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ABSTRACT. We study dynamical properties of the dispersion management
equation with vanishing average dispersion. Our main result establishes the
stability of the set of ground states.

1. INTRODUCTION

In optical fiber cables information is transmitted by means of localized pulses,
which exist thanks to an interplay between dispersion and Kerr-type nonlinear
material properties. Depending on the sign of the dispersion, the pulses tend to
concentrate (the focusing case) or to smear out (defocusing case). Both effects
are undesirable: The first one leads to high concentration of energy, the second
one to interference between different signals. In the dispersion management
technique one uses fibers whose dispersion changes its sign periodically. The
average dispersion d,, > 0 has to be small or, ideally, to vanish. This idea has
turned out to be enormously successful, see [3], [4], [9], [11] and the references
therein. The existence of such localized pulses has rigorously been shown in
[12] and [8] for day > 0 and day = 0, respectively. Their stability is known so
far only for the case d,y > 0, [12], where additional regularity and compactness
properties are available. In this note we establish the stability of the set of these
dispersion management solitions also for vanishing average dispersion d,, = 0.

The signal in an optical fiber is transmitted via amplitude modulation of
a carrier wave. The amplitude w is then approximately determined by the
one-dimensional cubic nonlinear Schrodinger equation

10w (t) + d(t)Opew(t) + e |w(t)Pw(t) =0, tER, z€R, (1.1)

see [9], where we have normalized some constants. This equation is formulated
in a reference frame moving with the group velocity of the pulse, where t € R
actually denotes the position at the cable and z € R is the retarded time.
Nevertheless we keep the letters ¢ and x that are familiar from the Schrédinger
equation in quantum mechanics and other evolution equations. The dispersion
is given by d(t) = eday + do(t) for the average dispersion d,, > 0, the dispersion
profile dg : R — R with period L > 0 and with mean zero, and a small parameter
€ > 0. We thus work in the regime of strong dispersion management in which
amplitude and non-linearity are small compared to the varying dispersion dp,
but the nonlinear effects are still significant, see e.g. [11].
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One is mainly interested in localized standing wave solutions u(t,z) =
e“ly(z) of (1.1) and their stability properties, since such solitary waves are
the building blocks of signal transmission. These topics are hard to tackle in
non-autonomous problems such as (1.1). For this reason Gabitov and Turitsyn
proposed in [3] and [4] to study the averaged equation

. IR RN
10pu(t) + dayOzzu(t) + L/o T [Tosyu(t) Tpgsyu(t) Tpyu(®)] ds = 0, (1.2)

where t,x € R, T, = 7% is the free Schrodinger group, D(s) = fos do(r)dr,
and we have removed the parameter ¢ > 0 by scaling. It was shown in [12]
that for a solution u of (1.2) the function Tpyu(e~'t,-) is close to the solution
of (1.1) with initial value u(0,-) if ¢ > 0 is sufficiently small. We point out
that in order to resort to the autonomous equation (1.2) one has to pay the
considerable price of a nonlocal nonlinearity with a highly oscillating kernel.

For non-vanishing mean dispersion d,, > 0, standing wave solutions for (1.2)
have been constructed in [12]. They arise as ground states v of a constrained
minimization problem which is solved in H'(R) using the concentration—
compactness result Theorem 6.1 of [12]. These functions v are called dispersion
management solitons. In [12], it was also indicated that the set of ground states
is stable in H'(R) under the flow of (1.2), see p. 798. This fact follows from
the concentration—compactness result and arguments introduced in [1]. Finally,
standard boot—strapping implies the smoothness of the ground state.

The situation for the (in the applications most interesting) case of vanishing
mean dispersion d,, = 0 is quite different since here the natural state space is
L?(R). It is not clear how to use concentration-compactness arguments here,
and there is no apparent second derivative available which would give regularity
for free. Nevertheless for piecewise constant profiles dy and d,, = 0, it was
possible to show existence and smoothness of dispersion management solitons
in [8] and [10] with considerable efforts. By completely different methods, the
existence of ground states for d,, = 0 and a very large class of profiles dy was
established in [7], co-authored by one of us. We use certain compactness results
of [7] in the present paper. Moreover, for d,, > 0 every dispersion management
soliton v and its Fourier transform Fv decay exponentially, see [5] and also [2]
for a special case.

