |α| = k ∈ {0, 1, 2}, |δ| = 2 and γ ∈ N2
0. By Theorem 2.3, the family{

λγ∂γλ

[
λ1−k/2Dα

(
Dδ 0

0 1

)
(Ap + λ)−1

(
(λ−∆)−1 0

0 1

)]
: λ ∈ Σπ−ϑ−ε

}
in L(Lp(Rn)) is R-bounded, i.e., the first term in (3.14) is R-bounded as as-

serted in the theorem. For the second term, we use (3.13) and write

T (λ)

(
1 0

−∂n 0

)
r+(Ap + λ)−1

=

1∑
j=0

(
L

(0)
j (λ) L

(1)
j (λ)

λL
(0)
j (λ) λL

(1)
j (λ)

)(
(λ−∆′)(−j−3)/2 0

0 (λ−∆′)(−j−2)/2

)

×

(
∂1−j
n (λ−∆′)(j+3)/2 0

∂2−j
n (λ−∆′)(j+2)/2 0

)
r+(Ap + λ)−1.

Let i, j ∈ {0, 1}, |α| = k ∈ {0, . . . , 4} and γ ∈ N2
0. The desired statement about

the R-boundedness for the second term in (3.14) now follows from Leibniz’ rule,
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from the R-boundedness of the family

(3.15)
{
λγ∂γλ

[
λ2−k/2DαL

(i)
j (λ)(λ−∆′)(i−j−3)/2

]
: λ ∈ Σπ−ϑ−ε

}
in L(Lp(Rn+)), see Proposition 3.3 b), and from theR-boundedness of the family{

λγ∂γλ

[ (
(λ−∆)2−k/2Dα 0

)
(Ap + λ)−1

(
(λ−∆)−1 0

0 1

)]
: λ ∈ Σπ−ϑ−ε

}
in L(Lp(Rn)), see Theorem 2.3.

The R-boundedness of the second operator family in the theorem is deduced

from Proposition 3.3 b) and (3.11) in the same way. �

Corollary 3.6. For each ε > 0 and λ0 > 0 there exists a constant C = C(ε, λ0)

sucht that for all |α| = k ∈ {0, 1, 2}, |δ| = 2 and all λ ∈ λ0+Σπ−ϑ−ε the estimate

‖λ1−k/2Dαv‖E+ ≤ C
(
‖h‖E+ + ‖g‖G + |λ| ‖h1‖Lp(Rn

+)

+ |λ|2−
1
p ‖g0‖Lp(Rn−1) + |λ|

3
2
− 1

p ‖g1‖Lp(Rn−1)

)
holds for all h = (h1, h2)> ∈ E+ and g = (g0, g1)> ∈ G, where v is the unique

solution of (3.10).

Proof. We use the parameter-dependent norms |||φ|||s,p,Rn
+

:= ‖φ‖Hs
p(Rn

+) +

|λ|s/2‖φ‖Lp(Rn
+), φ ∈ Hs

p(Rn+), for s ∈ [0,∞) and its analogues in Rn and Rn−1.

By Michlin’s theorem the norm |||φ|||s,p,Rn is equivalent to ‖(λ −∆)s/2φ‖Lp(Rn)

where the constants of the equivalence may be chosen independent of λ ∈
λ0 + Σπ−ϑ−ε.

Due to Theorem 3.5, the problem (3.10) has a solution v satisfying

‖λ1−k/2Dαv‖E+ ≤ C
(
‖(λ−∆)e+h1‖Lp(Rn) + ‖e+h2‖Lp(Rn) + ‖h1‖H2

p(Rn
+)

+ ‖(λ−∆′)2Eλg0‖Lp(Rn
+) + ‖(λ−∆′)3/2Eλg1‖Lp(Rn

+)

)
≤ C

(
|||h1|||2,p,Rn

+
+ ‖h‖E+) + |||Eλg0|||4,p,Rn

+
+ |||Eλg1|||3,p,Rn

+

)
.

