CENTER MANIFOLDS AND ATTRACTIVITY FOR
QUASILINEAR PARABOLIC PROBLEMS WITH FULLY
NONLINEAR DYNAMICAL BOUNDARY CONDITIONS

ROLAND SCHNAUBELT

ABSTRACT. We construct and investigate local invariant manifolds for a
large class of quasilinear parabolic problems with fully nonlinear dynamical
boundary conditions and study their attractivity properties. In a companion
paper we have developed the corresponding solution theory. Examples for
the class of systems considered are reaction—diffusion systems or phase field
models with dynamical boundary conditions and to the two—phase Stefan
problem with surface tension.

1. INTRODUCTION

Quasilinear parabolic evolution equations have been studied intensively in
the past decades. In recent years problems with dynamical boundary conditions
have attracted a lot interest in this context. Moreover, after a transformation
to a fixed domain problems such as the Stefan problem with surface tension
yield a quasilinear problem with a nonlinear dynamical boundary condition,
see e.g. [7] and [17]. In the companion paper [20] we have identified a general
class of systems comprising these examples (see (1.1)), developed a solution
theory for such systems, and treated stable and unstable manifolds. In the
introduction of [20] we have given further references to papers dealing with the
Stefan problem and with reaction—diffusion systems or phase field models with
dynamical boundary conditions.

A crucial step in the study of nonlinear equations is the investigation of the
long—time behavior of solutions near a given equilibrium w,. Typically, the
structure of the flow in a neighborhood of a w, is largely determined by the
spectrum of the linearization at wy, see e.g. [3], [6], [11], [12], [19], [21], [23], [25]
and [26]. In this paper we construct center—like invariant manifolds for quasi-
linear parabolic problems with fully nonlinear dynamical boundary conditions
and show that the center manifold M, attracts the center—stable manifold with
a tracking solution if the flow on M. is stable, see Theorem 6.5. Our results
are applied to the Stefan problem with surface tension in Examples 5.4 and 6.6.

In earlier work [8], [9] and [10] we have studied the case of quasilinear prob-
lems with fully nonlinear boundary conditions. These problems have led to
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various new problems, e.g. one had to parametrize the nonlinear solution man-
ifold and the resulting chart enters in the fixed point problems. The necessary
spectral information is carried by the semigroup governing of the linearized
problem with 0 boundary conditions. To combine it with the nonlinear bound-
ary conditions, we had to use extrapolation theory for the semigroup. Another
difficult came from the solution spaces for such problems which involve time
regularity. This forced us to introduce nonautonomous and nonlocal cutoff
functions in the contruction of local center—like manifolds.

In this paper we also add a dynamical boundary condition and consider the
System

Aeu(t) + A(u(t), p(t))u(t) = R(u(t), p(t), p(t)), on €, t>0,
Op(t) + Do(u(t), p(t)) =0, on Q, t>0,
Dj(u(t), p(t)) =0, ond, t>0, j=1,---,m,
u(0) = uy, on €,
p(0) = po, on X, (1.1)

on a spatial domain Q which either has the smooth boundary ¥ (one phase
setting) or is the disjoint union of two domains whose boundary consists of
the common part 3 and possibly of further disjoint ‘outer parts’ (two phase
setting). On these outer parts we impose linear boundary conditions not shown
n (1.1). The solutions u and p take values in finite dimensional vector spaces.

In Q act the main quasilinear diffusion type operator A of (differential) order
2m and the lower order perturbation R. On the boundary we have a dynamical
boundary condition governed by the nonlinear term Dy and static boundary
condition governed by Di,---,D,,. One can also consider this system as an
evolution equation for the function w = (u,p), where v and p are directly
coupled via the nonlinearities and also via the static boundary condition. In
the operators D; the orders with respect to u are stricly less than 2m. However,
the orders in p are not bounded apriori. The solution space for p has to be
adapted to the degree of unboundedness of these operators. We will assume
that the nonlinearities are C'' on the solution spaces of the linear theory and
that the resulting linearized boundary value problems are normally elliptic and
satisfy Lopatinsky—Shapiro conditions. (See Section 2.)

Our approach is based on results about maximal regularity of type L, for
inhomogeneous linear boundary value problems from [5]. In our work the equa-
tions in (1.1) at the boundary are understood classically and the evolution
equation in € holds in L, sense. This setting was proposed for the Stefan prob-
lem with surface tension in [7] and has proved to be very successful, see e.g.
[17]. In other approaches boundary conditions are understood only in a weak
sense on the state space of the resulting flow, see e.g. [1], [2], [22], [23]. An-
other possibility is the treatment in the framework of higher regularity which
also covers fully nonlinear problems, but requires more compatibility conditions
and does not give smoothing effects, see e.g. [11], [12].

One main difficulty in (1.1) is the occurence of a time derivative of the second
component p in the evolution equation for u. Such terms arise if one transforms
a problem with moving boundaries to a fixed domain, cf. Example 2.2 in [20]
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or [7], [17]. In the solution of the nonlinear problem this term can be treated
as a perturbation, which requires the solution space of p to provide extra time
regularity of O;p.

In [20] we have established the local wellposedness of (1.1) and showed a
smoothing effect of the solution with corresponding estimates which give extra
regularity of some of the invariant manifolds, see e.g. Theorem 4.6(f). This
property is crucial for the convergence analysis in Section 6. The solution
manifold still incorporates the static boundary conditions (as in [8], [9], [10]),
but now also a ‘dynamical’ regularity constraint coming from the dynamical
boundary condition. The latter arises because Oip(t) possesses extra space
regularity which must also be fulfilled by Dg(u(t), p(t)). We found a suitable
parametrization for the solution manifold which allowed to handle this difficulty.
However, these nonlinear compatibility conditions play an important role all
over the paper.

Moreover, the semigroup generated by the linearization lives on a smaller
state space than the nonlinear problem which makes it diffucult to combine the
maximal regularity theory for the linearized problems (from [5]) with the spec-
tral decompositions of this semigroup. For instance, the spectral projections do
not leave invariant the solution spaces, which causes trouble in Section 6.

In our main results we then develop a rather complete theory for the center—
like manifolds in Theorems 4.6, 5.1, 5.2 and Corollary 5.3. If the flow on the
center manifold is stable, we can show that small solutions and those starting
on the center—stable manifold converge to a solution on the center manifold,
see Theorems 6.3 and 6.5. In our arguments we use the implicit function the-
orem and methods knwon from dynamical systems, but these tools have to be
combined with the sophisticated technical devices needed for the system (1.1).

We apply our results to the Stefan problem with surface tension in Exam-
ples 5.4 and 6.6, using the description of equilibria and the spectrum of the
linearization provided by [15]. Except for a degenerate case, the center mani-
fold here only consists of equilibria, and depending on the parameters there is
a one dimensional unstable manifold or none. As noted in these examples in
the recent paper [17] the asmptotic stability of the center manifold of a closely
related system was shown if there is no unstable spectrum, and also global
properties were established there. Our results provide here additional infor-
mation, as described in Examples 5.4 and 6.6. Moreover, the approach of [17]
only works for center manifolds consisting of equlibria only (see [16] and [18] for
related results for linear boundary conditions). Our apporach is more flexible
and also suited for bifurcation arguments as in [22], for instance.

In Sections 2 and 3 we recall the setting and the solution theory used and
established in [20] to make this paper readable independently of [20] (though it
makes it also longer). In Section 4 we treat the center manifold and recall the
necessary facts about a nonautonomous cut off introduced in [10]. The following
section is devoted to the center—stable and center—unstable manifolds. The last
section treats the convergence analysis.



2. SETTING AND FUNCTION SPACES

We first describe our setting and introduce the relevant spaces. For more
details, references and proofs, we refer to Section 2 of [20]. We denote by ¢ a
generic constant and by € : Ry — R, a generic nondecreasing function with
g(r) — 0 as r — 0. Moreover, J C R is an interval with a nonempty interior.
Other notation is listed in the introduction of [20].

We fix numbers m € N, m; € {0,1,2m — 1}, and k; € Ny U {—oo} for
j €40,1,...,m}, describing the order of the differentiable operators appearing
in (1.1), where k; = —oo if D; does not depend on p, see (R) and (2.15) below.
We have m; < m, but k; is not restricted apriori. We consider two different
types of domains.

In the one phase setting, let Q@ C R™ be an open connected set with a
compact boundary 99 of class C?™ =0 and outer unit normal v(z), where
¢ e {mg,mp+1,---} is given by (2.5) below.

In the two phase setting, let Q = Q;UQq for two open subsets Q; C R"
having compact boundaries of class C?™ =m0 where 0Q; = 30T, for j = 1,2,
0 N0y = X, and I'; may be empty. In this case, v(x) is the outer normal
of the interface 3 with respect to 2.

We set ¥ := 9Q and I'; = I's := () in the one phase case. Since we will impose
fixed linear homogeneous boundary conditions on I'j, in both settings X is the
important part of the boundary.

Throughout this paper, we fix a finite exponent p € (n+2m, o). Let V,, and
V, be finite dimensional Banach spaces with norms | - |, being the range spaces
of the solutions to (1.1). As function spaces on ) we use

X =L, (V) in the one and in the two phase case;

X, = ng(lfl/p)(Q; V), X1 = ng(Q; Vu) in the one phase case;

X = {vEWﬁm(Q; V) | B =0}, X,=(X,X1), 1 , in the two phase case,
D’

where BY is an m-tupel of fixed linear boundary operators on I'y U I'y which
are given by (2.16) below. We have X, C {v € ng(l_l/p)(Q;Vu) | B% = 0}
in the two phase case. At the boundary we employ the spaces

Yo=Ly(SiVa), Y = Wi 2P (SVL), Yi = W (S V),
Y, = Lp(SV,), Yoo = WMo 2mP(5:V,), Yo = W2™0(5:V,),
Yi = Yor X -+ X Y, Vi = Yip X - X Yo,

Z = ngm(z; V,) = You, Zy = W£+2m”° (X5 V,),

for j € {1,---,m}, k € {7,1}, and the numbers

Kj = _7'_7’ j:O,l,...,m. (21)



We observe that X7 — X, — X, Y1 <= Y, =Y, Yo1 = Yo, = Y,
X, = CQm 1(Q; Vi) in the one phase case,
X, = O™ ;3 V) x C3™ Qg3 Vi) in the two phase case;  (2.2)
Yiy = C*"1(5 V), and Yo, < CPTITO(SV)
for j =1,...,m. The base space and solution space for u in (1.1) are
E(J) = Lp(J; Lp(Q; Vu)) = Lp(J; X) and
Eu(J) = Wy (J;X) N Ly(J: X1) © Wy (J; Lyp(Q Vi) N Lyp(J; W™ (2 Vi),
respectively, where the last inclusion is an equality in the one phase case. If J
not compact, we write Ej,.(J) for the space of functions whose their restrictions
to each interval [a,b] C J belong to E([a,b]). Analogous notations are used for

E, and the other function spaces introduced below. B
We denote by 7 : u +— u(t) the trace operator at ¢ € J (if defined). It holds

Eu(J) = Cup(J; X)) = Cup(J;C3™1(Q;V,))  (one phase), (2.3)
Eu(J) = Cup(J; Xy) = Cup(J;C5™ (13 V) x C3™ 123 Va))  (two phase);
v : Ey(J) = X, is continuous and has a bounded right inverse
for all t € J. The norms of the first embeddings in (2.3) are uniform for .J of
length greater than a fixed dy > 0. For functions vanishing at ¢ = inf J, this
constant can be chosen independent of J.

In view of e.g. Section 3 of [4], the natural trace spaces of the solution space
E, are given by
Fy(J) = Wy (3 Lp(33 V) N Lyp(J; W, ™™ (23 V2)) = Wy (3 Ya) 0 Ly(J; Vi),
Fo(J) = WSO (J; Lp(5; V) N Ly(J; W0 (55 V) = Wi (J;Y,) N Ly (J; Yor)
for j € {1,--- ,m} endowed with their canonical norms, where we put

F(J) =Fo(J) X -+ x Fpn(J) and  F(J) =F(J) x -+ x Fp(J).
We further have
Fj(J) = Cup(J: V) = CuplJ x 5: V)

24
v : Fj(J) =Y, is continuous and has a bounded right inverse (24)

for all t € J, where j = 0,1,...,m and we write V =V, if j > 1 and V =V, if
j = 0. The same remarks as after (2.3) apply.

The solution space E, for p in (1.1) is more sophisticated. It is chosen such
that the operators D; in (1.1) map E, into the trace spaces [F; of the solutions

u. We follow [5] and put J = {j €{0,1,...,m} | kj # —oo} as well as

fj = k‘j — mj + my, {= (I)IllaX € > my. (2.5)
] bt b 7

We then define
Eo(J) = Wyt (J; Ly(%5V,)) N Ly (J; WEH2mm0 (3 V,))

2.6
N W, (J; W20 (55 V,)) ﬂ W (W (V). (26)



Observe that p has extra space and time regularity compared to uw. This is
needed in important applications and for the underlying linear theory, see e.g.
Example 5.4 and Proposition 3.5. We further need the embeddings

d° e BE,(J),F;(J)), E,J)—= Cuw(J;Zy), 0r€ L(E(]),Cu(J; Zi))

(v, 10) € L(E,(J), Zy Zi) has a bounded right inverse, (2.7)
v € L(E,(J), Zy) has a bounded right inverse,

if |8] < k;j and t € J. The spaces Z, and Z% are Slobodeckii spaces on X. Their
order depends on the cases £ < 2m, £ = 2m and ¢ > 2m. Similarly, depending
on these cases one obtains a simpler description of the space E,, see [5] and
also [13] and [20]. These results are omitted here since we do not need them,
but we note that Z; — Z, — Z. To formulate (1.1) on product spaces, we set

E=XxZ E=Xi1x2Z, E,=X,xZ, Ei(J)=E,J)xE,J).
We note that the index 1 refers to the basic domain of the respective operators,
0 to the range space and v to the spaces given by time traces, where one has
control uniform in time.

Throughout, W, denotes a nonempty convex open subset of £, on which the
operators in (1.1) will be defined. We set

Wi={wo € E1 |wo € Wy}, Wi(J)={w € E1(J)|w(t) € W, (Vte J)} (2.8)
The nonlinear maps in (1.1) shall satisfy

(R) A e CYW,;L(X1,X)), R € CH(W, x Yyy; X), and D = (Dy, ..., D) €

C*(W1; Y1) induces a map D € CH(Wq(J); F(J)) for any compact J. The

first derivatives of these maps are bounded and uniformly continuous on
all closed balls.

We consider A’(w) as bilinear map from E., x X; to X and A’(w)v as a bounded
linear map from E, to X, where w € W, and v € X;. The embeddings (2.3),
(2.4), (2.7) and (2.13) then imply that these operators also induce maps

A€ CHWL(J); Cy(J; L£(X1, X)) N CHW1(J) x Ly(J; X1); E(J)),
R € CH(W1(J);Cy(J; X)),  DeC'(W,;Y,),
respectively. We set D= (Dy,...,Dy,). Some results require one more degree
of smoothness than (R), namely
(RR) Condition (R) holds and the maps A" : W, — Lo(E, x X1,X), R :
W, x Yo, = L(Ey x Yoy, X), D' : Wy (J) = L(Eq(J),F(.J)) are Lipschitz
on closed balls.

