STABLE AND UNSTABLE MANIFOLDS FOR QUASILINEAR
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ABSTRACT. We develop a wellposedness and regularity theory for a large
class of quasilinear parabolic problems with fully nonlinear dynamical
boundary conditions. Moreover, we construct and investigate stable and
unstable local invariant manifolds near a given equilibrium. In a companion
paper we treat center, center—stable and center—unstable manifolds for such
problems and investigate their stability properties. This theory applies e.g.
to reaction—diffusion systems with dynamical boundary conditions and to
the two—phase Stefan problem with surface tension.

1. INTRODUCTION

In this paper we develop a wellposedness and regularity theory for a large
class of quasilinear parabolic problems with fully nonlinear dynamical boundary
conditions. In this framework we construct and investigate stable and unstable
local invariant manifolds near a given equilibrium. In the companion paper [37]
we treat center, center—stable and center—unstable manifolds for such systems
and investigate their stability properties. This theory applies e.g. to reaction—
diffusion problems with dynamical boundary conditions and to the two—phase
Stefan problem with surface tension.

Quasilinear parabolic problems have been studied successfully from various
perspectives. An important, widely used theory was created by Amann in e.g.
[1] and [2]. This approach applies applies in particular to quasilinear problems
with conormal boundary conditions, which are understood in a weak sense
on the state space of the resulting flow (typically Wpl) In this framework a
dynamical theory was developed which covers center manifolds or bifurcation,
for instance, see e.g. [13], [38] or [39].

A somewhat different approach to such systems is based on maximal regular-
ity of type L, of linearized equations, see [30] for a detailed exposition and also
[33], [35]. In our previous papers [17], [19], [20], and [25] we have investigated
quasilinear parabolic problems with fully nonlinear static boundary conditions
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using maximal L, regularity of the linearizations, see also [33]. Here the equa-
tions at the boundary are understood classically and the evolution equation in
the spatial domain holds in L, sense. We have established a theory of local
well-posedness, smoothing properties, invariant manifolds near equilibria and
asymptotic stability of certain invariant manifolds and of periodic orbits.

For fully nonlinear problems, it seems that one has to work in a framework
of higher regularity as it is presented e.g. in the monograph [22], where also
invariant manifolds and bifurcation are discussed, see also [4] or [29]. In this
setting one obtains classical solutions, but this enforces additional compatibil-
ity conditions. Moreover, such problems do not exhibit the usual parabolic
smoothing, in general.

The development of the theory has been much influenced by the study of
free boundary problems. Some of them can be treated in the framework of
Amann’s theory, for instance the Mullins—Sekerka system which is a quasista-
tionary Stefan problem, see e.g. [13]. Others require the theory of fully nonlinear
problems, see e.g. [4]. But a large class of systems comprising in particular the
Stefan problem with surface tension fits very well to a different approach in-
troduced in [12] which is based on maximal L, regularity of the linearizations.
A detailed analysis of the Stefan problem with surface tension was then car-
ried out in particular in [31] and [34]. Analytic solutions of the classical Stefan
problem have been constructed in [32] within this L, approach. We refer to
[15], [21], [26] and the references in [12] and [34] for other approaches.

The methods of [12] had inspired the paper [8] which established a theory
of maximal L, regularity for a class of inhomogeneous linear systems with dy-
namical boundary conditions In this paper we investigate a corresponding class
of nonlinear problems whose linearizations fit to [8], thereby covering the Ste-
fan problem with surface tension (see Example 2.2) and also a wide range of
quasilinear parabolic problems with nonlinear dynamical boundary conditions
(see Example 2.1). We refer to [5], [11], [14], [16] [23], [36], [41], [42] and the
references therein for various approaches to specific reaction diffusion systems
or phase field models with dynamical boundary conditions. We treat the system

Apu(t) + Au(t), p(t))u(t) = R(u(t), p(t), p(t)), on €, t >0,
Oip(t) + Do(u(t), p(t)) = 0, on ), t>0,
Dj(u(t), p(t)) =0, on¥, t>0, j=1,---,m,
u(0) = u, on {2,
p(0) = po, on X, (1.1)

on a spatial domain Q which either has the smooth boundary ¥ (one phase
setting) or is the disjoint union of two domains whose boundary consists of
the common part ¥ and possibly of further disjoint ‘outer parts’ (two phase
setting). On these outer parts we impose linear boundary conditions not shown
in (1.1). The solutions u and p take values in finite dimensional vector spaces.

In Q act the main quasilinear diffusion type operator A of (differential) order
2m and the lower order perturbation R. On the boundary we have a dynamical
boundary condition governed by the nonlinear term Dy and static boundary
condition governed by Di,---,D,,. One can also consider this system as an
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evolution equation for the function w = (u,p), where v and p are directly
coupled via the nonlinearities and also via the static boundary condition. In the
operators D; the orders with respect to u are stricly less than 2m. However, the
orders in p are not bounded apriori. The solution space for p has to be adapted
to the degree of unboundedness of these operators. We will assume that the
nonlinearities are C'! on the solution spaces of the linear theory and that the
resulting linearized boundary value problems are normally elliptic and satisfy
Lopatinsky—Shapiro conditions. Our setting is described Section 2, where we
also recall the necessary theory from [8].

Another main difficulty in (1.1) is the occurence of a time derivative of the
second component p in the evolution equation for uw. Such terms arise if one
transforms a problem with moving boundaries to a fixed domain, cf. Exam-
ple 2.2. In (1.1) this term can be treated as a perturbation, which requires
extra time regularity of 0;p provided by the solution space of p. However, it
is not so clear how to incorporate such terms into the spectral theory of the
linearization which is crucial for our results on the longterm behavior. To deal
with this difficulty, we insert the second line into the first thereby eliminat-
ing the extra time derivative. The resulting perturbation problem is solved in
Corollary 2.6.

In Section 3 we establish the local wellposedness of (1.1) in a strong sense
in which the equations at the boundary are understood classically and the evo-
lution equation in € holds in L,, see Theorem 3.3. Propositions 3.4 and 3.5
further show a smoothing effect of the solution with corresponding estimates
which give extra regularity of some of the invariant manifolds, see e.g. Theo-
rem 5.1(e). This property is crucial for the convergence analysis in [37]. Another
important issue is the description of the nonlinear solution manifold M given
in Lemma 3.2 based on its linear counterpart Corollary 2.7. This manifold in-
corporates first the static boundary conditions (which give a constraint by a
nonlinear equation) and second a ‘dynamical’ regularity constraint coming from
the dynamical boundary condition. The latter arises because Jyp(t) possesses
extra space regularity which must also be fulfilled by Dg(u(t), p(t)).

In Section 4 we develop the linear analysis needed for the asymptotic theory
and also for [37]. The main difficulty is that the maximal regularity theory from
[8] fits very well to nonlinear theory of (1.1), in the sense that it provides the
needed extra time regularity for d,p. However, the corresponding semigroup
lives on a smaller state space. See Theorem 2.5 and Corollary 2.6. More-
over, the extra time regularity induces the additional ’"dynamical’ compatibility
condition which does not really fit into the semigroup framework. The latter
point can be seen e.g. when dealing with the spectral decomposition which is
crucial for our asymptotic theory, see the proof of Proposition 4.5. We can
deal with these problems using the parametrizations of M mentioned above
and also extrapolation theory for semigroups. For purely static conditions we
have developed the relevant techniques in [19]. However, it required much work
and several new arguments to extend these methods to dynamical boundary
conditions.

In our second main result, Theorem 5.1, we construct local stable and unsta-
ble manifolds Mg and M, near an equilibrium w, such that the linearization A
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at this equilibrium has no spectrum on iR. We further characterize these man-
ifolds as spaces of initial values near w, such that the corresponding solutions
stay close to w, for all ¢ > 0, resp. t < 0. Actually, the solutions then converge
to w, exponentially. In addition, these manifolds are locally invariant, have
trivial intersection and are tangential to the corresponding spectral subspaces
of Ag. We use the implicit function theorem, the differentiability of the nonlin-
ear maps, the regularity properties of the linearized inhomogeneous problem,
see (2.25), and modifications of known techniques in dynamical systems.

Notation. We set Dy, = —i0, = —i0/0x}, and use multi index notation. The
time derivative is denoted by 0;u = 4. For a linear operator A on a Banach
space we write D(A), o(A) and p(A) for its domain, spectrum and resolvent set,
respectively. For Banach spaces X, Y and Z, £L(X,Y) is the space of bounded
linear operators, where £(X) := L(X,X), and Lo(X % Y,Z) is the space of
bounded bilinear operators. A ball in X with the radius r and center at u will
be designated by Bx(u,r). For an open set U C R™ with (sufficiently regular)
boundary U, C*(U) (resp., CF(U), C*,(U), CE(U)) are the spaces of k—times
continuously differentiable functions v on U (such that u and its derivatives up
to order k are bounded, bounded and uniformly continuous, vanish at U and
at infinity (if U is unbounded), respectively), where CF(U) is endowed with its
canonical norm. For C*(U), CF(U), CF,(U), we require in addition that u and
its derivatives up to order k have a continuous extension to OU. For unbounded
U, we write CF(U) for the space of u € C*(U) such that u and its derivatives
up to order k vanish at infinity. By Wf(U ) we denote the standard Sobolev
spaces and by W (U) the Slobodetskii spaces endowed with the norm

0y = W o+ > [0°0]} fwly) = w@)” g
Wi (U) Lyp(U) wg )’ U2 |y - :E\"Jrap Y

la|=k

for s = k+o with k € Np and o € (0, 1), see Remark 4.4.1.2 in [40]. The Sobolev-
Slobodetskii spaces on QU are defined via local charts, see Definition 3.6.1 in
[40]. In some exceptional cases we also use the Besov spaces ng(ﬁU ) for k € N,
see Definition 3.6.1 in [40], where B,,(0U) = W, (0U) for non-integer s > 0. We
write C4 = {\A € C|Re A > 0} and J for a real interval with nonempty interior.
Finally, ¢ is a generic constant and € : R, — R is a generic nondecreasing
function with e(r) — 0 as r — 0.

2. SETTING AND PRELIMINARIES

We fix numbers m € N, m; € {0,1,2m — 1}, and k; € Ny U {—oo} for
j €40,1,...,m}, describing the order of the differentiable operators appearing
n (1.1), where k; = —oo if D; does not depend on p, see (R) and (2.21) below.
We consider two different types of domains.

In the one phase setting, let Q@ C R™ be an open connected set with a
compact boundary 99 of class C?™+~"0 and outer unit normal v(z), where
¢ e {mg,mop+1,---}is given by (2.8) below. We set X :=9Q and 'y =Ty :=0

In the two phase setting, let Q@ = Q1 UQy for two open subsets ; C R"
having compact boundaries of class C2" =0 where 0Q; =3 UL, forj =1,2,
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001 N0Qy = X, and I'; may be empty. In this case, v(z) is the outer normal
of the interface X with respect to €2;.

Since we will impose fixed linear homogeneous boundary conditions on I';, in
both settings ¥ is the important part of the boundary. Throughout, we fix

p € (n+2m,o0) (2.1)

Let V, and V, be finite dimensional Banach spaces with norms | - |, being the
range spaces of the solutions to (1.1). As function spaces on 2 we use

X = L,(Q; V) in the one and in the two phase case;
X, = W;m(Q; Vu), Xy= ng(l_l/p)(ﬁ; V), in the one phase case;

X = {vewjm(ﬂ; V)| B =0}, X,=(X, X1), in the two phase case,

1
—pP

where B is an m-tuple of fixed linear boundary operators on I'y U 'y which
are given by (2.22) and satisty (LS) below. Moreover, by interpolation we have

X, C{ve Wme(l*l/p)(Q; V)| B = 0} in the two phase case,” using also that
X1 is dense in X, and that BY € B(ng(l_l/p)(Q;Vu),X). We note that in
the two phase case X, X, and X; can be identified with the product of the
corresponding spaces on {27 and 9.

Recall that the spatial trace operator g induces continuous maps

Yo : Wi(O;Va) — Wi P(90; V) (2.2)

for 1/p < s <k if s —1/p is not an integer and © has a compact boundary of
class C*. At the boundary we employ the spaces

Yu = Ly(S5Va),  Yin = W PS5V, Vi = W (S5 V),
Y, = Lp(5V,), Yoy = Wm0 2R(SiV,), Yo = W™ (55 V),
Y = Yor X -+ X Yo, Vi = Yig X -+ X Yo,
for j € {1,--- ,m}, k € {1,~7}, and the numbers
m; 1
p=1-—2 - i =0,1,...,m. 2.
K] 277'1, 2mp) ] Oa I , M ( 3)

These spaces are thus determined by the orders m; of the differentiable (trace
type) operators in (1.1) mapping the solution u from € to the boundary. We
observe that X; — X, — X, Y;1 = Y;, = Y,, Yo1 = Yo, = Y,

Xy — Cgm_l(ﬁ; Vi) in the one phase case,

X, = O™ ;3 V) x C3™ Qg3 Vi) in the two phase case;  (2.4)

Yj, < C*m M5 V,), and Yo, < CPTLTMO(S V)

for j=1,...,m due to (2.1), (2.3), and standard embeddings, cf. §4.6.1 in [40].

*Here it should hold equality due to our assumption (LS). Unfortunately, it is not so easy
to find this result in the literature in the full generality. We do not need this equality.
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For the investigation of (1.1), we need several spaces of functions on J x Q
and J x ¥, where J C R is an interval with a nonempty interior. The base
space and solution space for w in (1.1) are

E(J) = Ly(J; Lpy(Q:Va)) = Ly(J; X)  and
Eu(J) = WH(J;X) N Ly(J: X1) € Wi Ly(4 Vi) 0 Ly(J; W2™(Q: V),

respectively, where the last inclusion is an equality in the one phase case. These
Banach spaces are endowed with their natural norms. We may omit J in the
notation if the interval is irrelevant or clear from the context. If J not compact,
we write Ep(J) for the space of functions whose their restrictions to each
interval [a,b] C J belong to E([a,b]). Analogous notations are used for E, and
the other function spaces introduced below.