(We also use the equation λv1 = v2+h1 and the lower bound for |λ| in the shifted

sector to deal with zero order part of the norm in E+.) Now the statement follows

from the fact that Eλ is continuous with respect to the parameter-dependent

norms in the sense that |||Eλφ|||s,p,Rn
+
≤ Cs|||φ|||s−1/p,p,Rn−1 for all λ ∈ Σπ−ϑ−ε+λ0,

s ∈ N and φ ∈W s−1/p
p (Rn−1), cf. Proposition 2.3 of [2]. �

4. Sectoriality and maximal regularity of the evolution

equation on the half-space

In this section we solve the inhomogeneous problem (1.1) on Rn+ in optimal

regularity. As a first step we discuss the sectoriality of the operator matrix Ap
governing the associated first order system.
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We have seen in the previous section that the operator Ap,+ is not sectorial

in the basic space E+. As indicated in Theorem 3.8 of [9], see the proof of

Proposition 3.4, one has to include zero boundary conditions already in the

basic spaces. We thus use the spaces

E0 := H2
p,0(Rn+)× Lp(Rn+),

F0 :=
(
H4
p (Rn+) ∩H2

p,0(Rn+)
)
×H2

p,0(Rn+).

We will see below that it is advantageous to replace the 0–extension operator

e0 from E0 to E by the odd extension es ∈ L(E0,E) which is defined by

(esf)(x) :=

{
f(x), if xn ≥ 0,

−f(x′,−xn), if xn < 0.

The Lp-realization Ap,0 : D(Ap,0) ⊂ E0 → E0 of the boundary value problem

(A(D), B(D)) in the space E0 is defined by

(4.1) D(Ap,0) := F0 and Ap,0v := A(D)v.

For the analysis of this operator, we start with a Hardy-type result.

Lemma 4.1. Let X be a Banach space and let M be the operator of multi-

plication with t, i.e., (Mf)(t) := tf(t) for functions f : (0,∞) → X. For all

f ∈ H2
p,0((0,∞);X) we then obtain M−2f ∈ Lp((0,∞);X) and

‖M−2f‖Lp((0,∞);X) ≤ C‖f ′′‖Lp((0,∞);X).

In particular, M−2 ∈ L(H2
p,0((0,∞);X), Lp((0,∞);X)).

Proof. As f(0) = f ′(0) = 0, we can write f(t) =
∫ t

0

∫ s
0 f
′′(r)dr ds and compute

‖M−2f‖Lp((0,∞);X) =
(∫ ∞

0
t−2p‖f(t)‖pXdt

)1/p

≤
(∫ ∞

0

(
t−2p

(∫ t

0

∫ s

0
‖f ′′(r)‖X dr ds

)p
dt
)1/p

≤
(∫ ∞

0

(∫ t

0

∫ s

0
‖f ′′(r)‖X

dr

s

ds

t

)p
dt
)1/p

=
(∫ ∞

0

(∫ t

0

∫ 1

0
‖f ′′(ρs)‖X dρ

ds

t

)p
dt
)1/p

=
(∫ ∞

0

(∫ 1

0

∫ 1

0
‖f ′′(ρσt)‖X dρ dσ

)p
dt
)1/p

,

where we substituted ρ = r/s and σ = s/t. With Minkowski’s inequality, we

conclude

‖M−2f‖Lp((0,∞);X) ≤
∫ 1

0

∫ 1

0

(∫ ∞
0
‖f ′′(ρσt)‖pX dt

)1/p
dρ dσ

=

∫ 1

0

∫ 1

0

(∫ ∞
0
‖f ′′(τ)‖pX dτ

)1/p dρ

ρ1/p

dσ

σ1/p
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=
( p

p− 1

)2
‖f ′′‖Lp((0,∞);X). �

Remark 4.2. Let Mn denote the operator of multiplication with xn. Then for

every f ∈ H2
p,0(Rn+) we have M−2

n f ∈ Lp(Rn+) by Lemma 4.1. This gives addi-

tional information on the Fourier transform of esf because of ∂2
nFesM

−2
n f =

−Fesf . To see this equality, we may assume that f ∈ D(Rn+) by density, and

write

∂2
ξn

∫
R
e−iξnxn

1

x2
n

(F ′esf)(ξ′, xn)dxn = −
∫
R
e−iξnxn(F ′esf)(ξ′, xn)dxn.

We exploit the above observation in the next lemma which will provide the

main step of the proof of the following sectoriality result.