We further impose ellipticity conditions on the linearizations of our nonlinear
maps A, R and D; at w, € Wy(J), given by

B;(t) = 01D (u.(t), pu(1)) € L(X1, Vi) N L(Xy, Vi),

Cy(t) = uD; (un(t), pu(t)) € L(Z1, Y1) N L(Z,, Y},

A(t) = A(wa(t)) € L(X1, X), (2.9)
Aua(t) = A, (0) 401 A (s (8), pi(8)a(£) R (1 (£), pu (1), (1)) € L(X1, X),
Aup () = DA (1), pu (1)) (£) — R (s (8), pi (1), (1) € L(Z,, X),
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A*p(t) = *OSR(U*(t)’p*(t)v[)*(t)) € ‘C(YVO’Y)X))
Au(t) = (Auu(1), Aip(t), Aup(t)) € L(X1 X Zy X Yooy, X).

j €{0,1,...,m} and t € J. For a time independent wy = (ug, po) € Wy,
we take some (us, ps) € Wi([0,1]) with u.(0) = up and p.(0) = po (e.g. with
p«(0) = 0) and write A = A(0), B; = B;j(0) and C; = C;(0), cf. (2.3), (2.4),
(2.7). For (wo,yo) € Wi x Yo, we define A, by inserting (wo, yo) instead of
(wy(t), p«(t)). For an equilibrium wy we will always take yo = 0. We abbreviate

~ ~

B = (Bo,...,Bn), B=(Bi,...,Bp), C=(Cy,...,Cp), C=(Cq,...,Cp).
We also make use of the operator matrices
(A 0 (A —AyBy Asp,— AyCo
R e 10

acting from F; to E, see (2.9). We see below that —A, induces the generator
of an analytic semigroup which is crucuial for our analysis. For ¢ < 2m this
semigroup acts in F, but for £ > 2m it lives in the smaller space E( defined by

ZO = B;p(Z, Vp), E() =X X Z(). (211)

Here, ¢ = 2mkg and thus Zy = Z if £ < 2m, but ¢ > 2mky and thus Zy — Z if
¢ > 2m, see [5] or [20]. The space Zj occurs naturally in view of the embedding

E, = W, (J; Zo) (2.12)
The trace spaces are ordered as
Zo — Z, Zy < Zy = Zo = Z) > Yoy (2.13)

The domain of the generators will contain compatibility conditions expressed
by the spaces

fEV'V ={(v,0) € Ey | Byv + Cyo € Zi},
E% ={(v,0) € E,| Bv+ Co = 0}, (2.14)
E? = {(’U,U) €k ‘ Bov + Cyo € Zy, Ev—i—@a = 0},
which are Banach spaces endowed with the canonical norms |(v,o)|g, 4 |Bov +
C()O"Z% and |(v,0)|g, + |Bov + Coo|z,, respectively, due to (2.9) and (2.13).
We equip A with the domain D(A) = EY and denote by Ag the restriction of
A to D(Ag) = EY.
To apply [5], the operators in (2.9) have to be differential operators of the
following form, where we insert (us, p«) € W1([0,7]) and any T > 0:

Ap(@) = Y aalta)D(@),  Bi(twly) = Y bis(t.yhaD u(y)

la|<2m 181<m;

Citronz) = Y & (tAD] 4 (ror)() (215)
IvI<k;
for (v,0) € Ey, 5 €{0,1,...,m}, z € Q, y € ¥, ¢t € [0,T], local coordinates g
for ¥ and z belonging to the domain of g in R”~!. Usually we omit the trace
operator vo on €2 here. In the two phase case the term bjﬁ(t,y)VQDﬁv(y) is
understood as bjl-ﬁ(t, Y74 DPu(y) —bjzﬁ(t, y)7v3 DPv(y) where 1, gives the trace of
7



functions on ; to the interface . Still in the two phase case, on the (possibly
empty) outside boundaries I'; and I'y we consider boundary operators

B?U(y) = Z bgﬁ(y)VﬂDﬁv(y)’ BY = (B?v s vB?n)’ (2'16)

0

of order m? €{0,---,2m —1} fory e MU'y and j = {1,...,m}.

In view of (2.2) and the representation of Z, given in [5] (and recalled in
Section 2 of [20]), one can see that the derivatives in the above operators are
well defined. In Section 2 of [20] we stated the regularity assumption (S),
the ellpiticity assumption (E) and the Lopatinskii-Shapito conditions(LS) and
(LSZ) on these operators (which are taken from [5]). Here (S) and (E) are
fairly standard, but the conditions (LS) and (LSZ) on the boundary operators
is more involved than usual in particular if ¢ # 2m. Below we only need the
consequences of these conditions so that we do not recall them in this paper.
We summarize our hypotheses for the wellposedness theory.

Hypothesis 2.1. Let (R) and (S) from [20] be true, and (E), (LS) and (if
€= 2m) (LSZ) from [20] hold for every wo = (u,po) € W,.

We also recall the simple Lemma 2.8 from [20].

Lemma 2.2. Let a < b < d, q € (1,00), kK > 1/q, and V be a Banach space.
If u € Wi((a,b); V) and v € Wr((b,d); V') satisfy u(b) = v(b) (where the trace
exists by Sobolev’s embedding), then the function w given by w = u on (a,b] and
w = v on [b,d) belongs to Wji((a,d); V) with [|wllws < cw ([[ullws + [[v]wg)-

3. SOLUTION THEORY

Our main results rely the following linearization setup, where we use the
operators from (2.9) for wy = (us, p«) € Wi = WH(J). We put Wi = Wy — w,
and define the nonlinear maps

FecCYWHE) and GeCYW}F) with

o ) , (3.1)
loc. bdd. derivative, F(0)=0, G(0)=0 and F'(0)=0, G'(0) =0,
by setting
F(v,0) = (A(ws)v — A(w, + (v,0))v)
— (A(ws + (v,0))us — Awi)uy — [A'(we)u (v, 0))
+ (R(ws + (v,0), pu + 6) = R(ws, pu) = R (we, ) (v,0,5)),
G(v,0) = D'(wi)(v,0) + D(w.) — D(ws + (v,0)), (3.2)

for (v,0) € Wi. We put G = (G1,...,Gyp). It holds
F'(o)(u, p) = [A(wi) = A(ws + @)]u + [A(ws)us — A'(ws + @) (us +0)](u, p)
+ [Rl(u* + v, px + 0, p* + J) - R,(u*v P ,b*)](u, Ps p)v

G'(¢)(u, p) = [D'(ws) = D'(wx + ©)](u, p) (3.3)
8



for ¢ = (v,0) € W7 and (u,p) € E;. The asserted mapping properties easily
follow from (R) and the embeddings (2.3), (2.7), (2.13). Observe that D(w,) =0
if w, is an equilibrium of (1.1).

In order to treat the nonlinear compatibility conditions related to (1.1), we
need an ‘almost right inverse’ of the map (B, C). It is given by the next lemma,
which is Corollary 2.7 of [20].

Lemma 3.1. Assume that Hypothesis 2.1 holds. Given (ug,po) € W, take
some (U, px) € Wi([0,T]) and T > 0 with us(0) = ug and p«(0) = po. In (2.9)
put A= A(0), B = B(0) and C = C(0). Then there is a map Ny € L(Y,, E,)
such that (B, C)Ny = I1, (Bo, Co)Ny — Iy € L(Y,, Z1), where Io(vo, . .., ¥m) =
Yo and (Yo, .-, ¥m) = (Y1, Pm) =11,

Let wy = (ux, ps) € W1(J) be a solution of (1.1) for some J with minJ =0
and initial values (ug«, po«). (In later sections w, will be an equilibrium.) At
each time t the solution belongs to the solution manifold

M = {wy = (ug, po) € Wy | D(wp) = 0, Do(wo) € Z1}. (3.4)

For (ug, po) € Wy and w = (u, p) € E1(J), we put (vo,00) = (uo — wo«, po — Pox)
and (v,0) = (u—uy, p— px). Using the linearization described above and (2.9),
we see that (up, po) € M if and only if (vg, 0¢) belongs to

M = M = (0, ps0) = {(v0,00) € Wy — (us, pu) | (B, ) (vo, 50) = G(v0, 00),
Byvg + Coog — Go(’UQ, 00) € Z,#} (3.5)
Moreover, (u,p) € Wy solves (1.1) if and only if (v,0) € W7 solves

Opu(t) + Ax(t)(v(t), 0(t),6(t)) = F(v,0)(t),  on Q, t (0,71,
dyo(t) + Bo(t)v(t) + Co(t)o(t (v,0)(t),  onX, t€l0,T],
B

)=
) = Go
()o(t) + () (t) = G(v,0)(t),  onX, t€0,T],
) =0,
) =

(t on 'y UTy, tel0,T],
(v(0 ) a(0)) = (vo, 00), on Q x X, (3.6)
Here drop the equation B%u(t) = 0 in the one phase setting. This equation is

mostly omitted in the following since it is already contained in the domain of
A,(t) and in the solution space.

For wo, € M and ¢ = (vo, 00) € E’W (see (2.14)), we further define
()y = 1Wle, +Wly, [y = Do(¥+wos) =Do(ws)|z1 = [(Bo, Co)v — Go(¥)] 71,

(Wh =¥l + W, [ = [Do(¢+wox —Do(ws)|z, = [(Bo, Co)v — Go(%b)\(z7 |
3.7

For a solution ¢ (t) = (v(t),o(t)) of (3.6), the above quantities simplify to
W)y =10®)e, +16@)]z1, WO =[0O)|e +16()lz,.  (38)

We note that [¢], < c[¢|g, if £ < 2m since then Z) = Yp, as observed in
Section 2 of [20], and thus [¢|g, and (), are locally equivalent in this case.
Given r > 0, we further introduce

M*(r) == {¢y e M* ‘ ()4 <1}
9



We recall Lemma 3.2 of [20] which gives a local chart for the above set.

Lemma 3.2. In the setting of Lemma 3.1, we define G by (3.2) for some
wos = (Uox, pox) € M. Then the map Q = I —N,G belongs to Cl(Wv—wo*; E,)
with a locally bounded derivative, Q(0) = 0 and Q'(0) = I. It maps M* into
EY (see (2.14)) with ¢ — NVG(w)‘E,Q < c()y for b € M*. We can invert
I — N,G on some ball Bg_ (0,79) € Wy —w, and set h = N,G(I — N,G)™ L.
There is a radius v > 0 such that M*(r) is the graph of h, i.e.,

M) = {6 = €+ h(€) | € € Bpo(0,70), (1), < 7}.
In particular, wos -I—Eg is the tangent plane of M at wo. and Q is a local chart.

We next summarize Theorem 3.3 and Propositions 3.1, 3.4 and 3.5 from
[20], omitting some details. They yield the local well-posedness and smoothing
properties of (1.1). We write tw for the function ¢ — tw(t).

Theorem 3.3. Let Hypothesis 2.1 hold. Let wo. = (ups, pox) € M. Take
T € (0,tT(wox)) and set J = [0,T] and J* = [0,tT(wox)), cf. (a). Then the
following assertions are true.

(a) There is a number t*(wo.) > 0 such that the problem (1.1) has a unique
solution wy = w(-;wos) = (ux, p«) € W1([0,T]) — C([0,T]; W5).

(b) There is a radius r > 0 such that for each po = (vo,00) € M*(r) there
exists a solution w = (u,p) € Wi(J) of (1.1) with w(0) = wo = wos + ¥o.
Moreover, the map o — w — wy from M*(r) to Wq(J) is C}. It holds

[w = wel|g, 7y < e{wo —wox)y = ¢|wo — wox| &, + ¢[Do(wo + wox) — Do(wox )| 71

We further have toyw € Eqi(J).

(c¢) In the setting of (b), assume also that w. € Ey is an equilibrium of (1.1).
Then there is an 1 € (0,7] such that for wy € wy + M*(r1) and Ty € (0,T) the
solution w = (u, p) = w(-;wo) € W1([0,T]) satisfies

() = wil gy +16(0)] 5, < ¢ lwo—wi)yy (£ (w —w.) [y oy < € (w0 —wa)

for t € [Ty, T] and constants independet of t and wy.

(d) In the setting of (b), assume also that (RR) holds and that w, = (ux, p«) €
W1([0,Ty]) solves (1.1) with w«(0) = wosx € M. Take T € (0,Ty) and Tp €
(0,T). Then there is an 1o € (0,7] such that for every wo € wo. + M*(r2) the
solution w = (u, p) € W1([0,T]) of (1.1) satisfies

(w(t) —w.(t)1 < c(wo — wwo)y,  [[E0(w — ws) |k, (jo,17) < € (wo — wio)y,
fort € [Ty, T] and constants independent of t and wy.

The next hypothesis will be assumed in the rest of the paper.

Hypothesis 3.4. Let (R) and (S) of [20] be true, and (E), (LS) and (if ¢ Z 2m)

(LSZ) of [20] hold for every wo € W, Let wy = (ux, ps) € Wi be an equilibrium

of (1.1) and define the maps A, B, C, F, G, A, and Ao = AL|EY) as well as the

expressions (), and ()1 for this w, as in (2.9), (3.2), (2.10), (2.14), (3.7).
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Our main results are based on linearization at the equilibrium w,. We collect
the relevant results from [20], starting with the corrresponding the inhomoge-
neous problem. This proposition is a special case of Corollary 2.6 of [20] which
in turn follows from results in [5] by perturbation. We look at the problem

Opu(t) + Asuu(t) + Aspp(t) + Aspp(t) = f(1), on , t € (0,T],
dp(t) + Bou(t) + Cop(t) = go(t), on X, ¢t €[0,T],
Bu(t) + Cp(t) = §(1), onY, tel0,T],
BO(t) =0, on Ty UTy, t€[0,T],
(u(0), p(0)) = (uo, po),  on Qx X, (3.9)

(where we drop the equation B%(t) = 0 in the one phase setting).

Proposition 3.5. Assume that Hypothesis 3.4 holds. Then the following as-
sertions are true.

(a) There is a unique solution (u, p) € E1(J) of the problem (3.9) if and only
if f, g, ug and py belong to the data space

D(J) == {(uo, po. f,9) € Xy x Zy x E(J) x F(J) | Bjuo + Cjpo = g;(0)
forj=1,....,m; go(0) — Boyug — Copo € Z%,}

The corresponding solution operator S : D(J) — Ei(J) is continuous. The
norm of S is bounded uniformly in T' € (0,T] if we restrict it to the subspace
Dy([0,7"]) containing g with g(0) = 0.

(b) The operator Ag = A.|EY generates an analytic Co—semigroup T(-) in Ej.

(¢) There is a pg > 0 larger than the growth bound of —Ag such that for each
(uo, po, f,9) € D(Ry) there is a unique solution (u,p) € E1(Ry) of

ru(t) + (Awu(t) + 1 — Asp(t)Bo(t))u(t)

+(Aup(t) = Aup(t)Co (1)) p(t) = f(1), on Q, t € (0,77,
Ap(t) + Bo(t)u(t) + (Co(t) + p)p(t) = go(t),  on %, t € [0,T7,
B(t)u(t) + C(t)p(t) = §(t), onS, tel0,T],

Bu(t) =0, onT1UTy, t €0,7),

(u(0), p(0)) = (uo, po), on QxX, (3.10)

(where we drop the equation B%u(t) = 0 in the one phase setting) for each
M2 o, and it holds ||(U,p)”E1(R+) <c H(u03p07 I g)”D(R+)

The data space D(J) is endowed with the norm
1 leer) + lgllwcry + [(wos po)| &, +190(0) — Bouo — Copol 2 -

It is a Banach space and Dg(J) is a closed subspace.

We need the extrapolation space E_1 which is the completion of Ey with
respect to the norm |(u + Ag)~lw|g, for any p > po. There is a bounded
extension —A_ : Fg = E_1 of —Ag which is similar to —Ag and generates the
extension T_1(-) of T(-) on E_1. Tt further holds T_1(t) € L(E_1, EY) for t > 0.