We denote by 7 : u — u(t) the trace operator at time t € J (if it is defined).
Very often we use the crucial facts

Eu(J) = Cup(J; X)) = Cup(J; Cgmfl(ﬁ; V.)) (one phase), (2.5)
Eu(J) = Cup(J; X)) = Coup(J; CI™ Q13 Vi) x C8™1(Q9; V) (two phase);

vt Ey(J) = X, is continuous and has a bounded right inverse

for all t € J, cf. Theorem I11.4.10.2 in [3] and (2.4). The norms of the first
embeddings in (2.5) are uniform for J of length greater than a fixed dy > 0.
For functions vanishing at ¢ = inf J, this constant can be chosen independent
of J (see e.g. Theorem 4.2 of [27]).
In the one phase setting, the spatial trace and derivatives extend to contin-
uous operators
k

-k L 2m—k—2
0% By (J) = W, 2™ 2P (J;Y,) N Ly(J; W, ? (0 V) (2.6)

for 0 < |8] < k < 2m, where the trace has a bounded right inverse. See §3 of
[7] and also Lemma 3.4 and Theorem 4.5 of [27]. The natural trace spaces of
the solution space E, are thus given by

Fj(J) = Wi (J; Lp(3; Vi) N Ly (J; W™ (55 V) = Wy (J: Ya) 0 Ly (J; Vi),

Fo(J) = WO (J; Lp(5; V) N Ly(J; W0 (5; V) = Wi (J;Y,) N Ly (J; Yor)

for j € {1,--- ,m} endowed with their canonical norms, where we put
F(J)=Fo(J) x - xFp(J) and  F(J) =F(J) x -+ x Fpu(J).

If we replace here V,, or V, by another space W, we write F;(J; W) etc. We
further have

FJ(J) — Cub<J; Yj’y) — Cub(J X E; V)

2.7
v : Fj(J) =Y, is continuous and has a bounded right inverse 27)

forteJ,j=0,1,....mand V=V, if j >1and V =V, if j = 0. (See §3 of
[7] and also Theorem 4.2 of [27].) The same remarks as after (2.5) apply.

The solution space E, for p in (1.1) is rather sophisticated. It is chosen such
that the operators D; in (1.1) map E, into the trace spaces [F; of the solutions
u. It thus strongly depends on the orders k; of the differential operators acting

6



on p in (1.1), which are not restricted a priori. We follow the presentation in
[8] and put J = {j € {0,1,...,m}|k; # —oo} as well as

fj = kj —mj + myo, {= {)nlax E > my. (28)
J

It is important to note that
2mkj + kj = 2mkg + {5, ji=0,1,...,m. (2.9)
We then define
E,(J) = Watro(J; Ly(S;V,)) N Ly (J; W20 (5;1,))

2.10
NW, (J; Wm0 (55 V,)) ﬂ W (5 Wy (25 V,)). (2.10)

Observe that p has extra space and time regularity compared to u. This is
needed in important applications and for the underlying linear theory, see Ex-
ample 2.2 and Theorem 2.5. One can visualize E, by the points (0,1 + ko),
(£+2mko,0), (2mko, 1) and (kj, k;) for j € J , corresponding to the space-time
differentiability of the spaces F; on the right-hand side of (2.10). The Newton
polygon N'P for E, is then defined as the convex hull of these points together
with (0,0). The leading part LN'P of NP is the part of its boundary connecting
(0,14 ko) to (£ + 2mrp,0) counterclockwise. We set

T={jeT|t;=1 or (kj,r;) € LNP}.

Let F; and Fj be two different spaces on the right-hand side of (2.10). It is
known that F; N F; embeds into all spaces whose space-time regularity corre-
sponds to the line segment connecting the two points that represent F; and F)
in NP, see §2 of [8] and also Proposition 3.2 of [27]. Consequently, the defi-
nition of E, given in (2.10) may contain redundant spaces. Below we discuss
nonredundant descriptions of E, taken from §2 of [8], see also §2 in [28]. From
there we will also recall the representations of the temporal trace space Z of
E, and of the temporal trace space Z% of the time derivative p of p € E,. In
particular, it holds

0% € BE,(T),Fj(J), Ep(J) = Cun(J: Zy),  0; € LEY(T), Cun(T; Z3))
(v, 1e0) € L(E,(J), Z,y Zi) has a bounded right inverse, (2.11)
v € L(E,(J), Zy) has a bounded right inverse,

if |3] < kj and t € J. The assertion in the second line of (2.11) is shown in §4.1
of [8], and it implies the last one. The same remarks as after (2.5) apply. The
trace spaces Z, and Z}f are given by W7 (%;V,) for the numbers s > 0 such that
(s,k 4+ 1/p) belongs to leading part of NP for k = 0 and k = 1, respectively,
see §2 of [8] and also Theorem 4.2 of [27].

To state the descriptions of E,, Z, and Z%, one has to distinguish between
three cases, where we write L, instead of L,(3;V}) etc. and use that x; > 1/p
holds for all j due to (2.1).

Case 1: £ = 2m. One has

Ep(J) = Wyt (J; Ly) N Ly(J; W)
7



since all other spaces in (2.10) correspond to points on or below the straight
line s = 1+ ko — r/2m from (0,1 + ko) to (2m + 2mko,0), due to (2.9). It
further holds

Z’y _ ng(mr#lfl/p)(z; Vp)7 Z}/ _ WpZm(nofl/p)(Z; Vp) — Y()-y-
Case 2: £ < 2m. One has
E,(J) = Wyt (J; Ly) N Ly (J; WST2ms0) 0 WL (J; W2mHo)
since (1,2mkg) lies above the line segment s = 1 + kg — r(1 + ko) /(¢ + 2mkg)
from (0,1 4 ko) to (¢ + 2mko,0) and all points (k;, k;) are below the line s =

14 (2mkgo —r) /L connecting (1,2mrg) and (0, £+ 2mkg). One also obtains the
trace spaces

Z, = ngﬂoﬂ(l*l/p)(z; V,), Z,i — ng(HO*I/p)(Z; V,) = Yo,

Case 3: £ > 2m. Now (1,2mkg) belongs to the interior of N'P. The leading
part is given by the vertices

Py = (O, 1+ /ﬁ:o), P = (k}jl,/ﬁ:jl), ..., P, = (qu,lijq), Pq+1 = (€ + 2ml<c(),0)
for some ¢ € N, where these pairs are ordered with increasing k; and decreasing
kj. It can be seen that ¢;, € (2m,¢) fori =1,...,¢ — 1 and £, = £. It holds
_ Wit : 2 5 7.7k
E,(J) = W,T"0(J; Lyp) N Ly(J; W,m=m50) N ﬂjej Wy (J; Wy?).
For later use, see (LSL) below, we define k_; := 0, k_1 := 1 + Ko,
Ji IZ{jEJU{—l}’(ij,H,j):.PZ‘}, 1=0,...,q,
Joiv1 = {j € TU{-1}|(kj, k;) € NPi}, i=0,...,q,
where N'P; is the edge connecting P; and P;;1. In case 3 it finally holds

Z’Y — W£+2m(no—1/P)(E; Vp)7 Z; = Bﬁ# (Kofl/P)/(1+Ho*Hj1)(2; Vp)~

(Recall that B, = W if s > 0 is not an integer.)

We now come back to the general situation. To state our main assumptions,
we introduce the spaces

Z =W2mo(SiV,) = Yor, Z1 = WTH2mo(S;V,),
E:XXZ, E1:X1><Z1, EA/:XVXZW, El(J):Eu(J)XEp(J),
for the solutions (u(t), p(t)). Clearly, Zy — Z, — Z.
Throughout, W, denotes a nonempty convex open subset of E,. We define
Wy = {wo S ‘ wp € W»y},
Wi(J) = {w € E1(J) |w(t) e W, (VteJ)}
Then, W is convex and open in Fy, and W (J) is convex and (if J is compact)
open in E; (J), due to (2.5) and (2.11). The nonlinear maps in (1.1) shall satisfy
(R) A€ CYW,; L(X1,X)), R € CHW, x Yyy; X), and D = (Dy, ..., D) €
C*(W1; Y1) induces a map D € CH(Wy(J); F(J)) for any compact J. The

first derivatives of these maps are bounded and uniformly continuous on
all closed balls.

(2.12)
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We consider A’(w) as bilinear map from E, x X; to X and A’(w)v as a bounded
linear map from E, to X, where w € W, and v € X;. The embeddings (2.5),
(2.7), (2.11) and (2.19) then imply that these operators also induce maps

A€ CH W1 (J); Cy(J; £(X1, X)) N CH W () x Lp(J; X1);E(J)),
R € CH(Wy(J);Cy(J; X)),  DeCHW,Y,),

respectively. We set D = (D1, ...,Dy). Occasionally, we will need one more
degree of smoothness of the operators as recorded in the following hypothesis.
(RR) Condition (R) holds and the maps A" : W, — Lo(E, x X1, X), R :
W, x Yoy = L(Ey x Yoy, X), D' : Wi(J) = L(E(J),F(J)) are Lipschitz
on closed balls.

We introduce two basic types of examples for such maps covering the three
cases £ = 2m, ¢ < 2m and £ > 2m. In the first example we use the one phase

setting, whereas the second one involves two phases.

Example 2.1. Let 2 C R™ be a domain with a compact boundary of class
C?*tt=m0 - Reaction-diffusion equations or phase field models on Q with dynam-
ical boundary conditions on 912 lead to the following operators, where p = yqu,
V=V, =V,= CY and we write the diffusion part in non-divergence form:

[A(u)o](2) = ) aalz,u(z), Vu(z)) D*(z), €,
|ar|=2
[R(w)](x) =f(2,u(x), Vu(z)), = e, (2.13)

[Do(u, p)](2) =b(z,vou(2), 7 V"™ u(2)) + &y, p(g(¥)), - --. V™0(g(1))),

z=g(y) € &, for my € {0,1}, ko € Ny, local coordinates g at x € 952, functions
u € X,, v e Xy, and p € Z;, where the term voV"u disappears if mg = 0
and the terms ¢® shall induce a map which does not depend on the coordinates.
Finally, we set D1 (u, p) = you — p, i.e., k1 = mj; = 0. We assume that

(a) aq € CH(V x VT Cy(Q; L(V))) for a € NI with |a| = 2, and

ao(7,0) — aq(o0) in L(V) as z — oo if 2 is unbounded;

(b) feCHV x V™ Ch(Q;V)), and f(-,0,0) € L,y(2) if Q is unbounded;

(c) be C?(ONU XV x V™ V) if mg=1and b€ C3(9Q x V; V) if mg =0,

(d) B e C3 ™A XV x -+ x y o), V) for all local coordinates g.

In view of (2.5) and (2.11), only continuous functions will be inserted into
the nonlinearites. One can check (R) as in Proposition 10 of [19], where the
case ¢ = 0 was treated. Here we have ¢ = max{kg,mo}. For kg = 2 (surface
diffusion) we are in Case 1. If ky = 1 (surface convection), we are in Case 2.
Similarly one can treat higher order problems, cf. [19]. &

Example 2.2. The Stefan problem with Gibbs—Thompson law is a prototypical
example for our setting in Case 3, see the introduction for references.

Two phases of a substance occupy at time ¢ > 0 open subsets D;(¢) of a fixed
bounded domain D C R™ with 0D € C? and outer unit normal vp, where the
liquid phase is contained in D;(t) and the solid one in Dy(t), say. The domains
have the compact interface T'(t) C D so that Di(t)UT(¢)UDa(t) = D. We
assume that T'(t) N dD = () for all ¢t > 0. The phases have the temperatures
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u;(t), which are subject to the standard heat equations in D;(t) with a Neumann
boundary condition on dD. On the interface the temperature u(t) = ua(t) is
proportional to the mean curvature H(I'(¢)) of I'(¢), where the mean curvature
is chosen to be negative at x € I'(t) if D1(¢) is convex near z. (In the classical
Stefan problem one assumes that u;(¢) = ua(t) = 0 on the interface.) Moreover,
the interface is driven by the Stefan condition saying that its normal velocity
V (t) is proportional to the jump in the heat fluxes, where the normal v of I'(¢)
is defined with respect to D;(t). Here the interface and the temperatures are
unknown. We thus obtain the system

Opu; — d; Au; = 0, t >0, x € Di(t),
Oypuz =0, t>0, z€ 0D,
u; = o H(T'(t)), t>0, zeI(t), (2.14)
doOyus — d10,ur =1V, t>0, zeI(t),
u;(0) = ué, T € Dé, I'0) =T,

for constants dy, ds, 0,1 > 0, initial domains D} C D and a closed compact C?
hypersurface Ty C D with with Ty = dD} and D} UTyU D3 = D, and initial
temperature distributions ué on Dé. Actually, this a simplified model and we
refer to [34] for a thermodynamically consistent version allowing for different
heat capacities in the phases, kinetic undercooling and coefficients depending
on the temperature. This problem could also be treated by the methods in the
present paper, but for simplicity we restrict ourselves to the system (2.14).

The approach of [12], [31], and [34] relies on the so called Hanzawa transfor-
mation to a fixed domain. One chooses a domain ©; C Q; C D with smooth
boundary ¥ = 0£2; being close to I'g in Hausdorff distance. Let Q9 = D \971
and Q = Q7 UQy. Then € is connected, but £y may have finitely many com-
ponents. One can parametrize a tubular neighborhood around ¥ by base points
y on ¥ and the signed normal distance r to X. If the distances are less than a
number 2a > 0 (determined by ¥), this parametrization gives rise to a diffeo-
morphism. Given a height function p(t) : ¥ — (a,a), we can now describe an
interface I'(t) at time ¢ > 0 by the map X — D, y — y + p(t,y)vs(y). This
map can be extended to a diffeomorphism ©, : R™ — R™ mapping ¥ onto I'(t)
and €; onto D;(t), which is constant outside a neighborhood of 3.

