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1. Introduction

We investigate retarded time varying linear systems of the type

w(t) = A(t)w(t) +K(t)wt +B(t)u(t) + L(t)ut, t ≥ s ≥ 0,

y(t) = C(t)w(t), t ≥ s ≥ 0, (nLDS)

w(s) = x, ws = f, us = g,

on Banach spaces U, X, and Y (the control, state and observation space, respectively) with

unbounded operators A(t), B(t), C(t). We construct the corresponding input, output,

and input–output maps and solve the feedback problem where the control is determined

by u(t) = ∆(t)y(t), see Theorems 4.5 and 5.1. The delay terms in (nLDS) are given by

K(t)wt =

∫ 0

−1

dk(t, θ)w(t+ θ) and L(t)ut =

∫ 0

−1

dl(t, θ)u(t+ θ)

for operator–valued functions θ 7→ k(t, θ) ∈ L(X) and θ 7→ l(t, θ) ∈ L(U,X) of bounded

variation. We assume that the system without delays (i.e., K(t) = 0 and L(t) = 0) is a

regular well–posed time varying (or non–autonomous) system in the sense of Schnaubelt

(2002b). This class contains systems arising from partial differential equations with point

or boundary control and observation, see Schnaubelt (2002b) and Example 5.2.

Time invariant well–posed linear systems were defined by Salamon (1987) and Weiss

(1989a, 1989b, 1994a). Weiss introduced the concept of ‘regularity’ in order to obtain

good representation formulas for the input–output operator and the transfer function, see

Weiss (1994a). Regular time invariant systems are stable under a large class of feedbacks

due to Chapter 7 in Staffans (2004) and Weiss (1994b). The monograph Staffans (2004)

gives a comprehensive account of the theory in the time invariant case, including non

regular systems.

Much of the representation and feedback theory of regular systems has been extended

to time varying systems in Schnaubelt (2002b). Throughout our paper we use the results

from Schnaubelt (2002b), which are recalled in Section 2. There are only a few papers

on time varying feedback theory for general linear systems with unbounded control and

observation operators, cf. Schnaubelt (2002b). We want to mention in particular the

works Hinrichsen and Pritchard (1994) and Jacob (1995) who solved time varying feedback

problems working under different assumptions than in Schnaubelt (2002b). However, it

seems that in their setting a satisfying control theory for the closed loop system is out of

reach, see Schnaubelt (2002b) for a detailed comparison.

Typically the feedback mechanism does not act instantaneously so that it is reasonable

to introduce delays in the system. For simplicity, we concentrate on the input delay term

L(t)ut and the state delay K(t)wt. The theory of time invariant control problems with

delays has been developed at least since the 1960s. In the case of a finite dimensional

state space X we refer to e.g. Bensoussan et.al. (1992) and Vinter and Kwong (1981) for a

detailed presentation and further literature. The infinite dimensional case, i.e., partial dif-

ferential equations with delays in the state, input, or output, was investigated for instance
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in Da Prato and Lunardi (1990), Hale and Verduyn Lunel (2001), Jeong (1991), Naka-

giri and Yamamoto (2001). These papers deal with the feedback stabilization problem

of time invariant retarded infinite dimensional systems. In several recent contributions

Kowalewski studied the optimal control of various classes of time varying retarded par-

tial differential equations, see e.g. Kowalewski (2003), Kowalewski and Krakowiak (2001).

The optimal control of time varying parabolic problems was treated in Acquistapace and

Terreni (1999).

If one wants to investigate retarded problems within the usual framework of systems

theory, one has to enlarge the state space in order to incorporate the prehistory of the

state and of the input given by wt(θ) = w(t+θ), resp. ut(θ) = u(t+θ), for θ ∈ [−1, 0] and

t ≥ s. In problems without control and observation one typically chooses the state space

C([−1, 0], X). However, this choice is not convenient in control theory; for instance, one

needs Hilbert spaces for optimal control problems. We use the so called ‘extended state’

(x(t), xt, ut) introduced by Ichikawa (1982). This and alternative settings are discussed

in Section 4.2.2 in Volume I of Bensoussan et.al. (1992). As a result we take the state

space X = X×L2([−1, 0], X)×L2([−1, 0], U). All our results remain valid with the same

proofs if one replaces here the exponent 2 by p ∈ [2,∞).

However, a point delay φ 7→ φ(−1) is not closable as a map from L2([−1, 0], X) to X so

that it leads to an unbounded control or state operator. One can study finite dimensional,

time invariant, retarded control problems in the framework of the Pritchard–Salamon

class, a subclass of regular systems, see Pritchard and Salamon (1985). Retarded evolution

equations without input or output were systematically investigated in the book Bátkai and

Piazzera (2005) on an Lp state space by means of the Miyadera perturbation theorem. As

observed in Hadd and Idrissi (2005) and Hadd et.al. (2005) for the time invariant case, in

both approaches it is crucial to verify that the delay operator is an admissible observation

operator for the translation semigroup (in the sense of Pritchard and Salamon (1985),

Salamon (1987), Weiss (1989a)). As a result, one can use the ‘Lebesgue extension’ of

the delay operator with respect to the shift semigroup, as defined by Weiss (1989a). It

turns out that the Lebesgue extension greatly simplifies the manipulation of variation

of constants formulas, see Hadd and Idrissi (2005), Hadd et.al. (2005). We will also

work with Lebesgue extensions, see e.g. Proposition 3.5, which have been introduced and

studied in Schnaubelt (2002b) for the time varying case.

But there occurs an unexpected problem. In the time invariant case one can allow for

all delay operators given by kernels having bounded variation, see Bátkai and Piazzera

(2005), Bensoussan et.al. (1992), or Example 3.2. In the time varying case this is not

possible as shown by Example 3.6: The solution of the scalar equation

x′(t) = x(t− ρ(t)), t ≥ 0, x(t) = f(t), −1 ≤ t ≤ 0,

does not depend continuously in 2–norm on f if, say, ρ(t) = t + 1/4 for 1/4 ≤ t ≤ 1/2.

We introduce in Section 3 the rather general condition (H) on the kernels k(t, θ) which

yields well–posedness of the delay equation. In the above example one has to assume that

ρ′ is strictly smaller than 1, see Example 3.3.
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There is another, maybe deeper difference to the time invariant theory. In the time

invariant case one has the generation theory for semigroups, the existence theory for

inhomogeneous equations, and the so–called extrapolation space of the semigroup which

allows to treat unbounded control operators, see Weiss (1989b). These concepts and

results do not exist in this generality for time varying systems (with the partial exception of

parabolic equations, see Acquistapace and Terreni (1999) and Example 5.2). If one wants

to develop a general theory it thus seems to be advisable to work with an integrated version

of (nLDS), see (3.2) and (5.1), as it was done in Schnaubelt (2002b). As a consequence, in

general one does not have the full representation and regularity theory known from time

invariant problems, see Section 2. Control theoretic properties are not affected by this

reformulation if they are expressed in terms of the input, output or input–output maps,

cf. Section 5 of Schnaubelt (2002b).

For the reader’s convenience we briefly recall the relevant background from Schnaubelt

(2002b) and related works and introduce (much of) our notation in Section 2. Section 3

deals with retarded time varying evolution equations. In Proposition 3.5 we establish new

variation of constants formulas for delay equations which are crucial for our approach.

Then we construct the regular system corresponding to (nLDS) in Section 4, see Theo-

rem 4.5. Here the main difficulty arises from the fact that we have no ‘generators’ and

thus we can not use generation results as in the time invariant case. Instead, we directly

define the operators determining the retarded regular system and then show that they

have the desired properties using the results of Sections 2 and 3. As an application, we

investigate in the last section the feedback problem corresponding to (nLDS). Under a

mild condition on the feedbacks ∆(t) : Y → U (also needed in the time invariant case), we

prove that the closed loop system is again a regular well–posed system, and we establish

various equations relating the open and the closed loop system, see Theorem 5.1. Fi-

nally, in Example 5.2 we treat a feedback problem associated to a time varying parabolic

boundary control problem with input and state delays.

2. time varying regular systems

In this section, we recall several definitions and results on time varying control problems

taken from Schnaubelt (2002b). Throughout, X, Y , and U denote Banach spaces. We

endow L2
loc(J, Z) with its usual Fréchet topology, where J ⊂ R is a closed interval and Z

is a Banach space. The letter c denotes a generic constant. An evolution family on X is

a set T = (T (t, s))t≥s≥0 ⊂ L(X) (the space of bounded linear operators on X) such that

(i) T (t, s) = T (t, r)T (r, s), T (s, s) = I,

(ii) (t, s) 7→ T (t, s) is strongly continuous, and

(iii) ‖T (t, s)‖ ≤Meω(t−s)

for all t ≥ r ≥ s ≥ 0 and constants M ≥ 1, ω ∈ R. For an evolution family T , we set

(KT
s f)(t) :=

∫ t

s

T (t, τ)f(τ) dτ

for all t ≥ s ≥ 0 and f ∈ L2
loc([s,∞), X).
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Evolution families arise as solution operators of time varying evolution equations

w′(t) = A(t)w(t), t ≥ s, w(s) = x, (2.1)

where A(t), t ≥ 0, are linear operators on X with domains D(A(t)). A solution of (2.1)

is a function w ∈ C1([s,∞), X) such that w(t) ∈ D(A(t)) for t ≥ s and (2.1) holds. We

say that (2.1) is well–posed, or that A(·) generate T , if there is an evolution family T on

X such T (t, s)D(A(s)) ⊂ D(A(t)) for t ≥ s and w(t) = T (t, s)x is the unique solution

of (2.1) for each x ∈ D(A(s)). However, there are evolution families which do not solve

an evolution equation (e.g., T (t, s) = q(t)/q(s) on X = C where q is a continuous, non-

differentiable function). In fact, in contrast to the time invariant semigroup case, there is

no general characterization of well–posedness of (2.1) in terms of the operators A(t). In

the present paper (as in Schnaubelt (2002b)) we will work only with evolution families

without making the additional assumption that they have generators A(t). In particular,

we refer to an underlying evolution equation such as (2.1) or (nLDS) only in order to

illustrate our results. More information on time varying Cauchy problems can be found

in Chicone and Latushkin (1999), Schnaubelt (2002a), and the references therein.