A solution of the problem (1.1), (3.6), or (3.9) (or of some lines of them) on
an (unbounded) interval J is a function w € EP¢(J) satisfying the respective
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problem. Let o, € R. To study our equations on unbounded time intervals
we set ey (t) = e for t € R, denoting restrictions of this function by the same
symbol. Moreover, on J = R we fix a smooth, strictly positive function e, g
satisfying e, g(t) = eq(t) for t < —1 and e, g(t) = eg(t) for t > 1. We then
introduce the weighted spaces

E1(Rs,a) = {w|eqw € E(R+)},  Ei(e, B) = {w|eqpw € E1(R)}, (3.11)

and their analogues for E, F and D, which are complete if endowed with the
canonical norms ||w||g, (r, «) = [eaw||g, () etc. We also use the corresponding
norms on compact intervals J. The embeddings (2.3) and (2.7) imply that

lp()]E, +16()] 2 < le0(t)|e, + 16 (1) 2 < cllllg, (10 (3.12)

fort € J =Ry and § > 0. N
Let w = (u,p) be the solution of (3.9) and f = f — A,;90. We insert
p = go — Bou — Cyp into the term A,;p in (3.9), obtaining
Dw(t) + Aw(t) = (f(1) = Aupgo(t) 90(t) = (F(£),90(1)), ¢ € [0,T]. (3.13)
The next result allows to use the asymptotic behavior of T'(+) (determined by
o(Ap)) in the investigation of the longterm behavior of the nonlinear problem
(1.1), by means of the ‘mild formula’ in (d). Observe that part (c) decribes
the difference between A_; and A, which expresses the impact of the boundary
conditions. We define

II = (M+A_1)N1.

Proposition 3.6. Under Hypothesis 3.4, the following assertions hold.
(a) There are operators Ny € L(Y1,E1) and R € L(E,E,) such that (1 +
AN, =0 and (B,C)N, = Iy, as well as (p+ AR = I and (B,C)R =0.
(b) We have E — E_1 and A_jw = Ayw for all w € Ey with (E, Cw = 0.
(¢) It holds T € L(Y,E_1) and Avw = A_yw —TI(B,C)w for all w € E).
(d) Let J = [0,T], (wo, f,g) € D(J), and put f := f — A,p90 € E(J). Then
the solution w € Eq1(J) of (3.9) is given by

w(t) = T(t)wy —l—/o T 1(t — T)[(f(T),go(T)) +Ilg(7))dr, tedJ. (3.14)

Moreover, w is the solution of (3.10) with data (wo, f, g) and p =0, where we
have | fllgry < c(lfllew + 9ol 2, 7:vo,)) < e fllecr) + llgollrery)-

In the following we rewrite the solutions of (3.9) on unbounded time intervals
J € {Ry,R} as in (3.14). We first recall some results from [20] for the case
that the (rescaled) semigroup {e‘stT(t)} >0 has an exponential dichotomy for
§ € [61,09]. Let P € L(Ep) be the corresponding (stable) spectral projection
for —Ag+ & and set Q = I — P. Then, P € L(EY), P commutes with T(t)
and Ao, Q € L(Eo, EY), T(t) is invertible on QFEy with the inverse Tg(—t)Q,
and Het‘sT(t)PHE(EO), He_t‘;TQ(—t)QHl;(EO) < ce”® for t > 0 and some € > 0.
Further, there are extensions P_y € L(E_1) of P and Q_1 € L(E_1, EY) of Q
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such that 7" (¢) has an exponential dichotomy on E_; with the same constants.
From P =1 — @, we deduce

PeL(E)NLE,)NLE)) and Py € L(E). (3.15)

We partly omit the subscript —1. (Compare e.g. §2 of [9] for these facts.) It
further holds:

If (wo, f,9) € D(J), then (Puwo,f,g) € D(J). (3.16)
Let es7T'(-) have an exponential dichotomy. Given (o, f,g) € Ey xE(R4,0) X
F(R4,0), resp. (vo, f,9) € E_1 x E(R_,6) x F(R_,J), we can then define
t ~
Ly, (90, f:9)(t) = T(t) 0 +/0T—1(t = 7)P_1[(f(7), 90(7)) + 1Ig(7)] dr
(3.17)

- [Tl - )@l F) i) + Mg a1 20,
o == [ To(-n)QI(F(r). 0(r)) + 57 (3.18)

t ~

L (%0, £-9)(8) = To()Qyo + / T \(t — 7)P1[(F(7), o)) + TG (r)] dr

—00

0 ~
- / To(t — QI(F(r), go(r)) + TG(r)] dr, £ <0, (3.19)

0 -
b5 = / Ty (—1) Py [(F(7), go(r)) + TIg(r)] dr, (3.20)

where f:= f — A,s90 € E(J,5). We recall Propositions 4.5 and 4.6 of [20].

Proposition 3.7. Assume that Hypothesis 3.4 holds and that for § € [d1,02] C
R the semigroup esT'(-) has an exponential dichotomy with the stable projection
P, and let Q@ = I — P. Given (wy, f,g) € D(R4,d), the following assertions are
equivalent.

(a) Sho (wOa s g) € E(R-H 5)

(b) Lpp,(wo — 65, f.9) € E(R,6).

(c) ¢5 = Quo.
If these assertions hold, then (u,p) := Sa,(wo, f,9) = LJJE’AO(PwO, f,g) belongs
to E1(R4,9) and solves (3.9), and we have

1840 (wo, f5 9)||&, (= 6) < € (lwol e, + [(Bo, Co)wo — g0(0)] 22
+ [ flle®.s) + 9lF®,.5)s
where ¢ does not depend on wo, f, g ord. (Note that p(0) = go(0)—(Bo, Co)wo.)

Proposition 3.8. Assume that Hypothesis 3.4 holds and that for § € [d1,02] C

R the semigroup esT'(-) has an exponential dichotomy with the stable projection

P, and let @ =1 — P. Given (wy, f,g9) € E_1 Xx E(R_,d) x F(R_,¢), there is a
13



solution w = Sa,(wo, f,g) of (3.9) in E(R_,0) if and only if P_ywy = ¢, . In
this case, this solution is unique, w = Lp (wo, f,g9) € E1(R_,d), and

S0 (wo, £, 9 llEsR_5) < c(|Quole + || flle®_ 5 + 9llr®_6));

where ¢ does not depend on wq, f, g ord.

In order to treat the interval J = R, we assume that 7'(-) has an ezponential
trichotomy; i.e., there is a splitting

o(—Ng) =o0sUo.Uay with (3.21)

maxReo; < —ws < —w,. < minReo, < 0 <maxReo, < W, < wy, < min Re a,,.

(If €2 is bounded, o(—Ap) is discrete and thus (3.21) automatically holds with
oy C iR and arbitrarily small w, = @, > 0.) We take numbers « € [w,,ws| and
B € [@,,w,] and denote by Py the spectral projections for —A( corresponding to
o with k = s,c,u. Weset P = Ps+P,., Py = P+ Py, and Py, = Ps+P,. Then
the rescaled semigroups e,7'(-) and e_g7'(-) have an exponential dichotomy on
Ey with stable projections Ps and P, respectively. The restriction of T'(t)
to PyEy yields a group denoted by Ty(t), t € R, where k = c¢,u,cu. For
f €E(a,—p), g € F(a, =) and wy € E_1, we can then define

Lo (wo, f,9)(t) = Te(t) Pewo + /0 To(t — 7)P[(f(7), 9o(r)) + g(7)] dr

+/ Toi(t— )P 1 [(F(r),g0(7) + TG()] dr (3.22)

—00

—Amﬂﬁ—fﬂmdhhmﬁﬂ+ﬂﬁﬂwﬂ tER,
0 -
%:/ T 1 (—7) P 1 [(F(7). go(7)) + T1g(7)] dr

—Amn«wﬂu&&x%w»+naﬂmm (3.23)

where again f: f — Ass90. The trichotomy and the assumptions on the data
imply that the integrals exist in F_;.

In the next result the equivalence and the formula for the solution follow from
Propositions 3.7 and 3.8 combined with Lemma 2.2 and the fact that we can
glue together the solutions on Ry as noted before Lemma 3.2 of [20]. For the
asserted inequality, we can treat the function w, = T.(-)P.wq separately since
P. € L(E_1,D(Af)) for all n € Ny. The difference wq = w — w, has the initial
value (Psy)—1wo = ¢o. The two parts of it can be controlled in E, via f and
g using (3.23), Proposition 3.8 and P,. Finally, |,b(0)|Z% <cllpllg,®_ ) due to
(3.12), which can also be bounded by means of Proposition 3.8.

Proposition 3.9. Assume that Hypothesis 3.4 holds and that T(-) has a tri-

chotomy as in (3.21). Take o € [w,,ws] and B € [We,wy]. Given (wo, f,g) €

E_1 x E(a, —p) x F(a, =), there is a solution w = Sp,(wo, f,g) of (3.9) in

E(a,—B) if and only if (Psy)—1wo = ¢o. In this case, this solution is unique,
14



we have w = L, (wo, f,g) € E1(a, —f) and
”SAO (wo, f, g)||E1(a,75) < c(|Pewolg + HfHIE(a,fB) + HQHF(a,*ﬁ))’

where ¢ does not depend on wy, f, g, a or .

The next result (Proposition 4.9 of [20]) describes the properties of F' and G
on Ry with weights larger than 0. For § > 0, we set

Wi(Ry, +6) = {w € E1(Ry, £6) |w(t) € Wy —w, for all ¢ € RL}.

It is straightforward to check that this set is open in E; (R, 40) if § > 0 using
(3.12). Moreover, 0 belongs to the interior of WL(R4) := W3 (R4, 0).

Proposition 3.10. Let (R) hold, § € (0,d] and define F' and G as in (3.2) for
an equilibrium w, = (ux, p«) € Wi. We then have

F e CYWi(Ry,46), E(Ry, £5)) and G € CH(Wi(Ry,+6),F(Ry, +6))

and F(0) =0, G(0) =0, F'(0) =0, G'(0) = 0. Moreover, the derivatives are
bounded and uniformly continuous on closed balls. If 6 = 0, the above results
hold on sufficiently small balls in E1(Ry) with center 0.

4. THE CUTOFF PROBLEM AND A CENTER MANIFOLD

In this section we want to extend the construction of invariant manifolds from
the setting of Theorem 5.1 of [20] to the case of an exponential trichotomy as in
(3.21). Under this assumptions we encounter unbounded semigroup orbits on
the center part so that we must deal with spaces of (say, exponentially) growing
functions on R. For such functions our substitution operators are not locally
Lipschitz (unless they are globally Lipschitz). It is well known that one has
to introduce cutoff functions in the nonlinearities to deal with this problem.
As in [10] for static nonlinear boundary conditions, we have to control the
full E; norm of solutions so that we need a nonlocal cuoff I'(¢,w) introduced
below. Since the arguments are parallel to those in [10], we omit most of the
proofs. We assume throughout that Hypothesis 3.4 holds with the equilibrium
Wy = (U, pi) € W1

The cutoff depends on a parameter 7 > 0 to be fixed in the following theo-
rems. We first introduce

Jt)=[t—3,t+3] and N(t,0)=|¢lg @) for ¢€EXR), teR.

Given an 1 > 0, we take even functions y,vy € C*®°(R) such that 0 < y < 1,
x(t) = 1for t € [=n,n], suppx C (=21,2n), [IXxP||oc < ¢/n* for k =1,2 and
such that v > 0, [ y(t)dt =1, supp~y C (—1/4,1/4). We now define the cutoff

Ir(t, @) = (L, ) = (v x(N (-, 9)))(#)

(4.1)
- /R y(t = ) x(l@lms 3204 3/2) AT

for t € R and ¢ € E°°(R). Observe that the integrand is continuous in 7 and
that T'(¢, ) depends on the restriction of ¢ to (t — 7/4,t + 7/4). For functions
¢ € EP°(J), we define I'(t, ) as in (4.1) for t € [£ +inf J,—I + sup J], where
J is an interval of length greater than 7/2.
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To treat ¢ € EP°(Ry), we fix continuous extension operators Ry
El¢(Ry) — E¢(R) satisfying supp Ry C (—1,00), supp R_¢ C (—o0, 1),

IR+ olle, (j-1,1]) < cer l@llE (0,1]) » IR-ollg, (—1,1)) < erllelle, (=10 (4:2)

for ¢ € E; and a constant cg > 0. In this context we further observe that

lollg, (o.17) < ¢ lellE, 'y —a) ; lolle, (—r,0)) < cE llellE, ®_.a) (43)

lelle, (-1 < e |ellE; (a,—8)
for a constant ¢ > 0 depending on T" > 0 and being uniform in «, 5 > 0 in
compact intervals. We then define the cutoffs

Tr.(t,¢) =Tx(t, @) =Tt Rrp) = (v * X(N(-, Rxp)))(t) (4.4)

for t € R and ¢ € EP¢(Ry). We now collect several properties of the cutoffs
in (4.1) and (4.4) for J € {R,R{,R_}, which follow easily from the above
definitions and observations, cf. §3 in [10].

Remark 4.1. If ¢ € E°°(J) satisfies l¢lle, (jt=2,+2)) < n for some t € J (where
[t| > 2if J = Ry), then T'y(t,p) = 1. If J =Ry and t € J N [-2,2], then
lellE, (t—2,t+21n0) < e (1 + cg) ™1y implies T4 (¢, ) = 1, where ¢y > 1 is the
constant given by Lemma 2.2.

Remark 4.2. Let ¢ € EP°(R) and J = R. By its definition, the cutoff is
translation invariant in the sense that I'r(t + to, ) = I'r(t, ©(- + to)) for all
t,tg € R. We point out that for J = R4 the cutoff is not translation invari-
ant. However, for ¢ € EP¢(Ry) we have T'y (t,¢) = I'r(t, ) for t > 7/4 and
I_(t,p) = Tr(t, @) for t < —7/4, respectively. As a result, 'y (t + to,p) =
I'r(t, (- +to)) holds for t +t9 > 7/4 and T'_(t + to, ) = (¢, (- + to)) holds
for t +to < —7/4, where t,tg € R. (Here ¢(- + to) is defined on [—tp, 00), resp.
on (—oo, —to].)

Remark 4.3. Let ¢ € E¢(J), t € J, and J € {R,Ry}. We put pp = Ry if
J =Ry and gr = ¢ if J =R. Assume that I';(¢,¢) # 0. Then there exists an
s € [t —1/4,t + 1/4] such that x(N(s,¢r)) # 0, and hence [[pr|g, (1) < 27
The embeddings (2.3) and (2.7) now imply that |o(t)|g, < co H‘PRHIEl (5) <
2¢on for t € J if T'y(t,) # 0, where ¢g > 0 is a constant. We can thus
fix a number 79 > 0 such that T';(¢,) # 0 for some ¢ € J implies that

o(t) +ws € Wy, provided that n € (0, no].
From now on we always assume that n € (0, ).

We add a related observation needed in the proofs of the following two propo-
sitions, cf. Remark 3.3 in [10]. Suppose that t € [n —1/8,n+9/8 N J =: J*
satisfies T'j(t, ) # 0 for some ¢ € E¢(J) and n € Z. Take s as in Re-
mark 4.3. We then have J; C J(s), and hence [|¢r||g,(sz) < 27. (The same
estimate holds if I', (¢, ¢) # 0, where the derivative is given by (4.7).) Moreover,
ler(T)|E, < co ||90R||1E1 (s)) < 2con implying pr(7) + w. € W, for all 7 € Jj.

Finally, for ¢ € EIOC( ) and J € {R,Ry,R_}, we define the cutoff versions

Fry(p)(t) =Tyt o) F(e(t),  Gra(e)t) =Tt 0)Gle(t), teld, (45)
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of the nonlinear maps F' and G defined in (3.2) for the equilibrium w,. In this
definition, we set F'(t,¢(t)) = 0 and G(t,(t)) = 0 if p(t) + w, ¢ W,. We also
abbreviate Fr = Frg, Fr+ = FpRi, Gr = Grg, and Gr4 = G[‘Ri. The cutoff
version of the initial-boundary value problem (3.6) is then given by

O (t) + Ax(t)(v(t),o(t),5(t)) = Fry(v,o)(t), on ), teJ,
0o (t) + Bo(t)v(t) + Co(t)o(t) = Goru(v,o)(t), onX, teJ,
Btw(t) + Ct)a(t) = Gry(v,o)(t) on¥, el
v(0) = vp, on €,
o(0) = oy, on X. (4.6)

where J € {R,R;,R_} and ¢ = (v,0) € EI°°(J). Thanks to Remark 4.1, a solu-
tion ¢ € EP°(J) of (4.6) actually satisfies (3.6) on [a,b] C J if [|¢||g, (t—2,t+2)n)
is sufficiently small for each t € [a,b]. We stress that the cutoff problem (4.6) is
not local in time. In particular, even for J = Ry it is not a well-posed Cauchy
problem. Nevertheless, based on our results for the linear problem on J we can
solve (4.6) globally in function spaces on J.

