
Degenerate operators of Tricomi type in
Lp–spaces and in spaces of continuous functions

S. Fornaro∗ G. Metafune† D. Pallara† R. Schnaubelt ‡

Abstract

We study elliptic operators L with Dirichlet boundary conditions on a bounded
domain Ω whose diffusion coefficients degenerate linearly at ∂Ω in tangential direc-
tions. We compute the domain of L and establish existence, uniqueness and (maximal)
regularity of the elliptic and parabolic problems for L in Lp–spaces and in spaces of
continuous functions. Moreover, the analytic semigroups generated by L are consistent,
positive, compact and exponentially stable.
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e-mail: giorgio.metafune@unisalento.it, diego.pallara@unisalento.it
‡Karlsruhe Institute of Technology, Department of Mathematics, Institute of Analysis, 76128 Karlsruhe,

Germany. e-mail: roland.schnaubelt@kit.edu



1 Introduction

We study elliptic operators L of second order with Dirichlet boundary conditions on a
bounded domain Ω whose diffusion coefficients degenerate at ∂Ω in tangential directions.
We aim at a complete theory including existence, uniqueness and (maximal) regularity of the
elliptic and parabolic problems for L in Lp–spaces and in spaces of continuous functions.
Moreover, we establish consistency, positivity, compactness and exponential stability of
the analytic semigroups generated by L. The domain of L is computed explicitly in Lp,
p ∈ (1,+∞).

We consider symmetric diffusion coefficients which are positive definite at any point in
the interior of Ω and only positive semidefinite on the boundary ∂Ω. The degeneracy affects
only the tangential variables and is of the order of the distance from ∂Ω. The prototype
of this class is the well–known Tricomi operator L = −y∆x − ∂2

y in the upper halfspace
{(x, y) ∈ RN × R : y > 0}. The Tricomi equation has been widely investigated also in view
of its applications in transonic gas dynamics.

In an earlier paper [8], some of the authors have studied the analogous questions for the
case of complete degeneracy which was also treated in the recent paper [13]. We refer to
[8] and [13] for the existing literature on degenerate second order differential operators, but
we remark that it is mainly confined to the Hilbert case. We are not aware of results about
generation of analytic semigroups in Lp(Ω) with p 6= 2 or C(Ω) by operators with tangential
degeneracy of first order, where domains are computed explicitly.

Let us present the plan of our paper. In Section 2 we focus our attention on the model
problem. We endow the Tricomi operator L with the (best possible) domain

D◦p =
{
u ∈W 1,p

0 (RN+1
+ ) ∩W 2,p

loc (RN+1
+ ) : ∂2

yu, |yD2
xu|, |

√
y∇x∂yu| ∈ Lp(RN+1

+ )
}
,

where p ∈ (1,∞). By means of the Mikhlin multiplier theorem, J.U. Kim has shown
an Lp apriori estimate for this operator, see Theorem 0.1 in [12] which is stated below
in Theorem 2.1. Using this and variational estimates, we prove that (−L,D◦p) is densely
defined, closed and regularly dissipative. We then have to show that (λ + L)D◦p is dense
in Lp(RN+1

+ ) for some λ > 0 in order to deduce that (−L,D◦p) generates an analytic C0–
semigroup. This range condition is verified approximating the halfspace by strips Sε =
{(x, y) ∈ RN × R : ε < y < ε−1} for ε ∈ (0, 1/2], where one has a uniformly elliptic
problem. Due to technical problems, we have to treat the cases p = 2, p > 2 and p < 2
separately. It also follows that the corresponding inhomogeneous parabolic problem has
maximal regularity of type Lq, see Corollary 2.14. The section ends with the proof of the
generation result for operators with constant coefficients.

In order to deal with the general case of a degenerate operator defined on a bounded
smooth domain Ω, we proceed as in the classical setting by using local charts to straighten
the boundary of Ω. First, at the beginning of Section 3 we choose a function % such that
Ω = {% > 0}, ∂Ω = {% = 0}, and ∇%(ξ) is directed along the inward normal vector if ξ ∈ ∂Ω
(% is an extension of the distance function to ∂Ω). The operator L is of the form

L = −tr(a⊗ aD2)− %
N+1∑
i,j=1

aij∂ij −
N+1∑
i=1

bi∂i, (1.1)

where aij , bi are continuous functions, aij satisfy a suitable ellipticity condition (see (H2))
and the vector field a is C2 and non tangential on ∂Ω. Hence, the tangential degeneracy
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of the diffusion is expressed by the properties of a. Second, following an idea in [3], we
construct a local change of variables depending on a and % in such a way that the boundary
of ∂Ω is locally straightened and the vectors a(ξ) are transformed into the last vector of the
canonical basis of RN+1. After the change of variables, we thus recover operators having
the same form as the model operator. This fact is crucial for the localization arguments in
the following two sections leading to our main results.

The main Theorem 4.1 of Section 4 shows that the operator −L, now given by (1.1) and
endowed with the (optimal) domain

Dp(L) =
{
u ∈W 2,p

loc (Ω) ∩W 1,p
0 (Ω) : %|D2u|, tr(a⊗ aD2u),

√
% |D2ua| ∈ Lp(Ω)

}
,

generates an analytic semigroup on Lp(Ω), p ∈ (1,∞). To prove it, besides the localization
procedure of Section 3, we employ the technique of freezing the coefficients that allows to
apply the results of Section 2.

Section 5 is concerned with the generation of analytic semigroups in C(Ω) and C0(Ω).
The main ingredients of the proofs are the results from Section 4 and the Masuda–Stewart
localization technique. However, it is not straightforward to carry out this procedure because
of the degeneracy exhibited by the operator. In particular, as a preliminary step we have to
prove a quantitative, local version of the Morrey embedding theorem for functions ϕ ∈ Lp(Q)
such that ∂yϕ,

√
y |∇xϕ| ∈ Lp(Q) for large p, where Q is a parallelepiped in RN+1

+ whose
lower base lies on RN × {y = 0}. Moreover, in applying the Masuda–Stewart technique the
required covering must be constructed following the geometry suggested by the degeneracy,
which is different from both the classical one and that in [8]. In various corollaries in
Sections 4 and 5, we establish additional properties of the analytic semigroups such as
consistency, positivity, compactness and exponential stability, as well as maximal regularity
in the Lp case.

Notation. We set RN+1
+ = {z = (x, y) ∈ RN × R : y > 0} and write B+

r (z) =
Br(z)∩RN+1

+ for the balls in RN+1
+ . Functions defined on RN+1

+ are extended by 0 to RN+1,
and functions on RN+1 are identified with functions on RN+1

+ by restriction. In the whole
paper, p denotes a number in (1,∞). By C > 0 we mean a generic constant. The gradient
and Hessian on RN+1 are denoted by ∇ and D2 whereas ∇x and D2

x only act in x ∈ RN .
We denote both by z1 ·z2 and 〈z1, z2〉 the inner product of z1, z2 ∈ RN+1. Given two vectors
a, b ∈ RN , the symbol a⊗ b denotes the matrix with entries aibj .

2 The model problem on a halfspace

We consider the Tricomi operator

L = −y∆x − ∂2
y

on the open upper halfspace RN+1
+ . The following a priori estimate is established in Theorem

0.1 of [12].

Theorem 2.1 There exists M > 0 such that for every u ∈ C∞c (RN+1) with u(x, 0) = 0 it
holds

‖yD2
xu‖Lp(RN+1

+ ) + ‖∂2
yu‖Lp(RN+1

+ ) + ‖√y∇x∂yu‖Lp(RN+1
+ ) ≤M ‖Lu‖Lp(RN+1

+ ).
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We observe that in [12] this theorem is stated with the summand ‖y∆xu‖Lp(RN+1
+ ) instead of

‖yD2
xu‖Lp(RN+1

+ ). The classical Calderón–Zygmund estimate with respect to x then implies
the version of the theorem given above. Moreover, in [12] it is allowed that the function
u does not vanish at the boundary. In this case, a suitable norm of the restriction of u
at y = 0 is added on the right hand side and the constant M depends on the width L of
the strip containing the support of u. But, if u(x, 0) = 0, inspecting the proof in [12] one
realizes that M can be taken independent of L. In view of Theorem 2.1, we introduce the
spaces

Dp =
{
u ∈W 1,p(RN+1

+ ) ∩W 2,p
loc (RN+1

+ ) : |yD2
xu|, ∂2

yu, |
√
y∇x∂yu| ∈ Lp(RN+1

+ )
}
,

D◦p = {u ∈ Dp : u(·, 0) = 0 on RN},

where the boundary values at y = 0 are understood in the sense of traces. Endowed with
the canonical norm, denoted by ‖ · ‖Dp , D◦p and Dp are Banach spaces. We further set

D = {u ∈ C∞c (RN+1) : u(x, 0) = 0 for all x ∈ RN}.

The main result of the present section is stated below.

Theorem 2.2 The operator (−L,D◦p) generates an analytic C0-semigroup of positive con-
tractions (Tp(t))t≥0 in Lp(RN+1

+ ). Moreover, Tp(t)f = Tq(t)f for all t ≥ 0, f ∈
Lp(RN+1

+ ) ∩ Lq(RN+1
+ ), and 1 < p, q <∞.

We start by proving the following Lemma which allows us to extend the a priori estimate
of Theorem 2.1 to D◦p.

Lemma 2.3 The space D is dense in D◦p.

Proof. Let us first show that the functions in D◦p with compact support in the closure of
RN+1

+ are dense in D◦p. Let u ∈ D◦p and let Φ ∈ C∞c (RN+1) be such that Φ = 1 in B1(0),
Φ = 0 in RN+1 \ B2(0) and 0 ≤ Φ ≤ 1 in RN+1. Set Φn(z) = Φ(z/n), where z = (x, y).
Observe that |∇Φn| ≤ C/n, |D2Φn| ≤ C/n2 in B2n(0) \ Bn(0) and ∇Φn = 0, D2Φn = 0
elsewhere. The functions un := Φnu ∈ D◦p have compact support in the closure of RN+1

+ .
By dominated convergence, un → u in W 1,p(RN+1

+ ) and also ∂2
yun → ∂2

yu in Lp(RN+1
+ ) as

n→∞. We further obtain that the functions

yD2
xun = Φn(yD2

xu) + (y∇xΦn)⊗∇xu+∇xu⊗ (y∇xΦn) + u(yD2
xΦn),

√
y∇x∂yun = Φn(

√
y∇x∂yu) +

√
y∇xΦn∂yu+

√
y ∂yΦn∇xu+ u(

√
y∇x∂yΦn)

converge to yD2
xu and

√
y∇x∂yu, respectively, in Lp(RN+1

+ ).
Now, let u ∈ D◦p be such that suppu ⊆ B+

R(0), for some R > 0. Denote by ũ the
odd continuation of u with respect to y on RN+1. Then ũ belongs to W 1,p(RN+1) and has
compact support in RN+1. Let ρn be a standard sequence of mollifiers such that ρ is an even
function in each variable. Then un := ρn ∗ ũ ∈ D and un → ũ in W 1,p(RN+1) as n → ∞.
Since suppun ⊆ BR+1(0), we have also

√
y∇un →

√
y∇u in Lp(RN+1

+ ). Concerning the
second order derivatives we have

y∂xixjun = ∂xi(y(ρn ∗ ∂xj ũ)) = ∂xi
(
ρn ∗ (y∂xj ũ) + (yρn) ∗ ∂xj ũ

)
3



= ρn ∗ (y∂xixj ũ) + (y∂xiρn) ∗ ∂xj ũ.

