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Abstract. We show that the elliptic operator Au = div(a∇u) + b · ∇u has the domain
D(A) = {u ∈ W 2,p(R) : b · ∇u ∈ Lp(R)} on Lp(Rd), 1 < p < ∞, and that A generates
a C0–semigroup on Lp(Rd). Here the diffusion coefficients a(x) are uniformly elliptic
and the drift coefficients b(x) can grow as |x| log |x|. Our approach relies on a Dore–
Venni type theorem on sums of non commuting operators in Lp(Rd). The description of
the domain implies global regularity of the density ρ of the invariant measure µ of the
corresponding transition probabilities (if µ exists). We prove that ρ ∈ W 2,q(Rd) for all
1 < q <∞.

1. Introduction

Regularity properties of elliptic operators with unbounded coefficients have been inten-

sively studied in recent years, mainly motivated by applications to stochastic processes

and stochastic differential equations. In the present paper we investigate the operator

Au = div(a∇u) + b · ∇u =: A0u+Bu

on Rd. The diffusion part A0 is supposed to be uniformly elliptic and the drift coefficients

b may be unbounded. We want to show that A on its minimal domain

D(A) = D(A0) ∩D(B) = {u ∈ W 2,p(Rd) : b · ∇u ∈ Lp(Rd)} (1.1)

generates a C0–semigroup T (·) in Lp(Rd), 1 < p < ∞; see Theorem 2.4. This fact has

been established in [15] for the prototypical example, the Ornstein–Uhlenbeck operator

AOUu(x) = tr(a0D
2u) + b0x · ∇u(x) (1.2)

(where a0 = aT0 > 0 and b0 are real matrices). We point out that the Ornstein–Uhlenbeck

semigroup is not analytic on Lp(Rd) if b0 6= 0, see [18] and also [11]. Thus the parabolic

equation

∂tu(t, x) = AOUu(t, x), t > 0, x ∈ Rd,

does not satisfy the standard parabolic regularity properties if one measures them in the

‘global norm’ of Lp(Rd), although the domain of AOU is ‘optimal.’

In fact, the Ornstein–Uhlenbeck semigroup is analytic on suitably weighted Lp spaces,

where the domain of the AOU becomes a weighted Sobolev space due to [15]. This result

can be extended to larger classes of drift terms b as established in [7] and [16], see also

the references therein. Nevertheless it is important to compute the domain D(A) of A in

the unweighted space Lp(Rd). In Section 3 we prove that a suitable embedding of D(A)

implies global regularity of the density ρ of the invariant measure µ for the transition
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probabilities corresponding to T (·) (assuming that µ exists). More precisely, we prove in

Theorem 3.1 that ρ ∈ W 2,q(Rd) for all 1 < q <∞, so that ρ and ∇ρ are continuous and

vanish at infinity.

It seems that global regularity of invariant measures has not been studied as thoroughly

as local regularity. We are only aware of a series of papers by Bogachev, Krylov, Röckner,

see e.g. [2], [4], and also [12]. The methods, assumptions and results of these papers are

quite different from ours. For recent results on local regularity we refer to [3], [4], and the

references therein.

In the recent paper [13], it was shown that the domain of A is indeed given by (1.1)

assuming globally Lipschitz continuity of b and an additional condition on the oscillation

of a at infinity. In our hypothesis (H), we weaken the assumptions on b allowing for

growth as |x| log |x|, cf. (2.3). Observe that if |b(x)| grows as |x|1+ε, ε > 0, then it can

happen that the semigroup does not even exist on Lp(Rd), see (2.4).

In [13] the authors reduced the problem to the case of bounded coefficients by a change

of variables. We proceed in a completely different way and apply a non–commutative

Dore–Venni type theorem from [17] to the operator sum A = A0 + B. As preliminary

steps we study the flow semigroup generated by B and the commutator of A0 and B.

Thereby we considerably improve the approach of [15].

Notation. Ck
b (resp., Ck

c ), k ∈ N0, is the space of k–times continuously differentiable

functions which are bounded together with their derivatives (resp., which have compact

support). Moreover, x · y = (x|y) denotes the standard scalar product in Rd, MT the

transpose of the matrix M , Db the Jacobian of a vector field b, and ∇f = (∂1f, · · · , ∂df)T

the gradient of a function f . The adjoint of an operator C is designated by C∗. We write

cd for a generic constant only depending on the space dimension d. We refer to [9] and

[19] for unexplained concepts from the theory of operator semigroups.