We now consider the maps Fpy and Gr; on the spaces E;(Ry,Fa) and
Ei(a, —fB), where «, 8 > 0, see (4.5) and (3.11). (These values of «, 5 were not
treated in Proposition 3.10.) We start with the Lipschitz properties.

Proposition 4.4. Assume that Hypothesis 3.4 holds. Let n € (0,n9] be the
parameter for the cutoff and «, 8 € [0,d] for some d > 0. Then the maps Fry :
El(Ri,:FOz) — E(Ri,:FOA), Fr: El(a, —,8) — E(a,—ﬂ), Gr+ : El(Ri,:FOz) —
F(Ry, Fa), and Gr : Ei(a,—8) — F(a,—p3) are (globally) Lipschitz with a
Lipschitz constant €(n) for a nondecreasing function € converging to 0 asn — 0,
independent of « or 3. Moreover, Fr;(0) =0 and Gr;(0) =0 for J =Ry, R.

We omit the (technical) proof of this result since it is very similar to that
of Proposition 3.6 in [10]. It uses the above listed properties of the cutoff,
Lemma 4.7 in [20], (R), and a straightforward extension of Remark 3.4 of [10]
to the present situation.

Next, we want to establish the continuous differentiability of Fr and Gr in
certain spaces. We first observe that the map ¢ — N(t,¢) = [[¢|lg, (s)) 18
continuously differentiable on Eq(J(¢))\ {0} and that its derivative is uniformly
bounded (cf. §3 of [10] and Theorem 2.3.2(a) in [24] for the Slobodeckii spaces).
As in §3 of [10] one verifies that the map Eq ([t — 2, +2]) 3 ¢ — T'(t, ) is C!
with the derivative

I'(t,0) = [y X' (N, @) N'(-, 9)]2)- (4.7)
Here we set N'(t,0) = 0 and note that T'(t,¢) = 1, and thus I'(t,¢) = 0, if
l¢lle, (jt—2,¢+2)) < n- The cutoffs I'+(, p) = ['(¢, R+p) on Ry have the analogous
differentiability properties.
Given «, > 0 and w € Eq(a, —f), we introduce the linear operators F{. and
G} acting on w € E; (o, —3) by the formulas

[Fr(w)](t) = (0, T'(t,w)) F(w(t)) + T(t, w) F'(w(t))p(t),

[Gr(w)el(t) = (¢, T'(t,w)) G(w(t) + T (¢, w) G (w(t))e(t),
17
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see (3.2) and (3.3) for the definitions of F', G, F’ and G’ We also set

[Fra(w)e](t) = [Fr(Rew)Re@](t), [Gre(w)e](t) = [Gr(Rew)Rep](t) (4.9)

for t € Ry and w,p € Ej(Ry, —a) in the case J = R4, respectively, w,¢ €
Ei;(R_, @) in the case J = R_.

We stress that the maps Fr and Gr are not differentiable if the domain and
range spaces have the same weight function. However, the next proposition
shows that they are C'' maps with the derivatives F{. and G} introduced above
if we take a smaller weight function in the range space, cf. [25].

Proposition 4.5. Assume that Hypothesis 3.4 holds. Let n € (0,n9] be the
parameter for the cutoff, 0 < a < 8 < d and 0 < o < B < d for some
d > 0. Define the operators F}., F|., Gy, and G by (4.8) and (4.9). Then
the following assertions hold.

(a) The operators F{.(w) : Ei(a, —a/) — E(B,—3'), Gp(w) : Ei(a, —a/) —
F(3,—0"), FlL(w) : Ei(Ry, Fa) = E(R4, F0), and GpL(w) : E;(Ry, Fo) —
F(Ry,F8) are all bounded with the norms e(n), where € is a nondecreasing
function converging to 0 as n — 0 which does not depend on w, o, ., 3,3 .

(b) If B > « and B > o, then the maps Fr : Ei(a,—a') — E(8,—5'),
Gr : Ei(a,—a) = F(3,-3), Fr+ : E1(Rs,Fa) — E(R+,F3), and Gre :
Ei(Ry, Fa) — F(Ry,F8) are continuously differentiable with derivatives Ff
Gy, Fly, and Gp, respectively. Moreover, F}.;(0) = 0 and Gp;(0) = 0 for
J € {Ry,R_,R}.

We again omit the lengthy proof which it is analogous to that of Proposi-
tion 3.8 in [10], using the properties of the cutoff stated above, (R), Lemma 4.7
of [20], Proposition 4.4, as well as straightforward extensions of the statements
(3.14), (3.15) and (3.16) in [10] to the present situation.

We now establish one of the main result of this paper where we construct a
local center manifold M. and show some of its basic properties. In particular,
M, is a C'-submanifold of M being tangent to P.E at w,. Further properties
of M. are stated in Corollary 5.3 and Theorem 6.5. We assume that the spec-
trum of —A( has the decomposition given by (3.21), i.e., o(—A¢) has spectral
gaps in the left and in the right open halfplane. Recall that this assumption
automatically holds if the spatial domain € is bounded.

There is no description of M, directly in terms of (1.1) as provided by Theo-
rem 5.1 of [20] for the stable and unstable manifold, respectively. In fact, there
are simple ODEs in dimension two admitting infinitely many locally invariant
manifolds which are tangent to P.F at w, and satisfy M.N Mg = M.NM, =
{u.} (cf. Corollary 5.3). However, if w, is stable in forward and backward time,
then Theorem 4.6(e) implies that our M, is the only submanifold of M near
w, with these properties.

Theorem 4.6. Assume that Hypothesis 3.4 and (3.21) hold. Let the projections
Py and the numbers wy, be given by (3.21). Take any o € (w,,ws) and § €
(We,wy). Then there is a number n. € (0,19] such that for each n € (0,1.] there
exists a radius r. = r¢(n) > 0 such that the following assertions hold, where the
cutoff I is defined in (4.1) for the chosen n € (0,n.].
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(a) There exists a map ¢. € C(P.E; PsyE,) with a bounded derivative such
that ¢.(0) =0, ¢.(0) =0, and

M. = {wy = w. + &+ ¢:(€) € E, |€ € P.E} (4.10)
= {wo = ws + ¢(0) € E, |3 solution ¢ € E1(a, —fB) of (4.6) on J =R}.

If wy € M., then wy + o(t) € M, for each t € R and ¢ = ®(Ps(wg — wy)) =
Pep+¢c(Pep) for a map ®. € CH(P.E;Eq(a, —3)) having a bounded derivative,
where ¢ is given by (4.10).

(b) We define Mc = {wy € M| (wyg — wi)y < rc}. Let wy € M. and
@ be given by (4.10) with wg = ¢©(0) + wx. Then I'(t,) = 1 and ¢ solves
the (original) equation (3.6) for t € [—3,3|, at least, so that M, C M. The
dimension of M. is equal to that of P.E. Moreover, wyg = ws + &+ ¢c(§) € M
and (wo — wy)y < cl€|g for & = Pe(wo — wy).

(c) Let wy € M. and ¢ be given by (4.10). If the forward solution w of (1.1)
exists and satisfies (W — wy), < 1c on [0,t] for some t >0, then w(t) € M.. If
the function w = ¢ 4+ w, satisfies (W — wy)y < rc on [t,0] for some t <0, then
w(t) € Me, and w solves (1.1) on [t,0].

(d) Let wg = wy« + 9o € M. and let ¢ be given by (4.10). Assume that
o(t) + ws € M for allt € (a,b) and some a < 0 < b. Then z = Py satisfies
the equations

(1) = —AoPe(t) + PIG(=() + de(=(1))

+ Pe[F(2(t) + ¢c(2(t))), Go(2(t) + de(2(1)))]; (4.11)
Z(O) = Pc(w() - w*),

on P.E for t € (a,b), where F = F — Ay, Go and 11 € E(}/},E_l) is given by
Proposition 3.6. Moreover, ¢ € C((a,b); E1) and

(Bo, Co)¢e(Peipo) — Go(wo) € Z2, (B, C)¢e(Pepo) = Glyo), (4.12)

Pau[Avipo — (F(0), Go(90)))] = dL(Peiwo) Pe[Avipo — (F(0), Golo))]. (4.13)

(e) If w solves (1.1) on R with (w(t)—wy), < rc for allt € R, then w(t) € M,
for allt € R.

(f) If also (RR) holds, then there is a ro > 0 such that the map ¢ : D, :=
P.E N Bg(0,19) — PsFE1 is Lipschitz, and ¢.(£) is uniformly bounded in
L(P.E, Py Ey) for € € D,.

Proof. We first construct a manifold M, consisting of solutions to (4.6) on R
on the space Ej(a, —3). The desired center manifold M, is then obtained by
restriction to small balls.

(a) Let o € (w,, ) and ' € (w,, 5). We define the map

,Tc : P.E % ]El(alv _B/) - El(a7 _/B); 72(&790) = LAO<£,FF(()0),GF(Q0))

for the operators given in (3.22) and (4.5). Let ¢ be given as in (3.23) and set

wo = &+ ¢o. Due to Propositions 3.9 and 4.5, the map T2 : w +— To(€,w) is C*

from Eq(a/, — ') to E1(a, —3) and the derivative of 72 is bounded by c12(n) in

the norm of both £(E;(a/,—f3")) and L(E;(c, —f)), independent of £ € P.E.
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Moreover, T2 is Lipschitz in Eq(a/, —3") with constant cje(n) independent of
¢ € P.E by Propositions 3.9 and 4.4. Finally, the map £ — T.(&,w) is affine
from P.E to Ei(o/, —f') with the derivative T'(-)F-.

We now fix n = 1. > 0 such that cie(n) < 1/2. (Note that this estimate
also holds for every n' € (0,7) and that it is independent of the choice of
a,a/, 3,8 as above.) Then Theorem 3 of [25] (with Yy = Y = Ei(o/, —5)
and Y7 = Ei(a,—pf)) shows that for each £ € P.E there exists a unique
solution ¢ = ®.(§) € Ei(a/,—p') of the equation ¢ = T.(&, ¢), where
®, € CYP.E;E(a,—B)) and ®.(0) = 0. Moreover, (4.4) in [25] implies that
P/ (¢) € L(P.E,Ei(a,—p)) is bounded uniformly in £&. Observe that ¢ is also a
unique fix point in E;(a, —3) since we can vary o/ < o and 8/ < 8 in the gaps.
We now introduce

¢c(§) = 10 Lsu®c(§) (4.14)
0 ~ ~
=/ T_1(=7)Ps 1 [(FT(2c(£)) (1), Gor (®c(€))(1)) + TG (®c(£))(7)] dT

- /0OO Tu( =) P[(Fr(2(6))(7), Gor (®e(€)) (7)) + TG (@c(€))(7)] d7

for ¢ € P,E, where we have Fy(¢)) = Fp(¢) — A,;Gor(v) and recall (3.22).
Using the embeddings (2.3) and (2.7), we see that ¢. € C*(P.E; PsyE-), ¢. is
bounded and ¢.(0) = 0. The properties of T'(-) and Propositions 3.6 and 4.5
further yield that ¢.(0) = 0. In the formula (4.10) the inclusion ‘C’ follows
from the construction. If ¢ € E;(a, —f) is given by the second description of

M., then Proposition 3.9 implies that ¢ = La,(Pep(0), Fr(p),Gr(¢)). The
other inclusion in (4.10) thus is a consequence of the uniqueness of the equation
v = T(&,¢) with £ = Pep(0). If wg = ws + ¢o € M, with the corresponding
solution ¢ of (4.6) and ¢ € R, then ¢ = ¢(- + t) solves (4.6) with the initial
condition 1(0) = ¢(t) thanks to Remark 4.2. This means that w, + ¢(t) € M.,
and thus ¢(t) = Pep(t) + ¢e(Peip(t)).

(b) Take wy = wy + o € Mc with (@g)y < r for some r > 0. Set £ = Peyo
and ¢ = ®.(£). Estimate (4.3) and assertion (a) imply that

lelley (-5,5) < cllelgi(a,—p) = clPe(§) = Pe(0)lE,(a,—p)
<clélp <cleolp < . (4.15)

If we take r < r. := n/c, Remark 4.1 implies that I'(¢,) = 1 for ¢t € [-3,3];
i.e., ¢ solves (3.6) on [—3, 3] in this case. The last assertion in (b) now follows
from (4.15), using also (3.8) and the embeddings (2.3) and (2.7). The other
claims in (b) are clear. We will decrease r. > 0 below, if necessary.

(c) Take wy € M. and let w = w, + ¥ be the forward solution of (1.1)
satisfying (¢), < r.. Since the function ¢ from (4.10) solves (3.6) on [0, 3]
by assertion (b), the uniqueness of (3.6) implies that ¢» = ¢ on [0, 3]. We thus
deduce w(r) = p(7)+w, € M, for 7 € [0, 3] from part (a). Due the assumption,
we have w(t) € M. if t < 3. If t > 3, we can iterate the argument using the
translation invariance of (4.6) and (3.6). The asserted backward invariance of
M. is a direct consequence of parts (a) and (b).
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(d) Let wog = wy + o € M. and let ¢ be given by (4.10) so that ¢(t) +w. €
M, for t € (a,b). Set z = P.p. Due to (a)—(c), we have ¢ = z + ¢.(2)
and ¢ solves (3.6) on (a,b). In particular, it holds (E,é)(p(t) = G(p(t)) on
(a,b). Theorem 3.3 further shows that ¢ is continuous in ;. Using (3.13) and
Propsition 3.6, we compute

£(t) = Pep(t) = Pe[=Aup(t) + (F(p(1)), Gol(t)))]
= —P.A12(t) + PIIG(2(t) + el2(1)))

+ Pe[F(2(t) + ¢e(2(1))), Go(2(t) + de(2(1)))]

for t € (a,b). Since P.A_1 = AP, the equation (4.11) is shown. The assertion
(4.12) follows from ¢y = Pepo + ¢e(Pepo) € M and P.E C EY. Differentiating
¢ = Pep + ¢po(Peyp), we deduce

G(t) = —Ap(t) + (F(p(t)), Gol(t))),
P(t) = Pe[=Aup(t) + (F(2(1)), Golp(t)))]
+ GL(Pep(t) P~ Asip(t) + (Fp(t)), Gole(t)))]

for t € (a,b), so that (4.13) follows by taking t = 0.

(e) Let w be a solution of (1.1) on R staying such that (w(t) — wy)y < 7¢
for t € R. The estimate in Theorem 3.3(b) yields that |wl|g, (—2,t+2) < cTe
for each t € R and a constant ¢, > 0 (possibly after decreasing r. > 0). In
particular, w € Ei(a, —f) due to Lemma 4.7 in [20]. Fixing r. < n/cs, we
deduce from Remark 4.1 that ¢ = w — w, solves (4.6) on J = R. Assertion (e)
thus follows from the definition of M,.

(f) If £ € P.E N Bg(0,r9) for a sufficiently small 79 > 0, as in the proof
of assertion (b) we can deduce from (4.15) that w = w, + ¢ = ws + P(§)
solves the original problem (3.6) on [—3,3]. We can now show assertion (f) as
Theorem 5.1(e) in [20]. O

5. A CENTER-STABLE AND A CENTER-UNSTABLE MANIFOLD

For a better understanding of the center manifold, cf. Corollary 5.3, it
is useful to relate it with local stable, unstable, center-stable and center-
unstable manifolds. To construct them, we assume the existence of numbers
Wa, Wayy Wey, Wes > 0 such that at least one of the following assertions holds:

o(—=Np) =0sU0y  with maxReos < —ws < —wey, < minReog,, (5.1)
o(—=Np) =0esUo,  with maxReoes < wes < wy < minReoy, . (5.2)

In other words, —Ag has spectral gaps in the open left or the open right half
plane. We denote again by Pj the spectral projections for — Ay corresponding
to o, k € {s,cs, cu,u}. The map Q = I — N,G was introduced in Lemma 3.2.