The first addend clearly converges to y∂xixj ũ in Lp(RN+1). For the second term is concerned,
a direct computation shows that (y∂xiρn)∗∂xj ũ = (y∂xiρ)n ∗∂xj ũ and therefore it converges
to ∂xj ũ

∫
RN+1 y∂xiρ(x, y) dx dy, which is zero. The convergence of ∂2

yun = ρn ∗ (∂2
y ũ) to

∂2
y ũ in Lp(RN+1) is standard. In order to prove the convergence of the mixed second

order derivative, we take advantage of Theorem 2.1. Applying this result to the difference
un − um yields that (

√
y ∂xk∂yun) is a Cauchy sequence in Lp(RN+1

+ ), k = 1, . . . , N . As a
consequence, there exists v ∈ Lp(RN+1

+ ) such that
√
y ∂xk∂yun → v in Lp(RN+1

+ ). It is not
difficult to see that v =

√
y ∂xk∂yu. So we have shown the assertion.

For 0 < ε ≤ 1/2, we define the strip

Sε = {(x, y) : x ∈ RN , ε < y < ε−1}

and the spaces

D◦p,ε = W 2,p(Sε) ∩W 1,p
0 (Sε),

Dε = {u ∈ C∞c (RN+1) : u(x, y) = 0 if y ≤ ε or y ≥ ε−1}.

To unify the notation, we use these spaces also for ε = 0 with the agreements

S0 = RN+1
+ , D◦p,0 = D◦p, D0 = D.

Clearly, Dε is dense in D◦p,ε for every ε > 0. For p = 2 one can easily prove the a priori
estimate of Theorem 2.1 in D◦2,ε with a constant M independent of ε ∈ [0, 1/2].

Proposition 2.4 For every u ∈ D◦2,ε and 0 ≤ ε ≤ 1/2, we have

‖y D2
xu‖2L2(Sε)

+ ‖∂2
yu‖2L2(Sε)

+ 2‖√y∇x∂yu‖2L2(Sε)
= ‖Lu‖2L2(Sε)

.

Proof. By Lemma 2.3, it suffices to prove the statement for u ∈ Dε. We then obtain∫
Sε

(Lu)2 =
∫
Sε

(y∆xu)2 +
∫
Sε

(∂2
yu)2 + 2

∫
Sε

∂2
yu (y∆xu).

Notice that the condition u(x, ε) = u(x, ε−1) = 0 implies that ∇xu(x, ε) = ∇xu(x, ε−1) = 0.
Integration by parts now leads to∫

Sε

∂2
yu (y∆xu) = −

∫
Sε

∂2
y∇xu · (y∇xu) =

∫
Sε

y|∇x∂yu|2 +
1
2

∫
Sε

∂y|∇xu|2

=
∫
Sε

y|∇x∂yu|2. (2.1)

Moreover, it is easily checked that∫
Sε

(y∆xu)2 =
∫
Sε

y2
N∑

i,j=1

(∂xixju)2,

so that the proof is complete.
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Remark 2.5 The computations of the previous proof, see (2.1), yield

‖y D2
xu‖2L2(RN+1

+ )
+ ‖∂2

yu‖2L2(RN+1
+ )

+ 2‖√y∇x∂yu‖2L2(RN+1
+ )

= ‖Lu‖2
L2(RN+1

+ )
+

1
2
‖∇xu(·, 0)‖2L2(RN )

for every u ∈ C∞c (RN+1). This equality is satisfied also by any function u ∈ D2 with
∇x∂yu ∈ L2(RN+1

+ ). To see this, one can argue by approximation, as in the proof of Lemma
2.3, just replacing ũ with

û(x, y) =

{
u(x, y), if y > 0,
−3u(x,−y) + 4u(x,−y/2), if y < 0.

We continue with interpolation inequalities in D◦p,ε.

Lemma 2.6 There exist two constants C, η0 > 0 such that for every u ∈ D◦p,ε, 0 ≤ ε ≤ 1/2
and 0 < η ≤ η0 the following inequalities hold.

(i) ‖∂yu‖Lp(Sε) ≤ η‖∂2
yu‖Lp(Sε) + (C/η)‖u‖Lp(Sε)

(ii) ‖∂xiu‖Lp(Sε) ≤ η
(
‖y∂2

xiu‖Lp(Sε) + ‖∂2
yu‖Lp(Sε)

)
+ (C/η3)‖u‖Lp(Sε)

(iii) ‖√y ∂xiu‖Lp(Sε) ≤ η‖y∂2
xiu‖Lp(Sε) + (C/η)‖u‖Lp(Sε).

Proof. Estimate (i) is well–known. Concerning (ii), Lemma 2.7 of [8] yields that

‖∂xiu‖Lp(Sε) ≤ η‖y∂
2
xiu‖Lp(Sε) + (C/η)‖u/y‖Lp(Sε). (2.2)

By the one dimensional Hardy inequality applied to w(y) = u(x, y)χ[ε,ε−1](y), y ∈ (0,+∞),
and by integration with respect to x ∈ RN , we deduce

‖u/y‖Lp(Sε) ≤
p

p− 1
‖∂yu‖Lp(Sε). (2.3)

Assertion (ii) now follows by combining (2.2) and (2.3) and using (i) with η2 instead of η
for a possibly different value of C. Finally, inequality (iii) is proved in Lemma 2.7 of [8].

Theorem 2.1 and Lemmas 2.3 and 2.6 imply the closedness of (L,D◦p).

Proposition 2.7 The operator (L,D◦p) is closed in Lp(RN+1
+ ).

In the following result we establish the dissipativity and sectoriality of the operator
(−L,D◦p,ε) for every 0 ≤ ε ≤ 1/2.

Proposition 2.8 Let Reλ ≥ 0, u ∈ D◦p,ε, 0 ≤ ε ≤ 1/2, and f = λu+Lu. Set u∗ := ū|u|p−2.
It then holds

(Reλ)‖u‖Lp(Sε) ≤ ‖f‖Lp(Sε),∣∣∣∣Im ∫
Sε

(Lu)u∗
∣∣∣∣ ≤ |p− 2|

2
√
p− 1

(
Re
∫
Sε

(Lu)u∗
)
.
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Proof. By density, we may assume that u ∈ Dε. In the proof below we suppose that
p ≥ 2. The case 1 < p < 2 can be treated similarly by a standard regularization of the
power |a|p−2, cf. Lemma 2.12. Multiplying the equation λu+Lu = f by u∗ and integrating
by parts on Sε, all boundary terms vanish and we have∫

Sε

fu∗ = λ‖u‖pLp(Sε)
+
∫
Sε

y|u|p−4
(

(p− 1)|Re (ū∇xu)|2 + |Im (ū∇xu)|2
)

+i(p− 2)
∫
Sε

y|u|p−4
(

Re (ū∇xu)(Im (ū∇xu)
)

+
∫
Sε

|u|p−4
(

(p− 1)|Re (ū∂yu)|2 + |Im (ū∂yu)|2
)

+i(p− 2)
∫
Sε

|u|p−4
(

Re (ū ∂yu)(Im (ū ∂yu)
)
.

Taking the real parts, we obtain

Re
∫
Sε

fu∗ = (Reλ)‖u‖pLp(Sε)
+
∫
Sε

y|u|p−4
(

(p− 1)|Re (ū∇xu)|2 + |Im (ū∇xu)|2
)

+
∫
Sε

|u|p−4
(

(p− 1)|Re (ū ∂yu)|2 + |Im (ū ∂yu)|2
)

≥ (Reλ)‖u‖pLp(Sε)

(2.4)

which implies the first part of the statement. Now, choose λ = 0. We can estimate the
imaginary parts as follows:∣∣∣∣Im ∫

Sε

(Lu)u∗
∣∣∣∣ ≤ |p− 2|

(∫
Sε

y|u|p−4|Re (ū∇xu)|2
) 1

2
(∫

Sε

y|u|p−4|Im (ū∇xu)|2
) 1

2

+ |p− 2|
(∫

Sε

|u|p−4|Re (ū ∂yu)|2
) 1

2
(∫

Sε

|u|p−4|Im (ū ∂yu)|2
) 1

2

≤ |p− 2|
2
√
p− 1

(
(p− 1)

∫
Sε

y|u|p−4|Re (ū∇xu)|2 +
∫
Sε

y|u|p−4|Im (ū∇xu)|2
)

+
|p− 2|

2
√
p− 1

(
(p− 1)

∫
Sε

|u|p−4|Re (ū∂yu)|2 +
∫
Sε

|u|p−4|Im (ū∂yu)|2
)
.

Using (2.4) with λ = 0, we deduce the second assertion.

Remark 2.9 Propositions 2.7 and 2.8 for ε = 0 say that the operator (−L,D◦p) is closed
and regularly dissipative in Lp(RN+1

+ ) (i.e., −eiφL is dissipative for all φ ∈ (−φ0, φ0) and
some φ0 ∈ (0, π/2). Of course, it is densely defined. According to standard semigroup
theory, (−L,D◦p) thus generates a contractive analytic C0–semigroup if we can show that
the range of λ + L is dense in Lp(RN+1

+ ) for some λ > 0. This fact will be established
separately for the cases p = 2, p > 2 and 1 < p < 2.

We now establish Theorem 2.2 in L2(RN+1
+ ). For this purpose, we first note that Propo-

sition 2.4 and Lemma 2.6 imply the following L2–estimates which are uniform in ε.
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Proposition 2.10 There exists C > 0 such that for every u ∈ D◦2,ε and 0 ≤ ε ≤ 1/2

‖u‖W 1,2(Sε) +‖∂2
yu‖L2(Sε) +‖yD2

xu‖L2(Sε) +‖√y∇x∂yu‖L2(Sε) ≤ C(‖Lu‖L2(Sε) +‖u‖L2(Sε)).

Proof of Theorem 2.2 with p = 2. It remains to show the range condition. To this
aim, we argue as in Proposition 2.9 of [8]. Take λ > 0 and f ∈ L2(RN+1

+ ). Then, by
Proposition 2.10, there exists a suitable null sequence (εn) such that the solutions uεn ∈
D◦2,εn of λuεn +Luεn = f in Sεn converge weakly in W 2,2

loc (RN+1
+ ) to a function u satisfying

λu + Lu = f on RN+1
+ . Moreover, u belongs to D2 due to Proposition 2.10 and Fatou’s

lemma. As in the proof of Proposition 2.9 in [8] one can verify that u(·, 0) = 0. In view
of Propositions 2.7 and 2.8, the operator (−L,D◦2) generates an analytic C0-semigroup of
contractions (T2(t))t≥0 in L2(RN+1

+ ). If f is positive, then the approximating functions uεn
are positive so that u is positive, which implies the positivity of the semigroup.

We next consider the case p > 2.

Proposition 2.11 For every λ > 0 and p > 2, the range (λ+L)D◦p is dense in Lp(RN+1
+ ).