We can now make the transformation v = u o ©, =: ®Ju with inverse
u=uvo0,1 = ®v. Let '(p) = ©,(X) and d = di1p, + d21p,. We then
define the transformed operators by A%(p) = —®%(dA)®L, H(p) = ®5H(I(p)),
RO(p,dip) = 0 — ®30:9%, and put C(p) = —B(p) ' ®%(d20, — d19,)PL with a
certain function B(p) > 0. We thus obtain the system

o + A%(p)v = R%(p, Bsp)v, t>0, x €,
Oy,v =0, t>0, z€0D,
v—oH(p) =0, t>0, xeX,
op+ C(p)v =0, t>0, zeX,
v(0) =vy, x€Q, p(0) =py, zEX,
10



which is of the form (1.1) with m =1, mg = 1, kg = —oo (cf. Example 2.4),
ki1 =2,m1=0,¢=3>2m = 2. We observe that here

Ey(J) = Lp(Ja Wﬁ(ﬂ) N N(aVD)> N W;}(J’ Lp(Q))7
By = (W) ()N N(Bhy)) x Wy (D),
E,(J) = P(J. W, P())n Wy ® (L WAS) N W2 (J, I/(S)),
s C(J;C3(E) N O (J: C(S)),

and the restrictions v[Q; belong to C(J;C*(Q;)). We set W, = {(v,p) €
E,||plct < b} for a sufficiently small b € (0,a]. From the explicit formulas
for these maps given e.g. in Section 2 of [34] one can deduce that (RR) (and
also (S) below) holds, cf. Lemma 7.4 in [12] or part (iv) in the proof of Theo-
rem 3.5 of [34]. &

We further impose ellipticity conditions on the linearizations of our non-
linear maps A, R, D;. For functions w, = (u«, p«) € Wi(J), t € J and
j€40,1,...,m}, we define

Bj(t) = 01Dj(ux(t), p«(1)) € L(X1,Yin) N L(Xy, Yy ),

Cy(t) = 0uD; (un(t), pu(1)) € L(Z1, Y1) N L(Z,, Y},

A(t) = Aw. (1)) € £(X1, X), (2.15)
Ava(t) = A, (0) +O1A (s (8), pi(8) () = R (1 (£), pu (1), (1)) € L(X1, X),
Aup () = DA (1), pu (1)) (£) — R (s (1), pi (1), pu(8) € L(Z,, X),
.&sz—%Rw4> (1), p(1)) € L(Yor, X),

Ault) = (Awa(t), Auy (), Aup(t)) € L(X1 X Zy X Yo, X).

(
For a time independent wg = (ug, po) € W, we take some (us, p,) € W1([0,1])
with u.(0) = ug and p«(0) = po (e.g. with p.(0) = 0) and write A = A(0),
B; = B;(0) and C; = C}(0), cf. (2.5), (2.7), (2.11). For (wo,y0) € W1 x Yo, we
define A, by inserting (wq, yo) instead of (w(t), p«(t)). For an equilibrium wy
we will always take yg = 0. For simplicity, we set

B=(By,...,Bn), B=(By,...,Bn), C=(Co,...,Cn), C=(C1,...,Cn).

We also make use of the operator matrices

(A 0 (A —ABy A, — ACo
O R 210

acting from E; to E, see (2.15), with given wg € W, for A and (wo,y0) €
Wi x Yo, for A,. (If we deal with equilibria we put yo = 0.) We see below that
these matrices generate analytic semigroups after restricting them to suitable
domains. The semigroup generated by —A, will play an important role in the
study of asymptotic properties of (1.1) later on. In the third case (¢ > 2m)
these semigroups do not act on E but on the smaller space Ey defined by

kj1 RO

Zy = B,,(¥%;V,), where ¢ =2mrg if £ <2m, ¢= if £>2m,

14 Ko — Kj;
EQ =X x Z(). (2.17)
11



The space Zjy occurs naturally in view of the embedding
E, = W, (J; Zo), (2.18)
see p.3157 in [8] or Proposition 3.2 of [27]. The trace spaces are ordered as
Zo — Z, Z1 < Zoy s Zo = Z < Yo (2.19)

(For the first and last embedding use (2.9) and ¢;, >2m in Case 3.) The domain
of the generators will contain compatibility conditions expressed by the spaces

Ev = {(v,0) € E; | Byv + Cyo € Z;},
Eg:{(U,G)GE,le\U—i—aO':O}’ (220)
E?:{O}?U) EEI‘BOU‘FC()O'E 2y, E’U—i—éo’:(}},

which are Banach spaces endowed with the canonical norms |(v,o)|g, 4 |Bov +
C()O"Z% and |(v,0)|g, + |Bov + Coo|z,, respectively, due to (2.15) and (2.19).
We equip A with the domain D(A) = E} and denote by Ag the restriction of
A, to D(AQ) =

For a given (uy,p«) € Wi([0,T]) and any 7" > 0, we will assume that the
operators A(t), B(t) and C(t) with t € [0, T] satisfy the assumptions of [8]; i.e
they are differentiable operators

Atyo(e) = Y aa(t,2)D%(@),  Bi(t)o(y) = Y bjs(t,y)1aD(y)

la|<2m [B]<m;

Cj(oog(z) = Y & (t2)D)_1(00g)(2) (2.21)

Iv|<k;

for (v,0) € E,, j € {0,1,...,m}, x € Q, y € ¥, t € [0,T], local coordi-
nates g for ¥ and z belonging to the domain of g in R"~!. Usually we omit
the trace operator here. Observe that the coefficients of C}(t) depend on the
local coordinates g, but the operator itself is independent of the choice of co-
ordinates. In the two phase case the term b;s(t, y)voDPu(y) is understood as
blﬁ(t Y4 D v(y) — b2 5(t, y)73 DPv(y) where v, gives the trace of functions on
Q; to the interface Z Still in the two phase case, on the (possibly empty)
outside boundaries I'y and I'y we consider boundary operators

= > sm)reDu(y) (2.22)

|B]<mY

oforderm? €{0,--- 2m—1}fory € "1 Ul and j = {1,...,m}. Weset B =
(BY,...,BY). We start with the regularity assumptions for the coefficients.

(S) The operators A(t), B(t) and C(t) are given by (2.21). If |a| = 2m,

then a, € C([0,T] x Q; £(V,,)) and, if § is unbounded, a(t, ) converges

as |z| — oo to some a(t,00) uniformly in ¢ € [0,7]. If |a] < 2m, then

o € (Lp + Loo)([0,T] x Q; L(Vi)). For B<mj, |y <kjj=0,....m

and all coordinates g, it holds b;z, ¢ 2, € F;([0,T]; V) in the one phase

.0 .
case as well as b}ﬁ, b?/B, 2, €F;([0,T);V) and bgﬁ e %™ (T1Uly; V)
(for j > 1) in the two phase case.

12



Here we have V' = L(V,,,V}), resp. V = L(V,,), for bjz and j = 0, resp. j > 1,
and V = L(V,), resp. V. = L(V,,V,), for cfﬁ and j = 0, resp. j > 1. The
function spaces F; arise naturally in view of (2.6) and (2.11).

The symbols of the principal parts of the linear differential operators are
denoted by Ay, Bjx and Cjx, cf. e.g. [6], where we put Cjx(t) =0if j ¢ J.
We first assume that the operators A(t) are normally elliptic; i.e.,

(E) o(Ax(t,z,§)) C C4 and (if © is unbounded) o (Ax(t, 00,§)) C C4, for

r €, te[0,T) and & € R™ with [¢] = 1.

To formulate the Lopatinskii—Shapiro conditions, at a given point x € X we
rotate the coordinate system such that v(z) = (0,...,0,—1) € R", without
changing the notation. Moreover, in the two phase case we reflect the coeffi-
cients and functions in )5 in normal direction to €;. On 7 we thus obtain a
system of two components: the given one on 21 and the reflected one from 2.
The latter is still normally elliptic. For z € ¥, the conditions below shall refer
to this modified system in the two phase setting, where we set V =V, in the
one phase case and V = V2 in the two phase case.

(LS) For each z € ¥, ¢t € [0,T], A € C; and ¢ € R* ! with [A| +|¢| # 0, the

ordinary initial value problem

(A + Ayt 2,8, Dy))u(y) =0,  y>0,
Bog(t,z,&', Dy)v(0) + (A+C t,z,&))o =0,
;ﬁ(t,x,fl,Dy) v(0 )+Cg(tx§)a 0, j=1,...,m,

has only the trivial solution (v,o) = 0 in Cy([0,00); V') x V,,. Moreover,
in the two phase case on the outside boundaries I'; UT's the analogous
condition shall hold for A and B?.

In Cases 2 and 3, the following additional ‘asymptotic’ conditions are required,
respectively.

(LS%) Let £ < 2m. For each x € X, t € [0,T], A € C; and ¢ € R*"! with
Al + |€'| # 0, the ordinary initial value problem

(A + Ay(t, 2,8, Dy))v(y) =0, y>0,
;-’ﬁ(t,m,é",Dy)v(O) =0, ji=1,...m
and for all A € C; and |¢’| = 1 the problem
Ag(t,2,&, Dy)v(y) =0,  y>0,
Boy(t, , &', Dy)v(0) + (A + Cgy(t, 2, &) ) o = 0,
B]ﬁ(t? x, £/> Dy)v(o) + C?ﬂ(t’ xvgl)o- = 07 .] = 17 s,

only have the trivial solution (v,o) = 0 in Cy([0,00); V') x V,,.
(LSL) Let £ > 2m. For each z € &, t € [0,T], A € C4 and & € R* 1\ {0}, the
ordinary initial value problem

(A + Ayt 2,8 Dy))o(y) =0, y>0,
Bjs(t,z, &, Dy)v(0) + 5-,32(1“(3%(25,3:,5')0 =0, j=0,...,m,
13



and for all A € C; \ {0}, |¢'| =1 and i = 1,...,2q, the problem
()\ + Ay(t, x,0, Dy))v(y) =0, y >0,
Bog(t, 2,0, Dy)v(0) + d_1, 7, A0 + 50,$C§ﬁ(t, z,8)o =0,

Bjs(t,x,0, Dy)v(0) + 5j,$C§ﬁ(t, z,8)o =0, j=1,...,m,
have only the trivial solution (v,0) = 0 in Cy([0,00); V) x V,. Here,
05,7, = 1if j € J; and J; 7, = 0 otherwise.

We first give typical examples for these cases.

Example 2.3. We continue to discuss Example 2.1. One can show (S) as in
in Proposition 10 of [19], where also the derivatives were computed for ¢ = 0.
To illustrate the ellipticity conditions, we recall two typical linearizations from
Examples 3.6 and 3.2 of [8], respectively. Here m = 1 and 0 = ~vxv is the
static boundary condition so that m; = k1 = 0. The linear model problems for
dynamic boundary conditions with surface convection looks like

v — Av = g, t>0, x €,
Oioc + 0,v+a-Vygo =h, t>0, x€X,
for the surface gradient Vy, and a tangential vector field a € C1(%,R"71). The
ellipticity conditions in Case 2 hold with kg = mg = 1. Dynamic boundary
conditions with surface diffusion are described by the system
O — Av =g, t>0, x €,
0o + 0yv + Axo = h, t>0, x e,
for the Laplace Beltrami operator Ay. It satisfies the ellipticity conditions in

Case 1 with mg = 1 and kg = 2. Similarly one treats the Cahn—Hilliard phase
field model, where m = 2, see Example 3.3 in [8]. O

Example 2.4. In the framework of Example 2.2 we focus on the most impor-
tant case for later results, namely the linearization at an equilibrium which is
given by a sphere ¥ of radius R > 0 and by constant temperature. (General
initial configurations are similarly treated in e.g. [34].) Here we obtain

o — dAv = f, t>0, z e,
10ip — (d20yv2 — d10yv1) = g, EASDIN
Oypv =0, x €0D,
1 1
v—i—a(E—i-mAg)p:h, t>0, zel
see equations (1.8) in [31] and (4.3) in [34]. One can check that the ellipticity

assumptions hold as in Example 3.4 of [8] for the one phase case. Here, my = 1,
mi=0,2m=k =2, kg=—occand £ =¥¢; =3 > 2m. &

Condition (LS) is analogous to the usual Lopatinski Shapiro conditions, see
e.g. [6], [7] and the references therein. The other two conditions have been
introduced and discussed in [8]. There it is also shown that (E), (LS) and,
if if £ # 2m, (LSL) are necessary for the following crucial regularity result.
It is taken from Theorems 2.1 and 2.2 of [8], where part (c) can be shown as
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Corollary 2.3 of [8]. However, the results in [8] were only proved in the one phase
setting. To extend them to the two phase case, we proceed as in Theorem 3.3 of
[34]. One first reduces the assertion via localization and perturbation to model
problems with constant coefficients on the full space for the interior points x, on
the halfspace for x in the outer boundaries I';y UTy and on R"~! x (R \ {0}) for
x on the interface ¥ (where 2y corresponds to the lower halfplane). The first
two problems have been solved in [6] and [7]. To solve the third one, we reflect
the functions the lower halfplane to one on the upper halfplane, obtaining a
second component. Employing the Lopatinski Shapiro conditions stated above,
one can then proceed as in [8] in the one phase case.

Theorem 2.5. Assume that the operators A(t), B(t), C(t) and B°, t € J =

[0,T], are defined for some w, € Eq1([0,T]) and satisfy (S), (E), (LS), and

(LS=) if £ < 2m or (LSY) if € > 2m. Then the following assertions are true.
(a) There is a unique solution (u,p) € Ei(J) of the problem

Ou(t) + A(t)u(t) = f(t), on Q, t € (0,7,
9p(t) + Bo(t)u(t) + Co(t)p(t) = go(t), on X, t€[0,T],
Bi(tyu(t) + Ci(p(t) = g5(t),  onS, teOT], j=1,...,m,
BO%(t) =0, onT'1UTy, t€]0,T],
(u(0), p(0)) = (uo, po), on Qx X, (2.23)

(where we drop the equation B%u(t) = 0 in the one phase setting) if and only if
f, g, uo and po belong to the data space

]D)(J) = {(UO,,O(), f, g) € Xfy X Z7 X E(J) X F(J) } Bj(O)UO + Cj(O)po = gj(O)
forj=1,....,m; go(0) — Bo(0)uo — Co(0)po € Z] }.