The pair (T,Φ) := (T, {Φ(t, s) : t ≥ s ≥ 0}) is called a time varying control system (on

U and X) if Φ(t, s) : L2
loc([s,∞), U)→ X, t ≥ s ≥ 0, are linear operators such that

Φ(t, s)u = Φ(t, r)(u | [r,∞)) + T (t, r)Φ(r, s)u, t ≥ r ≥ s ≥ 0,

‖Φ(t, s)u‖X ≤ β‖u‖L2([s,t],U), 0 ≤ s ≤ t ≤ s+ t0,
(2.2)

for u ∈ L2
loc(R+, U), t0 > 0, and a constant β = β(t0) > 0. Then t 7→ Φ(t, s)u ∈ X is

continuous for t ≥ s by Proposition 3.5 in Schnaubelt (2002b). Note that Φ(s, s)u = 0.

In the sequel, we will mostly use the same symbol for a function u and its restrictions.

In the time invariant case, control systems are always given by admissible control op-

erators B due to Weiss (1989b). It is not clear whether one can extend this result to

the time varying in general, see Schnaubelt (2002b) for a discussion. At least, every time

varying control system can be represented by bounded control operators in an approxima-

tive sense: Set Bn(t)z := nΦ(t, t− 1
n
)uz for z ∈ U , n ∈ N, and t ≥ 0, where uz(s) := z for

s ∈ R and Φ(t, s)u := Φ(t, 0)u if t ≥ 0 ≥ s. Then Proposition 3.5 in Schnaubelt (2002b)

yields

Φ(t, s)u = lim
n→∞

∫ t

s

T (t, τ)Bn(τ)u(τ) dτ (2.3)

(in X) for u ∈ L2
loc(R+, U) and t ≥ s ≥ 0, where the limit is locally uniform in t.

Let Ψ(s) : X −→ L2
loc([s,∞), Y ), s ≥ 0, be linear operators satisfying

Ψ(s)x = Ψ(t)T (t, s)x on [t,∞) and

∫ s+t0

s

‖(Ψ(s)x)(t)‖2 dt ≤ γ‖x‖2 (2.4)

for t ≥ s ≥ 0, x ∈ X, t0 > 0, and a constant γ = γ(t0) > 0. Then (T,Ψ) := (T, {Ψ(s), s ≥
0}) is called a time varying observation system (on X and Y ) for T . For linear operators

C(s) : D(C(s)) ⊆ X → Y, s ≥ 0, we define the set

Ds(C(·)) := {f ∈ L2
loc([s,∞), X) : f(t) ∈ D(C(t)) for a.e. t ≥ s,
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C(·)f(·) ∈ L2
loc([s,∞), Y )}.

Let Xs be dense subspaces of X and C(s) : D(C(s)) ⊆ X −→ Y, s ≥ 0, be linear

operators such that T (·, s)x ∈ Ds(C(·)) and∫ s+t0

s

‖C(t)T (t, s)x‖2 dt ≤ γ‖x‖2

for t0, s ≥ 0, x ∈ Xs, and a constant γ = γ(t0) > 0. Then we say that C(s), s ≥ 0,

are admissible observation operators for T . Note that the admissibility of C(·) for T

guarantees that the mappings

Ψ(s) : D(C(s))→ L2
loc([s,∞), Y ), Ψ(s)x := C(·)T (·, s)x, s ≥ 0, (2.5)

possess unique extensions (again noted by Ψ(s)) to linear continuous operators from X

to L2
loc([s,∞), Y ) which yield a time varying observation system (T,Ψ), see Lemma 2.5

in Schnaubelt (2002b).

Conversely, let (T,Ψ) be a time varying observation system, s ≥ 0, and τ > 0. Following

Weiss (1989a), we define

Cτ (s)x =
1

τ

∫ s+τ

s

(Ψ(s)x)(σ) dσ, x ∈ X, (2.6)

D(C̃(s)) := {x ∈ X : lim
τ↘0

Cτ (s)x exists in Y }, C̃(s)x := lim
τ↘0

Cτ (s)x. (2.7)

We note that Cτ (s) ∈ L(X, Y ) and that C̃(s) might be non–closable. We say that C̃(·)
represent (T,Ψ); or that C̃(t) are the Lebesgue extensions of C(t) if Ψ(s) is given by

(2.5). In the next proposition we summarize Theorem 2.7 and Lemma 2.9 of Schnaubelt

(2002b). In particular it is shown that C̃(s) is admissible (with X = Xs) and that Ψ(s)

is always given by C̃(·).

Proposition 2.1. Let (T,Ψ) be a time varying observation system, s ≥ 0, and x ∈ X.

Define Cτ (t) and C̃(t) for τ > 0 and t ≥ 0 as in (2.6) and (2.7). Then T (·, s)x ∈ Ds(C̃(·))
and Ψ(s)x = C̃(·)T (·, s)x. Moreover, s 7→ Cτ (s) is strongly continuous and the operators

Cτ (·)T (·, s) : X → L2([s, s + t0], Y ) are bounded uniformly in s ≥ 0 and τ > 0 and

converge strongly to Ψ(s) as τ ↘ 0, where t0 > 0.

The following result is also taken from Schnaubelt (2002b) (see Proposition 2.11 and

its proof). We will use it frequently in this paper.

Proposition 2.2. Let (T,Ψ) be a time varying observation system represented by C̃(t).

Then KT
s f ∈ Ds(C̃(·)) and

‖Cτ (·)KT
s f‖L2([s,s+t0],Y ) , ‖C̃(·)KT

s f‖L2([s,s+t0],Y ) ≤ c t
1
2
0 ‖f‖L2([s,s+t0],X)

for τ > 0, s ≥ 0, 0 < t0 ≤ t1, f ∈ L2
loc(R+, X), and a constant c = c(t1) > 0. Moreover,

Cτ (·)KT
s converges strongly to C̃(·)KT

s as τ ↘ 0.
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Let (T,Φ) and (T,Ψ) be time varying control and observation systems. If there are

linear operators F(s) : L2
loc([s,∞), U)→ L2

loc([s,∞), Y ) satisfying

F(s)u = Ψ(t)Φ(t, s)u+ F(t)(u | [t,∞)) on [t,∞), (2.8)

‖F(s)u‖L2([s,s+t0],Y ) ≤ κ‖u‖L2([s,s+t0],U) (2.9)

for u ∈ L2
loc([s,∞), U), t ≥ s ≥ 0, t0 > 0, and a constant κ = κ(t0) > 0, then Σ =

(T,Φ,Ψ,F) is called a well-posed time varying system (on U , X, and Y ) with input-

output operators F(s). (See Staffans (2004) and Weiss (1994a) for corresponding notions

in the time invariant case.) Observe that F(s)u = 0 on [s, t] and F(s)u = F(t)(u | [t,∞))

on [t,∞) if u vanishes on [s, t]. Hence one can define the restrictions

F(s)|[s, t] =: F(t, s) : L2([s, t], U)→ L2([s, t], Y ), t ≥ s ≥ 0.

We need two more definitions to use the results on feedback systems from Schnaubelt

(2002b). Analogous concepts and results for the time invariant case can be found in

Staffans (2004) and Weiss (1994a, 1994b).

Definition 2.3. A well-posed time varying system Σ = (T,Φ,Ψ,F) is called regular (with

feedthrough D=0) if

lim
τ↘0

1

τ

∫ t+τ

t

(F(t)uz)(σ) dσ = 0 (in Y )

and absolutely regular if

lim
τ↘0

1

τ

∫ t+τ

t

‖(F(t)uz)(σ)‖2
Y dσ = 0

for all t ≥ 0 and z ∈ U , where uz(s) := z for s ≥ 0.

If Σ is regular, then F(s)u ∈ Ds(C̃(·)) and F(s)u = C̃(·)Φ(·, s)u for u ∈ L2
loc([s,∞), U)

and s ≥ 0 by Theorem 3.11 of Schnaubelt (2002b).

Definition 2.4. Let Σ = (T,Φ,Ψ,F) be a well-posed time varying system. We call

∆(·) ∈ L∞(R+,Ls(Y, U)) (the space of essentially bounded and strongly measurable oper-

ator functions) an admissible feedback for Σ if there exists t0 > 0 such that the operators

I − F(s+ t0, s)∆(·), s ≥ 0, have uniformly bounded inverses on L2([s, s+ t0], Y ).

If Σ is absolutely regular and ∆(t) are admissible feedback operators for Σ, then the

closed-loop system Σ∆ for Σ and ∆(·) exists, and it is also absolutely regular. Moreover,

we have several equations relating the open- and closed loop system. To put the formulas

in a concise form, we define the operators Ψ(t, s)x := (Ψ(s)x)|[s, t] and

Σ(t, s) :=

(
T (t, s) Φ(t, s)

Ψ(t, s) F(t, s)

)
: X × L2([s, t], U) −→ X × L2([s, t], Y ) (2.10)

for t ≥ s ≥ 0. Then it holds

Σ∆(t, s)− Σ(t, s) = Σ(t, s)

(
0 0

0 ∆(·)

)
Σ∆(t, s) = Σ∆(t, s)

(
0 0

0 ∆(·)

)
Σ(t, s).
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These facts are shown in Theorem 4.4 and Proposition 5.1 of Schnaubelt (2002b), where

one can find further results on the relationship between Σ and Σ∆. It seems that one

needs the stronger condition of absolute regularity to establish such formulas and to

obtain (absolute) regularity for the closed loop system (in contrast to the time invariant

case).