2. The generation result

We study the differential operator Au = div(a∇u)+b·∇u supposing that the coefficients

a = (aij) and b = (bi) satisfy

(H) a ∈ C1
b (Rd,Rd2), aij(x) = aji(x), α1I ≤ a(x) ≤ α2I, b ∈ C1(Rd,Rd), and

|(Db(x)a(x)ξ|ξ)| ≤ β1 , ξ ∈ Rd, |ξ| = 1, (2.1)∣∣∣ d∑
k=1

bk(x) ∂kaij(x)
∣∣∣ ≤ β2, i, j = 1, · · · , d, (2.2)

for x ∈ Rd and constants α1, α2, β1, β2 > 0.

Observe that (2.1) for aij(x) = δij is equivalent to the two–sided disspativity estimate

|(b(x)− b(y)|x− y)| ≤ β1 |x− y|2 , x, y ∈ Rd.

Our hypotheses are more general than those of [13], where (H) was assumed with (2.1)

replaced by the global Lipschitz continuity of b : Rd → Rd. Assumption (H) allows for

vector fields b growing a bit more than linearly, as seen by the example

a(x, y) =

(
α 0

0 β

)
, b(x, y) = ln r

(
−y/β
x/α

)
, r ≥ 1, (2.3)
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on R2. Here r =
√
x2 + y2, b is extended in a smooth way to R2, and α > β > 0.

It should be observed that the above functions a and b do not satisfy the inequal-

ity |(a(x)Db(x)ξ|ξ)| ≤ c |ξ|2 for x, ξ ∈ Rd with |ξ| = 1. Moreover, a and b1(x, y) =

ln r (−y, x)T violate (2.1).

If the drift grows as |x|1+ε for some ε > 0, then it can happen that A does not generate

a C0–semigroup on Lp(Rd), even if d = 1. As an example we consider the operator

Au = u′′ + bu′, b(x) = −sign(x) |x|1+ε, x ∈ R. (2.4)

We suppose that the domain of A is contained in Cb(R) (which is true if D(A) = {u ∈
W 2,p(R) : bu′ ∈ Lp(R)} as in Theorem 2.4). Assume for a contradiction that λ − A is

invertible in Lp(R) for some λ > 0 and p ∈ (1,∞). Take 0 ≤ f ∈ Cc(R) with f 6= 0.

Then there exists a function u ∈ D(A) such that (λ−A)u = f . Consider V (x) = x2 and

W (x) = ε (2λ)−1 + |x|−ε for |x| ≥ 1. Observe that (λ−A)V (x) ≥ 0 and (λ−A)W (x) ≤ 0

for sufficiently large |x|. Since u, f ∈ Cb(R), we can apply (the proof of) Theorem 3.20 of

[14] which says that u(x) ≥ δW (x) for large |x| and some δ > 0. This estimate contradicts

u ∈ Lp(R). Hence λ − A is not invertible for λ > 0 and A is not a generator on Lp(R).

Observe that in this case the ordinary differential equation (2.9) below has global solutions

in forward time.

We collect some simple consequences of (H). Estimate (2.1) immediately implies that

|Db(x)a(x) + a(x)Db(x)T | ≤ 2 β1 , x ∈ Rd. (2.5)

Since |a−1(x)| ≤ α−1
1 , the inquality (2.5) further yields

|a(x)−1Db(x) +Db(x)Ta(x)−1| ≤ 2 β1 α
−2
1 , x ∈ Rd. (2.6)

Similarly we can deduce that

| div b(x)| = | trDb(x)| = 1
2
| tr(Db(x) + a(x)Db(x)Ta(x)−1)|

≤ cd |Db(x) + a(x)Db(x)Ta(x)−1| ≤ cd β1 α
−1
1 (2.7)

for x ∈ Rd. The components of the matrix a(x)−1 are denoted by rij(x). Then we have

∂krij(x) = −[a(x)−1 (∂ka(x)) a(x)−1]ij and thus obtain∣∣∣ d∑
k=1

bk(x) ∂krij(x)
∣∣∣ =

∣∣∣ d∑
n,m=1

rim(x)rnj(x)
d∑

k=1

bk(x) ∂kamn(x)
∣∣∣ ≤ cd β2 α

−2
1 (2.8)

for x ∈ Rd and i, j = 1, · · · , d.