The corresponding solution operator S : D(J) — Ei(J) is continuous. The
norm of S is bounded uniformly in T' € (0,T] if we restrict it to the subspace
Do([0,77]) of D([0,T"]) of data with g(0) = 0.

(b) If the coefficients do not depend on time, the operator —A with D(A) = EY
generates an analytic Co—semigroup in Ey.

(c) There is a po > 0 larger than the growth bound of —A such that the results
on (2.23) hold on J = Ry if we replace Oy by O + p (2.23) for any p > po, and

&
||(U7P)||LP(R+;E)) < ﬁ (w0, po, £, 9) b ) (2.24)

Here D(J) is a Banach space endowed with the norm
1A le(ry + lgllecry + [(uo, po)| e, +190(0) = Bo(0)uo — Co(0)pol 22

and Dy is closed in it, due to (2.7), (2.15) and (2.19). The assertion concerning
Dy can be checked as in e.g. Theorem 2.2 of [28]. We note that the compatibility
conditions expressed by D are preserved by the solutions of (2.23). Later we
mostly need the following variant of the above theorem which involves lower
order terms, cf. (2.15) and (2.16).
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Corollary 2.6. Assume that (R) and the assumptions of Theorem 2.5 are valid.
Then the assertions (a) and (b) of this theorem still hold for the problem

Opu(t) + Awu(t)u(t) + Axp (1) p(t) + Asp(t)p(t) = f(1), on Q, t € (0,T],

9p(t) + Bo(t)u(t) + Co(t)p(t) = go(t),  on X, t€[0,T],
B(t)u(t) + C(t)p(t) = () on %, t € (0,77,
BOu(t) = on Ty UTy, te[0,T],

(u(0), p(0)) = (UO’po), onQx %,  (2.25)

(where we drop the equation B%u(t) = 0 in the one phase setting) instead of
(2.23) and the operator Ag := A.|EY instead of A. (A. is defined for (ws,ys) €
Wi x Yoy, see (2.16) and (2.20).) After increasing po if needed, for every
(uo, po, f,g) € D(R4) there is a unique solution (u, p) € E1(Ry) of the system

8tu(t) + (A*u(t) + m— A*p(t)Bo(t))u(t)

+(Aip(t) — Ap(t)Co(2))p(t) = f(1), on 2, t € (0,77,
9p(t) + Bo(t)u(t) + (Co(t) + p)p(t) = go(t),  on X, t €[0,T],
B(tyu(t) + C(t)p(t) = §(t), on %, t€[0,T],

BO(t) =0, onT1UT9, t €]0,T],

(u(0), p(0)) = (uo,po), on 2 x%,  (2.26)

(where we drop the equation B%u(t) = 0 in the one phase setting) for each
p > po, and it holds ||(w, p)|lg, (v, < cll(uo, po, f, Db, )-

Proof. (1) To solve the problem (2.25) on J = [0, T], we fix (ug, po, f,g) € D(J).
Let (v,0),(v,7) € E1(J). We set

fv,0)=fi=f+ (A - Aw)v— Ao — Ao € E(J).
Let ®(v,0) € E;(J) be the solution (2.23) for the data (ug, po, f,g) € D(J).

The function ®(v, o) — ®(v,7) then solves (2.23) with ug =0, pp = 0 and g = 0.
Theorem 2.5, (2.15), and the embeddings (2.5), (2.11), (2.19) thus yield
||(I)(Ua U) - <I>(W7E)||E1(J) <c ”f(vv U) - f(ﬁ’E)HE(J)

<P (Jlo - Olewx,) +llo —allewz,) + 10i(o — E)HC(J;Z@)

<P\ (v,0) = (@,7) ||, () -
Here we can take the same constants if we replace T' by T” € (0, 7] since the
involved differences vanish at ¢ = 0. For 7" = min{7, (2¢) 7P} we obtain a fix
point (u,p) = ®(u,p) € E1([0,7"]) which solves (2.25). By a finite iteration,
the first assertion follows.

(2) Note that (A,;(t)Bo(t), A.s(t)Co(t)) € L(E,,X), and hence A — Ag is a

lower order perturbation of (A, D(A)), due to (2.15) and (2.16). So the assertion

about A holds. If the data belong to D(R;) and p > pg, we further obtain a
solution (u, p) € EP° of (2.26) as in Step (1). Theorem 2.5 then implies that

H (u(Ja L0, ?7 g) ”D([O,T])

(H(anpo, I Do) + H(va)HLp([O,T];EW))y
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where f = f + A, ;Bou+ A,;Cop. Here and below, the constants do not depend
onT > 1 and p > pg. On the right hand side we can now interpolate X,
between X and X, as well as Z, between Z and Z;. By means of Young’s
inequality and (2.24), we deduce

(s )| 2,y 10,775,y < (48) (s )11, fo71:80) + € (s p) 2, 0,71 )
< (40) M [ (us )l o.13:80) + ¢/ 1t (1w, p0s £ 9) lp(o.79) + 11 p) N2, (0,77,

Fixing a sufficiently large puo > 0, we conclude that [(u,p)lg, (o) <
c||(vo, po, £, 9)llp(jo,r)) for all T' > 1; thus arriving at the asserted estimate. [J

In order to treat the nonlinear compatibility conditions related to (1.1), we
need an ‘almost right inverse’ of the map (B, C) constructed in the next lemma,
cf. Proposition 5 in [19] for the simpler case of static boundary conditions.

Corollary 2.7. Assume that (R) holds. Given (uog,po) € W,, take some
(Ui, pi) € Wi([0,T]) and T > 0 with u.(0) = up and p«(0) = po. Assume
that the corresponding operators A(t), B(t), C(t) and BY, t € [0,T], satisfy
(S), (E), (LS), and (LSy) ift < 2m or (LSY) ift > 2m. Put A = A(0),
B = B(0) and C = C(0). Then there is a map Ny € L(Yy, E,) such that
(E,é)/\ﬁy =TI, (Bo,Co)Ny, — I € [,(YV,Z}{), where Iy(vo, ..., Ym) = ¥y and
Lo, ¥m) = (Y1, Pm) =19,

Proof. We first note that 7 > 0 and (ux, p«) € W1 ([0,T]) with u.(0) = up and
p«(0) = po exist due to (2.5) and (2.11). Using (2.7), for given ¢ € Y, we
find a function g € F([T'/2,T]) with g(T'/2) = ¢ and ||g[lr < c|¢]y,. Set g(t) =
20T g(T —1t) for t € [0,T/2]. Note that ||glg(o,r) < ¢[¢]y,. Then (0,0,0,9) €
D([0,7]) and Theorem 2.5 gives a solution (v,c) € E;([0,T]) of (2.23) for this
data. Defining Ny = (v(T/2),0(T/2)), we see that (E,é)/\w — ¢ and
(Bo, Co)Nyp —ho = 6(T/2) € Z}. The asserted continuity follows from

[(v(T'/2),0(T/2) e, +16(T/2)|z1 < c||(v,0)|e; < cllglly < cldly,,
because of Theorem 2.5 and the embeddings (2.5), (2.11). O
We conclude this section with a simple lemma concerning Slobodeckii spaces.

Lemma 2.8. Let a < b <d, g € (1,00), kK > 1/q, and V be a Banach space.
If u e Wi((a,b); V) and v € Wr((b,d); V') satisfy u(b) = v(b) (where the trace
exists by Sobolev’s embedding), then the function w given by w = u on (a,b] and
w = v on [b,d) belongs to Wji((a,d); V) with [|wllws < cw ([[ullws + [[v]wg)-

Proof. For simplicity, we assume that a and d are finite. Define u® = u — u(b)
on (a,b) and v° = v — v(b) on (b,d) and extend these functions by 0 to (a,d)
keeping the notation. It holds that

[ lws(@ayvy < el lwrapn) < € lullwg sy,

and similarly for v. (The continuity of the 0—extension is shown by interpolation

between L? and qu with 0 boundary conditions.) The assertion now follows

from w = u® + v° + 2u(b). O
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3. WELLPOSEDNESS AND REGULARITY

In our main results we use the following linearization setup. Assume that
(R) holds and define the operators from (2.15) for any given wy = (ux, psx) €
Wi (J) = W;. We put Wi = W; — w, and define the nonlinear maps

FecCYWHE) and GeCYWHTF) with

loc. bdd. derivative, F(0) =0, G(0)=0 and F’(0)=0, G'(0) =0,
by setting

F(v,0) = (A(we)v — A(w, + (v,0))v)
= (Alwe + (v,0))u — Alw)u. — [A(w)u](o,0))
(R + (0.0), o +6) = R(wss o) — R (1, ) (0.0,8)).
G(v,0) = D'(ws)(v,0) + D(w.) — D(ws + (v,0)), (3.2)
for (v,0) € W. We put G = (G, ..., Gn). It holds
F'(o)(u, p) = [A(ws) — A(wx + @)Ju+ [A(wi)us — A'(ws + ¢) (us + )] (u, p)
+ [R (ws + v, ps + 0, ps + &) — R (ws, pic, p)) (u, p, ),

G (), p) = [D'(w.) — D' (w, + )] p) (3.3)
for ¢ = (v,0) € W} and (u,p) € E;. The asserted mapping properties easily
follow from (R) and the embeddings (2.5), (2.11), (2.19). Observe that D(w,) =
0 and Do(wy)(t) = —p«(t) € Z}/ if w, solves (1.1) and that also Dg(w) = 0 if

wy is an equilibrium of (1.1). Replacing here ¢ by y € Yy, and fixing ¢t € J, we
obtain maps

(3.1)

F(t) € CH (W1 — wi(1) X Yo X),
G(t) € CY (W1 — wi(t); Y1) N CH (W, — wa(t); Y5)
with the analogous properties as in (3.1).
Let wy = (ux, px) € W1(J) be a solution of (1.1) for some J with minJ = 0
and initial values (ug«, po«). In view of the embeddings (2.5), (2.11), (2.19) and

the mapping properties in (R), the initial values and the solutions at time ¢
must belong to the solution manifold

M = {wy = (ug, po) € Wy | D(wp) = 0, Do(wo) € Z1}. (3.5)

For (ug, po) € Wy and w = (u, p) € E1(J), we put (v, 00) = (uo — Uo«, po — P=0)
and (v,0) = (u—ux, p—px). Using the linearization described above and (2.15),
we see that (ug, po) € M if and only if (vg, 0p) belongs to

M* = M — (uox, pox) = {(v0,00) € Wy — (uox, pos) } (Eaa)(UOaUO) = @(U07JO)7
Boyvg + Coog — Go(vg, 09) € Zl}. (3.6)
Moreover, (u, p) € Wy solves (1.1) if and only if (v,0) € W7 solves
O (t) + Ax(t)(v(t), o (1), 6(t)) = F(v,0)(t),  onQ, te(0,T],
do(t) + Bo(t)v(t) + Co(t)o(t) = Go(v,0)(t),  on %, t € [0,T],
B )

(t)u(t) + C)o(t) = G(v,0)(t),  on =, t€[0,T]
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B%(t) =0, on Ty UTy, t€[0,T],
(v(0),0(0)) = (vo, 00), on Q x X. (3.7)

Here we drop the equation B%u(t) = 0 in the one phase setting. This equation
is mostly omitted in the following since it is already contained in the domain
of A.(t) and in the solution space. We start with the basic existence and
uniqueness result for (1.1).

Proposition 3.1. Let (R) and (S) be true. Assume that (E) and (LS), as well
as (LSL) if £ = 2m, hold for all functions (ug«, pos) € W. Let wo = (ug, po) €
M. Then there is a number T = T (wg) > 0 such that the problem (1.1) has a
unique solution w = (u, p) € Wy([0,T]) — C([0,T]; W,).

Proof. By (2.5) and (2.11) there exists a function wy, = (ux, px) € E1(J) —
C(J, Ey) with w,(0) = wo and 9¢p,(0) = —Dy(wp). Since wy € W, and wy is
continuous in E, there is a Ty > 0 with w, € Wq([0, Tp]), cf. (2.12). For this
wy, we define A(t), B(t) and C(t) as in (2.15). Consider the problem

dea(t) + At)a(t) = R(w.(t), pu(t)) =: (1),
0up(t) + Bol(t)(t) + Co(t)p() = Do(w(8))w(t) = Dow. (1)) = L g0(t),
B(t)ya(t) + C(£)p(t) = D' (wi(t))wi(t) — D(w.(t)) = 3°(t),

(@(0),(0)) = (uo, po), (3.8)
);

for t € [0, Tp). Observe that f° € E([0,Tp]), ¢° € F([0, Tv)), §°(0) = D' (wo)wo —
D(wo) = B(0)uo + C(0)py and 90(0) = Bo(0)uo — Co(0)po = —Do(wo) € Z.
Theorem 2.5 thus yields a solution w = (u, p) € E1([0, Tp]) of (3.8). As above,
we find a Ty € (0,7Tp] such that w € Wy([0,71]). It further holds 0;p(0) =
—Do(wo) = 8tp*(0).

There is an 1 > 0 such that the closed ball in E;([0,7}1]) with center w and
radius r1 belongs to Wy ([0, 731]). We now define the space

S(T,r) = {w € E1([0, T)) [ w(0) = wo, [|w — @&, o,y < 7} € W1([0,T1])
for any r € (0,71] and T € (0,T3]. The set X(T,r) is closed in E;([0,T]). For a
given w = (u, p) € 3(T,r), we look at the linear problem

Oy (t) + A(t)v(t) = R(w(t), p(t)) + A(t)u(t) — A(w(t))u(t),

0o (t) + Bo(t)u(t) + Co(t)o(t) = Dp(w.(t))w(t) — Do(w(t)),

B(t)o(t) + C(t)o(t) = D' (w. () w(t) - Dlw(?)),

(U(0)7 U(O)) = (u()a /00)7 (39)
for t € [0,T]. As above, Theorem 2.5 yields a solution ¢ = (v,0) =: ®(w) €
E1([0,T7]) of (3.9). Notice that w = (u, p) € 3(T,r) solves (1.1) if and only if
w = ®(w). To obtain such a fixed point, we show that ® is a strict contraction
on X(T,r) provided that T,r > 0 are small enough.

