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1. INTRODUCTION
We investigate retarded time varying linear systems of the type
w(t) = At)w(t) + K(t)ws + Bt)u(t) + L(t)us, t>s>0,
y(t) =Ctw(t), t>s>0, (nLDS)
w(s) =z, ws=f, us=yg,

on Banach spaces U, X, and Y (the control, state and observation space, respectively) with

unbounded operators A(t), B(t), C(t). We construct the corresponding input, output,

and input—output maps and solve the feedback problem where the control is determined

by u(t) = A(t)y(t), see Theorems 4.5 and 5.1. The delay terms in (nLDS) are given by
0

0
K(t)w, = / dk(t,0) w(t +6) and  L(t)u; = / dl(t,0) u(t +6)
—1 -1

for operator—valued functions 6 — k(t,0) € L(X) and 0 — [(t,0) € L(U, X) of bounded
variation. We assume that the system without delays (i.e., K(t) = 0 and L(t) = 0) is a
regular well-posed time varying (or non—autonomous) system in the sense of Schnaubelt
(2002b). This class contains systems arising from partial differential equations with point
or boundary control and observation, see Schnaubelt (2002b) and Example 5.2.

Time invariant well-posed linear systems were defined by Salamon (1987) and Weiss
(1989a, 1989b, 1994a). Weiss introduced the concept of ‘regularity’ in order to obtain
good representation formulas for the input—output operator and the transfer function, see
Weiss (1994a). Regular time invariant systems are stable under a large class of feedbacks
due to Chapter 7 in Staffans (2004) and Weiss (1994b). The monograph Staffans (2004)
gives a comprehensive account of the theory in the time invariant case, including non
regular systems.

Much of the representation and feedback theory of regular systems has been extended
to time varying systems in Schnaubelt (2002b). Throughout our paper we use the results
from Schnaubelt (2002b), which are recalled in Section 2. There are only a few papers
on time varying feedback theory for general linear systems with unbounded control and
observation operators, cf. Schnaubelt (2002b). We want to mention in particular the
works Hinrichsen and Pritchard (1994) and Jacob (1995) who solved time varying feedback
problems working under different assumptions than in Schnaubelt (2002b). However, it
seems that in their setting a satisfying control theory for the closed loop system is out of
reach, see Schnaubelt (2002b) for a detailed comparison.

Typically the feedback mechanism does not act instantaneously so that it is reasonable
to introduce delays in the system. For simplicity, we concentrate on the input delay term
L(t)u; and the state delay K (t)w;. The theory of time invariant control problems with
delays has been developed at least since the 1960s. In the case of a finite dimensional
state space X we refer to e.g. Bensoussan et.al. (1992) and Vinter and Kwong (1981) for a
detailed presentation and further literature. The infinite dimensional case, i.e., partial dif-

ferential equations with delays in the state, input, or output, was investigated for instance
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in Da Prato and Lunardi (1990), Hale and Verduyn Lunel (2001), Jeong (1991), Naka-
giri and Yamamoto (2001). These papers deal with the feedback stabilization problem
of time invariant retarded infinite dimensional systems. In several recent contributions
Kowalewski studied the optimal control of various classes of time varying retarded par-
tial differential equations, see e.g. Kowalewski (2003), Kowalewski and Krakowiak (2001).
The optimal control of time varying parabolic problems was treated in Acquistapace and
Terreni (1999).

If one wants to investigate retarded problems within the usual framework of systems
theory, one has to enlarge the state space in order to incorporate the prehistory of the
state and of the input given by w.(0) = w(t+6), resp. us(6) = u(t+0), for 6 € [—1,0] and
t > s. In problems without control and observation one typically chooses the state space
C([-1,0], X). However, this choice is not convenient in control theory; for instance, one
needs Hilbert spaces for optimal control problems. We use the so called ‘extended state’
(x(t), x,uy) introduced by Ichikawa (1982). This and alternative settings are discussed
in Section 4.2.2 in Volume I of Bensoussan et.al. (1992). As a result we take the state
space X = X x L*([—1,0], X) x L*([—1,0], U). All our results remain valid with the same
proofs if one replaces here the exponent 2 by p € [2,00).

However, a point delay ¢ — ¢(—1) is not closable as a map from L?*([—1,0], X) to X so
that it leads to an unbounded control or state operator. One can study finite dimensional,
time invariant, retarded control problems in the framework of the Pritchard-Salamon
class, a subclass of regular systems, see Pritchard and Salamon (1985). Retarded evolution
equations without input or output were systematically investigated in the book Batkai and
Piazzera (2005) on an L? state space by means of the Miyadera perturbation theorem. As
observed in Hadd and Idrissi (2005) and Hadd et.al. (2005) for the time invariant case, in
both approaches it is crucial to verify that the delay operator is an admissible observation
operator for the translation semigroup (in the sense of Pritchard and Salamon (1985),
Salamon (1987), Weiss (1989a)). As a result, one can use the ‘Lebesgue extension’ of
the delay operator with respect to the shift semigroup, as defined by Weiss (1989a). It
turns out that the Lebesgue extension greatly simplifies the manipulation of variation
of constants formulas, see Hadd and Idrissi (2005), Hadd et.al. (2005). We will also
work with Lebesgue extensions, see e.g. Proposition 3.5, which have been introduced and
studied in Schnaubelt (2002b) for the time varying case.

But there occurs an unexpected problem. In the time invariant case one can allow for
all delay operators given by kernels having bounded variation, see Batkai and Piazzera
(2005), Bensoussan et.al. (1992), or Example 3.2. In the time varying case this is not
possible as shown by Example 3.6: The solution of the scalar equation

2'(t) =zt — p(t)), t=>0, z(t) = f(t), —1<t<0,

does not depend continuously in 2-norm on f if, say, p(t) =t + 1/4 for 1/4 <t < 1/2.
We introduce in Section 3 the rather general condition (H) on the kernels k(¢,6) which
yields well-posedness of the delay equation. In the above example one has to assume that

P is strictly smaller than 1, see Example 3.3.
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There is another, maybe deeper difference to the time invariant theory. In the time
invariant case one has the generation theory for semigroups, the existence theory for
inhomogeneous equations, and the so—called extrapolation space of the semigroup which
allows to treat unbounded control operators, see Weiss (1989b). These concepts and
results do not exist in this generality for time varying systems (with the partial exception of
parabolic equations, see Acquistapace and Terreni (1999) and Example 5.2). If one wants
to develop a general theory it thus seems to be advisable to work with an integrated version
of (nLDS), see (3.2) and (5.1), as it was done in Schnaubelt (2002b). As a consequence, in
general one does not have the full representation and regularity theory known from time
invariant problems, see Section 2. Control theoretic properties are not affected by this
reformulation if they are expressed in terms of the input, output or input—output maps,
cf. Section 5 of Schnaubelt (2002b).

For the reader’s convenience we briefly recall the relevant background from Schnaubelt
(2002b) and related works and introduce (much of) our notation in Section 2. Section 3
deals with retarded time varying evolution equations. In Proposition 3.5 we establish new
variation of constants formulas for delay equations which are crucial for our approach.
Then we construct the regular system corresponding to (nLLDS) in Section 4, see Theo-
rem 4.5. Here the main difficulty arises from the fact that we have no ‘generators’ and
thus we can not use generation results as in the time invariant case. Instead, we directly
define the operators determining the retarded regular system and then show that they
have the desired properties using the results of Sections 2 and 3. As an application, we
investigate in the last section the feedback problem corresponding to (nLDS). Under a
mild condition on the feedbacks A(t) : Y — U (also needed in the time invariant case), we
prove that the closed loop system is again a regular well-posed system, and we establish
various equations relating the open and the closed loop system, see Theorem 5.1. Fi-
nally, in Example 5.2 we treat a feedback problem associated to a time varying parabolic
boundary control problem with input and state delays.

