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Abstract. We construct and investigate local invariant manifolds for a
large class of quasilinear parabolic problems with fully nonlinear dynamical
boundary conditions and study their attractivity properties. In a companion
paper we have developed the corresponding solution theory. Examples for
the class of systems considered are reaction–diffusion systems or phase field
models with dynamical boundary conditions and to the two–phase Stefan
problem with surface tension.

1. Introduction

Quasilinear parabolic evolution equations have been studied intensively in
the past decades. In recent years problems with dynamical boundary conditions
have attracted a lot interest in this context. Moreover, after a transformation
to a fixed domain problems such as the Stefan problem with surface tension
yield a quasilinear problem with a nonlinear dynamical boundary condition,
see e.g. [7] and [17]. In the companion paper [20] we have identified a general
class of systems comprising these examples (see (1.1)), developed a solution
theory for such systems, and treated stable and unstable manifolds. In the
introduction of [20] we have given further references to papers dealing with the
Stefan problem and with reaction–diffusion systems or phase field models with
dynamical boundary conditions.

A crucial step in the study of nonlinear equations is the investigation of the
long–time behavior of solutions near a given equilibrium w∗. Typically, the
structure of the flow in a neighborhood of a w∗ is largely determined by the
spectrum of the linearization at w∗, see e.g. [3], [6], [11], [12], [19], [21], [23], [25]
and [26]. In this paper we construct center–like invariant manifolds for quasi-
linear parabolic problems with fully nonlinear dynamical boundary conditions
and show that the center manifoldMc attracts the center–stable manifold with
a tracking solution if the flow on Mc is stable, see Theorem 6.5. Our results
are applied to the Stefan problem with surface tension in Examples 5.4 and 6.6.

In earlier work [8], [9] and [10] we have studied the case of quasilinear prob-
lems with fully nonlinear boundary conditions. These problems have led to
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various new problems, e.g. one had to parametrize the nonlinear solution man-
ifold and the resulting chart enters in the fixed point problems. The necessary
spectral information is carried by the semigroup governing of the linearized
problem with 0 boundary conditions. To combine it with the nonlinear bound-
ary conditions, we had to use extrapolation theory for the semigroup. Another
difficult came from the solution spaces for such problems which involve time
regularity. This forced us to introduce nonautonomous and nonlocal cutoff
functions in the contruction of local center–like manifolds.

In this paper we also add a dynamical boundary condition and consider the
system

∂tu(t) +A(u(t), ρ(t))u(t) = R(u(t), ρ(t), ρ̇(t)), on Ω, t > 0,

∂tρ(t) +D0(u(t), ρ(t)) = 0, on Ω, t > 0,

Dj(u(t), ρ(t)) = 0, on ∂Ω, t ≥ 0, j = 1, · · · ,m,
u(0) = u0, on Ω,

ρ(0) = ρ0, on Σ, (1.1)

on a spatial domain Ω which either has the smooth boundary Σ (one phase
setting) or is the disjoint union of two domains whose boundary consists of
the common part Σ and possibly of further disjoint ‘outer parts’ (two phase
setting). On these outer parts we impose linear boundary conditions not shown
in (1.1). The solutions u and ρ take values in finite dimensional vector spaces.

In Ω act the main quasilinear diffusion type operator A of (differential) order
2m and the lower order perturbation R. On the boundary we have a dynamical
boundary condition governed by the nonlinear term D0 and static boundary
condition governed by D1, · · · ,Dm. One can also consider this system as an
evolution equation for the function w = (u, ρ), where u and ρ are directly
coupled via the nonlinearities and also via the static boundary condition. In
the operators Dj the orders with respect to u are stricly less than 2m. However,
the orders in ρ are not bounded apriori. The solution space for ρ has to be
adapted to the degree of unboundedness of these operators. We will assume
that the nonlinearities are C1 on the solution spaces of the linear theory and
that the resulting linearized boundary value problems are normally elliptic and
satisfy Lopatinsky–Shapiro conditions. (See Section 2.)

Our approach is based on results about maximal regularity of type Lp for
inhomogeneous linear boundary value problems from [5]. In our work the equa-
tions in (1.1) at the boundary are understood classically and the evolution
equation in Ω holds in Lp sense. This setting was proposed for the Stefan prob-
lem with surface tension in [7] and has proved to be very successful, see e.g.
[17]. In other approaches boundary conditions are understood only in a weak
sense on the state space of the resulting flow, see e.g. [1], [2], [22], [23]. An-
other possibility is the treatment in the framework of higher regularity which
also covers fully nonlinear problems, but requires more compatibility conditions
and does not give smoothing effects, see e.g. [11], [12].

One main difficulty in (1.1) is the occurence of a time derivative of the second
component ρ in the evolution equation for u. Such terms arise if one transforms
a problem with moving boundaries to a fixed domain, cf. Example 2.2 in [20]
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or [7], [17]. In the solution of the nonlinear problem this term can be treated
as a perturbation, which requires the solution space of ρ to provide extra time
regularity of ∂tρ.

In [20] we have established the local wellposedness of (1.1) and showed a
smoothing effect of the solution with corresponding estimates which give extra
regularity of some of the invariant manifolds, see e.g. Theorem 4.6(f). This
property is crucial for the convergence analysis in Section 6. The solution
manifold still incorporates the static boundary conditions (as in [8], [9], [10]),
but now also a ‘dynamical’ regularity constraint coming from the dynamical
boundary condition. The latter arises because ∂tρ(t) possesses extra space
regularity which must also be fulfilled by D0(u(t), ρ(t)). We found a suitable
parametrization for the solution manifold which allowed to handle this difficulty.
However, these nonlinear compatibility conditions play an important role all
over the paper.

Moreover, the semigroup generated by the linearization lives on a smaller
state space than the nonlinear problem which makes it diffucult to combine the
maximal regularity theory for the linearized problems (from [5]) with the spec-
tral decompositions of this semigroup. For instance, the spectral projections do
not leave invariant the solution spaces, which causes trouble in Section 6.

In our main results we then develop a rather complete theory for the center–
like manifolds in Theorems 4.6, 5.1, 5.2 and Corollary 5.3. If the flow on the
center manifold is stable, we can show that small solutions and those starting
on the center–stable manifold converge to a solution on the center manifold,
see Theorems 6.3 and 6.5. In our arguments we use the implicit function the-
orem and methods knwon from dynamical systems, but these tools have to be
combined with the sophisticated technical devices needed for the system (1.1).

We apply our results to the Stefan problem with surface tension in Exam-
ples 5.4 and 6.6, using the description of equilibria and the spectrum of the
linearization provided by [15]. Except for a degenerate case, the center mani-
fold here only consists of equilibria, and depending on the parameters there is
a one dimensional unstable manifold or none. As noted in these examples in
the recent paper [17] the asmptotic stability of the center manifold of a closely
related system was shown if there is no unstable spectrum, and also global
properties were established there. Our results provide here additional infor-
mation, as described in Examples 5.4 and 6.6. Moreover, the approach of [17]
only works for center manifolds consisting of equlibria only (see [16] and [18] for
related results for linear boundary conditions). Our apporach is more flexible
and also suited for bifurcation arguments as in [22], for instance.

In Sections 2 and 3 we recall the setting and the solution theory used and
established in [20] to make this paper readable independently of [20] (though it
makes it also longer). In Section 4 we treat the center manifold and recall the
necessary facts about a nonautonomous cut off introduced in [10]. The following
section is devoted to the center–stable and center–unstable manifolds. The last
section treats the convergence analysis.
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2. Setting and function spaces

We first describe our setting and introduce the relevant spaces. For more
details, references and proofs, we refer to Section 2 of [20]. We denote by c a
generic constant and by ε : R+ → R+ a generic nondecreasing function with
ε(r) → 0 as r → 0. Moreover, J ⊂ R is an interval with a nonempty interior.
Other notation is listed in the introduction of [20].

We fix numbers m ∈ N, mj ∈ {0, 1, 2m − 1}, and kj ∈ N0 ∪ {−∞} for
j ∈ {0, 1, . . . ,m}, describing the order of the differentiable operators appearing
in (1.1), where kj = −∞ if Dj does not depend on ρ, see (R) and (2.15) below.
We have mj < m, but kj is not restricted apriori. We consider two different
types of domains.

In the one phase setting, let Ω ⊂ Rn be an open connected set with a
compact boundary ∂Ω of class C2m+`−m0 and outer unit normal ν(x), where
` ∈ {m0,m0 + 1, · · · } is given by (2.5) below.

In the two phase setting, let Ω = Ω1∪̇Ω2 for two open subsets Ωj ⊆ Rn
having compact boundaries of class C2m+`−m0 , where ∂Ωj = Σ∪̇Γj for j = 1, 2,
∂Ω1 ∩ ∂Ω2 = Σ, and Γj may be empty. In this case, ν(x) is the outer normal
of the interface Σ with respect to Ω1.

We set Σ := ∂Ω and Γ1 = Γ2 := ∅ in the one phase case. Since we will impose
fixed linear homogeneous boundary conditions on Γj , in both settings Σ is the
important part of the boundary.

Throughout this paper, we fix a finite exponent p ∈ (n+ 2m,∞). Let Vu and
Vρ be finite dimensional Banach spaces with norms | · |, being the range spaces
of the solutions to (1.1). As function spaces on Ω we use

X = Lp(Ω;Vu) in the one and in the two phase case;

Xγ = W 2m(1−1/p)
p (Ω;Vu), X1 = W 2m

p (Ω;Vu) in the one phase case;

X1 = {v∈W 2m
p (Ω;Vu) |B0v = 0}, Xγ =(X,X1)1− 1

p
,p in the two phase case,

where B0 is an m-tupel of fixed linear boundary operators on Γ1 ∪ Γ2 which

are given by (2.16) below. We have Xγ ⊆ {v ∈ W 2m(1−1/p)
p (Ω;Vu) |B0v = 0}

in the two phase case. At the boundary we employ the spaces

Yu = Lp(Σ;Vu), Yjγ = W
2mκj−2m/p
p (Σ;Vu), Yj1 = W

2mκj
p (Σ;Vu),

Yρ = Lp(Σ;Vρ), Y0γ = W 2mκ0−2m/p
p (Σ;Vρ), Y01 = W 2mκ0

p (Σ;Vρ),

Yk = Y0k × · · · × Ymk, Ŷk = Y1k × · · · × Ymk,

Z = W 2mκ0
p (Σ;Vρ) = Y01, Z1 = W `+2mκ0

p (Σ;Vρ),

for j ∈ {1, · · · ,m}, k ∈ {γ, 1}, and the numbers

κj = 1− mj

2m
− 1

2mp
, j = 0, 1, . . . ,m. (2.1)
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We observe that X1 ↪→ Xγ ↪→ X, Yj1 ↪→ Yjγ ↪→ Yu, Y01 ↪→ Y0γ ↪→ Yρ,

Xγ ↪→ C2m−1
0 (Ω;Vu) in the one phase case,

Xγ ↪→ C2m−1
0 (Ω1;Vu)× C2m−1

0 (Ω2;Vu) in the two phase case;

Yjγ ↪→ C2m−1−mj (Σ;Vu), and Y0γ ↪→ C2m−1−m0(Σ;Vρ)

(2.2)

for j = 1, . . . ,m. The base space and solution space for u in (1.1) are

E(J) = Lp(J ;Lp(Ω;Vu)) = Lp(J ;X) and

Eu(J) = W 1
p (J ;X) ∩ Lp(J ;X1) ⊆ W 1

p (J ;Lp(Ω;Vu)) ∩ Lp(J ;W 2m
p (Ω;Vu)),

respectively, where the last inclusion is an equality in the one phase case. If J
not compact, we write Eloc(J) for the space of functions whose their restrictions
to each interval [a, b] ⊆ J belong to E([a, b]). Analogous notations are used for
Eu and the other function spaces introduced below.

We denote by γt : u 7→ u(t) the trace operator at t ∈ J (if defined). It holds

Eu(J) ↪→ Cub(J ;Xγ) ↪→ Cub(J ;C2m−1
0 (Ω;Vu)) (one phase), (2.3)

Eu(J) ↪→ Cub(J ;Xγ) ↪→ Cub(J ;C2m−1
0 (Ω1;Vu)× C2m−1

0 (Ω2;Vu)) (two phase);

γt : Eu(J)→ Xγ is continuous and has a bounded right inverse

for all t ∈ J . The norms of the first embeddings in (2.3) are uniform for J of
length greater than a fixed d0 > 0. For functions vanishing at t = inf J , this
constant can be chosen independent of J .

In view of e.g. Section 3 of [4], the natural trace spaces of the solution space
Eu are given by

Fj(J) = W
κj
p (J ;Lp(Σ;Vu)) ∩ Lp(J ;W

2mκj
p (Σ;Vu)) = W

κj
p (J ;Yu) ∩ Lp(J ;Yj1),

F0(J) = W κ0
p (J ;Lp(Σ;Vρ)) ∩ Lp(J ;W 2mκ0

p (Σ;Vρ)) = W κ0
p (J ;Yρ) ∩ Lp(J ;Y01)

for j ∈ {1, · · · ,m} endowed with their canonical norms, where we put

F(J) = F0(J)× · · · × Fm(J) and F̂(J) = F1(J)× · · · × Fm(J).

We further have

Fj(J) ↪→ Cub(J ;Yjγ) ↪→ Cub(J × Σ;V )

γt : Fj(J)→ Yjγ is continuous and has a bounded right inverse
(2.4)

for all t ∈ J , where j = 0, 1, . . . ,m and we write V = Vu if j ≥ 1 and V = Vρ if
j = 0. The same remarks as after (2.3) apply.

The solution space Eρ for ρ in (1.1) is more sophisticated. It is chosen such
that the operators Dj in (1.1) map Eρ into the trace spaces Fj of the solutions

u. We follow [5] and put J̃ =
{
j ∈ {0, 1, . . . ,m}

∣∣ kj 6= −∞} as well as

`j = kj −mj +m0, ` = max
j=0,1,...,m

`j ≥ m0. (2.5)

We then define

Eρ(J) = W 1+κ0
p

(
J ;Lp(Σ;Vρ)

)
∩ Lp

(
J ;W `+2mκ0

p (Σ;Vρ)
)

∩W 1
p

(
J ;W 2mκ0

p (Σ;Vρ)
)
∩
⋂

j∈J̃
W

κj
p

(
J ;W

kj
p (Σ;Vρ)

)
.

(2.6)
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Observe that ρ has extra space and time regularity compared to u. This is
needed in important applications and for the underlying linear theory, see e.g.
Example 5.4 and Proposition 3.5. We further need the embeddings

∂β ∈ B(Eρ(J),Fj(J)), Eρ(J) ↪→ Cub(J ;Zγ), ∂t ∈ L(Eρ(J), Cub(J ;Z1
γ))

(γt, γt∂t) ∈ L(Eρ(J), Zγ × Z1
γ) has a bounded right inverse, (2.7)

γt ∈ L(Eρ(J), Zγ) has a bounded right inverse,

if |β| ≤ kj and t ∈ J . The spaces Zγ and Z1
γ are Slobodeckii spaces on Σ. Their

order depends on the cases ` < 2m, ` = 2m and ` > 2m. Similarly, depending
on these cases one obtains a simpler description of the space Eρ, see [5] and
also [13] and [20]. These results are omitted here since we do not need them,
but we note that Z1 ↪→ Zγ ↪→ Z. To formulate (1.1) on product spaces, we set

E = X × Z, E1 = X1 × Z1, Eγ = Xγ × Zγ , E1(J) = Eu(J)× Eρ(J).

We note that the index 1 refers to the basic domain of the respective operators,
0 to the range space and γ to the spaces given by time traces, where one has
control uniform in time.

Throughout, Wγ denotes a nonempty convex open subset of Eγ on which the
operators in (1.1) will be defined. We set

W1 ={w0 ∈ E1

∣∣w0 ∈Wγ}, W1(J)={w ∈ E1(J)
∣∣w(t) ∈Wγ (∀ t ∈ J)} (2.8)

The nonlinear maps in (1.1) shall satisfy

(R) A ∈ C1(Wγ ;L(X1, X)), R ∈ C1(Wγ×Y0γ ;X), and D = (D0, . . . ,Dm) ∈
C1(W1;Y1) induces a map D ∈ C1(W1(J);F(J)) for any compact J . The
first derivatives of these maps are bounded and uniformly continuous on
all closed balls.

We consider A′(w) as bilinear map from Eγ×X1 to X and A′(w)v as a bounded
linear map from Eγ to X, where w ∈ Wγ and v ∈ X1. The embeddings (2.3),
(2.4), (2.7) and (2.13) then imply that these operators also induce maps

A ∈ C1(W1(J);Cb(J ;L(X1, X))) ∩ C1(W1(J)× Lp(J ;X1);E(J)),

R ∈ C1(W1(J);Cb(J ;X)), D ∈ C1(Wγ ;Yγ),

respectively. We set D̂ = (D1, . . . ,Dm). Some results require one more degree
of smoothness than (R), namely

(RR) Condition (R) holds and the maps A′ : Wγ → L2(Eγ × X1, X), R′ :
Wγ×Y0γ → L(Eγ×Y0γ , X), D′ : W1(J)→ L(E1(J),F(J)) are Lipschitz
on closed balls.

We further impose ellipticity conditions on the linearizations of our nonlinear
maps A, R and Dj at w∗ ∈W1(J), given by

Bj(t) = ∂1Dj(u∗(t), ρ∗(t)) ∈ L(X1, Yj1) ∩ L(Xγ , Yjγ),

Cj(t) = ∂2Dj(u∗(t), ρ∗(t)) ∈ L(Z1, Yj1) ∩ L(Zγ , Yjγ),

A(t) = A(w∗(t)) ∈ L(X1, X), (2.9)

A∗u(t) =A(w∗(t))+∂1A(u∗(t), ρ∗(t))u∗(t)−∂1R(u∗(t), ρ∗(t), ρ̇∗(t)) ∈ L(X1, X),

A∗ρ(t) = ∂2A(u∗(t), ρ∗(t))u∗(t)− ∂2R(u∗(t), ρ∗(t), ρ̇∗(t)) ∈ L(Zγ , X),
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A∗ρ̇(t) = −∂3R(u∗(t), ρ∗(t), ρ̇∗(t)) ∈ L(Y0γ , X),

A∗(t) = (A∗u(t), A∗ρ(t), A∗ρ̇(t)) ∈ L(X1 × Zγ × Y0γ , X).

j ∈ {0, 1, . . . ,m} and t ∈ J . For a time independent w0 = (u0, ρ0) ∈ Wγ ,
we take some (u∗, ρ∗) ∈ W1([0, 1]) with u∗(0) = u0 and ρ∗(0) = ρ0 (e.g. with
ρ̇∗(0) = 0) and write A = A(0), Bj = Bj(0) and Cj = Cj(0), cf. (2.3), (2.4),
(2.7). For (w0, y0) ∈ W1 × Y0γ we define A∗ by inserting (w0, y0) instead of
(w∗(t), ρ̇∗(t)). For an equilibrium w0 we will always take y0 = 0. We abbreviate

B = (B0, . . . , Bm), B̂ = (B1, . . . , Bm), C = (C0, . . . , Cm), Ĉ = (C1, . . . , Cm).