Lemma 4.3. Let ε ∈ (0, π − ϑ) and b : (Rn × Σπ−ϑ−ε) \ {0} → C be infinitely

smooth and homogeneous of degree 0 in (ξ, λ1/2). We set

b0(ξ, λ) := −(λ+ |ξ′|2)∂2
nb(ξ, λ),

b1(ξ, λ) := −2i(λ+ |ξ′|2)1/2∂nb(ξ, λ),

b2(ξ, λ) := b(ξ, λ)

for (ξ, λ) ∈ (Rn × Σπ−ϑ−ε) \ {0}. We then obtain

r+F−1b(·, λ)Fesf =

2∑
`=0

M `
n(λ−∆′)−1+`/2r+F−1b`(·, λ)FesM

−2
n f

for all f ∈ H2
p,0(Rn+) and

‖r+F−1b`(·, λ)Fes‖L(Lp(Rn
+)) ≤ C (` = 0, 1, 2).

Moreover, the operator families{
λγ∂γλr+F−1b`(·, λ)Fes : λ ∈ Σπ−ϑ−ε

}
⊂ L(Lp(Rn+))

are R-bounded for every γ ∈ N2
0 and ` = 0, 1, 2.

Proof. Set f [2] := M−2
n f ∈ Lp(Rn+) for f ∈ D(Rn+). Let xn > 0. Using Re-

mark 4.2 and integrating by parts, we deduce

F ′
[
r+F−1b(·, λ)Fesf

]
(·, xn)

=
1√
2π

∫
R
eixnξnb(·, ξn, λ)(Fesf)(·, ξn) dξn

= − 1√
2π

∫
R
eixnξnb(·, ξn, λ)∂2

n(Fesf
[2])(·, ξn) dξn

= − 1√
2π

∫
R
∂2
n

[
eixnξnb(·, ξn, λ)

]
(Fesf

[2])(·, ξn) dξn

= − 1√
2π

∫
R
eixnξn

[
∂2
nb(·, ξn, λ) + 2ixn∂nb(·, ξn, λ)

− x2
nb(·, ξn, λ)

]
(Fesf

[2])(·, ξn)dξn
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=
2∑
`=0

x`nF
′(λ−∆′)−1+`/2

[
r+F−1b`(·, λ)Fesf

[2]
]
(·, xn).

By density the first assertion follows. As b is homogeneous of degree 0, the same

holds for b` with ` = 0, 1, 2. Remark 2.1 thus yields the remaining assertions. �

We now establish the sectoriality of the shifted operator matrix on E0 which

governs the associated first order system.

Theorem 4.4. For every λ0 > 0, the operator Ap,0 + λ0 is R-sectorial in E0

with R-angle ϑ(ρ).

Proof. Let h ∈ E0, ε ∈ (0, π − ϑ) and λ ∈ λ0 + Σπ−ϑ−ε. As in part (i) of the

proof of Theorem 3.5, one sees that the equation A(D,λ)v = h with boundary

condition B(D)v = 0 has the unique solution v given by

(4.2) v = R(λ)esh = r+(Ap + λ)−1esh− T (λ)

(
1 0

−∂n 0

)
r+(Ap + λ)−1esh.

To check the asserted R-bound, we can restrict ourselves to h belonging to

the dense subset D(Rn+) of E0. As esh ∈ E, the function ṽ := (Ap + λ)−1esh

belongs to F and solves the equation A(D,λ)ṽ = esh in Rn. Since esh is odd,

also the map x 7→ −ṽ(x′,−xn) satisfies this equation. Because of uniqueness,

the function ṽ is odd, and we obtain γ0v
′ = 0 for v′ := r+ṽ. Therefore, we may

assume that g̃0 = 0 in (3.13) and replace the second term in (4.2) by

1∑
j=0

(
0 −L(1)

j (λ)

0 −λL(1)
j (λ)

)
∂1−j
n

(
1 0

−∂n 0

)
r+(Ap + λ)−1esh

(4.3)

=

(
1

λ

) 1∑
j=0

2∑
k=1

L
(1)
j (λ)∂2−j

n r+F−1ã1k(·, λ)Feshk =: S1(λ)h1 + S2(λ)h2,

where we denote the first line of A(ξ, λ)−1 by (ã11(ξ, λ), ã12(ξ, λ)), i.e.,(
ã11(ξ, λ), ã12(ξ, λ)

