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ABSTRACT. We show that the elliptic operator Au = div(aVu) +b- Vu has the domain
D(A) = {u € W2P(R) : b- Vu € LP(R)} on LP(R%), 1 < p < oo, and that A generates
a Cp—semigroup on LP(RY). Here the diffusion coefficients a(z) are uniformly elliptic
and the drift coefficients b(x) can grow as |z|log|z|. Our approach relies on a Dore—
Venni type theorem on sums of non commuting operators in LP(R?). The description of
the domain implies global regularity of the density p of the invariant measure u of the
corresponding transition probabilities (if x4 exists). We prove that p € W24(R?) for all
1< g <.

1. INTRODUCTION

Regularity properties of elliptic operators with unbounded coefficients have been inten-
sively studied in recent years, mainly motivated by applications to stochastic processes
and stochastic differential equations. In the present paper we investigate the operator

Au = div(aVu) +b- Vu =: Agu + Bu

on R?. The diffusion part Ay is supposed to be uniformly elliptic and the drift coefficients
b may be unbounded. We want to show that A on its minimal domain

D(A) = D(Ag) N D(B) = {u € W**(R?) : b- Vu € LP(R%)} (1.1)

generates a Cp—semigroup T'(-) in LP(RY), 1 < p < oo; see Theorem 2.4. This fact has
been established in [15] for the prototypical example, the Ornstein—Uhlenbeck operator

Aovu(r) = tr(agD*u) + bz - Vu(x) (1.2)

(where ag = al > 0 and by are real matrices). We point out that the Ornstein—Uhlenbeck
semigroup is not analytic on LP(R?) if by # 0, see [18] and also [11]. Thus the parabolic
equation

ou(t,z) = Appu(t,z), t>0, &R
does not satisfy the standard parabolic regularity properties if one measures them in the
‘global norm’ of LP(RY), although the domain of Aoy is ‘optimal.’

In fact, the Ornstein—Uhlenbeck semigroup is analytic on suitably weighted LP spaces,
where the domain of the Aoy becomes a weighted Sobolev space due to [15]. This result
can be extended to larger classes of drift terms b as established in [7] and [16], see also
the references therein. Nevertheless it is important to compute the domain D(A) of A in
the unweighted space LP(R?). In Section 3 we prove that a suitable embedding of D(A)
implies global regularity of the density p of the invariant measure p for the transition

1991 Mathematics Subject Classification. Primary: 35J15. Secondary: 35K15, 47A55, 47D06, 60J60.

Key words and phrases. Operator sum, commutator, invariant measure, global regularity.
1



probabilities corresponding to T'(-) (assuming that p exists). More precisely, we prove in
Theorem 3.1 that p € W24(R9) for all 1 < ¢ < oo, so that p and Vp are continuous and
vanish at infinity.

It seems that global regularity of invariant measures has not been studied as thoroughly
as local regularity. We are only aware of a series of papers by Bogachev, Krylov, Rockner,
see e.g. [2], [4], and also [12]. The methods, assumptions and results of these papers are
quite different from ours. For recent results on local regularity we refer to [3], [4], and the
references therein.

In the recent paper [13], it was shown that the domain of A is indeed given by (1.1)
assuming globally Lipschitz continuity of b and an additional condition on the oscillation
of a at infinity. In our hypothesis (H), we weaken the assumptions on b allowing for
growth as |z|log|z|, cf. (2.3). Observe that if |b(x)| grows as |z|'*¢, € > 0, then it can
happen that the semigroup does not even exist on LP(R?), see (2.4).

In [13] the authors reduced the problem to the case of bounded coefficients by a change
of variables. We proceed in a completely different way and apply a non—commutative
Dore—Venni type theorem from [17] to the operator sum A = Ay + B. As preliminary
steps we study the flow semigroup generated by B and the commutator of Ag and B.
Thereby we considerably improve the approach of [15].