We next construct the translation semigroup induced by the vector field b. Let ϕ(t, x)

be the maximal local flow solving the ordinary differential equation

u′(t) = b(u(t)), t ∈ (t0(x), t1(x)), u(0) = x ∈ Rd. (2.9)

Then v(t) = ∂kϕ(t, x) satisfies the variational equation

v′(t) = Db(ϕ(t, x))v(t), t ∈ (t0(x), t1(x)), v(0) = ek, (2.10)

where ek is the k–th unit vector in Rd.

Lemma 2.1. If (H) holds, then ϕ(t, x) exists for all t ∈ R and x ∈ Rd. Moreover,

|∂k ϕ(t, x)| ≤Meγ |t| for t ∈ R, x ∈ Rd, and some constants M > 0 and γ ∈ R.
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Proof. Set Φ(t) = (a(ϕ(t, x))−1b(ϕ(t, x))|b(ϕ(t, x))) for a fixed x ∈ Rd and t ∈ [0, t1(x)).

Then (2.9) implies

Φ′(t) =
∑
i,j,k

(∂krij(ϕ(t, x))) bk(ϕ(t, x)) bi(ϕ(t, x)) bj(ϕ(t, x))

+ ([a(ϕ(t, x))−1Db(ϕ(t, x)) +Db(ϕ(t, x))Ta(ϕ(t, x))−1]b(ϕ(t, x))|b(ϕ(t, x))).

Estimates (2.8) and (2.6) and assumption (H) thus yield

Φ′(t) ≤ c |b(ϕ(t, x))|2 ≤ c α2 Φ(t), hence Φ(t) ≤ Φ(0) ecα2t

for a constant c > 0 depending on d, α1, β1, β2. Employing (H) once more, we obtain

|b(ϕ(t, x))|2 ≤ α2Φ(t) ≤ α2

α1

|b(x)|2 ecα2t

for x ∈ Rd and t ∈ [0, t1(x)). This estimate further implies that

d
dt
|ϕ(t, x)|2 = 2 (b(ϕ(t, x))|ϕ(t, x)) ≤

√
α2/α1 |b(x)|e

1
2
tcα2 (1 + |ϕ(t, x)|2).

Integrating this inequality and using Gronwall’s lemma, we see that |ϕ(t, x)| remains

bounded as t → t1(x) if t1(x) < ∞; hence t1(x) = ∞. One verifies that t0(x) = −∞ by

reversing time.

To prove the second assertion, we let Ψ(t) = (a(ϕ(t, x))−1∂kϕ(t, x)|∂kϕ(t, x)) for t ∈ R
and x ∈ Rd. As above we deduce Ψ′(t) ≤ γ′Ψ(t) and thus

|∂kϕ(t, x))|2 ≤ α2Ψ(t) ≤ α2Ψ(0) eγ
′|t| = α2rkk(x) eγ

′|t| ≤ α2

α1

eγ
′|t|

for t ∈ R, x ∈ Rd, and some constant γ′ > 0. �

Let p ∈ (1,∞) and p′ = p/(p− 1). In view of the above lemma we can define

(S(t)f)(x) = f(ϕ(t, x)), f ∈ Lp(Rd), x ∈ Rd, t ∈ R.

Lemma 2.2. Assume that (H) holds. Then S(·) defined above is a positive C0–group on

Lp(Rd) and W 1,p(Rd) satisfying ‖S(t)‖Lp ≤ ewp|t| and ‖S(t)‖W 1,p ≤ Mec|t| for t ∈ R, 1 <

p <∞, and some constants M ≥ 1, c ∈ R, wp = cdβ1α
−1
1 p−1. Its generator B on Lp(Rd) is

given by Bf = g on D(B) = {f ∈ Lp(Rd) : ∃ g ∈ Lp(Rd) s.t. 〈g, φ〉 = −〈f, div(φb)〉 ∀φ ∈
C1
c (Rd)}, where the brackets denote the duality of Lp–Lp

′
. In particular, if f ∈ W 1,p(Rd)

and b ·∇f ∈ Lp(Rd), then f ∈ D(B) and Bf = b ·∇f . Moreover, C1
c (Rd) is a core for B.