3. time varying delay equations

In this section we consider the problem (nLDS) without the control terms and the

observation equation, but with an inhomogeneity h, i.e., the equations

w′(t) = A(t)w(t) +K(t)wt + h(t), t ≥ s ≥ 0,

w(s) = x, ws = f.
(3.1)

Here h ∈ L2
loc(R+, X), x ∈ X, and f ∈ E := C([−1, 0], X) are given, and wt is defined by

wt(θ) = w(t+ θ) for θ ∈ [−1, 0]. At first, we assume that the initial data satisfy x = f(0)

and that the linear delay operators K(t) : E → X, t ≥ 0, are uniformly bounded and

strongly measurable in t. We concentrate on mild solutions of (3.1), i.e., we are looking

for w ∈ C([s− 1,∞), X) such that

w(t) = T (t, s)x+

∫ t

s

T (t, τ)(K(τ)wτ + h(τ)) dτ, t ≥ s ≥ 0,

w(s+ θ) = f(θ), −1 ≤ θ ≤ 0,

(3.2)

where A(t), t ≥ 0, generate the evolution family T (t, s), t ≥ s ≥ 0, on X. In fact we

will investigate (3.2) without assuming that T solves a well–posed Cauchy problem. It

is easy to solve (3.2) by a fixed point argument. This gives rise to an evolution family

V (t, s)f := wt on E solving (3.2) with h = 0. (See e.g. Schnaubelt (2004) for more details

and also for differentiability properties of mild solutions.)

However, from the perspective of control theory it is necessary to extend the evolution

family V to L2([−1, 0], X) (more precisely to X × L2([−1, 0], X), see below). In the time

invariant case this can be done in great generality, see e.g. Bátkai and Piazzera (2005),

Bensousssan et.al. (1992), or Example 3.2. But in the time varying case, Example 3.6

shows that this extension requires an additional assumption. Lemma 3.1 below is the

crucial step in the extension of the evolution family. Before we can state it, we have to

introduce some notations.

For a Banach space Z, we denote by BV ([−1, 0], Z) the space of all functions k :

[−1, 0]→ Z of bounded variation, i.e. the total variation of k

V ar(k)0
−1 := sup

{
n∑
j=1

‖k(θj)− k(θj−1)‖ : 0 = θ0 > θ1 . . . > θn = −1, n ∈ N

}
is finite. Elements of BV ([−1, 0], Z) are normalized throughout this paper by the re-

quirements k(−1) = 0 and that k(·) is left–continuous on [−1, 0]. Hence, extending

k ∈ BV ([−1, 0], Z) by 0 to (−∞, 0], k(·) can be also considered as an element of
8



BV ((−∞, 0], Z). (This space is defined in the same way as BV ([−1, 0], Z).) We study

delay operators of the form

K(t)f =

∫ 0

−1

dk(t, θ)f(θ), f ∈ C([−1, 0], X), t ≥ 0,

satisfying the following assumptions.

(H) The function R+ × [−1, 0] 3 (t, θ) 7→ k(t, θ) ∈ L(Z,X) is strongly measurable and

k(t, ·) ∈ BV ([−1, 0],L(Z,X)) with total variation ηk(t, ·). There are constants ck
and c′k such that ‖ηk(t, ·)‖ := V ar(k(t, ·))0

−1 ≤ ck for all t ≥ 0 and∫ α

0

‖k(s+ t, θ′ − t)− k(s+ t, θ − t)‖ dt ≤ c′k|θ′ − θ|,

for θ′, θ ∈ [−1, 0], s ≥ 0, and some 0 < α ≤ 1.

The left translation semigroup SZ := (SZ(t))t≥0 on L2([−1, 0], Z) (endowed with the usual

norm ‖ · ‖2) is defined by

(SZ(t)f)(θ) :=

{
f(t+ θ), t+ θ ≤ 0,

0, t+ θ > 0,

for t ≥ 0, −1 ≤ θ ≤ 0, and f ∈ L2([−1, 0], Z). We also set a∨ b := max{a, b} for a, b ∈ R.

Lemma 3.1. Assume that (H) holds with X = Z. Then we have∫ α

0

‖K(s+ t)SX(t)f‖2 dt ≤ c ‖f‖2
2

for f ∈ C([−1, 0], X) with f(0) = 0, 0 < α ≤ 1, s ≥ 0, and a constant c > 0. Thus there

exist the Lebesgue extensions K̃(t), t ≥ 0, of K(t) with respect to SX .

Proof. Let s ≥ 0, 0 < α ≤ 1, and f ∈ C([−1, 0], X) with f(0) = 0. Set σj = (j−n)/n for

n ∈ N and j ∈ {0, · · · , n}. For each fixed t ∈ [0, 1], we have

K(s+ t)SX(t)f =

∫ −t
−1

dk(s+ t, θ)f(θ + t)

= lim
n→∞

n∑
j=1

[k(t+ s, σj − t)− k(t+ s, σj−1 − t)]f(σj).

(Recall that k(t, θ) = 0 if θ ≤ −1.) We set Λj(t, s) = k(t + s, σj − t) − k(t + s, σj−1 − t)
for t, s ≥ 0 and j = 0, 1 . . . , n. Fatou’s lemma, the Cauchy–Schwarz inequality and (H)

then imply that∫ α

0

‖K(s+ t)SX(t)f‖2 dt ≤ lim inf
n→∞

∫ α

0

∥∥∥ n∑
j=1

Λj(t, s)f(σj)
∥∥∥2

dt

≤ lim inf
n→∞

∫ α

0

n∑
i=1

‖Λi(t, s)‖
n∑
j=1

‖Λj(t, s)‖ ‖f(σj)‖2 dt

9



≤ ck lim inf
n→∞

n∑
j=1

‖f(σj)‖2

∫ α

0

‖Λj(t, s)‖ dt

≤ ckc
′
k lim
n→∞

n∑
j=1

‖f(σj)‖2 |σj − σj−1|

= ckc
′
k

∫ 0

−1

‖f(σ)‖2 dσ. �

The next example indicates that for time–independent kernels k assumption (H) always

holds. The second example shows that a time depending delay f(−ρ(t)) is admissible if

ρ′ is strictly smaller than 1, see also Example 3.6.

Example 3.2. Let k0(·) ∈ BV ([−1, 0],L(X)) and k1(·, ·) : R+ × [−1, 0] → L(X) be

strongly measurable such that k1(·, θ0) is bounded for some θ0 ∈ [−1, 0] and ‖k1(t, ·)‖Lip ≤
c1 for all t ≥ 0, where ‖ · ‖Lip is the Lipschitz norm. We set

k(t, θ) := k1(t, θ)k0(θ), (t, θ) ∈ R+ × [−1, 0].

We claim that k(·, ·) satisfies the condition (H). In fact, let η0(τ) = V ar(k0)τ−1. Then η0

is nondecreasing and ‖k0(τ) − k0(σ)‖ ≤ η0(τ) − η0(σ) for all σ ≤ τ ≤ 0. For 0 < α ≤ 1,

−1 ≤ θ ≤ θ′ ≤ 0, and s ≥ 0, we further obtain∫ α

0

‖k(s+ t, θ′ − t)− k(s+ t, θ − t)‖ dt

≤
∫ α

0

‖k1(s+ t, θ′ − t)− k1(s+ t, θ − t)‖‖k0(θ′ − t)‖ dt

+

∫ α

0

‖k1(s+ t, θ − t)‖‖k0(θ′ − t)− k0(θ − t)‖ dt

≤ cα|θ′ − θ|+ c

∫ ∞
0

(η0(θ′ − t)− η0(θ − t)) dt = cα|θ′ − θ|+ c

∫ θ′

θ

η0(τ) dτ

≤ c(α + η0(0))|θ′ − θ|

for some constants c > 0. �

Example 3.3. Let k1(·, ·) be as in Example 3.2 and assume furthermore that k1(t,−1) = 0

for all t ≥ 0. Let ρ ∈ C1(R+) such that ρ′(t) ≤ 1− δ for t ≥ 0 and some δ > 0. We set

k(t, θ) :=

{
k1(t, θ), θ ≥ −ρ(t),

0, θ < −ρ(t),
and I(s, θ) := {t ∈ [0, α] : t− ρ(s+ t) ≤ θ}.

for (t, θ) ∈ R+×[−1, 0], and 0 < α ≤ 1. Then k(·, ·) satisfies (H). Indeed, since k1(t,−1) =

0 for all t ≥ 0, one can see that k(t, ·) ∈ BV ([−1, 0],L(X)) and V ar(k(t, ·))0
−1 ≤ c1 for all

t ≥ 0. On the other hand, let λ be the Lebesgue measure and −1 ≤ θ < θ′ ≤ 0. Observe

that the function ϕs(t) = t − ρ(s + t) strictly increases and that ‖ϕ−1
s ‖Lip ≤ δ−1. Thus

10



we can estimate∫ α

0

‖k(s+ t, θ′ − t)− k(s+ t, θ − t)‖ dt

=

∫
I(s,θ)

‖k1(s+ t, θ′ − t)− k1(s+ t, θ − t)‖ dt+

∫
I(s,θ′)\I(s,θ)

‖k1(s+ t, θ′ − t)‖ dt

≤ cα|θ′ − θ|+ c λ{t ∈ [0, α], θ ≤ ϕs(t) ≤ θ′}
≤ cα|θ′ − θ|+ c |ϕ−1

s (θ′)− ϕ−1
s (θ)| ≤ c (δ−1 + α) |θ′ − θ|. �

As mentioned above, we want to solve (3.2) in an L2–setting. To this purpose, we

introduce the Banach space

X0 := X × L2([−1, 0], X) with the norm ‖
(
x
f

)
‖2
X0

:= ‖x‖2 + ‖f‖2
2

and the operators

T (t, s) :=

(
T (t, s) 0

Tt,s SX(t− s)

)
, t ≥ s ≥ 0, (3.3)

(Tt,sx)(θ) :=

{
T (t+ θ, s)x, s− t < θ ≤ 0,

0, −1 ≤ θ ≤ s− t,

for θ ∈ [−1, 0], x ∈ X, and t ≥ s ≥ 0. It is straightforward to check that (T (t, s))t≥s≥0 is

an evolution family on X0. We further define

D0 := {
(
x
f

)
∈ X × C([−1, 0], X) : f(0) = x},

K(t) :=

(
0 K(t)

0 0

)
with D(K(t)) := D0, t ≥ 0.