We also make use of the operator matrices

Λ =

(
A 0
B0 C0

)
, Λ∗ =

(
A∗u −A∗ρ̇B0 A∗ρ −A∗ρ̇C0

B0 C0

)
(2.10)

acting from E1 to E, see (2.9). We see below that −Λ∗ induces the generator
of an analytic semigroup which is crucuial for our analysis. For ` ≤ 2m this
semigroup acts in E, but for ` > 2m it lives in the smaller space E0 defined by

Z0 = Bς
pp(Σ;Vρ), E0 = X × Z0. (2.11)

Here, ς = 2mκ0 and thus Z0 = Z if ` ≤ 2m, but ς > 2mκ0 and thus Z0 ↪→ Z if
` > 2m, see [5] or [20]. The space Z0 occurs naturally in view of the embedding

Eρ ↪→W 1
p (J ;Z0) (2.12)

The trace spaces are ordered as

Z0 ↪→ Z, Z1 ↪→ Zγ ↪→ Z0 ↪→ Z1
γ ↪→ Y0γ . (2.13)

The domain of the generators will contain compatibility conditions expressed
by the spaces

Ẽγ = {(v, σ) ∈ Eγ
∣∣B0v + C0σ ∈ Z1

γ},

E0
γ = {(v, σ) ∈ Ẽγ

∣∣ B̂v + Ĉσ = 0}, (2.14)

E0
1 = {(v, σ) ∈ E1

∣∣B0v + C0σ ∈ Z0, B̂v + Ĉσ = 0},
which are Banach spaces endowed with the canonical norms |(v, σ)|Eγ + |B0v+
C0σ|Z1

γ
and |(v, σ)|E1 + |B0v + C0σ|Z0 , respectively, due to (2.9) and (2.13).

We equip Λ with the domain D(Λ) = E0
1 and denote by Λ0 the restriction of

Λ∗ to D(Λ0) = E0
1 .

To apply [5], the operators in (2.9) have to be differential operators of the
following form, where we insert (u∗, ρ∗) ∈W1([0, T ]) and any T > 0:

A(t)v(x) =
∑
|α|≤2m

aα(t, x)Dαv(x), Bj(t)v(y) =
∑
|β|≤mj

bjβ(t, y)γΩD
βv(y)

Cj(t)σ ◦ g(z) =
∑
|γ|≤kj

cg
jγ(t, z)Dγ

n−1(σ ◦ g)(z) (2.15)

for (v, σ) ∈ Eγ , j ∈ {0, 1, . . . ,m}, x ∈ Ω, y ∈ Σ, t ∈ [0, T ], local coordinates g
for Σ and z belonging to the domain of g in Rn−1. Usually we omit the trace
operator γΩ on Ω here. In the two phase case the term bjβ(t, y)γΩD

βv(y) is

understood as b1jβ(t, y)γ1
ΩD

βv(y)−b2jβ(t, y)γ2
ΩD

βv(y) where γiΩ gives the trace of
7



functions on Ωi to the interface Σ. Still in the two phase case, on the (possibly
empty) outside boundaries Γ1 and Γ2 we consider boundary operators

B0
j v(y) =

∑
|β|≤m0

j

b0jβ(y)γΩD
βv(y), B0 := (B0

1 , . . . , B
0
m), (2.16)

of order m0
j ∈ {0, · · · , 2m− 1} for y ∈ Γ1∪̇Γ2 and j = {1, . . . ,m}.

In view of (2.2) and the representation of Zγ given in [5] (and recalled in
Section 2 of [20]), one can see that the derivatives in the above operators are
well defined. In Section 2 of [20] we stated the regularity assumption (S),
the ellpiticity assumption (E) and the Lopatinskii-Shapito conditions(LS) and
(LS±∞) on these operators (which are taken from [5]). Here (S) and (E) are
fairly standard, but the conditions (LS) and (LS±∞) on the boundary operators
is more involved than usual in particular if ` 6= 2m. Below we only need the
consequences of these conditions so that we do not recall them in this paper.
We summarize our hypotheses for the wellposedness theory.

Hypothesis 2.1. Let (R) and (S) from [20] be true, and (E), (LS) and (if
` ≷ 2m) (LS±∞) from [20] hold for every w0 = (u,ρ0) ∈Wγ.

We also recall the simple Lemma 2.8 from [20].

Lemma 2.2. Let a < b < d, q ∈ (1,∞), κ > 1/q, and V be a Banach space.
If u ∈ W κ

q ((a, b);V ) and v ∈ W κ
q ((b, d);V ) satisfy u(b) = v(b) (where the trace

exists by Sobolev’s embedding), then the function w given by w = u on (a, b] and
w = v on [b, d) belongs to W κ

q ((a, d);V ) with ‖w‖Wκ
q
≤ cW (‖u‖Wκ

q
+ ‖v‖Wκ

q
).

3. Solution theory

Our main results rely the following linearization setup, where we use the
operators from (2.9) for w∗ = (u∗, ρ∗) ∈W1 = W1(J). We put W∗1 = W1 − w∗
and define the nonlinear maps

F ∈ C1(W∗1;E) and G ∈ C1(W∗1;F) with

loc. bdd. derivative, F (0) = 0, G(0) = 0 and F ′(0) = 0, G′(0) = 0,
(3.1)

by setting

F (v, σ) =
(
A(w∗)v −A(w∗ + (v, σ))v

)
−
(
A(w∗ + (v, σ))u∗ −A(w∗)u∗ − [A′(w∗)u∗](v, σ)

)
+
(
R(w∗ + (v, σ), ρ̇∗ + σ̇)−R(w∗, ρ̇∗)−R′(w∗, ρ̇∗)(v, σ, σ̇)

)
,

G(v, σ) = D′(w∗)(v, σ) +D(w∗)−D(w∗ + (v, σ)), (3.2)

for (v, σ) ∈W∗1. We put Ĝ = (G1, . . . , Gm). It holds

F ′(ϕ)(u, ρ) = [A(w∗)−A(w∗ + ϕ)]u+ [A′(w∗)u∗ −A′(w∗ + ϕ)(u∗ + v)](u, ρ)

+ [R′(u∗ + v, ρ∗ + σ, ρ̇∗ + σ̇)−R′(u∗, ρ∗, ρ̇∗)](u, ρ, ρ̇),

G′(ϕ)(u, ρ) = [D′(w∗)−D′(w∗ + ϕ)](u, ρ) (3.3)
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for ϕ = (v, σ) ∈ W∗1 and (u, ρ) ∈ E1. The asserted mapping properties easily
follow from (R) and the embeddings (2.3), (2.7), (2.13). Observe thatD(w∗) = 0
if w∗ is an equilibrium of (1.1).

In order to treat the nonlinear compatibility conditions related to (1.1), we
need an ‘almost right inverse’ of the map (B,C). It is given by the next lemma,
which is Corollary 2.7 of [20].

Lemma 3.1. Assume that Hypothesis 2.1 holds. Given (u0, ρ0) ∈ Wγ, take
some (u∗, ρ∗) ∈W1([0, T ]) and T > 0 with u∗(0) = u0 and ρ∗(0) = ρ0. In (2.9)
put A = A(0), B = B(0) and C = C(0). Then there is a map Nγ ∈ L(Yγ , Eγ)

such that (B̂, Ĉ)Nγ = I1, (B0, C0)Nγ − I0 ∈ L(Yγ , Z
1
γ), where I0(ψ0, . . . , ψm) =

ψ0 and I1(ψ0, . . . , ψm) = (ψ1, . . . , ψm) =: ψ̂.

Let w∗ = (u∗, ρ∗) ∈W1(J) be a solution of (1.1) for some J with min J = 0
and initial values (u0∗, ρ0∗). (In later sections w∗ will be an equilibrium.) At
each time t the solution belongs to the solution manifold

M = {w0 = (u0, ρ0) ∈Wγ

∣∣ D̂(w0) = 0, D0(w0) ∈ Z1
γ}. (3.4)

For (u0, ρ0) ∈Wγ and w = (u, ρ) ∈ E1(J), we put (v0, σ0) = (u0−u0∗, ρ0−ρ0∗)
and (v, σ) = (u−u∗, ρ−ρ∗). Using the linearization described above and (2.9),
we see that (u0, ρ0) ∈M if and only if (v0, σ0) belongs to

M∗ =M− (u∗0, ρ∗0) = {(v0, σ0) ∈Wγ − (u∗, ρ∗)
∣∣ (B̂, Ĉ)(v0, σ0) = Ĝ(v0, σ0),

B0v0 + C0σ0 −G0(v0, σ0) ∈ Z1
γ}. (3.5)

Moreover, (u, ρ) ∈W1 solves (1.1) if and only if (v, σ) ∈W∗1 solves

∂tv(t) +A∗(t)(v(t), σ(t), σ̇(t)) = F (v, σ)(t), on Ω, t ∈ (0, T ],

∂tσ(t) +B0(t)v(t) + C0(t)σ(t) = G0(v, σ)(t), on Σ, t ∈ [0, T ],

B̂(t)v(t) + Ĉ(t)σ(t) = Ĝ(v, σ)(t), on Σ, t ∈ [0, T ],

B0v(t) = 0, on Γ1 ∪ Γ2, t ∈ [0, T ],

(v(0), σ(0)) = (v0, σ0), on Ω× Σ. (3.6)

Here drop the equation B0u(t) = 0 in the one phase setting. This equation is
mostly omitted in the following since it is already contained in the domain of
A∗(t) and in the solution space.

For w0∗ ∈M and ψ = (v0, σ0) ∈ Ẽγ (see (2.14)), we further define

〈ψ〉γ = |ψ|Eγ +[ψ]γ , [ψ]γ = |D0(ψ+w0∗)−D0(w∗)|Z1
γ

= |(B0, C0)ψ −G0(ψ)|Z1
γ
,

〈ψ〉1 = |ψ|E1 +[ψ]1, [ψ]1 = |D0(ψ+w0∗−D0(w∗)|Zγ = |(B0, C0)ψ −G0(ψ)|Zγ
(3.7)

For a solution ψ(t) = (v(t), σ(t)) of (3.6), the above quantities simplify to

〈ψ(t)〉γ = |ψ(t)|Eγ + |σ̇(t)|Z1
γ
, 〈ψ(t)〉1 = |ψ(t)|E1 + |σ̇(t)|Zγ . (3.8)

We note that [ψ]γ ≤ c |ψ|Eγ if ` ≤ 2m since then Z1
γ = Y0γ as observed in

Section 2 of [20], and thus |ψ|Eγ and 〈ψ〉γ are locally equivalent in this case.
Given r > 0, we further introduce

M∗(r) := {ψ ∈M∗
∣∣ 〈ψ〉γ < r}.
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We recall Lemma 3.2 of [20] which gives a local chart for the above set.

Lemma 3.2. In the setting of Lemma 3.1, we define G by (3.2) for some
w0∗ = (u0∗, ρ0∗) ∈M. Then the map Q = I−NγG belongs to C1(Wγ−w0∗;Eγ)
with a locally bounded derivative, Q(0) = 0 and Q′(0) = I. It maps M∗ into
E0
γ (see (2.14)) with |ψ − NγG(ψ)|E0

γ
≤ c 〈ψ〉γ for ψ ∈ M∗. We can invert

I − NγG on some ball BEγ (0, r0) ⊆ Wγ − w∗ and set h = NγG(I − NγG)−1.
There is a radius r > 0 such that M∗(r) is the graph of h, i.e.,

M∗(r) = {ψ = ξ + h(ξ)
∣∣ ξ ∈ BE0

γ
(0, r0), 〈ψ〉γ < r}.

In particular, w0∗+E0
γ is the tangent plane of M at w0∗ and Q is a local chart.

We next summarize Theorem 3.3 and Propositions 3.1, 3.4 and 3.5 from
[20], omitting some details. They yield the local well–posedness and smoothing
properties of (1.1). We write tw for the function t 7→ tw(t).

Theorem 3.3. Let Hypothesis 2.1 hold. Let w0∗ = (u0∗, ρ0∗) ∈ M. Take
T ∈ (0, t+(w0∗)) and set J = [0, T ] and J+ = [0, t+(w0∗)), cf. (a). Then the
following assertions are true.

(a) There is a number t+(w0∗) > 0 such that the problem (1.1) has a unique
solution w∗ = w(·;w0∗) = (u∗, ρ∗) ∈W1([0, T ]) ↪→ C([0, T ];Wγ).

(b) There is a radius r > 0 such that for each ϕ0 = (v0, σ0) ∈ M∗(r) there
exists a solution w = (u, ρ) ∈ W1(J) of (1.1) with w(0) = w0 = w0∗ + ϕ0.
Moreover, the map ϕ0 7→ w − w∗ from M∗(r) to W1(J) is C1

b . It holds

‖w−w∗‖E1(J) ≤ c 〈w0 −w0∗〉γ = c |w0 −w0∗|Eγ + c |D0(w0 +w0∗)−D0(w0∗)|Z1
γ

We further have t∂tw ∈ E1(J).
(c) In the setting of (b), assume also that w∗ ∈ E1 is an equilibrium of (1.1).

Then there is an r1 ∈ (0, r] such that for w0 ∈ w∗+M∗(r1) and T0 ∈ (0, T ) the
solution w = (u, ρ) = w(·;w0) ∈W1([0, T ]) satisfies

|w(t)−w∗|E1 + |ẇ(t)|Eγ ≤ c 〈w0−w∗〉γ , ‖t ∂t(w−w∗)‖E1([0,T ]) ≤ c 〈w0−w∗〉γ ,

for t ∈ [T0, T ] and constants independet of t and w0.
(d) In the setting of (b), assume also that (RR) holds and that w∗ = (u∗, ρ∗) ∈

W1([0, T∗]) solves (1.1) with w∗(0) = w0∗ ∈ M. Take T ∈ (0, T∗) and T0 ∈
(0, T ). Then there is an r2 ∈ (0, r] such that for every w0 ∈ w0∗ +M∗(r2) the
solution w = (u, ρ) ∈W1([0, T ]) of (1.1) satisfies

〈w(t)− w∗(t)〉1 ≤ c 〈w0 − w∗0〉γ , ‖t ∂t(w − w∗)‖E1([0,T ]) ≤ c 〈w0 − w∗0〉γ ,

for t ∈ [T0, T ] and constants independent of t and w0.

The next hypothesis will be assumed in the rest of the paper.

Hypothesis 3.4. Let (R) and (S) of [20] be true, and (E), (LS) and (if ` ≷ 2m)
(LS±∞) of [20] hold for every w0 ∈Wγ. Let w∗ = (u∗, ρ∗) ∈W1 be an equilibrium
of (1.1) and define the maps A∗, B, C, F , G, Λ∗ and Λ0 = Λ∗|E0

1 as well as the
expressions 〈ψ〉γ and 〈ψ〉1 for this w∗ as in (2.9), (3.2), (2.10), (2.14), (3.7).
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Our main results are based on linearization at the equilibrium w∗. We collect
the relevant results from [20], starting with the corrresponding the inhomoge-
neous problem. This proposition is a special case of Corollary 2.6 of [20] which
in turn follows from results in [5] by perturbation. We look at the problem

∂tu(t) +A∗uu(t) +A∗ρρ(t) +A∗ρ̇ρ̇(t) = f(t), on Ω, t ∈ (0, T ],

∂tρ(t) +B0u(t) + C0ρ(t) = g0(t), on Σ, t ∈ [0, T ],

B̂u(t) + Ĉρ(t) = ĝ(t), on Σ, t ∈ [0, T ],

B0u(t) = 0, on Γ1 ∪ Γ2, t∈ [0, T ],

(u(0), ρ(0)) = (u0, ρ0), on Ω× Σ, (3.9)

(where we drop the equation B0u(t) = 0 in the one phase setting).

Proposition 3.5. Assume that Hypothesis 3.4 holds. Then the following as-
sertions are true.

(a) There is a unique solution (u, ρ) ∈ E1(J) of the problem (3.9) if and only
if f , g, u0 and ρ0 belong to the data space

D(J) :=
{

(u0, ρ0, f, g) ∈ Xγ × Zγ × E(J)× F(J)
∣∣Bju0 + Cjρ0 = gj(0)

for j = 1, . . . ,m; g0(0)−B0u0 − C0ρ0 ∈ Z1
γ

}
.

The corresponding solution operator S : D(J) → E1(J) is continuous. The
norm of S is bounded uniformly in T ′ ∈ (0, T ] if we restrict it to the subspace
D0([0, T ′]) containing g with g(0) = 0.

(b) The operator Λ0 = Λ∗|E0
1 generates an analytic C0–semigroup T (·) in E0.

(c) There is a µ0 ≥ 0 larger than the growth bound of −Λ0 such that for each
(u0, ρ0, f, g) ∈ D(R+) there is a unique solution (u, ρ) ∈ E1(R+) of

∂tu(t) + (A∗u(t) + µ−A∗ρ̇(t)B0(t))u(t)

+(A∗ρ(t)−A∗ρ̇(t)C0(t))ρ(t) = f(t), on Ω, t ∈ (0, T ],

∂tρ(t) +B0(t)u(t) + (C0(t) + µ)ρ(t) = g0(t), on Σ, t ∈ [0, T ],

B̂(t)u(t) + Ĉ(t)ρ(t) = ĝ(t), on Σ, t ∈ [0, T ],

B0u(t) = 0, on Γ1 ∪ Γ2, t ∈ [0, T ],

(u(0), ρ(0)) = (u0, ρ0), on Ω× Σ, (3.10)

(where we drop the equation B0u(t) = 0 in the one phase setting) for each
µ ≥ µ0, and it holds ‖(u, ρ)‖E1(R+) ≤ c ‖(u0, ρ0, f, g)‖D(R+).

The data space D(J) is endowed with the norm

‖f‖E(J) + ‖g‖F(J) + |(u0, ρ0)|Eγ + |g0(0)−B0u0 − C0ρ0|Z1
γ
.

It is a Banach space and D0(J) is a closed subspace.
We need the extrapolation space E−1 which is the completion of E0 with

respect to the norm |(µ + Λ0)−1w|E0 for any µ ≥ µ0. There is a bounded
extension −Λ−1 : E0 → E−1 of −Λ0 which is similar to −Λ0 and generates the
extension T−1(·) of T (·) on E−1. It further holds T−1(t) ∈ L(E−1, E

0
1) for t > 0.

A solution of the problem (1.1), (3.6), or (3.9) (or of some lines of them) on
an (unbounded) interval J is a function w ∈ Eloc

1 (J) satisfying the respective
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problem. Let α, β ∈ R. To study our equations on unbounded time intervals
we set eα(t) = eαt for t ∈ R, denoting restrictions of this function by the same
symbol. Moreover, on J = R we fix a smooth, strictly positive function eα,β
satisfying eα,β(t) = eα(t) for t ≤ −1 and eα,β(t) = eβ(t) for t ≥ 1. We then
introduce the weighted spaces

E1(R±, α) = {w
∣∣ eαw ∈ E1(R±)}, E1(α, β) = {w

∣∣ eα,βw ∈ E1(R)}, (3.11)

and their analogues for E, F and D, which are complete if endowed with the
canonical norms ‖w‖E1(R+,α) = ‖eαw‖E1(R+) etc. We also use the corresponding
norms on compact intervals J . The embeddings (2.3) and (2.7) imply that

|ϕ(t)|Eγ + |σ̇(t)|Z1
γ
≤ |eδtϕ(t)|Eγ + |eδtσ̇(t)|Z1

γ
≤ c ‖ϕ‖E1(J,δ) (3.12)

for t ∈ J = R± and δ ≥ 0.

Let w = (u, ρ) be the solution of (3.9) and f̃ = f − A∗ρ̇g0. We insert
ρ̇ = g0 −B0u− C0ρ into the term A∗ρ̇ρ̇ in (3.9), obtaining

∂tw(t) + Λ∗w(t) = (f(t)−A∗ρ̇g0(t), g0(t)) = (f̃(t), g0(t)), t ∈ [0, T ]. (3.13)

The next result allows to use the asymptotic behavior of T (·) (determined by
σ(Λ0)) in the investigation of the longterm behavior of the nonlinear problem
(1.1), by means of the ‘mild formula’ in (d). Observe that part (c) decribes
the difference between Λ−1 and Λ∗ which expresses the impact of the boundary
conditions. We define

Π = (µ+ Λ−1)N1.