)
:=
(

λ+ρ|ξ|2
(α+λ+|ξ|2)(α−λ+|ξ|2)

, 1
(α+λ+|ξ|2)(α−λ+|ξ|2)

)
,

see (2.3). Since F−1ã1k(·, λ)Feshk is a Schwartz function, we can write

L
(1)
j (λ)∂2−j

n r+F−1ã1k(ξ, λ)Feshk(4.4)

= L
(1)
j (λ)(λ−∆′)1−k−j/2r+F−1(iξn)2−j(λ+ |ξ′|2)k−1+j/2ã1k(ξ, λ)Feshk

for j ∈ {0, 1} and k ∈ {1, 2}. The functions

gkj(ξ, λ) := (iξn)2−j(λ+ |ξ′|2)k−1+j/2ã1k(ξ, λ)

=


(λ+ ρ|ξ|2)(iξn)2−j(λ+ |ξ′|2)j/2

(α+λ+ |ξ|2)(α−λ+ |ξ|2)
if k = 1,

(iξn)2−j(λ+ |ξ′|2)1+j/2

(α+λ+ |ξ|2)(α−λ+ |ξ|2)
if k = 2,
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are smooth and homogeneous of degree 0 in (ξ, λ1/2) and therefore satisfy Mich-

lin’s condition. As a result, for k = 2 the set

(4.5)
{
λγ∂γλr+F−1g2j(·, λ)Fes : λ ∈ Σπ−ϑ−ε

}
⊂ L(Lp(Rn+))

is R-bounded for j ∈ {0, 1} and γ ∈ N2
0.

As we will see below, in the case k = 1 we need a more refined representation

formula which exploits that h1 ∈ H2
p,0(R+) and not only that h1 ∈ H2

p (R+). To

this aim, we apply Lemma 4.3 and obtain as above that

L
(1)
j (λ)∂2−j

n r+F−1ã11(·, λ)Fesh1

= L
(1)
j (λ)(λ−∆′)−j/2r+F−1g1j(·, λ)Fesh1

=
2∑
`=0

L
(1)
j (λ)(λ−∆′)−1+`/2−j/2M `

nr+F−1g1j`(·, λ)Fesh
[2]
1(4.6)

where h
[2]
1 := M−2

n h1, the functions g1j` are given by

g1j`(ξ, λ) := (iξn)2−j(λ+ |ξ′|2)j/2ã11`(ξ, λ),

and ã11` are defined as b` in Lemma 4.3 with b replaced by ã11. By homogeneity,

for the corresponding Fourier multipliers the set of operators

(4.7)
{
λγ∂γλr+F−1g1j`(·, λ)Fes : λ ∈ Σπ−ϑ−ε

}
⊂ L(Lp(Rn+))

is R-bounded for ` ∈ {0, 1, 2}, j ∈ {0, 1} and γ ∈ N2
0.

To prove the theorem, we have to estimate λv = λR(λ)esh in the space

E0. For the first term in (4.2), the R-boundedness of {r+λ(Ap + λ)−1es : λ ∈
λ0+Σπ−ϑ−ε} in L(E0) follows directly from Proposition 2.4. To treat the second

term in (4.2), we first use (4.3) and (4.4). For the summands with k = 2,

Proposition 3.3 and (4.5) imply that {S2(λ) : λ ∈ λ0 + Σπ−ϑ−ε} is R-bounded

in L(Lp(Rn+),E0).

It remains to consider the summands with k = 1 in (4.3). In view of the

definition of the space E0, the representation (4.6) and the R-bound (4.7), we

have to show that

(4.8)
{
λ2−|α|/2DαL

(1)
j (λ)(λ−∆′)−1+`/2−j/2M `

n : λ ∈ λ0 + Σπ−ϑ−ε
}

in L(Lp(Rn+)) is R-bounded for |α| ≤ 2, ` ∈ {0, 1, 2} and j ∈ {0, 1}.
For ` = 0, this fact is stated in Proposition 3.3 b). For ` > 0, we follow the

lines of the proof of Proposition 3.3 and write

λ2−|α|/2DαL
(1)
j (λ)(λ−∆′)−1+`/2−j/2M `

nφ(·, xn)