Proof. (1) Observe that x = ϕ(−t, ϕ(t, x)) for t ∈ R and x ∈ Rd and that Dxϕ(t, x) is a

fundamental solution of (2.10). Thus a change of variables, the Abel–Liouville formula,

and (2.7) yield∫
Rd

|S(t)f(x)|p dx =

∫
Rd

|f(y)|p | det(Dyϕ(−t, y))| dy

=

∫
Rd

|f(y)|p exp
(∫ −t

0

(div b)(ϕ(s, y)) ds
)
dy

≤ ecdβ1α
−1
1 |t| ‖f‖pp
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for f ∈ Lp(Rd) and t ∈ R. It is then easy to check that S(t) is a positive C0–group on

Lp(Rd) which satisfies the required estimate. Moreover,

∂k(S(t)f)(x) = ∂kf(ϕ(t, x)) =
d∑
j=1

S(t)(∂jf)(x) ∂kϕj(t, x)

for f ∈ C1
c (Rd). Combined with Lemma 2.1, this identity implies that S(t) is also a

C0–group on W 1,p(Rd) which is exponentially bounded uniformly in p.

(2) Let B be the generator of S(t) on Lp(Rd). We set B̃f := g for f ∈ D(B̃) :=

{f ∈ Lp(Rd) : ∃ g ∈ Lp(Rd) s.t. 〈g, φ〉 = −〈f, div(φb)〉 ∀φ ∈ C1
c (Rd)}. In order to prove

B = B̃, we first observe that C1
c (Rd) is contained in D(B) and Bf = b·∇f for f ∈ C1

c (Rd).

Because C1
c (Rd) is invariant under S(t), the space C1

c (Rd) is even a core for B. We can

thus approximate a given f ∈ D(B) with respect to the graph norm of B by fn ∈ C1
c (Rd).

Using this approximation, one easily derives that B ⊂ B̃.

(3) So it remains to check that B̃ −w is injective for some w > wp. If f belongs to the

kernel of B̃ − w, then

0 = 〈(B̃ − w)f, φ〉 = −〈f, wφ+ (div b)φ+ b · ∇φ〉

for φ ∈ C1
c (Rd). Since −b satisfies the same assumptions as b, parts (1) and (2) show

that B′g = −b · ∇g defined on C1
c (Rd) has a closure in Lp

′
(Rd) which is a generator. The

operator −b · ∇ − div b is a bounded perturbation of B′ due to (2.7), so that C1
c (Rd) is

also a core for the closure of −b · ∇ − div b on Lp
′
(Rd). Taking a sufficiently large w, we

thus deduce f = 0. �

We further define

A0f = div(a∇f), A1 = I − A0, Bw = wI −B, (2.11)

where D(A0) = W 2,p(Rd) and w is a fixed number larger than the growth bounds of S(·)
on Lp(Rd) and W 1,p(Rd) for all 1 < p < ∞. In the following lemma we do not suppose

any properties of the coefficients a and b besides being sufficiently smooth.

Lemma 2.3. Let f be a test function f , a ∈ C2(Rd,Rd2), and b ∈ C2(Rd,Rd). Then

[A1, Bw]f = (A0B −BA0)f = div{[aDbT +Dba− (div b)a− (b · ∇)a]∇f}+ (div b)A0f.

Proof. The assertion is a consequence of the following calculations.

[A1, Bw]f =
∑
i,j,k

(
∂i[aij∂j(bk∂kf)]− bk∂ik(aij∂jf)

)
=
∑
i,j,k

∂i[(aij(∂jbk) + (∂jbi)ajk) ∂kf)]−
∑
i,j,k

∂i((∂jbi)ajk∂kf)

+
∑
i,j,k

∂i(aijbk∂jkf)−
∑
i,j,k

bk∂ik(aij∂jf)

= div[(aDbT +Dba)∇f ]−
∑
i,j,k

(∂ijbi)ajk∂kf −
∑
i,j,k

(∂jbi)∂i(ajk∂kf)

+
∑
i,j,k

∂i(aijbk∂jkf)−
∑
i,j,k

bi∂ij(ajk∂kf)
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= div((aDbT +Dba)∇f)−
∑
j,k

(∂j(div b)) ajk∂kf −
∑
i,j,k

∂j(bi∂i(ajk∂kf))

+
∑
i,j,k

∂j(ajkbi∂ikf)

= div((aDbT +Dba)∇f)−
∑
j,k

∂j((div b)ajk∂kf)−
∑
i,j,k

∂j(bi(∂iajk)∂kf)

+ (div b)A0f. �

We now come to our first main result where we show that A with minimal domain

generates a C0–semigroup T (·) on Lp(Rd). We recall that in general T (·) is not analytic.