Proposition 3.6. Under Hypothesis 3.4, the following assertions hold.

(a) There are operators N1 ∈ L(Ŷ1, E1) and R ∈ L(E,E1) such that (µ +

Λ∗)N1 = 0 and (B̂, Ĉ)N1 = I
Ŷ1

, as well as (µ+ Λ∗)R = IE and (B̂, Ĉ)R = 0.

(b) We have E ↪→ E−1 and Λ−1w = Λ∗w for all w ∈ E1 with (B̂, Ĉ)w = 0.

(c) It holds Π ∈ L(Ŷ , E−1) and Λ∗w = Λ−1w −Π(B̂, Ĉ)w for all w ∈ E1.

(d) Let J = [0, T ], (w0, f, g) ∈ D(J), and put f̃ := f − A∗ρ̇g0 ∈ E(J). Then
the solution w ∈ E1(J) of (3.9) is given by

w(t) = T (t)w0 +

∫ t

0
T−1(t− τ)[(f̃(τ), g0(τ)) + Πĝ(τ)) dτ, t ∈ J. (3.14)

Moreover, w is the solution of (3.10) with data (w0, f̃ , g) and µ = 0, where we

have ‖f̃‖E(J) ≤ c (‖f‖E(J) + ‖g0‖Lp(J ;Y0γ)) ≤ c (‖f‖E(J) + ‖g0‖F(J)).

In the following we rewrite the solutions of (3.9) on unbounded time intervals
J ∈ {R±,R} as in (3.14). We first recall some results from [20] for the case
that the (rescaled) semigroup

{
eδtT (t)

}
t≥0

has an exponential dichotomy for

δ ∈ [δ1, δ2]. Let P ∈ L(E0) be the corresponding (stable) spectral projection
for −Λ0 + δ and set Q = I − P . Then, P ∈ L(E0

1), P commutes with T (t)
and Λ0, Q ∈ L(E0, E

0
1), T (t) is invertible on QE0 with the inverse TQ(−t)Q,

and ‖etδT (t)P‖L(E0), ‖e−tδTQ(−t)Q‖L(E0) ≤ ce−εt for t ≥ 0 and some ε > 0.

Further, there are extensions P−1 ∈ L(E−1) of P and Q−1 ∈ L(E−1, E
0
1) of Q

12



such that T−1(t) has an exponential dichotomy on E−1 with the same constants.
From P = I −Q, we deduce

P ∈ L(E1) ∩ L(Eγ) ∩ L(E0
γ) and P−1 ∈ L(E). (3.15)

We partly omit the subscript −1. (Compare e.g. §2 of [9] for these facts.) It
further holds:

If (w0, f, g) ∈ D(J), then (Pw0, f, g) ∈ D(J). (3.16)

Let eδT (·) have an exponential dichotomy. Given (ϕ0, f, g) ∈ Eγ×E(R+, δ)×
F(R+, δ), resp. (ϕ0, f, g) ∈ E−1 × E(R−, δ)× F(R−, δ), we can then define

L+
P,Λ0

(ϕ0, f, g)(t) = T (t)ϕ0 +

∫ t

0
T−1(t− τ)P−1[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ

(3.17)

−
∫ ∞
t
TQ(t− τ)Q[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, t ≥ 0,

φ+
0 = −

∫ ∞
0
TQ(−τ)Q[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, (3.18)

L−P,Λ0
(ϕ0, f, g)(t) = TQ(t)Qϕ0 +

∫ t

−∞
T−1(t− τ)P−1[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ

−
∫ 0

t
TQ(t− τ)Q[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, t ≤ 0, (3.19)

φ−0 =

∫ 0

−∞
T−1(−τ)P−1[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, (3.20)

where f̃ := f −A∗ρ̇g0 ∈ E(J, δ). We recall Propositions 4.5 and 4.6 of [20].

Proposition 3.7. Assume that Hypothesis 3.4 holds and that for δ ∈ [δ1, δ2] ⊂
R the semigroup eδT (·) has an exponential dichotomy with the stable projection
P , and let Q = I −P . Given (w0, f, g) ∈ D(R+, δ), the following assertions are
equivalent.

(a) SΛ0(w0, f, g) ∈ E(R+, δ).
(b) L+

P,Λ0
(w0 − φ+

0 , f, g) ∈ E(R+, δ).

(c) φ+
0 = Qw0.

If these assertions hold, then (u, ρ) := SΛ0(w0, f, g) = L+
P,Λ0

(Pw0, f, g) belongs

to E1(R+, δ) and solves (3.9), and we have

‖SΛ0(w0, f, g)‖E1(R+,δ) ≤ c (|w0|Eγ + |(B0, C0)w0 − g0(0)|Z1
γ

+ ‖f‖E(R+,δ) + ‖g‖F(R+,δ)),

where c does not depend on w0, f , g or δ. (Note that ρ̇(0) = g0(0)−(B0, C0)w0.)

Proposition 3.8. Assume that Hypothesis 3.4 holds and that for δ ∈ [δ1, δ2] ⊂
R the semigroup eδT (·) has an exponential dichotomy with the stable projection
P , and let Q = I −P . Given (w0, f, g) ∈ E−1 ×E(R−, δ)× F(R−, δ), there is a
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solution w = SΛ0(w0, f, g) of (3.9) in E(R−, δ) if and only if P−1w0 = φ−0 . In
this case, this solution is unique, w = L−P,Λ0

(w0, f, g) ∈ E1(R−, δ), and

‖SΛ0(w0, f, g)‖E1(R−,δ) ≤ c (|Qw0|E + ‖f‖E(R−,δ) + ‖g‖F(R−,δ)),

where c does not depend on w0, f , g or δ.

In order to treat the interval J = R, we assume that T (·) has an exponential
trichotomy; i.e., there is a splitting

σ(−Λ0) = σs ∪ σc ∪ σu with (3.21)

max Reσs < −ωs < −ωc < min Reσc ≤ 0 ≤ max Reσc < ωc< ωu< min Reσu.

(If Ω is bounded, σ(−Λ0) is discrete and thus (3.21) automatically holds with
σu ⊂ iR and arbitrarily small ωc = ωc > 0.) We take numbers α ∈ [ωc, ωs] and
β ∈ [ωc, ωu] and denote by Pk the spectral projections for −Λ0 corresponding to
σk with k = s, c, u. We set Pcs = Ps+Pc, Pcu = Pc+Pu, and Psu = Ps+Pu. Then
the rescaled semigroups eαT (·) and e−βT (·) have an exponential dichotomy on
E0 with stable projections Ps and Pcs, respectively. The restriction of T (t)
to PkE0 yields a group denoted by Tk(t), t ∈ R, where k = c, u, cu. For
f ∈ E(α,−β), g ∈ F(α,−β) and w0 ∈ E−1, we can then define

LΛ0(w0, f, g)(t) = Tc(t)Pcw0 +

∫ t

0
Tc(t− τ)Pc[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ

+

∫ t

−∞
T−1(t− τ)Ps,−1[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ (3.22)

−
∫ ∞
t
Tu(t− τ)Pu[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, t ∈ R,

φ0 =

∫ 0

−∞
T−1(−τ)Ps,−1[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ

−
∫ ∞

0
Tu(−τ)Pu[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, (3.23)

where again f̃ = f − A∗ρ̇g0. The trichotomy and the assumptions on the data
imply that the integrals exist in E−1.

In the next result the equivalence and the formula for the solution follow from
Propositions 3.7 and 3.8 combined with Lemma 2.2 and the fact that we can
glue together the solutions on R± as noted before Lemma 3.2 of [20]. For the
asserted inequality, we can treat the function wc = Tc(·)Pcw0 separately since
Pc ∈ L(E−1, D(Λn0 )) for all n ∈ N0. The difference w1 = w − wc has the initial
value (Psu)−1w0 = φ0. The two parts of it can be controlled in Eγ via f and
g using (3.23), Proposition 3.8 and Pu. Finally, |ρ̇(0)|Z1

γ
≤ c ‖ρ‖Eρ(R−,α) due to

(3.12), which can also be bounded by means of Proposition 3.8.

Proposition 3.9. Assume that Hypothesis 3.4 holds and that T (·) has a tri-
chotomy as in (3.21). Take α ∈ [ωc, ωs] and β ∈ [ωc, ωu]. Given (w0, f, g) ∈
E−1 × E(α,−β) × F(α,−β), there is a solution w = SΛ0(w0, f, g) of (3.9) in
E(α,−β) if and only if (Psu)−1w0 = φ0. In this case, this solution is unique,
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we have w = LΛ0(w0, f, g) ∈ E1(α,−β) and

‖SΛ0(w0, f, g)‖E1(α,−β) ≤ c (|Pcw0|E + ‖f‖E(α,−β) + ‖g‖F(α,−β)),

where c does not depend on w0, f , g, α or β.

The next result (Proposition 4.9 of [20]) describes the properties of F and G
on R± with weights larger than 0. For δ ≥ 0, we set

W1
∗(R±,±δ) = {w ∈ E1(R±,±δ) |w(t) ∈Wγ − w∗ for all t ∈ R±}.

It is straightforward to check that this set is open in E1(R±,±δ) if δ > 0 using
(3.12). Moreover, 0 belongs to the interior of W1

∗(R±) := W∗1(R±, 0).

Proposition 3.10. Let (R) hold, δ ∈ (0, d] and define F and G as in (3.2) for
an equilibrium w∗ = (u∗, ρ∗) ∈W1. We then have

F ∈ C1(W∗1(R±,±δ),E(R±,±δ)) and G ∈ C1(W∗1(R±,±δ),F(R±,±δ))
and F (0) = 0, G(0) = 0, F ′(0) = 0, G′(0) = 0. Moreover, the derivatives are
bounded and uniformly continuous on closed balls. If δ = 0, the above results
hold on sufficiently small balls in E1(R±) with center 0.

4. The cutoff problem and a center manifold

In this section we want to extend the construction of invariant manifolds from
the setting of Theorem 5.1 of [20] to the case of an exponential trichotomy as in
(3.21). Under this assumptions we encounter unbounded semigroup orbits on
the center part so that we must deal with spaces of (say, exponentially) growing
functions on R. For such functions our substitution operators are not locally
Lipschitz (unless they are globally Lipschitz). It is well known that one has
to introduce cutoff functions in the nonlinearities to deal with this problem.
As in [10] for static nonlinear boundary conditions, we have to control the
full E1 norm of solutions so that we need a nonlocal cuoff Γ(t, w) introduced
below. Since the arguments are parallel to those in [10], we omit most of the
proofs. We assume throughout that Hypothesis 3.4 holds with the equilibrium
w∗ = (u∗, ρ∗) ∈W1.

The cutoff depends on a parameter η > 0 to be fixed in the following theo-
rems. We first introduce

J(t) = [t− 3
2 , t+ 3

2 ] and N(t, ϕ) = ‖ϕ‖E1(J(t)) for ϕ ∈ Eloc
1 (R), t ∈ R.

Given an η > 0, we take even functions χ, γ ∈ C∞(R) such that 0 ≤ χ ≤ 1,

χ(t) = 1 for t ∈ [−η, η], suppχ ⊂ (−2η, 2η), ‖χ(k)‖∞ ≤ c/ηk for k = 1, 2 and
such that γ ≥ 0,

∫
R γ(t) dt = 1, supp γ ⊆ (−1/4, 1/4). We now define the cutoff

ΓR(t, ϕ) = Γ(t, ϕ) := (γ ∗ χ(N(· , ϕ)))(t)

=

∫
R
γ(t− τ)χ(‖ϕ‖E1([τ−3/2,τ+3/2])) dτ

(4.1)

for t ∈ R and ϕ ∈ Eloc
1 (R). Observe that the integrand is continuous in τ and

that Γ(t, ϕ) depends on the restriction of ϕ to (t− 7/4, t+ 7/4). For functions
ϕ ∈ Eloc

1 (J), we define Γ(t, ϕ) as in (4.1) for t ∈ [7
4 + inf J,−7

4 + sup J ], where
J is an interval of length greater than 7/2.
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To treat ϕ ∈ Eloc
1 (R±), we fix continuous extension operators R± :

Eloc
1 (R±)→ Eloc

1 (R) satisfying suppR+ϕ ⊂ (−1,∞), suppR−ϕ ⊂ (−∞, 1),

‖R+ϕ‖E1([−1,1]) ≤ cR ‖ϕ‖E1([0,1]) , ‖R−ϕ‖E1([−1,1]) ≤ cR ‖ϕ‖E1([−1,0]) (4.2)

for ϕ ∈ E1 and a constant cR > 0. In this context we further observe that

‖ϕ‖E1([0,T ]) ≤ cE ‖ϕ‖E1(R+,−α) , ‖ϕ‖E1([−T,0]) ≤ cE ‖ϕ‖E1(R−,α)

‖ϕ‖E1([−T,T ]) ≤ cE ‖ϕ‖E1(α,−β)
(4.3)

for a constant cE > 0 depending on T > 0 and being uniform in α, β ≥ 0 in
compact intervals. We then define the cutoffs

ΓR±(t, ϕ) = Γ±(t, ϕ) := Γ(t, R±ϕ) = (γ ∗ χ(N(· , R±ϕ)))(t) (4.4)

for t ∈ R and ϕ ∈ Eloc
1 (R±). We now collect several properties of the cutoffs

in (4.1) and (4.4) for J ∈ {R,R+,R−}, which follow easily from the above
definitions and observations, cf. §3 in [10].

Remark 4.1. If ϕ ∈ Eloc
1 (J) satisfies ‖ϕ‖E1([t−2,t+2]) ≤ η for some t ∈ J (where

|t| ≥ 2 if J = R±), then ΓJ(t, ϕ) = 1. If J = R± and t ∈ J ∩ [−2, 2], then
‖ϕ‖E1([t−2,t+2]∩J) ≤ c−1

W (1 + cR)−1η implies Γ±(t, ϕ) = 1, where cW ≥ 1 is the
constant given by Lemma 2.2.

Remark 4.2. Let ϕ ∈ Eloc
1 (R) and J = R. By its definition, the cutoff is

translation invariant in the sense that ΓR(t + t0, ϕ) = ΓR(t, ϕ(· + t0)) for all
t, t0 ∈ R. We point out that for J = R± the cutoff is not translation invari-
ant. However, for ϕ ∈ Eloc

1 (R±) we have Γ+(t, ϕ) = ΓR(t, ϕ) for t ≥ 7/4 and
Γ−(t, ϕ) = ΓR(t, ϕ) for t ≤ −7/4, respectively. As a result, Γ+(t + t0, ϕ) =
ΓR(t, ϕ(·+ t0)) holds for t+ t0 ≥ 7/4 and Γ−(t+ t0, ϕ) = Γ−(t, ϕ(·+ t0)) holds
for t+ t0 ≤ −7/4, where t, t0 ∈ R. (Here ϕ(·+ t0) is defined on [−t0,∞), resp.
on (−∞,−t0].)

Remark 4.3. Let ϕ ∈ Eloc
1 (J), t ∈ J , and J ∈ {R,R±}. We put ϕR = R±ϕ if

J = R± and ϕR = ϕ if J = R. Assume that ΓJ(t, ϕ) 6= 0. Then there exists an
s ∈ [t − 1/4, t + 1/4] such that χ(N(s, ϕR)) 6= 0, and hence ‖ϕR‖E1(J(s)) ≤ 2η.
The embeddings (2.3) and (2.7) now imply that |ϕ(t)|Eγ ≤ c0 ‖ϕR‖E1(J(s)) ≤
2c0η for t ∈ J if ΓJ(t, ϕ) 6= 0, where c0 > 0 is a constant. We can thus
fix a number η0 > 0 such that ΓJ(t, ϕ) 6= 0 for some t ∈ J implies that
ϕ(t) + w∗ ∈Wγ , provided that η ∈ (0, η0].

From now on we always assume that η ∈ (0, η0].

We add a related observation needed in the proofs of the following two propo-
sitions, cf. Remark 3.3 in [10]. Suppose that t ∈ [n − 1/8, n + 9/8] ∩ J =: J∗n
satisfies ΓJ(t, ϕ) 6= 0 for some ϕ ∈ Eloc

1 (J) and n ∈ Z. Take s as in Re-
mark 4.3. We then have J∗n ⊂ J(s), and hence ‖ϕR‖E1(J∗n) ≤ 2η. (The same
estimate holds if Γ′J(t, ϕ) 6= 0, where the derivative is given by (4.7).) Moreover,
|ϕR(τ)|Eγ ≤ c0 ‖ϕR‖E1(J(s)) ≤ 2c0η implying ϕR(τ) + w∗ ∈Wγ for all τ ∈ J∗n.

Finally, for ϕ ∈ Eloc
1 (J) and J ∈ {R,R+,R−}, we define the cutoff versions

FΓJ(ϕ)(t) = ΓJ(t, ϕ)F (ϕ(t)), GΓJ(ϕ)(t) = ΓJ(t, ϕ)G(ϕ(t)), t ∈ J, (4.5)
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of the nonlinear maps F and G defined in (3.2) for the equilibrium w∗. In this
definition, we set F (t, ϕ(t)) = 0 and G(t, ϕ(t)) = 0 if ϕ(t) + w∗ /∈ Wγ . We also
abbreviate FΓ = FΓR, FΓ± = FΓR± , GΓ = GΓR, and GΓ± = GΓR± . The cutoff
version of the initial-boundary value problem (3.6) is then given by

∂tv(t) +A∗(t)(v(t), σ(t), σ̇(t)) = FΓJ(v, σ)(t), on Ω, t ∈ J,
∂tσ(t) +B0(t)v(t) + C0(t)σ(t) = G0,ΓJ(v, σ)(t), on Σ, t ∈ J,

B̂(t)v(t) + Ĉ(t)σ(t) = ĜΓJ(v, σ)(t) on Σ, t ∈ J,
v(0) = v0, on Ω,

σ(0) = σ0, on Σ. (4.6)

where J ∈ {R,R+,R−} and ϕ = (v, σ) ∈ Eloc
1 (J). Thanks to Remark 4.1, a solu-

tion ϕ ∈ Eloc
1 (J) of (4.6) actually satisfies (3.6) on [a, b] ⊂ J if ‖ϕ‖E1([t−2,t+2]∩J)

is sufficiently small for each t ∈ [a, b]. We stress that the cutoff problem (4.6) is
not local in time. In particular, even for J = R+ it is not a well–posed Cauchy
problem. Nevertheless, based on our results for the linear problem on J we can
solve (4.6) globally in function spaces on J .

We now consider the maps FΓJ and GΓJ on the spaces E1(R±,∓α) and
E1(α,−β), where α, β ≥ 0, see (4.5) and (3.11). (These values of α, β were not
treated in Proposition 3.10.) We start with the Lipschitz properties.

Proposition 4.4. Assume that Hypothesis 3.4 holds. Let η ∈ (0, η0] be the
parameter for the cutoff and α, β ∈ [0, d] for some d > 0. Then the maps FΓ± :
E1(R±,∓α) → E(R±,∓α), FΓ : E1(α,−β) → E(α,−β), GΓ± : E1(R±,∓α) →
F(R±,∓α), and GΓ : E1(α,−β) → F(α,−β) are (globally) Lipschitz with a
Lipschitz constant ε(η) for a nondecreasing function ε converging to 0 as η → 0,
independent of α or β. Moreover, FΓJ(0) = 0 and GΓJ(0) = 0 for J = R±,R.

We omit the (technical) proof of this result since it is very similar to that
of Proposition 3.6 in [10]. It uses the above listed properties of the cutoff,
Lemma 4.7 in [20], (R), and a straightforward extension of Remark 3.4 of [10]
to the present situation.

