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Abstract

We study elliptic operators L with Dirichlet boundary conditions on a bounded
domain €2 whose diffusion coefficients degenerate linearly at 9) in tangential direc-
tions. We compute the domain of L and establish existence, uniqueness and (maximal)
regularity of the elliptic and parabolic problems for L in LP—spaces and in spaces of
continuous functions. Moreover, the analytic semigroups generated by L are consistent,
positive, compact and exponentially stable.
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1 Introduction

We study elliptic operators L of second order with Dirichlet boundary conditions on a
bounded domain  whose diffusion coefficients degenerate at 92 in tangential directions.
We aim at a complete theory including existence, uniqueness and (maximal) regularity of the
elliptic and parabolic problems for L in LP—spaces and in spaces of continuous functions.
Moreover, we establish consistency, positivity, compactness and exponential stability of
the analytic semigroups generated by L. The domain of L is computed explicitly in L?,
p € (1,+00).

We consider symmetric diffusion coefficients which are positive definite at any point in
the interior of 2 and only positive semidefinite on the boundary 992. The degeneracy affects
only the tangential variables and is of the order of the distance from 0€). The prototype
of this class is the well-known Tricomi operator L = —yA, — 8; in the upper halfspace
{(z,y) € RY x R:y > 0}. The Tricomi equation has been widely investigated also in view
of its applications in transonic gas dynamics.

In an earlier paper [8], some of the authors have studied the analogous questions for the
case of complete degeneracy which was also treated in the recent paper [13]. We refer to
[8] and [13] for the existing literature on degenerate second order differential operators, but
we remark that it is mainly confined to the Hilbert case. We are not aware of results about
generation of analytic semigroups in LP(£2) with p # 2 or C(2) by operators with tangential
degeneracy of first order, where domains are computed explicitly.

Let us present the plan of our paper. In Section 2 we focus our attention on the model
problem. We endow the Tricomi operator L with the (best possible) domain

Dy = {u € WP R{T) N WL (RETY) : Oju, lyDiul, |v/y Vadyu| € LF (R},

where p € (1,00). By means of the Mikhlin multiplier theorem, J.U. Kim has shown
an LP apriori estimate for this operator, see Theorem 0.1 in [12] which is stated below
in Theorem 2.1. Using this and variational estimates, we prove that (—L, D;) is densely
defined, closed and regularly dissipative. We then have to show that (A + L)D; is dense
in LP(RY ™) for some A > 0 in order to deduce that (—L, Dy) generates an analytic Co—
semigroup. This range condition is verified approximating the halfspace by strips S. =
{(z,y) € RN xR : ¢ < y < ¢!} for ¢ € (0,1/2], where one has a uniformly elliptic
problem. Due to technical problems, we have to treat the cases p = 2, p > 2 and p < 2
separately. It also follows that the corresponding inhomogeneous parabolic problem has
maximal regularity of type L9, see Corollary 2.14. The section ends with the proof of the
generation result for operators with constant coefficients.

In order to deal with the general case of a degenerate operator defined on a bounded
smooth domain €2, we proceed as in the classical setting by using local charts to straighten
the boundary of . First, at the beginning of Section 3 we choose a function g such that
Q ={0>0}, 90 ={o=0}, and Vp(£) is directed along the inward normal vector if £ € 9
(0 is an extension of the distance function to 9€2). The operator L is of the form

N+1 N+1
L=—-tr(a®aD?) —p Z a;j0;j — Z bi0;, (1.1)
ij=1 i=1

where a;;, b; are continuous functions, a,; satisfy a suitable ellipticity condition (see (H2))
and the vector field a is C? and non tangential on 9€). Hence, the tangential degeneracy



of the diffusion is expressed by the properties of a. Second, following an idea in [3], we
construct a local change of variables depending on a and p in such a way that the boundary
of 99 is locally straightened and the vectors a(£) are transformed into the last vector of the
canonical basis of R¥*!. After the change of variables, we thus recover operators having
the same form as the model operator. This fact is crucial for the localization arguments in
the following two sections leading to our main results.

The main Theorem 4.1 of Section 4 shows that the operator —L, now given by (1.1) and
endowed with the (optimal) domain

Dy(L) = {u e WZP(Q) N W,y P(Q) : o|D?ul,tr(a ® a D*u), \/o|D*ual € LP(Q)},
generates an analytic semigroup on LP(f2), p € (1,00). To prove it, besides the localization
procedure of Section 3, we employ the technique of freezing the coefficients that allows to
apply the results of Section 2.

Section 5 is concerned with the generation of analytic semigroups in C(Q) and Cp().
The main ingredients of the proofs are the results from Section 4 and the Masuda—Stewart
localization technique. However, it is not straightforward to carry out this procedure because
of the degeneracy exhibited by the operator. In particular, as a preliminary step we have to
prove a quantitative, local version of the Morrey embedding theorem for functions ¢ € L?(Q)
such that 9,p, /¥ V.| € LP(Q) for large p, where @ is a parallelepiped in Rf“ whose
lower base lies on RY x {y = 0}. Moreover, in applying the Masuda-Stewart technique the
required covering must be constructed following the geometry suggested by the degeneracy,
which is different from both the classical one and that in [8]. In various corollaries in
Sections 4 and 5, we establish additional properties of the analytic semigroups such as
consistency, positivity, compactness and exponential stability, as well as maximal regularity
in the L? case.

Notation. We set RY "' = {z = (z,9) € RN xR : y > 0} and write B (z) =
B,(z) NRY ™! for the balls in RY *'. Functions defined on RY ™" are extended by 0 to RN+,
and functions on R¥*+! are identified with functions on RY*! by restriction. In the whole
paper, p denotes a number in (1,00). By C' > 0 we mean a generic constant. The gradient
and Hessian on RN¥*! are denoted by V and D? whereas V, and D? only act in x € RY.
We denote both by 21 - 29 and (21, 22) the inner product of z1, 25 € RN+1. Given two vectors
a,b € RN the symbol a ® b denotes the matrix with entries a;b;.

2 The model problem on a halfspace
We consider the Tricomi operator
L=—yA, — 85

on the open upper halfspace Rf +1 The following a priori estimate is established in Theorem
0.1 of [12].

Theorem 2.1 There exists M > 0 such that for every u € C2°(RN*1) with u(z,0) = 0 it
holds

||yD§UHLp(R§+1) + Hag?U“Lp(Rf“) + ||\/§Vx3yu||Lp(Rf+1) <M ||LU||Lp(Rf+1)~



We observe that in [12] this theorem is stated with the summand [|yAgul[;,g~+1) instead of
+
lyD2ul|,, ®~+1y- The classical Calderén-Zygmund estimate with respect to 2 then implies
+

the version of the theorem given above. Moreover, in [12] it is allowed that the function
u does not vanish at the boundary. In this case, a suitable norm of the restriction of u
at y = 0 is added on the right hand side and the constant M depends on the width L of
the strip containing the support of u. But, if u(z,0) = 0, inspecting the proof in [12] one
realizes that M can be taken independent of L. In view of Theorem 2.1, we introduce the
spaces

D, = {ue WHPRYT) nWZPRYTY) « [yD2ul, 02u, |y Vadyu| € LP(RY T,

loc

D ={u€ Dy:u(-,0)=0 on RV},

where the boundary values at y = 0 are understood in the sense of traces. Endowed with
the canonical norm, denoted by || - ||p,, Dy and D, are Banach spaces. We further set

D={ucCPR") : u(x,0) =0 forall z € RV}
The main result of the present section is stated below.

Theorem 2.2 The operator (—L, D;) generates an analytic Co-semigroup of positive con-
tractions (Tp(t))i>0 in Lp(Rf'H). Moreover, T,(t)f = T4&)f for all t > 0, f €
LPRYTHY N LYRYTY), and 1 < p,q < oc.

We start by proving the following Lemma which allows us to extend the a priori estimate
of Theorem 2.1 to Dp.

Lemma 2.3 The space D is dense in Dy.

Proof. Let us first show that the functions in Dy with compact support in the closure of
RY ™! are dense in DS. Let u € DS and let ® € C°(RV+1) be such that ® = 1 in By(0),
® =0in RVT1\ By(0) and 0 < ® < 1 in RV Set ®,(2) = ®(z/n), where z = (z,y).
Observe that |V®,| < C/n, |D?®,| < C/n? in By,(0) \ B,(0) and V®,, = 0, D?*®,, =0
elsewhere. The functions u,, := ®,u € Dy have compact support in the closure of Rf 1
By dominated convergence, u, — u in WhP(RY ') and also O2up — Oru in LP(RYT1) as
n — oco. We further obtain that the functions

yD>u, = &, (yD>u) + (yV,®,) @ Vou + Vou @ (yVa®,) + u(yD2®,,),
VI V0yun = ®,(vy VieOyu) + Y Vae®,0yu + /y 0y, Vi + u(\/y Vi0y®,,)

converge to yD2u and ,/y V,9yu, respectively, in LP(RY ).