In fact, the map t 7→ T (t) is even nowhere continuous in operator norm in the special

case of the Ornstein–Uhlenbeck operator AOU given by (1.2), see [11], [18].

Theorem 2.4. Assume that (H) holds and let 1 < p < ∞. Then the operator Af =

div(a∇f) + b · ∇f with domain D(A) = {f ∈ W 2,p(Rd) : b · ∇f ∈ Lp(Rd)} generates

a positive C0–semigroup T (·) on Lp(Rd) such that ‖T (t)‖Lp ≤ ewpt, where wp is given

by Lemma 2.1. Moreover, the semigroups obtained on Lp(Rd) and Lq(Rd) coincide on

Lp(Rd) ∩ Lq(Rd) for 1 < p, q <∞.

Proof. We use the notation introduced in (2.11). We want to employ Corollary 2 of [17]

in order to show that A − κ with the asserted domain D(A) is invertible in Lp(Rd), for

some κ > 0. Observe that −A1 and −Bw generate positive, contractive C0–semigroups

on Lp(Rd) and that the semigroup generated by −A1 is analytic for every 1 < p < ∞.

Moreover, A1 is self adjoint on L2(Rd). Using the transference principle (see [6, §4] and

[5, Thm.5.8]) and Riesz–Thorin interpolation, we see that there are angles ϕA ∈ (0, π/2)

and ϕB > π/2 such that ϕA + ϕB < π and

‖(λ+ A1)−1‖ ≤ c

1 + |λ|
, ‖(µ+Bw)−1‖ ≤ c

|µ|
, ‖Ais1 ‖ ≤ ceϕA|s| , ‖Bis

w ‖ ≤ ceϕB |s|

for s ∈ R, | arg λ| < π − ϕA, | arg µ| < π − ϕB, and a constant c > 0. (We refer to [1] for

an introduction to imaginary powers of sectorial operators.) In order to apply [17, Cor.2],

it thus remains to establish the commutator estimate

‖A1(λ+ A1)−1 (A−1
1 (µ+Bw)−1 − (µ+Bw)−1A−1

1 )‖ ≤ c̃

|λ|1/2 |µ|2
(2.12)

for | arg λ| < π − ϕA, | arg µ| < π − ϕB, and a constant c̃. We denote the operator in

(2.12) by C(λ, µ). Formally, (2.12) follows in a straightforward way from Lemma 2.3 and

our assumptions. However, due to lack of regularity it takes some effort to relate C(λ, µ)

with the commutator of A1 and Bw.

To that purpose, we first approximate the coefficients aij and bi locally in C1(Rd) by

a
(k)
ij , b

(k)
i ∈ C2(Rd), k ∈ N. The corresponding differential operators are designated by

A
(k)
0 , B(k), A

(k)
1 , and B

(k)
w . Standard cut–off and mollifying procedures allow us to define

bounded operators Tn : W 2,p(Rd) → W 2,p(Rd) which map W 2,p(Rd) into test functions

and converge strongly to the identity in W 2,p(Rd) as n → ∞. We now introduce the

functions

ukn = A−1
1 [A

(k)
1 B(k)

w −B(k)
w A

(k)
1 ]TnA

−1
1 f
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for f ∈ D(B). Lemma 2.3 shows that

ukn = A
−1/2
1 A

−1/2
1 div[{a(k)(Db(k))T +Db(k) a(k) − (div b(k))a(k) −

∑
ib

(k)
i ∂ia

(k)}∇TnA−1
1 f ]

+ A−1
1 (div b(k))A

(k)
0 TnA

−1
1 f.