2. TIME VARYING REGULAR SYSTEMS

In this section, we recall several definitions and results on time varying control problems
taken from Schnaubelt (2002b). Throughout, X, Y, and U denote Banach spaces. We
endow L2 (J,Z) with its usual Fréchet topology, where J C R is a closed interval and Z
is a Banach space. The letter ¢ denotes a generic constant. An evolution family on X is
aset T'= (T(t,s))>s>0 C L(X) (the space of bounded linear operators on X) such that

(i) T(t,s) =T(t,r)T(r,s), T(s,s) =1,
(i) (t,s) — T(t,s) is strongly continuous, and

(iti) [|T°(t, s)|| < Me~(=

forall t > r > s >0 and constants M > 1, w € R. For an evolution family 7', we set

KD (O) = [ T7)1()dr
forallt >s>0and f € L} ([s,00), X).

loc



Evolution families arise as solution operators of time varying evolution equations
w'(t) = A()w(t), t>s, w(s) =, (2.1)

where A(t), t > 0, are linear operators on X with domains D(A(t)). A solution of (2.1)
is a function w € C*([s,00), X) such that w(t) € D(A(t)) for t > s and (2.1) holds. We
say that (2.1) is well-posed, or that A(-) generate T, if there is an evolution family 7" on
X such T'(t,s)D(A(s)) € D(A(t)) for t > s and w(t) = T(t,s)z is the unique solution
of (2.1) for each x € D(A(s)). However, there are evolution families which do not solve
an evolution equation (e.g., T'(t,s) = ¢(t)/q(s) on X = C where ¢ is a continuous, non-
differentiable function). In fact, in contrast to the time invariant semigroup case, there is
no general characterization of well-posedness of (2.1) in terms of the operators A(t). In
the present paper (as in Schnaubelt (2002b)) we will work only with evolution families
without making the additional assumption that they have generators A(t). In particular,
we refer to an underlying evolution equation such as (2.1) or (nLDS) only in order to
illustrate our results. More information on time varying Cauchy problems can be found
in Chicone and Latushkin (1999), Schnaubelt (2002a), and the references therein.

The pair (T, ®) := (T,{P(t,s) : t > s > 0}) is called a time varying control system (on
U and X) if ®(t,s) : L ([s,00),U) — X, t > s > 0, are linear operators such that

loc
O(t, 8)u = D(t,r)(u| [r,00)) +T(t,r)®(r,s)u, t>r>s>0,
||q)(t,S>U||X S 6Hu||L2([s,t],U)7 0 S S S t S s+ tOv

for u € L2 (Ry,U), ty > 0, and a constant 5 = B(tg) > 0. Then t — ®(t,s)u € X is

loc

continuous for ¢ > s by Proposition 3.5 in Schnaubelt (2002b). Note that ®(s, s)u = 0.
In the sequel, we will mostly use the same symbol for a function u and its restrictions.

(2.2)

In the time invariant case, control systems are always given by admissible control op-
erators B due to Weiss (1989b). It is not clear whether one can extend this result to
the time varying in general, see Schnaubelt (2002b) for a discussion. At least, every time
varying control system can be represented by bounded control operators in an approxima-
tive sense: Set B,(t)z := n®(t,t — L)u, for € U, n € N, and t > 0, where u,(s) := z for

s € Rand ®(t,s)u := ®(¢,0)u if t > 0 > s. Then Proposition 3.5 in Schnaubelt (2002b)
yields
¢
O(t,s)u = lim [ T(t,7)Bu(T)u(r)dr (2.3)

n—o0
S

(in X) for u € L2 (R,U) and t > s > 0, where the limit is locally uniform in .

loc

Let ¥(s): X — L?

loc

([s,00),Y), s > 0, be linear operators satisfying
s+to
U(s)x =V (t)T(t,s)r on [t,00) and / (W (s)x)(t)]|*dt < |z (2.4)

fort > s >0,z € X, t >0, and a constant v = v(ty) > 0. Then (7, V) := (T, {¥(s), s >
0}) is called a time varying observation system (on X and Y') for T. For linear operators
C(s): D(C(s)) € X — Y, s >0, we define the set

D,(C() ={f € L;.(s,00),X): f(t) € D(C(t)) for ae. t>s,

loc
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C()f () € Lige([s,00), Y)}.

Let X, be dense subspaces of X and C(s) : D(C(s)) € X — Y, s > 0, be linear
operators such that T'(-, s)z € Ds(C(+)) and

s+to
| e sl de < 2ol

for ty,s > 0, z € X, and a constant 7 = y(¢y) > 0. Then we say that C(s), s > 0,
are admissible observation operators for T. Note that the admissibility of C(-) for T
guarantees that the mappings

W(s): D(C(s)) — L} .([s,00),Y), U(s)x:=C()T(-,s)x, s>0, (2.5)

possess unique extensions (again noted by ¥(s)) to linear continuous operators from X

to L2 ([s,00),Y) which yield a time varying observation system (7, ¥), see Lemma 2.5
in Schnaubelt (2002b).
Conversely, let (T, ¥) be a time varying observation system, s > 0, and 7 > 0. Following

Weiss (1989a), we define

C(s)z = % / W) (0) do,  we X, (2.6)
D(C(s)) :={ze X : ll{r(l) Cr(s)xr existsin Y}, C(s)x == ll{lr(l) Cr(s)x. (2.7)

We note that C-(s) € £(X,Y) and that C(s) might be non—closable. We say that C(-)
represent (T,W); or that C(t) are the Lebesque extensions of C(t) if W(s) is given by
(2.5). In the next proposition we summarize Theorem 2.7 and Lemma 2.9 of Schnaubelt
(2002b). In particular it is shown that C(s) is admissible (with X = X,) and that ¥(s)
is always given by C (+).

Proposition 2.1. Let (T, V) be a time varying observation system, s > 0, and x € X.
Define C.(t) and C(t) for T >0 andt > 0 as in (2.6) and (2.7). Then T(-,s)z € Dy(C(-))
and U(s)z = C(-)T(-, s)x. Moreover, s — Cy(s) is strongly continuous and the operators
C.()T(-,s) : X — L*([s,s + to),Y) are bounded uniformly in s > 0 and 7 > 0 and
converge strongly to V(s) as T \, 0, where tq > 0.

The following result is also taken from Schnaubelt (2002b) (see Proposition 2.11 and
its proof). We will use it frequently in this paper.

Proposition 2.2. Let (T, V) be a time varying observation system represented by C(t).
Then KT f € Dy(C(-)) and

~ 1
HCT(')KZ]C||L2([S,s+to],Y) ) HC(')KsTf||L2([S,s+to],Y) <c tg ||f||L2([S,s+to],X)

forT>0,5s>0,0<ty<t, felLl (RyX), and a constant c = c(t;) > 0. Moreover,

loc

C.()KT converges strongly to C(-)KL as 7\, 0.
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Let (7,®) and (7,¥) be time varying control and observation systems. If there are

linear operators F(s) : L2 ([s,00),U) — L2 ([s,00),Y) satisfying
F(s)u = W()D(t, s)u+ F(t)(u | [t,00))  on [t,00), (25)
IFCs)ull L2 (s 5401,y < Ellull L2 (s stt010) (2.9)

for u € L} ([s,00),U), t > s > 0, ty > 0, and a constant k = r(ty) > 0, then ¥ =
(T, ®, ¥, F) is called a well-posed time varying system (on U, X, and Y') with input-
output operators F(s). (See Staffans (2004) and Weiss (1994a) for corresponding notions
in the time invariant case.) Observe that F(s)u = 0 on [s,t] and F(s)u = F(¢)(u | [t, 00))

on [t,00) if w vanishes on [s,t]. Hence one can define the restrictions
F(s)[ls, 6] = F(t, 5) : L(s,6,U) — L*([s,],Y), t>5>0.