Let (z,7) = ®(w)—w € E1([0,T]). Weset g = D' (ws) (w—wy)—D(w)+D(wy).
We observe that problems (3.8) and (3.9) show that (z,7) satisfies

Bpz(t) + A(D)2(t) = R(w(t), p(t)) — R(ws(t), ps(t))
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O (t) + Bo(t)z(t) + Co(t)T
B(t)z(t) + C(t)T

for t € [0, T]. We note that g(0) = D(wp) — D(wp) = 0, as well as f € E(]0,T1])
and g € F([0,T]) by (R). Theorem 2.5 and (R) thus yield

(2 Dl o) < eI flleqo,m) + lglleqo,mm))
<c <||w — Wi, (0,1:,) + 10:(p — p)llL, (0.17:v0,) T 10 — willcqo,m;E,)

Mullz, o, + e(lw = willg, o,2)) 1w = w*llzal([o,n)).

We next write w — wy = w — W + W — wy, estimate the p-norm by the supnorm,
use the embeddings (2.5), (2.11), (2.19) and the inquality |w — w|g, < r. It
then follows

3 1 N _
1@ (w) — @, (o.17) < T (r + |0 — willoqoryz,) + r+10:0 — p)llogory2))
+ e (r+ | = walleqorye,) (r + 1@l L, o,71:x1))
+e(r + [|[w — wellg, (jo,m)) (7 + [0 — wsl|g, (o,17))-

Here the constants in Theorem 2.5 and the embeddings do not depend on
T € (0,T1] since all relevant functions vanish at ¢ = 0. Using once more
w(0) = wy(0) and 9¢p(0) = ¢p«(0), we obtain Th € (0,T1] and ro € (0,71]
such that [|[®(w) — @||g,(jo,r)) < r whenever T' € (0, T3] and r € (0,72]; i.e., ®
leaves X(T,r) invariant for such 7" and r. By analogous arguments, we can fix
T € (0,75] and r € (0,r2] such that ® has a Lipschitz constant less or equal
1/2 on X(T, p). The resulting fixed point w is a local solution of (1.1) on [0, T].

Assume there is a different solution @ of (3.7) on [0,7]. Then there are
numbers g, t, € [0,7) such that ¢, \ to as n — oo, w(t) = w(t) for ¢t € [0, o],
and w(t,) # W(t,). We may apply the above argument with some 77,7 > 0,
the initial time ¢g, and the initial value w(ty) =: w; € M. This leads to a
contradiction establishing the uniqueness assertion. O

We now introduce in a standard way the maximal existence interval for the
solution with initial value wy € M. Under the assumptions of Proposition 3.1,
let t*(wp) be the supremum of those 7" > 0 such that (1.1) has a solution
w € E1([0,T]). Proposition 3.1 implies that ¢t*(wg) > 0. Moreover, for two
given solutions wy on [0,a] and wy on [a,b] of (1.1) with wi(b) = wa(b), we
obtain a solution w of (1.1) on [0, b] by setting w = w; on [0, a] and w = wa on
[a,b]. To see this, note that pi(a) = —Dy(wi(a)) = pa2(b), where w; = (u;, p;),
so that w € E1([0,b]) by Lemma 2.8.

To state our main well-posedness result, we need some more notation and
results related to the solution manifold M, recalling the definitions (2.15) and

20



(3.2). For w, € M and ¢ = (vo,00) € 1777 (see (2.20)), we define
(V)y = [¥]e, +[¥]y, [¥]y = [Po(¥ + we) =Do(ws)| 22 = |(Bo, Co)tb — Go(¥)] 21,

() = [Ylp + Y], [¥] = [Do(¥ + we) =Do(ws)|z, = [(Bo, Co)yp — Go(if)lzy)
3.10

For a solution ¢ (t) = (v(t),o(t)) of (3.7), the above quantities simplify to
W)y = 0®le, +16B)]z, WO =[0®|E + o)z, (3.11)

We note that [¢], < c[¢|g, if £ < 2m since then Z) = Yp, as observed in
Section 2, and thus [¢|g, and (1), are locally equivalent in this case. Given
r > 0, we further introduce

M*(r) == {¢y € M* ‘ ()4 <1}
The next lemma gives a local chart for such restrictions of the solution manifold.
Lemma 3.2. In the setting of Corollary 2.7, we define G by (3.2) for some
Wy = (us, px) € M. Then the map Q = I — N, G belongs to C’l(W,y — wy; E,)

with a locally bounded derivative, Q(0) = 0 and Q'(0) = I. It maps M* into
EY (see (2.20)) with ¢ —./\/’,YG(1/J)|E2 < c()y for v € M*. We can invert

I — N,G on some ball Bg_ (0,79) € Wy — w, and set h = N,G(I — N,G)™L.
There is a radius v > 0 such that M*(r) is the graph of h, i.e.,

M (1) = {1 = €+ h(€) | € € Bpa(0,10), (¥ <1},
In particular, w, + ES is the tangent plane of M at wy and Q is a local chart.

Proof. Corollary 2.7 and (3.4) imply that the first sentence about Q holds. The
inverse mapping theorem then shows that Q is invertible in E. near 0, so that
Q! is defined on Bg,_(0,r9) € W, —w, for some ro > 0. For ¢ = (v,0) € M*,
we obtain Q(v) € Eg since

(B.O) (@ = N3G(v) = (B,C)p — G(¥) =0,
1QW)|e, +1(Bo, Co) Q)22 < [¥]e, + IN;Q()e, +[(Bo, Co)t — Go(¥)| 21
+1Go() — (Bo, ColN,G ()|
<)y +c|GW)ly, < c()y, (3.12)
where we use w, € M, ¥ € M* and again Corollary 2.7 and (3.4).

Let £ € Eg with |¢|g, < ro. Define h = N;G(I — N,G)~* on Bg_ (0,79) and
set v =&+ h(§). Then, ¥ = (1 —./\/'VG)_l(é) €W, —w, and £ = ¢ — N,G(v).
Corollary 2.7 thus yields

(B,C)p = (B, O)N,G(¥) +&) = G(v),
(Bo, Co)tp — Go(v) = (Bo, Co)N,G(¢) = Go(¥) + (Bo, Co)é € Z,,.
As in (3.12), we obtain (¢), < E\§|E3, so that ¢ € M*(r) for all r € (0, ¢cro).

Conversely, take ¢ € M*(r) for some r € (0,¢rp). Set & = Q(¢) € EY.

Fixing a sufficiently small » > 0, estimate (3.12) yields |{|g, < 7o if (¢), < 7.
It follows that

£+ N(E) =¥ — NyG(¥) + MyG(I = N,G) ™1 (% = NH Q(4)) = o
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Thus M*(r) is the graph of h, and the other assertions follow. O

Our main result on wellposedness shows that (1.1) generates a local semiflow
on the nonlinear phase space M. Moreover, the problem possesses a smoothing
effect. We write tw for the function ¢ — tw(t).

Theorem 3.3. Let (R) and (S) be true. Assume that (E) and (LS), as well as
(LSZ) if £ = 2m, hold for all functions (ug, po) € Wo. Let wox = (uox, pox) €
M. Proposition 3.1 yields a solution w, = w(-;wo«) of (1.1) with w.(0) = wos.
Take T € (0,tT(wox)) and set J = [0,T] and J* = [0,tT(wo«)). Then the
following assertions are true.

(a) If tT(wox) < 00, then |lwillg,(s+) = 00 or there are J* > t, — tT (wox)
such that wy(t,) tends to OW,, in E, as n — oco. Moreover, then (w4 (t),5«(t))
does not converge in Wy x ZJ as t — t*(wo.).

(b) There is a radius r > 0 such that for each @y = (vo,00) € M*(r) there
exists a solution w = (u,p) € Wi(J) of (1.1) with w(0) = wy = (ug, po) =
wos + @o. The map po — w — wy from M*(r) to Wq(J) is C}. It holds

[w — wallg, (1) < ¢ {wo —wox)y = c|wo — wox| &, + ¢|Do(wo + wox) — Do(wo*)|z%
(c) We have toyw € E1(J), and thus
tu € W(J; X) N W, (J; X1) N CY(J; X,),
K 14k, k.
tp eEWZTH(J; L) NWI(J; Z) "W, (J5 Z1) N CH(J; Zy) N ﬂjejwp (T W),

Proof. (a) Suppose that t*(wo.) < 0o, w. € E1(JT) and dg, (w«(t),0W,) > 6 >
0 for all t € J*. By the embeddings (2.5), (2.11) and (2.19), w.(t) converges
in E, to some w; € W, as t — tT(wps). Due to (1.1) and (R), we obtain
D(w;) = 0 in the limit, and p,(t) = —Do(w.(t)) converges to Dy(w1) in Z%. As
a result, w; belongs to M and we can extend the solution across ¢ (wps) by
the remarks before Lemma 3.2, contradicting the definition of ¢+ (w.).

(b) We linearize the problem along wy(t), t € J, and obtain the operators
given by (2.15) and (3.2). Let S : D(J) — E;(J) be the solution operator for
(2.25). For £ € Eg (see (2.20)) and ¢ = (v,0) € Wi(J) = W7, we define

(& 9) = ¢ = S(E+ NG ((0), F(¥), G(¢)).

Due to Corollary 2.7, (2.7) and £ € ES, we have (B,C)(¢ + N,G(¥(0))) =

G((0)) and (Bo,Co)(§ + NLG(1(0))) — Go(¥(0)) € Z}. Corollary 2.6,
(3.1) and (3.4) thus yield that that ®(0,0) = 0, ® € Cl(ES x Wi, Eq(J)),
and 02®(0,0) = I. Therefore the implicit function theorem gives a ball
B(rg) = B(0,79) in EY and a map ¢ € Cj(B(ro); W) such that ¢(0) = 0
and ®(£,¢(€)) = 0 for all £ € B(rp). (One obtains the boundedness of the
derivative by decreasing r¢ if necessary.) In particular, ¢(&) solves (3.7) with
the initial value £ + NyyG(6(€)) € M*. If we start with a given function
wo = (ug, po) € M, we set ¢y = (v, 00) = wo — wox € M*. Lemma 3.2 yields
that & := Q(po) belongs to Eg with [§]gy < ¢ (po)y. We can thus find an r > 0
such that |¢[gy < ro if (p0)y < 7. Then ¢ := ¢(£) € W7 solves (3.7) with the
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initial value ¢(0) = o +N5(G(¢(0)) —G(p0)) € W,,. We further conclude that
2(0)] &, < clllle, ) = cllé(€) = ¢0)llr,(s) < clélmo < c(po)y < cr.

Corollary 2.7, (3.2) and (R) now yield
£(0) = @0l &, < ¢|G((0)) — Glpo)ly,

< ¢ |(D'(ws) = D'(p0 + w:))((0) = o)y,

+¢|D' (o +ws)(9(0) — o) + Do +ws) = D(p(0) + 1wy,
< (e(eole,) + (l¢(0) — ¢olE,)) l¢(0) — wol &,
< e(r) le(0) = ol -

Choosing a smaller » > 0 if necessary, we see that ©(0) = o, and thus
w = ¢ + wy solves (1.1) with the initial value wo. The asserted estimate
and differentiability now follow from the above results and Lemma 3.2.

(¢c) Let w = (u, p) solve (1.1) on [0, T"], where wg € M and T' = (1 +€)T <
t*(wp) for some € € (0,1) and T' > 0. Let J = [0,T]. For A € (1 —¢,1+¢€) and
t € J, we put wy(t) = w(At). We define the operators A.(t), B(t) and C(t) as
in (2.15) with w, replaced by w. For ¢ = (v,0) € W1(J) = Wy, we then set

F\9(t)) = Au(0)e(t) = MW (1))o(t) + AR(W (1), A1 (1)),
Go(A, 9(t)) = Bo(t)v(t) + Co(t)o(t) — ADo(¢(1)),
GO\ 9(1) = B(t)u(t) + C()a(t) — D(¥(t)).

Then ¢ = (v,0) = w) is the unique solution of the problem

O (t) + A (D)(t) = F(N, (1)), on Q, ae. t>0,
By (t) + Bo(t)v(t) + Co(t)o(t) = Go(A, (1)),  on'X, t>0,
B(t)v(t) + C(t)o(t) = G\, (1)), ony, t>0,
(v(0),0(0)) = w, on Q x X. (3.13)

Using (R) and (2.15), we infer ' € C*((1—¢,14¢) x Wy; E) with 9, F(1,w) =0
and G € CY((1 — €,1 4+ €) x Wy;F) with 2G(1,w) = 0. As in Lemma 3.2 one
sees that £(\) = wo — N,G(X\, wop) € Eg. We then define the map

Do(A, ¥) = ¥ = S(EN) + NG, 9(0)), F(A,9), G(A, ),

where S is the solution operator of (2.25) for the above introduced operators
A,(t), B(t) and C(t). Since w solves (1.1), we have ®y(1,w) = 0. Asin part (b),
we deduce that ®g € C1((1—¢, 1+¢€) xW1;Eq) and 9a®@g(1,w) = I. The implicit
function theorem thus yields an € € (0,€) and a map ¢g € C} ((1—€/,1+¢'); W)
such that ¢g(1) = w and Pg(\, dp(A)) = 0 for all A € (1 —€,1 + €¢). Hence,
¢o(\) solves (3.13) with wg replaced by wg(\) := [¢0(N)](0) € M. Note that

wo(A) = 6()\) +./\/:7G()\, ’wo()\)) = Wo +N’y (G()\, wo()\)) - G()\, wo)),
wo(A) —wy = Ny (D/(wo)(wo()\) — wo) + D(w()) — D(wo(/\))

+ [(A = 1)(Do(wo) — Do(wo(A))), 0]).
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Therefore, Corollary 2.7, (R), (2.5) and (2.11) yield

|wo(A) — wo\E7 < c(e(lwo(A) = wolg,) + A = 1|) [wo(X) — wolE,
c(e(l¢o(A) = ¢o(Dlz,) + [A = 1]) Jwo(A) = wol e,
for constants ¢ and functions € with (r) — 0 as 7 — 0 which do not depend on
A. Decreasing € > 0, we deduce that wg(\) = wg, and thus ¢o(A) solves (3.13)
provided |\ — 1| is sufficiently small.