Observe that T (t, s) yields also an evolution family on D0, which is a Banach space if

endowed the norm ‖x‖+ ‖f‖∞. We further set

(1⊗ x)(θ) = x for x ∈ X and θ ∈ [−1, 0].

Lemma 3.1 now implies a crucial admissibility property of K(t).

Lemma 3.4. Assume that T (·, ·) is an evolution family on X and that k(·, ·) satisfies (H)

with Z = X. Then K(t) are admissible observation operators for T (·, ·) on X0. So there

exist the Lebesgue extensions K̃(t), t ≥ 0, of K(t) with respect to T (·, ·). Moreover,

K̃(t)
(
x
f

)
∈ X × {0} for

(
x
f

)
∈ D(K̃(t)), t ≥ 0. (3.4)

Proof. Let s ≥ 0, α ∈ (0, 1], and
(
x
f

)
∈ D0. Condition (H) and Lemma 3.1 imply that∫ s+α

s

‖K(t)T (t, s)
(
x
f

)
‖2 dt =

∫ s+α

s

‖K(t)(Tt,sx+ SX(t− s)f)‖2 dt

=

∫ s+α

s

‖K(t)[Tt,sx+ SX(t− s)(1⊗ x)] +K(t)SX(t− s)[f − (1⊗ x)]‖2 dt

≤ c c2
k

∫ s+α

s

‖Tt,sx+ SX(t− s)(1⊗ x)‖2
∞ dt+ c

∫ s+α

s

‖K(t)SX(t− s)[f − (1⊗ x)]‖2 dt

11



≤ c c2
kα ‖x‖2 + c ‖f − (1⊗ x)‖2

2 ≤ c (‖x‖2 + ‖f‖2
2)

for constants c > 0. The (easier) case α > 1 is treated similarly.

Since K(t)T (t, s)
(
x
f

)
∈ X × {0} for

(
x
f

)
∈ D0 and t ≥ s ≥ 0, we deduce by approx-

imation that K̃(·)T (·, s)
(
x
f

)
∈ L2

loc([s,∞), X × {0}) for all
(
x
f

)
∈ X0 and s ≥ 0. Thus

K̃(s)
(
x
f

)
∈ X × {0} for

(
x
f

)
∈ D(K̃(s)) by the definition of the Lebesgue extension. �

Proposition 3.5. Assume that T (·, ·) is an evolution family on X and that k(·, ·) satisfies

(H) with Z = X. Then the following assertions hold.

(a) There is a unique evolution family TK(·, ·) on X0 such that K̃(t) are admissible obser-

vation operators for TK and

TK(t, s)
(
x
f

)
= T (t, s)

(
x
f

)
+

∫ t

s

T (t, τ)K̃(τ)TK(τ, s)
(
x
f

)
dτ, (3.5)

TK(t, s)
(
x
f

)
= T (t, s)

(
x
f

)
+

∫ t

s

TK(t, τ)K̃(τ)T (τ, s)
(
x
f

)
dτ (3.6)

for all
(
x
f

)
∈ X0 and t ≥ s ≥ 0. The operators K̃(·) represent also the observation system

given by K̃(·)TK(·, s) and TK on X0.

(b) Moreover, TK(t, s) leaves D0 invariant and yields an evolution family on D0, too.

Therefore we can replace K̃(τ) by K(τ) in (3.5) and (3.6) if
(
x
f

)
∈ D0. If we set

(
v(t)
w(t)

)
=

TK(t, s)
(
x
f

)
for t ≥ s and v(t) = f(t− s) for s− 1 ≤ t ≤ s and

(
x
f

)
∈ X0, then w(t) = vt.

(c) If
(
x
f

)
∈ D0, h ∈ L2

loc(R+, X), and s ≥ 0, then the unique mild solution v ∈ C([s −
1,∞), X) of (3.2) is given by v(t) = f(t− s) for s− 1 ≤ t ≤ s and(

v(t)

vt

)
= TK(t, s)

(
x
f

)
+

∫ t

s

TK(t, τ)( h(τ)
0

) dτ. (3.7)

Proof. (a)We define Ψ0(s) : D0 → X0 by setting Ψ0(s)
(
x
f

)
:= K(·)T (·, s)

(
x
f

)
. Lemma

3.4 shows that (T ,Ψ0) can be extended to a time varying observation system on X0

with observation space X0. We further set Φ0(·, s)u := KTs u and F0(s)u = K̃(·)KTs u
for s ≥ 0 and u ∈ L2

loc([s,∞),X0). The system (T ,Φ0,Ψ0,F0) is absolutely regular as

observed in Remark 4.6(a) in Schnaubelt (2002b). The feedback IX0 is admissible since

‖F0(s+ t0, s)‖2 ≤ ct
1/2
0 ≤ 1

2
for s ≥ 0 due to Proposition 2.2, if we take a sufficiently small

t0 > 0. Then part (a) of the assertion follows from Theorem 4.5 in Schnaubelt (2002b),

except for the last claim. To establish this claim, we estimate∥∥∥∥1

r

∫ s+r

s

K̃(t)

∫ t

s

T (t, τ)K̃(τ)TK(τ, s)
(
x
f

)
dτ dt

∥∥∥∥ ≤ cr−1r
1
2 r

1
2 ‖K̃(·)TK(·, s)

(
x
f

)
‖L2([s,s+r],X0)

for s ≥ 0, r > 0, and
(
x
f

)
∈ X0, using Hölder’s inequality and Proposition 2.2. The

right hand side of this inequality tends to 0 as r → 0. Equation (3.5) thus implies that

the observation systems (T ,Ψ0(s)) and (TK , K̃(·)TK(·, s)) are represented by the same

operators, namely K̃(·).
12



(b) Due to (3.4), the first and second component of the integral in (3.5) are equal to∫ t

s

T (t, τ)[K̃(τ)TK(τ, s)
(
x
f

)
]1 dτ and

∫ (t+θ)∨s

s

T (t+ θ, τ)[K̃(τ)TK(τ, s)
(
x
f

)
]1 dτ (3.8)

respectively, where
(
x
f

)
∈ X0, θ ∈ [−1, 0], t ≥ s ≥ 0. As a result, the integral takes values

in D0. It is then straightforward to check that TK(t, s) yields an evolution family on D0.

The last assertion in (b) follows from (3.5), (3.3), and (3.8).

(c) Let
(
x
f

)
∈ D0, h ∈ L2

loc(R+, X), and s ≥ 0. The uniqueness of mild solutions to

(3.2) is a standard consequence of Gronwall’s inequality. We denote the right hand side

of (3.7) by
(
v(t)
w(t)

)
. Equation (3.5) yields(

v(t)

w(t)

)
= T (t, s)

(
x
f

)
+

∫ t

s

T (t, τ)K(τ)TK(τ, s)
(
x
f

)
dτ +

∫ t

s

T (t, τ)
(
h(τ)

0

)
dτ

+

∫ t

s

∫ t

τ

T (t, σ)K̃(σ)TK(σ, τ)
(
h(τ)

0

)
dσ dτ. (3.9)

We denote the double integral in (3.9) by J . Employing the bounded operators K1/n(t)

defined as in (2.6), we rewrite J as

J = lim
n→∞

∫ t

s

∫ t

τ

T (t, σ)K 1
n
(σ)TK(σ, τ)

(
h(τ)

0

)
dσ dτ

= lim
n→∞

∫ t

s

T (t, σ)K 1
n
(σ)

∫ σ

s

TK(σ, τ)
(
h(τ)

0

)
dτ dσ

=

∫ t

s

T (t, σ)K̃(σ)

∫ σ

s

TK(σ, τ)
(
h(τ)

0

)
dτ dσ (3.10)

using Propositions 2.1 and 2.2, part (a), and Fubini’s theorem. We set ϕ(t) = [K̃(t)
(
v(t)
w(t)

)
]1.

Formulas (3.9), (3.10), (3.7), and (3.3) then imply(
v(t)

w(t)

)
=

(
T (t, s)x

Tt,sx+ SX(t− s)f

)
+

(∫ t
s
T (t, τ)(ϕ(τ) + h(τ)) dτ∫ t
s
Tt,τ (ϕ(τ) + h(τ)) dτ

)
.

If we set v(t) = f(t − s) for s − 1 ≤ t ≤ s, we deduce w(t) = vt and thus
(
v(t)
w(t)

)
∈ D0.

Hence, ϕ(t) = K(t)vt and v is the mild solution of (3.2). �

The following simple example shows that one really needs an extra assumption in

Proposition 3.5, cf. Example 3.3.

Example 3.6. On X = C we consider

x′(t) = x(t− ρ(t)), t ≥ 0, x(t) = f(t), −1 ≤ t ≤ 0,

for the time depending delay

ρ(t) =


1
2
, 0 ≤ t ≤ 1

4
,

t+ 1
4
, 1

4
≤ t ≤ 1

2
,

3
4
, t ≥ 1

2
.
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Suppose that f is continuous and f(0) = 0. Then,

x(t) =

∫ t

0

f(τ − 1
2
) dτ =

∫ t− 1
2

−1
2

f(τ) dτ for 0 ≤ t ≤ 1
4
,

x(t) =

∫ −1
4

−1
2

f(τ) dτ + (t− 1
4
)f(−1

4
) for 1

4
≤ t ≤ 1

2
.