We need two more definitions to use the results on feedback systems from Schnaubelt
(2002b). Analogous concepts and results for the time invariant case can be found in
Staffans (2004) and Weiss (1994a, 1994b).

Definition 2.3. A well-posed time varying system 3 = (T, ®, ¥, F) is called regular (with
feedthrough D=0) if

1 t+7
lim — (F(t)u,)(o)do =0 (inY)
™0 T J;
and absolutely regular if
1 t+1 )
L) [(F(t)u.)(@)]y do =0

for allt >0 and z € U, where u,(s) := z for s > 0.

If ¥ is regular, then F(s)u € Dy(C(-)) and F(s)u = C(-)®(-, s)u for u € L2, .([s,00),U)
and s > 0 by Theorem 3.11 of Schnaubelt (2002b).

Definition 2.4. Let ¥ = (T,®,V,F) be a well-posed time varying system. We call
A(-) € L>®(Ry, L(Y,U)) (the space of essentially bounded and strongly measurable oper-
ator functions) an admissible feedback for 3 if there exists to > 0 such that the operators
I —F(s+to,8)A(:), s >0, have uniformly bounded inverses on L*([s,s + to],Y).

If ¥ is absolutely regular and A(t) are admissible feedback operators for ¥, then the
closed-loop system X2 for ¥ and A(-) exists, and it is also absolutely regular. Moreover,
we have several equations relating the open- and closed loop system. To put the formulas
in a concise form, we define the operators W(¢, s)z := (V(s)x)|[s, t] and

_(T(t.s) @(.s)\ 2 2
X(t,s) == (llf(t,s) Ft.s)) X x L*([s,t],U) — X x L*([s,t],Y) (2.10)
for t > s > 0. Then it holds

S (4 8) — Nt 5) = Nt ) (8 A%)) S (1 5) = YA, 8) (8 A%) (¢, s).
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These facts are shown in Theorem 4.4 and Proposition 5.1 of Schnaubelt (2002b), where
one can find further results on the relationship between ¥ and 4. It seems that one
needs the stronger condition of absolute regularity to establish such formulas and to
obtain (absolute) regularity for the closed loop system (in contrast to the time invariant
case).

3. TIME VARYING DELAY EQUATIONS

In this section we consider the problem (nL.DS) without the control terms and the
observation equation, but with an inhomogeneity h, i.e., the equations

w'(t) = A(t)w(t) + K(t)w, + h(t), t>s>0,

w(s) =z, ws=f.

(3.1)

Here h € L2 (Ry,X), 2 € X, and f € F := C([—1,0], X) are given, and w, is defined by
wi(0) = w(t+0) for € [—1,0]. At first, we assume that the initial data satisfy = = f(0)
and that the linear delay operators K(t) : E — X, t > 0, are uniformly bounded and
strongly measurable in ¢. We concentrate on mild solutions of (3.1), i.e., we are looking

for w € C([s — 1,00), X) such that

w(t) =T(t,s)x +/ T(t,7)(K(T)w, + h(r))dr, t>s>0, (3.2)

w(s+0) = f(0), —1<6<0,

where A(t), t > 0, generate the evolution family 7'(¢,s), t > s > 0, on X. In fact we
will investigate (3.2) without assuming that 7" solves a well-posed Cauchy problem. It
is easy to solve (3.2) by a fixed point argument. This gives rise to an evolution family
V(t,s)f :=w; on E solving (3.2) with A = 0. (See e.g. Schnaubelt (2004) for more details
and also for differentiability properties of mild solutions.)

However, from the perspective of control theory it is necessary to extend the evolution
family V to L*([—1,0], X) (more precisely to X x L?([—1,0], X), see below). In the time
invariant case this can be done in great generality, see e.g. Batkai and Piazzera (2005),
Bensousssan et.al. (1992), or Example 3.2. But in the time varying case, Example 3.6
shows that this extension requires an additional assumption. Lemma 3.1 below is the
crucial step in the extension of the evolution family. Before we can state it, we have to
introduce some notations.

For a Banach space Z, we denote by BV ([—1,0],Z) the space of all functions k :
[—1,0] — Z of bounded variation, i.e. the total variation of k

Var(k)", := sup {Z |k(0;) — k(0;—1)]| :0=00>6,...>6,=—1, ne N}
j=1

is finite. Elements of BV ([—1,0],Z) are normalized throughout this paper by the re-
quirements k(—1) = 0 and that k(-) is left—continuous on [—1,0]. Hence, extending

k € BV(|—1,0],Z) by 0 to (—o0,0], k(-) can be also considered as an element of
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BV ((—00,0], 7). (This space is defined in the same way as BV ([—1,0],Z).) We study
delay operators of the form

wr=[ dk(t,0)£(6). f € C(=1,0], ), ¢ >0,

satisfying the following assumptions.
(H) The function Ry x [—1,0] > (t,0) — k(t,0) € L(Z, X) is strongly measurable and
k(t,-) € BV(|—1,0],L(Z, X)) with total variation n(¢,-). There are constants ¢
and ¢}, such that ||n.(¢, )] :== Var(k(t,-))%; < ¢ for all ¢ > 0 and

/ k(s +t,0 —t)—k(s+1t,0 —1t)||dt < c,|0"— 9|,

for 6',0 € [-1,0], s > 0, and some 0 < v < 1.

The left translation semigroup Sz := (Sz(t))i>0 on L*([—1,0], Z) (endowed with the usual
norm || - ||2) is defined by

(S2(£)f)(0) = {ﬂ”@% L+6<0,

0, t+60>0,
fort >0, =1 <60 <0,and f € L*([-1,0], Z). We also set aV b := max{a, b} for a,b € R.
Lemma 3.1. Assume that (H) holds with X = Z. Then we have

/0 1K (s + 0)Sx (0 f |2 dt < e |12

for f € C([—1,0], X) with f(0) =0,0<a <1, s>0, and a constant ¢ > 0. Thus there
exist the Lebesgue extensions K(t), t > 0, of K(t) with respect to Sx.

Proof. Let s > 0,0 <a <1,and f € C(]—1,0],X) with f(0) =0. Set 0; = (j —n)/n for
n € Nand j € {0,---,n}. For each fixed t € [0, 1], we have

K(s+1t)Sx(t)f = /_lt dk(s+1t,0)f(0 +1)

= lim Y [k(t+s,05—t) = k(t+s,05_1 — )] f(0).
j=1
(Recall that k(t,0) = 01if § < —1.) We set Aj(t,s) = k(t +s,0; —t) — k(t+ s,0j_1 — 1)
for t,s > 0 and 7 = 0,1...,n. Fatou’s lemma, the Cauchy—Schwarz inequality and (H)
then imply that

/ | K (s +t)Sx () f]|* dt < liminf
0 0

n—oo

>t flo)]

< lim inf ZHA (t,s)| ZHA (t, 8)|| IIf (o;)||? dt

9




<cutimint 3" 7o) [ 1A 5)]
i=1 0

n
< e im Y || f(05)7 o — 1
n—00 —
]_

0
=%¢/Hﬂ®Ww. 0
1

The next example indicates that for time-independent kernels k& assumption (H) always
holds. The second example shows that a time depending delay f(—p(t)) is admissible if
P is strictly smaller than 1, see also Example 3.6.

Example 3.2. Let ko(-) € BV([-1,0],£(X)) and ki(-,-) : Ry x [-1,0] — L(X) be
strongly measurable such that ki (-, 0) is bounded for some 6y € [—1,0] and ||k1(¢, )| Lip <
¢y for all t > 0, where || - || i, is the Lipschitz norm. We set

k(t,0) == ki (t,0)ko(0), (t,0) € Ry x [~1,0].