= −
∫ ∞

0
(F ′)−1m(·, xn + yn, λ)(F ′φ)(·, yn)dyn

with

m(ξ′, xn+yn, λ) := λ2−|α|/2(ξ′)α
′
(λ+ |ξ′|2)−1+`/2−j/2y`n∂

αn+j
n w

(1)
1 (ξ′, xn+yn, λ)
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for xn, yn > 0, α = (α′, αn), and ξ′ ∈ Rn−1. Since y`n < (xn + yn)` for xn > 0,

Lemma 3.2 b) shows that (xn + yn)m(·, xn + yn, λ) satisfies Michlin’s condi-

tion. The R-boundedness of (4.8) can thus be established as in the proof of

Proposition 3.3. �

The R-boundedness results above enable us to solve the instationary problem

(1.1) on Rn+ with inhomogeneous right-hand sides, i.e.,

(4.9)

∂2
t u+ ∆2u− ρ∂t∆u = f in J × Rn+,

γ0u = g0 on J × Rn−1,

γ0∂νu = g1 on J × Rn−1,

u|t=0 = ϕ0 in Rn+,
∂tu|t=0 = ϕ1 in Rn+.

Here J = (0, T ), T ∈ (0,∞), is a finite time interval, and we recall that ρ > 0

is fixed. The natural spaces for the right-hand sides are given by

f ∈ E+ := Lp(J ;Lp(Rn+)),

g0 ∈ G0 := W 2−1/(2p)
p (J ;Lp(Rn−1)) ∩ Lp(J ;W 4−1/p

p (Rn−1)),

g1 ∈ G1 := W 3/2−1/(2p)
p (J ;Lp(Rn−1)) ∩ Lp(J ;W 3−1/p

p (Rn−1)),

ϕ0 ∈ Y0 := W 4−2/p
p (Rn+),

ϕ1 ∈ Y1 := W 2−2/p
p (Rn+).

The analogues of these spaces for the time interval R are denoted by E+(R) etc.

The data have to satisfy the compatibility conditions

(4.10)

g0|t=0 = γ0ϕ0,

g1|t=0 = γ0∂νϕ0,

∂tg0|t=0 = γ0ϕ1 if p > 3
2 ,

∂tg1|t=0 = γ0∂νϕ1 if p > 3.

The solution will belong to the space

u ∈ F+ := H2
p (J ;Lp(Rn+)) ∩ Lp(J ;H4

p (Rn+)).

We recall that F+ ↪→ H1
p (J ;H2

p (Rn+)). This is stated, e.g., in Lemma 4.3 of

[12] for Rn instead of Rn+, and follows for Rn+ by the existence of a universal

extension operator (see Lemma 2.9.1/1 in [30]). For i ∈ {0, 1}, we will write 0Gi
for the subspace of all gi ∈ Gi which satisfy (4.10) with ϕ0 = ϕ1 = 0.

We first state the result for homogeneous boundary conditions which follows

from Theorem 4.4 as in the proof of Theorem 2.5. (For the initial values in part

a) one now needs an interpolation result essentially due to Grisvard, see e.g.

Theorem 4.9.1 and Example 4.9.3 in [3].)
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Theorem 4.5. a) The operator −Bp,0 generates an analytic C0-semigroup on

E0 with maximal Lq-regularity on bounded time intervals for every q ∈ (1,∞).

b) Let f ∈ E+, g = 0, and let ϕ0 ∈ Y0, ϕ1 ∈ Y1 satisfy (4.10) with g = 0. Then

there is a unique solution u ∈ F+ of (4.9), and there is a constant Cp(T ) > 0

such that

‖u‖F+ ≤ Cp(T )
(
‖f‖E+ + ‖ϕ0‖Y0 + ‖ϕ1‖Y1

)
.

c) Let f = 0, g = 0, ϕ0 ∈ H2
p,0(Rn+) and ϕ1 ∈ Lp(Rn+). Then there exists a

unique solution u of (4.9) with

∂2
t u, ∂t∇2u, ∇4u ∈ C([ε,∞), Lp(Rn+))

for each ε > 0 and

∂tu, ∇2u ∈ C([0,∞), Lp(Rn+)).