Now, let u € Dy be such that suppu C BE(O), for some R > 0. Denote by @ the
odd continuation of u with respect to y on RV*1. Then @ belongs to WP(RN*1) and has
compact support in RN*1. Let p,, be a standard sequence of mollifiers such that p is an even
function in each variable. Then w, := p, x4 € D and w,, — @ in W“’(RN“) as n — oo.
Since suppu, € Br41(0), we have also \/y Vu, — /y Vu in Lp(RfH). Concerning the
second order derivatives we have




= pn * (YOr,2,1) + YOz, pn) * O, T.

The first addend clearly converges to Y0y, .4 in L? (RN*1). For the second term is concerned,
a direct computation shows that (y0y, pn)* 0z, @ = (YO, p)n * Or, % and therefore it converges
t0 O, 0 [ni1 YOu, p(2,y) dz dy, which is zero. The convergence of d2u, = p, * (924) to
8511 in LP(RN*1) is standard. In order to prove the convergence of the mixed second
order derivative, we take advantage of Theorem 2.1. Applying this result to the difference
Up — U, yields that (\/y 0z, 0yu,) is a Cauchy sequence in L”(]Rf“)7 k=1,...,N. As a
consequence, there exists v € LP(RY ™) such that VY Oz, Oytty, — v in LP(RYTY). Tt is not
difficult to see that v = /y 0., 9yu. So we have shown the assertion. U

For 0 < & < 1/2, we define the strip
S.={(z,y):zeRY e<y<el}
and the spaces

= W>P(S.) N Wy (S.),
D.={uc CPRN) s u(z,y) =0 ify <cory>e'}.

To unify the notation, we use these spaces also for ¢ = 0 with the agreements
_ mN+1 o _ o _
So =R, D; = D,, Dy =D.

Clearly, D. is dense in D _ for every € > 0. For p = 2 one can easily prove the a priori
estimate of Theorem 2.1 in D3 _ with a constant M independent of ¢ € [0,1/2].

Proposition 2.4 For every u € D5, and 0 < e < 1/2, we have
ly DiullZ2(s.y + 1950l 225,y + 21V VadyullFas.y = [[1Lull72(s.)

Proof. By Lemma 2.3, it suffices to prove the statement for u € D.. We then obtain

/S (1 = /S (e + /S

Notice that the condition u(z,¢) = u(z,e~!) = 0 implies that V,u(z,e) = Vyu(x,e~t) = 0.
Integration by parts now leads to

1
/ u (yAzu) / 6 V- yvmu):/s y|Vm3yu\2+§/S 0y |V zul?

= / Y|V 0yul?. (2.1)

e

(Pu)? + 2 /S 02u (yA,u).

€

Moreover, it is easily checked that

/yAu / ZHJ :

1,7=1

so that the proof is complete. O



Remark 2.5 The computations of the previous proof, see (2.1), yield
”yD?cu”iz(Ri\“rl) + Haiu”iz(Rﬁr\“rl) + 2”\/§V$ayu”izm{f+l)
2 1 2
=l gy + T O

for every u € C°(RN*1). This equality is satisfied also by any function u € Dy with
Va0yu € L? (Rf“). To see this, one can argue by approximation, as in the proof of Lemma
2.3, just replacing u with

iz, y) = u(z,y), ify >0,
’ —3u(z, —y) + du(z, —y/2), ify<O0.

We continue with interpolation inequalities in D} ..

Lemma 2.6 There exist two constants C,no > 0 such that for everyu € D, ., 0 <e < 1/2
and 0 < n < ng the following inequalities hold.

(i) 10yullLocs.) < mllogullLecs.) + (C/n)llullzes.)
(i) 102, ullLe(s.) < n(lly03,ullzo(s.) + 105ullLees,)) + (C/n*)|ullLogs.)
(iii) ||\/§ O el Lo(s.y < nllydZ ullLecs.) + (C/n)llulls.)-

Proof. Estimate () is well-known. Concerning (i), Lemma 2.7 of [8] yields that

lzeesoy + (C/m)llu/yllLrcs.)- (2.2)

By the one dimensional Hardy inequality applied to w(y) = u(z,y)x,-1(%), ¥ € (0, +00),
and by integration with respect to x € RV, we deduce

10z ull Lo (s.) < nllyd2 u

p
lu/yllee sy < =710y ulleris.)- (2.3)

Assertion (ii) now follows by combining (2.2) and (2.3) and using (i) with 72 instead of 7
for a possibly different value of C. Finally, inequality (i) is proved in Lemma 2.7 of [8]. [
Theorem 2.1 and Lemmas 2.3 and 2.6 imply the closedness of (L, Dy).

Proposition 2.7 The operator (L, Dy) is closed in LP(RYTY).

In the following result we establish the dissipativity and sectoriality of the operator
(_L7D§,e) for every 0 < e < 1/2.

Proposition 2.8 LetReA>0,u e Dy _,0<e <1/2, and f = Xu+Lu. Setu* := ufulP~2.
It then holds

(ReM||ullzrsy < I fllzres.,

‘Im/ (Lu)u* p—2
Se

o 222w f )




Proof. By density, we may assume that u € D.. In the proof below we suppose that
p > 2. The case 1 < p < 2 can be treated similarly by a standard regularization of the
power |a|P~2, cf. Lemma 2.12. Multiplying the equation Au+ Lu = f by u* and integrating
by parts on S, all boundary terms vanish and we have

o= Ml + [ v (0= DlRe @l + i @90 )
Filp—2) /3 ol (Re () (I (a7 1))
+ [l (0= DIRe (0,0 + 1 (0,0 )
Hilp—2) /S 07~ (Re (@ ,u) (1 (3.9,) ).
Taking the real parts, we obtain
Re [ fur = ReNulls, + [ ol (0= DIRe @9, + [1m @90 )

e P (GO 12 (2.4)
+ [ (0= DlRe o + Jm @0,)
> Re N[l

which implies the first part of the statement. Now, choose A = 0. We can estimate the
imaginary parts as follows:

’Im /S (Lu)u’

€

<p=2I( [ sl Re @) ([ vlul ™ im (@90
SE Ss

tlp=2( [ apre@d,wP)” ([ fup i @o,u)?)
Se Se

lp — 2| / —4 - 2 / —4 - 2
< — -1 P =41
=op -1 ((p ) . ylulP"*Re (uVou)|* + [ ylu["""[Im (aVeu)]| )

€

|p - 2| / —4 — 2 / 4 _ 2
- — -1 P=*Re (ud p—41 p) .
" 2@(“’ ) s |ul?™"|Re (@dyu)|” + . |uf[P~* Im (40 u)| )
Using (2.4) with A = 0, we deduce the second assertion. 0

Remark 2.9 Propositions 2.7 and 2.8 for ¢ = 0 say that the operator (—L, D}) is closed
and regularly dissipative in LP(RfH) (i.e., —e'L is dissipative for all ¢ € (—¢o,¢o) and
some ¢g € (0,7/2). Of course, it is densely defined. According to standard semigroup
theory, (=L, D,) thus generates a contractive analytic Co—semigroup if we can show that
the range of A + L is dense in L”(Rf“) for some A > 0. This fact will be established
separately for the cases p=2,p>2and 1 <p < 2.

We now establish Theorem 2.2 in LQ(RfH). For this purpose, we first note that Propo-
sition 2.4 and Lemma 2.6 imply the following L?-estimates which are uniform in .



Proposition 2.10 There exists C > 0 such that for every u € D3 _ and 0 <e < 1/2

ullwr2s.) +105ull L2 (s + lyDiull L2 s + VY VaedyullL2csy < C(1LullL2(s.y + llull L2(s.))-

Proof of Theorem 2.2 with p = 2. It remains to show the range condition. To this
aim, we argue as in Proposition 2.9 of [8]. Take A > 0 and f € L2(RY™'). Then, by
Proposition 2.10, there exists a suitable null sequence (g,) such that the solutions u., €
D5 . of Aug, + Lue, = f in Sc, converge weakly in VVE)C2 (Rf“) to a function u satisfying
A+ Lu = f on Rf“. Moreover, u belongs to Dy due to Proposition 2.10 and Fatou’s
lemma. As in the proof of Proposition 2.9 in [8] one can verify that u(-,0) = 0. In view
of Propositions 2.7 and 2.8, the operator (—L, D3) generates an analytic Cp-semigroup of
contractions (T (t))¢>o in L? (]Rf“). If f is positive, then the approximating functions wu,
are positive so that u is positive, which implies the positivity of the semigroup. ]

We next consider the case p > 2.

Proposition 2.11 For every A > 0 and p > 2, the range (A+ L)DS,

5 is dense in LP(RYHY).