Hence, x(t) does not depend continuously on f in the L2–norm, so that TK(·, ·) can not

continuously be extended to X0 in this case. �

4. time varying regular systems with state and input delays

In this section we want to show that (nLDS) corresponds to a time varying regular linear

system ΣK,L. The system ΣK,L is determined by a regular linear system (T,Φ,Ψ,F) on

the spaces U , X, and Y and by the state and input delay operators

K(t)f =

∫ 0

−1

dk(t, θ)f(θ) and L(t)g =

∫ 0

−1

dl(t, θ)g(θ)

f ∈ C([−1, 0], X), g ∈ C([−1, 0], U), t ≥ 0, whose kernels k and l satisfy assumption (H)

for X = Z and U = Z, respectively. The state space of ΣK,L is given by

X := X × L2([−1, 0], X)× L2([−1, 0], U) with norm
∥∥∥( xf

g

)∥∥∥2

X
:= ‖x‖2 + ‖f‖2

2 + ‖g‖2
2.

Quite often we use the factorization X = X0 × L2([−1, 0], U). We further set

L(t) :=
(
L(t)

0

)
: C([−1, 0], U)→ X0,

TK,L(t, s) :=

(
TK(t, s)

∫ t
s
TK(t, τ)L(τ)SU(τ − s) dτ

0 SU(t− s)

)
, (4.1)

for t ≥ s ≥ 0, where TK,L(t, s) is at first defined on the space

D := {(x, f, g) ∈ D0 × C([−1, 0], U) : g(0) = 0} ⊂ X .

Arguing as in the proof of Proposition 3.5(b), one verifies that the integral in (4.1) takes

values in D0. It is then straightforward to show that TK,L(·, ·) is an evolution family on

D. Due to Lemma 3.1, there exist the Lebesgue extensions L̃(t), t ≥ 0, of the restriction

of L(t) to C0([−1, 0), U) with respect to the shift semigroup SU . Thus we may define

L̃(t) :=
( eL(t)

0

)
: D(L̃(t)) ⊂ C0([−1, 0), U)→ X0.

Observe that Proposition 3.5 and Lemma 3.1 allow to extend TK,L(t, s) to the operator

TK,L(t, s) =

(
TK(t, s)

∫ t
s
TK(t, τ)L̃(τ)SU(τ − s) dτ

0 SU(t− s)

)
(4.2)

on X , t ≥ s ≥ 0, and that TK,L is an evolution family on X . It will be the evolution

family of the system ΣK,L. The right upper entry of this matrix feeds the initial history

g = us of the input u into the system; the right lower entry shifts g according to the time

step from s to t.
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We now proceed in three steps: First we add the non retarded observation of the given

undelayed system. Then we apply the input delay L(t). Finally, we combine both parts

by an input-output operator.

We suppose that (T,Ψ) is a time varying observation system on X and Y with repre-

senting operators C̃(t) as in (2.7). As a preliminary step, we define

C(t) :=
(
C̃(t) 0

)
with D(C(t)) := D(C̃(t))× L2([−1, 0], X), t ≥ 0,

ΨK(s)
(
x
f

)
:= C(·)TK(·, s)

(
x
f

)
,
(
x
f

)
∈ D(C(s)), s ≥ 0. (4.3)

Lemma 4.1. Under the above assumptions, the operators ΨK(s), s ≥ 0, defined in (4.3)

can be extended to a time varying observation system for TK on X0 and Y which is

represented by the operators C(t) : D(C(t))→ Y .

Proof. Let s ≥ 0 and
(
x
f

)
∈ X0. Proposition 3.5 shows that the function h(·; s, x, f) :=

[K̃(·)TK(·, s)
(
x
f

)
]1 belongs to L2

loc([s,∞), X) and that

[TK(t, s)
(
x
f

)
]1 = T (t, s)x+

∫ t

s

T (t, τ)h(τ ; s, x, f) dτ. (4.4)

Due to this equality, Propositions 2.1, 2.2, and 3.5 imply that C(t), t ≥ 0, are admissible

observation operators for the evolution family TK(·, ·). Thus we have established the first

assertion. We further deduce from (4.4) that

1

τ

∫ s+τ

s

(ΨK(s)
(
x
f

)
)(t) dt =

1

τ

∫ s+τ

s

C̃(t)T (t, s)x dt+
1

τ

∫ s+τ

s

C̃(t)(KT
s h(·; s, x, f))(t) dt

for τ > 0. The first term on the right side converges as τ ↘ 0 if and only if x ∈ D(C̃(s));

and then the limit is equal to C̃(s)x. Hölder’s inequality and Proposition 2.2 further yield∥∥∥∥1

τ

∫ s+τ

s

(C̃(·)KT
s h(·; s, x, f))(t) dt

∥∥∥∥ ≤ c ‖h(·; s, x, f)‖L2([s,s+τ ],X) → 0

as τ → 0. The second assertion follows from these facts. �

As a result, Proposition 2.2 yields that∫ ·
s

TK(·, τ)
( eL(τ)SU (τ−s)g

0

)
dτ ∈ Ds(C(·)) (4.5)

for all g ∈ L2([−1, 0], U) since L̃(·)SU(· − s)g ∈ L2
loc([s,∞), X). Thus we can define the

operators

ΨK,L(s)(x, f, g) := ΨK(s)
(
x
f

)
+ C(·)KTKs

( eL(·)SU (·−s)g
0

)
(4.6)

for s ≥ 0 and (x, f, g) ∈ X .

Proposition 4.2. Assume that (T,Ψ) is a time varying observation system on X and

Y with representing operators C̃(t) : D(C̃(t)) → Y and that the kernels k and l satisfy

assumption (H) for X = Z and U = Z, respectively. Then (Tk,L,ΨK,L) defined in (4.2)

and (4.6) yields a time varying observation system on X and Y represented by C(t) :=

(C̃(t), 0, 0) with D(C(t)) := D(C̃(t))× L2([−1, 0], X)× L2([−1, 0], U), t ≥ 0.
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Proof. Lemma 4.1, Proposition 2.2 and Lemma 3.1 show that the operators ΨK,L(s) satisfy

the estimate in (2.4). Let now (x, f, g) ∈ X and ρ ≥ t ≥ s ≥ 0. Then

[ΨK,L(t)TK,L(t, s)(x, f, g)](ρ) = [ΨK(t)TK(t, s)
(
x
f

)
](ρ) + C(ρ)TK(ρ, t)[KTKs

( eL(·)SU (·−s)g
0

)
](t)

+ C(ρ)[KTKt
( eL(·)SU (·−t)SU (t−s)g

0

)
](ρ)

= (ΨK(s)
(
x
f

)
)(ρ) + C(ρ)[KTKs

( eL(·)SU (·−s)g
0

)
](ρ)

= [ΨK,L(s)(x, f, g)](ρ).

Thus we have shown the first assertion. The representation of the observation system can

be computed as in the proof of Lemma 4.1, using Lemma 4.1, Proposition 2.2 and the

fact that L̃(·)SU(· − s)g ∈ L2
loc([s,∞), X). �

In the second step, we suppose that (T,Φ) is a time varying control system on U and

X. Let t ≥ s ≥ 0, θ ∈ [−1, 0], and u ∈ L2
loc([s,∞), U). Then we define

Φ̂(t, s)u :=

(
Φ(t, s)u

Φt,su

)
, (Φt,su)(θ) :=

{
Φ(t+ θ, s)u, t+ θ ≥ s,

0, t+ θ < s,

(Rt,su)(θ) :=

{
u(t+ θ), t+ θ > s,

0, t+ θ ≤ s.

Observe that Φ̂(τ, s)u ∈ D0. Let 0 ≤ s ≤ ρ ≤ t and

u(τ) :=

{
u1(τ), ρ < τ ≤ t,

u0(τ), s ≤ τ ≤ ρ,
(4.7)

for given functions u0, u1 ∈ L2
loc([s,∞), U). Then one easily checks that

Rt,su = Rt,ρu1 + SU(t− ρ)Rρ,su0. (4.8)

The following result can be proved in the same way as Lemma 3.1.

Lemma 4.3. Assume that l(·, ·) satisfies (H) with U = Z. Let u ∈ C([s,∞), U) and

g ∈ C([−1, 0], U) with u(s) = g(0). Then we have∫ s+α

s

‖L(t)(Rt,su+ SU(t− s)g)‖2 dt ≤ c (‖u‖2
L2([s,s+α],U) + ‖g‖2

L2([−1,0],U))

for 0 < α ≤ α0, s ≥ 0, and a constant c = c(α0) > 0.

We want to use Lemma 4.3 to define the Lebesgue extensions for L(t) with respect to

Rt,s and SU(t). To that purpose we first have to identify the relevant evolution family.

Let g ∈ L2([−1, 0], U), u ∈ L2([s,∞), U), and s ≥ 0. We set v(τ) = u(τ + s) for τ ≥ 0

and v(τ) = g(τ) for τ ∈ [−1, 0). We further define S∞U (t)h = h(·+ t) and Ph = h|[−1, 0]

for h ∈ L2([−1,∞), U) and t ≥ 0. Clearly,

Rt,su+ SU(t− s)g = PS∞U (t− s)v. (4.9)
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Lemma 4.3 then implies that L(t)P , t ≥ 0, are admissible observation operators for the

evolution family S∞U (t − s) on L2([−1,∞), U) with observation space X. We denote by

L(t) the corresponding Lebesgue extensions, and we set

L(t) :=

(
L(t)

0

)
: D(L(t)) ⊂ L2([−1,∞), U)→ X0, t ≥ 0.