In the next theorem we construct and study the stable and center-stable man-
ifolds, whereas the center-stable and unstable manifolds are treated afterwards.

Theorem 5.1. Let Hypothesis 3.4 and (5.2) hold. Take any € (Wes,Wu)-

Then there are numbers rl, > r, > 0, r{f > 0 and nes > 0 such that for each n €
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(0,1mcs) there exists a radius res = res(n) > 0 such that the following assertions
hold, where the cutoff I'y is defined in (4.4) for the chosen n € (0, 7cs].
(a) There is a C} map

¢u: Dy :={& € PE||¢|p <1} — PusEy
such that ¢,(0) =0, ¢/,(0) =0 and

My = {wo = ws + £+ du(§) | £ € Dy, (wo —wi)y <71y}
= {wy € M| (wo — ws)y < 14, I solution w = (u,p) of (1.1) on R_ with
(W) = wa)y < 7 {(w(t) — w1 < e (V< 0)) (5.3)

In (5.3) we can take ¢ = ¢ |w(0) — wy|g for a constant ¢ independent of wo,t, 3,
and we have w = wy + @y (Py(wo — wy)) for a map @, € CY(Dy; E1(R_, —0))
with ®,(0) = 0. It holds M, C M.

(b) If wy € My and the forward solution w of (1.1) fulfills (w — wy)y < 1y
on [0,t] for some t > 0, then w(t) € My. If wy € My and the solution w from
(5.3) satisfies (w — wy)y < 1y on [t,0] for some t <0, then w(t) € M,.

The dimension of My is equal to the dimension of PuE. If o, # 0, then w
is (Lyapunov) unstable in Ey x Z for (1.1).

If also (RR) holds, then there is a 7y € (0,73] such that the map ¢, is
Lipschitz from D, := {¢ € P,E |1€le < T4} to PesEy, and ¢, (§) is uniformly
bounded in L(PyE, PsE1) for & € ﬁu

(¢) There exist maps ¢cs € Cl(PCSES; P.E) and Y. € C! (PCSEg; P E,) with
bounded derivatives such that ¢.s(0) = U.5(0) = 0, ¢.,(0) = 9.,(0) =0, and

Mes = {wo = wy + &+ Ves(§) + des(§) | € € PsEY} (5.4)
= {wo = w, + ¢(0) | 3 solution ¢ € E1(Ry, —B) of (4.6) on J =R, }.

Moreover, the function ¢ in (5.4) is given by ¢ = P (&) for a map D5 €
C[}(PCSEg;El(R‘f‘?_/B))' N

(d) We define Mes = {wg € Mes | |lwo — wile, + [6(0)|z1 < 7es}, where
¢ = (v,0) is given by (5.4). Then T'y(t,p) = 1 and ¢ solves the (original)
equation (3.6) for t € [0,4], at least, and thus M C M. In particular, we
have |wy — w«|E, + |('7(0)|Z% = (Wo — Wy )~-

(e) Let wy € Mes and ¢ be given by (5.4). Assume that a forward or a
backward solution w of (1.1) exists and satisfies (w — wy)y < res on [0,t] or
on [—to,0] for some ty > 0, respectively. Set p(t) = w(t) — ws for —tg <t <0
in the second case. Then

w(t) = ws + @(t) = ws + PesQp(t)) + Pes(Pes Qp(t))) + Ves (Fes Q(0(1)))
= Wy + Pesp(t) + es(Pes Qp(1))) (5.5)
belongs to Mcs for 0 <t <ty or —tg <t <0, respectively.
(f) We have Mcs N My = {wy}.

(9) If w solves (1.1) on Ry with (w(t) — wy)y < 7es for all t > 0, then
w(t) € Mes for allt > 0.
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Proof. The proof of assertions (a) and (b) is similar to the corresponding parts
of Theorem 5.1 of [20] (and actually a bit simpler), so that we omit it, cf.
Theorem 4.1 in [10]. For the center-stable menifold, we proceed as in the case
of the stable manifold in Theorem 5.1 of [20], but now we must work in the
space Ej(Ry,—f3) containing exponentially growing functions. Hence, as in
Theorem 4.6, we have to involve the cutoff I'; which leads to various technical
difficulties.
(c) We define the map T¢s : PCSEg x E1(Ry, —B) = E1 (R4, —05) by setting

Tes(&0) = L o, (€ + PesNo10Gr (), Fri(9), Gri(9),

where the operators L;CS Ap¢ I+ and Gry are given by (3.17) and (4.5). Ob-
serve that the semigroup e_g7'(-) has an exponential dichotomy with the stable
projection Pes. Due to Corollary 3.1, (2.4) and (3.16), the operator LJPECS Ao

above is applied to elements of D(R, —f3). Propositions 3.7 and 4.5 thus show
that the map 72 : ¢ — Tos(€, ) is C from E(Ry, —3") to Eq(Ry,—f) for
any 3’ € (wes, ) and the derivative of T2 is bounded by c1(n) in the norm of

CcS

both L(E1 (R, —3')) and L(E1(R, —0)), independent of { € PesEY. Moreover,
72 is Lipschitz in Ei(R4, —3") with constant c1e(n) independent of & € PCSEg
by Proposition 4.4. Finally, the map £ — Tcs(§, @) is affine from PCSEg to
E; (R4, —f") with the derivative T'(+) Pes.

We find an 7.5 > 0 such that c1e(n) < 1/2 for all € (0, 7.s]. For any fixed n €
(0,7es), Theorem 3 of [25] (with Yy =Y =E; (R4, —f') and Y1 = E1(R4,—f))
then shows that for each £ € PCSES there exists a unique solution ¢ = ®.4(§) €
E1 (R, —f') of the equation ¢ = Tes(€, ¢), where 5 € C! (P ES; Er1(Ry, —f3))
and ®.s(0) = 0. Therefore, ¢ solves (4.6) on J = Ry. Due to (4.4) in [25], the
derivatives @/ () € ﬁ(PCSEg,El(RJ'_, —f)) are bounded uniformly in £. (We
note that ¢ is also the unique fix point in Eq (R, —f3).) We then introduce

Ves(§) = PCSNW’VOGF-%((I)CS(&)) and  ¢es(§) = Puvo®es(§), e, (5.6)
6es€) = = | Tul=r) Pu(MGrs (@ ()7
0

+ [Fri (2es(§))(7) = Av s Gor (2es(§))(7), Gor+(@cs(§))(7)]) dr,

for € € PCSEg. Hence, Corollary 3.1, (3.15), (2.4), Propositions 3.6 and 4.5
imply that ¢.s € C'(PesEY; PyEy) and Uy € C'(PesEY; PesEy) with bounded
derivatives, as well as ¢.s(0) = ¥¢5(0) = 0 and ¢.,(0) = 9.,(0) = 0. The
inclusion ‘C’ in (5.4) now follows from our construction.
Conversely, any solution ¢ = (v,0) € E;(Ry, —f) of (4.6) on Ry is given by
¢ =L} n,(Pesp(0), Fri(9), Gry ()

due to Proposition 3.7. We set { = Pes[p(0) — Ny0Gr4(9))]. Combined with

the embeddings (2.3), (2.4), (2.7) and the equations (4.6), Corollary 3.1 shows

that ¢(0) — Ny0Gr+(p) € Ey,

(B, C)N00Gr (#) = 10Gr+(¢) = (B,C)p(0),  and

(Bo, Co)Ny70Gr+ () —(Bo, Co)p(0) = (Bo, Co)Ny70Gr+(¢) —10Gr+(9) +6(0)
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belongs to Z. 1 Hence, ¢ € PCSE and ¢ = C8( ¢). Because of the uniqueness
of the latter equatlon we arrive at ¢ = ®.4(€), and thus ¢(0) = £ + Ves(§) +

chs(é) S Mcs — Wk. N

(d) Take wy € M,s with the corresponding & € PCSES and the solution
¢ = (v,0) € E;(Ry,—p) of (4.6) with ¢(0) = wp — wsx =: po. Assume that
lwo — w«|E, +16(0)|z2 <7 for an 7 > 0 to be fixed below. Assertion (c) and its
proof, (3.15), Corollary 3.1, (4.6), (2.4) and Proposition 4.4 yield

lelle, &y ,—g) = 1Pes(€) = Pes(0)[g, (R, ,—p) < ¢ l€]mo < C\SO(O)—NWOGFJr(SO)\Eg
< ¢ (lpo = Ny10Gre(@)le, +15(0)| 2
+170Gr+(¢) = (Bo, Co)Ny10Gr+(9)| 21)
< c(lpole, +15(0)| 21 + [0Gr+(#)ly; )
< c(leole, +15(0) 21 + IGr+(9) — Gr+(0) g, &, .—8))
¢ (|leole, + \‘3(0)12%) +e) e, @, ,—8)-
Fixing a sufficiently small 7.5 > 0 and using also (4.3), we thus obtain

IN

llle, (o.6) < cllelle, ®y,—p) <€ (lpole, + |‘.7(0)|Z%) (5.7)

for a constant ¢ > 0 and all n € (0,7.s]. We take an r%; =2 (n) > 0 such that
r9¢ < et (14 cp) ™' < eyt (14 cg) " Mpes. For every r € ( ,r%], Remark 4.1
and (5.7) thus imply that I'; (t,) =1 for 0 <t < 4. As a result,

‘5 = Pcs[(p(o) - N’YG(SOO)] = PCSQ(SOO) (5'8)
and ¢ solves the original problem (3.6) on [0,4], so that ]0(0)\21 = [wo — wyl.

(e.i) Let wyg € Mcs and w = w, + ¥ be a solution of (1.1) on [0,%y] with
w(0) = wp for some ty > 0. Let ¢ = (v,0) € E1(Ry, —f) be the solution of
(4.6) with ¢(0) = wp — w,. We assume that <1j)(t)> <r <7l for 0 <t <t
and want to derive that ¥ (t) = ¢(t) and w(t) € M., for 0 < t < to. Part (d)
of the proof implies that I'; (¢, ) = 1 and that ¢ solves (3.6) for t € [0,4]. The
uniqueness of (3.6) thus gives ¥(t) = p(t) for ¢t € [0,4] N[0, to].

First, let t9p < 2 and set ¢(t) = @(t + to) for t > 0. Remark 4.2 yields
that I'y (¢, 9) = T4 (t + to, ) for t > 2. From (5.7) we further deduce that
1@1E, (—242nR) < lellE o6y < ¢r < 7l for 0 < ¢ < 2. Decreasing
r0. > 0, we arrive at [';(t,) = 1 for 0 < t < 2 thanks to Remark 4.1. Since
2 4ty < 4, we also have 'y (t + tg, ) = 1 for 0 < ¢ < 2. Summing up, it holds
Li(t,9) =T (t+to, ) for all t > 0 so that ¢ € E1(Ry, —3) solves (4.6) on J =
R4 with ¢(0) = ¢(tg). This means that ¥ (tg) = ¢(to) € (Mes — wi) N M*(r).
Since we can replace here tg by t € [0, to], part (c¢) and formula (5.8) show

w(t) = wi+ () = we + Pes Q(p(1)) + s (Pes Q0 (1)) + Vs (Pes (1)) (5.9)

belongs to Mcs for 0 <t < ty. If tg > 2, we obtain this result by a finite
iteration of the above argument.

(e.ii) Let wg € M,s possess a solution w of (1.1) on [—tg, 0] with w(0) = wy
for some tg > 0. We set z(t) = w(t) — we = (u(t),p(t)) — w, and assume
that (z(t)), < r <79 for —tg <t < 0. Let ¢ = (v,0) € E;(Ry,—3) be the
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solution of (4.6) with ¢(0) = wg — w, given by (5.4). To show that w(t) € Ms
for —tg <t <0, we set z(t) = ¢(t) and (t) = 2(t — to) for ¢ > 0. Clearly,
Y € Ei(Ry, —p5), ¥(0) = w(—tg) — ws«, and 1 satisfies (3.6) on [0, ¢y + 2] since
z and ¢ solve (3.6) on [—tp, 0] and [0, 2], respectively, and we have z(0) = ¢(0)
and thus p(0) = (0). (Here we also use Lemma 2.2.) Take ¢t € [0,tp+ 2] and s
with |t — s| < 1/4. Noting that [0,1] C J(s) if J(s) NR_ # 0, we deduce from
Lemma 2.2 and (4.2) that

IR+ Ig, () < € (1011Ry (s ()0.t0]) + 1CNEL (I () it0,00)) + 1B+ B, (1(s)n[=1,0))
< e (120 = to) Iy (s (s)nfosto)) + 1o (- — tO)HEl(J(s)ﬁ[to,oo)))
= ¢ (I12llE, (1 (s—to)n[=to,0]) T NIEs (J(s—to)RS))
for a constant ¢, > 0 given by these lemmas. Since z solves (3.6) on J(s —tp) N
[~to,0] =: [a, b], the estimate in Theorem 3.3(b) yields ||z||g, [ab) <c(z(a), <
cr < er for a constant ¢ > 0, where we possibly decrease r0, > 0 to apply

the theorem Moreover, from inquality (5.7) we infer that ||g0|\E1( T(s—to)NRy) <
¢(p(0))y < ¢r using that J(s —tg) "Ry C [0,4]. As a consequence,

HR+¢HE1 < C*(C+N)T < C*(C+~)T08

Decreasing 2, once more if necessary, we obtain ||Ry||g, (s(s)) < 7es/(cw (1 +
cr)) so that I'(¢t,¢) =1 for 0 <t <ty + 2 due to Remark 4.1.

The function 1 thus satisfies (4.6) for 0 < ¢t < tp+2. Fort > t9+2, Remark 4.2
yields I'y (¢,¢) = ' (t—to, @) so that 1 fulfills (4.6) also on [tp+2, 00). Summing
up, ¢ € Eq(R4, —f) solves (4.6) on Ry and so w(—tg) — w. = ¥(0) € (Ms —
wy) N M*(r). Replacing here —tg by t € [—tp,0], and writing p(t) = 2(t), we
arrive at (5.9) for —tg <t < 0. Since Pesp(t) = PesQ(p(t)) + Ves(Pes Q(0(2))),
formula (5.5) follows from (5.9).

(f) Assume that wy = wy + @o € Mes N My with (po)y < r < min{rd, r,},
and let ¢ = (v,0) € E;(Ry, —f) be the solution of (4.6) with ¢(0) = ¢¢ given
by (5.4). Take 8+ € € (B,wy). Due to assertion (a), there is a solution z of
(3.6) on R_ with z(0) = g satisfying

(2(t))y < BTt (), <er (5.10)
for all ¢ < 0. We choose a sufficiently small r =: rcs > 0 such that er < 79,
and take t < 0. We define M for this r.s < rQ. Part (e.ii) of the proof
implies that w, + z(t) € Mcs and that the function ¢, € E; (R4, —3) given by
(1) = 2(t + 7) for 7 € [0, —t] and Y¢(7) = p(t + 7) for 7 > —t solves (4.6) on
J = R,. Estimate (5.7) thus yields
Vel (ry—p) < ¢ (¥e(0))y = c(2(1))~ (5.11)
where the constant ¢ does not depend on ¢ < 0. Observe that
(po)y = e~ P (|p(0)|, +16(0)|21) < ce™{(e—pvoe) (1)),
due to (3.8) and (2.13). Using the embeddings (2.3), (2.7) and the inequalities
(5.11) and (5.10), we then estimate

{po)y < Ce_ﬂt||¢t||1E1(R+,—ﬂ) < ce P (2(t))y < ce (o),
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where the constants do not depend on t. Letting ¢ — —oo, we conclude that
wy — ws = o = 0.
(g) The last assertion can be shown as part (f) of Theorem 4.6. O

Theorem 5.2. Let Hypothesis 3.4 and (5.1) hold. Take any o € (wWey,ws)-
Then there are numbers v, > rs > 0, 7§ > 0 and 1y, > 0 such that for each n €
(0,mew] there exists a radius rey, = Tey(n) > 0 such that the following assertions
hold, where the cutoff T is defined in (4.4) for the chosen n € (0,ncy].