Proof. Let λ > 0 and f ∈ C∞c (RN+1). By the case p = 2 already discussed, there exists
u ∈ D◦2 such that λu+Lu = f . We have to show that u ∈ D◦p. This will be done by showing
that also the derivatives of u belong to D2. From the proof of Theorem 2.2 with p = 2
given above we know that there exist εn > 0 converging to 0 as n→ +∞ such that u is the
weak limit in W 2,2

loc (RN+1
+ ) of uεn , where uεn ∈ D◦2,εn satisfies λuεn + Luεn = f in Sεn . Fix

k ∈ {1, . . . , N}. Differentiating with respect to xk, we find that{
λ∂xkuεn + L(∂xkuεn) = ∂xkf in Sεn

∂xkuεn = 0 on ∂Sεn

where ∂xkuεn , ∂xkf ∈ L2(Sεn). From elliptic regularity theory, we deduce that ∂xkuεn ∈
D◦2,εn . Further, up to a subsequence, the sequence ∂xkuεn converges to ∂xku strongly in
L2

loc(RN+1
+ ). On the other hand, applying the estimate of Proposition 2.10 to ∂xkuεn ,

we can extract a new subsequence, still denoted by ∂xkuεn , which converges weakly in
W 2,2

loc (RN+1
+ ) to the solution v in D◦2 of λv + Lv = ∂xkf in RN+1

+ , as n tends to +∞.
Therefore v = ∂xku. This implies that ∂xku ∈ D◦2 , for any k ∈ {1, . . . , N}. In particular,
D2
xu,∇x∂yu, yD3

xu,∇x∂2
yu and

√
yD2

x∂yu belong to L2(RN+1
+ ). By iteration, we deduce that

any x-derivative of u belongs to D◦2 . Next we write

λu−∆u = g, u(·, 0) = 0

where g = f + (y − 1)∆xu ∈W 1,2(RN × (0,M)), for any M > 0. From standard regularity
theory, we infer that u ∈ W 3,2(RN × (0,M)) for any M > 0. Take functions ηn ∈ C∞(R)
such that

ηn = 1 in (−∞, n], ηn = 0 in [n+ 1,+∞), 0 ≤ ηn ≤ 1,
‖η′n‖∞ + ‖η′′n‖∞ + ‖η′′′n ‖∞ ≤ C

for a constant C > 0 and all n ∈ N. By straightforward computations one sees that
v := ∂y(ηnu) ∈ D2 and ∇x∂yv ∈ L2(RN+1

+ ). We can thus apply Remark 2.5 and we obtain

‖∂2
yv‖L2(RN+1

+ ) ≤ C
(
‖∂2
yv + y∆xv‖L2(RN+1

+ ) + ‖v(·, 0)‖W 1,2(RN )

)
. (2.5)
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Observe that (λ+L)∂yu = ∂yf + ∆xu. We now estimate the first addend of the right hand
side by writing it explicitly

∂2
yv + y∆xv = −ηnL(∂yu) + η′n(y∆xu+ 3∂2

yu) + 3η′′n∂yu+ η′′′n u

= ηn(λ∂yu− ∂yf −∆xu) + η′n(y∆xu+ 3∂2
yu) + 3η′′n∂yu+ η′′′n u.

Due to the previous steps the right hand side can be estimated in terms of ‖u‖D2 and
‖f‖W 1,2(RN+1

+ ) independently of n. We thus obtain

‖∂2
yv + y∆xv‖L2(RN+1

+ ) ≤ C(‖u‖D2 + ‖f‖W 1,2(RN+1
+ )).

Moreover,

‖v(·, 0)‖W 1,2(RN ) = ‖(∂yu)(·, 0)‖W 1,2(RN ) = ‖(∂yu)(·, 0)‖L2(RN ) + ‖(∇x∂yu)(·, 0)‖L2(RN )

≤ C(‖∂yu‖L2(RN+1
+ ) + ‖∂2

yu‖L2(RN+1
+ )

+ ‖∇x∂yu‖L2(RN+1
+ ) + ‖∇x∂2

yu‖L2(RN+1
+ )).

Taking into account the estimates from (2.5), it follows that

‖∂3
yu‖L2(RN×(0,n)) ≤ ‖∂2

yv‖L2(RN+1
+ ) ≤ C(‖u‖D2 + ‖f‖W 1,2(RN+1

+ ) + ‖∇xu‖D2),

for some C independent of n. Hence, ∂3
yu ∈ L2(RN+1

+ ) which implies that

y∆x∂yu = λ∂yu− ∂3
yu−∆xu− ∂yf

also belongs to L2(RN+1
+ ). Summing up, we have shown that ∂yu ∈ D2. It is clear that

we can iterate the procedure, and then infer that all derivatives of u belong to D2. Us-
ing Sobolev’s embedding, we thus deduce that u, ∇u, ∂2

yu, yD2
xu and yD2

x∂yu belong to
Lp(RN+1

+ ). Lemma 2.6 now yields that
√
y∇x∂yu ∈ Lp(RN+1

+ ), and thus u ∈ D◦p.

In the case 1 < p < 2 the above argument does not help since here the higher order
Sobolev spaces W k,2(RN+1

+ ) are not embedded into Lp(RN+1
+ ). However, compactly sup-

ported functions u ∈ D2 of course belong to Dp if p < 2. In order to exploit this fact we
first prove an estimate for gradient terms.

Lemma 2.12 Let 1 < p < 2, λ ≥ 0, u ∈ D◦p,ε, 0 ≤ ε ≤ 1/2, and f = λu+ Lu. Then there
is a constant Cp > 0 not depending on ε and f such that

‖∂yu‖Lp(Sε) + ‖√y∇xu‖Lp(Sε) ≤ Cp(‖f‖Lp(Sε) + ‖u‖Lp(Sε)).

Proof. By density, we can again limit ourselves to proving the statement for any u ∈ Dε.
Let δ > 0 and multiply the equation λu + Lu = f by u(u2 + δ)

p−2
2 . Integrating by parts

over Sε, we obtain∫
Sε

fu(u2 + δ)
p−2
2 = λ

∫
Sε

u2(u2 + δ)
p−2
2 + (p− 1)

∫
Sε

(∂yu)2(u2 + δ)
p−2
2

− (p− 2)δ
∫
Sε

(∂yu)2(u2 + δ)
p−4
2

8



+ (p− 1)
∫
Sε

y|∇xu|2(u2 + δ)
p−2
2 − (p− 2)δ

∫
Sε

y|∇xu|2(u2 + δ)
p−4
2 .

Since (p− 2)δ < 0, we infer from Hölder’s inequality that

(p− 1)
∫
Sε

((∂yu)2 + y|∇xu|2) (u2 + δ)
p−2
2 ≤

∫
Sε

fu(u2 + δ)
p−2
2 ≤ ‖f‖p ‖(u2 + δ)

1
2 ‖p−1
p .

Hölder’s and Young’s inequalities now yield∫
Sε

(∂yu)p =
∫
Sε

(∂yu)p(u2 + δ)
p(p−2)

4 (u2 + δ)
p(2−p)

4

≤ p

2

∫
Sε

(∂yu)2(u2 + δ)
p−2
2 +

2− p
2

∫
Sε

(u2 + δ)
p
2

≤ ‖f‖pLp(Sε)
+ cp ‖(u2 + δ)

1
2 ‖pLp(Sε)

,

and similarly for
√
y∇xu. Letting δ → 0, the statement follows.

Proposition 2.13 For every λ > 0 and 1 < p < 2, the range (λ + L)D◦p is dense in
Lp(RN+1

+ ).

Proof. Let λ > 0 and f ∈ C∞c (RN+1). For every ε > 0, there is an uε ∈ D◦p,ε such that
(λ+ L)uε = f on Sε. Propositions 2.8 and 2.10 and Lemma 2.12 yield

‖uε‖Lp(Sε) + ‖uε‖D◦2,ε + ‖∂yuε‖Lp(Sε) ≤ C
(
‖f‖Lp(RN+1

+ ) + ‖f‖L2(RN+1
+ )

)
,

for a constant C > 0 independent of ε. Moreover, as ∂xkuε solves the equation (λ+L)∂xkuε =
∂xkf , we also have

‖∂xkuε‖Lp(Sε) ≤ λ
−1‖∂xkf‖Lp(RN+1

+ )

for every k ∈ {1, . . . , N}. By weak compactness, there exists a sequence εn → 0 such
that uεn converge to some u weakly in W 2,2

loc (RN+1
+ ) and in W 1,p(RN+1

+ ). The proof of
Theorem 2.2 with p = 2 yields that u belongs to D◦2 and satisfies λu + Lu = f in RN+1

+ .
Moreover, u ∈W 1,p(RN+1

+ ).
Take Φ ∈ C∞c (RN+1) with Φ = 1 in B1(0), Φ = 0 in RN+1 \ B2(0) and 0 ≤ Φ ≤ 1 in

RN+1. Set Φn(z) = Φ(z/n), where z = (x, y). For every n ∈ N, it holds |∇Φn| ≤ C/n,
|D2Φn| ≤ C/n2 in B2n(0) \ Bn(0) and ∇Φn = 0, D2Φn = 0 elsewhere. The functions
un := Φnu belong to D◦p since they are compactly supported. We want to show that un
converges to u in Dp as n → ∞ which implies the assertion. Due to Proposition 2.7, it
suffices to prove that un → u and Lun → Lu in Lp(RN+1

+ ). The first convergence is clear.
To check the second one, we observe that

L(u− un) = (1− Φn)Lu+ 2∂yΦn ∂yu+ u∂yyΦn + 2y∇xΦn · ∇xu+ yu∆xΦn.

Since Lu = f − λu ∈ Lp(RN+1
+ ) and u ∈ W 1,p(RN+1

+ ), the properties of Φn and dominated
convergence easily imply that the functions L(u− un) tend to 0 in Lp(RN+1

+ ).

Proof of Theorem 2.2. In view of Remark 2.9 and Propositions 2.11 and 2.13, it remains
to show positivity and consistency. The proofs of Propositions 2.11 and 2.13 show that
the resolvents of (−L,D◦p) coincide on C∞c (RN+1) for all λ > 0, so that they coincide on
Lp(RN+1

+ ) ∩ Lq(RN+1
+ ). This fact shows consistency. Positivity then follows from the case

p = 2 already proved.
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Let q ∈ (1,∞), T > 0 and J = (0, T ). We say that a closed, densely defined operator
A on a Banach space X has maximal regularity of type Lq if for all f ∈ Lq(J,X) there is a
unique solution u ∈ Lq(J,D(A)) ∩W 1,q(J,X) of the Cauchy problem

u′(t) = Au(t), t ∈ J, u(0) = 0.

We refer to [6] and [14] for a thorough discussion of this property and for further references.
Here we just note that this property does not depend on T > 0 and q ∈ (1,∞) and that A
generates an analytic semigroup if it has maximal regularity of type Lq. In our setting we
can use that A has maximal regularity of type Lq if it generates a positive and contractive
analytic semigroup on an Lp space with p ∈ (1,∞). This fact follows from Corollary 5.2
and Theorems 5.3 and 6.1 of [11].

Corollary 2.14 Let p, q ∈ (1,∞). The operator (−L,D◦p) has maximal Lq–regularity.

As a preparation for the following sections, we further introduce the operator

L0 = −a0∂
2
y − y

N∑
i,j=1

aij∂xixj +
N+1∑
i=1

bi∂iu (2.6)

with constant coefficients a0, aij , bi ∈ R satisfying the conditions a0 > 0 and aij = aji for
all i, j = 1, . . . , N as well as

N∑
i,j=1

aijξiξj ≥ µ|ξ|2

for all ξ ∈ RN and some µ > 0. Set M = max{|aij |, |bi|, a0, a
−1
0 , µ−1}. We endow −L0 with

the domain D◦p.

Theorem 2.15 Let p ∈ (1,∞). There are constants Λp ≥ ωp ≥ 0 and C1 ≥ 0 depending
on M, N and p such that for every λ ∈ C with Reλ > ωp and f ∈ Lp(RN+1

+ ) there exists a
unique solution u ∈ D◦p of λu+ L0u = f such that

|λ|‖u‖Lp(RN+1
+ ) ≤ C1‖f‖Lp(RN+1

+ ), (2.7)

‖∂2
yu‖Lp(RN+1

+ ) + ‖yD2
xu‖Lp(RN+1

+ ) + ‖√y∇x∂yu‖Lp(RN+1
+ ) ≤ C1‖f‖Lp(RN+1

+ ), (2.8)

Morover, for Reλ > Λp we have

|λ| 12
(
‖∂yu‖Lp(RN+1

+ ) + ‖√y∇xu‖Lp(RN+1
+ )

)
+ |λ| 14 ‖∇xu‖Lp(RN+1

+ ) ≤ C1‖f‖Lp(RN+1
+ ).