We can now define the desired time varying control system:

ΦK,L(t, s)u :=

(
Φ̂(t, s)u

0

)
+

(∫ t
s
TK(t, τ)K(τ)Φ̂(τ, s)u dτ

0

)
+

(∫ t
s
TK(t, τ)L(τ)Rτ,su dτ

Rt,su

)
(4.10)

=

(
Φ̂(t, s)u

0

)
+

(∫ t
s
TK(t, τ)K(τ)Φ̂(τ, s)u dτ

0

)
+

(∫ t
s
TK(t, τ)L(τ)Rτ,su dτ

Rt,su

)
(4.11)

for t ≥ s ≥ 0 and u ∈ C([s,∞), U) with u(s) = 0 in the first line and u ∈ L2
loc([s,∞), U)

in the second line. We discuss this definition after the following result.

Proposition 4.4. Assume that (T,Φ) is a time varying control system on U and X and

that the kernels k and l satisfy assumption (H) for X = Z and U = Z, respectively. Then

the pair (TK,L,ΦK,L) defined in (4.2) and (4.11) is a time varying control system on U

and X .

Proof. Using the inequality in (2.2) and (H), we estimate∫ t

s

‖K(σ)Φ̂(σ, s)u‖2 dσ ≤
∫ t

s

[∫ 0

(s−σ)∨−1

‖Φ(σ + θ, s)u‖ dηk(σ, θ)
]2

dσ

≤ β2

∫ t

s

[∫ 0

(s−σ)∨−1

‖u‖L2([s,t],U) dηk(σ, θ)

]2

dσ

≤ β2t0c
2
k ‖u‖2

L2([s,t],U) (4.12)

for 0 ≤ s ≤ t ≤ s + t0, and u ∈ L2
loc([s,∞), U). Inequality (4.12) and Lemma 4.3 imply

that ΦK,L(t, s) satisfies the estimate in (2.2). Let 0 ≤ s ≤ ρ ≤ t, u0 ∈ C([s,∞), X) with

u0(s) = 0, and u1 ∈ C([ρ,∞), X) with u0(ρ) = u1(ρ) = 0. We define the continuous

function u as in (4.7). Then we obtain

Φ̂(t, s)u =

(
Φ(t, ρ)u1 + T (t, ρ)Φ(ρ, s)u0

Φt,ρu1 + SX(t− ρ)Φρ,su0 + Tt,ρΦ(ρ, s)u0

)
= T (t, ρ)Φ̂(ρ, s)u0 + Φ̂(t, ρ)u1.

Hence (4.8) and (3.6) imply that

ΦK,L(t, s)u =

(
T (t, ρ)Φ̂(ρ, s)u0 + Φ̂(t, ρ)u1

0

)
+

(∫ t
ρ
TK(t, τ)K(τ)[Φ̂(τ, ρ)u1 + T (τ, ρ)Φ̂(ρ, s)u0] dτ

0

)
17



+

(
TK(t, ρ)

∫ ρ
s
TK(ρ, τ)K(τ)Φ̂(τ, s)u0 dτ

0

)
+

(∫ t
ρ
TK(t, τ)L(τ)(Rτ,ρu1 + SU(τ − ρ)Rρ,su0)dτ

Rt,ρu1 + SU(t− ρ)Rρ,su0

)

+

(
TK(t, ρ)

∫ ρ
s
TK(ρ, τ)L(τ)Rτ,su0 dτ

0

)
= ΦK,L(t, ρ)u1 +

(
TK(t, ρ)[Φ̂(ρ, s)u0 +

∫ ρ
s
TK(ρ, τ)K(τ)Φ̂(τ, s)u0dτ ]

0

)
+

(
TK(t, ρ)

∫ ρ
s
TK(ρ, τ)L(τ)Rτ,su0dτ +

∫ t
ρ
TK(t, τ)L(τ)SU(τ − ρ)Rρ,su0dτ

SU(t− ρ)Rρ,su0

)
= ΦK,L(t, ρ)u1 + TK,L(t, ρ)ΦK,L(ρ, s)u0.

The set of the above used u is dense in L2
loc([s,∞), U), so that the assertion follows by

approximation. �

In view of Proposition 3.5(c) the third summand in (4.10) gives the delayed input to

the retarded problem solved by TK . In order to interpret the other two summands of

ΦK,L, we introduce the operators

ΦK(t, s)u := Φ̂(t, s)u+

∫ t

s

TK(t, τ)K(τ)Φ̂(τ, s)u dτ (4.13)

for t ≥ s ≥ 0 and u ∈ L2
loc([s,∞), U). The proof Proposition 4.4 with L(t) = 0 also yields

that (TK ,ΦK) is a time varying control system on U and X0. It describes the effect of

the given input Φ to the delay system solved by TK . To see this more clearly, we observe

that there are bounded control operators Bn(t) ∈ L(U,X) such that

Φ̂(t, s)u = lim
n→∞

∫ t

s

T (t, σ)
(
Bn(σ)u(σ)

0

)
dσ = lim

n→∞

∫ t

s

(
T (t, σ)Bn(σ)u(σ)

Tt,σBn(σ)u(σ)

)
dσ

for u ∈ L2
loc([s,∞), u) and t ≥ s ≥ 0, due to (2.3). This limit exists in D0 locally uniformly

in t. Hence, (4.13), Propositions 2.1 and 2.2, Fubini’s theorem, and (3.6) yield

ΦK(t, s)u = lim
n→∞

∫ t

s

T (t, σ)
(
Bn(σ)u(σ)

0

)
dσ

+ lim
n→∞

lim
k→∞

∫ t

s

TK(t, τ)K 1
k
(τ)

∫ τ

s

T (τ, σ)
(
Bn(σ)u(σ)

0

)
dσ dτ

= lim
n→∞

∫ t

s

[
T (t, σ) +

∫ t

σ

TK(t, τ)K̃(τ)T (τ, σ) dτ

](
Bn(σ)u(σ)

0

)
dσ

= lim
n→∞

∫ t

s

TK(t, σ)
(
Bn(σ)u(σ)

0

)
dσ (4.14)

for t ≥ s ≥ 0 and u ∈ L2
loc([s,∞), U). Consequently, also ΦK can represented by the

‘approximative control operators’ Bn(t).
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Let (x, f, g) ∈ D and u ∈ C([s,∞), U) with u(s) = 0. Let Π : X → X0 be the canonical

projection. Then the above observations combined with (4.2) and (4.10) yield

Π[TK,L(t, s)(x, f, g) + ΦK,L(t, s)u] = TK(t, s)
(
x
f

)
+ lim

n→∞

∫ t

s

TK(t, τ)
(
Bn(σ)u(σ)

0

)
dσ

+

∫ t

s

TK(t, τ)L(τ)(Rτ,su+ SU(τ − s)g) dτ. (4.15)

This formula can be extended to data
(
x
f

)
∈ D0, g ∈ C([−1, 0], U), and u ∈ C([s,∞), U)

with u(s) = g(0) using Lemma 4.3. Replacing L(τ) by L(τ) the identity (4.15) is also

valid for (x, f, g) ∈ X and u ∈ L2([s,∞), U). In view of Proposition 3.5(c), formula (4.15)

gives (in an approximative sense) the mild solutions of (nLDS) without observations.

Finally, we suppose that (T,Φ,Ψ,F) is a time varying regular system. We introduce

the (canonical) input–output operators for ΨK,L and ΦK,L by setting

FK,L(s)u = C(·)ΦK,L(·, s)u (4.16)

for u ∈ L2
loc([s,∞), U) and s ≥ 0, where C(t) was defined in Proposition 4.2. Theo-

rem 3.11 of Schnaubelt (2002b) shows that F(s) = C̃(·)Φ(·, s)u is a well–defined operator.

Moreover, Lemma 4.1, Proposition 2.2, and Lemma 4.3 imply that one can apply C(t)

to the second and third summand in the definition of ΦK,L(t, s)u. Thus, the operators

FK,L(s) : L2
loc([s,∞), U)→ L2

loc([s,∞), Y ) are well–defined. In view of (4.15) and (4.16),

FK,L(s) are the input–output operators of (nDLS).

Theorem 4.5. Assume that Σ = (T,Ψ,Φ,F) is a time varying regular system on

the spaces U , X, and Y with representing operators C̃(t) and that the kernels k

and l satisfy assumption (H) for X = Z and U = Z, respectively. Then ΣK,L =

(TK,L,ΨK,L,ΦK,L,FK,L) defined in (4.2), (4.6), (4.11), and (4.16) is a regular system

on U , X , and Y . It is absolutely regular if and only if F is absolutely regular. Finally,

∆(·) ∈ L∞(R+,Ls(Y, U)) is an admissible feedback for FK,L if and only if it is an admis-

sible feedback for F.