Next, we want to establish the continuous differentiability of FΓ and GΓ in
certain spaces. We first observe that the map ϕ 7→ N(t, ϕ) = ‖ϕ‖E1(J(t)) is
continuously differentiable on E1(J(t))\{0} and that its derivative is uniformly
bounded (cf. §3 of [10] and Theorem 2.3.2(a) in [24] for the Slobodeckii spaces).
As in §3 of [10] one verifies that the map E1([t− 2, t+ 2]) 3 ϕ 7→ Γ(t, ϕ) is C1

with the derivative

Γ′(t, ϕ) = [γ ∗ χ′(N(·, ϕ))N ′(·, ϕ)](t). (4.7)

Here we set N ′(t, 0) = 0 and note that Γ(t, ϕ) = 1, and thus Γ′(t, ϕ) = 0, if
‖ϕ‖E1([t−2,t+2]) < η. The cutoffs Γ±(t, ϕ) = Γ(t, R±ϕ) on R± have the analogous
differentiability properties.

Given α, β ≥ 0 and w ∈ E1(α,−β), we introduce the linear operators F ′Γ and
G′Γ acting on w ∈ E1(α,−β) by the formulas

[F ′Γ(w)ϕ](t) = 〈ϕ,Γ′(t, w)〉F (w(t)) + Γ(t, w)F ′(w(t))ϕ(t),

[G′Γ(w)ϕ](t) = 〈ϕ,Γ′(t, w)〉G(w(t)) + Γ(t, w)G′(w(t))ϕ(t),
(4.8)
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see (3.2) and (3.3) for the definitions of F , G, F ′ and G′ We also set

[F ′Γ±(w)ϕ](t) = [F ′Γ(R±w)R±ϕ](t), [G′Γ±(w)ϕ](t) = [G′Γ(R±w)R±ϕ](t) (4.9)

for t ∈ R± and w,ϕ ∈ E1(R+,−α) in the case J = R+, respectively, w,ϕ ∈
E1(R−, α) in the case J = R−.

We stress that the maps FΓ and GΓ are not differentiable if the domain and
range spaces have the same weight function. However, the next proposition
shows that they are C1 maps with the derivatives F ′Γ and G′Γ introduced above
if we take a smaller weight function in the range space, cf. [25].

Proposition 4.5. Assume that Hypothesis 3.4 holds. Let η ∈ (0, η0] be the
parameter for the cutoff, 0 ≤ α ≤ β ≤ d and 0 ≤ α′ ≤ β′ ≤ d for some
d > 0. Define the operators F ′Γ, F ′Γ± G′Γ, and G′Γ± by (4.8) and (4.9). Then
the following assertions hold.

(a) The operators F ′Γ(w) : E1(α,−α′) → E(β,−β′), G′Γ(w) : E1(α,−α′) →
F(β,−β′), F ′Γ±(w) : E1(R±,∓α) → E(R±,∓β), and G′Γ±(w) : E1(R±,∓α) →
F(R±,∓β) are all bounded with the norms ε(η), where ε is a nondecreasing
function converging to 0 as η → 0 which does not depend on w,α, α′, β, β′.

(b) If β > α and β′ > α′, then the maps FΓ : E1(α,−α′) → E(β,−β′),
GΓ : E1(α,−α′) → F(β,−β′), FΓ± : E1(R±,∓α) → E(R±,∓β), and GΓ± :
E1(R±,∓α) → F(R±,∓β) are continuously differentiable with derivatives F ′Γ
G′Γ, F ′Γ±, and G′Γ±, respectively. Moreover, F ′ΓJ(0) = 0 and G′ΓJ(0) = 0 for
J ∈ {R+,R−,R}.

We again omit the lengthy proof which it is analogous to that of Proposi-
tion 3.8 in [10], using the properties of the cutoff stated above, (R), Lemma 4.7
of [20], Proposition 4.4, as well as straightforward extensions of the statements
(3.14), (3.15) and (3.16) in [10] to the present situation.

We now establish one of the main result of this paper where we construct a
local center manifold Mc and show some of its basic properties. In particular,
Mc is a C1–submanifold ofM being tangent to PcE at w∗. Further properties
of Mc are stated in Corollary 5.3 and Theorem 6.5. We assume that the spec-
trum of −Λ0 has the decomposition given by (3.21), i.e., σ(−Λ0) has spectral
gaps in the left and in the right open halfplane. Recall that this assumption
automatically holds if the spatial domain Ω is bounded.

There is no description ofMc directly in terms of (1.1) as provided by Theo-
rem 5.1 of [20] for the stable and unstable manifold, respectively. In fact, there
are simple ODEs in dimension two admitting infinitely many locally invariant
manifolds which are tangent to PcE at w∗ and satisfyMc ∩Ms =Mc ∩Mu =
{u∗} (cf. Corollary 5.3). However, if w∗ is stable in forward and backward time,
then Theorem 4.6(e) implies that our Mc is the only submanifold of M near
w∗ with these properties.

Theorem 4.6. Assume that Hypothesis 3.4 and (3.21) hold. Let the projections
Pk and the numbers ωk be given by (3.21). Take any α ∈ (ωc, ωs) and β ∈
(ωc, ωu). Then there is a number ηc ∈ (0, η0] such that for each η ∈ (0, ηc] there
exists a radius rc = rc(η) > 0 such that the following assertions hold, where the
cutoff Γ is defined in (4.1) for the chosen η ∈ (0, ηc].
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(a) There exists a map φc ∈ C1(PcE;PsuEγ) with a bounded derivative such
that φc(0) = 0, φ′c(0) = 0, and

M̃c :=
{
w0 = w∗ + ξ + φc(ξ) ∈ Eγ

∣∣ ξ ∈ PcE
}

(4.10)

=
{
w0 = w∗ + ϕ(0) ∈ Eγ

∣∣∃ solution ϕ ∈ E1(α,−β) of (4.6) on J = R
}
.

If w0 ∈ M̃c, then w∗ + ϕ(t) ∈ M̃c for each t ∈ R and ϕ = Φc(Pc(w0 − w∗)) =
Pcϕ+φc(Pcϕ) for a map Φc ∈ C1(PcE;E1(α,−β)) having a bounded derivative,
where ϕ is given by (4.10).

(b) We define Mc = {w0 ∈ M̃c

∣∣ 〈w0 − w∗〉γ < rc}. Let w0 ∈ Mc and
ϕ be given by (4.10) with w0 = ϕ(0) + w∗. Then Γ(t, ϕ) = 1 and ϕ solves
the (original) equation (3.6) for t ∈ [−3, 3], at least, so that Mc ⊂ M. The
dimension of Mc is equal to that of PcE. Moreover, w0 = w∗+ ξ+φc(ξ) ∈Mc

and 〈w0 − w∗〉γ ≤ c |ξ|E for ξ = Pc(w0 − w∗).
(c) Let w0 ∈Mc and ϕ be given by (4.10). If the forward solution w of (1.1)

exists and satisfies 〈w −w∗〉γ < rc on [0, t] for some t > 0, then w(t) ∈Mc. If
the function w̃ = ϕ+ w∗ satisfies 〈w̃ − w∗〉γ < rc on [t, 0] for some t < 0, then
w̃(t) ∈Mc, and w̃ solves (1.1) on [t, 0].

(d) Let w0 = w∗ + ϕ0 ∈ Mc and let ϕ be given by (4.10). Assume that
ϕ(t) + w∗ ∈ Mc for all t ∈ (a, b) and some a < 0 < b. Then z = Pcϕ satisfies
the equations

ż(t) = −Λ0Pcz(t) + PcΠĜ(z(t) + φc(z(t)))

+ Pc[F̃ (z(t) + φc(z(t))), G0(z(t) + φc(z(t)))],

z(0) = Pc(w0 − w∗),
(4.11)

on PcE for t ∈ (a, b), where F̃ = F − A∗ρ̇∗G0 and Π ∈ L(Ŷ , E−1) is given by
Proposition 3.6. Moreover, ϕ ∈ C((a, b);E1) and

(B0, C0)φc(Pcϕ0)−G0(ϕ0) ∈ Z1
γ , (B̂, Ĉ)φc(Pcϕ0) = Ĝ(ϕ0), (4.12)

Psu[Λ∗ϕ0 − (F̃ (ϕ0), G0(ϕ0)))] = φ′c(Pcϕ0)Pc[Λ∗ϕ0 − (F̃ (ϕ0), G0(ϕ0))]. (4.13)

(e) If w solves (1.1) on R with 〈w(t)−w∗〉γ < rc for all t ∈ R, then w(t) ∈Mc

for all t ∈ R.

(f) If also (RR) holds, then there is a r0 > 0 such that the map φc : D̂c :=
PcE ∩ BE(0, r0) → PsuE1 is Lipschitz, and φ′c(ξ) is uniformly bounded in

L(PcE,PsuE1) for ξ ∈ D̂c.

Proof. We first construct a manifold M̃c consisting of solutions to (4.6) on R
on the space E1(α,−β). The desired center manifold Mc is then obtained by
restriction to small balls.

(a) Let α′ ∈ (ωc, α) and β′ ∈ (ωc, β). We define the map

Tc : PcE × E1(α′,−β′)→ E1(α,−β); Tc(ξ, ϕ) = LΛ0(ξ, FΓ(ϕ), GΓ(ϕ))

for the operators given in (3.22) and (4.5). Let φ0 be given as in (3.23) and set
w0 = ξ+φ0. Due to Propositions 3.9 and 4.5, the map T 0

c : w 7→ Tc(ξ, w) is C1

from E1(α′,−β′) to E1(α,−β) and the derivative of T 0
c is bounded by c1ε(η) in

the norm of both L(E1(α′,−β′)) and L(E1(α,−β)), independent of ξ ∈ PcE.
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Moreover, T 0
c is Lipschitz in E1(α′,−β′) with constant c1ε(η) independent of

ξ ∈ PcE by Propositions 3.9 and 4.4. Finally, the map ξ 7→ Tc(ξ, w) is affine
from PcE to E1(α′,−β′) with the derivative T (·)Pc.

We now fix η = ηc > 0 such that c1ε(η) ≤ 1/2. (Note that this estimate
also holds for every η′ ∈ (0, η) and that it is independent of the choice of
α, α′, β, β′ as above.) Then Theorem 3 of [25] (with Y0 = Y = E1(α′,−β′)
and Y1 = E1(α,−β)) shows that for each ξ ∈ PcE there exists a unique
solution ϕ = Φc(ξ) ∈ E1(α′,−β′) of the equation ϕ = Tc(ξ, ϕ), where
Φc ∈ C1(PcE;E1(α,−β)) and Φc(0) = 0. Moreover, (4.4) in [25] implies that
Φ′c(ξ) ∈ L(PcE,E1(α,−β)) is bounded uniformly in ξ. Observe that ϕ is also a
unique fix point in E1(α,−β) since we can vary α′ < α and β′ < β in the gaps.
We now introduce

φc(ξ) := γ0PsuΦc(ξ) (4.14)

=

∫ 0

−∞
T−1(−τ)Ps,−1[(F̃Γ(Φc(ξ))(τ), G0Γ(Φc(ξ))(τ)) + ΠĜΓ(Φc(ξ))(τ)] dτ

−
∫ ∞

0
Tu(−τ)Pu[(F̃Γ(Φc(ξ))(τ), G0Γ(Φc(ξ))(τ)) + ΠĜΓ(Φc(ξ))(τ)] dτ

for ξ ∈ PcE, where we have F̃Γ(ψ) = FΓ(ψ) − A∗ρ̇G0Γ(ψ) and recall (3.22).
Using the embeddings (2.3) and (2.7), we see that φc ∈ C1(PcE;PsuEγ), φ′c is
bounded and φc(0) = 0. The properties of T (·) and Propositions 3.6 and 4.5
further yield that φ′c(0) = 0. In the formula (4.10) the inclusion ‘⊂’ follows
from the construction. If ϕ ∈ E1(α,−β) is given by the second description of

M̃c, then Proposition 3.9 implies that ϕ = LΛ0(Pcϕ(0), FΓ(ϕ), GΓ(ϕ)). The
other inclusion in (4.10) thus is a consequence of the uniqueness of the equation

ϕ = Tc(ξ, ϕ) with ξ = Pcϕ(0). If w0 = w∗ + ϕ0 ∈ M̃c with the corresponding
solution ϕ of (4.6) and t ∈ R, then ψ = ϕ(· + t) solves (4.6) with the initial

condition ψ(0) = ϕ(t) thanks to Remark 4.2. This means that w∗+ϕ(t) ∈ M̃c,
and thus ϕ(t) = Pcϕ(t) + φc(Pcϕ(t)).

(b) Take w0 = w∗ + ϕ0 ∈ M̃c with 〈ϕ0〉γ < r for some r > 0. Set ξ = Pcϕ0

and ϕ = Φc(ξ). Estimate (4.3) and assertion (a) imply that

‖ϕ‖E1([−5,5]) ≤ c ‖ϕ‖E1(α,−β) = c ‖Φc(ξ)− Φc(0)‖E1(α,−β)

≤ c |ξ|E ≤ c |ϕ0|E < c′r. (4.15)

If we take r ≤ rc := η/c′, Remark 4.1 implies that Γ(t, ϕ) = 1 for t ∈ [−3, 3];
i.e., ϕ solves (3.6) on [−3, 3] in this case. The last assertion in (b) now follows
from (4.15), using also (3.8) and the embeddings (2.3) and (2.7). The other
claims in (b) are clear. We will decrease rc > 0 below, if necessary.

(c) Take w0 ∈ Mc and let w = w∗ + ψ be the forward solution of (1.1)
satisfying 〈ψ〉γ < rc. Since the function ϕ from (4.10) solves (3.6) on [0, 3]
by assertion (b), the uniqueness of (3.6) implies that ψ = ϕ on [0, 3]. We thus

deduce w(τ) = ϕ(τ)+w∗ ∈ M̃c for τ ∈ [0, 3] from part (a). Due the assumption,
we have w(t) ∈ Mc if t ≤ 3. If t > 3, we can iterate the argument using the
translation invariance of (4.6) and (3.6). The asserted backward invariance of
Mc is a direct consequence of parts (a) and (b).
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(d) Let w0 = w∗+ϕ0 ∈Mc and let ϕ be given by (4.10) so that ϕ(t) +w∗ ∈
Mc for t ∈ (a, b). Set z = Pcϕ. Due to (a)–(c), we have ϕ = z + φc(z)

and ϕ solves (3.6) on (a, b). In particular, it holds (B̂, C̃)ϕ(t) = Ĝ(ϕ(t)) on
(a, b). Theorem 3.3 further shows that ϕ is continuous in E1. Using (3.13) and
Propsition 3.6, we compute

ż(t) = Pcϕ̇(t) = Pc[−Λ∗ϕ(t) + (F̃ (ϕ(t)), G0(ϕ(t)))]

= −PcΛ−1z(t) + PcΠĜ(z(t) + φc(z(t)))

+ Pc[F̃ (z(t) + φc(z(t))), G0(z(t) + φc(z(t)))]

for t ∈ (a, b). Since PcΛ−1 = Λ0Pc, the equation (4.11) is shown. The assertion
(4.12) follows from ϕ0 = Pcϕ0 + φc(Pcϕ0) ∈M and PcE ⊂ E0

1 . Differentiating
ϕ = Pcϕ+ φc(Pcϕ), we deduce

ϕ̇(t) = −Λ∗ϕ(t) + (F̃ (ϕ(t)), G0(ϕ(t))),

ϕ̇(t) = Pc[−Λ∗ϕ(t) + (F̃ (ϕ(t)), G0(ϕ(t)))]

+ φ′c(Pcϕ(t))Pc[−Λ∗ϕ(t) + (F̃ (ϕ(t)), G0(ϕ(t)))]

for t ∈ (a, b), so that (4.13) follows by taking t = 0.
(e) Let w be a solution of (1.1) on R staying such that 〈w(t) − w∗〉γ < rc

for t ∈ R. The estimate in Theorem 3.3(b) yields that ‖w‖E1([t−2,t+2]) ≤ c∗rc
for each t ∈ R and a constant c∗ > 0 (possibly after decreasing rc > 0). In
particular, w ∈ E1(α,−β) due to Lemma 4.7 in [20]. Fixing rc ≤ η/c∗, we
deduce from Remark 4.1 that ϕ = w −w∗ solves (4.6) on J = R. Assertion (e)
thus follows from the definition of Mc.

(f) If ξ ∈ PcE ∩ BE(0, r0) for a sufficiently small r0 > 0, as in the proof
of assertion (b) we can deduce from (4.15) that w = w∗ + ϕ = w∗ + Φc(ξ)
solves the original problem (3.6) on [−3, 3]. We can now show assertion (f) as
Theorem 5.1(e) in [20]. �

5. A center-stable and a center-unstable manifold

For a better understanding of the center manifold, cf. Corollary 5.3, it
is useful to relate it with local stable, unstable, center-stable and center-
unstable manifolds. To construct them, we assume the existence of numbers
ωs, ωu, ωcu, ωcs > 0 such that at least one of the following assertions holds:

σ(−Λ0) = σs ∪ σcu with max Reσs < −ωs < −ωcu < min Reσcu , (5.1)

σ(−Λ0) = σcs ∪ σu with max Reσcs < ωcs < ωu < min Reσu . (5.2)

In other words, −Λ0 has spectral gaps in the open left or the open right half
plane. We denote again by Pk the spectral projections for −A0 corresponding
to σk, k ∈ {s, cs, cu, u}. The map Q = I −NγG was introduced in Lemma 3.2.

In the next theorem we construct and study the stable and center-stable man-
ifolds, whereas the center-stable and unstable manifolds are treated afterwards.

Theorem 5.1. Let Hypothesis 3.4 and (5.2) hold. Take any β ∈ (ωcs, ωu).
Then there are numbers r′u ≥ ru > 0, ru0 > 0 and ηcs > 0 such that for each η ∈
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(0, ηcs] there exists a radius rcs = rcs(η) > 0 such that the following assertions
hold, where the cutoff Γ+ is defined in (4.4) for the chosen η ∈ (0, ηcs].

(a) There is a C1
b map

φu : Du := {ξ ∈ PuE
∣∣ |ξ|E < ru0} −→ PcsEγ

such that φu(0) = 0, φ′u(0) = 0 and

Mu := {w0 = w∗ + ξ + φu(ξ)
∣∣ ξ ∈ Du, 〈w0 − w∗〉γ < ru}

= {w0 ∈M
∣∣ 〈w0 − w∗〉γ < ru, ∃ solution w = (u, ρ) of (1.1) on R− with

〈w(t)− w∗〉γ ≤ r′u, 〈w(t)− w∗〉1 ≤ ceβt (∀ t ≤ 0)} (5.3)

In (5.3) we can take c = c |w(0)−w∗|E for a constant c independent of w0, t, β,
and we have w = w∗ + Φu(Pu(w0 − w∗)) for a map Φu ∈ C1

b (Du;E1(R−,−β))
with Φu(0) = 0. It holds Mu ⊂M.

(b) If w0 ∈ Mu and the forward solution w of (1.1) fulfills 〈w − w∗〉γ < ru
on [0, t] for some t > 0, then w(t) ∈Mu. If w0 ∈Mu and the solution w from
(5.3) satisfies 〈w − w∗〉γ < ru on [t, 0] for some t < 0, then w(t) ∈Mu.

The dimension of Mu is equal to the dimension of PuE. If σu 6= ∅, then w∗
is (Lyapunov) unstable in Eγ × Z1

γ for (1.1).
If also (RR) holds, then there is a r̂u0 ∈ (0, ru0 ] such that the map φu is

Lipschitz from D̂u := {ξ ∈ PuE
∣∣ |ξ|E < r̂u0} to PcsE1, and φ′u(ξ) is uniformly

bounded in L(PuE,PcsE1) for ξ ∈ D̂u.
(c) There exist maps φcs ∈ C1(PcsE

0
γ ;PuE) and ϑcs ∈ C1(PcsE

0
γ ;PcsEγ) with

bounded derivatives such that φcs(0) = ϑcs(0) = 0, φ′cs(0) = ϑ′cs(0) = 0, and

M̃cs :=
{
w0 = w∗ + ξ + ϑcs(ξ) + φcs(ξ)

∣∣ ξ ∈ PcsE
0
γ

}
(5.4)

= {w0 = w∗ + ϕ(0)
∣∣ ∃ solution ϕ ∈ E1(R+,−β) of (4.6) on J = R+}.