We claim that k(-, -) satisfies the condition (H). In fact, let ny(7) = Var(ky)”,. Then ng
is nondecreasing and | ko(7) — ko(o)|| < 1no(7) — no(0) for all ¢ < 7 < 0. For 0 < a < 1,
—1<60<# <0, and s > 0, we further obtain

/|m@+uehw)—k@+ne—wnﬁ
0
< [l .8 0) — kals 6 = ) 10"~ 1) d
0

—g/nhw+ue—wwmwt¢»—mw—wnﬂ
0

0/

< cald — 0| + c/ (no(8 —t) — (6 —t)) dt = cal — 0] + c/ no(T)dr
0 9
< c(a+m(0))[0" — 0]
for some constants ¢ > 0. O

Example 3.3. Let ki (-, -) be as in Example 3.2 and assume furthermore that k(¢,—1) = 0
for all t > 0. Let p € C*(R,) such that p/(t) <1 —§ for t > 0 and some § > 0. We set

k(t, 9) — {kl(tv‘g)v 0 2 —p(t),

0, 0 < —p(t), and I(s,0):={te€[0,a] :t—p(s+1t) <0}

for (t,0) € Ry x[—1,0],and 0 < o < 1. Then k(-, -) satisfies (H). Indeed, since k; (¢, —1) =
0 for all ¢ > 0, one can see that k(t,-) € BV ([—1,0], £(X)) and Var(k(t,-))°, < ¢ for all
t > 0. On the other hand, let A be the Lebesgue measure and —1 < 6 < ¢ < 0. Observe

that the function ¢4(t) =t — p(s + t) strictly increases and that ||o;!||rip, < 0°%. Thus
10



we can estimate

/ k(s + 4,0/ — 1) — k(s + 1,0 — 1)|| dt
0

:/ Hkl(s—i—t,@'—t)—kl(s—i—t,@—t)Hdt—i-/ |ki(s +t,6 —t)| dt
I(s,0) I(s,0")\I(s,0)

<calf — 0]+ cX{t € [0,a], 0 < ps(t) <O}

<colt =0 +clo (0) = () < c(0 +a) |0 —1]. O

As mentioned above, we want to solve (3.2) in an L?-setting. To this purpose, we
introduce the Banach space

Xy = X x L*([-1,0], X) with the norm H(fv)”?\go = [lz|* + || 13

and the operators

T(t,s) 0
— > s> .
T(t,s) (ths SX(t—s))’ t>s>0, (3.3)
Tt+60,s)r, s—t<0 <0,
(T)(0) = 41T 0
O, _1§0§5_t7

for 0 € [-1,0], x € X, and t > s > 0. It is straightforward to check that (7 (¢, s)):>s>0 is
an evolution family on Xy. We further define

Do = {(F) € X x C([~1,0], X) : f(0) = «},

K(t) := (8 Két)) with  D(K(t)) := Do, t>0.

Observe that 7 (t, s) yields also an evolution family on Dy, which is a Banach space if
endowed the norm ||z|| + || f||co. We further set

1®z)0) ==z for z € X and 6 € [-1,0].

Lemma 3.1 now implies a crucial admissibility property of IC(¢).

Lemma 3.4. Assume that T'(-,+) is an evolution family on X and that k(-,-) satisfies (H)
with Z = X. Then K(t) are admissible observation operators for T (-,-) on Xy. So there
exist the Lebesgue extensions KC(t), t > 0, of IC(t) with respect to T (-,-). Moreover,

K@t)(F)e X x{0} for (F)eDK®),t>0. (3.4)

Proof. Let s >0, a € (0,1], and () € Dy. Condition (H) and Lemma 3.1 imply that
sta sta
[ IKOTE ()Pl = [ KO+ Sy - D)t
st+a
= / IK(8)[Thex + Sx(t — s) (1@ x)] + K(t)Sx(t — s)[f — (1@ )]||*dt

s+a s+a
<ed / |Tosz + Sx(t — s)(1 @ 2) |2 de + ¢ / 1K (0)Sx(t — $)[f — (1@ )| dt
S 11 S



<ceallz|* +cllf =A@ )3 < ezl + [If1I2)

for constants ¢ > 0. The (easier) case a > 1 is treated similarly.

Since K()T (t,s)(7) € X x {0} for () € Dy and t > s > 0, we deduce by approx-
imation that K(-)7(-,s)(%) € L2([s,00),X x {0}) for all (}) € Ay and s > 0. Thus
K(s)(F) € X x {0} for (§) € D(K(s)) by the definition of the Lebesgue extension. [

Proposition 3.5. Assume that T'(-,-) is an evolution family on X and that k(-,-) satisfies
(H) with Z = X. Then the following assertions hold.

(a) There is a unique evolution family Ty (-,-) on Xy such that K(t) are admissible obser-
vation operators for Tx and

Ti(t.5)(5) = T(t.5)(%) /Ttr T, 5)(%) dr. (3.5)
Ti(t,s)(F) =T(t, s)(fv)—i—/ TK(t,T)l%(T)T(T,S)(fc)dT (3.6)

for all (?) € Xy andt > s >0. The operators /E() represent also the observation system
given by IE( V7K (-, s) and Tx on Xj.

(b) Moreover, Tk(t,s) leaves Dy invariant and yields an evolution family on Dy, too.
Therefore we can replace K () by K(7) in (3.5) and (3.6) if (7) € Do. If we set (Z}((?)) =
Ti(t,s)(F) fort > s and v(t) = f(t—s) fors—1 <t < s and (§) € Xy, then w(t) = v,.
(c) If () € Do, h € L .(Ry, X), and s > 0, then the unique mild solution v € C([s —
1,00), X) of (3.2) is given by v(t) = f(t —s) fors—1 <t <s and

(”(t)> Tic(t, 5)( /TKtT ) dr. (3.7)

Vg

Proof. (a)We define W°(s) : Dy — X, by setting ¥°(s)(7) := K()7(-,s)(7). Lemma
3.4 shows that (7,¥°) can be extended to a time varying observation system on X
with observation space Xp. We further set ®°(-, s)u := KZu and FO(s)u = KKy
for s > 0 and u € L} ([s,00), Xp). The system (7,®° Y F°) is absolutely regular as
observed in Remark 4.6(a) in Schnaubelt (2002b). The feedback Iy, is admissible since
|FO(s +to, 5)||2 < cto/ <3 1 for s > 0 due to Proposition 2.2, if we take a sufficiently small
to > 0. Then part (a) of the assertion follows from Theorem 4.5 in Schnaubelt (2002b),
except for the last claim. To establish this claim, we estimate

/ / T(t,7)K(T)Tx(7,5)(F) drdt“ < erlrips ”’E(')TK(',S)(?)HLQ([S,HT],XO)

for s > 0, r > 0, and (?) € Xy, using Holder’s inequality and Proposition 2.2. The
right hand side of this inequality tends to 0 as r — 0. Equation (3.5) thus implies that
the observation systems (7, 9°(s)) and (7, K(-)7x(-,s)) are represented by the same

operators, namely K(+).
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(b) Due to (3.4), the first and second component of the integral in (3.5) are equal to

t ~ (t+0)Vs
/T(t,T)[IC(T)TK(T,S>(?)hdT and / T(t+9,7)[l€( )Tk (T, s)( )] dr (3.8)

respectively, where (7) € Xy, 0 € [-1,0], ¢ > s > 0. As a result, the integral takes values
in Dy. It is then straightforward to check that 7k (t, s) yields an evolution family on Dy.
The last assertion in (b) follows from (3.5), (3.3), and (3.8).

(c) Let (7) € Do, h € L} (R4, X), and s > 0. The uniqueness of mild solutions to
(3.2) is a standard consequence of Gronwall’s inequality. We denote the right hand side
of (3.7) by ( ) Equation (3.5) yields

(1) -7 / Tl K Tlr o) (7 dr+ [ T, dr
/ / T(t,0)K(0) T (o, 7) (")) do dr. (3.9)

We denote the double integral in (3.9) by J. Employing the bounded operators i/, (%)
defined as in (2.6), we rewrite J as

J = lim /t /t T(t,a)lC%(a)TK(a, T)(h(OT)) do drt

n—00
s
t

= lim [ T(t,0)Ki( /TKJT)(h(T)deJ

n—oo

t
:/ T(t, o) / Ti(o,T) hT) dr do (3.10)

using Propositions 2.1 and 2.2, part (a), and Fubini’s theorem. We set ¢(t) = [K(t) (;’}(('?))]
Formulas (3.9), (3.10), (3.7), and (3.3) then imply

(o) =t n) (o o)

If we set v(t) = f(t —s) for s — 1 <t < s, we deduce w(t) = v; and thus (sj(('?)) € Dy.

