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Abstract. We study dynamical properties of the dispersion management
equation with vanishing average dispersion. Our main result establishes the
stability of the set of ground states.

1. Introduction

In optical fiber cables information is transmitted by means of localized pulses,
which exist thanks to an interplay between dispersion and Kerr-type nonlinear
material properties. Depending on the sign of the dispersion, the pulses tend to
concentrate (the focusing case) or to smear out (defocusing case). Both effects
are undesirable: The first one leads to high concentration of energy, the second
one to interference between different signals. In the dispersion management
technique one uses fibers whose dispersion changes its sign periodically. The
average dispersion dav ≥ 0 has to be small or, ideally, to vanish. This idea has
turned out to be enormously successful, see [3], [4], [9], [11] and the references
therein. The existence of such localized pulses has rigorously been shown in
[12] and [8] for dav > 0 and dav = 0, respectively. Their stability is known so
far only for the case dav > 0, [12], where additional regularity and compactness
properties are available. In this note we establish the stability of the set of these
dispersion management solitions also for vanishing average dispersion dav = 0.

The signal in an optical fiber is transmitted via amplitude modulation of
a carrier wave. The amplitude w is then approximately determined by the
one-dimensional cubic nonlinear Schrödinger equation

i∂tw(t) + d(t)∂xxw(t) + ε |w(t)|2w(t) = 0, t ∈ R, x ∈ R, (1.1)

see [9], where we have normalized some constants. This equation is formulated
in a reference frame moving with the group velocity of the pulse, where t ∈ R
actually denotes the position at the cable and x ∈ R is the retarded time.
Nevertheless we keep the letters t and x that are familiar from the Schrödinger
equation in quantum mechanics and other evolution equations. The dispersion
is given by d(t) = εdav +d0(t) for the average dispersion dav ≥ 0, the dispersion
profile d0 : R→ R with period L > 0 and with mean zero, and a small parameter
ε > 0. We thus work in the regime of strong dispersion management in which
amplitude and non-linearity are small compared to the varying dispersion d0,
but the nonlinear effects are still significant, see e.g. [11].
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One is mainly interested in localized standing wave solutions u(t, x) =
eiωtv(x) of (1.1) and their stability properties, since such solitary waves are
the building blocks of signal transmission. These topics are hard to tackle in
non-autonomous problems such as (1.1). For this reason Gabitov and Turitsyn
proposed in [3] and [4] to study the averaged equation

i∂tu(t) + dav∂xxu(t) +
1

L

∫ L

0
T−1D(s)[TD(s)u(t)TD(s)u(t)TD(s)u(t)] ds = 0, (1.2)

where t, x ∈ R, Tτ = eiτ∂
2
x is the free Schrödinger group, D(s) =

∫ s
0 d0(r) dr,

and we have removed the parameter ε > 0 by scaling. It was shown in [12]
that for a solution u of (1.2) the function TD(t)u(ε−1t, ·) is close to the solution
of (1.1) with initial value u(0, ·) if ε > 0 is sufficiently small. We point out
that in order to resort to the autonomous equation (1.2) one has to pay the
considerable price of a nonlocal nonlinearity with a highly oscillating kernel.

For non-vanishing mean dispersion dav > 0, standing wave solutions for (1.2)
have been constructed in [12]. They arise as ground states v of a constrained
minimization problem which is solved in H1(R) using the concentration–
compactness result Theorem 6.1 of [12]. These functions v are called dispersion
management solitons. In [12], it was also indicated that the set of ground states
is stable in H1(R) under the flow of (1.2), see p. 798. This fact follows from
the concentration–compactness result and arguments introduced in [1]. Finally,
standard boot–strapping implies the smoothness of the ground state.

The situation for the (in the applications most interesting) case of vanishing
mean dispersion dav = 0 is quite different since here the natural state space is
L2(R). It is not clear how to use concentration–compactness arguments here,
and there is no apparent second derivative available which would give regularity
for free. Nevertheless for piecewise constant profiles d0 and dav = 0, it was
possible to show existence and smoothness of dispersion management solitons
in [8] and [10] with considerable efforts. By completely different methods, the
existence of ground states for dav = 0 and a very large class of profiles d0 was
established in [7], co–authored by one of us. We use certain compactness results
of [7] in the present paper. Moreover, for dav ≥ 0 every dispersion management
soliton v and its Fourier transform Fv decay exponentially, see [5] and also [2]
for a special case.