Moreover, the function ϕ in (5.4) is given by ϕ = Φcs(ξ) for a map Φcs ∈
C1
b (PcsE

0
γ ;E1(R+,−β)).

(d) We define Mcs = {w0 ∈ M̃cs

∣∣ |w0 − w∗|Eγ + |σ̇(0)|Z1
γ
< rcs}, where

ϕ = (v, σ) is given by (5.4). Then Γ+(t, ϕ) = 1 and ϕ solves the (original)
equation (3.6) for t ∈ [0, 4], at least, and thus Mcs ⊂ M. In particular, we
have |w0 − w∗|Eγ + |σ̇(0)|Z1

γ
= 〈w0 − w∗〉γ.

(e) Let w0 ∈ Mcs and ϕ be given by (5.4). Assume that a forward or a
backward solution w of (1.1) exists and satisfies 〈w − w∗〉γ < rcs on [0, t0] or
on [−t0, 0] for some t0 > 0, respectively. Set ϕ(t) = w(t)− w∗ for −t0 ≤ t ≤ 0
in the second case. Then

w(t) = w∗ + ϕ(t) = w∗ + PcsQ(ϕ(t)) + φcs(PcsQϕ(t))) + ϑcs(PcsQ(ϕ(t)))

= w∗ + Pcsϕ(t) + φcs(PcsQϕ(t))) (5.5)

belongs to Mcs for 0 ≤ t ≤ t0 or −t0 ≤ t ≤ 0, respectively.
(f) We have Mcs ∩Mu = {w∗}.
(g) If w solves (1.1) on R+ with 〈w(t) − w∗〉γ < rcs for all t ≥ 0, then

w(t) ∈Mcs for all t ≥ 0.
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Proof. The proof of assertions (a) and (b) is similar to the corresponding parts
of Theorem 5.1 of [20] (and actually a bit simpler), so that we omit it, cf.
Theorem 4.1 in [10]. For the center-stable menifold, we proceed as in the case
of the stable manifold in Theorem 5.1 of [20], but now we must work in the
space E1(R+,−β) containing exponentially growing functions. Hence, as in
Theorem 4.6, we have to involve the cutoff Γ+ which leads to various technical
difficulties.

(c) We define the map Tcs : PcsE
0
γ × E1(R+,−β)→ E1(R+,−β) by setting

Tcs(ξ, ϕ) = L+
Pcs,Λ0

(ξ + PcsNγγ0GΓ+(ϕ), FΓ+(ϕ), GΓ+(ϕ)),

where the operators L+
Pcs,Λ0

, FΓ+ and GΓ+ are given by (3.17) and (4.5). Ob-

serve that the semigroup e−βT (·) has an exponential dichotomy with the stable

projection Pcs. Due to Corollary 3.1, (2.4) and (3.16), the operator L+
Pcs,Λ0

above is applied to elements of D(R+,−β). Propositions 3.7 and 4.5 thus show
that the map T 0

cs : ϕ 7→ Tcs(ξ, ϕ) is C1 from E1(R+,−β′) to E1(R+,−β) for
any β′ ∈ (ωcs, β) and the derivative of T 0

cs is bounded by c1ε(η) in the norm of
both L(E1(R+,−β′)) and L(E1(R+,−β)), independent of ξ ∈ PcsE

0
γ . Moreover,

T 0
cs is Lipschitz in E1(R+,−β′) with constant c1ε(η) independent of ξ ∈ PcsE

0
γ

by Proposition 4.4. Finally, the map ξ 7→ Tcs(ξ, ϕ) is affine from PcsE
0
γ to

E1(R+,−β′) with the derivative T (·)Pcs.
We find an ηcs > 0 such that c1ε(η) ≤ 1/2 for all η ∈ (0, ηcs]. For any fixed η ∈

(0, ηcs], Theorem 3 of [25] (with Y0 = Y = E1(R+,−β′) and Y1 = E1(R+,−β))
then shows that for each ξ ∈ PcsE

0
γ there exists a unique solution ϕ = Φcs(ξ) ∈

E1(R+,−β′) of the equation ϕ = Tcs(ξ, ϕ), where Φcs ∈ C1(PcsE
0
γ ;E1(R+,−β))

and Φcs(0) = 0. Therefore, ϕ solves (4.6) on J = R+. Due to (4.4) in [25], the
derivatives Φ′cs(ξ) ∈ L(PcsE

0
γ ,E1(R+,−β)) are bounded uniformly in ξ. (We

note that ϕ is also the unique fix point in E1(R+,−β).) We then introduce

ϑcs(ξ) = PcsNγγ0GΓ+(Φcs(ξ)) and φcs(ξ) = Puγ0Φcs(ξ), i.e., (5.6)

φcs(ξ) = −
∫ ∞

0
Tu(−τ)Pu

(
ΠĜΓ+(Φcs(ξ))(τ)

+
[
FΓ+(Φcs(ξ))(τ)−A∗,ρ̇G0Γ+(Φcs(ξ))(τ), G0Γ+(Φcs(ξ))(τ)

])
dτ,

for ξ ∈ PcsE
0
γ . Hence, Corollary 3.1, (3.15), (2.4), Propositions 3.6 and 4.5

imply that φcs ∈ C1(PcsE
0
γ ;PuEγ) and ϑsc ∈ C1(PcsE

0
γ ;PcsEγ) with bounded

derivatives, as well as φcs(0) = ϑcs(0) = 0 and φ′cs(0) = ϑ′cs(0) = 0. The
inclusion ‘⊂’ in (5.4) now follows from our construction.

Conversely, any solution ϕ = (v, σ) ∈ E1(R+,−β) of (4.6) on R+ is given by

ϕ = L+
Pcs,Λ0

(Pcsϕ(0), FΓ+(ϕ), GΓ+(ϕ))

due to Proposition 3.7. We set ξ = Pcs[ϕ(0)−Nγγ0GΓ+(ϕ))]. Combined with
the embeddings (2.3), (2.4), (2.7) and the equations (4.6), Corollary 3.1 shows
that ϕ(0)−Nγγ0GΓ+(ϕ) ∈ Eγ ,

(B̂, Ĉ)Nγγ0GΓ+(ϕ) = γ0ĜΓ+(ϕ) = (B̂, Ĉ)ϕ(0), and

(B0, C0)Nγγ0GΓ+(ϕ)−(B0, C0)ϕ(0) = (B0, C0)Nγγ0GΓ+(ϕ)−γ0GΓ+(ϕ)+σ̇(0)
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belongs to Z1
γ . Hence, ξ ∈ PcsE

0
γ and ϕ = Tcs(ξ, ϕ). Because of the uniqueness

of the latter equation, we arrive at ϕ = Φcs(ξ), and thus ϕ(0) = ξ + ϑcs(ξ) +

φcs(ξ) ∈ M̃cs − w∗.
(d) Take w0 ∈ M̃cs with the corresponding ξ ∈ PcsE

0
γ and the solution

ϕ = (v, σ) ∈ E1(R+,−β) of (4.6) with ϕ(0) = w0 − w∗ =: ϕ0. Assume that
|w0−w∗|Eγ + |σ̇(0)|Z1

γ
< r for an r > 0 to be fixed below. Assertion (c) and its

proof, (3.15), Corollary 3.1, (4.6), (2.4) and Proposition 4.4 yield

‖ϕ‖E1(R+,−β) = ‖Φcs(ξ)− Φcs(0)‖E1(R+,−β) ≤ c |ξ|E0
γ
≤ c |ϕ(0)−Nγγ0GΓ+(ϕ)|E0

γ

≤ c
(
|ϕ0 −Nγγ0GΓ+(ϕ)|Eγ + |σ̇(0)|Z1

γ

+ |γ0GΓ+(ϕ)− (B0, C0)Nγγ0GΓ+(ϕ)|Z1
γ

)
≤ c

(
|ϕ0|Eγ + |σ̇(0)|Z1

γ
+ |γ0GΓ+(ϕ)|Yγ

)
≤ c

(
|ϕ0|Eγ + |σ̇(0)|Z1

γ
+ ‖GΓ+(ϕ)−GΓ+(0)‖E1(R+,−β)

)
≤ c

(
|ϕ0|Eγ + |σ̇(0)|Z1

γ

)
+ ε(η) ‖ϕ‖E1(R+,−β).

Fixing a sufficiently small ηcs > 0 and using also (4.3), we thus obtain

‖ϕ‖E1([0,6]) ≤ c ‖ϕ‖E1(R+,−β) ≤ c̃
(
|ϕ0|Eγ + |σ̇(0)|Z1

γ

)
(5.7)

for a constant c̃ > 0 and all η ∈ (0, ηcs]. We take an r0
cs = r0

cs(η) > 0 such that
r0
csc̃ ≤ c−1

W (1 + cR)−1η ≤ c−1
W (1 + cR)−1ηcs. For every r ∈ (0, r0

cs], Remark 4.1
and (5.7) thus imply that Γ+(t, ϕ) = 1 for 0 ≤ t ≤ 4. As a result,

ξ = Pcs[ϕ(0)−NγG(ϕ0)] = PcsQ(ϕ0) (5.8)

and ϕ solves the original problem (3.6) on [0, 4], so that |σ̇(0)|Z1
γ

= [w0 −w∗]γ .

(e.i) Let w0 ∈ M̃cs and w = w∗ + ψ be a solution of (1.1) on [0, t0] with
w(0) = w0 for some t0 > 0. Let ϕ = (v, σ) ∈ E1(R+,−β) be the solution of
(4.6) with ϕ(0) = w0 − w∗. We assume that 〈ψ(t)〉γ < r ≤ r0

cs for 0 ≤ t ≤ t0,

and want to derive that ψ(t) = ϕ(t) and w(t) ∈ M̃cs for 0 ≤ t ≤ t0. Part (d)
of the proof implies that Γ+(t, ϕ) = 1 and that ϕ solves (3.6) for t ∈ [0, 4]. The
uniqueness of (3.6) thus gives ψ(t) = ϕ(t) for t ∈ [0, 4] ∩ [0, t0].

First, let t0 ≤ 2 and set ϕ̃(t) = ϕ(t + t0) for t ≥ 0. Remark 4.2 yields
that Γ+(t, ϕ̃) = Γ+(t + t0, ϕ) for t ≥ 2. From (5.7) we further deduce that
‖ϕ̃‖E1([t−2,t+2]∩R+) ≤ ‖ϕ‖E1([0,6]) < c′r ≤ c′r0

cs for 0 ≤ t ≤ 2. Decreasing

r0
cs > 0, we arrive at Γ+(t, ϕ̃) = 1 for 0 ≤ t ≤ 2 thanks to Remark 4.1. Since

2 + t0 ≤ 4, we also have Γ+(t+ t0, ϕ) = 1 for 0 ≤ t ≤ 2. Summing up, it holds
Γ+(t, ϕ̃) = Γ+(t+t0, ϕ) for all t ≥ 0 so that ϕ̃ ∈ E1(R+,−β) solves (4.6) on J =

R+ with ϕ̃(0) = ϕ(t0). This means that ψ(t0) = ϕ(t0) ∈ (M̃cs − w∗) ∩M∗(r).
Since we can replace here t0 by t ∈ [0, t0], part (c) and formula (5.8) show

w(t) = w∗+ϕ(t) = w∗+PcsQ(ϕ(t)) +φcs(PcsQ(ϕ(t))) +ϑcs(PcsQ(ϕ(t))) (5.9)

belongs to M̃cs for 0 ≤ t ≤ t0. If t0 > 2, we obtain this result by a finite
iteration of the above argument.

(e.ii) Let w0 ∈ M̃cs possess a solution w of (1.1) on [−t0, 0] with w(0) = w0

for some t0 > 0. We set z(t) = w(t) − w∗ = (u(t), ρ(t)) − w∗ and assume
that 〈z(t)〉γ < r ≤ r0

cs for −t0 ≤ t ≤ 0. Let ϕ = (v, σ) ∈ E1(R+,−β) be the
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solution of (4.6) with ϕ(0) = w0−w∗ given by (5.4). To show that w(t) ∈ M̃cs

for −t0 ≤ t ≤ 0, we set z(t) = ϕ(t) and ψ(t) = z(t − t0) for t ≥ 0. Clearly,
ψ ∈ E1(R+,−β), ψ(0) = w(−t0) − w∗, and ψ satisfies (3.6) on [0, t0 + 2] since
z and ϕ solve (3.6) on [−t0, 0] and [0, 2], respectively, and we have z(0) = ϕ(0)
and thus ρ̇(0) = σ̇(0). (Here we also use Lemma 2.2.) Take t ∈ [0, t0 + 2] and s
with |t− s| ≤ 1/4. Noting that [0, 1] ⊂ J(s) if J(s) ∩ R− 6= ∅, we deduce from
Lemma 2.2 and (4.2) that

‖R+ψ‖E1(J(s)) ≤ c
(
‖ψ‖E1(J(s)∩[0,t0]) + ‖ψ‖E1(J(s)∩[t0,∞)) + ‖R+ψ‖E1(J(s)∩[−1,0])

)
≤ c∗

(
‖z(· − t0)‖E1(J(s)∩[0,t0]) + ‖ϕ(· − t0)‖E1(J(s)∩[t0,∞))

)
= c∗

(
‖z‖E1(J(s−t0)∩[−t0,0]) + ‖ϕ‖E1(J(s−t0)∩R+)

)
for a constant c∗ > 0 given by these lemmas. Since z solves (3.6) on J(s− t0)∩
[−t0, 0] =: [a, b], the estimate in Theorem 3.3(b) yields ‖z‖E1([a,b]) ≤ ĉ 〈z(a)〉γ <
ĉr ≤ ĉr0

cs for a constant ĉ > 0, where we possibly decrease r0
cs > 0 to apply

the theorem. Moreover, from inquality (5.7) we infer that ‖ϕ‖E1(J(s−t0)∩R+) ≤
c̃ 〈ϕ(0)〉γ < c̃r using that J(s− t0) ∩ R+ ⊂ [0, 4]. As a consequence,

‖R+ψ‖E1(J(s)) < c∗(ĉ+ c̃)r ≤ c∗(ĉ+ c̃)r0
cs.

Decreasing r0
cs once more if necessary, we obtain ‖R+ψ‖E1(J(s)) ≤ ηcs/(cW (1 +

cR)) so that Γ+(t, ψ) = 1 for 0 ≤ t ≤ t0 + 2 due to Remark 4.1.
The function ψ thus satisfies (4.6) for 0 ≤ t ≤ t0+2. For t ≥ t0+2, Remark 4.2

yields Γ+(t, ψ) = Γ+(t−t0, ϕ) so that ψ fulfills (4.6) also on [t0+2,∞). Summing

up, ψ ∈ E1(R+,−β) solves (4.6) on R+ and so w(−t0) − w∗ = ψ(0) ∈ (M̃cs −
w∗) ∩M∗(r). Replacing here −t0 by t ∈ [−t0, 0], and writing ϕ(t) = z(t), we
arrive at (5.9) for −t0 ≤ t ≤ 0. Since Pcsϕ(t) = PcsQ(ϕ(t)) + ϑcs(PcsQ(ϕ(t))),
formula (5.5) follows from (5.9).

(f) Assume that w0 = w∗ + ϕ0 ∈ M̃cs ∩Mu with 〈ϕ0〉γ < r ≤ min{r0
cs, ru},

and let ϕ = (v, σ) ∈ E1(R+,−β) be the solution of (4.6) with ϕ(0) = ϕ0 given
by (5.4). Take β + ε ∈ (β, ωu). Due to assertion (a), there is a solution z of
(3.6) on R− with z(0) = ϕ0 satisfying

〈z(t)〉γ ≤ ce(β+ε)t 〈ϕ0〉γ < cr (5.10)

for all t ≤ 0. We choose a sufficiently small r =: rcs > 0 such that cr ≤ r0
cs,

and take t ≤ 0. We define Mcs for this rcs ≤ r0
cs. Part (e.ii) of the proof

implies that w∗ + z(t) ∈ Mcs and that the function ψt ∈ E1(R+,−β) given by
ψt(τ) = z(t+ τ) for τ ∈ [0,−t] and ψt(τ) = ϕ(t+ τ) for τ ≥ −t solves (4.6) on
J = R+. Estimate (5.7) thus yields

‖ψt‖E1(R+,−β) ≤ c 〈ψt(0)〉γ = c 〈z(t)〉γ , (5.11)

where the constant c does not depend on t ≤ 0. Observe that

〈ϕ0〉γ = e−βte−β(−t) (|ϕ(0)|Eγ + |σ̇(0)|Z1
γ
) ≤ ce−βt〈(e−βψt)(−t)〉γ

due to (3.8) and (2.13). Using the embeddings (2.3), (2.7) and the inequalities
(5.11) and (5.10), we then estimate

〈ϕ0〉γ ≤ ce−βt‖ψt‖E1(R+,−β) ≤ ce−βt〈z(t)〉γ ≤ ceεt〈ϕ0〉γ ,
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where the constants do not depend on t. Letting t → −∞, we conclude that
w0 − w∗ = ϕ0 = 0.

(g) The last assertion can be shown as part (f) of Theorem 4.6. �

Theorem 5.2. Let Hypothesis 3.4 and (5.1) hold. Take any α ∈ (ωcu, ωs).
Then there are numbers r′s ≥ rs > 0, rs0 > 0 and ηcu > 0 such that for each η ∈
(0, ηcu] there exists a radius rcu = rcu(η) > 0 such that the following assertions
hold, where the cutoff Γ− is defined in (4.4) for the chosen η ∈ (0, ηcu].

(a) There are C1
b maps

φs : Ds := {ξ ∈ PsE
0
γ

∣∣ |ξ|E0
γ
< rs0} −→ PcuE, ϑs : Ds −→ PsEγ ,

such that φs(0) = ϑs(0) = 0, φ′s(0) = ϑ′s(0) = 0 and

Ms := {w0 = w∗ + ξ + ϑs(ξ) + φs(ξ)
∣∣ ξ ∈ Ds, 〈w0 − w∗〉γ < rs}

= {w0 ∈M
∣∣ 〈w0 − w∗〉γ < rs, ∃ solution w = (u, ρ) of (1.1) on R+ with

〈w(t)− w∗〉γ ≤ r′s, 〈w(t)− w∗〉1 ≤ ce−αt (∀ t ≥ 0)}. (5.12)

In (5.12) we can take c = c 〈w(0)−w∗〉γ for a constant c independent of w0, t, α,
and we have w = w∗ + Φs(PsQ(w0 − w∗)) for a map Φs ∈ C1

b (Ds;E1(R+, α))
with Φs(0) = 0.

(b) If w0 ∈ Ms and the forward (resp., a backward) solution w of (1.1)
satisfies 〈w−w∗〉γ < rs on [0, t] for some t > 0 (resp., on [t, 0] for some t < 0),
then w(t) ∈Ms.

(c) There exists a map φcu ∈ C1(PcuE;PsEγ) with a bounded derivative such
that φcu(0) = 0, φ′cu(0) = 0, and

M̃cu :=
{
w0 = w∗ + ξ + φcu(ξ)

∣∣ ξ ∈ PcuE
}

(5.13)

= {w0 = w∗ + ϕ(0)
∣∣∃ solution ϕ ∈ E1(R−, α) of (4.6) on J = R−}.