Notation. CF (resp., C¥), k € Ny, is the space of k—times continuously differentiable
functions which are bounded together with their derivatives (resp., which have compact
support). Moreover, x -y = (x]y) denotes the standard scalar product in R, M7T the
transpose of the matrix M, Db the Jacobian of a vector field b, and Vf = (01 f, -+, 0af)?
the gradient of a function f. The adjoint of an operator C'is designated by C*. We write
cq for a generic constant only depending on the space dimension d. We refer to [9] and
[19] for unexplained concepts from the theory of operator semigroups.

2. THE GENERATION RESULT
We study the differential operator Au = div(aVu)+b-Vu supposing that the coefficients
a = (a;;) and b = (b;) satisty
(H) a € CLRLRY), ay;(z) = aji(z), au ] < a(z) < asl, b€ CYR? RY), and

|(Db(x)a(x)E[E)] < B, E€RY, ¢ =1, (2.1)
‘Zbk ) Oy ()| < Boy i j=1,---d, (2.2)

for x € R? and constants ay, as, 31, B2 > 0.

Observe that (2.1) for a;;(z) = J;; is equivalent to the two-sided disspativity estimate
|(b(z) = b(y)|lz —y)| < Bile —y[*,  x,yeR

Our hypotheses are more general than those of [13], where (H) was assumed with (2.1)
replaced by the global Lipschitz continuity of b : R — R?. Assumption (H) allows for
vector fields b growing a bit more than linearly, as seen by the example

a(z,y) = (g g) C bay) = Inr (;%) e (2.3)
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on R2. Here r = /22 + 92, b is extended in a smooth way to R?, and a > 3 > 0.
It should be observed that the above functions a and b do not satisfy the inequal-
ity |(a(x)Db(x)E[E)] < c|€f? for z,& € R with |¢] = 1. Moreover, a and by(x,y) =
Inr (—y,z)T violate (2.1).

If the drift grows as |z|'*¢ for some € > 0, then it can happen that A does not generate
a Cy—semigroup on LP(R?), even if d = 1. As an example we consider the operator

Au=u" + b, b(x) = —sign(z) |z|'t%, x € R. (2.4)

We suppose that the domain of A is contained in Cy(R) (which is true if D(A) = {u €
W2P(R) : bu’ € LP(R)} as in Theorem 2.4). Assume for a contradiction that A — A is
invertible in LP(R) for some A > 0 and p € (1,00). Take 0 < f € C.(R) with f # 0.
Then there exists a function u € D(A) such that (A — A)u = f. Consider V(z) = 2* and
W (z) =& (2)\)"t 4 |x| ¢ for |x| > 1. Observe that (A— A)V(x) > 0 and (A— A)W(z) <0
for sufficiently large |x|. Since u, f € Cy(R), we can apply (the proof of) Theorem 3.20 of
[14] which says that u(z) > 6W (z) for large |z| and some § > 0. This estimate contradicts
u € LP(R). Hence A — A is not invertible for A > 0 and A is not a generator on LP(R).
Observe that in this case the ordinary differential equation (2.9) below has global solutions
in forward time.
We collect some simple consequences of (H). Estimate (2.1) immediately implies that

|Db(x)a(x) + a(z)Db(z)"| < 25, r € R (2.5)
Since |[a~!(x)| < a;*, the inquality (2.5) further yields
la(z) " Db(x) + Db(x) a(z) ™| <261 a7, r € R% (2.6)
Similarly we can deduce that
|divb(z)| = |tr Db(z)| = 1| tr(Db(z) + a(z)Db(z)" a(z) )]
< ca|Db(x) + a() Db(x) " a(x) ' < ca frar’ (2.7)

for z € R%. The components of the matrix a(z)~! are denoted by 7;;(z). Then we have
Orij(z) = —[a(x) ™! (Ora(x)) a(x)~'];; and thus obtain

d d d
’ Z bi () E)krij(x)’ = ‘ Z Tim ()7 () Z bi () Ot ()| < cq Ba af? (2.8)
k=1 1 k=1

n,m=

forreRYandi,j=1,---,d.
We next construct the translation semigroup induced by the vector field b. Let ¢(¢, x)
be the maximal local flow solving the ordinary differential equation

u'(t) = b(u(t)), te (to(z),tr()), u(0) = 2 € R% (2.9)
Then v(t) = Okp(t, x) satisfies the variational equation
V'(t) = Db(p(t,x))v(t), tE€ (to(x),ti(x)), v(0) = ey, (2.10)

where e, is the k-th unit vector in R¢.