We work in the setting of [7] and write the nonlinearity in (1.2) as the integral

a(u(t), u(t), u(t)) = /R T [Tru(t) Toul®) Tou(t)) (r)dr

for weights 0 < ¢ € L2(R)NL*(R)NL*(R, 2 dt). The above integral is obtained
via the transformation 7 = D(s) from that of (1.2). As explained in Lemma 1.4
and Remarks 1.5 of [7], locally integrable dispersion profiles dy yield a density
1 with the above stated integrability properties if dy has finitely many sign
changes and dy' € L3(0,L). The latter is clearly satisfied if do is strictly
separated from 0.
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In this paper, we study the dispersion management equation with da, = 0
and the above general nonlinearity, i.e.,

10iu(t) + q(u(t), u(t),u(t)) =0, t €R,

w(0) = o, (1.3)

At first, Proposition 2.2 yields the global wellposedness of (1.3) in L?(R). This
result is based on regularity properties of the map ¢ shown in [7] and the preser-
vation of the L?norm under the flow. In Theorem 2.3 we then establish that
the set of ground states of (1.3) is stable in L?(R). As in [1] this fact is shown
by a contradiction argument which involves conserved quantities and a com-
pactness property of minimizing sequences. In contrast to the concentration—
compactness principle used in [1] or [12], we employ a compactness criterion
from [7] which says that a weakly converging series (f,), in L?(R%) converges
strongly if (f,)n and (Ffn)n satisfy a certain tightness property. In the next
section we further recall the necessary background mainly from [7].

2. RESULTS

We investigate the dispersion management equation (1.3) in L?(R) with mean
average 0 and the non-local nonlinearity

Q(Ula V2, U3) = / T - [TTUI T vo TTU?)] ¢(T)d7>
R

where T, = 7% is the free Schrodinger group. We mostly assume that the
density 1 satisfies

0 <4 € LA(R) N LYR) N LY(R, t* dt). (2.1)

We further need the functionals

Q(v1,v2,v3,v4) Z//Trm Trva Trvz Trvg dae o (7)dT = (v1, q(v2, v3,04))2,
R JR

Qlul = Qv = [ [ Tl arvrya

where (u,v)2 = [ Tvdz. Lemma B.1 of [7] yields the following basic property,
see also Lemma 1 of [6] and Remark 3.5 of [5]. (Abusing notation, we use the
term multi-linear even if the map is anti-linear in some variables.)

Proposition 2.1. Let 0 < ¢ € L*(R). Then q : L*(R)® — L*(R) and Q :
L*(R)* — C are bounded trilinear and four-linear maps, respectively.

This continuity result directly implies local wellposedness of (1.3), whereas
the global existence of solutions is a consequence of the preservation of the norm
in L?(R) as stated in the next proposition.

Proposition 2.2. Let 0 < 1 € L?(R). Then for each ug € L*(R) there

is a unique global solution u = u(-;ug) of (1.3) in C*(R,L*(R)). It satis-

fies ||lu(t)||2 = |luoll2 and Qu(t)] = Qluo] for all t € R. The map L*(R) —

C([~to, o], L*(R)); uo > u(-;ug), is Lipschitz on bounded sets for each ty > 0.
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Proof. The nonlinearity F : L2(R) — L?(R) given by F(v) = ¢(v,v,v) is Lip-
schitz on bounded sets due to Proposition 2.1. Hence, there exists a unique,
maximally defined solution of u € C1((—t,t2), L*(R)) of (1.3). If t; > 0 or
to > 0 is finite, then ||u(t)||2 becomes unbounded as t — t2 or ¢ — —t;, respec-
tively. ;(From (1.3) we deduce

%HU(@H% = 2Re(Ou(t), u(t))2 = —2Re(i{q(u(t), u(t), u(t)), u(t))2).

= —2Re(iQ[u(t)]) = 0.