The uniqueness of (3.13) now yields wy = ¢o(\), and hence A — wy € E;(J)
is continuously differentiable with derivative (4w, )(t) = t(At). Taking A = 1,
we deduce that to,w € Ei(J). Using also (2.5) and (2.11), we conclude that
O(tw) = toyw +w € E(J) — C(J; E,); i.e., (c) is true (cf. (2.10)). O

We add a quantitative version of Theorem 3.3(c) which will allow us to im-
prove convergence from E, to E; in Theorem 5.1 and in [37].

Proposition 3.4. In the setting of Theorem 3.3 we assume that wy, € Ey is an
equilibrium of (1.1). For T € (0,t"(wy)), let r > 0 be given by Theorem 3.3.
Then there is an 1’ € (0,r] such that for wy € we + M*(r") and Ty € (0,T) the
solution w = (u, p) = w(-;wy) € W1([0,T]) satisfies

() = sl iy + [0, < € wo—ws)s, 11t Be(w —w,) e oy < € (o —ws)s,

for t € [Ty, T] and constants independet of t and wo, where (wo — Wwy)y =
|wo — w|E, + |Do(wo + ws) — Dg(w*)lz%, see (3.10).

Proof. In contrast to the proof of Theorem 3.3(c) we now use (3.7) instead of
(1.1). We thus set v(t) = u(t) —us, o(t) = p(t)—p«, o = (vVo,00) = wo—wx, and
linearize (1.1) at the equilibrium w,, employing the operators from (2.15) and
(3.2) which now do not depend on time explicitely. Due to (3.7), the functions
uA(t) = v(At) and oy (t) = o(At), t € J = [0, T], uniquely solve the problem

ez (t) + A (9 (1), (1) = Ac(®(1), () — AAL(P(1), A1 (1)) (3.14)
+AF((t), A1 (1)),

Oyr(t) + BoZ( )+ Cor(t) = (1 = A)Boz(t) + (1 = N)Cor () + AGo(¢(1)),

)
Bz(t) + Cr(t) = G((1)),
(2(0), 7(0)) = (vo,00), (3.15)
for t € J, where we write ¢ = (z,7) and take A € (1 —¢€,1+¢€) and € € (0,1)

such that (1 + ¢)T < tT(wp). We denote the right hand sides of (3.15) by

F(\ ), Go(A, ¢) and @()\, 1), respectively. We now proceed as in the proof of
Theorem 3.3(c) using the operator

(A ) =¥ = S(EN) + MG (A, 9(0)), F(A, 4), G(A, )

for A€ (1—€,1+¢€), ¢ € Wi(J), and £(N) = w0 — N;G(X, ¢o). Here S is the
solution operator of (2.25) for the operators A, B and C. Since pg € M,
we have £(\) € E,? by Corollary 2.7. As in Theorem 3.3, we then see that

deCH(1—e1+e) x Wi(J);EL(J])),

®(1,(v,0)) =0, and hP(1,(v,0))=1-— S(nyG/((p()),F/(U,U),G/(U,J)),
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where F' and G are given by (3.2). In view of Corollaries 2.6 and 2.7, (3.1), (3.4)
and the estimate in Theorem 3.3(b), we obtain the invertibility of d2®(1,v,0)
in E1(J) if r > (o) is chosen small enough. Moreover, the inverse is uniformly
bounded. So the implicit function theorem provides us with a map ¢ € C1((1—
€,1+¢); Wi(J)) such that ¢(1) = (v,0) and ®(\, $(N\)) =0 for |1 — | < € and
some € € (0,1). We set ¢o(A) = [¢(N)](0) and note that ¢(A) solves (3.15) with
initial value po(A) € M*. We then compute

po(A)—po = Ny[G(A, w(O))) — G(A o))

Gl0(N) = Glwo) + (1 = ) (Do(ws+po()) = Po(w.+0)) |

o
N, (D () = D' (ws + 90))(90(A) — %0))
+ D/ (w, + o) (20(A) = o) + D(w- + po) = D{w. + ¢o(N))
+ (1= \)(Do(w, + ¢0(A) = Dolws + o)) |-
Combined with Corollary 2.7, (2.5), (2.11) and (R), this identity leads to

eo(A) = wole, < c(ellpole,) +e(lo(N) — o(D)g,) + A = 1])[0o(X) = @olE,
We conclude that ¢g(\) = o, and hence ¢(\) = (vy,0n), if r > 0 and € > 0
are small enough. We put ¢ = (v,0) = w — w,, and further compute
81F(17 ()0) = F(‘Pv U) - A*(QD, U) + (A*p - 83F(901 U))U
NGo(1, ) = Go(p) — Bov — Cyo = Dy(ws) — Do(w),
¢'(1)=—[022(1, )] 11 ®(1, ) = [028(1, )] ' S(0, 1 F(1, ), (81Go(1,),0)).
Corollary 2.6, (R), (2.5), (2.11) and (2.19) thus yield

16/ (Ve < c(lvlle, +lellows,) lule, + 19, .8) 100 Ly, ) +iele)
< CH‘PHEU

where we also use that ||u|lg, < ||us||g, + ||[v||g, < c(1+7) by Theorem 3.3(b).
Since tdyp = ¢'(1), we arrive at

[#0e(w = wi)lgy () < € llw = willgy ) < € {wo —wa)y,

employing also Theorem 3.3(b). The remaining estimate then follows from
Sobolev’s embedding, (2.5) and (2.11). O

Finally, we replace in the above proposition the equilibrium w, by a gen-
eral solution w, of (1.1), under the somewhat stronger regularity assumption
(RR). This result will imply that certain invariant manifolds are Lipschitz in
E; (instead of E,), see e.g. Theorem 5.1.

Proposition 3.5. In the setting of Theorem 3.3 we assume that (RR) holds

and that wy = (us, pe) € Wi([0,T4]) solves (1.1) with w.(0) = wy € M.

Take T € (0,Ty) and Ty € (0,T) and let r > 0 be given by Theorem 3.3(b).
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Then there is an v’ € (0,7] such that for every wy € wyo + M*(1") the solution
w = (u,p) € Wi([0,T]) of (1.1) satisfies

(w(t) —wi(t)1 < e{wo —wso)y, [t 0 (w —wi)llg, (o,17) < ¢ (Wo — Wio)y,
fort € [Ty, T] and constants independent of t and wy.

Proof. Theorem 3.3 gives the solution w = (u,p) € Wy([0,7]) of (1.1) on
[0,T]. Take € > 0 with (1 +¢)T < T.. We set ¢ = (v,0) = w — w, and
w0 = (vo,00) = Wy — Wk, and linearize (1.1) at the function w, € Wy([0,7%]),
employing the operators from (2.15) and (3.2). In view of (3.7), the functions
va(t) = v(At) and o (t) = o(At), t € J = [0,T], uniquely solve the problem
ez (t) + A () (%(1), (t)) = Au(t)(D(2), (1)) — AA (A (W (1), AT (1))
+AF(M, P(1), A1 (1)),
O (t) + Bo(t)z(t) + Co(t)7(t) = (Bo(t) — ABo(At))z(t) + (Co(t) — ACo(At))7(t)
+ AGo(AL, (1)),
B(t)2(1) + C(0)7(t) = (B(t) = BO))2(t) + (C(1) = CO)7 (1)
+ G w(1)),
(2(0),7(0)) = (vo,00), (3.16)
for t € J, where we write ¢ = (z,7) and take A\ € (1 —¢,1 4+ €). We denote the
right hand sides of (3.16) by F(\,v), Go(A, ) and @()\,1/1), respectively. Due

to (2.15) and (3.2), these maps can be written as
FA)(1) = A @) (0 (1), (1)) = A(wa(AL) + 9 (8)) (we (M) + 2(2))
4+ AA(we (M) s (A) + AR (wa(AE) + (t), p(N) + X717 (1))
— AR(w«(At), ps(At))
Go(A, 9)(t) = Bo(t)z(t) + Co(t)7(t) + ADo(w«(At)) — ADo(w«(At) + 9(t)),
G Y)() = B()2(8) + C)7(1) + D(ws (M) — D(w(A) + (1)),
where (A\,¢) € (1 —¢,1+4¢€) x Wi(J). As in the proof of Theorem A.l in
[20], one deduces from Theorem 3.3(c) that the map A — w.(\-) belongs to
CH((1 -, 1+ ¢);E1(J)) having the derivative dyws(A-) = ti.(A-). Proceeding
as in Proposition 3.4, we then see that F € C1((1—¢,14¢€) x Wi(J); E(J)) and
G e CY (1 — €61+ € x Wi(J);F(J)) with F(1,%) = F(¢), G(1,9) = G(¢),
0o F(1,¢) = F'(¢) and 02G(1,¢) = G'(¢) for 1p € Wi(J). We further obtain
NF(1,¢) = (Alwe)ue — Alws +0) (us + 2)) + (A(ws)ue — A(w, + )t
+ (A'(w*)u* A (wy + 1) ) ty, uy] — A’ (wy + V) [ty 2]
+ (R(ws + 0, pu +7) = R(ws, p)) — O3R(ws + b, p + 7)[7]
(R(w + U, e +7) — R(w, p*)) [t0s, tPs, P4
91Go(1,9) = (Do(ws) — Do(ws + 1)) + (Dh(ws) — Dy(ws + ) [ti],
91G(1,9) = (D' (ws) = D' (we +0)) [t1b].
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for ©p = (2,7) € Wi(J). Let S be the solution operator of (2.25). We now
proceed as in the previous proposition, using the operator

for A € (1 —¢€1+¢), v € Wi(J), and & = @9 — N;G(\, o) € ES, see
Corollary 2.7. So Corollaries 2.6 and 2.7, (2.7) and the above stated properties
of F(A,-) and G(),) yield that ® € C*((1 — e, 1+ ¢€) x Wi(J); E1(J)),

O(1,0) =0, and 5h®(L,¢) =1-SN,G' (o), F'(¢), G'(¢)).
Employing also (3.1), (3.4) and the estimate in Theorem 3.3(b), we obtain
the invertibility of do®(1,¢) in Ei(J) if 7 > (po)~ is chosen small enough,
and the inverses are uniformly bounded. The implicit function theorem thus
gives a map ¢ € C1((1 — &1+ &);Wi(J)) such that ¢(1) = ¢ = (v,0) and
D(A, Pp(N) =0 for |1 — A| < € and some € € (0,1). We set po(A) = [p(A)](0)
and note that ¢()\) solves (3.16) with the initial value ¢o(\) € M*. As in the
proof of Proposition 3.4, we then compute

2o(N) = 60 = N [G(X, ¢o(N) = GO, o))
= N3 [(D(we0) = D/ (wao + 90) (90 (M) — ¢0))
+D'(ws0 + ©0) (Po(N) — ¥0) + D(wio + o) — D(wso + Po(N))
+ (A = 1)(Do(wao + o)) = Do(wo + ¢o(N)) -

This identity again leads to the estimate

leo(A) = wole, < c(ellpole,) +e(lo(N) — d(M)g,) + A = 1])[0o(N) — @olE,
We conclude that ¢g(\) = ¢, and hence ¢(\) = (vy,04), if r > 0 and € > 0
are small enough. Observe that
¢'(1) = —[022(1, 9)) D1 2(L, )
= —[022(1, )] SN0 G(1, 9), BLF (1, 0), 1G(1, ).

The above formulas for 9;F(1,-) and 01G(1,-), Corollaries 2.6 and 2.7, (RR),
Theorem 3.3 and the embeddings (2.5), (2.7), (2.11) and (2.19) thus yield

o' (D], <c <‘|SO"C(J;E7)(1 + ol L, (rx0) + 100l L, 0v0,) + €l L, (0:,)

+ lellowse,) + 100 lown,) + I¢ls )
< cllgle, < cfeods.

Taking also into account 9;(t¢) = p+tdp = ¢+¢'(1) and Sobolev’s embedding,
we arrive at the assertion as before. O

Example 3.6. We consider the Stefan problem with surface tension from Ex-
amples 2.2 and 2.4, taking as initial values interfaces I'y which are parametrized

by a function py € W;"_S/‘D(E) over a sphere ¥ as in Example 2.2 (i.e., Ty €
W;ig/p) together with initial temperatures ug € Wp272/p(D \ I'p). We further
assume the compatibility conditions ug; = o H(I'g) on Iy, d2dyus — d10,u; €

W,? —6/p (T'p) and 0, ,,up = 0 on dD. The above results then give local solutions of
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(2.14) still parametrized over ¥. In Theorem 3.1 of [34] a more realistic version
of (2.14) was solved for more general initial data (which would be also possible
here). Our results give additional differentiability with respect to initial data
and smoothing estimates, but see [12], [32]. &

4. PREPARATIONS FOR THE ASYMPTOTIC THEORY

We first establish several additional results about the linear problem (2.25)
and the operator A, from (2.16). We work under the following hypothesis.

Hypothesis 4.1. Let (ws,y«) € Wi x Yo,. Assume that (S), (E), (LS) and (if
¢=2m) (LSL) hold at ws. Define A, for (ws, ys).

Recall that the restriction —Ag of —A, to D(Ag) = EY generates an analytic
Co—semigroup 7T'(-) on Ejy, see Corollary 2.6, (2.17) and (2.20). We need the
extrapolation space E_1 which is the completion of FEy with respect to the
norm |(u + Ag) " tw|g, for any u > po (where pg is given by Corollary 2.6).
There is a bounded extension —A_7 : By — E_1 of —Ap which is similar
to —Ao and generates the extension T_1(-) of T'(-) on E_j. It further holds
T 1(t) € L(E_1, EY) for t > 0. (See e.g. [3] or [10].)