Lemma 2.1. If (H) holds, then o(t, ) exists for allt € R and x € R  Moreover,
0k o(t,7)] < Mel for t € R, z € RY, and some constants M > 0 and v € R.
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Proof. Set ®(t) = (a(p(t, )~ b(p(t, z))|b(p(t, 1)) for a fixed x € R and t € [0,t,(z)).
Then (2.9) implies

O'(t) = Y (Fris(p(t, ) br(o(t, 7)) bilp(t ) by (p(t, @)
irj,k
+ (lalp(t, 2)) ' Db(p(t, ) + Db(p(t, )" ale(t, 2)) " |ble(t, 2)) p(p(t, 2))).
Estimates (2.8) and (2.6) and assumption (H) thus yield
d'(t) < c|b(o(t,z))]* < cay ®(t), hence ®(t) < ®(0) 2!
for a constant ¢ > 0 depending on d, oy, (1, f2. Employing (H) once more, we obtain

b(p(t, )2 < an®(t) < 2 [ba)[> !
o

for # € RY and t € [0,¢;(z)). This estimate further implies that

&1t @) =2 (b(p(t, 2)|e(t 2)) < Vas/ay ()] (1 + [p(t,2) ).
Integrating this inequality and using Gronwall’s lemma, we see that |¢(¢,z)| remains
bounded as t — t;(z) if t;(x) < oo; hence t1(x) = co. One verifies that to(x) = —oo by
reversing time.

To prove the second assertion, we let ¥ (t) = (a(p(t,x)) " Opp(t, x)|Opp(t,x)) for t € R
and x € R%. As above we deduce ¥'(¢) </ ¥(t) and thus

X2 1

|6kg0(t,x))|2 S Oég‘lf(t) S CYQ\I/(O) G’YIM = a2rkk( )67 It < o

for t € R, z € R% and some constant +/ > 0. O

Let p € (1,00) and p' = p/(p — 1). In view of the above lemma we can define
(SOf) (@) = flelt,2),  feL(RY), zeR) teR.

Lemma 2.2. Assume that (H) holds. Then S(-) defined above is a positive Cyo—group on
LP(RY) and WYP(RY) satisfying ||S(t)||» < el and ||St)||wir < Med fort e R, 1 <
p < 0o, and some constants M > 1, c € R, w, = cqfro; 'p=L. Its generator B on LP(RY) is
gwen by Bf =g on D(B) ={f € Lp(Rd) Jg e LP(RY) s.t. {g,0) = —(f,div(¢b)) Vo €
CHR®Y}, where the brackets denote the duality of LP-LP . In particular, if f € W'P(RY)
and b-V f € LP(R?), then f € D(B) and Bf =b-V f. Moreover, C}(R?) is a core for B.

Proof. (1) Observe that z = ¢(—t,¢(t,z)) for t € R and z € R? and that D,p(t,z) is a
fundamental solution of (2.10). Thus a change of variables, the Abel-Liouville formula,
and (2.7) yield

[ 15 s s = [ 15)P |aet(Dye(—t )] dy

= [ 17w e / (v ) (ol ) ds ) dy

< cesse W gy
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for f € LP(R%) and t € R. It is then easy to check that S(t) is a positive Cy—group on
LP(R?) which satisfies the required estimate. Moreover,

d
k(S (@) = 0f (ot 7)) = 3 SB(0)(w) Dyt @)

for f € C}(RY). Combined with Lemma 2.1, this identity implies that S(t) is also a
Co—group on W1P(R%) which is exponentially bounded uniformly in p.