Proof. The operators FK,L(s) satisfy the estimate (2.9) for s ≥ 0 due to Theorem 3.11 of

Schnaubelt (2002b), Lemma 4.1, Proposition 2.2, and Lemma 4.3. Next, for u given as

in (4.7), we obtain

FK,L(s)u = C(·)ΦK,L(·, t)u1 + C(·)TK,L(·, t)ΦK,L(t, s)u0

= FK,L(t)u1 + ΨK,L(t)ΦK,L(t, s)u0,

due to Propositions 4.2 and 4.4. Thus (TK,L,ΦK,L,ΨK,L,FK,L) is a well-posed time varying

system. To check the regularity of the system, we set uz(σ) = z for z ∈ U and σ ≥ 0. Let

s ≥ 0 and 0 ≤ t ≤ t1. At first, we note that

1

t

∫ s+t

s

C(σ)
(bΦ(σ,s)uz

0

)
dσ =

1

t

∫ s+t

s

C̃(σ)Φ(σ, s)uz dσ −→ 0
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as t↘ 0 by the regularity of F(s). Lemma 4.1 and Proposition 2.2 allow to estimate

1

t

∫ s+t

s

‖C(σ)(KTKs K(·)Φ̂(·, s)uz)(σ)‖2 dσ ≤ c

∫ s+t

s

‖K(σ)Φ̂(σ, s)uz‖2 dσ

≤ ct sup
s≤σ≤s+t

‖Φ(σ, s)uz‖2 ≤ ct2 ‖z‖2. (4.17)

Here and below the constants c > 0 only depend on Σ, the kernels k and l, and (possibly)

on t1 > 0. Take functions αn ∈ C([s,∞)) such that 0 ≤ αn ≤ 1, αn(s) = 0, and αn(t) = 1

for t ≥ s+ 1
n
, n ∈ N, and set un = αnuz. Observe that un → uz in L2

loc([s,∞), U) so that∫ s+t

s

‖L(σ)Rσ,suz‖2 dσ = lim
n→∞

∫ s+t

s

‖L(σ)Rσ,sun‖2 dσ

≤ c2
l lim sup

n→∞

∫ s+t

s

‖Rσ,sun‖2
∞dσ ≤ c2

l t‖z‖2.

This estimate and the same arguments as above imply that

1

t

∫ s+t

s

‖C(σ)(KTKs
(
L(·)R•,suz

0

)
)(σ)‖2 dσ ≤ ct‖z‖2. (4.18)

As a result, (TK,L,ΦK,L,ΨK,L,FK,L) is regular. Moreover, its absolute regularity is equiv-

alent to the absolute regularity of (T,Φ,Ψ,F) due to estimates (4.17) and (4.18). We

finally deduce from (4.11), Proposition 2.2, and Lemma 4.3 that

‖(FK,L(s+ t0, s)− F(s+ t0, s))∆(·)v‖L2([s,s+t0],Y )

≤ ct
1
2
0

(
‖K(·)Φ̂(·, s)∆(·)v‖L2([s,s+t0],X) + ‖L(·)R•,s∆(·)v‖L2([s,s+t0],X)

)
≤ ct

1
2
0 ‖v‖L2([s,s+t0],Y )

for v ∈ L2
loc([s,∞), Y ), t0 > 0, and s ≥ 0. Thus, the above estimate yields the assertion

concerning the admissibility of ∆(·) if we take a sufficiently small t0 > 0. �

5. The feedback problem

We now assume that the hypotheses of Theorem 4.5 hold for an absolutely regular

system Σ with an admissible feedback ∆(·). We want to solve the feedback problem (for-

mally) given by (nLDS) with u(t) = ∆(t)C̃(t)w(t). As in (3.2) and (4.15) we are looking

for a mild solution of the feedback problem, namely for a function w ∈ C([s,∞), X) such

that w ∈ Ds(C̃(·)) and

w(t) = T (t, s)x+

∫ t

s

T (t, τ)K(τ)wτ dτ + lim
n→∞

∫ t

s

T (t, τ)Bn(τ)∆(τ)C̃(τ)w(τ) dτ

+

∫ t

s

T (t, τ)L(τ)(Rτ,s[∆(·)C̃(·)w(·)] + SU(τ − s)g) dτ, t ≥ s ≥ 0, (5.1)

w(s+ θ) = f(θ), −1 ≤ θ ≤ 0,
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where
(
x
f

)
∈ D0 with C̃(·)f ∈ L2([−1, 0], Y ) are given, the operators Bn(t) were defined

before (2.3), and we set

g(θ) := u(s+ θ) = ∆(s+ θ)C̃(s+ θ)w(s+ θ) = ∆(s+ θ)C̃(s+ θ)f(s+ θ) (5.2)

for θ ∈ [−1, 0]. The function g is the prehistory of the ‘input’ u(t) = ∆(t)C̃(t)w(t) given

by the data of the closed loop system. Observe that we need the extensions L(t) (defined

after Lemma 4.3) since it is not clear whether g is continuous. Due to (2.3), the summand

involving Bn(t) can be replaced by

lim
n→∞

∫ t

s

T (t, τ)Bn(τ)∆(τ)C̃(τ)w(τ) dτ = Φ(t, s)∆(·)C̃(·)w(·). (5.3)

In order to state our final result, we further set

(Bnu)(t) := nΦ(t, t− 1
n
)u

for t ≥ 0, n ∈ N, and u ∈ L2
loc(R+, U). This variant of the operators Bn(t) is needed to

approximate the input–output operators, see Proposition 3.12 of Schnaubelt (2002b).

Theorem 5.1. Assume that Σ = (T,Ψ,Φ,F) is a time varying absolutely regular system

on the spaces U , X, and Y with representing operators C̃(t) and an admissible feedback

∆(·) ∈ L∞(R+,Ls(Y, U)). Further suppose that the kernels k and l satisfy assumption

(H) for X = Z and U = Z, respectively. Let ΣK,L = (TK,L,ΨK,L,ΦK,L,FK,L) be defined

in (4.2), (4.6), (4.11), and (4.16) on U , X , and Y . Then there is a unique absolutely

regular system Σ∆
K,L = (T ∆

K,L,Ψ
∆
K,L,Φ

∆
K,L,F∆

K,L) on U , X , and Y such that the observation

operators C(·) of ΣK,L are admissible for T ∆
K,L and

Σ∆
K,L(t, s) = ΣK,L(t, s) + ΣK,L(t, s)

(
0 0

0 ∆(·)

)
Σ∆
K,L(t, s) (5.4)

= ΣK,L(t, s) + Σ∆
K,L(t, s)

(
0 0

0 ∆(·)

)
ΣK,L(t, s) (5.5)

for t ≥ s ≥ 0 (where we use an analogous notation as in (2.10)). In particular, the left

upper components of (5.4) and (5.5) yield

T ∆
K,L(t, s)− TK,L(t, s) = ΦK,L(t, s)∆(·)Ψ∆

K,L(s) = Φ∆
K,L(t, s)∆(·)ΨK,L(s). (5.6)

Moreover, we have

T ∆
K,L(t, s) = TK,L(t, s) + ΦK,L(t, s)∆(·)(I − FK,L(s+ t0, s)∆(·))−1ΨK,L(s) (5.7)

Ψ∆
K,L(s) = C(·)T ∆

K,L(·, s) (5.8)

ΠΦ∆
K,L(t, s)u = lim

n→∞
Π

∫ t

s

T ∆
K,L(t, τ)

(
(Bnu)(τ)+L(τ)Rτ,su

0
0

)
dτ (5.9)

F∆
K,L(s)u = C(·)Φ∆

K,L(·, s) = lim
n→∞

C(·)
∫ •
s

T ∆
K,L(·, τ)

(
(Bnu)(τ)+L(τ)Rτ,su

0
0

)
dτ (5.10)

for 0 ≤ s ≤ t ≤ s + t0, t0 ≥ 0, and u ∈ L2
loc(R+, U), where Π : X → X0 is the canonical

projection, the first limit is taken in X locally uniformly in t ≥ s, and the second one is
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taken in L2
loc([s,∞), Y ). Finally, the unique mild solution w of the feedback problem (5.1)

is given by (
w(t)
wt

)
= ΠT ∆

K,L(t, s)
(
x
f
g

)
, t ≥ s ≥ 0,

for
(
x
f

)
∈ D0 with f(t) ∈ D(C̃(t)) for a.e. t ∈ [−1, 0] and C̃(·)f ∈ L2([−1, 0], Y ), where

g is given by (5.2).

Proof. By virtue of Theorem 4.5 most of the assertions follow from Theorem 4.4 and

Proposition 5.1 in Schnaubelt (2002b). It remains to verify the last assertion and the

approximation formulas for Φ∆
K,L and F∆

K,L in (5.9) and (5.10). Let u ∈ L2
loc(R+, U) and

t ≥ s ≥ 0. Propositions 3.5 and 3.12 of Schnaubelt (2002b) show that

KT
s Bnu(t)→ Φ(t, s)u and C̃(·)KT

s Bnu→ F(s)u, (5.11)

where the first limit is taken in X locally uniformly in t ≥ s and the second one is taken in

L2
loc([s,∞), Y ). As a consequence, one can replace in (4.14) and (4.15) the term Bn(σ)u(σ)

by (Bnu)(σ). Combining these facts with (4.11), we see that

ΦK,L(t, s)u = lim
n→∞

(∫ t

s

TK(t, τ)
[(

(Bnu)(τ)
0

)
+
(
L(τ)Rτ,su

0

)]
dτ, Rt,su

)T
. (5.12)

Because of (5.11) and Lemma 4.1, the equation (4.14) (with Bn(·)u replaced by Bnu)

remains valid if one applies C(t) and takes the limit in L2
loc([s,∞), Y ). Hence,

C(·)ΦK(·, s)u = lim
n→∞

C(·)KTKs
(Bnu

0

)
.