Proof. Let A > 0 and f € C°(RY+!). By the case p = 2 already discussed, there exists
u € D3 such that Au+ Lu = f. We have to show that v € Dp. This will be done by showing
that also the derivatives of u belong to Ds. From the proof of Theorem 2.2 with p = 2
given above we know that there exist ¢,, > 0 converging to 0 as n — 400 such that u is the
weak limit in W22 (RY*1) of ., , where u., € Ds =~ satisfies Auc,, + Lu.,, = f in S, . Fix

loc

k € {1,..., N}. Differentiating with respect to xy, we find that

A0y, Ue,, + L(Op tte, ) = O, f  in Se,
6_” Ug, = 0 on 85571

where 9y, ue,, 0z, f € L*(S.,). From elliptic regularity theory, we deduce that 9, u., €
D5 . . Further, up to a subsequence, the sequence Oy, u., converges to 0, u strongly in
LIQOC(RfH). On the other hand, applying the estimate of Proposition 2.10 to Oy, u.,,,
we can extract a new subsequence, still denoted by 0, u.,, which converges weakly in
VVli’f(RfH) to the solution v in D§ of A + Lv = 0,, f in RY ™! as n tends to +oo.
Therefore v = 9,,u. This implies that d,,u € D3, for any k € {1,...,N}. In particular,
D2u, V. 0yu, yD3u, Vwﬁsu and \/yD20,u belong to L? (Rf“). By iteration, we deduce that

any z-derivative of u belongs to D35. Next we write
A — Au = g, u(-,0) =0

where g = f + (y — 1)A,u € WH2(RY x (0, M)), for any M > 0. From standard regularity
theory, we infer that u € W32(RN x (0, M)) for any M > 0. Take functions 7, € C*°(R)
such that

N, =1 in (—oo,n], N =01in [n+ 1, 4+00), 0<n, <1,
1 lloe + 1 lloe + 110 oo < €

for a constant C > 0 and all n € N. By straightforward computations one sees that
v 1= Oy(nnu) € Dy and V,0yv € L? (Rf“). We can thus apply Remark 2.5 and we obtain

19501 2 g1y < C(1030 + 9ol oy + [0 O)llwraqesy). (25)



Observe that (A+ L)0,u = 0y f + Azu. We now estimate the first addend of the right hand
side by writing it explicitly
351} + yAzv = =0, L(Oyu) + n,, (yAzu + 38§u) + 3 Oyu + i
= N ANOyu — Oy f — Agu) + 1), (yAzu + 38§u) + 35 0yu + 1, u.
Due to the previous steps the right hand side can be estimated in terms of |u|/p, and
||f||W172(Rf+1) independently of n. We thus obtain

1930 + YAl aqayeny < Cllello, + ey
Moreover,
[o(-, 0O)llwrz@yy = [[(9yu) (- 0)llwr2@yy = [[(Oyw)(+, 0)l| 2y + [[(VaOyu) (-, 0) || L2 )
< Cl10yull L gvery + ||3§UHL2(M+1)
+ ||Vrayu||L2(Rﬁ+1) + ||Vx8§U||L2(R§+1))-
Taking into account the estimates from (2.5), it follows that
H52U||L2(RNx(o,n)) < H3§U||L2(Rf+l) < C(|lullp, + Hf”le?(Rf'H) + | Vaul p,),
for some C' independent of n. Hence, d3u € L*(RY*') which implies that
YAz Oyt = AOyu — a;ju —Agu—0yf

also belongs to LQ(RfH). Summing up, we have shown that dyu € Dj. It is clear that
we can iterate the procedure, and then infer that all derivatives of u belong to Dsy. Us-
ing Sobolev’s embedding, we thus deduce that u, Vu, 8§u, yD2u and yD29,u belong to

LP(RfH). Lemma 2.6 now yields that \/yV,0,u € U’(Rf"’l)7 and thus u € Dj. ]

In the case 1 < p < 2 the above argument does not help since here the higher order
Sobolev spaces W’“Q(Rf 1) are not embedded into L” (Rf *1). However, compactly sup-
ported functions u € Dy of course belong to D), if p < 2. In order to exploit this fact we
first prove an estimate for gradient terms.

Lemma 2.12 Let 1 <p <2, A>0,ue DS_,0<e<1/2, and f = Au+ Lu. Then there

p.e’
is a constant Cp, > 0 not depending on € and f such that

10yullLr(s.y + VY Vaulloes) < Cpl[fllrcs.) + lullzecs.))-

Proof. By density, we can again limit ourselves to proving the statement for any u € D..
—2

Let 6 > 0 and multiply the equation \u + Lu = f by u(u? + 5)p2 . Integrating by parts

over Sg, we obtain

UU2 l”T_Q: u2u2 pT_2 — U2U2 pT_2
/Saf( +6) A/ (u? +8)"F + (p 1>/<ay>< +6)

€ e

~0=28 [ (OuPel+5)



Fo-1) [ VP9 - (p-25 [ ylVaull+6)F
Se Se
Since (p — 2)d < 0, we infer from Holder’s inequality that

(p—l)/ ((9yu)* + y|Vzul?) (u” + )2 / Fu? +0)"7 <||fllp [l (w* + 8)3 (27

€

Holder’s and Young’s inequalities now yield

/SE(Gyu)P = /Sa(ayu)p(ueré)p(

gg/s(ayu)( +6)" 7 +—/ )

<125y + o 16+ 0)F 2,

and similarly for /yV,u. Letting 6 — 0, the statement follows. ]

p(2—p)
1

(U2 4 0)

‘d

Proposition 2.13 For every A > 0 and 1 < p < 2, the range (A + L)D; is dense in
LP(RY).

Proof. Let A > 0 and f € C2°(RV*!). For every € > 0, there is an u. € Dj _ such that
(A + L)ue = f on Sc. Propositions 2.8 and 2.10 and Lemma 2.12 yield

HueuLP(SE) + ||“6||D§,a + Hayu:s”LP(Ss) <C (”fHLp(Ri’“) + Hf||L2(Rf+1)) )

for a constant C' > 0 independent of e. Moreover, as J,, u. solves the equation (A+L)0,, ue =
Oz, f, we also have
|0y el Lo (s.) < A’1||8zkaLp(Rf+1)

for every k € {1,...,N}. By weak compactness there exists a sequence ¢, — 0 such
that u., converge fo some u weakly in W22(RY™) and in WH?(RYF!). The proof of
Theorem 2.2 with p = 2 yields that u belongs to DS and satisfies Au + Lu = f in Rf“.
Moreover, u € Wl’p(]RfH).

Take ® € C(RN*!) with @ = 1 in B1(0), ® = 0 in RV*1\ By(0) and 0 < ® < 1 in
RN+ Set ®,,(2) = ®(z/n), where z = (x,y). For every n € N, it holds |V®,| < C/n,
|D%®,| < C/n? in B,(0) \ B,(0) and V®,, = 0, D*®, = 0 elsewhere. The functions
upn := Ppu belong to D) since they are compactly supported. We want to show that uy,
converges to v in D, as n — oo which implies the assertion. Due to Proposition 2.7, it
suffices to prove that u, — u and Lu, — Lu in LP(RY ™). The first convergence is clear.
To check the second one, we observe that

L(u—uy,) = (1 — ®,)Lu + 20, P, Oy + ulyy Py, + 24V Py, - Vou + yul 0,

Since Lu = f — A\u € L”(Rf“) and u € VVL”(]R_I?_/“)7 the properties of ®,, and dominated
convergence easily imply that the functions L(u — u,) tend to 0 in LP(RY*1). U
Proof of Theorem 2.2. In view of Remark 2.9 and Propositions 2.11 and 2.13, it remains

to show positivity and consistency. The proofs of Propositions 2.11 and 2.13 show that
the resolvents of (—L, Dy) coincide on C°(RN*+1) for all A > 0, so that they coincide on

LP(RYHY) N L9(RY ). This fact shows consistency. Positivity then follows from the case
p = 2 already proved. O



Let g € (1,00), T > 0 and J = (0,T). We say that a closed, densely defined operator
A on a Banach space X has mazimal regularity of type L if for all f € L1(J, X) there is a
unique solution u € Li(J, D(A)) N W4(J, X) of the Cauchy problem

u'(t) = Au(t), teJ, u(0) = 0.

We refer to [6] and [14] for a thorough discussion of this property and for further references.
Here we just note that this property does not depend on 7' > 0 and ¢ € (1,00) and that A
generates an analytic semigroup if it has maximal regularity of type L?. In our setting we
can use that A has maximal regularity of type LY if it generates a positive and contractive
analytic semigroup on an LP space with p € (1,00). This fact follows from Corollary 5.2
and Theorems 5.3 and 6.1 of [11].

Corollary 2.14 Let p,q € (1,00). The operator (=L, Dp) has mazimal L?-regularity.

As a preparation for the following sections, we further introduce the operator

N N+1
Lo = —(Loaz -y Z aij&,;iz]. + Z b;0iu (26)
ij=1 i=1

with constant coefficients ag,a;,b; € R satisfying the conditions ap > 0 and a;; = aj; for

alli,5=1,...,N as well as
N

> aij&i&y > plél?

4,J=1

for all ¢ € RN and some p > 0. Set M = max{|a;;, |bi|,a0,ay ", p~'}. We endow —L with
the domain Dp.