If ϕ0 ∈ H4
p (Rn+) ∩H2

p,0(Rn+) and ϕ1 ∈ H2
p,0(Rn+), we can take ε = 0.

Based on Theorems 4.5 and 3.5, we can now solve (4.9) by inverting the

Banach space valued Fourier transform in time, where we proceed as in [11],

for instance.

Theorem 4.6. Let T ∈ (0,∞) and p ∈ (1,∞) with p /∈ {3/2, 3}. Then for

every (f, g0, g1, ϕ0, ϕ1) ∈ E+ × G0 × G1 × Y0 × Y1 satisfying the compatibility

conditions (4.10), there exists a unique solution u ∈ F+ of (4.9). Conversely,

if u ∈ F+ is a solution of (4.9), then the right-hand sides of (4.9) belong to the

spaces indicated above and satisfy the compatibility conditions (4.10). Finally,

there is a constant Cp(T ) > 0 such that

‖u‖F+ ≤ Cp(T )
(
‖f‖E+ + ‖ϕ0‖Y0 + ‖ϕ1‖Y1 + ‖g0‖G0 + ‖g1‖G1

)
.

Proof. The necessity of the regularity and compatibility conditions (4.10) fol-

lows from standard spatial and temporal trace theorems, see e.g. Corollary 2.8 in

[21] in a more general setting. The uniqueness is a consequence of Theorem 4.5.

To show existence, let data (f, g0, g1, ϕ0, ϕ1) ∈ E+×G0×G1×Y0×Y1 be given

which satisfy (4.10). Extending f, ϕ0 and ϕ1 to Rn and applying Theorem 2.5,

we obtain a solution u′ ∈ F+ of

∂2
t u
′ + ∆2u′ − ρ∂t∆u′ = f in J × Rn+,

u′|t=0 = ϕ0 in Rn+,
∂tu
′|t=0 = ϕ1 in Rn+

which satisfies the asserted estimate with g0 = g1 = 0. We set g̃0 = g0−γ0u
′ and

g̃1 = g1 − γ0∂νu
′. Again standard trace theory and (4.10) yield that g̃k ∈ 0Gk

for k ∈ {0, 1}. Moreover, ‖g̃k‖Gk ≤ Cp(T ) (‖gk‖Gk + ‖u′‖F+).

Considering u − u′, we may therefore assume in the following that the data

in (4.9) satisfy f = 0, ϕ0 = ϕ1 = 0 and gk ∈ 0Gk for k ∈ {0, 1}. Note that test

functions on (0,∞) × Rn−1 are dense in 0Gk, see Theorem 4.7.1 in [3]. Since

we will show that the solution operator g = (g0, g1)> 7→ u is continuous from
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0G0 × 0G1 → F+, we may restrict ourselves to test functions g0 and g1. We

extend them by 0 to functions on R, using the same symbol. We now employ

similar arguments as in Proposition 4.5 of [11] (see also the proof of Lemma 3.4

of [26] for a more detailed exposition in a somewhat different situation).

Let Ft be the temporal Fourier transform and put ĝ := Ftg. In view of

Theorem 3.5, setting λ = iτ with τ ∈ R, we define v̂(iτ) := T (iτ)Eiτ ĝ and recall

that v̂2(iτ) = iτ v̂1(iτ) for τ ∈ R. We write v := F−1
t v̂ and u := v1, observing

also that ∂tu = F−1
t (iτ v̂1(iτ)) = v2. Taking into acount (3.13), (3.11) and that

Ei · ĝ is rapidly decaying, we can compute

v̂(iτ) =
1∑
j=0

T (j)(λ)

(
(iτ −∆′)(−j−3)/2 0

0 (iτ −∆′)(−j−2)/2

)
Ft(4.11)

·F−1
t

[(
(i · −∆′)(j+3)/2 0

0 (i · −∆′)(j+2)/2

)
∂1−j
n Ei · ĝ

]
(τ)

=

1∑
j=0

T (j)(λ)

(
(iτ −∆′)(−j−3)/2 0

0 (iτ −∆′)(−j−2)/2

)
Ft

· (−1)j+1F−1
t

[(
(i · −∆′)2 0

0 (i · −∆′)3/2

)
Ei · ĝ

]
(τ).