Moreover, the function ϕ in (5.13) is given by ϕ = Φcu(Pcu(w0 − w∗)) for a
map Φcu ∈ C1(PcuE;E1(R−, α)) having a bounded derivative.

(d) We define Mcu = {w0 ∈ M̃cu

∣∣ 〈w0 − w∗〉γ < rcu}. For w0 ∈ Mcu, let ϕ
be given by (5.13). Then Γ−(t, ϕ) = 1 and ϕ solves the (original) equation (3.6)
for t ∈ [0, 4], at least. The dimension of Mcu is equal to dimPcuE. We have
w0 = w∗+ξ+φcu(ξ) ∈Mcu and 〈w0−w∗〉γ ≤ c |ξ|E if |ξ|E for ξ = Pcu(w0−w∗).

(e) Let w0 ∈ Mcu and ϕ be given by (5.13). If the forward solution w
of (1.1) exists and satisfies 〈w − w∗〉γ < rcu on [0, t0] for some t0 > 0, then
w(t) =: w∗ + ϕ(t) ∈ Mcu for 0 ≤ t ≤ t0. If the function w̃ = w∗ + ϕ satisfies
〈w̃ − w∗〉γ < rcu on [t0, 0] for some t0 < 0, then w̃(t) = w∗ + ϕ(t) ∈ Mcu and
w̃ solves (1.1) for t0 ≤ t ≤ 0. In particular, ϕ(t) = Pcuϕ(t) + φcu(Pcuϕ(t)) for
t ∈ [0, t0], resp. t ∈ [t0, 0].

(f) We have Mcu ∩Ms = {w∗}.
(g) Let w0 = w∗ + ϕ0 ∈ Mcu and let ϕ be given by (5.13). Assume that

ϕ(t) +w∗ ∈Mcu for all t ∈ (a, b) and some a < 0 < b. Then z = Pcuϕ satisfies
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the equations

ż(t) = −Λ0Pcuz(t) + PcuΠĜ(z(t) + φcu(z(t)))

+ Pcu[F̃ (z(t) + φcu(z(t))), G0(z(t) + φcu(z(t)))],

z(0) = Pcu(w0 − w∗),
(5.14)

on PcuE for t ∈ (a, b), where F̃ = F −A∗ρ̇∗G0. Also, ϕ ∈ C((a, b);E1) and

(B0, C0)φcu(Pcuϕ0)−G0(ϕ0) ∈ Z1
γ , (B̂, Ĉ)φcu(Pcuϕ0) = Ĝ(ϕ0), (5.15)

Ps[Λ∗ϕ0 − (F̃ (ϕ0), G0(ϕ0)))] = φ′cu(Pcuϕ0)Pcu[Λ∗ϕ0 − (F̃ (ϕ0), G0(ϕ0))]. (5.16)

(h) If w solves (1.1) on R− with 〈w(t) − w∗〉γ < rcu for all t ≤ 0, then
w(t) ∈Mcu for all t ≤ 0.

(i) Assume that (RR) holds, too. Then there is a r0 > 0 such that the map

φcu is Lipschitz from D̂cu := {ξ ∈ PcuE
∣∣ |ξ|E < r0} to PsE1, and φ′cu(ξ) is

uniformly bounded in L(PcuE,PsE1) for ξ ∈ D̂cu.

Proof. As in Theorem 5.1 we do not give the proof of (a) and (b), cf. Theo-
rem 5.1 in [20] and also Theorem 4.1 in [10]. The proof of assertions (c)–(i) is
similar the corresponding parts in the previous theorem, so that we can omit
some details and focus on the differences.

(c) We define the map Tcu : PcuE × E1(R−, α)→ E1(R−, α) by setting

Tcu(ξ, ϕ) = L−Ps,Λ0
(ξ, FΓ−(ϕ), GΓ−(ϕ)),

where the operators L−Ps,Λ0
, FΓ− and GΓ− are given by (3.19) and (4.5). Using

Propositions 3.8, 4.4 and 4.5, we find an ηcu > 0 such that the assumptions
of Theorem 3 of [25] hold for the cutoff Γ− for any parameter η ∈ (0, ηcu].
Let α′ ∈ (ωcu, α). As in the proof of Theorem 4.6, for each ξ ∈ PcuE there
exists a unique solution ϕ = Φcu(ξ) ∈ E1(R−, α′) of the equation ϕ = Tcu(ξ, ϕ),
where Φcu ∈ C1(PcuE;E1(R−, α)), Φcu(0) = 0, and the derivatives Φ′cu(ξ) ∈
L(PcuE,E1(R−, α)) are bounded uniformly in ξ. We then introduce the map

φcu(ξ) = γ0PsΦcu(ξ)

=

∫ 0

−∞
T−1(−τ)Ps

([
FΓ+(Φcs(ξ))(τ)−A∗ρ̇G0Γ+(Φcs(ξ))(τ), G0Γ+(Φcs(ξ))(τ)

]
+ ΠĜΓ+(Φcs(ξ))(τ)

)
dτ,

for ξ ∈ PcuE. As before, we obtain that φcu ∈ C1(PcuE;PsEγ) with a bounded
derivative and that φcu(0) = 0 and φ′cu(0) = 0. Moreover, the identity (5.13)
follows from Proposition 3.8, where ϕ = Φcu(ξ) and ξ = Pcu(w0 − w∗).

(d) Take w0 ∈ M̃cu with 〈w0 − w∗〉γ < r ≤ r0
cu where r0

cu > 0 is fixed below.
Let ϕ be the corresponding solution of (4.6) on R− given by (5.13). From (4.3)
and part (c) we deduce

‖ϕ‖E1([−6,0]) ≤ c ‖ϕ‖E1(R−,α) ≤ c |ξ|E ≤ c |ϕ(0)|E ≤ c′r ≤ c′r0
cu, (5.17)

where the constants do not depend on r and α. For any fixed η ∈ (0, ηcu],
we can choose a sufficiently small r0

cu > 0 so that c′r0
cu ≤ (cW (1 + cR))−1η.

Remark 4.1 thus yields Γ−(t, ϕ) = 1 for −4 ≤ t ≤ 0. As a result, ϕ solves the
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original problem (3.6) on [−4, 0]. The last assertion now follows from (5.17),
using also the embeddings (2.3) and (2.7).

(e.i) Take w0 ∈ M̃cu and t0 > 0 such that the solution w = w∗ + ψ of (1.1)
on [0, t0] with w(0) = w0 satisfies 〈w(t) − w∗〉γ < r ≤ r0

cu for t ∈ [0, t0]. Let
ϕ ∈ E1(R−, α) be the solution of (4.6) on J = R− with ϕ(0) = w0 − w∗ given
by (5.13). We further define ψ(t) = ϕ(t) and z(t) = ψ(t + t0) for t ≤ 0. As
before, z ∈ E1(R−, α), z(0) = ϕ(t0), and z satisfies (3.6) on [−t0 − 2, 0] since ψ
and ϕ solve (3.6) on [0, t0] and [−2, 0], respectively. Take t ∈ [−t0 − 2, 0] and
s with |t − s| ≤ 1/4. As in part (e.ii) of the proof of Theorem 5.2, we deduce
from Lemma 2.2 and (4.2) that

‖R−z‖E1(J(s)) ≤ c
(
‖ψ(·+ t0)‖E1(J(s)∩[−t0,0]) + ‖ϕ(·+ t0)‖E1(J(s)∩(−∞,−t0])

)
= c

(
‖ψ‖E1(J(s+t0)∩[0,t0]) + ‖ϕ‖E1(J(s+t0)∩R−)

)
.

Theorem 3.3(b) shows that ‖ψ‖E1([a,b]) ≤ c∗r for sufficiently small r0
cu > 0 since

ψ solves (3.6) on J(s+ t0)∩ [0, t0] =: [a, b]. Using (J(s+ t0)∩R−) ⊂ [−4, 0] and
(5.17), we estimate ‖ϕ‖E1(J(s+t0)∩R−) ≤ c′r0

cu. Consequently, ‖R−z‖E1(J(s)) ≤
cr0
cu, and so Remark 4.1 yields Γ−(t, z) = 1 for −t0 − 2 ≤ t ≤ 0, where we

decrease r0
cu if necessary. The function z thus satisfies (4.6) for −t0−2 ≤ t ≤ 0.

Moreover, Remark 4.2 yields that Γ−(t, z) = Γ−(t+ t0, ϕ) for t ≤ −t0 − 2; and
so z fulfills the equations (4.6) for t ≤ −t0 − 2. Summing up, we have shown

that z solves (4.6) on R−, and so w∗ + z(0) = w(t0) ∈ M̃cu ∩ (M∗(r) + w∗).

(e.ii) Let w0 ∈ M̃cu and ϕ be given by (5.13). Assume that ϕ(t) ∈ M∗(r)
for all t ∈ [t0, 0] and some t0 < 0 and r ∈ (0, r0

cu]. We first consider the case
that t0 ∈ [−2, 0). Assertion (d) shows that Γ−(t, ϕ) = 1 and ϕ solves (3.6)
on [t0, 0]. We further set ϕ̃(t) = ϕ(t + t0) for t ≤ 0. Remark 4.2 yields that
Γ−(t, ϕ̃) = Γ−(t+ t0, ϕ) for t ≤ −2. Since ‖ϕ̃‖E1([t−2,t+2]∩R−) ≤ ‖ϕ‖E1([−6,0]) ≤
(cW (1 + cR))−1η for −2 ≤ t ≤ 0 by (5.17) and our choice of r0

cu, we deduce
Γ−(t, ϕ̃) = 1 for −2 ≤ t ≤ 0 from Remark 4.1. Finally, Γ−(t + t0, ϕ) = 1 for
−2 ≤ t ≤ 0 due to part (d), and hence Γ−(t, ϕ̃) = Γ−(t + t0, ϕ) for all t ≤ 0.
As a result, ϕ̃ ∈ E1(R−, α) solves (4.6) on J = R− with ϕ̃(0) = ϕ(t0), i.e.,

ϕ(t) + w∗ ∈ M̃cu ∩ (M∗(r) + w∗) for each t ∈ [t0, 0]. The general case t0 < −2
is then established by repeating the above arguments finitely many times.

(f) Assume that w0 = w∗+ϕ0 ∈ M̃cu ∩Ms ∩ (w∗+M∗(r)) with r ∈ (0, r0
cu].

Let ϕ ∈ E1(R−, α) be the solution of (4.6) with ϕ(0) = ϕ0 given by (5.13).
For α + ε ∈ (α, ωs), there is a solution ψ of (3.6) on R+ with ψ(0) = ϕ0

satisfying 〈ψ(t)〉γ ≤ ce−(α+ε)t〈ϕ0〉γ ≤ cr for all t ≥ 0, if we fix a sufficiently
small rcu := r ∈ (0, r0

cu] and use assertion (a). Set ψ(t) = ϕ(t) for t ≤ 0. Part

(e.i) of the proof now shows that w∗ + ψ(t) ∈ M̃cu for t ≥ 0 and that the
function zt = ψ(·+ t) satisfies ‖zt‖E1(R−,α) ≤ c 〈ψ(t)〉γ , where the constant does
not depend on t ≥ 0. Employing also (2.3), (2.7) and (2.13), we arrive at

〈ϕ0〉γ ≤ ceαt 〈eα(−t)zt(−t)〉γ ≤ ceαt ‖zt‖E1(R−,α) ≤ ceαt 〈ψ(t)〉γ ≤ ce−εt 〈ϕ0〉γ
for constants independent on t ≥ 0. As t→∞, it follows w0 − w∗ = ϕ0 = 0.

(g), (h), (i) These parts are shown as Theorem 4.6(d), (e) and (f), making
use of (5.17). �
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Corollary 5.3. Assume that Hypothesis 3.4 and (3.21) hold. Then there is a
number r > 0 such that Mc ∩ (w∗ +M∗(r)) = Mcs ∩Mcu ∩ (w∗ +M∗(r)),
Mc∩Ms∩ (w∗+M∗(r)) = {w∗}, andMc∩Mu∩ (w∗+M∗(r)) = {w∗}. Here,
Mk are the manifolds obtained in Theorems 4.6, 5.1 and 5.2.

Proof. We set η = min{ηc, ηcs, ηcu} > 0 and let r be less than or equal to the
minimum of the numbers rk(η) obtained in Theorems 4.6, 5.1, and 5.2. For
w0 ∈ Mc ∩ (w∗ +M∗(r)), there exists the function ϕ from (4.10) with ϕ(0) =
w0 − w∗, where Γ(t, ϕ) = 1 for |t| ≤ 2. For s ∈ [0, 9/4] and s′ ∈ [−9/4, 0], we
have ‖R+ϕ‖E1(J(s)) ≤ c ‖ϕ‖E1([0,4]) and ‖R−ϕ‖E1(J(s′)) ≤ c ‖ϕ‖E1([−4,0]) for some
constant c. In view of (4.15) and Remark 4.1, we can decrease r > 0 in order
to obtain Γ+(t, ϕ) = 1 for t ∈ [0, 2] and Γ−(t, ϕ) = 1 for t ∈ [−2, 0]. Therefore
Γ(t, ϕ) = Γ±(t, ϕ) for t ∈ R± in view of Remark 4.2, and the restrictions of ϕ

to R+ and R− thus belong to M̃cs and M̃cu by (5.4) and (5.13), respectively.
As a result, w0 ∈ Mcs ∩Mcu. The converse inclusion can be shown similarly,
thereby fixing a possibly smaller r. The last two equalities then follow from
Theorems 5.1 and 5.2. �

Example 5.4. As in Examples 2.2, 2.4 and 3.6 of [20] we consider the Stefan
problem with surface tension. For times t ≥ 0, we look at open subsets Di(t)
of a fixed bounded domain D ⊆ Rn with ∂D ∈ C2 and outer unit normal νD,
where the liquid phase is contained in D1(t) and the solid one in D2(t), say. The
domains have the compact interface Γ(t) ⊆ D so that D1(t)∪̇Γ(t)∪̇D2(t) = D.
We assume that Γ(t)∩ ∂D = ∅ for all t ≥ 0. The phases have the temperatures
ui(t). On the interface we have the mean curvature H(Γ(t)), which is chosen
to be negative at x ∈ Γ(t) if D1(t) is convex near x. The normal velocity of
Γ(t) is denoted by V (t), where the normal ν of Γ(t) is defined with respect to
D1(t). Here the interface and the temperatures are unknown. We consider the
system

∂tui − di∆ui = 0, t > 0, x ∈ Di(t),

∂νDu2 = 0, t ≥ 0, x ∈ ∂D,
ui = σH(Γ(t)), t ≥ 0, x ∈ Γ(t), (5.18)

d2∂νu2 − d1∂νu1 = lV, t ≥ 0, x ∈ Γ(t),

ui(0) = ui0, x ∈ Di
0, Γ(0) = Γ0,

for constants d1, d2, σ, l > 0, initial domains Di
0 ⊆ D and a closed compact C2

hypersurface Γ0 ⊆ D with with Γ0 = ∂D1
0 and D1

0∪̇Γ0∪̇D2
0 = D, and initial

temperature distributions ui0 on Di
0. Actually, this a simplified model and we

refer to [17] for a thermodynamically consistent version allowing for different
heat capacities in the phases, kinetic undercooling and coefficients depending
on the temperature. This problem could also be treated by the methods in the
present paper, but for simplicity we restrict ourselves to the system (5.18).

In Theorem 1.1 of [15] it was shown that for connected phases the equiliberia
of (5.18) are spheres Σ of radius R > 0 in D with constant temperature σ/R.
These form a n + 1–dimensional manifold in the phase space. We fix such a
sphere. As recalled in Examples 2.2, 2.4 and 3.6 of [20], one can transform
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(5.18) into the form (1.1) where ρ(t, y) is the normal distance of the evolving
interface to a base point y ∈ Σ. Moreover, our Hypothesis 3.4 is satisfied. The
linearization −Λ0 at Σ (i.e., u∗ = σ/R and ρ∗ = 0) has an n + 1–dimensional
kernel with n+1 linearly independent eigenvalues if the volume |D| of D differs
from l |Σ|R2/σ, see Theorem 2.1 of [17]. If σ|D| = l |Σ|r2 the dimension is n+2.
Moreover the spectrum is real, only consists of eigenvalues of finite multiplicity,
and it has a strictly positive simple eigenvalue if and only if σ|D| > l |Σ|r2.

Assuming σ|D| 6= l |Σ|r2 we thus obtain a n+ 1 dimensional center manifold.
It contains the equilibria near the given one by Theorem 4.6(e), henceMc only
consists of equilibria. If σ|D| 6= l |Σ|r2 we still obtain a n + 2 dimensional
center manifold containing the equilibria near the given one. There is a one–
dimensional unstable manifold if and only if σ|D| > l |Σ|r2. In addition we have
the stable, center–stable and center–unstable manifolds described by the above
results. ♦

6. Convergence

Based on the analysis of the previous sections, we now study the attrac-
tivity properties of the center manifold, using the notation introduced in the
above theorems. Related results were obtained for static nonlinear boundary
conditions in the paper [8], which was inspired by Palmer’s theory in the ode
case [14]. Throughout we assume that Hypothesis 3.4 and the spectral gap
conditions (3.21) or (5.1) hold, which is true if, e.g., the spatial domain Ω is
bounded. In particular, we have the equilibrium w∗ = (u∗, ρ∗) ∈ W1 of (1.1).
Recall that the solutions w = (u, ρ) ∈ W1 of (1.1) correspond to the solutions
ϕ = (v, σ) = w − w∗ ∈ W∗1 of (3.6), where the operators in (3.6) are given by
(2.9) and (3.2) for the equilibrium w∗ and we have D(w∗) = 0 and ρ̇∗(0) = 0.
We further recall that the projections Pc, Pu and Pcu map into E0

1 ⊂ E1 and
that Ps and Pcs leave invariant our scale of ‘E-spaces’, cf. (3.15).

In our main results we also assume that the center–unstable or the center
spectral subspace are finite dimensional, which again holds if Ω is bounded.
In an intermediate step of the proof of the crucial Lemma 6.1 below, we loose
control of the norm in W 1+κ0

p of the second component of an auxiliary function
ψ. In the corresponding parts of the proof (but not in the statements) we thus
have to replace the space Eρ by the space

E]ρ(J) = Lp(J ;Z1) ∩W 1
p (J ;Z) ∩

⋂
j∈J̃

W
κj
p

(
J ;W

kj
p (Σ;Vρ)

)
, (6.1)

cf. (2.6). We further set E]1(J) = Eu(J) × E]ρ(J), use the same conventions as
for E1, and define

W]
1(J) = {ϕ ∈ E]1(J)

∣∣ϕ(t) + w∗ ∈Wγ (∀ t ∈ J)},

cf. (2.8). The proof of the embedding (2.7), see §2 of [5] or §2 of [13], works

also for E]ρ(J) and thus

E]1(J) ↪→ Cub(J ;Eγ), (6.2)

where the same remarks as after (2.3) apply. Observe that for (u, ρ) ∈ E]1(J),
the function ∂tρ does not possess extra time regularity. In order to work with
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this larger solution space and to obtain convergence with respect to 〈·〉1, we have
to impose additional assumptions besides (RR). We require that R is affine in

ρ̇ and that G acts on W]
1(J). These assumptions hold for the Stefan problem,

see Example 6.6.

(RR’) We have A ∈ C1(Wγ ;L(X1, X)), R(u, ρ, ρ̇) = R0(u, ρ) +R1(u, ρ)ρ̇ with
R0 ∈ C1(Wγ ;X), R1 ∈ C1(Wγ ;L(Y0γ , X)), and D = (D0, . . . ,Dm) ∈
C1(W1;Y1) induces a map D ∈ C1(W]

1(J);F(J)) for any compact J . The
first derivatives of these maps are bounded and Lipschitz continuous on
closed balls.