Since ∂k(A
−1/2
1 )∗ = ∂k(A

∗
1)−1/2 is bounded on Lp

′
(Rd), we can extend A

−1/2
1 div (defined

on W 1,p(Rd)d, say) to a bounded operator U : Lp(Rd)d → Lp(Rd). Thus the limit of ukn
as k →∞ exists in Lp(Rd) and is equal to

un := A
−1/2
1 U [{aDbT +Dba− (div b)a−

∑
ibi∂ia}∇TnA

−1
1 f ] + A−1

1 (div b)A0TnA
−1
1 f.

Because of (2.5), (2.7), and (H), the functions in the brackets {· · · } and div b are bounded.

Therefore we obtain

u := lim
n→∞

un = A
−1/2
1 U [{aDbT +Dba− (div b)a+

∑
ibi∂ia}∇A

−1
1 f ] + A−1

1 (div b)A0A
−1
1 f

in Lp(Rd), and the crucial estimate

‖A1/2
1 u‖p ≤ c′ ‖f‖p (2.13)

holds for a constant c′ (only depending on p and the constants in (H)). We further define

Ckn(λ, µ) = A1(λ+ A1)−1(µ+Bw)−1A−1
1 [A

(k)
1 B(k)

w −B(k)
w A

(k)
1 ]TnA

−1
1 (µ+Bw)−1.

For a given function g ∈ Lp(Rd) we now set f = (µ + Bw)−1g ∈ D(B). By the above

results, Ckn(λ, µ)g converges in Lp(Rd) to

C̃(λ, µ)g := A
1/2
1 (λ+ A1)−1A

1/2
1 (µ+Bw)−1A

−1/2
1 A

1/2
1 u

as first k → ∞ and then n → ∞. Using D(A
1/2
1 ) = W 1,p(Rd), Lemma 2.2, and estimate

(2.13), we arrive at

‖C̃(λ, µ)g‖ ≤ c′′

|λ|1/2 |µ|
‖f‖p ≤

c c′′

|λ|1/2 |µ|2
‖g‖p (2.14)

for | arg λ| < π − ϕA, | arg µ| < π − ϕB, and a constant c′′.

On the other hand, for a test function φ we compute

〈ukn, A∗1φ〉 = 〈A1ukn, φ〉 = 〈[B(k)A
(k)
1 − A

(k)
1 B(k)]TnA

−1
1 f, φ〉

= −〈A(k)
1 TnA

−1
1 f, div(φb(k))〉 − 〈b(k) · ∇TnA−1

1 f, div((a(k))T∇φ)〉,

where we use the Lp–Lp
′

duality. Letting k →∞, we deduce

〈un, A∗1φ〉 = −〈A1TnA
−1
1 f, div(φb)〉 − 〈b · ∇TnA−1

1 f, A∗1φ〉,

Now we can take the limit as n→∞, and obtain

〈u,A∗1φ〉 = −〈f, div(φb)〉 − 〈b · ∇A−1
1 f, A∗1φ〉 = 〈Bf, φ〉 − 〈b · ∇A−1

1 f, A∗1φ〉,

because of f ∈ D(B). For ψ = A∗1φ this identity yields

〈u, ψ〉 = 〈A−1
1 Bf, ψ〉 − 〈b · ∇A−1

1 f, ψ〉.

Since test functions are a core for A∗1, the set of the functions ψ is dense in Lp
′
(Rd).

Consequently, b · ∇A−1
1 f ∈ Lploc(Rd) belongs to Lp(Rd). Lemma 2.2 now shows that

A−1
1 f ∈ D(B), and thus

u = A−1
1 Bf −BA−1

1 f
7



for f ∈ D(B). This equality implies

C̃(λ, µ)g = A1(λ+ A1)−1(µ+Bw)−1[BwA
−1
1 − A−1

1 Bw](µ+Bw)−1g = C(λ, µ)g,

i.e., (2.14) is in fact the required estimate (2.12).

Thus Corollary 2 of [17] shows that ν + A1 + Bw = ν + 1 + w − A with domain

D(A0) ∩D(B) is invertible on Lp(Rd) for some ν > 0. So A = A0 + B has the required

domain due to Lemma 2.2. Since −A1 and −Bw generate contractive C0–semigroups, the

remaining assertions follow, e.g., from Trotter’s product formula, [9, Cor.III.5.8]. �

3. Invariant measures

In this section we assume that (H) holds. We want to construct a semigroup on Cb(Rd)

corresponding to A. Let 0 ≤ f ∈ Cb(Rd) and r > 0. We consider the parabolic problem

∂tu(t, x) = Au(t, x), |x| < r, t > 0,

u(t, x) = 0, |x| = r, t > 0,

u(t, x) = f(x), |x| ≤ r.