(2) Let B be the generator of S(t) on LP(R%). We set Bf := g for f € D(B) :=
{f e LP(RY) : g € LP(RY) s.t. (g,0) = —(f,div(¢b)) V¢ € CL(R?)}. In order to prove
B = B, we first observe that C!(R?) is contained in D(B) and Bf = b-V f for f € C}(R%).
Because C!(R?) is invariant under S(t), the space C}(R?) is even a core for B. We can
thus approximate a given f € D(B) with respect to the graph norm of B by f,, € C}(R?).
Using this approximation, one easily derives that B C B.

(3) So it remains to check that B — w is injective for some w > w,. If f belongs to the
kernel of B — w, then

0=((B-w)f, ¢)=—(f wp~+ (divb)p+b- Vo)

for ¢ € C1(R?). Since —b satisfies the same assumptions as b, parts (1) and (2) show
that B'g = —b- Vg defined on C!(R?) has a closure in L (R%) which is a generator. The
operator —b -V — divb is a bounded perturbation of B’ due to (2.7), so that C!(R?) is
also a core for the closure of —b-V — divb on L¥ (R%). Taking a sufficiently large w, we
thus deduce f = 0. O

We further define
Agf = le((IVf), Al =71 - Ao, Bw =wl — B, (211)

where D(4,) = W?P(R%) and w is a fixed number larger than the growth bounds of S(-)
on LP(R?) and W1P(R?) for all 1 < p < oo. In the following lemma we do not suppose
any properties of the coefficients a and b besides being sufficiently smooth.

Lemma 2.3. Let f be a test function f, a € C2(REL,RT), and b € C*(R4,R?). Then
[A}, By)f = (AgB — BAy) f = div{[aDb" + Dba — (divb)a — (b- V)a] Vf} + (divb) Ay f.
Proof. The assertion is a consequence of the following calculations.

Ala f Z ( azg bkakf)} - bkazk(azja f))

0,5,k
= 0il(ai;(9ibe) + (03b:)ase) O f)] — > 0:((9bi)ajudi f)
1,5,k NN
+ Z 9i(aijbkOjr f) — Z bxOir(ai;0; f)
ivjik ivjik
= div[(aDb" + Dba)V f] = Y (9ibi)ajudf — > _(0;:)0i(ajudh f)
.5,k 1,7,k
+ Z 0;(aijbpOjrf) — Z b0 (a;kOk f)
i,5.k 0,5,k
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= div((aDb" + Dba)V f) = > (9;(divh)) a0 f — Y _ 0;(bidi(a;kif))

J.k i,5,k
+ Z 8j (a]kbﬁzkf)
ik
= div((aDb" 4+ Dba)V f) — Z@ ((divb)a,,0kf) — Z@ i (0;aik) Ok f)
0,7,k
+ (divb) Ao f. O

We now come to our first main result where we show that A with minimal domain
generates a Co—semigroup 7'(+) on LP(R?). We recall that in general T'(-) is not analytic.
In fact, the map ¢ — T(¢) is even nowhere continuous in operator norm in the special
case of the Ornstein—Uhlenbeck operator Aoy given by (1.2), see [11], [18].

Theorem 2.4. Assume that (H) holds and let 1 < p < oo. Then the operator Af =
div(aVf) +b- V[ with domain D(A) = {f € W?P(R?) : b-Vf € LP(RY)} generates
a positive Co—semigroup T(-) on LP(RY) such that |T(t)|» < €“»', where w, is given
by Lemma 2.1. Moreover, the semigroups obtained on LP(RY) and LY(RY) coincide on
LP(RY) N LI(RY) for 1 < p,q < oo.