Hence, ¢(t) = K(t)v; and v is the mild solution of (3.2). O

The following simple example shows that one really needs an extra assumption in
Proposition 3.5, cf. Example 3.3.

Example 3.6. On X = C we consider
Pl =t —pt), t20,  wlt)=f(), -1<t<0,
for the time depending delay



Suppose that f is continuous and f(0) = 0. Then,

t t—1
:/f(T—%)dT:/12f(7')d7' for 0<t<1,
0 2

_1
— [ @@= Dr-h o b<es<h
2

Hence, z(t) does not depend continuously on f in the L?-norm, so that 7x(-,-) can not
continuously be extended to A} in this case. 0]

4. TIME VARYING REGULAR SYSTEMS WITH STATE AND INPUT DELAYS

In this section we want to show that (nLLDS) corresponds to a time varying regular linear
system X 1. The system Xy  is determined by a regular linear system (7', ®, U, F) on
the spaces U, X, and Y and by the state and input delay operators

0
) f = / dk(t,0)f and L(t)g = / di(t,0)g(0)
—1
feC([-1,0],X), g€ C([-1,0,U), t > 0, whose kernels k and [ satisfy assumption (H)
for X =Z and U = Z, respectlvely. The state space of Xk 1, is given by

X = X x (1,01, X) % (-1,0,0) withnorm  [[(F)|[] = el + 1513 +
Quite often we use the factorization X = Xy x L*([—1,0],U). We further set
L(t):= () :C([-1,0,U) — X,
Tin(ts) = (TKS s f Tk (t, T;SEZ)_SE)(T —s) dT) ’ (4.1)
for t > s > 0, where 7Tk 1(t, s) is at first defined on the space
D = {(z, f,9) € Dy x C(|~1,0},0) : g(0) = 0} C X.

Arguing as in the proof of Proposition 3.5(b), one verifies that the integral in (4.1) takes
values in Dy. It is then straightforward to show that 7x 1(-,-) is an evolution family on
D. Due to Lemma 3.1, there exist the Lebesgue extensions E(t), t > 0, of the restriction
of L(t) to Cy([—1,0),U) with respect to the shift semigroup Sy;. Thus we may define

L(t) = (X)) : D(L(t)) C Co([~1,0),U) — Xp.
Observe that Proposition 3.5 and Lemma 3.1 allow to extend 7k 1 (¢, s) to the operator

. TKtS fTKtT)ﬁ( )SU(T—S)dT
’]}(,L(t7 S) = ( 0 SU(t _ 3) ) (42)

on X, t > s > 0, and that 7k 1, is an evolution family on X. It will be the evolution
family of the system X ;. The right upper entry of this matrix feeds the initial history
g = ug of the input v into the system; the right lower entry shifts g according to the time

step from s to t.
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We now proceed in three steps: First we add the non retarded observation of the given
undelayed system. Then we apply the input delay L(t). Finally, we combine both parts
by an input-output operator.

We suppose that (7, V) is a time varying observation system on X and Y with repre-
senting operators C (t) asin (2.7). As a preliminary step, we define

C(t) == (5(25) o) with D(C(t)) = D(C(t)) x L3([~1,0], X), t>0,

\DK(S)@) = C(-)TK(-,S)(?), (fc) € D(C(s)), s > 0. (4.3)

Lemma 4.1. Under the above assumptions, the operators Vi (s), s > 0, defined in (4.3)
can be extended to a time varying observation system for Tx on Xy and Y which is
represented by the operators C(t) : D(C(t)) — Y.

Proof. Let s > 0 and (x) € Xp. Proposition 3.5 shows that the function h(; s, x, f) :=
K(-)Tx (-, s)(F)]1 belongs to L}, ([s,00), X) and that

(Tw(t,s)(F)h =T(t,s)x +/ T(t,T)h(T;s,x, f)dr. (4.4)

Due to this equality, Propositions 2.1, 2.2, and 3.5 imply that C(¢), ¢ > 0, are admissible
observation operators for the evolution family 7k (-, ). Thus we have established the first
assertion. We further deduce from (4.4) that

l/ss+7(q;K(5)( / C()T(t, s)x dt + = / C(t)(KER(; s, 2, f))(t) dt

T

for 7 > 0. The first term on the right side converges as 7 \, 0 if and only if z € D(C(s));
and then the limit is equal to C'(s)z. Holder’s inequality and Proposition 2.2 further yield

l/s (CORTA( 5,2, ) (1) dt

T

‘ <c|h(; 57x7f>HL2([s,s+T],X) — 0
as T — 0. The second assertion follows from these facts. O

As a result, Proposition 2.2 yields that
/ T, m) (K050 =9 dr € D,(C()) (4.5)

for all g € L([—1,0],U) since L(-)Sy(- — s)g € L2 ([s,00), X). Thus we can define the
operators

Vrer(s)(2, f,9) = Wi (s)(F) + C(YKIF (LOS(=2)a) (4.6)
for s > 0 and (z, f,g) € X.

Proposition 4.2. Assume that (T, V) is a time varying observation system on X and
Y with representing operators C(t) : D(C(t)) — Y and that the kernels k and | satisfy
assumption (H) for X = Z and U = Z, respectively. Then (Ty,1, Vi 1) defined in (4.2)
and (4.6) yields a time varying observation system on X and Y represented by C(t) :=
(C(t),0,0) with D(C(t)) :== D(C(t)) x L*([~1,0], X) x L*([—1,0],U), t > 0.

15



Proof. Lemma 4.1, Proposition 2.2 and Lemma 3.1 show that the operators U 1 (s) satisfy
the estimate in (2.4). Let now (x, f,g) € X and p >t > s > 0. Then

(Wi () Trn(t 8)(2, £, 9))(p) = [Wre()Tc(t,8)(7)](p) + C0) Tic (p, O)[KI* (FOS (=99 )] (¢)
+ C(p) K™ (LOSu(=05ut=2)a )] (p)
= (Vx(s)(F))(p) + Cp) KT (LS =29 )] ()
= [UkL(s)(, 1, 9)1(p).

Thus we have shown the first assertion. The representation of the observation system can
be computed as in the proof of Lemma 4.1, using Lemma 4.1, Proposition 2.2 and the
fact that L(-)Sy(- — s)g € L2 ([s,00), X). O

In the second step, we suppose that (7, ®) is a time varying control system on U and
X. Lett>s>0,0€[—1,0], and u € L2 ([s,00),U). Then we define

~ @(t,s)u) Q(t+0,s)u, t+0>s,
O(t,s)u = , d, u)(0) =
(h:3) ( Py su (®0)(0) {O, t+6 < s,

u(t+0), t+6>s,
0, t+60 <s.

(Resu)(0) := {
Observe that </IS(7', s)u € Dy. Let 0 < s < p <tand

;o p<T<HU,
u(r) == w(r), p<7 (4.7)
uo(7), s<7<p,
for given functions wug, u; € L2 ([s,00),U). Then one easily checks that
Rt,su = R@pul + SU(t — p)Rp73U0. (48)

The following result can be proved in the same way as Lemma 3.1.

Lemma 4.3. Assume that l(-,-) satisfies (H) with U = Z. Let u € C([s,00),U) and
g € C([-1,0],U) with u(s) = g(0). Then we have

s+a
/ IL(t)(Resu+ Syt — $)g)|1? dt < e (ull2qesrago + 19172 1010))

for 0 < a<ay, s >0, and a constant ¢ = c(ag) > 0.