It is easy to see that then F, F̃ ∈ C1(W]
1(J);E(J)) and G ∈ C1(W]

1(J);F(J))

with locally bounded derivatives, cf. (3.1), where F̃ = F − A∗ρ̇G0 = F +
R1(w∗)G0. Further, let δ ⊂ [0, d] and J ⊂ R+ be a closed interval of length

larger than 2. Given r > 0, we consider functions w,w ∈ W]
1(J) whose norms

in E]1([t, t+ 2]) are less or equal r for all intervals [t, t+ 2] ⊆ J . It then holds

‖F (w)− F (w)‖E(J,δ) ≤ ε(r) ‖w − w‖E]1(J,δ)
,

‖G(w)−G(w)‖F(J,δ) ≤ ε(r) ‖w − w‖E]1(J,δ)
,

(6.3)

where ε does not depend on w, w or δ. To show (6.3), we continuously extend

w and w to compactly supported functions in E]1(R+, δ), cf. (4.2). We can then
argue as in Proposition 3.10, using Lemma 4.7 of [20] with a = 1

2 and (6.2).
We start with a basic lemma that allows to shadow a small solution ϕ(t),

t ∈ [0, T ], of (3.6) by a solution on the center–unstable manifold, where one
could replace the restriction t ≥ 1 by t ≥ t0 for any t0 > 0.

Lemma 6.1. Assume that Hypothesis 3.4, condition (RR’), and (5.1) hold.
Then there exist constants r > 0 and α ∈ (ωcu, ωs) such that, for every solution
ϕ = (v, σ) ∈ W∗1([0, T ]) of (3.6) with 〈ϕ(t)〉γ < r for all 0 ≤ t ≤ T with
some T > 1, there is a solution ϕ = (v, σ) ∈ W∗1([0, T ]) of (3.6) satisfying
w∗ + ϕ(t) ∈Mcu for all t ∈ [0, T ], Pcuϕ(T ) = Pcuϕ(T ) and

|ϕ(t)− ϕ(t)|E1 + |∂tσ(t)− ∂tσ(t)|Zγ ≤ ce−αt 〈ϕ(0)〉γ ≤ cr (6.4)

for all 1 ≤ t ≤ T . Given T0 ∈ (1, T ), the constants are uniform for T ≥ T0.

Proof. (1) We assume that T ≥ 3 =: T0. For a general T0 > 1 the proof is
similar. Let ϕ = (v, σ) ∈ W∗1([0, T ]) be a solution of (3.6) such that 〈ϕ(t)〉γ <
r for all t ∈ [0, T ], where a sufficiently small r > 0 is chosen below. The
assumption (5.1) implies that ‖e−tΛ0PcuPcu‖B(E0) ≤ Ne−δt for all t ≤ 0 and
some constants δ ∈ (ωcu, ωs) and N ≥ 1. Theorem 5.2 gives a radius r0 > 0
such that the restriction φcu : PcuE∩BE(0, r0)→ E1 is Lipschitz with constant
` and such that w∗ + ξ + φcu(ξ) ∈Mcu for all ξ ∈ PcuE ∩BE(0, r0). We set

ε1(R) = max
z∈W1−w∗,|z|E1

≤R
{‖F̃ ′(z)‖L(E1,X) , ‖G′(z)‖L(E1,Y1)}. (6.5)

Because of (3.1), we can fix a (small) number R > 0 such that

d := Nε1(R)ĉ (‖Pcu‖L(E,E0) + ‖PcuΠ‖B(Ŷ1,E0)
)(1 + `) < ωs − δ,

R ‖Pcu‖B(E1,E) < r0 ,
(6.6)
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where ĉ is the norm of the embedding E0 ↪→ E. Theorem 3.3(c) (with T = 1/2)
implies the inequality

〈ϕ(t)〉1 ≤ c 〈ϕ(t− 1/2)〉γ ≤ cr for all t ∈ [1/2, T ].

Here and below the constants do not depend on v, T, t, R or r, and we choose
a sufficiently small r > 0 to apply Theorem 3.3(c). Let c be the norm of the
embedding E↪→ E. We can now take small r > 0 such that

|ϕ(t)|1 ≤ R for all 1/2 ≤ t ≤ T,
r(1 + c`)‖Pcu‖L(Eγ ,E1) ≤ R/2 and r ‖Pcu‖L(Eγ ,E) < r0.

(6.7)

(2) To control the distance between ϕ and Mcu − w∗, we define

ψ = Psϕ− φcu(Pcuϕ) on [0, T ].

The function ψ takes values in PsEγ . Since ϕ − ψ = Pcuϕ + φcu(Pcuϕ) on
[0, T ], we have w∗ + ϕ(t) − ψ(t) ∈ Mcu, thanks to the last inequality in (6.7).
Moreover, ϕ−ψ and ∂t(ϕ−ψ) = Pcuϕ̇+φ′cu(Pcuϕ)Pcuϕ̇ belong to Lp([0, T ];E1)
since φ′cu(Pcuϕ) : Pcu → E1 is uniformly bounded by Theorem 5.2. Let J =
[a, b] ⊂ [0, T ] with b− a ≥ 1/4. We then obtain

‖ψ‖E]1(J)
≤ ‖ϕ‖E1(J) + ‖ψ − ϕ‖E]1(J)

≤ c ‖ϕ‖E1(J) ≤ c 〈ϕ(a)〉γ ≤ c1r, (6.8)

where we use Theorem 3.3 in the penultimate inequality. We can also suppose

that the norms of ϕ and ϕ− ψ in E]1(J) are bounded by c1r. We put

f = F (ϕ)−F (ϕ−ψ), f̃ = F̃ (ϕ)− F̃ (ϕ−ψ) and g = G(ϕ)−G(ϕ−ψ).

Let α ∈ [0, ωs). Estimate (6.3) yields

‖f‖E([a,b],α), ‖f̃‖E([a,b],α), ‖g‖F([a,b],α) ≤ ε2(r) ‖ψ‖E]1([a,b],α)
, (6.9)

where b − a ≥ 2, ε2(r) is proportional to ε(c1r) and ε is given by (6.3). Note

that Ps = I − Pcu, (B̂, Ĉ)Pcu = 0, and Pcu(ϕ− ψ) = Pcuϕ. Equation (3.13) for
ϕ, the identities (5.15) and (5.16) and Proposition 3.6(c) now imply

(B̂, Ĉ)ψ = (B̂, Ĉ)ϕ− (B̂, Ĉ)φcu(Pcuϕ) = Ĝ(ϕ)− Ĝ(ϕ− ψ) = ĝ, (6.10)

ψ̇ = Ps(−Λ∗ϕ+ [F̃ (ϕ), G0(ϕ)])− φ′cu(Pcuϕ)Pcu([F̃ (ϕ), G0(ϕ)]− Λ∗ϕ)

− φ′cu(Pcu(ϕ− ψ))Pcu(Λ∗(ϕ− ψ)− [F̃ (ϕ− ψ), G0(ϕ− ψ)])

+ PsΛ∗(ϕ− ψ)− Ps[F̃ (ϕ− ψ), G0(ϕ− ψ)]

= −PsΛ∗ψ + Ps[F̃ (ϕ), G0(ϕ)]− Ps[F̃ (ϕ− ψ), G0(ϕ− ψ)]

+ φ′cu(Pcuϕ)Pcu(Λ∗ψ − [F̃ (ϕ), G0(ϕ)] + [F̃ (ϕ− ψ), G0(ϕ− ψ)])

= −Λ−1Psψ + PsΠĝ + Ps[f̃ , g0]− φ′cu(Pcuϕ)Pcu(Πĝ + [f̃ , g0])

=: −Λ−1Psψ + PsΠĝ + Ps[f̃ , g0] + h (6.11)

on [0, T ]. In the penultimate equality we used (6.10) and PcuΛ−1ψ =
Λ−1Pcuψ = 0. The variation of constants formula for T−1(·) now gives

ψ(t) = T (t−t0)Psψ(t0)+

∫ t

t0

T−1(t−τ)Ps([f̃(τ), g0(τ)]+h(τ)+Πĝ(τ)) dτ (6.12)
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for 0 ≤ t0 < t ≤ T . Since the operators Ps and φ′cu(Pcuϕ) may mix the first
and second component of E, it is a bit tricky to establish sharp estimates for
ψ. We will treat the relevant parts separately, introducing the functions

ψ0fg(t) = T (t− t0)ψ(t0) +

∫ t

t0

T−1(t− τ)([f̃(τ), g0(τ)] + Πĝ(τ)) dτ,

ψ0h(t) =

∫ t

t0

T (t− τ)h(τ) dτ, ψ0 = ψ0fg + ψ0h.

To apply maximal regularity results, we first recall that Psψ(t0) = ψ(t0) ∈ Eγ ,

(B̂, Ĉ)ψ(t0) = ĝ(t0), ϕ(t0) ∈ M∗, and (B0, C0)Pcu maps into (B0, C0)E0
1 ⊂ Z1

γ

by (2.14). Equation (5.15) thus shows that

(B0, C0)ψ(t0)− g0(t0) = (B0, C0)ϕ(t0)−G0(ϕ(t0))− (B0, C0)Pcuϕ(t0)

− (B0, C0)φcu(Pcu(ϕ(t0)− ψ(t0))) +G0(ϕ(t0)− ψ(t0))

=: ζ(t0) (6.13)

belongs to Z1
γ . Further let χ = (χ1, χ2) be the solution of (3.6) with the initial

value ϕ(t0) − ψ(t0) = Pcuϕ(t0) + φcu(Pcuϕ(t0)) ∈ Mcu − w∗ at time t0. Using
(2.7) and Theorem 5.2, we then derive

|ζ(t0)|Z1
γ
≤ |σ̇(t0)|Z1

γ
+ |χ̇2(t0)|Z1

γ
≤ 〈ϕ(t0)〉γ + c ‖χ‖E1([t0,t0+1])

≤ 〈ϕ(t0)〉γ + c |Pcuϕ(t0)|E ≤ c 〈ϕ(t0)〉γ ≤ cr. (6.14)

So the problem (3.9) with data ψ(t0), f and g has a unique solution in E1([t0, T ])
which coincides with ψ0fg due to Proposition 3.6. We put J0 = [t0, t0+2]∩[t0, T ]
and assume that t0 ≤ T − 1/4. Proposition 3.5 and (6.9) yield

‖ψ0fg‖E1(J0) ≤ c (|ψ(t0)|Eγ + |ζ(t0)|Z1
γ

+ ‖f‖E(J0) + ‖g‖F(J0))

≤ c
(
|ψ(t0)|Eγ + |ζ(t0)|Z1

γ
+ ε2(r) ‖ψ‖E]1(J0)

)
.

We have h ∈ Lp([t0, T ];Eγ) ↪→ Lp([t0, T ];E0), see (2.13), but it is not clear
whether one can control the norm of h2 in F0 by the norm of ψ in E1. However,
Corollary 2.3 of [5] (combined with a perturbation argument as in the proof of
Corollary 2.6 of [20]) and (6.9) imply that

‖ψ0h‖E]1(J0)
≤ c ‖h‖Lp(J0;E0) ≤ c (‖f̃‖E(J0) + ‖g‖Lp(J0;Y1)) ≤ cε2(r) ‖ψ‖E]1(J0)

.

Finally, the function Pcuψ
0 and its derivative can easily be estimated using that

Pcu maps into D(Λ2
0) leading to

‖Pcuψ
0‖E]1(J0)

≤ c ‖Pcuψ
0‖W 1

p (J0;E1) ≤ c (‖[f̃ , g0] + h‖E(J0) + ‖ĝ‖
Lp(J0;Ŷ )

)

≤ cε2(r) ‖ψ‖E]1(J0)
,

where we also use (6.9). To treat the remaining interval [t0 + 2, T ] we argue as
in (4.14) in [20]. Let Jn = [t0 +n, t0 +n+1]∩ [t0, T ] and J ′n = [t0 +n−1, t0 +n+
1]∩ [t0, T ] for n ∈ N with n ≥ 2, and take χn : J ′n → R such that χn, χ′n and χ′′n
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are uniformly bounded, χn(t0 +n−1) = 1 and χn = 0 on [t0 +n−1/2, t0 +n+1]
for n ≥ 2. For t ∈ Jn, we then write

ψ(t) =

∫ t

t0+n−1
T−1(t− τ)(1− χn(τ))([f̃(τ), g0(τ)] + Πĝ(τ)) dτ

−
∫ t

t0+n−1
T (t− τ)Pcu(1− χn(τ))([f̃(τ), g0(τ)] + Πĝ(τ)) dτ

+

∫ t

t0+n−1
T (t− τ)(1− χn(τ))Psh(τ) dτ

+

∫ t0+n− 1
2

t0+n−1
T (t− τ)Psχn(τ)([f̃(τ), g0(τ)] + h(τ) + Πĝ(τ)) dτ

+

∫ t0+n−1

t0

T (t− τ)Ps([f̃(τ), g0(τ)] + h(τ) + Πĝ(τ)) dτ

+ T (t− t0)Psψ(t0).

We can now combine the arguments given above and in the proof in Propo-
sition 3.7, using Propositions 3.5 and 3.6 for the first integral and standard
semigroup theory and (3.15) for the other terms. Employing also (6.9) and
Lemma 4.7 in [20], it follows

‖ψ‖E]1([t0,T ],α)
≤ c

(
e−αt0 |ψ(t0)|Eγ + |ζ(t0)|Z1

γ
+ ε2(r) ‖ψ‖E]1([t0,T ],α)

)
.

Choosing a sufficiently small r > 0 and using (6.2), we arrive at

e−αt0‖ψ‖E]1([t0,T ],α)
≤ c (|ψ(t0)|Eγ + |ζ(t0)|Z1

γ
) (6.15)

for all t0 ∈ [0, T − 1/4] and α ∈ [0, ωs − ε], and any fixed ε ∈ (0, ωs).
(3) We next introduce the candidate for the asserted shadowing solution

on Mcu. Since |Pcuϕ(T )|E < r0 by (6.7), there exists the backward solution
ϕ = (v, σ) = Pcuϕ + φcu(Pcuϕ) of (3.6) such that w∗ + ϕ belongs to Mcu

and Pcuϕ(T ) = Pcuϕ(T ). Theorem 5.2 also yields that ϕ(t) exists at least
for t ∈ [T − 3, T ] and ‖ϕ‖E1([T−3,T ]) ≤ c |Pcuϕ(T )|E ≤ cr. We then deduce
〈ϕ(T − 3)〉γ ≤ cr using (2.3) and (2.7), as well as |ϕ(t)|E1 ≤ cr ≤ R for
all t ∈ [T − 2, T ] using Theorem 3.3, after decreasing r > 0 if needed. Let
a ∈ [1/2, T −2] be the minimal time such that ϕ(t) exists, w∗+ϕ(t) ∈Mcu and

|ϕ(t)|E1 ≤ R holds for all a ≤ t ≤ T . We set z = Pcu(ϕ−ϕ), f̃1 = F̃ (ϕ)− F̃ (ϕ)
and g1 = G(ϕ)−G(ϕ). As in part (2), we then obtain

ż = −Λ0Pcuz + Pcu([f̃1, g1
0] + Πĝ1), (6.16)

and hence

z(t) = −
∫ T

t
e−(t−τ)Λ0PcuPcu([f̃1(τ), g1

0(τ)] + Πĝ1(τ)) dτ.

for all t ∈ [a, T ]. Based on this formula and using (6.5) and (6.6), we can now
proceed exactly as in part 3 of the proof of Lemma 3.1 in [8], where we take
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α, α′ ∈ (d+ δ, ωs) with α < α′. We thus arrive at

|z(t)|E ≤ ce−α
′t ‖eα′ψ‖Lp([t,T ];E1) ≤ ce−α

′t ‖ψ‖E]1([t,T ];α′)

≤ c (|ψ(t)|Eγ + |ζ(t)|Z1
γ
) ≤ cr

(6.17)

for all t ∈ [a, T ], where the constants c are uniform for t ≤ T in the first line,
and for t ≤ T −1/4 in the second one. (In the last two inequalities we have also
employed the estimates (6.15) and (6.14).) If t ∈ [T − 1/4, T ], we can estimate

in (6.17) the E]1 norm on [t, T ] by that on [t− 1/4, T ] and obtain

|z(t)|E ≤ c (|ψ(t− 1/4)|Eγ + |ζ(t− 1/4)|Z1
γ
) ≤ cr

with a uniform constant. Since Pcuϕ = Pcu(ϕ − z), condition (6.6) yields
|Pcu(ϕ− z)|E = |Pcuϕ|E ≤ ‖Pcu‖B(E1,E)R < r0 and it holds

ϕ = Pcu(ϕ− z) + φcu(Pcu(ϕ− z)).

Using also (6.7), we now conclude

|ϕ(t0)|E1 ≤ (1 + c`)|Pcu(ϕ− z)|E1 ≤ (1 + `)‖Pcu‖B(Eγ ,E1) |ϕ(t0)|Eγ + c |z(t0)|E
≤ R/2 + cr < R (6.18)

provided r > 0 is chosen small enough. It follows that a = 1/2. Since w∗ +
ϕ(1/2) ∈ Mcu we can extend u∗ + ϕ on Mcu to the time interval [0, T ] due
to Theorem 5.2. This theorem also implies that ‖ϕ‖E1([a,b]) ≤ c |Pcuϕ(b)|E ≤
c |ϕ(b)− z(b)|E ≤ cr, whenever b− a ≤ 2.

(4) To estimate ϕ− ϕ, we deduce from (6.17) and (6.15) that

‖eαz‖Lp([1/2,T ];E) ≤ c ‖ψ‖E]1([0,T ];α′)
≤ c (|ψ(0)|Eγ + |ζ(0)|Z1

γ
), (6.19)

where the constants depend on α′ − α > 0. Equation (6.16) and (RR’) further
yield that |ż(t)|E ≤ c |z(t)|E + c |ϕ(t)− ϕ(t)|E1 . Since

ϕ− ϕ = Pcu(ϕ− ϕ) + Ps(ϕ− ϕ) = z + ψ + φcu(Pcuϕ)− φcu(Pcuϕ),

we infer |ż(t)|E ≤ c (|z(t)|E+ |ψ(t)|E1). Estimates (6.19) and (6.15) now lead to

‖eαż‖Lp(J ;E) ≤ c (‖eαz‖Lp([J,T ];E) + ‖eαψ‖Lp([J,T ];E1)) ≤ c (|ψ(0)|Eγ + |ζ(0)|Z1
γ
).

where J = [1
2 , T ]. Sobolev’s embedding then gives

|Pcu(ϕ(t)− ϕ(t))|E = |z(t)|E ≤ c e−αt (|ψ(0)|Eγ + |ζ(0)|Z1
γ
) (6.20)

for all t ∈ [1/2, T ]. For the stable part Ps(ϕ−ϕ) = ψ+φcu(Pcuϕ)−φcu(Pcuϕ), we
combine the estimates (6.15) and (6.20) with the embedding (6.2), concluding

|Ps(ϕ(t)− ϕ(t))|Eγ ≤ c (|ψ(t)|Eγ + |z(t)|E) ≤ c e−αt (|ψ(0)|Eγ + |ζ(0)|Z1
γ
)

for t ∈ [1/2, T ]. (Here we apply (6.15) with T replaced by t.) It follows that

|ϕ(t)− ϕ(t)|Eγ ≤ ce−αt (|ψ(0)|Eγ + |ζ(0)|Z1
γ
) ≤ ce−αt 〈ϕ(0)〉γ (6.21)

for t ∈ [1/2, T ], employing also (6.14).
It remains to upgrade this estimate to (6.4). Proposition 3.6 implies

∂t(ϕ− ϕ) = −Λ−1(ϕ− ϕ) + [f̃1, g1
0] + Πĝ1, (6.22)
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cf. part (3). Let t ∈ [1, T ]. There is an n ∈ N with t ∈ Jn := [n, n+ 1] ∩ [0, T ].
We set J ′n = [n − 1, n + 1] ∩ [0, T ]. We will argue as in step (2), now using
uniformly bounded cutoffs χn ∈ C2([n − 1, n + 1]) with χn(n − 1/2) = 1 and
χn = 0 on [n − 1/4, n + 1]. We observe that the norms of ϕ and ϕ in E1(J ′n)
are bounded by cr due to Theorem 3.3 and the observation at the end of step
(3). Equation (6.22) yields

ϕ(t)− ϕ(t) =

∫ t

n−1
T−1(t− τ)(1− χn(τ))([f̃1(τ), g1

0(τ)] + Πĝ1(τ)) dτ

+

∫ n−1/4

n−1
T−1(t− τ)χn(τ)([f̃1(τ), g1

0(τ)] + Πĝ1(τ)) dτ

+ T (t− n+ 1)(ϕ(n− 1)− ϕ(n− 1)) =: D1(t) +D2(t) +D3(t).