Proof. We use the notation introduced in (2.11). We want to employ Corollary 2 of [17]
in order to show that A — k with the asserted domain D(A) is invertible in LP(R?), for
some k > 0. Observe that —A; and —B,, generate positive, contractive Cy—semigroups
on LP(RY) and that the semigroup generated by —A; is analytic for every 1 < p < oo.
Moreover, A; is self adjoint on L?(RY). Using the transference principle (see [6, §4] and
[5, Thm.5.8]) and Riesz—Thorin interpolation, we see that there are angles 4 € (0,7/2)
and ¢ > 7/2 such that p4 + pp < 7 and

A+ A1)~ I+ Buw) ™l < 1T < ce?¥l, BRI < ce?sl

c
|l
for s € R, |arg A\| <7 — @4, |argpu| < m — pp, and a constant ¢ > 0. (We refer to [1] for
an introduction to imaginary powers of sectorial operators.) In order to apply [17, Cor.2],
it thus remains to establish the commutator estimate

< —
1+ |l

AT (A + A) ™ (A (e + Bu) ™ = (n+ Bu) AT < (2.12)

IAII/ 2 pf?
for |[argA\| < m — @4, |argpu| < m — ¢p, and a constant ¢. We denote the operator in
(2.12) by C'(A, ). Formally, (2.12) follows in a straightforward way from Lemma 2.3 and
our assumptions. However, due to lack of regularity it takes some effort to relate C'(\, )
with the commutator of A, and B,,.
To that purpose, we first approximate the coefficients a;; and b; locally in C*'(R?) by
a, ") pM) ¢ CQ(Rd) k € N. The corresponding differential operators are designated by
A(()k), B, A1 , and BY. Standard cut-—off and mollifying procedures allow us to define
bounded operators T, : W2*P(R?) — W2P(R?) which map W2P(R?) into test functions
and converge strongly to the identity in W2*P(R?) as n — oco. We now introduce the
functions
= AT AP BW — BW AT AT f
6



for f € D(B). Lemma 2.3 shows that

Uk = A2 ATV div[{a™® (DV)T + DB o®) — (dive®)a® — S0 0,aR YV T, AT )
+ ATH(div e AP T, AT S

Since d(A;%)* = 8,(A7)1/2 is bounded on L¥ (R%), we can extend A;"/*div (defined

on W1P(R%)4 say) to a bounded operator U : LP(RY)? — LP(R?). Thus the limit of uy,
as k — oo exists in LP(R?) and is equal to

Uy = A PU{aDb + Dba — (divb)a — 3 0:0,a} VT, AT ] + A7 (div b) AT, AT f.
Because of (2.5), (2.7), and (H), the functions in the brackets {- - - } and div b are bounded.

Therefore we obtain

wi= lim u, = A, *U[{aDb" + Dba — (divb)a+ 3,b:0,a} VAT f] + A7 (div b) Ag AT f

n—oo

in LP(R?), and the crucial estimate

|4 ully < 1111 (2.13)
holds for a constant ¢ (only depending on p and the constants in (H)). We further define

Cin(A 1) = MM+ A1)~ (u+ Bo) ATAY BY = B APIT AT (u+ Bu) ™
For a given function g € LP(RY) we now set f = (u+ B,) 'g € D(B). By the above
results, Cj,(\, it)g converges in LP(R?) to
CA g =AY (A + A1) AP (n+ By) AT A P

as first K — oo and then n — co. Using D(A}/Q) = W1P(R%), Lemma 2.2, and estimate
(2.13), we arrive at

- C// CC”
C(A < — < 2.14
IO w9l < iy 190 < e 19l (214)

for |arg \| < m — pa, |argu| < ™ — @p, and a constant ”.
On the other hand, for a test function ¢ we compute
(i, A70) = (Avunn, 6) = (BY A — AP BOIT, AT, )
= (AT AT div(eb®)) — (0 VT, AT div((@®)TV6)),
where we use the LP—L¥ duality. Letting k — oo, we deduce
(U, A1¢) = —(AI T, AT f, div(gb)) — (b VTL,AT' f, AT9),
Now we can take the limit as n — oo, and obtain
(u, ATg) = —(f,div(¢b)) — (b- VAT f, Aj¢) = (Bf,¢) — (b- VAT f, AT¢),
because of f € D(B). For ¢ = Aj¢ this identity yields
(u, ) = (AT'Bf, ) — (b- VAT f,4).
Since test functions are a core for A, the set of the functions ¢ is dense in L¥ (RY).
Consequently, b - VA7 'f € L} (R?) belongs to LP(R?). Lemma 2.2 now shows that