Proof. Assume first that bi = 0 for every i = 1, . . . , N+1 and that Reλ > 0. LetQ be a non-
singular N×N matrix such that

∑N
i,j=1 a

1
2
0 aij∂xixjϕ(x) = ∆ψ(Qx) whenever ϕ(x) = ψ(Qx)

for x ∈ RN . We use the endomorphism of RN+1
+ mapping z = (x, y) to ζ = (ξ, η) =

(Qx, a−
1
2

0 y). Setting u(z) = w(ζ) and f(z) = φ(ζ), the equation λu(z) + L0u(z) = f(z) is
now equivalent to

λw(ζ) + Lw(ζ) = λw(ζ)− ∂2
ηw(ζ)− η∆ξw(ζ) = φ(ζ),

and the first part of the statement follows easily from Theorem 2.2. Applying Theorem 2.2
to w we have

‖∂2
yu‖Lp(RN+1

+ ) + ‖yD2
xu‖Lp(RN+1

+ )+‖
√
y∇x∂yu‖Lp(RN+1

+ )
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≤ C (‖Lw‖Lp(RN+1
+ ) + ‖w‖Lp(RN+1

+ ))

≤ C
(
‖f‖Lp(RN+1

+ ) + |λ|−1‖f‖Lp(RN+1
+ )

)
.

Therefore estimate (2.8) follows. Finally, by Lemma 2.6 there exist C, η0 > 0 such that for
every 0 < ε ≤ η0

‖∂yu‖Lp(RN+1
+ ) ≤ ε‖∂

2
yu‖Lp(RN+1

+ ) +
C

ε
‖u‖Lp(RN+1

+ ).

Taking (2.8) and (2.7) into account, we get

‖∂yu‖Lp(RN+1
+ ) ≤ Cε‖f‖Lp(RN+1

+ ) +
C

ε|λ|
‖f‖Lp(RN+1

+ ).

Choosing ε = |λ|−1/2 yields the desired estimate. The remaining terms can be estimated
analogously.

Finally, the general case where first order terms are present in L0 can be handled by a
perturbation argument, since estimates (i) and (ii) of Lemma 2.6 show that the operator
B = b · ∇, with b = (b1, . . . , bN+1), is a small perturbation of −a0∂

2
y − y

∑N
i,j=1 aij∂xixj

(see [7, Section III.2]).

3 The localization procedure

Let Ω be a bounded open subset of RN+1 with boundary of class C2 and let % be a function
in C2(RN+1) such that

Ω = {% > 0}, ∂Ω = {% = 0} and ∇%(ξ) = ν(ξ), ξ ∈ ∂Ω. (3.1)

Here, ν(ξ) is the inward unitary normal vector to ∂Ω at ξ. Such a function % can be
constructed by extending the distance function from the boundary of Ω. Let us introduce
the operator L defined on smooth functions as

Lϕ = −tr(a⊗ aD2ϕ)− %
N+1∑
i,j=1

aij∂ijϕ−
N+1∑
i=1

bi∂iϕ. (3.2)

In the remainder of the paper we shall assume the following conditions on the coefficients.

(H1) a = (a1, . . . , aN+1) is a vector–valued C2 function in a neighbourhood of Ω such that
at each point ξ ∈ ∂Ω the vector a(ξ) is non tangent at ∂Ω, namely a(ξ) · ν(ξ) 6= 0.

(H2) aij are real–valued continuous functions on Ω with aij = aji and satisfy the ellipticity
conditions

N+1∑
i,j=1

aij(ξ)τiτj ≥ µ0|τ |2, for every ξ ∈ ∂Ω, τ ∈ RN+1 with τ · a(ξ) = 0,

N+1∑
i,j=1

(
ai(ξ)aj(ξ) + %(ξ)aij(ξ)

)
ζiζj ≥ µ(ξ)|ζ|2, for every ξ ∈ Ω, ζ ∈ RN+1,

for some constant µ0 > 0 and a suitable function µ with inf
K
µ > 0, for any compact

set K contained in Ω.
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(H3) bi are real–valued continuous functions on Ω.

Example 3.1 Let us consider Ω = B1(0) in RN+1 and choose a(ξ) = ξ, for any ξ ∈ Ω. Set
r = |ξ|. Then the operator

Lϕ = −r2∂2
rϕ− (1− r2)∆ϕ = −∂2

rϕ− (1− r2)
N

r
∂rϕ−

1− r2

r2
∆Sϕ, r 6= 0

where ∆S denotes the (negative) Laplace-Beltrami operator on ∂Ω, is of the form (3.2) with
%(ξ) = 1− r2. Another simple example is

L1ϕ = −∂2
rϕ−

N

r
∂rϕ−

1− r2

r2
∆Sϕ, r 6= 0

which differs from L by the first-order bounded perturbation rN∂r. More generally, any
operator which is uniformly elliptic in the interior and can be written near the boundary in
the form

Lϕ = −∂2
rϕ− (1− r2)∆Sϕ+Bϕ,

where B is a first-order bounded perturbation, satisfies our assumptions.

Without loss of generality, we can assume that

m = min
ξ∈∂Ω

a(ξ) · ν(ξ) > 0 (3.3)

and define
M = max

1≤i,j≤N+1
{‖a‖∞, ‖aij‖∞, ‖bi‖∞}.

Let ξ0 ∈ ∂Ω be fixed. Following [3], in a neighborhood U = U(ξ0) of ξ0 we consider
functions θ1, . . . , θN ∈ C2(U) solving the equation

N+1∑
i=1

ai(ξ) ∂iθ(ξ) = 0, ξ ∈ U, (3.4)

such that ∇θ1(ξ0), . . . ,∇θN (ξ0) are linearly independent. Such functions exist by classical
results on partial differential equations of first order, see e.g. Theorem 33.3 of [5]. We then
define the transformation

J : U → RN+1, ξ 7→ (θ(ξ), %(ξ))

where θ(ξ) = (θ1(ξ), . . . , θN (ξ)). Due to (H1), (3.1) and (3.4), the Jacobian matrix of J
at ξ0 is non–singular. Therefore, possibly taking U smaller, we obtain that J is a C2–
diffeormorphism from U onto J(U). It further holds that J(U ∩ Ω) = J(U) ∩ RN+1

+ and
J(U ∩ ∂Ω) = J(U) ∩ {y = 0}. So (U, J) is a local chart. We denote by H the inverse of
J . We can cover ∂Ω by the finite union V = U1 ∪ · · · ∪ Um of open sets of the above type.
Thus, below we may always assume that U(ξ0) ⊂ Ui for some of the Ui and that J and H
are restrictions of the diffeomorphism on Ui. Hence, all the derivatives of J and H up to
the second order may be assumed to be bounded by a constant independent of ξ0. To fix
the notation we suppose that for any k = 1, . . . , N + 1

‖Jk‖∞ + ‖∇Jk‖∞ + ‖D2Jk‖∞ ≤ L,

‖Hk‖∞ + ‖∇Hk‖∞ + ‖D2Hk‖∞ ≤ L.
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Finally, we can assume that

a(ξ) · ∇%(ξ) ≥ m/2 for all ξ ∈ U ∩ Ω, (3.5)

by virtue of (3.3). Such local coordinates have the advantage of transforming all the vectors
a(ξ) at points ξ ∈ U ∩ Ω into the normal direction at {y = 0} by the formula(

Jac J(ξ)
)
a(ξ) =

(
a(ξ) · ∇%(ξ)

)
eN+1. (3.6)

It follows that (
JacH(z)

)
eN+1 =

a(ξ)
a(ξ) · ∇%(ξ)

(3.7)

for z = J(ξ). Define φ(z) = %(Hz), for z ∈ J(U) ∩ RN+1
+ . Using Taylor’s formula with

respect to the last variable, for z = (x, y) we find that

φ(z) = φ(x, y) = φ(x, 0) + ∂yφ(x, 0) y +
1
2
∂2
yφ(x, t) y2 = y

(
∂yφ(x, 0) +

1
2
∂2
yφ(x, t) y

)
,

for some t ∈ (0, y). Recalling (3.7), we obtain

∂yφ(z) =
〈(

JacH(z)
)
eN+1,∇%(Hz)

〉
=

a(ξ) · ∇%(ξ)
a(ξ) · ∇%(ξ)

= 1

with ξ = Hz. Therefore we may write

φ(z) = y d(z), z ∈ J(U) ∩ RN+1
+ , (3.8)

where d is a continuous function with d(x, 0) = 1 which is bounded from above and below
by positive constants independently of ξ0.

Given a function u : U ∩ Ω→ R, set Tu = u ◦H on J(U) ∩ RN+1
+ . One can check that

∇Tu = (JacH)∗(∇u) ◦H.

In particular, equality (3.7) yields

∂yTu(z) = 〈∇Tu(z), eN+1〉 =
a(ξ) · ∇u(ξ)
a(ξ) · ∇%(ξ)

for ξ = Hz. The boundedness of the derivatives of H and its inverse implies that T
induces isomorphisms from Lp(U ∩ Ω) onto Lp(J(U) ∩ RN+1

+ ) and from W 1,p(U ∩ Ω) onto
W 1,p(J(U) ∩ RN+1

+ ), for any p ∈ [1,+∞]. Let u ∈ W 1,p(U ∩ Ω) ∩W 2,p
loc (U ∩ Ω). Due to

(3.8), the function %D2u belongs to Lp(U ∩Ω) iff yD2(Tu) is contained in Lp(J(U)∩RN+1
+ ).

Since

∂2
yTu =

〈
(JacH)∗(D2u)(JacH)eN+1, eN+1

〉
+ first order terms

=
(
a(ξ) · ∇%(ξ)

)−2tr(a⊗ aD2u) + first order terms,

it holds tr(a⊗aD2u) ∈ Lp(U∩Ω) iff ∂2
y(Tu) ∈ Lp(J(U)∩RN+1

+ ). Finally from the expression

√
y ∂xk∂yTu =

√
y
〈
(JacH)∗(D2u)(JacH)eN+1, ek

〉
+ first order terms
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=
1√

d(J(ξ))
(
a(ξ) · ∇%(ξ)

)〈(√%D2ua)(ξ), (JacH)(J(ξ))ek
〉

+ first order terms

it follows that
√
y∇∂yTu ∈ Lp(J(U)∩RN+1

+ ) iff
√
%D2ua ∈ Lp(U ∩Ω). Moreover, in these

equivalences also the norms of the respective functions are uniformly equivalent. Moreover,
all the operator norms of T and T−1 can be estimated by constants independent of ξ0.

The differential operator L is locally transformed into the operator L given by

L = −α(z)∂2
y − φ(z)

N+1∑
h,k=1

αhk(z)∂hk − φ(z)
N+1∑
k=1

βk(z)∂k −
N+1∑
k=1

γk(z)∂k (3.9)

with the coefficients

α(z) =
(
a(Hz) · ∇%(Hz)

)2
,

αhk(z) =
N+1∑
i,j=1

aij(Hz)∂ξjJh(Hz)∂ξiJk(Hz),

βk(z) =
N+1∑
i,j=1

aij(Hz)∂ξiξjJk(Hz),

γk(z) =
N+1∑
i,j=1

ai(Hz)aj(Hz)∂ξiξjJk(Hz) +
N+1∑
i=1

bi(Hz)∂ξiJk(Hz).

(3.10)

Notice that the sup–norms of all the coefficients of L are controlled by constants depending
on M, L, ‖∇%‖∞ and not deepending on ξ0. In order to deal with the class of operators
introduced in (2.6), we freeze the coefficients of L at the point z0 = J(ξ0) as follows

L◦ = −α(z0)∂2
y − y

N∑
h,k=1

αhk(z0)∂xhxk −
N+1∑
k=1

γk(z0)∂k. (3.11)

Remark 3.2 Let us prove that the matrix
(
αhk(z0)

)N
h,k=1

satisfies the ellipticity condition

with a constant independent of ξ0. Let ζ ∈ RN and set ζ̃ = (ζ, 0) ∈ RN+1. Then, by the
definition of αhk(z0) we have

N∑
h,k=1

αhk(z0)ζhζk =
N+1∑
i,j=1

aij(ξ0)XiXj ,

where Xi =
N∑
h=1

∂ξiJh(ξ0)ζh and thus X =
(
Jac J(ξ0)

)∗
ζ̃. In order to apply (H2), we have

to show that the vector X is orthogonal to a(ξ0). To this aim, using (3.6) we find

〈X,a(ξ0)〉 = 〈ζ̃,
(
Jac J(ξ0)

)
a(ξ0)〉 =

(
a(ξ0) · ν(ξ0)

)
〈ζ̃, eN+1〉 = 0.