Theorem 2.15 Let p € (1,00). There are constants Ay, > w, > 0 and C; > 0 depending
on M, N and p such that for every A € C with ReX > w, and f € LP(R_]EH) there exists a
unique solution u € Dy of Au+ Lou = f such that

|/\H|U||LP(R1+1) < Cl”fHLp(Rfﬂ)a (2.7)
||8Zu||Lp(Rf+1) + ||Z/D3:U||LP(R1+1) + H\/?jvxayUHLp(]Rf“) < Cle”Lp(Rerl)a (2.8)

Morover, for ReA > A, we have

1 1
A2 (Hayu”Lp(RfH) + ||\/§qu||Lp(Rf+1)) + Al HV:EUHLP(RfH) < Ol”f”];p(mf“)-

Proof. Assume first that b; = 0 forevery i =1,..., N+1 and that Re A\ > 0. Let @ be a non-
1

singular N x N matrix such that 223:1 a§ ij0z,0; () = Ap(Qx) whenever o(z) = ¥(Qx)

for € RY. We use the endomorphism of Rf“ mapping z = (x,y) to ¢ = (§,n) =

(Qm,a&éy). Setting u(z) = w(¢) and f(2) = ¢((), the equation \u(z) + Lou(z) = f(z2) is
now equivalent to

Mw(C) + Lw(C) = Mw(C) — dpw(C) = nAew(¢) = ¢(C),

and the first part of the statement follows easily from Theorem 2.2. Applying Theorem 2.2
to w we have

||(’“)§u||Lp(Rf+1) + HyDiUHLp(Rf“)"‘H\/yvmayu”m(]}&f“)
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< C(HLwHLP(]Ri’Jrl) + ||w||Lp(]Rf+1))

=C (”f”LT’(Rf“) + |/\|_1Hf||Lp(Rf+1)> .

Therefore estimate (2.8) follows. Finally, by Lemma 2.6 there exist C,ny > 0 such that for
every 0 < e <y

C
19yl oty < EN02ll gaysny + 20l oy

Taking (2.8) and (2.7) into account, we get

C
||6yu||Lp(R{;’+1) < CEHfHLp(R{;’“) + ﬂ”fHLP(Rf“)'
Choosing ¢ = |\|71/2
analogously.

Finally, the general case where first order terms are present in Ly can be handled by a
perturbation argument, since estimates (i) and (ii) of Lemma 2.6 show that the operator
B =b-V, with b = (by,...,by+1), is a small perturbation of —aoaj — yzgjzl ;O z;
(see [7, Section III.2]).

yields the desired estimate. The remaining terms can be estimated

3 The localization procedure

Let © be a bounded open subset of RN¥*! with boundary of class C? and let ¢ be a function
in C?(RN+1) such that

Q={0>0}, 90={0=0} and V(&) =v(§), & € 0. (3.1)

Here, v(§) is the inward unitary normal vector to 9 at £. Such a function g can be
constructed by extending the distance function from the boundary of 2. Let us introduce
the operator L defined on smooth functions as

N41 N41
Lo = —tr(a®@aD?p) — o Z a;; 03 — Z b;0ip. (3.2)

ij=1 i=1
In the remainder of the paper we shall assume the following conditions on the coefficients.

(H1) a=(aj,...,any1) is a vector—valued C? function in a neighbourhood of ) such that
at each point £ € 9 the vector a(§) is non tangent at 99, namely a() - v(£) # 0.

(H2) a;; are real-valued continuous functions on Q with ai; = aj; and satisfy the ellipticity
conditions
N+1
Z ai; (&)Timj > po|T|?, for every £ € 9Q, T € RN*! with 7-a(¢) = 0,

,j=1
N+1

> (a:(€)a;(©) + 0©)ai(©))6i¢; = u@IC,  for every € € Q, ¢ € RN,

i,j=1
for some constant pp > 0 and a suitable function p with i%f u > 0, for any compact

set K contained in 2.

11



(H3) b; are real-valued continuous functions on Q.

Example 3.1 Let us consider 2 = B (0) in RV*! and choose a(§) = ¢, for any £ € 0. Set
r = |¢|. Then the operator

N 1—1r2
Lp=—1202p — (1 —1r?)Ap = —02¢p — (1 — 7'2)787"50 T2 Asp, r#0

where Ag denotes the (negative) Laplace-Beltrami operator on 992, is of the form (3.2) with
0(€) =1 —r2. Another simple example is

1— 2
TAS%Oa T#O

N
Lip==0lp— —0p— —3

which differs from L by the first-order bounded perturbation rNJ,.. More generally, any
operator which is uniformly elliptic in the interior and can be written near the boundary in
the form

Lo =—02¢ — (1—1*)Agsp + B,

where B is a first-order bounded perturbation, satisfies our assumptions.

Without loss of generality, we can assume that

m = min a(§)-v() >0 (3.3)
and define
M= _max {lallo gl Il

Let & € 09 be fixed. Following [3], in a neighborhood U = U(&;) of & we consider
functions 6y, ...,0x € C?(U) solving the equation

N+1

D ai(©)o0() =0, Eel, (3.4)

i=1

such that V6 (&), ..., VOxn (&) are linearly independent. Such functions exist by classical
results on partial differential equations of first order, see e.g. Theorem 33.3 of [5]. We then
define the transformation

J:U =RV £(6(8), 0(9))

where (&) = (01(€),...,0n(€)). Due to (H1), (3.1) and (3.4), the Jacobian matrix of J
at & is non-singular. Therefore, possibly taking U smaller, we obtain that J is a C?-
diffeormorphism from U onto J(U). It further holds that J(U N Q) = J(U) N RY ™ and
JU NI = JU)N{y = 0}. So (U,J) is a local chart. We denote by H the inverse of
J. We can cover 992 by the finite union V = U; U --- U U, of open sets of the above type.
Thus, below we may always assume that U(&y) C U; for some of the U; and that J and H
are restrictions of the diffeomorphism on U;. Hence, all the derivatives of J and H up to
the second order may be assumed to be bounded by a constant independent of &,. To fix
the notation we suppose that for any k=1,..., N +1

[ Tklloe + 1V Tk lloe + 1D Ji]loo < L,
[Hklloo + | VH oo + 1 D* Hilloo < L.

12



Finally, we can assume that
a(§) Vo) >m/2 forallé e UNQ, (3.5)

by virtue of (3.3). Such local coordinates have the advantage of transforming all the vectors
a(¢) at points £ € U N into the normal direction at {y = 0} by the formula

(Jac J(€))a() = (a(§) - Vo(é))en1- (3.6)

It follows that

(Jac H(z))ent1 = a a(®) (3.7)

(&) - V(&)

for z = J(€). Define ¢(z) = o(Hz), for z € J(U)NRY ™!, Using Taylor’s formula with
respect to the last variable, for z = (z,y) we find that

02) = ol 1) = 0(2.0) + 0,0(0.0)y + 5086 (a,1) i = (0,62, + 503002,y ).

for some t € (0,y). Recalling (3.7), we obtain

— ((Jac H(z))e 2y = A8 Vel©)
6y¢(z) - <(J H( )) N+17VQ(H )> a(f) K V‘Q<§) 1
with € = Hz. Therefore we may write
o(2) =yd(z), z€JU)NRYT, (3.8)

where d is a continuous function with d(z,0) = 1 which is bounded from above and below
by positive constants independently of &j.
Given a function u: UNQ — R, set Tu =uo H on J(U) NRYT'. One can check that

VTu = (JacH)*(Vu)o H.

In particular, equality (3.7) yields

a(§) - Vu(§)
OyTu(z) = (VTu(z),e = —— =
for &€ = Hz. The boundedness of the derivatives of H and its inverse implies that T

induces isomorphisms from L?(U N Q) onto LP(J(U) NRY ) and from W (U N Q) onto
Whe(J(U) NRYTY), for any p € [1,+00]. Let u € WHP(UNQ)N W2P(U N Q). Due to

loc
(3.8), the function pD?u belongs to LP(UNQ) iff yD?(Tu) is contained in LP(J(U) ﬁRf“).
Since

8§Tu = ((Jac H)*(D*u)(Jac H)en+1,en+1) + first order terms
= (a(¢) - Vg(f))dtr(a ® a D?u) + first order terms,

it holds tr(a®a D?u) € LP(UNQ) iff 07 (Tw) € LP(J(U) NARY ™). Finally from the expression

VY 0z, 0yTu = \/y{(Jac H)*(D*u)(Jac H)en 1, ex) + first order terms

13



- : <(\/§D2U a)(§), (Jac H)(J(ﬁ))ek> + first order terms

d(J(€))(a(§) - Vo(£))

it follows that \/y V9,Tu € LP(J(U)NRY ™) iff \/o D?>ua € LP(UNS). Moreover, in these

equivalences also the norms of the respective functions are uniformly equivalent. Moreover,

all the operator norms of 7" and 7! can be estimated by constants independent of &;.
The differential operator L is locally transformed into the operator £ given by

N+1 N+1 N+1

L=-a(2)—¢(z) S ani(=)0h — Z Br(2)8) — Z Vi (2 (3.9)

h,k=1

with the coefficients

a(z) = (a(Hz) - Vo(Hz))?,
N+1
ank(2) = Y aij(H2)0g, Jn(H2)0g, Jp(Hz),
N+1 3.10
Br(z) = Z aij(Hz)0g,¢, Jr(H2), (310
2J’\/?—‘:l N+1
Yi(z) = Z a;(Hz)a;(Hz)0¢¢; Ji(Hz) + Z bi(Hz)0¢, Ji(Hz).

i,j=1 i=1

Notice that the sup—norms of all the coefficients of £ are controlled by constants depending
on M, L, ||[Vo|l and not deepending on &y;. In order to deal with the class of operators
introduced in (2.6), we freeze the coeflicients of £ at the point zo = J(&p) as follows

N N+1
L% = —a(zp) 8 —y Z ank(20)0x), z, Z Yk (20)0 (3.11)
k=1

Remark 3.2 Let us prove that the matrix (ozhk (zo)) satisfies the ellipticity condition

N
hk=1
with a constant independent of &. Let ¢ € RY and set ¢ = (¢,0) € RV*!. Then, by the
definition of apk(20) we have

N N+1
ank(20)Cnlr = Z ai;(&0) Xi X,
k=1 ij=1
N ~
where X; = Zafijh(fO)Ch and thus X = (Jac J(&)) (. In order to apply (H2), we have

h=1
to show that the vector X is orthogonal to a(£y). To this aim, using (3.6) we find

(X,a(&)) = (¢, (Jac J(&))a(&)) = (a(éo) - ¥(£))(C, en+1) = 0.