A solution of the problem (1.1), (2.25) or (3.7) (or of some equations of them)
on an (unbounded) interval J is a function w € E°¢(J) satisfying the respective
problem. Let a, € R. To study our equations on unbounded time intervals
we set eq(t) = e for t € R, denoting restrictions of this function by the same
symbol. Moreover, on J = R we fix a smooth, strictly positive function e, g
satisfying e, g(t) = eq(t) for t < —1 and e, g(t) = eg(t) for t > 1. We then
introduce the weighted spaces

Ei(Ri,a) = {w|eqw € E;(R+)},  Ei(o, ) = {w]|eqpw € E1(R)}, (4.1)

and their analogues for E, F and I, which are complete if endowed with the
canonical norms ||w||g, r, o) = eaw||g, (r.) etc. We also use the corresponding
norms on compact intervals J. We start with a version of the second part of
Corollary 2.6 for J € {R_,R}.

Lemma 4.2. Assume that Hypothesis 4.1 holds. Let J € {R_,R}, f € E(J),
g € Fo(J). Then there is a unique w = (u, p) € E1(J) satisfying the first three
equations of (2.26) on J for any u > po, where ug is given by Corollary 2.6.
Moreover, |wl|g, ) < c(fllewy + llgller))-

Proof. For n € N, we put J,, = JN[—n,n] and take functions x,, € C?(J,) with
uniformly bounded derivatives, x,(—n) =0 and x, =1 on JN[—n+1,n]. We
set fn = xnf € E(Jp) and g, = xng € F(J,). Due to Corollary 2.6 (and an
obvious time shift), there is a solution w,, = (u,, p,) of (2.26) on J,, with data
(0,0, frn,gn) € D(J,) and some p > po. Extending the data to [—n,00) and
restricting the solution on [—n,o0) to J,, we deduce from Corollary 2.6 that
the solution operator on J, is bounded uniformly in n, and so

lwnllgy (1) < ¢l fallecr,) + Ngnllre,)) < elfllew + llgllecn) = e(f, 9)

for all n € N. We fix m € N. There is a subsequence such that (uy,, pn,) —
(u™, p"™) weakly in Eq(Jp,). The limit functions also satisfy the first three
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equations of (2.26) with p on J,,, due to the mapping properties of the lin-
ear operators described in (2.15), see also (R), (2.5) and (2.11). It still holds
(™, ") g, (4) < (f,g) for all m € N. We can then take a subsubsequence
of (un, pn) converging weakly in Eq1(J,,41) to a solution (u™1, p"*1) on Jy4 1.
The functions (u™*1, p™*1) extend (u™, p™) since the subsubsequence still con-
verges weakly in E;(J,,) to (u™, p"). By induction, we thus obtain a solution
(u, p) of the first three equations of (2.26) on J fulfilling ||(u, p)||g, ;) < c(f, 9)-

Let (v,0) € Eq(J) satisfy the first three equations of (2.26) on J with f =
0 and g = 0. Due to the embedding (2.18), the function (v,o) belongs to
W) (R_; Eg) N Ly(R_; E1). Equations (2.26) thus imply (v,0) € Ly(R_; EY).
So Corollary 2.6 and (2.16) yield that (v(t), o (t)) = e =T (t —7)(v(7), o (7))
for all £ > 7 in J. Since this semigroup is exponentially stable by Corollary 2.6,
we derive (v,0) = 0. O

The above lemma allows to solve the stationary problem related to (2.25).

Lemma 4.3. Assume that Hypothesis 4.1 holds. Let pg > 0 be given by Corol-
lary 2.6 and set p = po + 1. Then there is an operator Sy € L(X x Y1, E1)
such that, for any (z,y) € X x Y1, the function Sg(x,y) is the unique solution
w € B = X1 X Z1 of the boundary value problem

~

(4 A)w = (z,90) and (B,C)w = 7.
Proof. Let (z,y) € X xY1. Weset f = ez € E(R ) and g = e1y € F(R_).

Lemma 4.2 gives a unique solution (v,0) € Eq(R_) of

(@ + 1= 1)u(t) + (A — AupBo)u(t) + (Auy — AuiColplt) = £(2),
(0 + = 1)p(t) + Bou(t) + Cop(t) = go
But) + Colt) = 5(0),
for t € R_. It further holds

[, )l ®_) < cUlfllew) + l9llr®_)) < c(zlx + [yly,)-

We set v = e_10 and 0 = e_10. Then (v, 0) solves the first three equations of
(2.26) with the constant inhomogeneities 2 and y. On the other hand, for any
r > 0 the functions v, = ¢"v(- —r) € E,(R_) and 0, = e"c(- —r) € E,(R_)
also satisfy (4.2). Hence, v, = v and 0, = ¢ by the uniqueness. Since r > 0
is arbitrary and (v,0) = e1(v,0), it follows that (v,0) =: Sgt(z,y) does not

depend on time, and thus (u 4 A )w = (z,40), (B,C)w = 7, and
(v, o) < [[(v,0)[|z, 10] = [l(e-17,e-10) |, (-1,0) < ¢ ll(V,0) I, (-1.0))
< el o)z roy < cllelx +[¥ly,)-

Let w = (v,0) € E; satisfy (u+ A)w = 0 and (B,C)w = 0. Then
(Bo, Co)w = —po € Zy = Zy by (2.19) so that w € E} belongs to the kernel of
i+ Ag. Since p € p(—Ag) by Corollary 2.6, the operator Sy is injective. O

We fix the number p = pg+1 obtained in the above lemma for the remainder
of the paper. The next result allows to use the asymptotic behavior of T'(-)
(determined by o(Ap)) in the investigation of the longterm behavior of the
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nonlinear problem (1.1), by means of the ‘mild formula’ in (d). Part (b) and
(2.19) give the embeddings

EYCE —E, —~Ey—FE—E_,

Observe that part (c) decribes the difference between A_; and A, which ex-
presses the impact of the boundary conditions. We define

II=(pu+A_q)MN.

Proposition 4.4. Under Hypothesis 4.1, the following assertions hold.
(a) There are operators J\/1 € L(Y1,E)) and R € L(E,E,) such that (
AN =0 and (B,C)N; = . as well as (u+ Ay)R = I and (B,C)R =
(b) We have E — E_1 and A w = Ayw for all w € By with (B,C)w = 0.
(c) It holds TL € L(Y1,E_1) and Avw = A_jw —II(B,C)w for all w € Ey.
(d) Let J = [0,T), (wo, f,g) € (%mMMf:f—&MﬁEw.Mm
the solution w € E1(J) of (2.25) is given by

w(t) =T (t)wo + /0 T 1(t — T)[(f(T),go(T)) +IIg(r))dr, teJ. (4.3)

Moreover, w is the solution of (2.26) with data (wy, £, g) and =0, where we
have HfH]E ) < c(lf e + llgollz,rivo,)) < el fllew + llgollrcr))-

Proof. (a) For (z,40,7) € ExY; = X X Yy X Yi, we set N1 = S:st(0,0,7) and
R(z,y0) = Sst(x, y0,0). Assertion (a) then follows from Lemma 4.3.

(b) Let (z,y0) € Eo. We then have (B, Co)R(x,y0) = yo — p[R(z,v0)]1 € Zo
by (2.19), so that R maps FEy into EY = D(Ag) and

(M + AO)R('%'7 yO) = (:U’ + A*)R(.’L', yO) = (IE, y0)' (44)

As a result, R : E — Ej is a continuous extension of (1 + Ag)~!. Since R is
injective by Lemma 4.3, one can see as in the proof of Lemma 3.3 of [24] that
E — FE_;. We can then extend (4.4) to the equation (u+ A_1)R = (n+ As)R
on F, using R € L(E, Eq) and the density of Fy in E. Lemma 4.3 implies that
R is an isomorphism from E to {w € E\ | (B,C)w = 0}; i.e., (b) holds.

(c) For we Ey, parts (a) and (b) imply that (B, C)(w—N;(B,C)w) = 0 and

(4 Aw = (1 + M) (w = My (B, Chw) = (i + Ay)(w = My (B, C)w),

as asserted. The mapping property of Il is clear.

(d) Let w = (u, p) be the solution of (2.25) and f = f — A,;g90. We insert
p = go — Bou — Cyp into the term A,;p in (2.25), obtaining

D (t) + Mw(t) = (1) = Aupgo(t), 90() = (F(1), 90(1), ¢ €[0,T]. (4.5)
Moreover, w satisfies (2.26) with data (wo, f,g) and p = 0. From (2.15), we
deduce that f € E([0,7]) and the asserted estimate for f. Part (c) and the
boundary condition (B, C)w(t) = g(t) then lead to

Opw + Ayw(t) = (F(1).90(1) + 1g(t),  te[0.T].

Since E < E_1, this is an evolution equation in E_; so that (d) follows. O
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In the following we rewrite the solutions of (2.25) on unbounded time intervals
J € {Ry,R} as in (4.3). To treat the case J = Ry, we assume that the
(rescaled) semigroup {e5tT(t)}t>0 has an exponential dichotomy for § € [01, J2]
and some segment [61,02] C R (i.e., o(=Ag + 8) NiR = ). Let P € L(Ep)
be the (stable) spectral projection for —Ap + § corresponding to the part of
o(—Ag + 0) in the open left halfplane, and set Q = I — P. Then, P € L(EY),
P commutes with T(t) and Ag, Q € L(Eo, EY), T(t) is invertible on QEy with
the inverse To(—t)Q, and |]et5T(t)PH£(EO), ||e_t5TQ(—t)QHL(EO) < ce™ for
t > 0 and some € > 0. Further, there are extensions P_; € L(F_1) of P and
Q-1 € L(E_1, EY) of Q such that T_;(¢) has an exponential dichotomy on E_;
with the same constants. Since Q = Q?, we throughout write @ instead of Q_;.
From P =1 — @, we deduce

PeL(E)NLE,)NLE)) and Py € L(E). (4.6)

Occasionally, we omit the subscript —1. (Compare e.g. §2 of [19] for these
facts.) It further holds:

If (wo, f,9) € D(J), then (Puwo,f,g) € D(J). (4.7)
In fact, we have (B,C)Pwy = (B,C)wy — (B,C)Quwy and Quy € EY so that
(B, C)Puwo = §(0) and (Bo, Co)Pwo — g0(0) € ZJ.

Let e;7'(-) have an exponential dichotomy. Given (¢o, f,g) € Ey xE(R4,d) x
F(R4,0), resp. (o, f,9) € E_1 x E(R_,d) x F(R_,J), we can then define

t ~

L po (00, f,9)(t) = T(t)po +/0T1(t —7)P[(f(7),90(7)) + g(7)] dr (4.8)

- [ Talt = NQUT@ o) + MG 0 120,
@=—1ﬁweﬂmdmgww+mWNm, resp., (4.9)

t ~

Lp ay(0; £59)(t) = To(t)Qpo + / T (t = 7)Pa[(f(7), go(T)) + Tg(7)] d7

—00

O ~
- [ Talt = DQUF®.a0(r)) + MG dr. ¢ <0, (a.10)

O ~
%z/ Ty (—7)Pa[(F(r), g0(r)) + TIg(r)] dr. (4.11)

—0o0

Here we set again f := f — A,p90 € E(J,0). Using the properties of T'(-) and

Proposition 4.4(c), it is easy to verify the existence of these integrals in E_;.
We now take (wo, f, g) € D(J). Clearly, a function w = (u, p) € EX¢(J) solves

(2.25) if and only if @ = esw € E°(J) is a solution of the rescaled problem

8tv(t) + (A*u -0 — A*pBo)U(t) + (A*p — A*pC())O' = e(;(f(t) — A*p'go),
0o (t) + Bov(t) + (Co — 6)o(t) = esgo(t),
B(t)v + C(t)o = esg(t),

(v(0), 2(0)) = (uo, po);
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for ¢t € J. The solution of this system is denoted by (v, o) =: Sa,—s(wo, €5 f, €59),
cf. (2.26) in Corollary 2.6. Note that —Ag+ d generates the analytic semigroup
esT(-) on Ey. We start with the case J = Ry. Using (4.3), (4.8) and (4.9), in
a standard way we compute

e5SA0(w07f7 g) = SAO_(S(U](),G(Sf, e5g) (412)
=& T()[Quo — ¢5] + L 5, 5(Pwo,esf,e59)
= Lfpo—s(wo — &3, e5f,e59) = es L 5 (wo — &5, f, 9)-

The next result is similar to Proposition 8 of [19] in the case of static boundary
conditions, but we cannot follow the proof given there. The main problem is
that we do not know whether the spectral projections P and @ leave invariant
E;(J) because of the extra time regularity in the p component.

Proposition 4.5. Assume that Hypothesis 4.1 holds and that for § € [61,02] C
R the semigroup esT(-) has an exponential dichotomy with the stable projection
P, and let Q@ = I — P. Given (wy, f,g) € D(R4,d), the following assertions are
equivalent.

(a) Sho(wo, f, 9) € E(R4,9).

(b) L, (wo — &5, f,9) € E(Ry, ).

(¢) ¢f = Quyo.
If these assertions hold, then (u,p) := Sa,(wo, f,9) = L;’AO(Pwo,f,g) belongs
to E1(R4,0) and solves (2.25), and we have

1880 (wo, £, 9) g, (R+6) < ¢ (Jwol e, + [(Bo, Co)wo — go(0)[ 21
+ [ flle®y.s) + 9llr@®y.5));
where ¢ does not depend on wy, f, g ord. (Note that p(0) = go(0)—(Bo, Co)wyg.)

Proof. In view of (4.12), we only have to consider the case 6 = 0. More-
over, (4.12) implies that (a) and (b) are equivalent and that the equality
S, (wo, f,9) = L;’AO(Pwo,f,g) follows from (c). We check below that the
integrals in (4.8) belong to E(R). Hence, assertions (b) and (c) are equivalent.