We work in the setting of [7] and write the nonlinearity in (1.2) as the integral

q(u(t), u(t), u(t)) :=

∫
R
T−τ

[
Tτu(t)Tτu(t)Tτu(t)

]
ψ(τ)dτ

for weights 0 ≤ ψ ∈ L2(R)∩L4(R)∩L4(R, t2 dt). The above integral is obtained
via the transformation τ = D(s) from that of (1.2). As explained in Lemma 1.4
and Remarks 1.5 of [7], locally integrable dispersion profiles d0 yield a density
ψ with the above stated integrability properties if d0 has finitely many sign
changes and d−10 ∈ L3(0, L). The latter is clearly satisfied if d0 is strictly
separated from 0.
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In this paper, we study the dispersion management equation with dav = 0
and the above general nonlinearity, i.e.,

i∂tu(t) + q(u(t), u(t), u(t)) = 0, t ∈ R,
u(0) = u0,

(1.3)

At first, Proposition 2.2 yields the global wellposedness of (1.3) in L2(R). This
result is based on regularity properties of the map q shown in [7] and the preser-
vation of the L2–norm under the flow. In Theorem 2.3 we then establish that
the set of ground states of (1.3) is stable in L2(R). As in [1] this fact is shown
by a contradiction argument which involves conserved quantities and a com-
pactness property of minimizing sequences. In contrast to the concentration–
compactness principle used in [1] or [12], we employ a compactness criterion
from [7] which says that a weakly converging series (fn)n in L2(Rd) converges
strongly if (fn)n and (Ffn)n satisfy a certain tightness property. In the next
section we further recall the necessary background mainly from [7].

2. Results

We investigate the dispersion management equation (1.3) in L2(R) with mean
average 0 and the non-local nonlinearity

q(v1, v2, v3) =

∫
R
T−τ

[
Tτv1 Tτv2 Tτv3

]
ψ(τ)dτ,

where Tτ = eiτ∂
2
x is the free Schrödinger group. We mostly assume that the

density ψ satisfies

0 ≤ ψ ∈ L2(R) ∩ L4(R) ∩ L4(R, t2 dt). (2.1)

We further need the functionals

Q(v1, v2, v3, v4) =

∫
R

∫
R
Tτv1 Tτv2 Tτv3 Tτv4 dxψ(τ)dτ = 〈v1, q(v2, v3, v4)〉2,

Q[v] := Q(v, v, v, v) =

∫
R

∫
R
|Tτv|4 dxψ(τ)dτ,

where 〈u, v〉2 =
∫
R uv dx. Lemma B.1 of [7] yields the following basic property,

see also Lemma 1 of [6] and Remark 3.5 of [5]. (Abusing notation, we use the
term multi-linear even if the map is anti-linear in some variables.)

Proposition 2.1. Let 0 ≤ ψ ∈ L2(R). Then q : L2(R)3 → L2(R) and Q :
L2(R)4 → C are bounded trilinear and four-linear maps, respectively.

This continuity result directly implies local wellposedness of (1.3), whereas
the global existence of solutions is a consequence of the preservation of the norm
in L2(R) as stated in the next proposition.

Proposition 2.2. Let 0 ≤ ψ ∈ L2(R). Then for each u0 ∈ L2(R) there
is a unique global solution u = u(·;u0) of (1.3) in C1(R, L2(R)). It satis-
fies ‖u(t)‖2 = ‖u0‖2 and Q[u(t)] = Q[u0] for all t ∈ R. The map L2(R) →
C([−t0, t0], L2(R)); u0 7→ u(·;u0), is Lipschitz on bounded sets for each t0 > 0.
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Proof. The nonlinearity F : L2(R) → L2(R) given by F (v) = q(v, v, v) is Lip-
schitz on bounded sets due to Proposition 2.1. Hence, there exists a unique,
maximally defined solution of u ∈ C1((−t1, t2), L2(R)) of (1.3). If t1 > 0 or
t2 > 0 is finite, then ‖u(t)‖2 becomes unbounded as t→ t2 or t→ −t1, respec-
tively. ¿From (1.3) we deduce

d

dt
‖u(t)‖22 = 2 Re〈∂tu(t), u(t)〉2 = −2 Re(i〈q(u(t), u(t), u(t)), u(t)〉2).

= −2 Re(iQ[u(t)]) = 0.

This means that ‖u(t)‖2 = ‖u0‖2 for all t, and so solutions are global in time.
Observe that the derivative of v 7→ Q[v] on L2(R) is given by 〈h,Q′[v]〉2 =

4 ReQ(h, v, v, v), see Lemma 2.7 of [7]. Equation (1.3) thus implies

d

dt
Q[u(t)] = 4 ReQ(∂tu(t), u(t), u(t), u(t))

= 4 Re〈iq(u(t), u(t), u(t)), q(u(t), u(t), u(t))〉2 = 0

for all t ∈ R; i.e., solutions preserve Q[·].
Finally, the continuous dependence on initial data follows from the bound-

ednes of q by integrating (1.3) in t and using Gronwall’s inequality. �

If (2.1) holds, then Theorem 1.1 of [7] shows that for each λ > 0 there
is a function v ∈ L2(R) maximizing the functional Q[v] under the condition
‖v‖22 = λ. We call such maximizers ground states. Every ground state also
solves the stationary problem

ωv = q(v, v, v) (2.2)

for some ω > 0, see p.21 and p.22 in [7]. In particular, the problem (1.3)
admits the standing wave solution u(t, x) = eiωtv(x). The functions v are called
dispersion management solitons.