Therefore
N∑

h,k=1

αhk(z0)ζhζk ≥ µ0|X|2 ≥ Cµ0|ζ|2,
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for some constant C independent of ξ0. Moreover, estimate (3.3) implies that α(z0) ≥ m2.
Therefore the operator L◦, defined by (3.11), satisfies the assertions of Theorem 2.15 with
constants C1,Λp, ωp independent of ξ0.

In the next sections we shall use a suitable covering of Ω, constructed as follows. For
every ξ0 ∈ ∂Ω, let (Uξ0 , Jξ0) be the local chart constructed at the beginning of the section.
Given ε > 0, choose a ball Br(ξ0)(ξ0) ⊂ Uξ0 such that if z ∈ Jξ0(Br(ξ0)(ξ0)) ∩ RN+1

+ , then

|α(z)− α(z0)| < ε,

|d(z)αhk(z)− αhk(z0)| < ε, h, k = 1, . . . , N + 1
|φ(z)|+ |√y d(z)| < ε,

|γk(z)− γk(z0)| < ε, k = 1, . . . , N + 1

(3.12)

where z0 = Jξ0(ξ0), αhk, γk are given in (3.10) and d, φ in (3.8). Set Fε = {Br(ξ)(ξ) : ξ ∈
∂Ω}. By a suitable covering argument (see e.g. [1, Theorem 2.18]), recalling that ∂Ω is
compact, we can extract a finite subcovering Gε = {Br(ξi)(ξi) : i = 1, . . . ,m} such that at
most cN among the balls of Gε overlap. Here cN is a natural number which depends only
on the dimension. Set Ui = Br(ξi)(ξi), Ji = Jξi|Br(ξi)(ξi) and Ũi = Ji(Ui), zi = Ji(ξi).

We shall see that the arbitrariness of ε will play an important role in the proofs of the
main results.

4 Generation in Lp on bounded domains

Let 1 < p <∞. We introduce the domain

Dp(L) =
{
u ∈W 2,p

loc (Ω) ∩W 1,p
0 (Ω) : %D2u, tr(a⊗ aD2u),

√
%D2ua ∈ Lp(Ω)

}
,

which is a Banach space with respect to the canonical norm

‖u‖Dp(L) = ‖u‖W 1,p(Ω) + ‖%D2u‖Lp(Ω) + ‖tr(a⊗ aD2u)‖Lp(Ω) + ‖√%D2ua‖Lp(Ω).

The main result of this section is stated in the next theorem.

Theorem 4.1 Under assumptions (H1), (H2) and (H3) the operator (−L,Dp(L)) generates
an analytic semigroup in Lp(Ω) for p ∈ (1,∞). In particular, there exists ωp > 0 such that

sup
Reλ≥ωp

‖λ(λ+ L)−1‖ < +∞.

We shall use the following interpolative estimates, whose proof is based on the use of the
local charts introduced in Section 3 and on the estimates in Lemma 2.6 (see also [8, Lemma
3.3]).

Lemma 4.2 There exist ε0, C > 0 such that for every 0 < ε ≤ ε0 and every u ∈ Dp(L)

‖a · ∇u‖Lp(Ω) ≤ ε‖u‖Dp(L) +
C

ε
‖u‖Lp(Ω)

‖√%∇u‖Lp(Ω) ≤ ε‖u‖Dp(L) +
C

ε
‖u‖Lp(Ω)

‖∇u‖Lp(Ω) ≤ ε‖u‖Dp(L) +
C

ε3
‖u‖Lp(Ω).

(4.1)
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Proof of Theorem 4.1. We first construct a right inverse of λ+L satisfying the sectioriality
estimate. In a second step the injectivity of λ+ L is established.

Step 1. We claim that there exist ω1
p, C > 0 such that for every λ ∈ C with Reλ ≥ ω1

p

and f ∈ Lp(Ω) there is u ∈ Dp(L) satisfying λu + Lu = f and |λ| ‖u‖Lp(Ω) ≤ C ‖f‖Lp(Ω).
Consider the open covering {U1, . . . , Um} of ∂Ω satisfying (3.12) with ε to be determined.
Let U0 be an open set with boundary of class C2 such that U0 ⊂⊂ Ω and {U0, U1, . . . , Um}
is a covering of Ω. Let Hi = J−1

i and Ũi = Ji(Ui) for i ∈ {1, · · · ,m}. We define

Ti : Lp(Ui)→ Lp(Ũi), Tiϕ = ϕ ◦Hi (4.2)

Set Ωi = Ui ∩Ω. We consider Ti also on Lp(Ωi). Let {η2
i }mi=0 with 0 ≤ ηi ≤ 1 be a partition

of unity subordinate to U0, U1, · · · , Um. To simplify the notation, in the constant C below
(that may change from line to line) the dependence on Ui and ηi is made explicit by writing
a subscript i, whereas we omit the dependence on the other quantities N, p,m, µ,M, L and
the set Ω.

Let f ∈ Lp(Ω) be fixed. Since the operator L is nondegenerate in U0, it is well-known
that if λ ∈ C and Reλ ≥ λ0, for a suitable λ0 ∈ R, then there exists a unique solution
u0 ∈W 2,p(U0)∩W 1,p

0 (U0) of the equation λu0 +Lu0 = η0f . Set R0(λ)f = η0u0 and extend
it by 0. Then R0(λ)f ∈ Dp(L) and

(λ+ L)R0(λ)f = η2
0f + [L, η0]u0 = η2

0f + E0f,

where [L, η0] denotes the commutator between L and the multiplicative operator by η0. It
is easily seen that

‖E0f‖Lp(Ω) ≤
C0

|λ|1/2
‖f‖Lp(U0), (4.3)

where the constant C0 depends on U0.
Now, fix i ≥ 1. Denote by Li, L◦i the operators obtained from L, L◦, defined in (3.9),

(3.11), replacing J,H, z0 with Ji, Hi, zi, respectively. By Theorem 2.15 and Remark 3.2, for
every λ ∈ C with Reλ > Λp, there exists a unique solution vi ∈ D◦p of λvi +L◦i vi = Ti(ηif)
in RN+1

+ with

‖vi‖Lp(RN+1
+ ) ≤

C

|λ|
‖Ti(ηif)‖Lp(RN+1

+ )

‖∂yvi‖Lp(RN+1
+ ) + ‖√y∇xvi‖Lp(RN+1

+ ) ≤
C

|λ|1/2
‖Ti(ηif)‖Lp(RN+1

+ )

‖vi‖Dp ≤ C‖Ti(ηif)‖Lp(RN+1
+ ).

(4.4)

We set
Ri(λ)f = T−1

i

(
Ti(ηi)vi

)
and extend this function by 0 to Ω. Then Ri(λ)f belongs to Dp(L) and has compact support
contained in Ωi. By the identity L = T−1

i LiTi holding in Lp(Ωi), we easily get

(λ+ L)Ri(λ)f = T−1
i (λ+ Li)

(
Ti(ηi)vi

)
= η2

i f +Bif + Eif

on Ωi, where

Bif = T−1
i

(
Ti(ηi)(Li − L◦i )vi

)
and Eif = T−1

i

(
[Li, Ti(ηi)]vi

)
.
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We now estimate the Lp-norms of Bif and Eif . It holds

(Li − L◦i )vi(z) = −
(
αi(z) + φi(z)αi

N+1N+1
(z)− αi(zi)

)
∂2
yvi

−
N∑

h,k=1

y
(
di(z)αihk(z)− αihk(zi)

)
∂xhxkvi − 2

√
y di(z)

N∑
h=1

√
y αihN+1(z)∂xhyvi

− φi(z)
N+1∑
k=1

βik(z)∂kvi −
N+1∑
k=1

(γik(z)− γik(zi))∂kvi

(4.5)

for every z ∈ Ũi ∩ RN+1
+ , where the superscript i means that the corresponding function is

relative to (Ui, Ji) and the function d was defined in (3.8). Therefore (3.12) yields

‖Bif‖Lp(Ω) ≤ C ‖(Li − L◦i )vi‖Lp( eUi∩RN+1
+ ) ≤ Cε‖vi‖Dp .

By (4.4) it turns out that
‖Bif‖Lp(Ω) ≤ Cε‖f‖Lp(Ωi). (4.6)

Concerning Eif , we have

[
Li, Ti(ηi)

]
vi =− αi(z)vi ∂2

yTi(ηi)− φi(z)vi
N+1∑
h,k=1

αihk(z)∂hkTi(ηi)

− φi(z)vi
N+1∑
k=1

βik(z)∂kTi(ηi)− vi
N+1∑
k=1

γik(z)∂kTi(ηi)

− 2αi(z)∂yvi∂yTi(ηi)− 2φi(z)
N+1∑
h,k=1

αihk(z)∂hTi(ηi)∂kvi

and therefore

‖Eif‖Lp(Ω) ≤ C‖[Li, Ti(ηi)]vi‖Lp( eUi∩RN+1
+ )

≤ Ci
(
‖vi‖Lp(RN+1

+ ) + ‖∂yvi‖Lp(RN+1
+ ) + ‖√y∇xvi‖Lp(RN+1

+ )

)
.

The estimates (4.4) then lead to

‖Eif‖Lp(Ω) ≤
Ci
|λ|1/2

‖f‖Lp(Ωi). (4.7)

Setting R(λ)f =
m∑
i=0

Ri(λ)f and S(λ)f = E0f +
m∑
i=1

(
Bif + Eif

)
we have

(λ+ L)R(λ)f = f + S(λ)f. (4.8)

Estimates (4.3), (4.6) and (4.7) imply that

‖S(λ)f‖Lp(Ω) ≤
m∑
i=1

Cε‖f‖Lp(Ωi) +
m∑
i=0

Ci
|λ|1/2

‖f‖Lp(Ωi).
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Since at most cN among the Ui’s overlap, we get

‖S(λ)f‖Lp(Ω) ≤ cNCε‖f‖Lp(Ω) +
m∑
i=0

Ci
|λ|1/2

‖f‖Lp(Ωi).

Now, choose ε > 0 sufficiently small and |λ| large enough to get ‖S(λ)‖ ≤ 1/2. This shows
that there exists ω1

p > 0 such that for every λ ∈ C with Reλ ≥ ω1
p, I+S(λ) : Lp(Ω)→ Lp(Ω)

is invertible with inverse V (λ) satisfying ‖V (λ)‖ ≤ 2. By (4.8), with V (λ)f instead of f ,
we derive that u = R(λ)V (λ)f belongs to Dp(L) and solves the equation λu + Lu = f . It
further follows that

‖u‖Lp(Ω) ≤
m∑
i=0

‖Ri(λ)V (λ)f‖Lp(Ω) ≤
C

|λ|
‖V (λ)f‖Lp(Ω) ≤

2C
|λ|
‖f‖Lp(Ω). (4.9)

Step 2. Using the results and the notation of the first step, for any u ∈ Dp(L) and
λ ∈ C with Reλ > max{0, ω1

p} we can write

Ri(λ)(λ+ L)u = η2
i u+ Fiu+Giu, i ≥ 1,

R0(λ)(λ+ L)u = η2
0u+Hu

where

Fiu = T−1
i

(
Ti(ηi)(λ+ L◦i )−1(Li − L◦i )Ti(ηiu)

)
Giu = T−1

i

(
Ti(ηi)(λ+ L◦i )−1Ti

(
[ηi, L]u

))
,

Hu = η0(λ+ L0)−1([L, η0]u),

and L0 denotes the realization of L in Lp(U0) with Dirichlet boundary conditions. Summing
over i, it turns out that

m∑
i=0

Ri(λ)(λ+ L)u = u+
m∑
i=1

(Fiu+Giu) +Hu.