loc
A7'f € D(B), and thus
u=A'Bf — BA{'f
7



for f € D(B). This equality implies
CA m)g = Ai(A + A1) (i + By) 7 [BuAT — AT'By)(p + Bu) ™' = C(A, p)g,
i.e., (2.14) is in fact the required estimate (2.12).
Thus Corollary 2 of [17] shows that v + A; + B, = v + 1 + w — A with domain
D(Ap) N D(B) is invertible on LP(R?) for some v > 0. So A = Ay + B has the required

domain due to Lemma 2.2. Since —A; and —B,, generate contractive Cy—semigroups, the
remaining assertions follow, e.g., from Trotter’s product formula, [9, Cor.II1.5.8]. O

3. INVARIANT MEASURES

In this section we assume that (H) holds. We want to construct a semigroup on Cy,(R?)
corresponding to A. Let 0 < f € Cy(RY) and r > 0. We consider the parabolic problem

Owu(t, z) = Au(t, x), |z| <7, t >0,
u(t,z) =0, |z| =, t >0,
ult, z) = f(x),  lal<r

Due to the maximum principle, the classical solutions wu, converge monotonically to a
positive function u on Ry x R% as r — oo, and we have |ulloe < | f]lso. One can

now check that there is a semigroup of positive contractions Th,(t) on Cy(R?) such that
u(t,x) = (T (t) f)(z) is a classical solution of

ou(t,z) = Au(t,z), t>0, z € R

for f € Cy(R?). The semigroup is given by
7o) = [ plt.c.) s dy (3)

for a positive function p being continuous in (¢, z) € (0, 00) xR? for a.e. y € R%. Moreover,
the mapping R > ¢t — T, (t)f(x) is continuous uniformly for z in compact subsets of
R?, where f € Cy(R?). Finally, we can extend Ty (t) to a contraction on L>(R?), which
has the strong Feller property (i.e., it maps L°(R?) into C,(R?)), and T, (t) is irreducible
(ie., To(t)f(x) > 0 for 0 < f € Cy(R?) with f # 0). The representation (3.1) also
shows that T, (t) preserves bounded pointwise convergence. These facts have been shown
in [14, §4] for operators in non—divergence form with coefficients being locally Hélder
continuous. The arguments given there can easily be adapted to our setting replacing
Schauder estimates by estimates in Sobolev spaces. A Borel probability measure ;o on R?
is called invariant for T (-) if

[ retrdu= [ sdu (32
Rd Rd
for all bounded Borel functions f. An invariant measure for T, (-) exists if e.g.
limsup (tra(x) + b(z) - z) <0,
|z|—o0
see e.g. [10], [14, Cor.6.6]. We want to establish gobal regularity properties of the density

of an invariant measure p, assuming that p exists. Let us first check that indeed du = pdx

for some 0 < p € L'(RY).
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Since T (+) is irreducible, the support of an invariant measure is equal to R%. We know
that 0 < To(t)1 < 1. If there were a point xy € R? where T, (t)1(z¢) < 1, then there
would exist a number § € [0,1) and an non-empty, open set O C R? such that T, ()1 < §
on O. But this fact leads to the contradiction

I =/ 1dy :/ Too(t)1dp < (R 0) + 4(0) < 1,

because of the invariance of . As a result, T (t)1 = 1 for t > 0. We now define

Pta.T) = [ plt.a.) dy = Tu(®r(a)

for a Borel set I' C R? ¢ > 0, z € R It is easy to check that P(t,z,-) is a Markovian
transition function with corresponding transition semigroup T () on Cy(R?) in the sense
of [8]. Moreover, Proposition 2.1.1 in [8] implies that T, (+) is stochastically continuous.
Then Hasminskii’s and Doob’s Theorem, see Proposition 4.1.1 and Theorem 4.2.1 in [§],
show that p has a strictly positive density p and that p is the unique invariant measure.