We further note that Eiτ ĝ(·, xn) = e−xn(iτ−∆′)1/2 ĝ(iτ, ·) for xn > 0 and

τ ∈ R since the Dunford calculus for sectorial operators and Fourier multi-

pliers coincide here. The operator L = ∂t−∆′ with domain H1
p (R, Lp(Rn−1))∩

Lp(R, H2
p (Rn−1)) is sectorial of angle π/2 in Lp(R, Lp(Rn−1)), hence −L1/2 gen-

erates an analytic semigroup. Because of F−1
t (λ + i · −∆′)−1Ft = (λ + L)−1

for Reλ < 0, we can use the Dunford calculus to deduce

F−1
t

[(
(i · −∆′)2 0

0 (i · −∆′)3/2

)
Ei · ĝ

]
(xn) =

(
Le−xnL

1/2
Lg0

L1/2e−xnL
1/2
Lg1

)
.

The norm in E+ of these functions is bounded by C (‖g0‖G0 + ‖g1‖G1). Here,

for the first component we use Lemma 3.5 of [11] and for the second that

Lg1 ∈ (Lp(R+, L
p(Rn−1)), D(L)) 1

2
− 1

2p
,p = (Lp(R+, L

p(Rn−1)), D(L1/2))1− 1
p
,p by

Lemma 3.1 of [11] and the reiteration theorem, see e.g. Theorems 1.10.2 and

1.15.2 in [30]. In the first part of (4.11) we employ our Proposition 3.3 and the

operator-valued Fourier multiplier theorem (Theorem 3.4 of [31]) and conclude

(4.12) ‖∂2
t u‖E+(R) + ‖∇4u‖E+(R) ≤ c (‖g0‖G0 + ‖g1‖G1).

Since gk have support in (0,∞) and since the symbols involved have a holomor-

phic extension to the half-plane {τ ∈ C : Im τ < 0}, all Fourier multipliers (with

respect to t) have the Volterra property in the sense of Section 2 in [13]. Hence,

the function u vanishes on (−∞, 0), so that u and ∂tu have trace 0 at t = 0. In

particular, (4.12) implies that ‖u‖E+(J) ≤ c(T ) (‖g0‖G0 + ‖g1‖G1) which yields

the asserted estimate ‖u‖F+(J) ≤ c(T ) (‖g0‖G0 + ‖g1‖G1). Finally, v̂(iτ) solves
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(3.10) with λ = iτ and boundary data ĝ(iτ). So the first component u = v1 of

the inverse Fourier transform in time of v̂ is the desired solution of (4.9). �

5. The evolution equation in a bounded domain

In this section we consider a bounded domain G ⊂ Rn with boundary of class

C4. We use the analogous spaces as in the previous section, replacing Rn+ by

G, which we denote by E(G) etc. Moreover, we allow for T = ∞ in the time

intervals. As before, we define D(Ap,0) = F0(G) and Ap,0v = A(D)v.

Theorem 5.1. Let G ⊂ Rn be a bounded domain with boundary of class C4

and ρ > 0. The operator Ap,0 is R-sectorial of angle ϑ(ρ) in E0(G). Moreover,

−Ap,0 generates an exponentially stable, analytic C0-semigroup on E0(G) with

maximal Lq-regularity on (0,∞) for every q ∈ (1,∞).

Proof. The R-sectoriality of λ1 +Ap,0 for sufficiently large λ1 ≥ 0 is shown by a

standard localization argument based on the R–bounds shown in Theorems 2.3

and 3.5. For details we refer to Section 8 of [10]. Via localization, transformation

to the half-space and perturbation, one can reduce the problem to equations

on Rn and Rn+ having constant coefficients and no lower order terms. Choosing

appropriate transformations, these model problems turn out to be those studied

in Theorems 2.3 and 3.5, cf. p. 102 of [10]. In this argument plenty of lower order

terms appear which can be absorbed adding a large λ1 ≥ 0. There are also top-

order perturbations both in G and in the boundary conditions which are treated

by means of the continuity of the coefficients of the transformed operators and

by choosing sufficiently small neighborhoods in the localization. Here one has

to exploit the full power of the regularity results in Theorems 2.3 and 3.5.