Let u ∈ Dp(L) be such that (λ+ L)u = 0. The above identity yields

u = −
m∑
i=1

(
Fiu+Giu

)
−Hu. (4.10)

We claim that u = 0. To prove this, we need to estimate the norms of u in Dp(L) and in
Lp(Ω). To shorten the notation we set

‖ · ‖p,i = ‖ · ‖Lp(Ωi)

‖ · ‖Dp,i = ‖ · ‖W 1,p(Ωi) + ‖%D2(·)‖p,i + ‖tr(a⊗ aD2(·))‖p,i + ‖√%D2(·) a‖p,i

As Hu is supported in U0, its norm in Dp(L) is equivalent to the W 2,p-norm, therefore the
classical Lp estimates yield

‖Hu‖Dp(L) ≤ C0‖[L, η0]u‖p,0.
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Since [L, η0] is a first-order operator, for every δ > 0 there exists Cδ > 0 such that

‖Hu‖Dp(L) ≤ C0δ‖u‖Dp,0 + Cδ‖u‖p,0. (4.11)

On the other hand
‖Hu‖Lp(Ω) ≤

C0

|λ|
‖u‖Dp,0 . (4.12)

Here, C0 denotes a suitable constant depending on η0. Let us estimate Fiu and Giu for
every i ≥ 1. Set

fi = (Li − L◦i )Ti(ηiu), gi = Ti([ηi, L]u)

and
ϕi = (λ+ L◦i )−1fi, ψi = (λ+ L◦i )−1gi.

We have

‖Fiu‖Dp(L) ≤ C‖Ti(ηi)ϕi‖Dp (4.13)

≤ C‖ϕi‖Dp + Ci

(
‖ϕi‖Lp(RN+1

+ ) + ‖∂yϕi‖Lp(RN+1
+ ) + ‖√y∇xϕi‖Lp(RN+1

+ )

)
,

where Ci depends on ‖∇ηi‖∞, ‖D2ηi‖∞ and Ω. Theorem 2.15, Remark 3.2 and (3.12)
further imply

‖ϕi‖Dp ≤ C‖fi‖Lp(RN+1
+ ) ≤ Cε‖ηiu‖Dp,i

‖ϕi‖Lp(RN+1
+ ) ≤

C

|λ|
‖fi‖Lp(RN+1

+ ) ≤
Cε

|λ|
‖ηiu‖Dp,i .

Similarly, for Reλ > Λp we derive

‖∂yϕi‖Lp(RN+1
+ ) + ‖√y∇xϕi‖Lp(RN+1

+ ) ≤
C

|λ|1/2
‖fi‖p ≤

Cε

|λ|1/2
‖ηiu‖Dp,i . (4.14)

Using
‖ηiu‖Dp,i ≤ ‖u‖Dp,i + Ci(‖u‖p,i + ‖∇u‖p,i),

we arrive at

‖Fiu‖Dp(L) ≤
(
Cε+

Ci
|λ|1/2

)
‖u‖Dp,i + Ci(‖u‖p,i + ‖∇u‖p,i). (4.15)

For the Lp norm of Fiu we further obtain the better estimate

‖Fiu‖Lp(Ω) ≤ C‖ϕi‖Lp(RN+1
+ ) ≤

C

|λ|
‖fi‖Lp(RN+1

+ ) ≤
Ci
|λ|
‖u‖Dp,i . (4.16)

The estimates for Giu are similar. Replacing ϕi, fi with ψi, gi, respectively, in (4.13), (4.14)
and observing that

‖gi‖Lp(RN+1
+ ) ≤ Ci(‖u‖p,i + ‖∇u‖p,i),

we infer
‖Giu‖Dp(L) ≤ Ci(‖u‖p,i + ‖∇u‖p,i), (4.17)

and
‖Giu‖Lp(Ω) ≤

C

|λ|
‖gi‖Lp(RN+1

+ ) ≤
Ci
|λ|
‖u‖Dp,i . (4.18)
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Formulae (4.10), (4.11), (4.15) and (4.17) now yield

‖u‖Dp(L) ≤
m∑
i=1

(
Cε+

Ci
|λ|1/2

)
‖u‖Dp,i +

m∑
i=1

Ci(‖u‖p,i + ‖∇u‖p,i)

+ C0δ‖u‖Dp,0 + Cδ‖u‖p,0.

At this point, as in the last part of the first step, we take sufficiently small ε, δ > 0 and
sufficiently large |λ| to conclude

‖u‖Dp(L) ≤ C(‖u‖Lp(Ω) + ‖∇u‖Lp(Ω)).

The interpolative estimate (4.1) further implies

‖u‖Dp(L) ≤ C‖u‖Lp(Ω).

Moreover, from (4.10), (4.12), (4.16) and (4.18) it follows that

‖u‖Lp(Ω) ≤
C

|λ|
‖u‖Dp(L).

Combining the last two estimates we obtain

‖u‖Dp(L) ≤
C

|λ|
‖u‖Dp(L).

If |λ| is large enough, u must be 0. Therefore, there exists ωp ≥ ω1
p such that λ+L : Dp(L)→

Lp(Ω) is injective for every λ ∈ C with Reλ ≥ ωp. Taking into account the first step and
(4.9) we have proved that λ+L is bijective from Dp(L) onto Lp(Ω) with ‖λ(λ+L)−1‖ ≤ C
for every λ ∈ C with Reλ ≥ ωp.

We now discuss further properties of the generator (−L,Dp(L) and its semigroup
(Tp(t))t≥0, see also Corollary 5.4. Taking ε = |λ|−1/4 in Lemma 4.2, we first deduce the
following estimate from the sectoriality of L.

Corollary 4.3 Assume that (H1), (H2) and (H3) hold and that p ∈ (1,∞). There exist
C, γp > 0 such that for every Reλ ≥ γp and u ∈ Dp(L) we have

‖∇u‖Lp(Ω) ≤
C

|λ|1/4
‖λu+ Lu‖Lp(Ω).

Corollary 4.4 Assume that (H1), (H2) and (H3) hold and that 1 < p < q < +∞. Then
the following assertions hold.

(i) We have Tp(t)f = Tq(t)f for every f ∈ Lq(Ω) and t ≥ 0 . Therefore, we simply write
T (t) instead of Tp(t).

(ii) T (t) is compact for t > 0 and the spectra and the eigenspaces of (L,Dp(L)) and
(L,Dq(L)) coincide.

(iii) T (t) is positive for t ≥ 0.
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Proof. The consistency of the semigroups (Tp(t))t≥0 and (Tq(t))t≥0 follows from the con-
sistency of the corresponding resolvents which is an immediate consequence of the inclusion
Dq(L) ⊂ Dp(L). The resolvent is compact since Dp(L) ↪→W 1,p(Ω) by Corollary 4.3 and Ω
is bounded. The analyticity of T (t) thus yields the compactness of the semigroup. In this
situation it is known that the remaining assertions in (ii) are true, cf. [2, Proposition 2.6].
To prove (iii), it suffices to show that u = (λ + L)−1f ∈ Dp(L) is positive for all λ ≥ ωp,
p > N + 1 and positive f ∈ C(Ω). In this case u is continuous by Sobolev’s embedding
and it vanishes at the boundary. If there were a z0 ∈ Ω with u(z0) < 0, then u would have
an interior minimum u(z1) < 0. Hence, Lu(z1) = f(z1) − λu(z1) > 0. But this inequality
contradicts Bony’s maximum principle, [4, Theorem 1], and so u ≥ 0 as needed.

Corollary 4.5 Let (H1), (H2) and (H3) hold and that p ∈ (1,∞). If the coefficients of L
are C2

b (Ω), then L+ω′p is accretive on Dp(L) for some ω′p ≥ 0. Moreover, (−L,Dp(L)) has
maximal regularity of type Lq.

Proof. We rewrite L in divergence form obtaining first order coefficients with bounded
derivatives. The accretivity of the shifted operator then follows easily. As in Corollary 2.14,
the second assertion is then a consequence of the results in [11].

5 Generation in spaces of continuous functions on a
bounded domain

In this section we shall prove that the operator −L defined in (3.2) and endowed with the
domain

D0(L) =
{
u ∈ C(Ω) ∩

⋂
1≤p<∞

W 2,p
loc (Ω)

∣∣∣a · ∇u, √%∇u, Lu ∈ C(Ω), u|∂Ω = 0
}
,

generates an analytic semigroup in C(Ω). The main ingredients will be the localization
procedure already implemented in the previous section and a suitable adaptation of the
Masuda-Stewart method to the model operator in the halfspace.
Let z = (x, y) ∈ RN+1

+ and r, s, κ > 0. Let us introduce the cubes

C(x) =
N∏
i=1

[xi, xi + r], Cκ(x) =
N∏
i=1

[
xi −

r

2
κ, xi +

(κ
2

+ 1
)
r
]

and the parallelepipeds

Q(z) = C(x)× [y, y + s], Qκ(z) = Cκ(x)×
[
y − s

2
κ, y +

(κ
2

+ 1
)
s
]
. (5.1)

Set Q+
κ (z) = Qκ(z)∩RN+1

+ . We start with a lemma collecting all the relevant properties of
weighted spaces we need in the sequel, relying on Grisvard’s paper [10]. Notice that in [10]
the weighted spaces involved are slightly different from ours, but we shall show that we may
use Grisvard’s results. We fix a parallelepiped Q = Q(z) with z = (x, 0) and side lengths
r, s, set C = C(x) and, following the notation in [10], we introduce the weighted spaces

W 1,p
p/2(Q) = {u ∈W 1,p

loc (Q) :
√
yu,
√
y∇u ∈ Lp(Q)},
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◦
W

1,p
p/2(Q) = {u ∈W 1,p

p/2(Q) : γu = 0},

endowed with the obvious norm, where γ is the trace operator defined according to Lemma
5.1(ii) below.

Lemma 5.1 Let p > 2 and Q = Q(z) be a parallelepiped with z = (x, 0) and side lengths
r, s > 0. The following statements hold:

(i) the space C∞(Q) is dense in W 1,p
p/2(Q);

(ii) the trace operator γ : W 1,p
p/2(Q)→ Lp(C) is well-defined and continuous;

(iii) the following Hardy-type inequality holds in
◦
W

1,p
p/2(Q):∥∥∥∥ w√y

∥∥∥∥
Lp(Q)

≤ 2p
p− 2

‖√y ∂yw‖Lp(Q);

(iv)
W 1,p
p/2(Q) = {u ∈W 1,p

loc (Q) : u,
√
y∇u ∈ Lp(Q)}.

Proof. Observe that (i) follows from Théorème 1.4, (ii) from Propositions 1.1’ and 1.2 and
(iii) from Théorème 1.2 in [10]. Concerning (iv), we have only to show that if u ∈W 1,p

p/2(Q),
then u belongs to Lp(Q) or, using (i), that there exists C > 0 such that for every u ∈ C∞(Q)

‖u‖Lp(Q) ≤ C‖u‖W 1,p
p/2(Q).

Splitting u = u1 +u2 with u1, u2 vanishing for y close to 0, s, respectively, and noticing that
the assertion is trivial for u1, we may confine to functions u ∈ C∞(Q) vanishing for y = s.
Hence

u(x, y) =
∫ y

s

∂yu(x, τ)dτ =
∫ y

s

∂yu(x, τ)τ−1/2τ1/2dτ

and using Hölder’s inequality

|u(x, y)|p ≤
∫ s

0

|∂yu(x, τ)|pτp/2dτ
(∫ s

0

τ−p
′/2dτ

)p−1

.

Integrating with respect to x we obtain ‖u‖Lp(Q) ≤ Cs‖
√
y∂yu‖Lp(Q).