(a) There are C} maps

¢s : Dy = {6 € RE)|[€|py <13} — PeuB,  Us: Dy — RE,,
such that ¢5(0) = 94(0) =0, ¢%(0) = 9%(0) =0 and

M = {wo = ws + &+ 95(€) + ¢s(€) [ € € D, (wo — wi)y < 75}
= {wo € M | (wo — wy)y <15, 3 solution w = (u,p) of (1.1) on Ry with
(wt) —wi)y <75, (wt) —wi) <ce™ ™ (Vt>0)} (5.12)

In (5.12) we can take ¢ = ¢ (w(0) —wy)~ for a constant € independent of wo, t, ,
and we have w = wy + P5(PsQ(wo — wy)) for a map @5 € CH(Dg; E1(Ry, )
with ®5(0) = 0.

(b) If wg € Ms and the forward (resp., a backward) solution w of (1.1)
satisfies (w —wy)y < 15 on [0,t] for somet >0 (resp., on [t,0] for somet < 0),
then w(t) € M.

(c) There exists a map ¢y € Ct (PewE; PyEY) with a bounded derivative such
that ¢.,(0) =0, ¢.,(0) =0, and

Mey = {w0 =we + &+ ¢cu(§) ‘ §€ PCuE} (513)
= {wo = wy + ¢(0) | 3 solution p € E1(R_,a) of (4.6) on J =R_}.

Moreover, the function ¢ in (5.13) is given by ¢ = Py (Peu(wo — wy)) for a
map ®cy € CY(PoyE;E1(R_, @) having a bounded derivative.

(d) We define My = {wog € My, ‘ (Wo — Wy)y < Teu}. For wg € Mcy, let ¢
be given by (5.13). ThenT'_(t,) =1 and ¢ solves the (original) equation (3.6)
for t € [0,4], at least. The dimension of My, is equal to dim Pey E. We have
wo = Wy +E+Peu(§) € Moy and (wo—wy ) < clé|g if [€|g for § = Pey(wo—wy).

(e) Let wy € Mey and ¢ be given by (5.13). If the forward solution w
of (1.1) exists and satisfies (w — wy)y < Tey on [0,tg] for some ty > 0, then
w(t) =: wy + p(t) € Mey for 0 <t < ty. If the function W = w, + ¢ satisfies
(W — wy)y < Tey on [tg,0] for some tg < 0, then w(t) = wy + ¢(t) € Mcy and
w solves (1.1) for tyg <t < 0. In particular, o(t) = Peyp(t) + deu(Peup(t)) for
t € [0,to], resp. t € [to,0].

(f) We have My N Mg = {wy}.

(9) Let wy = wy + pg € Mey and let ¢ be given by (5.13). Assume that
o(t) +ws € Mey for allt € (a,b) and some a < 0 < b. Then z = Peyp satisfies
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the equations
3(t) = —AoPeuz(t) + PodIG(2(t) + deu(2(1)))

+ Pea[F(2(t) + deu(2(1))), Gol2(t) + beu(2(t)))],  (5:14)
Z(O) = Pcu('wO — w*)7

on P E fort € (a,b), where F = F — Ay, Go. Also, ¢ € C((a,b); E1) and
(Bo, Co)éeu(Peuspo) = Golo) € 23, (B, C)geu(Pengpo) = Glgo),  (5.15)

Py[Asipo — (F(0), Go(0)))] = Gl (Peupo) Peu[Asip0 — (F(0), Gol0))]. (5.16)

(h) If w solves (1.1) on R_ with (w(t) — wy)y < 7oy for all t < 0, then
w(t) € Mey for all t <0.

(i) Assume that (RR) holds, too. Then there is a ro > 0 such that the map
Gew 18 Lipschitz from Doy = {¢€ € PCUE‘ €|l < ro} to PsEq, and ¢, (&) is
uniformly bounded in L(PewE, PsEy) for € € ﬁw.

Proof. As in Theorem 5.1 we do not give the proof of (a) and (b), cf. Theo-
rem 5.1 in [20] and also Theorem 4.1 in [10]. The proof of assertions (c)—(i) is
similar the corresponding parts in the previous theorem, so that we can omit
some details and focus on the differences.

(c) We define the map Tey : PeuE X E1(R_, ) — E;(R_, @) by setting

Teu(& ) = Lp_p, (& Fr— (), Gr-(9)),

where the operators Lp, , , Fr— and Gr- are given by (3.19) and (4.5). Using
Propositions 3.8, 4.4 and 4.5, we find an 7., > 0 such that the assumptions
of Theorem 3 of [25] hold for the cutoff I'_ for any parameter n € (0,7cy].
Let o € (wey, ). As in the proof of Theorem 4.6, for each £ € P, E there
exists a unique solution ¢ = ®.,(§) € E;1(R_,a’) of the equation ¢ = Teu (&, ),
where ®., € CY(Pey E;E1(R_, )), ®,(0) = 0, and the derivatives ®.,(¢) €
L(PewE,Ei(R_, a)) are bounded uniformly in £&. We then introduce the map

Geu(§) = Y0 PsPeu(§)
0
= / T_1(—7)Fs < [FF+(¢08(§))(7—) — A pGor+(Pes (£)) (1), GOF+(<I>CS(5))(7')}

—0o0

4 Gy (Do (5))(7)) dr,

for € € P.yE. As before, we obtain that ¢, € C*(Pey E; PE.) with a bounded
derivative and that ¢, (0) = 0 and ¢,,(0) = 0. Moreover, the identity (5.13)
follows from Proposition 3.8, where ¢ = ®,,(§) and & = Pey(wo — wy).

(d) Take wp € M, with (wy — wi)y <17 <12 where 1%, > 0 is fixed below.
Let ¢ be the corresponding solution of (4.6) on R_ given by (5.13). From (4.3)
and part (c¢) we deduce

el (6.0 < cllelle ®_a) < cléle < cle(0)|p < dr < dr), (5.17)

where the constants do not depend on r and «. For any fixed n € (0,7cy],
we can choose a sufficiently small 7%, > 0 so that ¢r%, < (ew (1 + cr))™'n.
Remark 4.1 thus yields T'_(¢,¢) = 1 for —4 < ¢ < 0. As a result, ¢ solves the
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original problem (3.6) on [—4,0]. The last assertion now follows from (5.17),
using also the embeddings (2.3) and (2.7).

(e.d) Take wy € M., and to > 0 such that the solution w = w, + 1) of (1.1)
on [0, o] with w(0) = wy satisfies (w(t) — wy), < r < 72 for t € [0,to]. Let
¢ € E1(R_, ) be the solution of (4.6) on J = R_ with ¢(0) = wp — w« given
by (5.13). We further define 1(t) = ¢(t) and z(t) = (t + to) for t < 0. As
before, z € E1(R_, a), 2(0) = p(to), and z satisfies (3.6) on [—tg — 2, 0] since 9
and ¢ solve (3.6) on [0,%p] and [—2,0], respectively. Take t € [—t; — 2,0] and
s with |t — s] < 1/4. As in part (e.ii) of the proof of Theorem 5.2, we deduce
from Lemma 2.2 and (4.2) that

IR-2llg, (a(s)) < ¢ (100 + to) gy (s s)n—to,0)) + N0 (- + t0)E, (5 (5)(—00,—to]))
= ¢ (I[¥llg; (J(s+to)n(0,t0]) + B (I(51t0)R_)) -

Theorem 3.3(b) shows that [[1)[|g, (ja,4)) < csr for sufficiently small r0, > 0 since
1 solves (3.6) on J(s+t9) N[0, t0] =: [a,b]. Using (J(s+1to) NR_) C [ 4,0] and
(5. 17) we estimate [|¢[|g, (j(s+to)r_) < 70, Consequently, [|R_z||g, () <
er?,, and so Remark 4.1 yields I'_(¢,2z) = 1 for —tg —2 < t < 0, where we
decrease 70, if necessary. The function z thus satisfies (4.6) for —tp—2 <t <0.
Moreover, Remark 4.2 yields that I'_(¢,z) = T'_(t + to, ) for t < —tg — 2; and
so z fulfills the equations (4.6) for t < —tg — 2. Summing up, we have Shown
that z solves (4.6) on R_, and so wy + 2(0) = w(ty) € Mey N (M*(r) + w,).

(e.ii) Let wp € M.y and ¢ be given by (5.13). Assume that p(t) € M*(r)
for all t € [to,0] and some ¢ty < 0 and r € (0,7%,]. We first consider the case
that t9 € [-2,0). Assertion (d) shows that I'_(¢,¢) = 1 and ¢ solves (3.6)
on [tp,0]. We further set ¢(t) = ¢(t + to) for ¢ < 0. Remark 4.2 yields that
I_(t,p) =T_ (t+t0, ) for t < —2. Since ||[|g, (r-2,042nR_) < H@H]El([—(s,op <
(ew(1 + cg))~'n for —2 <t < 0 by (5.17) and our choice of r%,, we deduce
I_(t,p) =1 for —2 <t < 0 from Remark 4.1. Finally, I'_(t + to, ) = 1 for
-2<t<0 due to part (d), and hence I'_(¢,p) = I'_(t + to, ¢) for all ¢ < 0.
As a result, ¢ € E;(R_,a) solves (4.6) on J = R_ with ¢(0) = ¢(to), ie.,

o(t) + wy € /\/lcu N (M*(r) + wy) for each t € [tp,0]. The general case tg < —2
is then established by repeating the above arguments finitely many times.

(f) Assume that wy = ws +@g € My N Mg N (wi + M*(r)) with r € (0,79,].
Let ¢ € E1(R_,a) be the solution of (4.6) with ¢(0) = o given by (5.13).
For a + € € (a,ws), there is a solution v of (3.6) on Ry with ¥(0) = o
satisfying (¢ (t)), < 6e*(0‘+6)t(cp0>7 < er for all t > 0, if we fix a sufficiently
small r, := 7 € (0,7%,] and use assertion (a). Set 1 (t) = ¢(t) for t < 0. Part

a

) cu )
(e.i) of the proof now shows that wy + 1(t) € M, for ¢ > 0 and that the
function z; = (- +1) satisfies ||2¢||g, (r_ o) < ¢ (¥(t)), where the constant does
not depend on ¢ > 0. Employing also (2.3), (2.7) and (2.13), we arrive at

(po)y < e (T2 (1)) < ce® [lztlly (k) < 0™ (¥(8))y < ™ (00)y

for constants independent on ¢ > 0. As t — oo, it follows wy — w. = ¢y = 0.
(g), (h), (i) These parts are shown as Theorem 4.6(d), (e) and (f), making
use of (5.17). O
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Corollary 5.3. Assume that Hypothesis 3.4 and (3.21) hold. Then there is a
number T > 0 such that M¢ N (wy + M*(T)) = Mcs N My N (ws + M*(T)),
M.NMgN (we + M*(F)) = {ws}, and M.NMyN (wi +M*(T)) = {w.}. Here,
My are the manifolds obtained in Theorems 4.6, 5.1 and 5.2.

Proof. We set 7 = min{7nc, nes, New} > 0 and let r be less than or equal to the
minimum of the numbers r4(n) obtained in Theorems 4.6, 5.1, and 5.2. For
wp € M¢ N (wy + M*(T)), there exists the function ¢ from (4.10) with ¢(0) =
wo — ws, where I'(¢,¢) = 1 for |t| < 2. For s € [0,9/4] and s’ € [-9/4,0], we
have [[Ryollg, (s(s)) < cllellg, (0,4)) and [|R-@llg, (s(s)) < ¢ ll@llg, ((—a,0) for some
constant c¢. In view of (4.15) and Remark 4.1, we can decrease 7 > 0 in order
to obtain I'y (¢,) = 1 for ¢t € [0,2] and I'_(¢, ) = 1 for t € [-2,0]. Therefore
[(t,p) = T4(t, ) for t € Ry in view of Remark 4.2, and the restrictions of ¢
to Ry and R_ thus belong to Ms and Mo, by (5.4) and (5.13), respectively.
As a result, wyg € Mes N My. The converse inclusion can be shown similarly,
thereby fixing a possibly smaller 7. The last two equalities then follow from
Theorems 5.1 and 5.2. 0

Example 5.4. As in Examples 2.2, 2.4 and 3.6 of [20] we consider the Stefan
problem with surface tension. For times ¢ > 0, we look at open subsets D;(t)
of a fixed bounded domain D C R™ with 9D € C? and outer unit normal vp,
where the liquid phase is contained in D;(¢) and the solid one in Da(t), say. The
domains have the compact interface I'(¢t) C D so that Dq(¢)UT(t)UDs(t) = D.
We assume that T'(¢) V9D = () for all ¢ > 0. The phases have the temperatures
u;(t). On the interface we have the mean curvature H(I'(t)), which is chosen
to be negative at = € T'(t) if D1(¢) is convex near x. The normal velocity of
I'(t) is denoted by V(t), where the normal v of I'(¢) is defined with respect to
Dy (t). Here the interface and the temperatures are unknown. We consider the
system

O — diAu; = 0, t >0, z € Dt),
Ovpuz =0, t>0, z€0D,
u; = o H(T(t)), t>0, zeI(t), (5.18)
doOyus — d10y,u1 = 1V, t>0, xzeI(t),
ui(0) = uy, = €D  T(0) =Ty,

for constants dy,ds, 0,1 > 0, initial domains Dé C D and a closed compact C?
hypersurface I'y C D with with Ty = dD} and D}UT'0UD3 = D, and initial
temperature distributions ué on Dé. Actually, this a simplified model and we
refer to [17] for a thermodynamically consistent version allowing for different
heat capacities in the phases, kinetic undercooling and coefficients depending
on the temperature. This problem could also be treated by the methods in the
present paper, but for simplicity we restrict ourselves to the system (5.18).

In Theorem 1.1 of [15] it was shown that for connected phases the equiliberia
of (5.18) are spheres ¥ of radius R > 0 in D with constant temperature o/R.
These form a n + 1-dimensional manifold in the phase space. We fix such a
sphere. As recalled in Examples 2.2, 2.4 and 3.6 of [20], one can transform
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(5.18) into the form (1.1) where p(t,y) is the normal distance of the evolving
interface to a base point y € ¥. Moreover, our Hypothesis 3.4 is satisfied. The
linearization —Ag at ¥ (i.e., ux = 0/R and p, = 0) has an n + 1-dimensional
kernel with .+ 1 linearly independent eigenvalues if the volume |D| of D differs
from [ |X|R? /o, see Theorem 2.1 of [17]. If o|D| = [ |3|r? the dimension is n+2.
Moreover the spectrum is real, only consists of eigenvalues of finite multiplicity,
and it has a strictly positive simple eigenvalue if and only if o|D| > [ |X|r2.
Assuming o|D| # [ |%|r? we thus obtain a n+ 1 dimensional center manifold.
It contains the equilibria near the given one by Theorem 4.6(e), hence M, only
consists of equilibria. If o|D| # [|Z|r? we still obtain a n + 2 dimensional
center manifold containing the equilibria near the given one. There is a one—
dimensional unstable manifold if and only if o|D| > [|X|r?. In addition we have
the stable, center—stable and center—unstable manifolds described by the above
results. &

6. CONVERGENCE

Based on the analysis of the previous sections, we now study the attrac-
tivity properties of the center manifold, using the notation introduced in the
above theorems. Related results were obtained for static nonlinear boundary
conditions in the paper [8], which was inspired by Palmer’s theory in the ode
case [14]. Throughout we assume that Hypothesis 3.4 and the spectral gap
conditions (3.21) or (5.1) hold, which is true if, e.g., the spatial domain € is
bounded. In particular, we have the equilibrium w, = (us, p«) € Wi of (1.1).
Recall that the solutions w = (u, p) € Wy of (1.1) correspond to the solutions
¢ = (v,0) = w—w, € W] of (3.6), where the operators in (3.6) are given by
(2.9) and (3.2) for the equilibrium w, and we have D(w,) = 0 and p.(0) = 0.
We further recall that the projections P., P, and P, map into E(f C Ej and
that Ps and P leave invariant our scale of ‘E-spaces’, cf. (3.15).