Due to the maximum principle, the classical solutions ur converge monotonically to a

positive function u on R+ × Rd as r → ∞, and we have ‖u‖∞ ≤ ‖f‖∞. One can

now check that there is a semigroup of positive contractions T∞(t) on Cb(Rd) such that

u(t, x) = (T∞(t)f)(x) is a classical solution of

∂tu(t, x) = Au(t, x), t > 0, x ∈ Rd,

for f ∈ Cb(Rd). The semigroup is given by

T∞(t)f(x) =

∫
Rd

p(t, x, y)f(y) dy (3.1)

for a positive function p being continuous in (t, x) ∈ (0,∞)×Rd for a.e. y ∈ Rd. Moreover,

the mapping R+ 3 t 7→ T∞(t)f(x) is continuous uniformly for x in compact subsets of

Rd, where f ∈ Cb(Rd). Finally, we can extend T∞(t) to a contraction on L∞(Rd), which

has the strong Feller property (i.e., it maps L∞(Rd) into Cb(Rd)), and T∞(t) is irreducible

(i.e., T∞(t)f(x) > 0 for 0 ≤ f ∈ Cb(Rd) with f 6= 0). The representation (3.1) also

shows that T∞(t) preserves bounded pointwise convergence. These facts have been shown

in [14, §4] for operators in non–divergence form with coefficients being locally Hölder

continuous. The arguments given there can easily be adapted to our setting replacing

Schauder estimates by estimates in Sobolev spaces. A Borel probability measure µ on Rd

is called invariant for T∞(·) if ∫
Rd

T∞(t)f dµ =

∫
Rd

f dµ (3.2)

for all bounded Borel functions f . An invariant measure for T∞(·) exists if e.g.

lim sup
|x|→∞

(tr a(x) + b(x) · x) < 0,

see e.g. [10], [14, Cor.6.6]. We want to establish gobal regularity properties of the density

of an invariant measure µ, assuming that µ exists. Let us first check that indeed dµ = ρdx

for some 0 < ρ ∈ L1(Rd).
8



Since T∞(·) is irreducible, the support of an invariant measure is equal to Rd. We know

that 0 ≤ T∞(t)1 ≤ 1. If there were a point x0 ∈ Rd where T∞(t)1(x0) < 1, then there

would exist a number δ ∈ [0, 1) and an non-empty, open set O ⊆ Rd such that T∞(t)1 ≤ δ

on O. But this fact leads to the contradiction

1 =

∫
Rd

1 dµ =

∫
Rd

T∞(t)1 dµ ≤ µ(Rd \O) + δµ(O) < 1,

because of the invariance of µ. As a result, T∞(t)1 = 1 for t ≥ 0. We now define

P (t, x,Γ) =

∫
Γ

p(t, x, y) dy = T∞(t)1Γ(x)

for a Borel set Γ ⊂ Rd, t ≥ 0, x ∈ Rd. It is easy to check that P (t, x, ·) is a Markovian

transition function with corresponding transition semigroup T∞(·) on Cb(Rd) in the sense

of [8]. Moreover, Proposition 2.1.1 in [8] implies that T∞(·) is stochastically continuous.

Then Hasminskii’s and Doob’s Theorem, see Proposition 4.1.1 and Theorem 4.2.1 in [8],

show that µ has a strictly positive density ρ and that µ is the unique invariant measure.

We next want to prove that T∞(t)f coincides with T (t)f for f ∈ Lp(Rd) ∩Cb(Rd). We

define A∞u = Au for u ∈ D(A∞) = {u ∈
⋂
p>1W

2,p
loc (Rd) : u,Au ∈ Cb(Rd)}. Then the

Laplace transform of T∞(·) (defined pointwise) is the resolvent R(λ,A∞) for Reλ > 0

by Propositions 5.1 and 5.7 of [14]. (Here one needs that T∞(t)1 = 1; the arguments in