It is easy to check that phase factors, translations and boosts of v do not
change Q[v] so that also the function given by ṽ(x) = ei(θ+ξ0x)v(x − x0) is
a ground state for all x0, ξ0, θ ∈ R. Hence, ṽ solves (2.2) and w(t, x) =

eiωtei(θ+ξ0x)v(x− x0) satisfies (1.3). We thus obtain sets of ground states

Sλ = {v ∈ L2(R) | ‖v‖22 = λ, Q[v] = Pλ}, where Pλ := sup{Q[f ] | ‖f‖22 = λ}

for each λ > 0. Observe that Sλ is invariant under the flow of (1.3) in view of
the above observations.

Setting d(ϕ, Sλ) = infv∈Sλ ‖ϕ− v‖2, we now state our main stability result.

Theorem 2.3. If (2.1) holds and λ > 0, then Sλ is stable in L2(R); i.e., for
each ε > 0 there is a δ > 0 such that for each initial value u0 ∈ L2(R) with
d(u0, Sλ) < δ we obtain d(u(t;u0), Sλ) < ε for all t ∈ R.

Proof. If the assertion was wrong, there would exist initial values ϕn ∈ L2(R),
times tn ∈ R and a number η > 0 such that d(ϕn, Sλ) → 0 as n → ∞, but
‖u(tn;ϕn)− v‖2 ≥ η for all n ∈ N and v ∈ Sλ. We set un = u(tn;ϕn) and note

‖un − v‖2 ≥ η for all n ∈ N and v ∈ Sλ. (2.3)
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For each ε > 0 we obtain n0 ∈ N and vn ∈ Sλ such that ‖ϕn − vn‖2 ≤ ε if
n ≥ n0. It follows ∣∣‖ϕn‖2 − λ1/2∣∣ =

∣∣‖ϕn‖2 − ‖vn‖2∣∣ ≤ ε
for n ≥ n0; i.e., αn := λ1/2‖ϕn‖−12 tends to 1 as n→∞ and the sequence (ϕn)
is bounded in L2(R). Here and below, we may asume that ϕn 6= 0 for every
n ∈ N. Using Proposition 2.1, we also deduce∣∣Q[ϕn]− Pλ

∣∣ =
∣∣Q[ϕn]−Q[vn]

∣∣ ≤ c ‖ϕn − vn‖2 ≤ cε
for n ≥ n0, so that Q[ϕn]→ Pλ as n→∞.

The conservation laws in Proposition 2.2 next imply that ‖un‖2 = ‖ϕn‖2 for
all n ∈ N and that Q[un] = Q[ϕn] tends to Pλ as n→∞. Setting wn = αnun,
we then derive ‖wn‖22 = λ for all n ∈ N and Q[wn] → Pλ as n → ∞, also
employing Proposition 2.1.

Since (wn) is a maximizing sequence for Q[·] with ‖wn‖22 = λ, Propo-
sition 2.4 of [7] yields shifts xn, ξn ∈ R such that the functions given by
w̃n(x) = eiξnxwn(x− xn) satisfy

lim
R→∞

sup
n∈N

∫
|x|≥R

|w̃n|2 dx = 0 and lim
R→∞

sup
n∈N

∫
|ξ|≥R

|Fw̃n|2 dξ = 0,

where F is the Fourier transform. Because of ‖w̃n‖22 = λ, there is a subsequence
(denoted by same index) which converges weakly in L2(R) to some w̃. Due to
the above tightness property, Lemma A.1 in [7] now shows that w̃n tends to w̃
even in L2(R). Using Q[w̃n] = Q[wn] and the continuity of Q, we infer that
Q[w̃] = Pλ. Since ‖w̃‖22 = λ, the function w̃ thus belongs to Sλ.

But, then also the maps ṽn = e−iξn(·+xn)w̃(· + xn) are contained in Sλ and
we estimate

‖un − ṽn‖2 ≤ |1− αn| ‖un‖2 + ‖wn − ṽn‖2 = |1− αn| ‖un‖2 + ‖w̃n − w̃‖2
for n ∈ N. In view of the above results, the right hand side vanishes as n→∞,
which contradicts (2.3). �
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