Therefore
N

> an(z0)GC = pol X P = Cpol¢?,
h,k=1

14



for some constant C' independent of &. Moreover, estimate (3.3) implies that a(zg) > m?.
Therefore the operator L°, defined by (3.11), satisfies the assertions of Theorem 2.15 with
constants Cv, Ap, w, independent of &.

In the next sections we shall use a suitable covering of €2, constructed as follows. For
every & € 0Q, let (Ug,, Jg,) be the local chart constructed at the beginning of the section.
Given € > 0, choose a ball B,.(¢,)(§0) C Ug, such that if z € J¢, (B (g, (o)) N RY*!, then

a(z) — alz0)] <,
|[d(2)ank(z) — ank(z0)] < e, hk=1,...,N+1

lo(2) + [Vyd(2)] <e,
[7k(2) — 7 (20)| < €, k=1,...,N+1

(3.12)

where 29 = Jg, (o), @nk, Yk are given in (3.10) and d, ¢ in (3.8). Set .F. = {B,(¢)(§) : § €
00}. By a suitable covering argument (see e.g. [1, Theorem 2.18]), recalling that 0 is
compact, we can extract a finite subcovering ¢, = {B,(¢,)(&) : i = 1,...,m} such that at
most cy among the balls of 4. overlap. Here cy is a natural number which depends only
on the dimension. Set U; = B,.(¢,)(&), Ji = JmBM“(&) and U; = J;(U,), z; = Ji(&)-

We shall see that the arbitrariness of ¢ will play an important role in the proofs of the
main results.

4 Generation in L”? on bounded domains

Let 1 < p < co. We introduce the domain
Dy(L) = {u € WZP(Q) N Wy P(Q) : 0D?u, tr(a® a D?u), /o D*ua € LP(Q)},
which is a Banach space with respect to the canonical norm
lullp, ) = llullwir@) + ”QDZUHLP(Q) + [[tr(a® aD2U)||Lp(Q) + ||\/§D2U3||LP(Q)-
The main result of this section is stated in the next theorem.

Theorem 4.1 Under assumptions (H1), (H2) and (H3) the operator (—L, D, (L)) generates
an analytic semigroup in LP(Q) for p € (1,00). In particular, there exists w, > 0 such that

sup A+ L)~H| < +o0.
ReA>wp

We shall use the following interpolative estimates, whose proof is based on the use of the
local charts introduced in Section 3 and on the estimates in Lemma 2.6 (see also [8, Lemma
3.3)).

Lemma 4.2 There exist 9, C > 0 such that for every 0 < e < eq and every u € D, (L)
C
la- Vullrr o) < ellullp, @) + . llull L )
C
Ve Vulliri) < ellullp, @) + < llull e (4.1)

C
IVullzr oy < ellullp, ) + = [ullLr -
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Proof of Theorem 4.1. We first construct a right inverse of A+ L satisfying the sectioriality
estimate. In a second step the injectivity of A + L is established.

Step 1. We claim that there exist wllj, C > 0 such that for every A € C with Re A > w;
and f € LP(2) there is u € D,(L) satisfying Au + Lu = f and [ [|ul|zrq) < Cfllzr@)-
Consider the open covering {Us,...,U,,} of 09 satisfying (3.12) with ¢ to be determined.
Let Uy be an open set with boundary of class C? such that Uy CC Q and {Uy, Uy, ..., Uy}
is a covering of Q. Let H; = J; ' and U; = J;(U;) for i € {1,--- ,m}. We define

Set Q; = U; NQ. We consider T; also on LP(Q;). Let {n?}, with 0 < n; < 1 be a partition
of unity subordinate to Uy, Uy, -+ ,U,,. To simplify the notation, in the constant C' below
(that may change from line to line) the dependence on U; and 7); is made explicit by writing
a subscript ¢, whereas we omit the dependence on the other quantities N,p, m, u, M, L and
the set Q.

Let f € LP(2) be fixed. Since the operator L is nondegenerate in Uy, it is well-known
that if A € C and Re X > g, for a suitable Ay € R, then there exists a unique solution
up € W2P(Up) N Wol’p(Uo) of the equation Aug+ Lug = 1o f. Set Ry(A)f = noug and extend
it by 0. Then Ro(\)f € D,(L) and

(A+ L)Ro(N) f =n5.f + [L,moluo = nj f + Eof,

where [L, 9] denotes the commutator between L and the multiplicative operator by ny. It
is easily seen that

C
| EofllLe(o) < |)\|710/2Hf||L1‘7(U0)7 (4.3)

where the constant Cy depends on Uyp.

Now, fix i > 1. Denote by L;, L the operators obtained from £, £°, defined in (3.9),
(3.11), replacing J, H, zo with J;, H;, z;, respectively. By Theorem 2.15 and Remark 3.2, for
every A € C with ReA > A, there exists a unique solution v; € Dj of Av; + L{v; = Ti(nif)

in Rf"'l with

C
Pollargag ety < IO ey

C
Hayvz‘HLp(Rf“) + H\/@Vx"}iHLp(RfH) < W”Ti(nif)ul,pmfﬂ) (4'4)

lvillp, < CITi Loy -

We set
Ri(N)f =T, (Ti(ni)vi)

and extend this function by 0 to Q. Then R;(\) f belongs to D, (L) and has compact support
contained in ;. By the identity L = Ti_lﬁiTi holding in LP(2;), we easily get

A+ L)RiN)f = T7 (A + L) (Ti(ni)vs) = 07 f + Bif + Eif
on {2;, where

Bif =T, (Ti(mi)(L; — L3)v;)  and By f =T, ([Lq, Ty (mi)]vi)-
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We now estimate the LP-norms of B;f and E; f. It holds
(Li = £9)ui(2) = —('(2) + 6 (a0 (2) — ' (22) ) 02,
N
- Z ( ahk z) — O‘;zk(zl)> wpary Vi — Zfdz )Z \/ga;zNH(z)a%hyvi
h=1

o (4.5)
. N+1 . N+1 ) )
—6'(2) 3 B — 3 () — Y (=)D
k=1 k=1

for every z € ﬁz N Rf +1 where the superscript 4 means that the corresponding function is

relative to (U;, J;) and the function d was defined in (3.8). Therefore (3.12) yields
1Bifllr@) < ClI(Ls = L3)vill 1o 7,0my+1) < Cellvill, -

By (4.4) it turns out that

IBifllLe () < Cell fllLr (o) (4.6)
Concerning F; f, we have
. . N+1 .
(L3, Ti(n:)]vi = — o (2)v; OgTi(ni) — &' (2)vi > hye(2) O T (i)
hoE=1
N+1 N+l
— ¢ (2)vi Z Bi(2)0kTi(m:) — vi Y Vi(2)0Ti(m:)
k=1
‘ N4
= 20(2)0yv:0y T;(n:) — 26*(2) Z 1, (2)0n T3 (1) O i
h=1

and therefore
1B fllLeoy < ClIL:, Tata)lvill Lo (5, rm+)
< CZ’(””Z’HLP(Rf“) + Hayvz'”Lp(Rf“) + ”\/ZjvmviHLp(Rfﬂ))-

The estimates (4.4) then lead to

C,
|E:i fl|Lr () < wﬁ”f“m(m)- (4.7)

Setting R(\)f = iRi()\)f and S\\)f = Eof + i (Bif + E;f) we have
i=0

i=1
A+ LRV = f+SAN)/. (4.8)
Estimates (4.3), (4.6) and (4.7) imply that

IS fllLe) < ZCEHJC”LP(Q ) +Z |>\|1/2 Il L)

i=1
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Since at most ¢y among the U;’s overlap, we get
1SN fllzr ) < enCel[ fllzr o) + Zo WHfHLv(Qi)'