In our main results we also assume that the center—unstable or the center
spectral subspace are finite dimensional, which again holds if € is bounded.
In an intermediate step of the proof of the crucial Lemma 6.1 below, we loose
control of the norm in I/Vp“”’“0 of the second component of an auxiliary function
¥. In the corresponding parts of the proof (but not in the statements) we thus
have to replace the space E, by the space

E4(J) = Lyp(J; Z1) N Wi ( ﬂ W (T, W (5 V), (6.1)

cf. (2.6). We further set E%(J) =E.(J) x EE,(J), use the same conventions as
for Eq, and define
Wi(J) = {p € BL{(J) | o(t) +w, € W, (YEE )},
cf. (2.8). The proof of the embedding (2.7), see §2 of [5] or §2 of [13], works
also for E,ﬁ,(J ) and thus
B (J) < Cup(J; Ey), (6.2)
where the same remarks as after (2.3) apply. Observe that for (u,p) € E%(J ),

the function 0;p does not possess extra time regularity. In order to work with
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this larger solution space and to obtain convergence with respect to ()1, we have

to impose additional assumptions besides (RR). We require that R is affine in

p and that G acts on Wg(] ). These assumptions hold for the Stefan problem,

see Example 6.6.

(RR’) We have A € C*(W,; L(X1, X)), R(u, p,p) = Ro(u, p) + Ri(u, p)p with
Ro € CY(W,; X), Ry € CY(W,; L(Yoy, X)), and D = (Dy,...,Dy,) €
CY(W7;Y7) induces a map D € Cl(Wfi(J); F(J)) for any compact J. The
first derivatives of these maps are bounded and Lipschitz continuous on
closed balls.

It is easy to see that then F, F € C’l(Wg(J);E(J)) and G € C’l(W%(J);IF(J))
with locally bounded derivatives, cf. (3.1), where F' = F — A,;Gy = F +
Ri(ws)Gp. Further, let 6 C [0,d] and J C R4 be a closed interval of length

larger than 2. Given r > 0, we consider functions w,w € W%(J ) whose norms
in Eg([t, t + 2]) are less or equal r for all intervals [t,¢ + 2] C J. It then holds

1F(w) = F(@) s < e(r) lw =gz 4,
1G(w) = G(@)lp(ss) < e(r) llw =gz 55 5

where ¢ does not depend on w, w or §. To show (6.3), we continuously extend

(6.3)

w and W to compactly supported functions in Eg(R.}., J), cf. (4.2). We can then
argue as in Proposition 3.10, using Lemma 4.7 of [20] with a = } and (6.2).
We start with a basic lemma that allows to shadow a small solution ¢(t),
€ [0,T], of (3.6) by a solution on the center-unstable manifold, where one
could replace the restriction ¢ > 1 by t > ty for any tg > 0.

Lemma 6.1. Assume that Hypothesis 3.4, condition (RR’), and (5.1) hold.
Then there exist constants r > 0 and o € (W, ws) such that, for every solution
o = (v,0) € Wi([0,T]) of (3.6) with (p(t))y < r for all 0 < t < T with
some T > 1, there is a solution gp = (v,7) € Wi(]0,T)) of (3.6) satisfying
we +p(t) € ./\/lCu for allt € [0,T], Pawp(T) = Peup(T) and

o(t) —2(t)| 2y + |0s0 (¢ ) 0 (t)|z, < ce™ (p(0)), <er (6.4)
forall1 <t <T. Given Ty € (1,T), the constants are uniform for T > Ty.
Proof. (1) We assume that T > 3 =: Ty. For a general Ty > 1 the proof is
similar. Let ¢ = (v,0) € Wi([0,7]) be a solution of (3.6) such that (¢(t)), <
r for all ¢ € [0,7], where a sufficiently small » > 0 is chosen below. The
assumption (5.1) implies that He*tA‘)PC“PcuHB(EO) < Ne % for all t < 0 and
some constants § € (wey,ws) and N > 1. Theorem 5.2 gives a radius ro > 0

such that the restriction ¢y : Pey ENBg(0,79) — Ej is Lipschitz with constant
¢ and such that wy + & + ¢ey(§) € My for all £ € PoyE N Bg(0,r). We set

e1(R) = max R{Hﬁ/(z)Hﬁ(El,X) NG )2y} (6.5)

ZGWlfw*,|Z|E1§
Because of (3.1), we can fix a (small) number R > 0 such that
d := Ne1r(R)C (|| Peull 22, 5) + ”PcuHHB(?l,EO))(l + ) <ws =6,

(6.6)
RHPCU-HB FE,E <T07
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where ¢ is the norm of the embedding Ey < E. Theorem 3.3(c) (with "= 1/2)
implies the inequality

() <cp(t—1/2))y <er forall te[l1/2,T].

Here and below the constants do not depend on v,T,t, R or r, and we choose
a sufficiently small > 0 to apply Theorem 3.3(c). Let ¢ be the norm of the

embedding F.— E. We can now take small > 0 such that
le(t))1 <R forall 1/2<t<T, 6.7)
T(l"‘EE)HPcuHﬁ(EW,El) <R/2 and 7”HPcuH,/:(EW,I«J) < T0. '

(2) To control the distance between ¢ and M, — w,, we define

Y = Psp — ¢eu(Peutp) on [0,7].

The function ¢ takes values in PyE,. Since ¢ — ¢ = Py + ¢eu(Peup) 0

[0, 7], we have wy + ¢(t) — 1 (t) € Mcy, thanks to the last inequality in (6. 7)
Moreover, ¢ — 1 and ¢ (¢ — 1) = Peyp + ¢l (Peup) Peup belong to Ly ([0, T; Eq)
since ¢L,,(Pewyp) : Peyw — Ei is uniformly bounded by Theorem 5.2. Let J =
[a,b] C [0,T] with b —a > 1/4. We then obtain

161z gy < ol + 16 = ollgs ) < cllellesis) < elp(@)y <, (68)

where we use Theorem 3.3 in the penultimate inequality. We can also suppose
that the norms of ¢ and ¢ — ) in ]E%(J) are bounded by c¢ir. We put

f=F(p)—Flo—v), [=F(p)—Flp—1) and g=G(p)—Glp—1).
Let o € [0,w;s). Estimate (6.3) yields
1 f e o) | FlEas.) 1918Gama < e20r) 191152 ((a,57,0) (6.9)

where b —a > 2, e5(r) is proportional to £(cir) and ¢ is given by (6.3). Note
that Py = I — Py, (B C) wu = 0, and Pey(p — ¢) = Peyp. Equation (3.13) for
¢, the identities (5.15) and (5. 16) and Proposition 3.6(c) now imply

(B,Cy = (B,C)p — (B, C)peu(Penp) = Glg) — Gl — ) =7, (6.10)
i) = Po(—Asp + [F(9), Go(9)]) = Gy (Peutt) Peu([F (), Go ()] — Avp)
— G (Peu(tp — 1)) Pou(As( — ) — [F (0 — 1), Go(io — 1))
+ Pihi(p — ) — P[F(p — ), Goly — )]
= —PAp + P[F(p), Go(9)] — Pi[F (¢ — 1), Golp — )]
+ G (Poutp) Peu(Asth — [F (), Go()] + [F (g — ¥), Golep — )
= —A_1 Py + BIIG + B[ f, go] — ¢y (Peutp) Peu(T1G + [, 90))
= —~A_1 P + BIIG + Py[f, go] + h (6.11)

on [0,7]. In the penultimate equality we used (6.10) and P,A_1¢ =
A_1Peyp = 0. The variation of constants formula for T_;(-) now gives

t ~
P(t) :T(t—to)Ps¢(t0)+/t T (t=7)Ps([£(7), go()]+h(T)+1g(7)) dr (6.12)
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for 0 < tp < t < T. Since the operators Ps and ¢.,(Pey) may mix the first
and second component of F, it is a bit tricky to establish sharp estimates for
1. We will treat the relevant parts separately, introducing the functions

W9ty = T(t — to)(to) + / Too(t — ) ([ (r), go(r)] + Tg(r) dr,

to
t
W0 = [ T rh(rydn =g
to
To apply maximal regularity results, we first recall that P (to) = ¢ (to) € E,,
(B,C)(to) = g(to), p(to) € M*, and (By, Cy) Py maps into (By, Co)EY C Z%
by (2.14). Equation (5.15) thus shows that
(Bo, Co)(to) — go(to) = (Bo, Co)ee(to) — Gole(to)) — (Bo, Co) Peup(to)
= (Bo, Co)eu(Feu(p(to) — ¥ (to))) + Gole(to) — 1 (to))
— C(to) (6.13)
belongs to Z%. Further let x = (x1, x2) be the solution of (3.6) with the initial
value ¢(tg) — ¥ (to) = Peup(to) + deu(Peup(to)) € Mey — wy at time ty. Using
(2.7) and Theorem 5.2, we then derive
[C(t0)|z2 < [6(t0)|z1 + [X2(to)lz2 < {(t0))y + ¢ Xk (fto,t0+1])
< {p(to))y + c[Peusp(to)|e < c{p(to))y < cr. (6.14)
So the problem (3.9) with data v (tp), f and ¢ has a unique solution in E; ([tg, T)

which coincides with 1/°/9 due to Proposition 3.6. We put Jy = [to, to+2]N[to, T]
and assume that to < T — 1/4. Proposition 3.5 and (6.9) yield

149715, < € (G0, +16(t0) |1 + 1wy + o)
< ¢ ([ (to)|z, + 1¢(t0) 21 +ea(r) [¥llgs 1))

We have h € Ly([to,T); Ey) — Lp([to, T]; Eo), see (2.13), but it is not clear
whether one can control the norm of iy in Fy by the norm of v in [E;. However,
Corollary 2.3 of [5] (combined with a perturbation argument as in the proof of
Corollary 2.6 of [20]) and (6.9) imply that

1% s 10y < €Ny a0y < € (Tl + Mol ) < eo2(r) 8l oy

Finally, the function P.,1° and its derivative can easily be estimated using that
P,y maps into D(A2) leading to

‘|Pcuw0HE§(JO) <c ”P0u¢0||WI}(J0;E1) <c (|Hf790] + hH]E(Jo) + HE\”LP(JO;?))

< cea(r) !’¢”E§(Jo)’

where we also use (6.9). To treat the remaining interval [to + 2,7 we argue as

in (4.14) in [20]. Let J,, = [to+n, to+n+1]N[to, T] and J,, = [to+n—1,tg+n+

1]NJto, T] for n € N with n > 2, and take x,, : J, = R such that x,, x,, and x/
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are uniformly bounded, x,(to+n—1) =1 and x, =0on [to+n—1/2,tg+n+1]
for n > 2. For t € J,, we then write

P(t) = /t T1(t = 7)(1 = xa(M)([f(7), 90(7)] + TTg(7)) dr

o+n—1

- / T(t —7)Peu(1 — xu(0) ([F(7), 90(7)] + TG (7)) dr

o+n—1

+ / Tt — 7)(1 — xn (7)) Poh(7) dr
to+n—1

to—i—n—% ~
+ / T(t = 7)Psxn(T)([f(7), 90(T)] + h(7) + Hg(7)) dr
to+n—1

to+n—1 .
T / T(t - 1) P([F(r), go(r)] + h(r) + TIg(r)) dr

to
+ T(t — to) Pstp(to)-

We can now combine the arguments given above and in the proof in Propo-
sition 3.7, using Propositions 3.5 and 3.6 for the first integral and standard
semigroup theory and (3.15) for the other terms. Employing also (6.9) and
Lemma 4.7 in [20], it follows

148 1y < € (€7 o), + 1€t 22 + €)1t 1)

Choosing a sufficiently small » > 0 and using (6.2), we arrive at

&gt (o 11,09 < € (600, + 1C(00) 22) (6.15)

for all tp € [0, — 1/4] and « € [0,w, — €], and any fixed € € (0, ws).

(3) We next introduce the candidate for the asserted shadowing solution
on Mcy. Since |Pewp(T)|g < 19 by (6.7), there exists the backward solution
© = (0,0) = Peu® + dcu(Peu®) of (3.6) such that w, + @ belongs to Mgy,
and Poy@(T) = Pewp(T). Theorem 5.2 also yields that (f) exists at least
for t € [T'— 3,T] and ||9|lg,(r—31)) < ¢|Pew®(T)|g < cr. We then deduce
(@(T — 3))y < cr using (2.3) and (2.7), as well as |@(t)|g, < cr < R for
all t € [T — 2,T] using Theorem 3.3, after decreasing r > 0 if needed. Let
a € [1/2, T —2] be the minimal time such that p(¢) exists, w. +@(t) € My, and
[B(t)|z, < R holds for all a <t <T. We set z = Pey(¢—3), f1 = F(p) — F(?)
and g!' = G(¢) — G(®). As in part (2), we then obtain

Z= _A0P0uZ+Pcu([fl79(ﬂ +H§1)’ (6-16)
and hence

T ~,
2(t) = — / e~ (=0 b (1FL(r), gb(r)] + TG (7)) dr.

for all t € [a,T]. Based on this formula and using (6.5) and (6.6), we can now
proceed exactly as in part 3 of the proof of Lemma 3.1 in [8], where we take
34



a,a’ € (d+ d,ws) with o < /. We thus arrive at
[2(t)] < ce™" lleartlle, i) < ™" N0z i 710
<c(lp®)le, +1¢H)|z) < er

for all ¢ € [a,T], where the constants ¢ are uniform for ¢ < T in the first line,
and for t < T —1/4 in the second one. (In the last two inequalities we have also
employed the estimates (6.15) and (6.14).) If ¢t € [T'— 1/4,T], we can estimate
in (6.17) the Eg norm on [¢t,T] by that on [t — 1/4,T] and obtain

12(0)|e < c ([t = 1/4)|e, + [ —1/4)|22) <er

with a uniform constant. Since Pey@ = Peu(p — z), condition (6.6) yields
|Peu(p — 2)|E = |Peu®|E < || Peull By, By R < 70 and it holds

? = Peulp — 2) + beu(Pen(p — 2)).
Using also (6.7), we now conclude

[P(to)ley < (1 +20)|Peu(e — 2)|p; < (14 O Peulls,,50) l0(to)| B, + |2(to)|E
<R/2+cr <R (6.18)

(6.17)

provided r > 0 is chosen small enough. It follows that a = 1/2. Since w, +
©(1/2) € My we can extend uy, + @ on Mc, to the time interval [0,7] due
to Theorem 5.2. This theorem also implies that |||k, (0,0)) < ¢|Peu® ()| <
cle(b) — z(b)|p < cr, whenever b — a < 2.

(4) To estimate ¢ — @, we deduce from (6.17) and (6.15) that

leazllzytu/zzrr < el¥llgs oy < ¢ (BOe, +KOlz).  (6.19)

where the constants depend on o — o > 0. Equation (6.16) and (RR’) further
yield that [2(t)|g < c|z(t)|g + c|e(t) — @(t)|E,. Since

= Pl =) + Ps(p = P) = 2 + ¢ + ¢eu(Peup) — deu(Pen®),
e < c(lz(t)|g+ |¥(t)| g ). Estimates (6.19) and (6.15) now lead to

E
leaZll,iE) < clleazll,urym) + leatllL, (me)) < ¢ ([¥(0)]E, +1¢0)]22)-

1
27

|Peu(0(t) = B(0) |5 = [2(t)|5 < ce™ ([Y(0)|&, +1¢(0)]z1) (6.20)

forallt € [1/2,T]. For the stable part Ps(¢—0) = ¥+ ¢cu(Peup) — Pen(Peu®), We
combine the estimates (6.15) and (6.20) with the embedding (6.2), concluding

[Pa(e(t) = B(1))|e, < c(lW(t)le, +12(t)]E) < ce™ (J1(0)|e, +1C(0)|2)
for t € [1/2,T)]. (Here we apply (6.15) with T" replaced by t.) It follows that
() = 215, < ce™ ([¥(0)]E, +1¢(0)]22) < ce™ {(0)), (6.21)
for t € [1/2,T], employing also (6.14).