We want to use Lemma 4.3 to define the Lebesgue extensions for L(t) with respect to
R; s and Sy(t). To that purpose we first have to identify the relevant evolution family.
Let g € L*([-1,0],U), u € L*([s,00),U), and s > 0. We set v(7) = u(r + s) for 7 > 0
and v(7) = g(7) for 7 € [-1,0). We further define Sg(t)h = h(- +t) and Ph = h|[—1,0]
for h € L*([~1,00),U) and t > 0. Clearly,

Ry su+ Sy(t—s)g = PSy(t— s)v. (4.9)
16



Lemma 4.3 then implies that L(¢)P, t > 0, are admissible observation operators for the
evolution family SgP(t — s) on L*([—1,00),U) with observation space X. We denote by
L(t) the corresponding Lebesgue extensions, and we set

_ L _
L(t) = ( (()t)) : D(L(t)) € L*([-1,00),U) — X, t>0.
We can now define the desired time varying control system:

B (b, 5)u = ((I)(t s ) (f Tr(t, 7)K(T )®(, s)udT) (f T (t, 7)L(T )RmudT>

0 0 R su
(4.10)

_ (cp(tos ) (f T (t, T)/C(OT)@(T, s)ud7’> (f Tic(t ])%.tcj;)RT,sudT) (4.11)

for t > s >0 and u € C([s,00),U) with u(s) = 0 in the first line and u € L2, ([s,00),U)
in the second line. We discuss this definition after the following result.

Proposition 4.4. Assume that (T, ®) is a time varying control system on U and X and
that the kernels k and l satisfy assumption (H) for X = Z and U = Z, respectively. Then
the pair (Tx 1, Px 1) defined in (4.2) and (4.11) is a time varying control system on U
and X.

Proof. Using the inequality in (2.2) and (H), we estimate
tr 0 2
/ 1K ()@ (0, s)ul|* do < / [/ |®(0 + 0, s)ul| dny.(o, 9)} do
s (s—o)v—1

t 0 )
< 52/ {/ || 2 ([s,0,0) dnii (0, 9)} do
s (s—o)v—1

< Btoci 1wl 225,00 (4.12)

for 0 < s <t < s+t and u € L2 ([s,00),U). Inequality (4.12) and Lemma 4.3 imply
that @ 1 (t, s) satisfies the estimate in (2.2). Let 0 < s < p <t, uy € C([s,0), X) with
up(s) = 0, and uy; € C([p,0), X) with ug(p) = ui(p) = 0. We define the continuous
function v as in (4.7). Then we obtain

B _ (I)(tvp)ul +T(t,p)q)(p75>’U,0
O(t, s)u =
(I)t,pul + SX (t - p)(I)p,suO + ﬂ,pq)(pa S)uO

= T(t,p)®(p, s)uo + B(t, p)us.
Hence (4.8) and (3.6) imply that

Oy p (¢, 5)u = (T(t, P2 (p, S)OU() + (1, p)ul)

. (f; Tic(t, PYK(D)[B(7, p)us + T (7, p)B(p, )] dT)
0
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T(t,p) [P Tx(p, 7 )IC(T)@(T, s)ug dr
(T )
+ (f; TK )(Rr U1 + SU(T — p>Rp,sU0)d7'>
Rt ot + Syt —p)R,suo
T (t, p) [ T (p, 7)L(T) Ry su0 dT
v (™ : )
— O 1 (t, p)us + (TK(t,P) [@(p, s)ug + [ €K<p’ T)K(7)®P(T, S)UodT])

+ TK<t7 p) fsp TK(pa T)L(T)R‘r,suodT + fpt TK(ta T>£(T)SU(T - p)Rp,suodT
SU(t - p)Rp,su[)

= Ok 1(t, p)ur + Tk 1(t, p)Px.(p, s)uo

The set of the above used w is dense in L? ([s,00),U), so that the assertion follows by
approximation. O

In view of Proposition 3.5(c) the third summand in (4.10) gives the delayed input to
the retarded problem solved by 7x. In order to interpret the other two summands of
Ok 1., we introduce the operators

O (t, s)u = D(t, s)u+ / t Tic (t, T)K(T)D(7, s)u dr (4.13)

fort > s>0and u € L} ([s,00),U). The proof Proposition 4.4 with L(¢) = 0 also yields
that (7, ®g) is a time varying control system on U and Xjy. It describes the effect of
the given input ® to the delay system solved by 7. To see this more clearly, we observe
that there are bounded control operators B, (t) € L(U, X) such that

~ t Y (T(t,0)B,(c)u(o)
. By (o)u ) n
= [T oot [ (T
foru € L2 ([s,00),u) and t > s > 0, due to (2.3). This limit exists in Dy locally uniformly
in ¢. Hence, (4.13), Propositions 2.1 and 2.2, Fubini’s theorem, and (3.6) yield

t
D (t,s)u= lim [ T(t,0)(" ) do

0
n—00
s

+hmhm ’TKtT % /TTU B" )dd

n—o0 k—o00

= lim | {T (t,0) + / T (t, VR ()T (7, 0) dT} (B"(“3“<‘7>) o

t
= lim [ Tx(t,o)(P"9")) do (4.14)

n—oo
S

for t > s >0 and u € L} ([s,00),U). Consequently, also @ can represented by the

‘approximative control operators’ B, (t).
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Let (z, f,g) € D and u € C([s,00),U) with u(s) = 0. Let I[I : X — A} be the canonical
projection. Then the above observations combined with (4.2) and (4.10) yield

t

U7k 1(t,s)(x, f,9) + Prr(t, s)u] = Tk (t, s)(?) + 71113)10 Tx(t, T)(Bn(ao)u(a)) do

+ / Tk (t, 7)L(T)(Rrsu+ Sy(T —s)g)dr. (4.15)

This formula can be extended to data () € Dy, g € C([—1,0],U), and u € C([s,0),U)
with u(s) = ¢(0) using Lemma 4.3. Replacing £(7) by £(7) the identity (4.15) is also
valid for (z, f,g) € X and u € L?*([s,00),U). In view of Proposition 3.5(c), formula (4.15)
gives (in an approximative sense) the mild solutions of (nLDS) without observations.

Finally, we suppose that (7, ®, ¥ F) is a time varying regular system. We introduce
the (canonical) input—output operators for Vg ; and @ j, by setting

Frr(s)u=C( )Pk (-, s)u (4.16)

for u € L? ([s,00),U) and s > 0, where C(t) was defined in Proposition 4.2. Theo-
rem 3.11 of Schnaubelt (2002b) shows that F(s) = C(-)®(-, s)u is a well-defined operator.
Moreover, Lemma 4.1, Proposition 2.2, and Lemma 4.3 imply that one can apply C(t)
to the second and third summand in the definition of ®x 1 (¢, s)u. Thus, the operators
Frr(s): LE ([s,00),U) — L ([s,00),Y) are well-defined. In view of (4.15) and (4.16),

Fr 1(s) are the input-output operators of (nDLS).

Theorem 4.5. Assume that ¥ = (T,V,®,F) is a time varying reqular system on
the spaces U, X, and Y with representing operators é(t) and that the kernels k
and 1 satisfy assumption (H) for X = Z and U = Z, respectively. Then Yk =
(Tkn, Vi 0, Pr . Fr ) defined in (4.2), (4.6), (4.11), and (4.16) is a regular system
on U, X, and Y. It is absolutely reqular if and only if F is absolutely reqular. Finally,
A(-) € L*(Ry, Ls(Y,U)) is an admissible feedback for Fi 1, if and only if it is an admis-
sible feedback for IF.