We next want to prove that T (t) f coincides with T'(t) f for f € LP(RY) N Cy(R?). We
define Aoou = Au for u € D(Ax) = {u € (5, W2P(RY) : u, Au € Cy(R%)}. Then the
Laplace transform of T, (-) (defined pointwise) is the resolvent R(\, Aw) for ReA > 0
by Propositions 5.1 and 5.7 of [14]. (Here one needs that T, (¢)1 = 1; the arguments in
[14] work again in our setting.) Let f € C.(R%). Temporarily, we denote the generator
of T(-) = T,(-) on LP(R?) by A,, 1 < p < co. Due to Theorem 2.4 the function u =
R(w, A,)f does not depend on p and belongs W?P(R?) for all 1 < p < oo, so that
u € Cy(R?). Since further Au = Ayu = wu — f € Cy(R?Y), we conclude that u € D(A,)
and A, u = Au = Ayu. Hence, the resolvents for A, and A, coincide on C.(R?), so that
T,(t)f = T (t)f, t > 0, by the uniqueness of the Laplace transform. This equality thus
holds for all f € LP(R?) N Cy(R?). So we drop the subscripts p and oo.

We next show that p € W2P(R%) for all p < co. Hence, p is continuously differentiable
and p(x), Vp(x) tend to 0 as |x| — oo by Sobolev’s embedding theorem. In Theorem 1.1
of [2] it was proved that p € WH2(R?) supposing global Lipschitz continuity of ay and
b€ L*(u) (where A is written in non-divergence form).

Theorem 3.1. Assume that (H) holds and that T'(t) possesses an invariant measure .
Then u is unique and has a density p which belongs to all W*I(R?), 1 < q < co. In
particular, p € CH(R?).

Proof. By the above remarks, we only have to show that the density 0 < p € L*(R?) in
fact belongs to W24(R?) for each 1 < ¢ < oo. Take f € LP(R?) N Cy(RY), p > d/2, and
w > 0 as in the previous section. Using (3.2), we calculate

[RdR(w A f( dx—/Rd/ T8 f () plx) dt da
:/0 /Rd p(x) dx dt
- / fapla) de
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Thus Theorem 2.4 and Sobolev’s embedding theorem yield
| [ foda] < Rt Al ol < 11,

This means that p € L” (R?), where p’ = p/(p — 1). So we obtain

[1®spds= [ spis

for all f € LP(RY). Since the weak generator of a Cy—semigroup is equal to its generator,
see e.g. [19, Thm.2.1.3], the above equality implies p € D(A*). Let f € D(A) and
geD:={veW?RY:b-Vv e LF(R)}. By Lemma 2.2 there are g, € C}(R?) such
that g, — g and b- Vg, — b- Vg in L” (R%). So we obtain
(Af,9) = (Aof,g) + lim (b- V[, gn)

= (f, Abg) — lim (f,b- Vg, + div(b)gn)

= (f, Aog —b- Vg —div(b)g).
Consequently, the adjoint A* extends the operator A" := Af —b-V —div(b) defined on D.
But A’ is a bounded perturbation of a generator thanks to (2.7) and Theorem 2.4. This
shows that A’ = A* and D(A*) = D C W (R?). Hence p € LI(R?) with ¢ = dp'/(d—2p')
if d > 2p/, and thus p € L"(RY) for 1 < r < q. If d < 2p/, we have p € L"(R?) for all
1 <r < g < 0. In both cases we obtain as above p € Wz’r(Rd) for 1 <r < q. In the

first case we can iterate the above procedure, replacing p’ by ¢. In finitely many steps we
arrive at the assertion. 0J

Remark 3.2. The above argument can be used whenever one knows suitable properties
of D(A) for the generator A of the transition semigroup on LP(R?). For instance, we
obtain p € L¥ (RY) if D(A) — L®(R?).
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