Due to Proposition 3.6, D1 is the solution of (3.9) in E1(Jn) with data (0, (1−
χn)f̃1, (1− χn)g1), so that Proposition 3.5 and the embedding (2.7) yield

| [∂tD1(t)]2|Z1
γ
≤ c ‖D1‖E1(Jn) ≤ c (‖f̃1‖E(Jn) + ‖g1‖F(Jn)) ≤ cε(r) ‖ϕ− ϕ‖E1(J ′n)

≤ cε(r) (|ϕ(n− 1)− ϕ(n− 1)|Eγ + |∂tσ(n− 1)− ∂tσ(n− 1)|Z1
γ
).

Here we have also used (3.1) and Theorem 3.3(d). The other two terms can
similarly be estimated using standard semigroup theory, leading to

|∂t(D2(t)+D2(t))|E1 ≤ c (|ϕ(n−1)− ϕ(n−1)|E0 + ‖f̃1‖E(J ′n) + ‖g1‖Lp(J ′n,Y1))

≤ c |ϕ(n−1)− ϕ(n−1)|E0 + cε(r) (|ϕ(n−1)− ϕ(n−1)|Eγ
+ |∂tσ(n− 1)− ∂tσ(n− 1)|Z1

γ
).

We now combine the above two estimates with (6.21) and conclude that

|ϕ(t)− ϕ(t)|Eγ + |∂tσ(t)− ∂tσ(t)|Z1
γ
≤ c1e−αt 〈ϕ(0)〉γ

+ c2ε(r)|∂tσ(n−1)− ∂tσ(n−1)|Z1
γ
)

for some constants. If necessary, we decrease r > 0 once more to obtain c2ε(r) ≤
1

2c1
e−α. Iteratively it then follows that

|ϕ(t)− ϕ(t)|Eγ + |∂tσ(t)− ∂tσ(t)|Z1
γ

≤ ce−αt (〈ϕ(0)〉γ + |ϕ(0)− ϕ(0)|Eγ + |∂tσ(0)− ∂tσ(0)|Z1
γ
) ≤ ce−αt 〈ϕ(0)〉γ

for all t ∈ [1, T ], using also (6.18), (6.20) and (6.14). We can now derive (6.4)
from Theorem 3.3(d) and the above inequality. �

Remark 6.2. In view of the above proof, one could replace in (6.4) the factor
〈ϕ(0)〉γ by |ψ(0)|Eγ + |ζ(0)|Z1

γ
, where ζ(0) is given by (6.13). Moreover, one can

choose α arbitrarily close to ωs for a possibly smaller radius r > 0. The same
statements are true for the following results.

Our first convergence result says that the center–unstable manifold attracts
solutions which stay in small ball around w∗ for all t ≥ 0 and that they approach
a tracking solution w∗ + ϕ on Mcu.
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Theorem 6.3. Assume that Hypothesis 3.4, conditions (RR’) and (5.1), and
dimPcuE < ∞ hold. Then there exist constants r > 0 and α ∈ (ωcu, ωs) such
that, for every solution ϕ = (v, σ) of (3.6) on R+ with 〈ϕ(t)〉γ < r for all t ≥ 0,
there is a solution ϕ = (v, σ) of (3.6) on R+ satisfying w∗+ϕ(t) ∈Mcu for all
t ≥ 0 and

|ϕ(t)− ϕ(t)|E1 + |∂tσ(t)− ∂tσ(t)|Zγ ≤ ce−αt 〈ϕ(0)〉γ (6.23)

for all t ≥ 1. If even (3.21) holds, then w∗ + ϕ(t) ∈Mc for all t ≥ 0

Proof. We choose r > 0 so small that Lemma 6.1 can be applied to ϕ. It gives
solutions ϕn = (vn, σn) with w∗+ϕn onMcu tracking ϕ on [1, n] and satisfying

|Pcuϕn(1)|E ≤ |Pcuϕ(1)|E + |Pcu(ϕn(1)− ϕ(1))|E ≤ cr
for every n ∈ N with n ≥ 3. There thus exists a subsequence nj → ∞ so
that Pcuϕnj (1) → ξ ∈ PcuE as j → ∞. Theorem 5.2(d) and (e) combined
with Theorem 3.3 provide a solution ϕ = (v, σ) of (3.6) on [−1, 3] such that
Pcuϕ(1) = ξ and w∗ + ϕ(t) ∈Mcu for t ∈ [−1, 3], decreasing r > 0 if needed to
apply the mentioned theorems. We also obtain 〈ϕ(t)〉γ ≤ 〈ϕ(1)〉γ ≤ c |ξ|E ≤ c1r
for all t ∈ [−1, 3] and some constant c1 > 0. We further denote by c2 the
maximum of the embedding constants of E1 ↪→ Eγ and Zγ ↪→ Z1

γ , see (2.13).
Let T be the supremum of t1 > 1 such that ϕ(t) exists and satisfies 〈ϕ(t)〉γ ≤

(2 + c1 + c2c)r for t ∈ [0, t1], where c is given by (6.4). We thus have T ≥ 2. If
we take a sufficiently small r > 0, Theorem 5.2(e) shows that w∗ +ϕ(t) ∈Mcu

for t ∈ [0, T ). Moreover, the functions Pcuϕn and Pcuϕ satisfy the ODE (5.14).
Since Pcuϕnj (1) → Pcuϕ(1), the functions Pcuϕnj (t) tend to Pcuϕ(t) in E as
j → ∞ for t ∈ [0, T ). Theorem 5.2 then implies that ϕnj converges to ϕ in
E1([t, t + 1]) for all intervals [t, t + 1] ⊂ [0, T ), and hence ϕnj (t) → ϕ(t)in Eγ
and σ̇nj (t)→ ∂tσ in Z1

γ , due (2.3) and (2.7). Lemma 6.1 now yields

〈ϕ(t)〉γ ≤ lim sup
j→∞

(
|ϕnj (t)− ϕ(t)|Eγ + |ϕ(t)|Eγ + |σ̇nj (t)− σ̇(t)|Z1

γ
+ |σ̇(t)|Z1

γ

)
≤ cc2r + r (6.24)

for all t ∈ [0, T ). As a result, T = ∞, and hence ϕ(t) ∈ Mcu − w∗ exists and
satisfies 〈ϕ(t)〉γ ≤ cr for all t ≥ 0. In the same way we obtain the analogue
of (6.23) with Eγ and Z1

γ on the left hand side. Estimate (6.23) now follows
from Theorem 3.3(d). If (3.21) holds, Theorem 5.1(g) and (6.24) imply that
also w∗ + ϕ belongs to Mcs (maybe after decreasing r > 0 once more). So the
last assertion is a consequence of Corollary 5.3. �

In the next lemma we show that the tracking solution of Lemma 6.1 belongs
to the center manifold if we have trichotomy and start on Mcs.

Lemma 6.4. Assume that Hypothesis 3.4, condition (RR’), and (3.21) hold.
Then there exist constants r ∈ (0, rcs) and α ∈ (ωc, ωs) such that, for every
solution ϕ = (v, σ) ∈W∗1([0, T ]) of (3.6) with w∗+ϕ(t) ∈Mcs and 〈ϕ(t)〉γ < r
for all 0 ≤ t ≤ T with some T > 1, there is a solution ϕ = (v, σ) ∈ W∗1([0, T ])
of (3.6) satisfying w∗ + ϕ(t) ∈Mc for all t ∈ [0, T ], Pcϕ(T ) = Pcϕ(T ) and

|ϕ(t)− ϕ(t)|E1 + |∂tσ(t)− ∂tσ(t)|Zγ ≤ ce−αt 〈ϕ(0)〉γ ≤ cr (6.25)
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for all 1 ≤ t ≤ T . Given T0 > 1, the constants are uniform for T ≥ T0.

Proof. We assume that T ≥ 3. For a general T0 > 0 the proof is similar.
Formula (5.5) in Theorem 5.1 says that ϕ = Pcsϕ + φcs(PcsQ(ϕ)). As in the
proof of Lemma 6.1 we define ψ = Psϕ− φcu(Pcuϕ). The estimates (6.14) and
(6.15) on ψ in this proof still hold because the present lemma has stronger
assumptions. Since |Pcϕ(T )|E ≤ cr, for sufficiently small r > 0 Theorem 4.6
provides a solution ϕ of (3.6) on [T − 3, T ] such that Pcϕ(T ) = Pcϕ(T ) and
w∗+ϕ belongs toMc. Moreover, |ϕ(T )|E1 ≤ c |Pcϕ(T )|E ≤ cr. Here and below
the constants do not depend on ϕ, T, t, r and the number R > 0 introduced later.
Corollary 5.3 yields that Mc =Mcs ∩Mcu, and hence

ϕ = Pcϕ+ φc(Pcϕ) = Pcsϕ+ φcs(PcsQ(ϕ)) = Pcuϕ+ φcu(Pcuϕ).

As a result, Psϕ = φcu(Pcuϕ) and Puϕ = φcs(PcsQ(ϕ)). We thus infer

ϕ− ϕ = ψ + φcu(Pcuϕ)− φcu(Pcuϕ) + Pc(ϕ− ϕ)

+ φcs(PcsQ(ϕ))− φcs(PcsQ(ϕ)). (6.26)

We set z = Pc(ϕ − ϕ). Given a small R > 0 to be determined later, let
t1 ∈ [1/2, T ) be the minimal time such that the solution ϕ of (3.6) with w∗+ϕ
on Mc exists and the inequality |ϕ(t)|E1 ≤ R holds for all t1 ≤ t ≤ T . As in
part (3) of the proof of Lemma 6.1, we obtain that 1/2 ≤ t0 ≤ T − 2 exists if
r > 0 is chosen less than a number r(R). Theorem 3.3(c) further shows that
|ϕ(t)|E1 ≤ c 〈ϕ(t− 1/2)〉γ ≤ cr ≤ R where we decrease r > 0 if needed.

From Theorems 5.1 and 5.2 we know that the maps φcs : PcsE
0
γ → PuX and

φcu : PcuE → PsEk (with k = 1, γ) are Lipschitz with a constant ε(R) on balls
of radius R in the respective domain spaces. Moreover, Q : Eγ → Eγ is locally
Lipschitz by Lemma 3.2. Equation (6.26) thus yields

|ϕ(t)− ϕ(t)|Eγ ≤ |ψ(t)|Eγ + ε(cR) |ϕ(t)− ϕ(t)|Eγ + |Pcz(t)|Eγ .
Decreasing R > 0 if needed, we infer

|ϕ(t)− ϕ(t)|Eγ ≤ c |ψ(t)|Eγ + c |z(t)|E (6.27)

for t1 ≤ t ≤ T . Arguing similarly and using Lemma 3.2, this estimate then
leads to

|ϕ(t)− ϕ(t)|E1 ≤ |ψ(t)|E1 + c
(
|ϕ(t)− ϕ(t)|E + |Q(ϕ(t))−Q(ϕ(t))|Eγ + |z(t)|E

)
≤ c (|ψ(t)|E1 + |z(t)|E) (6.28)

for all t ∈ [t1, T ]. We now proceed as in Lemma 3.4 of [8] starting from (3.27)
there and modifying the reasoning as in step (3) of the proof of Lemma 6.1.
Here we use the estimates (6.28), (6.15) and (6.14), and fix first a small R > 0
and then numbers α, α′ ∈ (ωc, ωs) with α < α′. In this way we derive

|z(t)|E ≤ ce−α
′t ‖ψ‖E]1([t,T ];α′)

≤ c (|ψ(t)|Eγ + |ζ(t)|Z1
γ
) ≤ cr (6.29)

for all t ∈ [t1, T ], where the first constant is uniform for t ≤ T and the others
for t ≤ T − 1

4 . If t ∈ [T − 1
4 , T ], as in part (3) of the proof of Lemma 6.1 we

derive

|z(t)|E ≤ c (|ψ(t− 1/4)|Eγ + |ζ(t− 1/4)|Z1
γ
) ≤ cr
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with a uniform constant. We observe that Pcϕ = Pc(ϕ− z) and hence

ϕ = Pcϕ+ φc(Pcϕ) = Pc(ϕ− z) + φc(Pc(ϕ− z)).
The above inequalities thus lead to

|ϕ(t1)|E1 ≤ c (|ϕ(t1)|E + |z(t1)|E) ≤ cr.
We finally conclude that |ϕ(t1)|E1 < R, possibly after decreasing r > 0 again.
As a result, t1 = 1/2.

To show the asserted estimate on ϕ− ϕ, we argue as in step (4) of the proof
of Lemma 6.1 using (6.29) and (6.28). We first obtain

|z(t)|E ≤ c e−αt (|ψ(0)|Eγ + |ζ(0)|Z1
γ
)

for t ∈ [1/2, T ], see (6.20). The norm of ψ(t) in Eγ can be bounded by
c e−αt (|ψ(0)|Eγ + |ζ(0)|Z1

γ
) using the embedding (6.2) and the inequality (6.15).

Estimate (6.27) thus implies

|ϕ(t)− ϕ(t)|Eγ ≤ c e−αt (|ψ(0)|Eγ + |ζ(0)|Z1
γ
)

t ∈ [1/2, T ]. The assertion then follows as in (4) of the proof of Lemma 6.1. �

By our second convergence theorem, the center manifold locally attracts the
center–stable manifold with a tracking solution if the flow on Mc is stable, in
the sense that for all r > 0 there is a radius r0 > 0 such that for all w0 ∈ Mc

with 〈w0 − w∗〉γ ≤ r0 there is a solution w of (1.1) on R+ staying on Mc such
that 〈w(t) − w∗〉γ ≤ r holds for all t ≥ 0. In particular, w∗ is asymptotically
stable for the full equation, if σu = ∅ and the flow on Mc is stable.

Theorem 6.5. Assume that Hypothesis 3.4, conditions (RR’) and (3.21), and
dimPcE < ∞ hold. Suppose that w∗ is stable for the flow on Mc. Then there
exist constants r > r0 > 0 and α ∈ (ωc, ωs) such that for w∗ + ϕ(0) ∈ Mcs

with 〈ϕ(0)〉γ ≤ r0, the solution w∗+ϕ(t) ∈Mcs exists and satisfies 〈ϕ(t)〉γ < r
for all t ≥ 0 and there exists a solution ϕ = (v, σ) of (3.6) on R+ such that
w∗ + ϕ(t) ∈Mc for all t ≥ 0 and

|ϕ(t)− ϕ(t)|E1 + |∂tσ(t)− ∂tσ(t)|Zγ ≤ ce−αt 〈ϕ(0)〉γ (6.30)

for all t ≥ 1. If also σu = ∅, then w∗ is stable for the full flow on M.

Proof. Let r > 0 and α ∈ (ωc, ωs) be the numbers determined by Lemma 6.4.
Take r0 ∈ (0, r) to be fixed later. Consider a function ϕ0 satisfying w∗ + ϕ0 ∈
Mcs and 〈ϕ0〉γ ≤ r0. We have the solution ϕ of (3.6) with ϕ(0) = ϕ0 and denote
by T the supremum of all t > 0 such that ϕ(t) exists and satisfies 〈ϕ(τ)〉γ < r
for all 0 ≤ τ ≤ t. If r0 is small enough, we have T > 1 due to Theorem 3.3.
Suppose that T is finite. We then obtain 〈ϕ(T )〉γ = r. Lemma 6.4 provides a
solution ϕT of (3.6) on [0, T ] such that PcϕT (T ) = Pcϕ(T ), w∗ + ϕT (t) ∈ Mc

for 0 ≤ t ≤ T , and

|ϕ(t)− ϕT (t)|E1 + |∂tσ(t)− ∂tσT (t)|Zγ ≤ ce−αt 〈ϕ(0)〉γ ≤ cr0, (6.31)

for t ∈ [1, T ], where ϕ = (v, σ) and ϕT = (vT , σT ). Here and below, c does not
depend on T and r0. The above estimate and Theorem 3.3 imply

〈ϕT (1)〉Eγ ≤ |ϕT (1)− ϕ(1)|Eγ + |σ̇T (1)− σ̇(1)|Z1
γ

+ 〈ϕ(1)〉γ ≤ cr0. (6.32)
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Since w∗ is stable for the flow on Mc, we can now choose r0 > 0 such that
〈ϕT (T )〉Eγ ≤ r/2. We then deduce

〈ϕ(T )〉γ ≤ |ϕT (T )− ϕ(T )|Eγ + |σ̇T (T )− σ̇(T )|Z1
γ

+ 〈ϕT (T )〉Eγ ≤ cr0 + r/2 < r,

possibly after decreasing r0 > 0 once more. This strict inequality contradicts
〈ϕ(T )〉γ = r, and hence T =∞. Theorem 5.4 shows that w∗+ϕ belongs toMcs.
As a consequence, (6.32) holds for all T > 1. Since PcE is finite dimensional,
there exists a sequence Tn →∞ such that PcϕTn(1) converge to some ξ ∈ PcE
with |ξ|E ≤ cr0, as n → ∞. If r0 > 0 is small enough, Theorem 4.6 yields
a solution ϕ of (3.6) on some time interval [0, t1) such that Pcϕ(1) = ξ, and
hence w∗ + ϕ is contained in Mc and 〈ϕ(1)〉γ ≤ c |ξ|0 ≤ cr0. The stability of
w∗ on Mc thus implies that ϕ(t) exists and 〈ϕ(t)〉γ ≤ r for all t ≥ 0, possibly
after decreasing r0 > 0. As in the proof of Theorem 6.3, we finally deduce the
asserted convergence from (6.31).

If σu = ∅, then Mcu =Mc and w∗ is locally attractive. The stability of w∗
now follows easily from ϕ = ϕ− ϕ+ ϕ and the stability on Mc. �

Example 6.6. We continue Example 5.4 on the Stefan problem with surface
tension. If σ|D| 6= l |Σ|r2 we obtain a center manifold consisting of equilibria
only, and the induced flow is of course stable. The condition (RR’) follows from
Example 2.4 in [20] and in particular from the formula for the term R0(ρ, ∂tρ)
given there. As a result, the center manifold attracts all solution starting near
the given equilibrium if σ|D| < l |Σ|r2 and it attracts the center–stable man-
ifold if σ|D| > l |Σ|r2. In the latter case the given equilibrium is unstable by
Theorem 5.1(b). The solutions converge to an equlibrium. For a similar prob-
lem in Theorem 5.2 of [17] the stability for σ|D| < l |Σ|r2 and instability for
σ|D| > l |Σ|r2 have been shown for different methods, but not the attraction
the center–stable manifold if σ|D| > l |Σ|r2. (The stable or center–stable man-
ifolds w not considerd in [17].) In Theorem 5.3 of this paper also global results
have been shown for this specific equation using Lyapunov functions. ♦
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