From this equation and (4.16), C(t) = (C(t), 0)T , (5.12), (4.2), we further deduce that

FK,L(s)u = C(·)ΦK,L(·, s)u = lim
n→∞

C(·)KTK,Ls

(
Bnu+L(·)R•,su

0
0

)
. (5.13)

The formulas (5.12) and (5.13) together with the upper right component of (5.5) lead to

ΠΦ∆
K,L(t, s)u = lim

n→∞
KTKs

(Bnu+L(·)R•,su
0

)
+ lim

n→∞
ΠΦ∆

K,L(t, s)∆(·)C(·)KTK,Ls

(
Bnu+L(·)R•,su

0
0

)
= lim

n→∞
Π
[
KTK,Ls + Φ∆

K,L(t, s)∆(·)C(·)KTK,Ls

] (
Bnu+L(·)R•,su

0
0

)
, (5.14)

where the limits are locally uniform in t. On the other hand, −∆(·) is an admissible feed-

back for Σ∆
K,L and (Σ∆

K,L)−∆ = ΣK,L by Proposition 5.4 of Schnaubelt (2002b). Applying

equation (4.12) of Schnaubelt (2002b) to this setting, we obtain

KTK,Ls h = KT
∆
K,L
s h− Φ∆

K,L(·, s)∆(·)C(·)KTK,Ls h (5.15)

for h ∈ L2
loc([s,∞),X ). (We note that (4.12) in Schnaubelt (2002b) is formulated

for h contained in a dense subspace, but Proposition 2.2 allows to pass to general

h ∈ L2
loc([s,∞),X ) by approximation.) Then equation (5.9) is a consequence of (5.14)

and (5.15). Moreover, (5.15), Proposition 2.2, and the first part of (5.10) yield

C(·)KTK,Ls = C(·)KT
∆
K,L
s − F∆

K,L(s)∆(·)C(·)KTK,Ls

Now the second equation in (5.10) can be shown as in (5.14) using (5.13).
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To construct a solution of (5.1), we take s ≥ 0 and
(
x
f

)
∈ D0 with C̃(·)f ∈

L2([−1, 0], Y ). Define g by (5.2), w(t) = f(t− s) for s− 1 ≤ t ≤ s, and(
w(t)
W (t)

)
= ΠT ∆

K,L(t, s)
(
x
f
g

)
for t ≥ s.

Then w ∈ C([s− 1,∞), X) and w ∈ Ds(C̃(·)). Formulas (5.6), (4.15), and (5.8) yield(
w(t)

W (t)

)
= TK(t, s)

(
x
f

)
+ lim

n→∞

∫ t

s

TK(t, σ)

(
Bn(σ)∆(σ)C̃(σ)w(σ)

0

)
dσ

+

∫ t

s

TK(t, τ)L(τ)[Rτ,s(∆(·)C̃(·)w(·)) + SU(τ − s)g] dτ.

We denote by (wn(t),W n(t)) the right hand side of this equation without the limit and

set wn(t) = f(t − s) for s − 1 ≤ t ≤ s. Then Proposition 3.5(c) shows that W n(t) = wnt
and that wn satisfies

wn(t) = T (t, s)x+

∫ t

s

T (t, τ)K(τ)wnτ dτ +

∫ t

s

T (t, τ)Bn(τ)∆(τ)C̃(τ)w(τ) dτ

+

∫ t

s

T (t, τ)L(τ)(Rτ,s[∆(·)C̃(·)w(·)] + SU(τ − s)g) dτ, t ≥ s ≥ 0,

Thus, w solves (5.1) since wn(t) tends to w(t) locally uniformly in t ≥ s− 1 as n→∞.

To prove uniqueness of solutions to (5.1), we suppose that w solves (5.1) with x = 0

and f = 0. Hence, g = 0, w = 0 on [s− 1, s], and using (5.3) we get

w(t) =

∫ t

s

T (t, τ)
{
K(τ)wτ + L(τ)[∆(·)C̃(·)w(·)]τ

}
dτ + Φ(t, s)∆(·)C̃(·)w (5.16)

for t ≥ s. We can apply C̃(·) to (5.16). The admissibility of ∆(·) then implies

C̃(·)w = [I − F(s+ t0, s)∆(·)]−1C̃(·)KT
s

{
K(·)w• + L(·)[∆(·)C̃(·)w(·)]•

}
,

where we may take any t0 > 0 due to Lemma 4.2 of Schnaubelt (2002b). Proposition 2.2

and Lemma 4.3 allow us to estimate

‖C̃(·)w‖L2([s,s+t0],Y ) ≤ ct
1
2
0

(
‖K(·)w•‖L2([s,s+t0],X) + ‖L(·)[∆(·)C̃(·)w]•‖L2([s,s+t0],X)

)
≤ ct0 ‖w‖L∞([s,s+t0],X) + ct

1
2
0 ‖C̃(·)w‖L2([s,s+t0],Y ) .

Here and below the constants c > 0 are independent of s ≥ 0 and 0 < t0 ≤ t1, where t1 is

fixed. Taking a small t0 > 0, we thus obtain

‖C̃(·)w‖L2([s,s+t0],Y ) ≤ ct0 ‖w‖L∞([s,s+t0],X) . (5.17)

Identity (5.16) combined with Lemma 4.3 and (5.17) yield

max
s≤t≤s+t0

‖w(t)‖ ≤ ct0 ‖w‖L∞([s,s+t0],X) .

If we decrease t0 > 0 once more, we see that w(t) = 0 for s ≤ t ≤ s+ t0. This procedure

can be iterated with the same t0 > 0, so that w = 0. �
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In order to illustrate the above results, we consider a parabolic problem with delays

and boundary control and observation, where we concentrate on a simplified case.

Example 5.2. We consider the controlled partial differential equation

∂tw(t, x) = div(a(t, x)∇w(t, x)) + w(t− r(t), x) + u1(t− ρ(t), x), x ∈ Ω, t > 0,

(a(t, x)∇w(t, x)|ν(x)) = u2(t, x), x ∈ ∂Ω, t > 0, (5.18)

y(t, x) = c(t, x)w(t, x), x ∈ ∂Ω, t ≥ 0,

w(t, x) = f(t, x), u1(t, x) = g1(t, x), u2(t, x′) = g2(t, x′), −1 ≤ t ≤ 0, x ∈ Ω, x′ ∈ ∂Ω.

Here Ω is a bounded open subset of Rn with a C2 boundary ∂Ω and outer unit normal

ν(x), a(t, x) = [aij(t, x)] ∈ Rd×d with aij = aji ∈ C1
b (R+, C

1(Ω)) with a(t, x) ≥ ηI for

some η > 0 and all (t, x) ∈ R+ × Ω, the functions r, ρ ∈ C1([−1,∞)) take values in

[−1, 0] and r′, ρ′ ≤ 1 − δ for some δ > 0, c ∈ Cb(R+ × ∂Ω), f, g1 ∈ C([−1, 0] × Ω), and

g2 ∈ C([−1, 0]× ∂Ω). We set X = L2(Ω), Y = L2(∂Ω), U = L2(Ω)× L2(∂Ω), K(t)wt =

w(t−r(t)) for w : [−1,∞)→ X, and L(t)ut = u1(t−ρ(t)) for u = (u1, u2) : [−1,∞)→ U .

These delay operators satisfy hypothesis (H) due to Example 3.3. We further introduce

A0(t)ϕ := div(a(t, ·)∇ϕ),

D(A0(t)) := {ϕ ∈ W 2,2(Ω) : (a(t, x)∇ϕ(x)|ν(x)) = 0, x ∈ ∂Ω}.

It is known that the operators A0(t), t ≥ 0, generate an evolution family T (t, s), t ≥ s ≥ 0,

on X such that

‖(I − A0(t))αT (t, s)(I − A0(s))βx‖ ≤ ceω(t−s) max{1, (t− s)−α−β} ‖x‖ (5.19)

for t > s ≥ 0, α, β ∈ [0, 1], x ∈ D((I − A0(t))β), and some constants c, ω ≥ 0. We

further let X t
−γ be the completion of X with respect to the norm ‖(I − A0(t))−γϕ‖ for

γ ∈ [0, 1]. We note that X t
−1 is isomorphic to the dual space of the domain D(A0(t))

endowed with the graph norm of A0(t). By (5.19) we can extend T (t, s) to a bounded

operator T (t, s) : Xs
−β → D((I − A0(t))α) for t > s and α, β ∈ [0, 1]. Moreover, one can

extend A0(t) to a bounded operator A−1(t) : X → X t
−1, see Section II.5 in Engel and

Nagel (2000). We further denote by ϕ =: N(t)ψ ∈ W 3/2,2(Ω) the solution of the elliptic

boundary value problem

div(a(t, ·)∇ϕ) = 0 on Ω, (a(t)∇ϕ|ν) = ψ on ∂Ω,

where ψ ∈ L2(∂Ω). It is known that N(t) maps L2(∂Ω) continuously into D((I−A0(t))β)

for 0 < β < 3/4 and t ≥ 0. Finally, the map

(t, s) 7→ (I − A0(t))αT (t, s)(I − A−1(s))N(s) ∈ L(L2(∂Ω), X)

is continuous for t > s and bounded by c(β)eω(t−s)(t − s)β−α−1, where α ≥ 0 and 0 <

β < 3/4, due to (5.19). See e.g. Section 9 of Acquistapace and Terreni (1999) and also

Lasiecka and Triggiani (2000) for these facts. We can now define the input map

Φ(t, s)u =

∫ t

s

T (t, τ)(I − A−1(τ))N(τ)u1(τ) dτ
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for u ∈ L2
loc(R+, U). As in Proposition 2.8 of Salamon (1987) one can show that a classical

solution of (5.18) without delays, observation, and f = g1 = g2 = 0 is given by w =

Φ(·, 0)u2. The output map Ψ is given by Ψ(s)ϕ = C(·)T (·, s)ϕ for the observation operator

C(t)ϕ = c(t, ·) trϕ, where tr is the trace operator. Note that C(t) : D((I −A0(t))α)→ Y

is uniformly bounded, where α > 1/4. We finally define F(s) = C(·)Φ(·, s). Using (5.19)

and taking α ∈ (1/4, 1/2) and β ∈ (1/2, 3/4), it is then easy to verify that Σ = (T,Φ,Ψ,F)

is an absolutely regular system. Since

‖F(s+ t0, s)u‖L2([s,s+t0],Y ) ≤ c tβ−α0 ‖u‖L2([s,s+t0],Y ) ,

every uniformly bounded, strongly measurable family ∆(t) : Y → U is an admissible

feedback for Σ.
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