Proof. The operators Fg 1 (s) satisfy the estimate (2.9) for s > 0 due to Theorem 3.11 of
Schnaubelt (2002b), Lemma 4.1, Proposition 2.2, and Lemma 4.3. Next, for u given as
in (4.7), we obtain

FK7L(S)U = C(')CI)K,L(', t)u1 + C(')TIQL(', t)(I)K7L(t, S)UO
=Fr (t)ur + Vi () Pr (¢, s)uo,

due to Propositions 4.2 and 4.4. Thus (7x,1, Pr.r, Vi 1, Fr 1) is a well-posed time varying
system. To check the regularity of the system, we set u,(0) = z for 2 € U and o > 0. Let
s>0and 0 <t <t;. At first, we note that

1

s+t . s+t -
/ C(o) (‘P(UBS)“Z) do = ;/ C(o)®(0,s)u,do — 0
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as t \, 0 by the regularity of F(s). Lemma 4.1 and Proposition 2.2 allow to estimate

1

] Ie@EI RO @ dr < [ 1K), do

<ct sup [|B(o,s)u|? <t 2] (4.17)

s<o<s-+t
Here and below the constants ¢ > 0 only depend on ¥, the kernels k£ and [, and (possibly)
on t; > 0. Take functions «,, € C([s,00)) such that 0 < a,, < 1, ay(s) = 0, and «,(t) = 1
for t > s+ %, n € N, and set u,, = a,u,. Observe that u, — u, in L} ([s,00),U) so that

s+t . s+t
/ IZ(0) Ry it dor = Tim / 1L(0) Ry sty |2 do

s+t
< timsup [ Rt o < 2]
S

n—oo

This estimate and the same arguments as above imply that

1 s+t . .

;/S IC (o) (KT (MO =) (0) | dor < et 2. (4.18)
As aresult, (Tx 1, Px . Vi1, Fr ) is regular. Moreover, its absolute regularity is equiv-
alent to the absolute regularity of (7, ®, U, F) due to estimates (4.17) and (4.18). We
finally deduce from (4.11), Proposition 2.2, and Lemma 4.3 that

1(Frcr(s + to, s) = F(s + to, 8)AC)0] 2 (fssttoly)
< et (1K), $)AC)| 2 ossttojx) + 1L Res ALY L2 s110].))
< ctg ||l L2((s, s+t0],v)

for v € L2 ([s,00),Y), to > 0, and s > 0. Thus, the above estimate yields the assertion

loc

concerning the admissibility of A(+) if we take a sufficiently small ¢y > 0. U

5. THE FEEDBACK PROBLEM

We now assume that the hypotheses of Theorem 4.5 hold for an absolutely regular
system ¥ with an admissible feedback A(-). We want to solve the feedback problem (for-
mally) given by (nLDS) with u(t) = A(t)C(t)w(t). Asin (3.2) and (4.15) we are looking
for a mild solution of the feedback problem, namely for a function w € C([s, 00), X) such

that w € Ds(C(+)) and
w(t) =T(t,s)r + / T(t, 7)K(T)w, dT + lim T(t,T)Bn(T)A(T)é(T)w(T) dr

n—oo
S

+/ T(t,7)L(T)(Res[AC)C()w()] + Sy(r — s)g)dr, t>s5>0, (5.1)
w(s+0) = f(6), —1<6<0,



where (7) € Dy with C(-)f € L*([~1,0],Y) are given, the operators B, (t) were defined
before (2.3), and we set

g(0) :=u(s+0) = A(s +0)C(s + Ow(s+60) = A(s +0)C(s + ) f(s + 0) (5.2)

for 6 € [—1,0]. The function g is the prehistory of the ‘input’ u(t) = A(t)C (t)w( ) given
by the data of the closed loop system. Observe that we need the extensions L(t) (defined
after Lemma 4.3) since it is not clear whether g is continuous. Due to (2.3), the summand
involving B, (t) can be replaced by

t

Tim [ T(t,7)By(r)A(R)C(r)w(r) dr = ®(t, ) AC)C( (). (5.3)

In order to state our final result, we further set
(Bau)(t) == n®(t,t — L)u

fort > 0,n €N, and u € L? (R.,,U). This variant of the operators B, (t) is needed to
approximate the input—output operators, see Proposition 3.12 of Schnaubelt (2002b).

Theorem 5.1. Assume that X = (T, V, ®,F) is a time varying absolutely reqular system
on the spaces U, X, and Y with representing operators é(t) and an admissible feedback
A(r) € L®(Ry, L(Y,U)). Further suppose that the kernels k and 1 satisfy assumption
(H) for X = Z and U = Z, respectively. Let Xi 1 = (Txr, Vi, Prr,Frr) be defined

n (4.2), (4.6), (4.11), and (4.16) on U, X, and Y. Then there is a unique absolutely
regular system X% 1 = (Tiop, V.0, PR FR L) on U, X, and Y such that the observation
operators C(-) of Xk, are admissible for T, and

$2 1 (t5) = Sren(tys) + St s) (8 A?.)) %2, (t,9) (5.4)
= Nt s) + 32, (t ) (8 A(z-)) Srn(t,s) (5.5)

fort > s >0 (where we use an analogous notation as in (2.10)). In particular, the left
upper components of (5.4) and (5.5) yield

Tier(ts) = Tien(t, ) = @pcn(t, ) AC)WR 1 (s) = PR (1) A() Wk p(s). (5.6)
Moreover, we have

TKA,L(tJ S) = TK7L(t, 8) + (I)KJJ(t, S)A()(I — ]FK’L<S + to, S)A('))il\PK’L(S) (57)

Wi 1(s) = CO) T, 5) (5.8)
HCIDKL(t s)u = lim H/ TI?L (t,7) <( o HL(T)R”“) dr (5.9)
F3 L (s)u = C()OR 1+, 5) = lim C(- / T2, (B"“) T”OL( R”“) dr  (5.10)

for0 < s<t<s+ty tg >0, andu € L} (R,,U), where 1 : X — Xy is the canonical

projection, the first limit is taken in X locally uniformly in t > s, and the second one is
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2
taken in Lj, .

s given by

([s,00),Y). Finally, the unique mild solution w of the feedback problem (5.1)

(1) =0T s) (), t=s=0,

wt

for (7) € Dy with f(t) € D(C(t)) for a.e. t € [=1,0] and C(-)f € L*([~1,0],Y), where
g is given by (5.2).

Proof. By virtue of Theorem 4.5 most of the assertions follow from Theorem 4.4 and
Proposition 5.1 in Schnaubelt (2002b). It remains to verify the last assertion and the
approximation formulas for ®% ; and F% ; in (5.9) and (5.10). Let v € L} (R4, U) and
t > s > 0. Propositions 3.5 and 3.12 of Schnaubelt (2002b) show that

KIB,u(t) — ®(t, s)u and COKIBu — F(s)u, (5.11)

where the first limit is taken in X locally uniformly in ¢ > s and the second one is taken in
L? ([s,0),Y). As a consequence, one can replace in (4.14) and (4.15) the term B,,(c)u(o)
by (B,u)(c). Combining these facts with (4.11), we see that

T
Qp 1 (t,s)u = lim (/ Tx(t,7) [((Bnu)(T)) _|_( L(r (I;stu)] dr, Rtsu) ‘ (5.12)

Because of (5.11) and Lemma 4.1, the equation (4.14) (with B, (-)u replaced by B,u)
remains valid if one applies C(¢) and takes the limit in L7 ([s,o0),Y"). Hence,

COYPx(-,s)u = lim CORT (%)

From this equation and (4.16), C(t) = (C(t),0)T, (5.12), (4.2), we further deduce that
Froi(shu = CO)Pycu(-s)u = lim C()KTe (B"“+Zé')R"S“> . (5.13)
The formulas (5.12) and (5.13) together with the upper right component of (5.5) lead to
103, (1,5 =l KT (B TR 4 L 1102 (0, ) AC) (KT (7E0m)