Now, choose ¢ > 0 sufficiently small and |A| large enough to get ||S(A)|| < 1/2. This shows
that there exists w} > 0 such that for every A € C with Re A > w), I+S(X) : LP(Q) — LP(Q)
is invertible with inverse V() satisfying ||V (A)|| < 2. By (4.8), with V()\)f instead of f,
we derive that u = R(A)V(X)f belongs to D,(L) and solves the equation Au + Lu = f. It
further follows that

llull e ) < Z RNV (N fllzr o) < HV( Ve < |)\| ||f||LP (4.9)

Al

Step 2. Using the results and the notation of the first step, for any v € D,(L) and
A € C with Re A > max{0,w,} we can write

RN+ L)u = nfu+ Fu+ Giu, i>1,
Ro(\)(\ + L)u = n2u + Hu

where
Fu=1" (Ti(ni)()\ + L)L — E;’)Ti(mu))
Gou =T, (Ti(n) 0+ £) 7T ([s, L) ),
Hu = 770(/\ + LO)_l([L’ 770]“))

and L denotes the realization of L in L?(Uy) with Dirichlet boundary conditions. Summing
over %, it turns out that

S R(MNA+Lu=u+ Y (Fu+ Gu)+ Hu.
=0 i=1

Let u € D,(L) be such that (A 4+ L)u = 0. The above identity yields
=-> (Fu+Gu) - Hu. (4.10)
=1

We claim that u = 0. To prove this, we need to estimate the norms of w in D,(L) and in
LP(2). To shorten the notation we set

Ml = 1 - e (e
I+ lIp, . = I lwi s + 10D ()l + Itr(@a @ aD*()lpi + Ve D*() allp.

As Hu is supported in Uy, its norm in D, (L) is equivalent to the W2 -norm, therefore the
classical LP estimates yield

[Hullp, ) < Coll[L,nolullp,o0-
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Since [L,no] is a first-order operator, for every § > 0 there exists Cs > 0 such that

[Hullp, ) < Codllullp, o + Csllullpo- (4.11)
On the other hand o
0

| Hul|1r ) < WHUHDP,O' (4.12)

Here, Cj denotes a suitable constant depending on 79. Let us estimate F;u and G;u for
every i > 1. Set

fi=(Li = L)Ti(niw),  gi = Ti([mi, L]u)
and

pi=\+L) i i =N+ L) g

We have
| Fyullp,r) < ClITi(mi)illp, (4.13)
< CH%”DP + Ci(HSOiHLP(RfH) + ||6y90iHLp(Rf+1) + H\/zjVILpi”Lp(Rf'Fl)),

where C; depends on [|[Vn;|ls, [|D?7ill and Q. Theorem 2.15, Remark 3.2 and (3.12)
further imply
leillp, < Cllfill Lo+ < Cellmiulip,

c Ce
H‘Pi”m(m{f“) < m”fi”m(]gf“) < WH’%“HDP,r

Similarly, for Re A > A, we derive

C Ce
||5y<PiHLp(Rf+1) + ||\/17Vz90i||Lp(Rf+l) < WHfin < WH’MU”DP,w (4.14)

Using
Iniullp,, . < llullp, : + Cilllullp,: + [Vulp,),

Pyt —

we arrive at

C;
|EMM@S<&+AWQWWm+CMMm+WWm) (4.15)

For the LP norm of F;u we further obtain the better estimate
C C;
[Fiullze @) < Cllgill po@y+) < WHfiHLp(]Rf‘*'l) < WHUIIDM (4.16)

The estimates for G;u are similar. Replacing ¢;, f; with ¢;, g;, respectively, in (4.13), (4.14)
and observing that
19ill Loy +ry < Cilllullpi + [[Vallp,i),

we infer

1Giullp,x) < Cilllullp,i + [[Vullp,i), (4.17)
and

C C;
IGutlury < 5 llodlogayeny < Tilullo, (4.18)
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Formulae (4.10), (4.11), (4.15) and (4.17) now yield

m m
C.
lullo, iy < Y- (Ce+ s ) B, + Y- Cullulls + 19l
=1

i=1
+ Codl[ullp, o + Csllullpo-

At this point, as in the last part of the first step, we take sufficiently small €, > 0 and
sufficiently large |A| to conclude

lullp, )y < Cllullr@) + [VullLr))-

The interpolative estimate (4.1) further implies

lullp, )y < CllullLr0)-

Moreover, from (4.10), (4.12), (4.16) and (4.18) it follows that

C
[ull e (@) < WH“HDP(L)'

Combining the last two estimates we obtain
C
llullp, )y < WHUHDP(L)-

If | A| is large enough, v must be 0. Therefore, there exists w;, > w; such that A+L : D, (L) —
LP(Q) is injective for every A € C with Re A > w,,. Taking into account the first step and
(4.9) we have proved that A+ L is bijective from D, (L) onto LP(Q) with [A\(A+ L)~} < C
for every A € C with ReA > w,. ]

We now discuss further properties of the generator (—L,D,(L) and its semigroup
(T, (t))¢>0, see also Corollary 5.4. Taking ¢ = |A|~/% in Lemma 4.2, we first deduce the
following estimate from the sectoriality of L.

Corollary 4.3 Assume that (H1), (H2) and (H3) hold and that p € (1,00). There exist
C,vp > 0 such that for every Re A > v, and u € Dy(L) we have

C

1Vull L) < W

||/\u + LuHLp(Q).
Corollary 4.4 Assume that (H1), (H2) and (H3) hold and that 1 < p < q < +oo. Then
the following assertions hold.

(i) We have T,(t)f = Ty(t)f for every f € LI(Q) and t > 0 . Therefore, we simply write
T(t) instead of Tp(t).

(i1) T(t) is compact for t > 0 and the spectra and the eigenspaces of (L,D,(L)) and
(L,Dy(L)) coincide.

(i1i) T(t) is positive for t > 0.
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Proof. The consistency of the semigroups (T,(¢))t>0 and (T, (t)):>0 follows from the con-
sistency of the corresponding resolvents which is an immediate consequence of the inclusion
D,(L) C D,(L). The resolvent is compact since D, (L) — W'P(Q) by Corollary 4.3 and
is bounded. The analyticity of T'(t) thus yields the compactness of the semigroup. In this
situation it is known that the remaining assertions in (ii) are true, cf. [2, Proposition 2.6].
To prove (iii), it suffices to show that w = (A + L)™' f € D,(L) is positive for all A > w,,
p > N + 1 and positive f € C(Q). In this case u is continuous by Sobolev’s embedding
and it vanishes at the boundary. If there were a zg € £ with u(z9) < 0, then u would have
an interior minimum u(z1) < 0. Hence, Lu(z1) = f(z1) — Au(z1) > 0. But this inequality
contradicts Bony’s maximum principle, [4, Theorem 1], and so u > 0 as needed. ]

Corollary 4.5 Let (H1), (H2) and (H3) hold and that p € (1,00). If the coefficients of L
are CZ(Q), then L 4w, is accretive on Dy(L) for some w), > 0. Moreover, (—L, Dp(L)) has
mazximal reqularity of type L9.

Proof. We rewrite L in divergence form obtaining first order coefficients with bounded
derivatives. The accretivity of the shifted operator then follows easily. As in Corollary 2.14,
the second assertion is then a consequence of the results in [11]. O]

5 (Generation in spaces of continuous functions on a
bounded domain

In this section we shall prove that the operator —L defined in (3.2) and endowed with the
domain

Do(L) = {u cec@n () Wih(Q) ’a -Vu, \/oVu, Lu € C(Q), ujpq = 0}7

1<p<oo

generates an analytic semigroup in C(Q). The main ingredients will be the localization
procedure already implemented in the previous section and a suitable adaptation of the
Masuda-Stewart method to the model operator in the halfspace.
Let z = (7,7) € RY™ and 7, 5,5 > 0. Let us introduce the cubes

N

c@ =@z +r. Cu@ = ﬂ =i - SR T+ (g +1)r]

=1 =1

and the parallelepipeds

QF) =C@) X [B,7+5, Qu(®) =CulT) x [y— gn,§+ (g +1)s]. (5.1)

Set Q1 (z) = Q.(Z)N ]Rf *1. We start with a lemma collecting all the relevant properties of
weighted spaces we need in the sequel, relying on Grisvard’s paper [10]. Notice that in [10]
the weighted spaces involved are slightly different from ours, but we shall show that we may
use Grisvard’s results. We fix a parallelepiped Q = Q(z) with Z = (Z,0) and side lengths
r, s, set C' = C(T) and, following the notation in [10], we introduce the weighted spaces

W Q) = {u € WoP(Q) : Vyu, VyVu € LP(Q)},
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o

W, 5(Q) = {u € W, 5(Q) : yu =0},

endowed with the obvious norm, where ~y is the trace operator defined according to Lemma
5.1(ii) below.

Lemma 5.1 Let p > 2 and Q = Q(Z) be a parallelepiped with Z = (%,0) and side lengths
r,s > 0. The following statements hold:

(i) the space C(Q) is dense in W;/’Q(Q);

(ii) the trace operator -y : W;/’g (Q) — LP(C) is well-defined and continuous;

(#ii) the following Hardy-type inequality holds in I/f/;/p? (Q):

w 2p
w < P /50 ;

Lr(Q)

(iv)
WB(Q) = {u € WP(Q) : u,yVu € L(Q)}.