Lemma 5.2 Let p > 2(N + 1) and ϕ ∈ W 1,p
p/2(Q(z)) where z = (x, 0) and Q(z) with side

lengths r, s > 0. Then ϕ ∈ C(Q(z)) and there is Cr,s > 0 such that

‖ϕ‖L∞(Q(z)) ≤ Cr,s
(
‖ϕ‖Lp(Q(z)) + ‖√y∇ϕ‖Lp(Q(z)))

)
.

Moreover, there is C > 0 such that

‖ϕ‖L∞(Q(z)) ≤ C r−
N
p s−

1
p

(
‖ϕ‖Lp(Q(z)) + s‖∂yϕ‖Lp(Q(z)) +

r√
s
‖√y∇xϕ‖Lp(Q(z))

)
, (5.2)

if ∂yϕ is p-summable-
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Proof. First we prove that there exists C > 0 such that for any ϕ ∈ C1(Q1)

|ϕ(0, 0)| ≤ C
(
‖ϕ‖Lp(Q1) + ‖√y∇ϕ‖Lp(Q1)

)
, (5.3)

where Q1 denotes the unit cube [0, 1]N+1. Integrating the identity

ϕ(x, y)− ϕ(0, 0) =
∫ 1

0

∇ϕ(tx, ty) · (x, y)dt

over Q1, we have∣∣∣∣ ∫ ∫
Q1

ϕ(x, y)dxdy − ϕ(0, 0)
∣∣∣∣ ≤ √N + 1

∫ 1

0

∫ ∫
Q1

|∇ϕ(tx, ty)|dxdy dt

=
√
N + 1

∫ 1

0

t−N−1

∫ ∫
tQ1

|∇ϕ(ξ, η)|dξdη dt

≤
√
N + 1

(∫ ∫
Q1

|√η∇ϕ(ξ, η)|pdξdη
) 1
p
∫ 1

0

t−N−1

(∫ ∫
tQ1

1
ηq/2

dξdη

) 1
q

dt

≤ C‖√y∇ϕ‖Lp(Q1)

since p > 2(N + 1), where 1
p + 1

q = 1. Therefore (5.3) follows. By a standard shifting and
rescaling argument estimate (5.3) takes the following form

|ϕ(x0, y0)| ≤ Cσ−
N+1
p

(
‖ϕ‖Lp(Qσ(x0,y0)) +

√
σ ‖√y∇ϕ‖Lp(Qσ(x0,y0))

)
(5.4)

in the cube Qσ(x0, y0) = (x0, y0)+σQ1 for any (x0, y0) ∈ RN+1
+ . Of course, on the left hand

side of (5.4) we may write the values of the function ϕ in the other vertices of Qσ(x0, y0),
keeping the right hand side unchanged.

We next divide Q1 in 2N+1 cubes with side length 1
2 and let Qi be any of these cubes.

Therefore every (x, y) ∈ Qi is the vertex of a cube Q∗ of side length 1
2 contained in Q1.

Applying estimate (5.4) in Q∗ we obtain

|ϕ(x, y)| ≤ C
(
‖ϕ‖Lp(Q1) + ‖√y∇ϕ‖Lp(Q1)

)
.

Since (x, y) and Qi are arbitrary, we have

‖ϕ‖L∞(Q1) ≤ C
(
‖ϕ‖Lp(Q1) + ‖√y∇ϕ‖Lp(Q1)

)
for ϕ ∈ C1(Q1) and, using Lemma 5.1(i), (iv), for every ϕ ∈W 1,p

p/2(Q1). Hence

‖ϕ‖L∞(Q1) ≤ C
(
‖ϕ‖Lp(Q1) + ‖√y∇ϕ‖Lp(Q1)

)
≤ C

(
‖ϕ‖Lp(Q1) + ‖∂yϕ‖Lp(Q1) + ‖√y∇xϕ‖Lp(Q1)

)
if ϕ ∈W 1,p

p/2(Q1). Estimate (5.2) then follows by shifting and rescaling the cube Q1.

We are ready to state and prove the main result of the section.
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Theorem 5.3 Assume that (H1), (H2) and (H3) hold. Then the operator (−L,D0(L))
generates an analytic semigroup T (·) in C(Ω). It further holds

‖a · ∇u‖L∞(Ω) + ‖√%∇u‖L∞(Ω) ≤ C|λ|−
1
2 ‖f‖L∞(Ω) (5.5)

for every Reλ > ω0, f ∈ C(Ω), u = (λ + L)−1f , and some ω0 ≥ 0. Moreover this
semigroup is contractive, positive, compact, exponentially stable, and it is the restriction of
the semigroups on Lp(Ω) obtained in Theorem 4.1.

Proof. Let {U1, . . . , Um} be a covering of ∂Ω satisfying (3.12) with ε > 0 to be chosen. Let
U0 ⊂⊂ Ω be an open set with boundary of class C2 such that {U0, U1, . . . , Um} is a covering
of Ω. Finally, let {ηi}i=0,...,m be a partition of unity corresponding to this covering.

Take f ∈ C(Ω). Fix p > 3N + 2 and choose λ ∈ C with Reλ ≥ ωp, where ωp is given
by Theorem 4.1. Let u be the unique solution in Dp(L) of the equation λu + Lu = f . By
straightforward computations one can check that ui := ηiu solves the equation

λui + Lui = ηif − hi (5.6)

with

hi = tr(a⊗ aD2ηi)u+ %

( N+1∑
j,k=1

ajk∂jkηi

)
u+

N+1∑
k=1

bk∂kηiu

+ 2
(
a · ∇ηi

)(
a · ∇u

)
+ 2%

N+1∑
j,k=1

ajk∂jηi∂ku.

(5.7)

Let us first deal with the case i = 0. Since L is nondegenerate in U0, Theorem 3.1.19 in [15]
gives constants Kp, λp > 0 such that

|λ|‖u0‖L∞(U0) + |λ| 12 ‖∇u0‖L∞(U0) ≤ Kp|λ|
N+1
2p sup

ξ∈U0

‖η0f − h0‖Lp(Bξ)

if Reλ ≥ λp, where Bξ = U0 ∩ B(ξ, |λ|− 1
2 ). Using also ‖η0f‖Lp(Bξ) ≤ ‖f‖Lp(B(ξ,|λ|−

1
2 )
≤

|λ|−
N+1
2p ‖f‖L∞(Ω), we derive

|λ|‖u0‖L∞(U0) + |λ| 12 ‖∇u0‖L∞(U0) ≤ Kp‖f‖L∞(Ω) +Kp|λ|
N+1
2p ‖h0‖Lp(Ω)

≤ Kp‖f‖L∞(Ω) + C|λ|
N+1
2p (‖u‖Lp(Ω) + ‖∇u‖Lp(Ω))

≤ Kp‖f‖L∞(Ω) + C|λ|
N+1
2p (|λ|−1‖f‖Lp(Ω) + |λ|− 1

4 ‖f‖Lp(Ω))

from Theorem 4.1 and Corollary 4.3. Choosing |λ| ≥ 1 and estimating ‖f‖Lp(Ω) by
‖f‖L∞(Ω), we are led to

|λ|‖u0‖L∞(U0) + |λ| 12 ‖∇u0‖L∞(U0) ≤ C‖f‖L∞(Ω). (5.8)

Let i ≥ 1 and set wi = Ti(ui), Ti being the operator defined in (4.2). Then wi ∈ D◦p and
suppwi ⊂ Ũi ∩ RN+1

+ . Lemma 5.2 implies that wi, ∂ywi,
√
y∇xwi ∈ C(RN+1

+ ). Moreover,
(5.6) is transformed into

λwi + Liwi = Ti(ηif)− Ti(hi),
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where the transformed operator Li is given in formula (3.9) adapted to the local chart
(Ui, Ji). Therefore

λwi + L◦iwi = (L◦i − Li)wi + Ti(ηif)− Ti(hi), (5.9)

where L◦i is the operator obtained by freezing the coefficients of Li according to (3.11).
Let z ∈ RN+1

+ and consider the parallelepipeds introduced in (5.1), with r, s, κ to be
chosen below. Take a smooth cutoff function θ such that θ = 1 on Q(z), θ = 0 on RN+1 \
Qκ(z), 0 ≤ θ ≤ 1 and

‖∂yθ‖∞ ≤
C

κs
, ‖∂2

yθ‖∞ ≤
C

κ2s2
, ‖∇xθ‖∞ ≤

C

κr
, ‖D2

xθ‖∞ ≤
C

κ2r2

for a constant C > 0 independent of z and r, s, κ. From now on, for the sake of simplicity,
we write Q and Qκ instead of Q(z) and Qκ(z), respectively. Set vi = θwi. It is easily seen
that vi ∈ D◦p and solves the equation

λvi + L◦i vi = θ(λwi + L◦iwi)− gi

where

gi = αi(zi)wi ∂2
yθ + y wi

N∑
h,k=1

αihk(zi)∂xhxkθ + wi

N+1∑
k=1

γik(zi)∂kθ

+ 2αi(zi)∂yθ∂ywi + 2y
N∑

h,k=1

αihk(zi)∂xhθ∂xkwi.

If Reλ ≥ Λp, we can apply the estimates of Theorem 2.15 to vi (recalling Remark 3.2) and
obtain

|λ|‖wi‖Lp(Q) + |λ| 12
(
‖∂ywi‖Lp(Q) + ‖√y∇xwi‖Lp(Q)

)
+ |λ| 14 ‖∇wi‖Lp(Q) (5.10)

+ ‖∂2
ywi‖Lp(Q) + ‖yD2

xwi‖Lp(Q) + ‖√y∇x∂ywi‖Lp(Q)

≤ C
(
‖λwi + L◦iwi‖Lp(Q+

κ ) +
1

κ2s2
‖wi‖Lp(Q+

κ ) +
1

κ2r2
‖y wi‖Lp(Q+

κ ) +
1
κr
‖wi‖Lp(Q+

κ )

+
1
κs
‖wi‖Lp(Q+

κ ) +
1
κs
‖∂ywi‖Lp(Q+

κ ) +
1
κr
‖y∇xwi‖Lp(Q+

κ )

)
≤ C‖λwi + L◦iwi‖Lp(Q+

κ ) + C(κ+ 1)
N+1
p r

N
p s

1
p

(
1

κ2s2
‖wi‖L∞(Q+

κ ) +
1

κ2r2
‖y wi‖L∞(Q+

κ )

+
1
κr
‖wi‖L∞(Q+

κ ) +
1
κs
‖wi‖L∞(Q+

κ ) +
1
κs
‖∂ywi‖L∞(Q+

κ ) +
1
κr
‖y∇xwi‖L∞(Q+

κ )

)
.

Let |λ|, κ ≥ 1. We consider the subsets of RN+1
+ given by

A = {(x, 0) : x ∈ RN} and B = {(x, y) : x ∈ RN , y ≥ |λ|− 1
2 }.

If z ∈ A, we choose
s = |λ|− 1

2 , r = |λ|− 3
4 .

Notice that the previous choice implies r = s
3
2 , according to the characteristics of the

Tricomi equation in two variables. Since wi, ∂ywi,
√
y∇xwi belong to W 1,p

p/2(Q), we can use
Lemma 5.2 to estimate

|λ| ‖wi‖L∞(Q) + |λ| 12
(
‖∂ywi‖L∞(Q) + ‖√y∇xwi‖L∞(Q)

)
(5.11)
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≤ Cr−
N
p s−

1
p

(
|λ|‖wi‖Lp(Q) + |λ| 12

(
‖∂ywi‖Lp(Q) + ‖√y∇xwi‖Lp(Q)

)
+ ‖∂2

ywi‖Lp(Q) + ‖yD2
xwi‖Lp(Q) + ‖√y∇x∂ywi‖Lp(Q) + ‖y− 1

2∇xwi‖Lp(Q)

)
.

We have to estimate the last term in the inequality above. Since wi ∈ D◦p, by Lemma 2.3
there are wni ∈ D such that wni → wi in Dp. In particular ∇wni → ∇wi and

√
y∇x∂ywni →√

y∇x∂ywi in Lp(Q) and pointwise. Since ∇xwni ∈ D, we may apply Lemma 5.1(iii) to get∥∥∥∥∇xwni√
y

∥∥∥∥
Lp(Q)

≤ 2p
p− 2

‖√y∇x∂ywni ‖Lp(Q).