It remains to upgrade this estimate to (6.4). Proposition 3.6 implies

Ai(p —p) = —A_1(p — ) + [F1, 98] + 11g", (6.22)
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where J = [5,T]. Sobolev’s embedding then gives



cf. part (3). Let ¢t € [1,T]. There is an n € N with t € J,, := [n,n + 1] N[0, T].
We set J), = [n—1,n+ 1] N[0,7]. We will argue as in step (2), now using
uniformly bounded cutoffs x,, € C?([n — 1,n + 1]) with x,(n — 1/2) = 1 and
Xn =0 on [n—1/4,n + 1]. We observe that the norms of ¢ and @ in Eq(J}))
are bounded by cr due to Theorem 3.3 and the observation at the end of step
(3). Equation (6.22) yields

p(t) —(t) = /_1 T (t =) (1= xa (M)} (7), 90 (7)] + g (7)) d7

n—1/4 ~
" /_1 Toi(t = 7)xa(T)([f1(7), 9o(7)] + 11g" (7)) dr

+T(t—n+1)(p(n—1)—@(n—1)) =: Di(t) + Da(t) + D3(t).
Due to Proposition 3.6, D; is the solution of (3.9) in E;(J,) with data (0, (1 —

Xn)f1, (1 = xn)g'), so that Proposition 3.5 and the embedding (2.7) yield

| [0:D1 ()2l 71 < el D1l (g,) < C(”FHE(Jn) + 119 lr(rn) < ce(r) [l — Bllgy ()
< ce(r) (le(n —1) =@(n —1)|p, +[0i0(n — 1) = §o(n —1)[21).

Here we have also used (3.1) and Theorem 3.3(d). The other two terms can
similarly be estimated using standard semigroup theory, leading to

10:(Da(t)+Da(t)) |5, < ¢ (lp(n—1) = Bn—1)|z, + I e + 19" L,31)
<cle(n—=1) =@(n—=1)|g + ce(r) (lp(n—1) = p(n—1)|g,
+ |0io(n — 1) — O (n — 1)|Z§)-

We now combine the above two estimates with (6.21) and conclude that

o(t) = (), + 1010 (t) — 0T (t)| 21 < cre™" (p(0))
+ cae(r)| o (n—1) — d7(n—1)|22)

for some constants. If necessary, we decrease r > 0 once more to obtain coe(r) <

%e_a. Iteratively it then follows that
1

[o(t) —2(t) e, +1010(t) — 0o (t)] 21
< ce™ ((9(0))y + |9(0) = B(0)|, +1810(0) — 0 (0)[ 1) < ce™ ((0)),

for all ¢ € [1,T], using also (6.18), (6.20) and (6.14). We can now derive (6.4)
from Theorem 3.3(d) and the above inequality. O

Remark 6.2. In view of the above proof, one could replace in (6.4) the factor
(©(0)) by [1(0)| £, + ]C(O)lz%, where ((0) is given by (6.13). Moreover, one can
choose « arbitrarily close to wg for a possibly smaller radius » > 0. The same
statements are true for the following results.

Our first convergence result says that the center—unstable manifold attracts
solutions which stay in small ball around w, for all ¢ > 0 and that they approach
a tracking solution wy + @ on M.
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Theorem 6.3. Assume that Hypothesis 3.4, conditions (RR’) and (5.1), and
dim P,y E < oo hold. Then there exist constants r > 0 and o € (wey,ws) such
that, for every solution ¢ = (v,0) of (3.6) on Ry with (p(t))y < r forallt >0,
there is a solution p = (v,@) of (3.6) on Ry satisfying ws +@(t) € My for all
t >0 and

lo(t) = (1|, + [0 () — 0T ()2, < ce™ {(0)), (6.23)
for allt > 1. If even (3.21) holds, then wy + p(t) € M for allt >0

Proof. We choose r > 0 so small that Lemma 6.1 can be applied to . It gives
solutions ¢, = (v, 0y,) with w, + ¢, on Mg, tracking ¢ on [1,n] and satisfying

| Peupn(D)|E < [Peup(1)|E + [Peu(n(1) — 9(1))|g < cr

for every n € N with n > 3. There thus exists a subsequence n; — oo so
that Peypn;(1) = & € PewE as j — oo. Theorem 5.2(d) and (e) combined
with Theorem 3.3 provide a solution = (7,7) of (3.6) on [—1,3] such that
P.p(1) =€ and wy 4+ §(t) € My, for t € [—1, 3], decreasing r > 0 if needed to
apply the mentioned theorems. We also obtain (@(t)), < (#(1))y < c|¢|g < eir
for all ¢ € [—1,3] and some constant ¢; > 0. We further denote by cz the
maximum of the embedding constants of £y — E, and Z, — Zi, see (2.13).

Let T be the supremum of ¢; > 1 such that p(t) exists and satisfies (@(¢)) <
(24 c1 + coe)r for t € [0, 1], where ¢ is given by (6.4). We thus have T' > 2. If
we take a sufficiently small 7 > 0, Theorem 5.2(e) shows that w, + () € Mqy
for t € [0,T). Moreover, the functions Pe,p, and P, @ satisfy the ODE (5.14).
Since Peuwn, (1) = Peutp(1), the functions Peygpn,(t) tend to Pe,p(t) in E as
Jj — oo for t € [0,T). Theorem 5.2 then implies that ¢,, converges to ¥ in
Eq([t,t + 1]) for all intervals [t,¢ + 1] C [0,T), and hence ¢, (t) — »(t)in E,
and &y, (t) = 90 in Z}, due (2.3) and (2.7). Lemma 6.1 now yields

(@) < Timsup (Jion, (8) = @(b)] i, + p(E)], + |6m, (1) = 6(0) 23 + ()] 22 )

Jj—o0
< Gcor +r (6.24)

for all t € [0,T). As a result, T = oo, and hence p(t) € My — w, exists and
satisfies (@(t)), < cr for all t > 0. In the same way we obtain the analogue
of (6.23) with E, and Z} on the left hand side. Estimate (6.23) now follows
from Theorem 3.3(d). If (3.21) holds, Theorem 5.1(g) and (6.24) imply that
also wy + @ belongs to M. (maybe after decreasing r > 0 once more). So the
last assertion is a consequence of Corollary 5.3. ([l

In the next lemma we show that the tracking solution of Lemma 6.1 belongs
to the center manifold if we have trichotomy and start on M.

Lemma 6.4. Assume that Hypothesis 3.4, condition (RR’), and (3.21) hold.
Then there exist constants r € (0,7¢s) and a € (w,.,ws) such that, for every
solution ¢ = (v,0) € Wi([0,T]) of (3.6) with w4 ¢(t) € Mcs and (p(t))y <r
for all 0 <t < T with some T > 1, there is a solution p = (v,7) € Wi([0,T])
of (3.6) satisfying w. + @(t) € M. for allt € [0,T], P.p(T) = Pep(T) and

lo(t) = B(1)|E, + [0 (t) — 05 (t) |z, < ce™ ((0))y <r (6.25)
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for all1 <t <T. Given Ty > 1, the constants are uniform for T > Tj.

Proof. We assume that T" > 3. For a general Ty > 0 the proof is similar.
Formula (5.5) in Theorem 5.1 says that ¢ = P + ¢es(PesQ(p)). As in the
proof of Lemma 6.1 we define ¢ = Ps¢p — ¢eu(Peup). The estimates (6.14) and
(6.15) on % in this proof still hold because the present lemma has stronger
assumptions. Since |P.p(T)|g < cr, for sufficiently small » > 0 Theorem 4.6
provides a solution @ of (3.6) on [T" — 3,T] such that P.p(T) = P.e(T) and
wy+ 9 belongs to M. Moreover, [6(T')|g, < c¢|P.®(T)|g < cr. Here and below
the constants do not depend on ¢, T', t, r and the number R > 0 introduced later.
Corollary 5.3 yields that M. = M N My, and hence

Y= Pc¢ + ¢C(PC¢) = Pcs@ + gbcs(Pch(@)) = Pcu¢ + qbcu(PcuE)-
As a result, Ps = ¢y (Peu®) and Py = ¢es(PesQ(®)). We thus infer

0 =P =1+ ¢eu(Peup) — beu(Peu®) + Pe(p — P)

+ s (Pes Q) — ¢es(Pes Q(P)).- (6.26)
We set z = P.(¢ — @). Given a small R > 0 to be determined later, let
t1 € [1/2,T) be the minimal time such that the solution @ of (3.6) with w, + @
on M, exists and the inequality |@(¢)|g, < R holds for all t; <t < T. Asin
part (3) of the proof of Lemma 6.1, we obtain that 1/2 < tg < T — 2 exists if
r > 0 is chosen less than a number 7(R). Theorem 3.3(c) further shows that
lo(t)|E, < c{p(t—1/2))y < cer < R where we decrease r > 0 if needed.

From Theorems 5.1 and 5.2 we know that the maps ¢cs : PCSEf)/ — P, X and
¢cu : PouE — PyEy (with k = 1,) are Lipschitz with a constant (R) on balls
of radius R in the respective domain spaces. Moreover, Q : £, — E, is locally
Lipschitz by Lemma 3.2. Equation (6.26) thus yields

[o(t) =2, <[Y({)|e, +e(cR) lp(t) —2()|e, + |Pez(t)|£,-

Decreasing R > 0 if needed, we infer

lo(t) =2()|e, < clv(b)le, +clz(t)|e (6.27)

for t; <t < T. Arguing similarly and using Lemma 3.2, this estimate then
leads to

lo(t) =), < [W®)]E + e (let) —B1)|E + 1Q(0(1) — Q@) B, + [2(t)|5)

<c(l@)]e + |2(t)e) (6.28)
for all t € [t1,T]. We now proceed as in Lemma 3.4 of [8] starting from (3.27)
there and modifying the reasoning as in step (3) of the proof of Lemma 6.1.

Here we use the estimates (6.28), (6.15) and (6.14), and fix first a small R > 0
and then numbers «, o’ € (w,,ws) with a < &'. In this way we derive

2Ol < e llgs gy < € (D, +1CD)z) <er (6.20)

for all ¢ € [t1,T], where the first constant is uniform for ¢ < T and the others
fort <T — 1 Ifte [T — 1T asin part (3) of the proof of Lemma 6.1 we
derive
12(0)|e < c ([t = 1/4)|e, +[C( = 1/4)|21) <er
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with a uniform constant. We observe that P.p = P.(¢ — z) and hence
P = Pp+ ¢c(Pep) = Fe(p — 2) + de(Pe(ip — 2)).

The above inequalities thus lead to

[t < clet)|e + [2(t)]E) < cr

We finally conclude that |@(¢1)|g, < R, possibly after decreasing r > 0 again.
As a result, t; = 1/2.

To show the asserted estimate on ¢ — @, we argue as in step (4) of the proof
of Lemma 6.1 using (6.29) and (6.28). We first obtain

2(®)|e < ce™ (|¥(0)|E, +[C(0)|21)

for t € [1/2,T], see (6.20). The norm of ¥(t) in E, can be bounded by
ce™ ™ ([9(0)| g, + €(0)]z1) using the embedding (6.2) and the inequality (6.15).
Estimate (6.27) thus implies

lo(t) = 2(t)] B, < ce™ ([¥(0)|e, +1¢(0)]22)
t € [1/2,T]. The assertion then follows as in (4) of the proof of Lemma 6.1. O

By our second convergence theorem, the center manifold locally attracts the
center—stable manifold with a tracking solution if the flow on M, is stable, in
the sense that for all » > 0 there is a radius rg > 0 such that for all wg € M.
with (wg — ws)y < 1o there is a solution w of (1.1) on R, staying on M, such
that (w(t) — ws)y < 7 holds for all t > 0. In particular, w, is asymptotically
stable for the full equation, if o, = () and the flow on M, is stable.

Theorem 6.5. Assume that Hypothesis 3.4, conditions (RR’) and (3.21), and
dim P.E < oo hold. Suppose that w, is stable for the flow on M.. Then there
exist constants r > ro > 0 and o € (w,,ws) such that for w, + ¢(0) € Mqs
with (p(0)), < ro, the solution w4+ (t) € M exists and satisfies (p(t)), <
for all t > 0 and there exists a solution ¢ = (v,7) of (3.6) on Ry such that
wy + P(t) € Mc for allt >0 and

o(t) = B8]y + |00 (t) — 0T (t) |z, < ce™ (p(0))4 (6.30)
for all t > 1. If also o, = ), then wy is stable for the full flow on M.

Proof. Let r > 0 and o € (w,,ws) be the numbers determined by Lemma 6.4.
Take 79 € (0,7) to be fixed later. Consider a function g satisfying w, + ¢ €
M and (po)~ < 9. We have the solution ¢ of (3.6) with ¢(0) = ¢ and denote
by T the supremum of all ¢ > 0 such that ¢(t) exists and satisfies (¢(7)), <7
for all 0 < 7 < t. If rg is small enough, we have T > 1 due to Theorem 3.3.
Suppose that 7' is finite. We then obtain (¢(7))y = r. Lemma 6.4 provides a
solution @7 of (3.6) on [0,7] such that Popr(T) = Pep(T), wy + pr(t) € M.
for 0 <t <T, and

l(t) = er(t)|e, + |00 (t) — o (t)] 2, < ce™ (p(0))y < cro, (6.31)

for t € [1,T], where ¢ = (v,0) and ¢ = (vr,or). Here and below, ¢ does not
depend on T and rg. The above estimate and Theorem 3.3 imply

(er())e, <ler(1) —e)|p, +167(1) = 6(1)]z2 + (p(1))y < cro.  (6.32)
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Since w, is stable for the flow on M., we can now choose ry > 0 such that
(o7 (T))E, < 7/2. We then deduce

(e(T))y < ler(T) = o(T)|e, +|60(T) = 6(T)| 22 + (pr(T) B, < cro+r/2 <,

possibly after decreasing 9 > 0 once more. This strict inequality contradicts
(¢(T))y =r, and hence T' = co. Theorem 5.4 shows that w4+ belongs to M.
As a consequence, (6.32) holds for all " > 1. Since P.E is finite dimensional,
there exists a sequence T,, — oo such that P.pr, (1) converge to some £ € P E
with [{|g < erg, as n — oo. If rg > 0 is small enough, Theorem 4.6 yields
a solution @ of (3.6) on some time interval [0,¢1) such that P.p(1l) = &, and
hence w, + ¥ is contained in M. and (p(1)), < c|{lo < crg. The stability of
w, on M, thus implies that ®(t) exists and (p(t))y < r for all t > 0, possibly
after decreasing rg > 0. As in the proof of Theorem 6.3, we finally deduce the
asserted convergence from (6.31).

If o, = (), then M., = M, and w, is locally attractive. The stability of w,
now follows easily from ¢ = ¢ — @ + P and the stability on M. O

Example 6.6. We continue Example 5.4 on the Stefan problem with surface
tension. If o|D| # [|X|r? we obtain a center manifold consisting of equilibria
only, and the induced flow is of course stable. The condition (RR’) follows from
Example 2.4 in [20] and in particular from the formula for the term R°(p, d;p)
given there. As a result, the center manifold attracts all solution starting near
the given equilibrium if o|D| < [|X|r? and it attracts the center—stable man-
ifold if o|D| > [|S]r?. In the latter case the given equilibrium is unstable by
Theorem 5.1(b). The solutions converge to an equlibrium. For a similar prob-
lem in Theorem 5.2 of [17] the stability for o|D| < I|%|r? and instability for
o|D| > 1|X|r? have been shown for different methods, but not the attraction
the center-stable manifold if o|D| > I |£|r2. (The stable or center—stable man-
ifolds w not considerd in [17].) In Theorem 5.3 of this paper also global results
have been shown for this specific equation using Lyapunov functions. &
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