Proof. Observe that (i) follows from Théoreme 1.4, (ii) from Propositions 1.1’ and 1.2 and
(iii) from Théoréme 1.2 in [10]. Concerning (iv), we have only to show that if u € W;/’IQ’(Q),

then u belongs to LP(Q) or, using (i), that there exists C' > 0 such that for every u € C*°(Q)
lullzr@) < Cllullyrz -

Splitting v = w1 + ug with uy, us vanishing for y close to 0, s, respectively, and noticing that

the assertion is trivial for u;, we may confine to functions u € C°°(Q)) vanishing for y = s.
Hence

v Yy
u(w,y):/ 3yu(m,7')d7-:/ dyu(x, )= V2 01 24r

and using Holder’s inequality

s s p—1
lu(z, )P < / 10, u(z, 7P 2dr < / . /2d7> .
0 0

Integrating with respect to 2 we obtain ||ul|zr(q) < Cs|l\/y0yul Lr(@)- U

Lemma 5.2 Let p > 2(N + 1) and ¢ € W;/’Z(Q(E)) where Z = (Z,0) and Q(Z) with side

lengths r,s > 0. Then ¢ € C(Q(Z)) and there is Cy s > 0 such that

lellL=(o@) < Cr,s<\|<PHLP(Q(z)) + H\/@VSOHLP(Q(E))))«

Moreover, there is C' > 0 such that
_1 r

_N
lellzeiaen < O %57 (el + s1elnee + Z=IVE Vatlinamn), (52)

if Oy is p-summable-
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Proof. First we prove that there exists C' > 0 such that for any ¢ € C*(Qy)

(0,0 < C(llellzr(an + VY Velzrian), (5:3)

where Q; denotes the unit cube [0, 1]V *1. Integrating the identity

oz, y) — (0,0) = / V(te,ty) - (e, y)dt

over Q1, we have

’//Qlw(x,y)dxdy—so(o,m‘ < m/ol//gl |Vo(tz, ty)|dedy dt
=VN+1 /01 o  [VeEnldednds

3 ol 1 3
p —N-1
§¢N+1(//Ql|\/ﬁv<p(£m)l d£d77> | (//tQ nq/Qdfdn) dt
NS

since p > 2(N + 1), where % + é = 1. Therefore (5.3) follows. By a standard shifting and
rescaling argument estimate (5.3) takes the following form

N+1

lo(zo,y0)| < Co™ 7 (Ilsﬂllm@a(wo,yo» +Vo ||\/§V80||Lv<ga<wo,yo>)) (5.4)

in the cube Q, (0, y0) = (xo,yo) + 0 Q1 for any (zg,yo) € ]Rf“. Of course, on the left hand
side of (5.4) we may write the values of the function ¢ in the other vertices of Q. (zo,yo),
keeping the right hand side unchanged.

We next divide Q; in 2V*! cubes with side length % and let Q' be any of these cubes.
Therefore every (z,y) € Q' is the vertex of a cube Q* of side length % contained in Qj.
Applying estimate (5.4) in Q* we obtain

@) < C (el + VG Vellran ).

Since (z,y) and Q' are arbitrary, we have

Il < C(llellzecan + VT VéllLocn)

for ¢ € C1(Q;) and, using Lemma 5.1(i), (iv), for every ¢ € W;/’Z(QO- Hence

Il < C(llelzren + IVEVelo(an )

< (el + 19yl + VT Varlirocan)

if p € W;/’g(Ql). Estimate (5.2) then follows by shifting and rescaling the cube Q;. U

We are ready to state and prove the main result of the section.
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Theorem 5.3 Assume that (H1), (H2) and (H3) hold. Then the operator (—L, Do(L))
generates an analytic semigroup T(-) in C(Q). It further holds

_1
la- VullLe@) + Ve VullL=@) < CIAI72 (| fllLe @ (5:5)

for every ReX > wo, f € C(Q), u = (A+ L)71f, and some wy > 0. Moreover this
semigroup is contractive, positive, compact, exponentially stable, and it is the restriction of
the semigroups on LP(S) obtained in Theorem 4.1.

Proof. Let {Uy,...,U,} be a covering of 92 satisfying (3.12) with € > 0 to be chosen. Let
Uy CC Q be an open set with boundary of class C? such that {Uy, Uy, ...,U,,} is a covering
of Q. Finally, let {n;}io,.._m be a partition of unity corresponding to this covering.

Take f € C(Q). Fix p > 3N + 2 and choose A € C with Re\ > w,, where w, is given
by Theorem 4.1. Let u be the unique solution in D, (L) of the equation Au + Lu = f. By
straightforward computations one can check that u; := n;u solves the equation

Au; + Lu; =m;f — hy (56)
with
N+1 N+1
h; = tr(a X aD277i)’u, + g( Z ajkajkni>’u, + Z bkakmu
jk=1 k=1
. (5.7)
+ 2(a . Vm—) (a . Vu) + 20 Z @010k u.
k=1

Let us first deal with the case ¢ = 0. Since L is nondegenerate in Uy, Theorem 3.1.19 in [15]
gives constants K, A, > 0 such that

1 N4t
IAMllwoll Lo (o) + A2 IVuoll Lo () < Kp|Al 722 sup |Inof — hollze (s,
£elo

if ReX > A, where B = Uy N B(&, |A|=2). Using also m0fllLr(Be) < ||f||Lp(B(£’\/\|’%) =
_N+1 )
IAI” 727 || f[| oo (), we derive

i N+41
[Allluoll oo o) + A2 IVuoll oo () < KpllfllLoe (@) + Kpl Al [lhol| e ()
N41
< Kpllfllze () + CIA= (lullzr @) + [VullLr @)

N+1 _ _ 1
< Kpll fllz=) + CIN = (AT fllrie) + N7 F Il ze )

from Theorem 4.1 and Corollary 4.3. Choosing |[A] > 1 and estimating || f|/z») by
£l Lo (), We are led to

[Mlluoll Lo o) + A VUl Lo o) < CllF Lo (- (5-8)

Let ¢ > 1 and set w; = T;(u;), T; being the operator defined in (4.2). Then w; € D; and
supp w; C (72 N Rf“. Lemma 5.2 implies that w;, Oyw;, /y Vew; € C(Rf“). Moreover,

(5.6) is transformed into
Awi + Liw; = Ti(ni f) — Ti(hs),
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where the transformed operator £; is given in formula (3.9) adapted to the local chart
(Ui, Ji). Therefore

Aw; + Efwl- = (,Cf — Ez)wl + Tz(nzf) — Tl(hl), (59)

where L9 is the operator obtained by freezing the coefficients of £; according to (3.11).
Let z € ]R_ﬂ\_[Jrl and consider the parallelepipeds introduced in (5.1), with r, s,k to be
chosen below. Take a smooth cutoff function @ such that § = 1 on Q(%), # = 0 on RN F1\
0,(z),0<60<1 and
C
18,000 < —, 1050l

RS

C C 9 C
< g2 V0o < s [Dz0]lc < pow)
for a constant C' > 0 independent of Z and r, s, k. From now on, for the sake of simplicity,
we write Q and Q, instead of Q(%Z) and Q (%), respectively. Set v; = Ow;. It is easily seen

that v; € D) and solves the equation

Avi + Livg = 0(dw; + L7wi) — gi

where
N N+1
i = o' (z;) w; 8;9 + yw; Z g1 (20) 00y .0 + w; Z i (2:) 00
hok=1 k=1

N
+ 2ai(zi)8y98ywi + 2y Z i (20)0s,, 004, w;.
k=1
If ReA > A,, we can apply the estimates of Theorem 2.15 to v; (recalling Remark 3.2) and
obtain

1 1
Allwillzs ) + IME (19wl n(0) + VG Vawillzagey ) + IMF IVwillzo o) (5.10)

+ |02 will o0y + lyDiwill Lo (o) + VY Vadywill Lo (o)
1

o 1 1
< C<||)\wi + »CiwiHLP(Q:) + @Hwinm(gj) + W”ywi”LP(Qj) + ;”wiHLP(Q:')

1 1 1
+ %”winm(gj) + %Haywinm(gj) + m||yvxwi|Lp(g¢)>

R N+1 N 1 1 1
SC'H)xwi—FﬁiwiHLp(Qi)+C’(I~€—|—l) P TP S @HwiHLoo(QD+W||ywi||Lx(Q;r)

+ L [[wi + L [Jwi L | [ L lyV |

Wi|| 1,00 Wi|| 1,00 Wi|| 1,00 2 Wi || 00 .
o lwill e oy + Wil e oy + IOy will e @iy + N1y L ()
Let |[A|,x > 1. We consider the subsets of RY*! given by

A={(z,00:2eRY} and B={(z,y): xRV y> |/\\_%}.

If Z € A, we choose ) ,
s=|\"2, r=|\"1.