— lim H[KTKL + B2, (t, 5)A(- )C(-)KZK’L} (B”“@é')R'*S“) , (5.14)
n—00 0
where the limits are locally uniform in ¢. On the other hand, —A(-) is an admissible feed-
back for E%L and (E%’L)*A = Y, by Proposition 5.4 of Schnaubelt (2002b). Applying
equation (4.12) of Schnaubelt (2002b) to this setting, we obtain

A
KT h = K Sh = O ( 5) A()C( KT h (5.15)

for h € L7 ([s,00),X). (We note that (4.12) in Schnaubelt (2002b) is formulated
for h contained in a dense subspace, but Proposition 2.2 allows to pass to general
h € L} ([s,00),X) by approximation.) Then equation (5.9) is a consequence of (5.14)
and (5.15). Moreover, (5.15), Proposition 2.2, and the first part of (5.10) yield

C(KTL = C()KIFE —F& , (5)A(-)C( )KL

Now the second equation in (5.10) can be shown as in (5.14) using (5.13).
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To construct a solution of (5.1), we take s > 0 and (7) € Dy with C()f €
L*([-1,0],Y). Define g by (5.2), w(t) = f(t —s) for s — 1 <t < s, and

(Vu[)/((tt))) = HTI(A,L(t7 s) <§) for t > s.

Then w € C([s — 1,00), X) and w € Ds(C(+)). Formulas (5.6), (4.15), and (5.8) yield

(110) =Tt 9(5) + i [ Tt (PN

s

+ / Tic(t, )E(7) R a(AC)C(Jw () + Sr(r — s)g) dr.

We denote by (w™(t), W"(t)) the right hand side of this equation without the limit and
set w"(t) = f(t —s) for s =1 <t <'s. Then Proposition 3.5(c) shows that W"(t) = w}
and that w" satisfies

w™(t) =T(t,s)xr + / T(t,7)K(T)w!dr + / T(t,7)Bp(7)A(T)C(T)w(r) dr

+ [ T RACOCC)] + Solr = sg)dr. t2 520,

Thus, w solves (5.1) since w"(t) tends to w(t) locally uniformly in ¢ > s — 1 as n — oc.
To prove uniqueness of solutions to (5.1), we suppose that w solves (5.1) with x = 0
and f = 0. Hence, g =0, w =0 on [s — 1, s], and using (5.3) we get

w(t) = / T(t, 7){K(T)w, + f(r)[A()é()w()]T} dr + ®(t,s)A()C(Hw (5.16)

for t > s. We can apply C(-) to (5.16). The admissibility of A(-) then implies
C(yw = [I = F(s +to, )AC)] ' COKT{K (Ywa + LOAC)Cw()a},

where we may take any to > 0 due to Lemma 4.2 of Schnaubelt (2002b). Proposition 2.2
and Lemma 4.3 allow us to estimate

IC()w| L2(is,siio)y) < ctd (1 (Dwall L2s,sito).x) + LA C ()Wl 2((s,st0],x) )

1.
< cto ||| oo (s 54201, x) + €t [[CC)wllp2(gs,stt0),v) -
Here and below the constants ¢ > 0 are independent of s > 0 and 0 < tg < t, where t; is
fixed. Taking a small ¢y > 0, we thus obtain
IC w22 ((s,sst01.y) < cto 1wl Lo (s,s0].x) (5.17)
Identity (5.16) combined with Lemma 4.3 and (5.17) yield

sgrglgas?{i-to ||w(t>H S CtO Hw||Loo([515+t0]7X) :

If we decrease tp > 0 once more, we see that w(t) =0 for s <t < s+ ty. This procedure

can be iterated with the same tg > 0, so that w = 0. O
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In order to illustrate the above results, we consider a parabolic problem with delays
and boundary control and observation, where we concentrate on a simplified case.

Example 5.2. We consider the controlled partial differential equation
Oww(t,x) = div(a(t,z)Vw(t,z)) + w(t — r(t),z) +w (t — p(t),x), x€Q, t>0,
(a(t,z)Vw(t,z)|v(z)) = us(t,z), =€ R, t>0, (5.18)
y(t,z) = c(t, )w(t,x), =€dQ, t=0,
w(t,r) = f(t,x), wi(t,z) =g (t,x), u(t,z’) =go(t,2"), —1<t<0, xe€, 2’ €.
Here Q is a bounded open subset of R® with a C? boundary 9 and outer unit normal
v(z), a(t,z) = [a;(t, )] € R™? with a;; = a;; € CLR,,CHQ)) with a(t,z) > nl for
some 7 > 0 and all (t,7) € Ry x Q, the functions r,p € C'([~1,00)) take values in
[—1,0] and 7/, p' < 1— 4 for some § > 0, ¢ € Co(Ry x 99), f, g1 € C([~1,0] x Q), and
g2 € C([=1,0] x 9Q). We set X = L*(Q), Y = L*(09), U = L*(Q) x L*(09), K(t)w, =
w(t—r(t)) forw: [—1,00) — X, and L(t)u; = uy(t—p(t)) for u = (ug,ug) : [-1,00) — U.
These delay operators satisfy hypothesis (H) due to Example 3.3. We further introduce

Ao(t)p = div(a(t, ) V),

D(Ao(t)) == {p € W**(Q) : (a(t,2)Vo(z)|v(x)) =0, z € IN}.

It is known that the operators Ag(t), t > 0, generate an evolution family T'(¢,s), t > s > 0,
on X such that

11 = Ao(0)°T(t, $)(I — Ao(s))’a]| < ce** max{L, (t — )} o] (5.19)

fort > s >0, a,p € [0,1], x € D(I — Ag(t))?), and some constants c,w > 0. We
further let X*_ be the completion of X with respect to the norm |[(I — Ag(t)) 7| for
v € [0,1]. We note that X", is isomorphic to the dual space of the domain D(Ag(t))
endowed with the graph norm of Ay(t). By (5.19) we can extend T'(t,s) to a bounded
operator T'(t,s) : X° 53 — D((I — Ag(t))*) for t > s and «, 3 € [0, 1]. Moreover, one can
extend Ag(t) to a bounded operator A_;(t) : X — X", see Section IL5 in Engel and
Nagel (2000). We further denote by ¢ =: N ()1 € W3/22(Q) the solution of the elliptic
boundary value problem

div(a(t,")V¢) =0 on Q, (a(t)Ve|lv) =1 on 09,

where 1 € L?(9Q). Tt is known that N (¢) maps L?(9S2) continuously into D((I — Ay(t))?)
for 0 < f < 3/4 and ¢t > 0. Finally, the map

(t8) = (I = Ao(t))*T (¢, )(I — A_s(s))N(s) € L(L*(09), X)

is continuous for + > s and bounded by ¢(3)e*(*=)(t — s)#=*~! where a > 0 and 0 <
B < 3/4, due to (5.19). See e.g. Section 9 of Acquistapace and Terreni (1999) and also
Lasiecka and Triggiani (2000) for these facts. We can now define the input map

O(t,s)u = / T(t,7)(I —A_1(7))N(T)uy(7) dr
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foru € L} .(Ry,U). As in Proposition 2.8 of Salamon (1987) one can show that a classical
solution of (5.18) without delays, observation, and f = ¢g; = g = 0 is given by w =
®(-,0)uz. The output map V¥ is given by W(s)p = C(-)T(+, s)p for the observation operator
C(t)p = c(t, ) tr o, where tr is the trace operator. Note that C(t) : D((I — Ao(t))*) = Y
is uniformly bounded, where o > 1/4. We finally define F(s) = C(-)®(-, s). Using (5.19)
and taking o € (1/4,1/2) and 5 € (1/2,3/4), it is then easy to verify that ¥ = (T, ®, ¥, F)
is an absolutely regular system. Since

IF(s + to, 8)ull 2(sstoly) < ety lullz(ssieo)y) -
every uniformly bounded, strongly measurable family A(¢) : Y — U is an admissible

feedback for X.
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