This means that ||u(t)||2 = ||uo||2 for all ¢, and so solutions are global in time.
Observe that the derivative of v — Q[v] on L*(R) is given by (h, Q'[v])2 =
4ReQ(h,v,v,v), see Lemma 2.7 of [7]. Equation (1.3) thus implies

%Q[u(t)] — 4Re Q(Ayult), u(t), u(t), u(t))
= 4 Re(iq(u(t), u(t),u(t)), g(u(t), u(t),u(t)))2 =0

for all t € R; i.e., solutions preserve Q[].
Finally, the continuous dependence on initial data follows from the bound-
ednes of ¢ by integrating (1.3) in ¢ and using Gronwall’s inequality. O

If (2.1) holds, then Theorem 1.1 of [7] shows that for each A > 0 there
is a function v € L?*(R) maximizing the functional Q[v] under the condition
|vl|3 = A\. We call such maximizers ground states. Every ground state also
solves the stationary problem

wv = q(v,v,v) (2.2)

for some w > 0, see p.21 and p.22 in [7]. In particular, the problem (1.3)
admits the standing wave solution u(t, z) = e“!v(z). The functions v are called
dispersion management solitons.

It is easy to check that phase factors, translations and boosts of v do not
change Q[v] so that also the function given by o(z) = e(@T0%)y(z — ) is
a ground state for all zo,&),# € R. Hence, 0 solves (2.2) and w(t,z) =
ewtel(0+80%)y (2 — 24) satisfies (1.3). We thus obtain sets of ground states

Sy={ve LX) |[v]3 = A Q] =Py}, where Py :=sup{Q[f]||f]3= A}

for each A > 0. Observe that Sy is invariant under the flow of (1.3) in view of
the above observations.
Setting d(p, S)) = infyeg, || — v]|2, we now state our main stability result.

Theorem 2.3. If (2.1) holds and A\ > 0, then S is stable in L*(R); i.e., for
each € > 0 there is a § > 0 such that for each initial value ug € L*(R) with
d(ug, Sx) < § we obtain d(u(t;ug), Sx) < e for all t € R.

Proof. If the assertion was wrong, there would exist initial values o, € L?(R),
times t, € R and a number > 0 such that d(¢,,S)\) — 0 as n — oo, but
|u(tn; on) — v||2 > n for all n € N and v € S). We set u,, = u(ty; ¢n) and note

|, — v]l2 > 1 forall n €N and v e S). (2.3)
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For each € > 0 we obtain ng € N and v, € Sy such that ||, — v,|]2 < € if
n > ng. It follows

[llonllz = A2 = [llpnll = llvnll2| < e

for n > ng; i.e., an == A?||p, 5" tends to 1 as n — oo and the sequence (p,,)
is bounded in L?(R). Here and below, we may asume that ¢, # 0 for every
n € N. Using Proposition 2.1, we also deduce

‘Q[@n] - PA‘ = |Qlen] — Q[Un]’ <cllon —vnll2 < ce

for n > ng, so that Q[p,] — P\ as n — oo.

The conservation laws in Proposition 2.2 next imply that ||uy||2 = ||¢nll2 for
all n € N and that Qu,] = Q[py] tends to Py as n — oo. Setting w,, = Uy,
we then derive |w,||3 = A for all n € N and Q[w,] — P\ as n — oo, also
employing Proposition 2.1.

Since (wy,) is a maximizing sequence for Q[-] with [|w,|[3 = A, Propo-
sition 2.4 of [7] yields shifts z,,&, € R such that the functions given by
W (1) = & ®w, (x — x,) satisfy

lim sup/ |,|?dz =0 and lim sup/ | Fao, |2 dé =0,
|z]>R lEI>R

R—00 peN R—r00 peN

where F is the Fourier transform. Because of ||wy[|3 = A, there is a subsequence
(denoted by same index) which converges weakly in L?(R) to some . Due to
the above tightness property, Lemma A.1 in [7] now shows that w,, tends to w
even in L?(R). Using Q[w,] = Q[w,] and the continuity of Q, we infer that
Q[w] = Py. Since ||w||3 = ), the function @ thus belongs to S.

But, then also the maps v, = e*ign('“””)w(- + x,) are contained in Sy and
we estimate

[un = Onll2 <1 = an| luallz + lwn = Oall2 = [1 = an| [unll2 + [@n — @2

for n € N. In view of the above results, the right hand side vanishes as n — oo,
which contradicts (2.3). O
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