Notice that the previous choice implies r = 5%, according to the characteristics of the
Tricomi equation in two variables. Since w;, 9w, \/y V,w; belong to Wpl/’g(Q), we can use
Lemma 5.2 to estimate

1
\/\| Hwi||L°°(Q) + |>\|2 (”aywi“L‘”(Q) + ||\/§wa¢||L°°(Q)) (5-11)
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_N 1 1
< or ¥ (Wil + N (10lznc0) + 1T Vouilznco))
+ 105will o o) + llyD3will (o) + VY VaOywil Lo (o) + ||y_2wai||Lv(Q)>-

We have to estimate the last term in the inequality above. Since w; € Dy, by Lemma 2.3
there are w}' € D such that wi’ — w; in D,. In particular Vw} — Vw; and \/yV,.0,wi" —
VIVe0yw; in LP(Q) and pointwise. Since V,w}' € D, we may apply Lemma 5.1(iii) to get

¥
VY

Letting n — oo and using Fatou’s lemma on the left hand side we see that the above estimate
holds for w;. Combining (5.11) with (5.10), we thus find

2p n
< — 2”\/Z7Varaywi e (Q)-
() P

1
A will oo (@) + (A% (18ywill L= (@) + VY Vaewill L= (o)) +

+ 177575 (102wl oo + llyD2willioce) + IV Vadywill oo )
<CrvsTr | Aw; + L3wi poory + Clr+ 1) (212||wi||Lw(Q+) - %Hywinmg)
r R*S " RT "
1 1 1 1
+ E”wiHLw(Qt) + %HwiHLoo(gt) + %H@ywillm@m + W||yvxwi||Lm(Q:))-

Since y < (5 + D|A|"2 in Q; and |\, & > 1, we arrive at

1
N il o) + N (19,12 0) + 15 Vawill o o)) o
_N 1
#5578 (1020l o) + lyD2uil o) + V5 Vadyuiline) )
<CrFsTE i+ L3wi ooy

N+1

+C(k+1)»

1
Pl + 2 (10,0l o) + 1V Vol i)
g 1Willee(oly T e U Will e (ot Y ValillLe(of)) |-

If Z € B, we choose . L
s=H =g,

The classical Sobolev embedding yields
_N _1
[@llLoe(g) < Cr™ v s (||¢HLP<Q) + 510yl e (o) + 7“||Vz¢||Lv(Q)>
for any ¢ € WHP(Q). Recalling that y > 7 in Q and the choice of r, we infer

_N _1 _1
6l < €% 575 (18l oce) + 510yl r(e) + N IVE Vasllioo) )-

We apply these estimates to w;, dyw; and \/y O, w;, k= 1,..., N and obtain
M will o= (@) + A2 (19ywill L (@) + VY Vawill L= ()

_N _1 1
<Crvs p(|A|||wi||m<g>+|A|z(|aywi||mg>+wvmwinmg))

26



_1
+ 105will (o) + llyD3will Lo (o) + VY VadywillLr () + lly 2vxwi”LP(Q)>'
Here, the last term can be absorbed since
1 1 1
ly™2VawillLr (@) < (AT VewillLrg) < A2 VY Vawil e

because of y > 7 > |*% Therefore we can continue as before. Noticing that

s = |A
T>s=[A"2andy <y+ = 525 < =y in Qf we derive again (5.12). Now (5.9) and
(5.12) lead to

1

A il 2= (@) + INE (18ywill 2= (@) + V5 Vawill L o) +
_N _ 1
+roEsTe (IlaiwiIIm(@ + llyD2wil e (o) + H\/ﬂvwaywi\lm(g))
_ﬂ _l
< Cr 7573 (I3 = Lowill oiogy + 1T o) )

Al A2
+C(k+ 1) (”T i) ooy + ?”wiHLoo(Qi) +—F= NG (I0ywill o (o)

+ ||\/§vwwi|[,oo(gj))) (5.13)

for all Z € A UB. Taking in (5.13) the supremum over Z € A U B and fixing a sufficiently
large k > 1, we get

1
‘)‘| ||wiHL<>c(]sz+1) + |/\‘2 (”aywi”Loo(Rf“) + ”\/gvxwiHLao(Riﬂ))‘f' (5-14)

_N 1
+rorsow (”a‘gwi”m(ﬂxi’ﬂ) + ||yDa2:wiHLp(R1+V+1) + H\/ZjvraywiHLp(Rfﬂ))

_N _ 1 ° 3N+42
< C(r vsTr||(LF - ﬁz’)wiHLp(ﬁmeﬂ) + [N\ HTi(hi)HLp(]Rfﬂ) + ||f||Loo(Q)).
Let us study the right hand side of (5.14). Recalling (4.5) and (3.12) we have
||(‘C§ - [’i)wiHLP(ﬁirﬂRﬁJrl) < OE(“ajwi”Lp(ﬁim]Rf*l) + ||yD3:wi||Lp((7im]Rﬁ+l)
+ ||\/§Vw6ywi|\”(ﬁmw+1) + ||Vwi||Lp(ﬁme+1)).

Hence, choosing a small € > 0, we can get rid of the terms with the second order derivatives
n (5.14). Moreover, Corollary 4.3 yields

IVwill o @y+1y < Cllluill o) + 1 Vuillr@) < Cilllulle@) + [ Vull e )
< sl < =
Because of (5.7), we can estimate
1) o vty < CINT4 fl e )
in the same way. Since p > 3N + 2, we can now deduce from (5.14) that

1
A il e oy + I 10yl e vty + VG Vil e aveny) < Clflle -
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It follows that
1
A [will Lo (onwsy + 112 (la - Vil Lo onwn) + Ve Vil L onus)) < ClIf [l (o)-

Recalling (5.8), we conclude that u,a - Vu, /o Vu € C(Q) and

1
A Nlullpoe ) + A2 (2 Vull e @) + Ve Vull e @) < Cllflln=(o)-

Finally, since u, Lu € L1(Q) for every 1 < ¢ < oo and L is nondegenerate in the interior,
local elliptic regularity implies that u € I/Vlig(ﬂ), see e.g. [9, Lemma 9.16].

We have established that there is wg such that for every ReA > wg and f € C(Q),
there exists a solution u € Do(L) of Au + Lu = f satisfying [ul| L) < C|A| 7| fllL=(q)
and (5.5). Now assume that Au + Lu = f holds for some A > 0, u € Dy(L) and a real
feC). Set v =u—A"flloo. Then Ao+ Lv = f — || flloc <0 on Q and v < 0 on I.
If v(z0) > 0 for some 2z € €, then v has a maximum v(z;) > 0 in Q. Since v € W2 (Q)
for any g € (1, 00), we can apply Bony’s maximum principle, [4, Theorem 1], which implies
that Lv(z1) > 0. This is impossible, and thus u < A7!||f||oc. The same argument works
for —u and thus |u| < A7 f|le on Q. This means that (—L, Do(L)) is dissipative in C(9).
Hence, A + L : Do(L) — C(Q) is invertible for all ReA > 0 and (—L, Do(L)) generates a
contractive analytic semigroup T (-) on C(9).

By construction, the resolvents of (—L, Do(L)) and (—L, D,(L)) coincide on C() for
all p > 3N + 2 and sufficiently large A > 0. Taking into account Corollary 4.4, we conclude
that Too(+) is the restriction of the semigroups T, (-) on LP() generated by (—L, D, (L)) for
each p € (1,00). In particular, T (-) is positive. We further have seen that Do(L) C D,(L)
for p > 3N +2 so that Dg(L) is embedded into W1?(Q) for these p by Corollary 4.3, which
in turn is compactly embedded into C'(2). Hence, Tw(t) is compact for each ¢ > 0 because
the semigroup is analytic.

Since Twoo(+) is compact, positive and bounded, the exponential stability of Too(-) is
equivalent to the injectivity of (—L,Do(L)). (Use e.g. Theorem VI.1.10 and Corollary
IV.3.12 of [7].) Let Lu = 0 for some u € Dy(L). Take € > 0 and a smoooth function v > 0
on Q such that —Lv > 0 on Q (e.g., v(2) = €51 +- - - 45N ¢ for a large s > 0). If u+ev
had a maximum zg € Q, then —L(u + €v)(z0) < 0 by [4] which is impossible. Hence, u + v
takes its maximum at the boundary. The same holds for the minimum. Letting ¢ — 0, we
deduce u = 0. O

Corollary 5.4 Assume that (H1), (H2) and (H3) hold. Then the semigroup T'(-) in LP(£2)
forp € (1,00) constructed in Theorem 4.1 1s exponentially stable and has the same spectrum

and eigenspaces as its restriction to C(2).

Proof. The second assertion can be shown as in Corollary 4.4. Thus the first assertion
follows from Theorem 5.3. ]

Corollary 5.5 Assume that (H1), (H2) and (H3) hold. Then the semigroup T(-) in C(Q)
constructed in Theorem 5.3 leaves invariant Co(Q) and its restriction to Co(2) is an analytic
Cy-semigroup. Moreover, the restriction is contractive, positive, compact and exponentially
stable.

Proof. Since C°(Q) C Do(L) C Cy(Q2), the closure of Do(L) is Co(£2). Hence, T'(-) leaves
invariant Cy(€2) and is strongly continuous on Cy(£2). The other claims are then clear. [
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