[14] work again in our setting.) Let f ∈ Cc(Rd). Temporarily, we denote the generator

of T (·) = Tp(·) on Lp(Rd) by Ap, 1 < p < ∞. Due to Theorem 2.4 the function u =

R(w,Ap)f does not depend on p and belongs W 2,p(Rd) for all 1 < p < ∞, so that

u ∈ Cb(Rd). Since further Au = Apu = wu − f ∈ Cb(Rd), we conclude that u ∈ D(A∞)

and A∞u = Au = Apu. Hence, the resolvents for A∞ and Ap coincide on Cc(Rd), so that

Tp(t)f = T∞(t)f , t ≥ 0, by the uniqueness of the Laplace transform. This equality thus

holds for all f ∈ Lp(Rd) ∩ Cb(Rd). So we drop the subscripts p and ∞.

We next show that ρ ∈ W 2,p(Rd) for all p <∞. Hence, ρ is continuously differentiable

and ρ(x), ∇ρ(x) tend to 0 as |x| → ∞ by Sobolev’s embedding theorem. In Theorem 1.1

of [2] it was proved that ρ ∈ W 1,2(Rd) supposing global Lipschitz continuity of akl and

b ∈ L2(µ) (where A is written in non–divergence form).

Theorem 3.1. Assume that (H) holds and that T (t) possesses an invariant measure µ.

Then µ is unique and has a density ρ which belongs to all W 2,q(Rd), 1 < q < ∞. In

particular, ρ ∈ C1
0(Rd).

Proof. By the above remarks, we only have to show that the density 0 ≤ ρ ∈ L1(Rd) in

fact belongs to W 2,q(Rd) for each 1 < q < ∞. Take f ∈ Lp(Rd) ∩ Cb(Rd), p > d/2, and

w > 0 as in the previous section. Using (3.2), we calculate∫
Rd

R(w,A)f(x) ρ(x) dx =

∫
Rd

∫ ∞
0

e−wtT (t)f(x) ρ(x) dt dx

=

∫ ∞
0

e−wt
∫

Rd

T (t)f(x) ρ(x) dx dt

=
1

w

∫
Rd

f(x)ρ(x) dx.

9



Thus Theorem 2.4 and Sobolev’s embedding theorem yield∣∣∣ ∫ fρ dx
∣∣∣ ≤ ‖wR(w,A)f‖∞ ‖ρ‖1 ≤ c ‖f‖p .

This means that ρ ∈ Lp′(Rd), where p′ = p/(p− 1). So we obtain∫
T (t)f ρ dx =

∫
fρ dx

for all f ∈ Lp(Rd). Since the weak generator of a C0–semigroup is equal to its generator,

see e.g. [19, Thm.2.1.3], the above equality implies ρ ∈ D(A∗). Let f ∈ D(A) and

g ∈ D := {v ∈ W 2,p′(Rd) : b · ∇v ∈ Lp′(Rd)}. By Lemma 2.2 there are gn ∈ C1
c (Rd) such

that gn → g and b · ∇gn → b · ∇g in Lp
′
(Rd). So we obtain

〈Af, g〉 = 〈A0f, g〉+ lim
n→∞
〈b · ∇f, gn〉

= 〈f, A∗0g〉 − lim
n→∞
〈f, b · ∇gn + div(b)gn〉

= 〈f, A∗0g − b · ∇g − div(b)g〉.

Consequently, the adjoint A∗ extends the operator A′ := A∗0− b ·∇−div(b) defined on D.

But A′ is a bounded perturbation of a generator thanks to (2.7) and Theorem 2.4. This

shows that A′ = A∗ and D(A∗) = D ⊂ W 2,p′(Rd). Hence ρ ∈ Lq(Rd) with q = dp′/(d−2p′)

if d > 2p′, and thus ρ ∈ Lr(Rd) for 1 ≤ r ≤ q. If d ≤ 2p′, we have ρ ∈ Lr(Rd) for all

1 ≤ r ≤ q < ∞. In both cases we obtain as above ρ ∈ W 2,r(Rd) for 1 < r ≤ q. In the

first case we can iterate the above procedure, replacing p′ by q. In finitely many steps we

arrive at the assertion. �

Remark 3.2. The above argument can be used whenever one knows suitable properties

of D(A) for the generator A of the transition semigroup on Lp(Rd). For instance, we

obtain ρ ∈ Lp′(Rd) if D(A) ↪→ L∞(Rd).
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