Letting n→∞ and using Fatou’s lemma on the left hand side we see that the above estimate
holds for wi. Combining (5.11) with (5.10), we thus find

|λ| ‖wi‖L∞(Q) + |λ| 12
(
‖∂ywi‖L∞(Q) + ‖√y∇xwi‖L∞(Q)

)
+

+ r−
N
p s−

1
p

(
‖∂2
ywi‖Lp(Q) + ‖yD2

xwi‖Lp(Q) + ‖√y∇x∂ywi‖Lp(Q)

)
≤ C r−

N
p s−

1
p ‖λwi + L◦iwi‖Lp(Q+

κ ) + C(κ+ 1)
N+1
p

(
1

κ2s2
‖wi‖L∞(Q+

κ ) +
1

κ2r2
‖y wi‖L∞(Q+

κ )

+
1
κr
‖wi‖L∞(Q+

κ ) +
1
κs
‖wi‖L∞(Q+

κ ) +
1
κs
‖∂ywi‖L∞(Q+

κ ) +
1
κr
‖y∇xwi‖L∞(Q+

κ )

)
.

Since y ≤ (κ2 + 1)|λ|− 1
2 in Q+

κ and |λ|, κ ≥ 1, we arrive at

|λ| ‖wi‖L∞(Q) + |λ| 12
(
‖∂ywi‖L∞(Q) + ‖√y∇xwi‖L∞(Q)

)
(5.12)

+ r−
N
p s−

1
p

(
‖∂2
ywi‖Lp(Q) + ‖yD2

xwi‖Lp(Q) + ‖√y∇x∂ywi‖Lp(Q)

)
≤ C r−

N
p s−

1
p ‖λwi + L◦iwi‖Lp(Q+

κ )

+ C(κ+ 1)
N+1
p

(
|λ|
κ
‖wi‖L∞(Q+

κ ) +
|λ| 12√
κ

(
‖∂ywi‖L∞(Q+

κ ) + ‖√y∇xwi‖L∞(Q+
κ )

))
.

If z ∈ B, we choose
s = |λ|− 1

2 , r = |λ|− 1
2 y

1
2 .

The classical Sobolev embedding yields

‖φ‖L∞(Q) ≤ Cr−
N
p s−

1
p

(
‖φ‖Lp(Q) + s‖∂yφ‖Lp(Q) + r‖∇xφ‖Lp(Q)

)
for any φ ∈W 1,p(Q). Recalling that y ≥ y in Q and the choice of r, we infer

‖φ‖L∞(Q) ≤ Cr−
N
p s−

1
p

(
‖φ‖Lp(Q) + s‖∂yφ‖Lp(Q) + |λ|− 1

2 ‖√y∇xφ‖Lp(Q)

)
.

We apply these estimates to wi, ∂ywi and
√
y ∂xkwi, k = 1, . . . , N and obtain

|λ| ‖wi‖L∞(Q) + |λ| 12
(
‖∂ywi‖L∞(Q) + ‖√y∇xwi‖L∞(Q)

)
≤ Cr−

N
p s−

1
p

(
|λ|‖wi‖Lp(Q) + |λ| 12

(
‖∂ywi‖Lp(Q) + ‖√y∇xwi‖Lp(Q)

)
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+ ‖∂2
ywi‖Lp(Q) + ‖yD2

xwi‖Lp(Q) + ‖√y∇x∂ywi‖Lp(Q) + ‖y− 1
2∇xwi‖Lp(Q)

)
.

Here, the last term can be absorbed since

‖y− 1
2∇xwi‖Lp(Q) ≤ |λ|

1
4 ‖∇xwi‖Lp(Q) ≤ |λ|

1
2 ‖√y∇xwi‖Lp(Q)

because of y ≥ y ≥ s = |λ|− 1
2 . Therefore we can continue as before. Noticing that

y ≥ s = |λ|− 1
2 and y ≤ y + κ+2

2 s ≤ κ+4
2 y in Q+

κ we derive again (5.12). Now (5.9) and
(5.12) lead to

|λ| ‖wi‖L∞(Q) + |λ| 12
(
‖∂ywi‖L∞(Q) + ‖√y∇xwi‖L∞(Q)

)
+

+ r−
N
p s−

1
p

(
‖∂2
ywi‖Lp(Q) + ‖yD2

xwi‖Lp(Q) + ‖√y∇x∂ywi‖Lp(Q)

)
≤ C r−

N
p s−

1
p

(
‖(L◦i − Li)wi‖Lp(Q+

κ ) + ‖Ti(hi)‖Lp(Q+
κ )

)
+ C(κ+ 1)

N+1
p

(
‖Ti(ηif)‖L∞(Q+

κ ) +
|λ|
κ
‖wi‖L∞(Q+

κ ) +
|λ| 12√
κ

(
‖∂ywi‖L∞(Q+

κ )

+ ‖√y∇xwi‖L∞(Q+
κ )

))
(5.13)

for all z ∈ A ∪B. Taking in (5.13) the supremum over z ∈ A ∪B and fixing a sufficiently
large κ ≥ 1, we get

|λ| ‖wi‖L∞(RN+1
+ ) + |λ| 12

(
‖∂ywi‖L∞(RN+1

+ ) + ‖√y∇xwi‖L∞(RN+1
+ )

)
+ (5.14)

+ r−
N
p s−

1
p

(
‖∂2
ywi‖Lp(RN+1

+ ) + ‖yD2
xwi‖Lp(RN+1

+ ) + ‖√y∇x∂ywi‖Lp(RN+1
+ )

)
≤ C

(
r−

N
p s−

1
p ‖(L◦i − Li)wi‖Lp( eUi∩RN+1

+ ) + |λ|
3N+2

4p ‖Ti(hi)‖Lp(RN+1
+ ) + ‖f‖L∞(Ω)

)
.

Let us study the right hand side of (5.14). Recalling (4.5) and (3.12) we have

‖(L◦i − Li)wi‖Lp( eUi∩RN+1
+ ) ≤ Cε

(
‖∂2
ywi‖Lp( eUi∩RN+1

+ ) + ‖yD2
xwi‖Lp( eUi∩RN+1

+ )

+ ‖√y∇x∂ywi‖Lp( eUi∩RN+1
+ ) + ‖∇wi‖Lp( eUi∩RN+1

+ )

)
.

Hence, choosing a small ε > 0, we can get rid of the terms with the second order derivatives
in (5.14). Moreover, Corollary 4.3 yields

‖∇wi‖Lp(RN+1
+ ) ≤ C(‖ui‖Lp(Ω) + ‖∇ui‖Lp(Ω)) ≤ Ci(‖u‖Lp(Ω) + ‖∇u‖Lp(Ω))

≤ C

|λ|1/4
‖f‖Lp(Ω) ≤

C

|λ|1/4
‖f‖L∞(Ω).

Because of (5.7), we can estimate

‖Ti(hi)‖Lp(RN+1
+ ) ≤ C|λ|

−1/4‖f‖L∞(Ω)

in the same way. Since p > 3N + 2, we can now deduce from (5.14) that

|λ| ‖wi‖L∞(RN+1
+ ) + |λ| 12

(
‖∂ywi‖L∞(RN+1

+ ) + ‖√y∇xwi‖L∞(RN+1
+ )

)
≤ C‖f‖L∞(Ω).
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It follows that

|λ| ‖ui‖L∞(Ω∩Ui) + |λ| 12
(
‖a · ∇ui‖L∞(Ω∩Ui) + ‖√%∇ui‖L∞(Ω∩Ui)

)
≤ C‖f‖L∞(Ω).

Recalling (5.8), we conclude that u,a · ∇u,√%∇u ∈ C(Ω) and

|λ| ‖u‖L∞(Ω) + |λ| 12
(
‖a · ∇u‖L∞(Ω) + ‖√%∇u‖L∞(Ω)

)
≤ C‖f‖L∞(Ω).

Finally, since u, Lu ∈ Lq(Ω) for every 1 < q < ∞ and L is nondegenerate in the interior,
local elliptic regularity implies that u ∈W 2,q

loc (Ω), see e.g. [9, Lemma 9.16].
We have established that there is ω0 such that for every Reλ ≥ ω0 and f ∈ C(Ω),

there exists a solution u ∈ D0(L) of λu + Lu = f satisfying ‖u‖L∞(Ω) ≤ C|λ|−1‖f‖L∞(Ω)

and (5.5). Now assume that λu + Lu = f holds for some λ > 0, u ∈ D0(L) and a real
f ∈ C(Ω). Set v = u − λ−1‖f‖∞. Then λv + Lv = f − ‖f‖∞ ≤ 0 on Ω and v ≤ 0 on ∂Ω.
If v(z0) > 0 for some z0 ∈ Ω, then v has a maximum v(z1) > 0 in Ω. Since v ∈ W 2,q

loc (Ω)
for any q ∈ (1,∞), we can apply Bony’s maximum principle, [4, Theorem 1], which implies
that Lv(z1) ≥ 0. This is impossible, and thus u ≤ λ−1‖f‖∞. The same argument works
for −u and thus |u| ≤ λ−1‖f‖∞ on Ω. This means that (−L,D0(L)) is dissipative in C(Ω).
Hence, λ + L : D0(L) → C(Ω) is invertible for all Reλ > 0 and (−L,D0(L)) generates a
contractive analytic semigroup T∞(·) on C(Ω).

By construction, the resolvents of (−L,D0(L)) and (−L,Dp(L)) coincide on C(Ω) for
all p > 3N + 2 and sufficiently large λ > 0. Taking into account Corollary 4.4, we conclude
that T∞(·) is the restriction of the semigroups Tp(·) on Lp(Ω) generated by (−L,Dp(L)) for
each p ∈ (1,∞). In particular, T∞(·) is positive. We further have seen that D0(L) ⊂ Dp(L)
for p > 3N + 2 so that D0(L) is embedded into W 1,p(Ω) for these p by Corollary 4.3, which
in turn is compactly embedded into C(Ω). Hence, T∞(t) is compact for each t > 0 because
the semigroup is analytic.

Since T∞(·) is compact, positive and bounded, the exponential stability of T∞(·) is
equivalent to the injectivity of (−L,D0(L)). (Use e.g. Theorem VI.1.10 and Corollary
IV.3.12 of [7].) Let Lu = 0 for some u ∈ D0(L). Take ε > 0 and a smoooth function v > 0
on Ω such that −Lv > 0 on Ω (e.g., v(z) = esx1 + · · ·+esxN +esy for a large s > 0). If u+εv
had a maximum z0 ∈ Ω, then −L(u+ εv)(z0) ≤ 0 by [4] which is impossible. Hence, u+ εv
takes its maximum at the boundary. The same holds for the minimum. Letting ε → 0, we
deduce u = 0.

Corollary 5.4 Assume that (H1), (H2) and (H3) hold. Then the semigroup T (·) in Lp(Ω)
for p ∈ (1,∞) constructed in Theorem 4.1 is exponentially stable and has the same spectrum
and eigenspaces as its restriction to C(Ω).

Proof. The second assertion can be shown as in Corollary 4.4. Thus the first assertion
follows from Theorem 5.3.

Corollary 5.5 Assume that (H1), (H2) and (H3) hold. Then the semigroup T (·) in C(Ω)
constructed in Theorem 5.3 leaves invariant C0(Ω) and its restriction to C0(Ω) is an analytic
C0–semigroup. Moreover, the restriction is contractive, positive, compact and exponentially
stable.

Proof. Since C∞c (Ω) ⊂ D0(L) ⊂ C0(Ω), the closure of D0(L) is C0(Ω). Hence, T (·) leaves
invariant C0(Ω) and is strongly continuous on C0(Ω). The other claims are then clear.
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