As in the proof of Theorem 2.5, it now follows that −Ap,0 generates an an-

alytic semigroup on E0(G) with maximal Lq-regularity on bounded time in-

tervals. Because of standard theory of analytic semigroups, it thus remains to

show that the spectrum of −Ap,0 is contained in the open right half-plane. Since

F0(G) is compactly embedded in E0(G), the spectrum is a discrete set of eigen-

values contained in the complement of λ1 + Σπ−ϑ. If v is an eigenfunction for

Aq,0 and some q ∈ (1,∞), then it is also an eigenvalue for Ap,0 for all p ∈ (1, q)

and the same eigenvalue. The case of p > q is treated by a standard bootstrap

argument using the invertibility of µ+ Ar,0 for large µ > 0 and r > q. We can

thus restrict ourselves to p = 2. We then define the scalar product in E0(G) by

〈v, w〉E0(G) := 〈∆v1,∆w1〉L2(G) + 〈v1, w1〉L2(G) + 〈v2, w2〉L2(G), v, w ∈ E0(G).

Let λv + A2,0v = 0 for some λ ∈ C and 0 6= v = (v1, v2)> ∈ D(A2,0). Taking

the scalar product with v in E0(G), integrating by parts and taking the real

part, we deduce

0 = Re〈λv +A2,0v, v〉E0(G) = (Reλ)

∫
G

(|∆v1|2 + |v2|2) dx+ ρ

∫
G
|∇v2|2 dx
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thanks to the boundary conditions. Hence, Reλ is non-positive. If Reλ = 0,

then v2 ∈ H2
2,0(G) has to vanish, so that (−∆)2v1 = 0 because of λv+A2,0v = 0.

Since v1 ∈ H4
2 (G) ∩H2

2,0(G), we obtain v1 = 0 and the contradiction v = 0. As

a result, Reλ < 0. �

We can now state our final result on the solvability and regularity of the

inhomogeneous damped plate equation (1.1).

Theorem 5.2. Let G ⊂ Rn be a bounded domain with boundary of class C4

and ρ > 0. Then the following assertions hold.

a) Let f = 0, g0 = g1 = 0, ϕ0 ∈ H2
p,0(G) and ϕ1 ∈ Lp(G). Then there exists

a unique solution u of (1.1) with

∂2
t u, ∂t∇2u, ∇4u ∈ C0([ε,∞), Lp(G))

for each ε > 0 and

∂tu, ∇2u ∈ C0([0,∞), Lp(G)).

If ϕ0 ∈ H4
p (G) ∩H2

p,0(G) and ϕ1 ∈ H2
p,0(G), we can take ε = 0.

b) Let T ∈ (0,∞] and p ∈ (1,∞) with p /∈ {3/2, 3}. Then for every

(f, g0, g1, ϕ0, ϕ1) ∈ E(G)× G0(G)× G1(G)× Y0(G)× Y1(G) satisfying the com-

patibility conditions (4.10) on G, there exists a unique solution u ∈ F(G) of

(1.1). Conversely, if u ∈ F(G) is a solution of (1.1), then the right-hand sides

of (1.1) belong to the spaces indicated above and satisfy the compatibility con-

ditions (4.10). Finally, there is a constant Cp > 0 such that

‖u‖F(G) ≤ Cp
(
‖f‖E(G) + ‖ϕ0‖Y0(G) + ‖ϕ1‖Y1(G) + ‖g0‖G0(G) + ‖g1‖G1(G)

)
.

Proof. We omit the details the proof which follows a fairly standard pattern,

based on our results above. Assertion a), the uniqueness in b) and the case

g0 = g1 = 0 in b) follow from Theorem 5.1 and standard semigroup theory.

The necessity in b) is a consequence of trace theorems again. The main step of

the proof is the existence part of b) for f = 0 and ϕ0 = ϕ1 = 0 on finite time

intervals. This can be done by localization, transformation to the half-space and

perturbation as in Section 5 of [11], using the R–bounds of Theorems 2.3 and

3.5. Since −Ap,0 generates an exponentially stable analytic semigroup by The-

orem 5.1, one can extend the existence statement and the maximal regularity

estimate to the time interval (0,∞) as in Proposition 8 of [24]. �
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