We now assume that (wo, f,g) € D(R;) and (c) holds, and estimate the
solution in E;(R4). Due to Corollary 2.6 and (4.7), there is a function ¢ =
(up, pu) € E1(Ry) solving (2.26) on Ry with p from Lemma 4.3, the initial

value Pwg and the inhomogenities f = f — A,;g0 and g. Moreover,
lelle @y < ¢ (Iflew,) + 19llE@,) + lwolz, + |(Bo, Co)wo — go(0)]22)
< c||(wo, £, 9)Ipr,)-
Using (2.26), integration by parts, Qy(0) = QPw = 0, Proposition 4.4, (4.9)

and (c), we further compute

/0 T (- Qup(r) dr = /0 T (—r)QUF(T). 90(r)) — $(r) — Avipl(r)] dr
-/ ST (n)QUF(), 90() + (Aot — AYol(r)] dr
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_ /OOOTQ<_T>Q[(f(T)790<T)) +TG(F)] dr = —Qus.

Theorem 2.2 of [8] shows that the operator (A, EY) has maximal L, regularity
in Ep, so that the lower order perturbation Ag also has maximal L, regularity
in Ep. (See [3], [7] or [18] for this concept and Proposition II1.1.6.3 in [3] for
the relevant perturbation result.) Since pyp € L,(R4; Ey) and Qg satisfy the
above equation, Theorem 2.4 in [9] now gives a unique function ¢ = (v,0) €
Ly(Ry; EY) N W) (Ry; Ep) =: EY(Ry) such that

Ob(t) + Ao(t) = pp, =0,  ¥(0) = Quo, (4.13)

and we have
[¥lg(,) < ¢ (IQuole, +19llL, &, :m)) < cll(wo, f.9)lpe,)-
Therefore the function w = (u, p) := ¢ + ¢ € Ly(Ry; Er) N W, (Ry; E) solves
(2.26) with g = 0, the initial value wg and the inhomogenities fand g; i.e., w
satisfies (2.25). We have further shown that
lwllz,®y e + lwlwiw g < cll(wo, f,9) b, )-

It remains to check that ||(wo, f, g)|lp,) also dominates the norm of o in the
other spaces forming E,(Ry). We start with W,? (R;; ij (3;V,)) for j € J.

We first note that (B, C)Qwo = 0 and (By, Co)Quwo — ppu(0) € Z% because
of Quo € EY, p, € E,(R4), and (2.11). Corollary 2.6 thus gives a solution
¢ € E1([0,2]) of (4.13). The embedding (2.18) yields ¢» € W, ([0,2]; Ey) and
thus ¢ € L,([0,2]; E§) by (4.13) and puyp € LP([0,2]; Ep). As a consequence,
o € E}([0,2] and v = ¢ on [0,2]. The properties of @ and (2.19) then imply

1%z, o2y < ¢ (1Quolr, + [(Bo, Co)Quo — 1pu(0)] 21 + llpuyllpo.21)
+ leppllEo (fo.21))
<c H (’UJ(), I g)”D([OQD

To proceed, we recall from Theorem 2.4 in [9] that 1 is given by

b(t) = /0 T(t - 7)Pup(r) dr - / " To(t - 7)Quip(r) dr = (1) + ¥2(t)

for t > 0. Let J, = [n—1,n+ 1] for n € N. As in the proof of Proposition 8
of [19], we now use smooth functions x,, : J, — R such that x,, x}, and x/ are
uniformly bounded, x,(n —1) = 1 and x, = 0 on [n — 1/2,n + 1], for every
n € N. For t € [n,n + 1], we then write

P/ Tt —7)(1 — xn(T))ppp(r)dr (4.14)

n—

+T(t— n)T(%) / T(n— % — 7)Pxn(T)po(7) dr

n—1

n—1
+T(t — n)T(l)/O T(n—1—7)Puep(t)dr.
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We denote the first integral by w1!(t) and the sum of the other two sum-
mands by 12, In view of (4.3), ¥l is the solution of (2.26) on .J, with
data (0, (1 — xn)uu, [1(1 — Xn)pu,0]) € D(J,). Corollary 2.6 thus yields
[opt ey () < € luplle, + loullre ) =t ¢n- Because P =1 —Q, QE_; C EY
and (2.9), we can estimate the norm of [Pyll]s in W;j(Jn;ij(E;Yp)) by
c|lvftg, (s,) and thus by cc,. Standard semigroup theory further yields

t

L2 (1) 1, < c /O D o(r) g dr, D) < c / =) (1) gy dr

for some ¢ > 0 and ¢ = 0,1. Using Lemma 2.8 and also a slight
variant of Lemma 4.7 below for ¢!, we now conclude (writing G;(J) =

Kj k;
Wy (J; Wy (3 V)
2
||U||éj(R+) < c||(wo, [, 9)”%([072]) +clly H%/z}(R%El)

+ e (1PUY2l, g5+ 1R712000sg,20))
n>1

< ¢||(wo, f, 9)||%(R+)+ c ||90HIEP(R+;EO)+ C; (||uﬂ‘|§(Jn)+ ||pu||§0(Jn))

<c ”(’Ujo, f7 g)||%(R+)

This inequality, ¢ = —Bov — Coo + ppy, (R) and (S) with time-independent
coefficients then imply

Hf}||W;0(R+;Yp) <c (||UHIEu(R+) + ||UHW;0(R+;W§O(E;V,,)) + HPu||W;0(R+;Yp))
< cll(wo, f, 9) b, )-

(We remark that we cannot use (R) to estimate Cho since we do not yet know
that o € E,.) Summing up, it holds [[w||E1(R4) < cl[(wo, f, 9)lp®,)- O

The corresponding result for J = R_ looks a bit different since in (4.10) we
have to write T'(t)Quwp rather than T'(t)wq for negative t. Moreover, Proposi-
tion 4.6 does not require a compatibility condition since it deals with a final
value problem on J = R_. The proof of this proposition is similar to the
previous one: The asserted equivalence and the representation of the solution
by L]_J,A can be shown as in, e.g., Proposition 9 in [19]. As above, it suffices
to consider 6 = 0. Lemma 4.2 gives a solution ¢ € E;(R_) of the first three
equations of (2.26) on R_ with inhomogeneities fv and g. Using Theorem 2.5
in [9], one again obtains a solution ¢ € EY(R_) of (4.13) on R_ with final
value wy — ¢(0). The sum w = ¢ + 1) then solves (2.25) on R_, and it can be
estimated as in the proof of Proposition 4.5. (It is easy to see that the resulting
new term T (-)Q(wo — ¢(0)) even belongs to WZ(R_; E?), with norm less than
c|Q(wo — ¢(0))|g.) We thus omit further details.

Proposition 4.6. Assume that Hypothesis 4.1 holds and that for § € [d1,02] C

R the semigroup esT'(-) has an exponential dichotomy with the stable projection

P, and let @ =1 — P. Given (wy, f,g9) € E_1 Xx E(R_,d) x F(R_,¢), there is a
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solution w = Sa,(wo, f,g) of (2.25) in E(R_,6) if and only if P_ywo = ¢y . In
this case, this solution is unique, w = Lp (wo, f,g9) € E1(R_,d), and

1Sa0 (wos, £, 9 e, (r_6) < ¢ (|Quole + | flle®_5) + 9llrE®_5));

where ¢ does not depend on wq, f, g or 6.

We continue with the discussion of nonlinear maps F' and G acting on ex-
ponentially weighted function spaces on unbounded time intervals, cf. (4.1).
We start with an elementary, but crucial lemma. The straightforward proof is
omitted. (It also uses Lemma 11 of [19] when treating the Slobodeckii spaces.)
The notation a ~ b means that a < ¢1b < cga for some constants c¢1,co > 0. We
put Zy =Ny and Z_ = {-1,-2,...}.

Lemma 4.7. Let V be a Banach space, J = Ry, k € (0,1), a > 0, d > 0,
10| <d, J, =[n,n+1], and J, = n—a,n+1+a]NJ forn € Z. Then the
following assertions hold with constants only dependz'ng on a and d.

(@) eshll} 5.y = Snezs @™ 11 o

(b) He6hH€V1}(Ri;V) :Znezi P ”h”wl (Jn;V)"
(c) lleshl; = (Ra;V) = ZnEZi P |1 < (JL;V)”
() 1esh 1P,y =~ Soneza®™ I
Jes I,y < € Snez @ (0 By a0+ 111y )
(&) 1R 55y = Sy & IBIE. o1
()1 ) S 1,

(9) 1Pl5 ey 5 = Xnezs € 1015 s,
The same results hold on J = R if we use the function e(a, B) for |af, |8 < d
instead of es and replace Z by Z.

We now collect the basic assumptions (and some of the notations) for the
rest of paper, where we strengthen Hypothesis 4.1.

Hypothesis 4.8. Let (R) be true, and (S), (E), (LS) and (if £ = 2m) (LS%)
hold for any (wo,po) € W,. Let we = (us,px) € Wi be an equilibrium of
(1.1) and define the maps As, B, C, F, G, Ay and Ao = A|EY as well as the
expressions ()~ and ()1 for this ws as in (2.15), (3.2), (2.16), (2.20), (3.10).

Note that D(w,) = 0 and p, = 0 if Hypothesis 4.8 holds, and that (i), is
locally equivalent to |¢|g, if £ < 2m. The next result describes the properties
of F and G on Ry with weights larger or equal than 1. For § > 0, we set

WE(RL, +6) = {w € E1(Ry, +6) |w(t) € W, —w, for all ¢ € RL}.

It is straightforward to check that this set is open in E; (R, +0) if § > 0 using
(5.1) below. Moreover, 0 belongs to the interior of WL(R.) := Wi (R4, 0).

Proposition 4.9. Let (R) hold, § € (0,d] and define F' and G as in (3.2) for
an equilibrium wy, = (ux, p«) € Wi. We then have

F e CYW!(Ry,+6),E(Ry, £5)) and G € CH(Wi(Ry,+6),F(Ry, +6))
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and F(0) =0, G(0) =0, F'(0) = 0, G'(0) = 0. Moreover, the derivatives are
bounded and uniformly continuous on closed balls. If § = 0, the above results
hold on sufficiently small balls in E1(Ry) with center 0.

Proof. We only consider the map G on J = R, the other cases can be treated
in the same way. Let w = (u,p) € Wi(Ry,£d) and ¢ = (v,0) € E;(Ry, +0).
Set J, = [n,n+1] and J, = [n —1,n+ 2] NR;. Lemma 4.7 and (3.1) yield

) 1)
G W)@, 5 S e PIGE < e ™ w0 < clwl, g, 5
neNp n€Ng

so that G maps properly. Since dn > 0, it is straightforward to check that
o
”QDH]El J5) <e an%’HEl(J/) <c ”SOHI& b/ S C ||90H%]?:1(R+75)‘ (4.15)

Using also this estimate, as above we obtain for g := G(w+¢) —G(w) — G'(w)p

o o
9%, 5 < e 2 @™ llglh < e 3 e elliele,p)? el o)

neNy neNg
<e > ee(|gll P llelle ) < elllel P llelig :
< PllEL(R1,6))" 1PNEL () = EUIPNE (R 1,0))" 1PIE, (R, 5)
neNy

Hence, G : Wi(Ry,d) — F(Ry, ) is differentiable. If ||wlg, g, 5) < r for some
r, then [|wl|g, () < @r for a constant ¢ by (4.15). Let J' be any interval with
length 3 and ¢, < oo be the supremum of the norms of G'(w) : Eq(J') — F(J')
for w € Wi(J') with [Jw||g, () < ¢r, see (3.1). Lemma 4.7 then implies

o 3
16 @)l 5 < e 3 P IG @2, ) < e 3 ™ ol 0
neNg n€Ng

< C||‘P|’§1(R+75)-

The equalities G(0) = 0 and G’(0) = 0 follow from (3.1). The continuity of G’
can be checked by the same methods as above. O

5. THE SADDLE POINT PROPERTY

In this section we construct the stable and unstable manifolds for (1.1) near
the equilibrium w, assuming Hypothesis 4.8 and that o(—Ag) NiR = . (Recall
our notation stated in Hypothesis 4.8.) The next theorem shows in particular
that these manifolds are uniquely given as sets of initial values of solutions
starting near w, and staying in certain neighborhoods of w, for all t > 0, resp.
all ¢ < 0. These solutions then converge exponentially to w, as t — oo, resp. as
t — —oo. If o(—Ap) is contained in the open left half plane, then the theorem
gives a principle of linearized stability (which could be proved much easier, see
e.g. Proposition 16 in [19]).

The following observations are used below several times. Fix rg > 0 such
that Bg, (0,m9) C WJ. Take pg € W3 with |@o|p, <1 <10. Let ¢ = (v,0) €
Ei(Ry,6) with [¢[lg, (k. 5 < R satisfy p(0) = o for some R, > 0. The
embeddings (2.5) and (2.11) imply that

lp(D)]E, +15(8) 22 < o(D)le, +[e”5(t) 22 < cllolle,®,0) S B (5.1)
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for all t > 0. Hence, for sufficiently small R > 0 we deduce cR < rg, and
thus (t) € W3 for all t > 0; ie., ¢ € Wi(R4,0). Such ¢ actually exist if r
is small enough. In fact, (2.5) and (2.11) give a function ¢ € E;(]0,1]) with
P(0) = wo and [[¥][g,(o,1)) < clpole, < cr. We extend ¢ to a compactly
supported function ¢ € Eq(R;) with norm less or equal ¢ ||¢|[g, 0,1y < cr, so
that we can control R by c¢r. Analogous results hold for J =R_ if § <0.
Recall the definition of the space Eg in (2.20) and of the map Q in Lemma 3.2.
By (3.11), for solutions (v,0) € E;(J) of (3.7) and ¢t € J, the expression
((v(t),o(t)))y = |(v(t), o (t))|E,+|o(t) \Z% is the norm on the trace space E,x Z).

Theorem 5.1. Assume that Hypothesis 4.8 and iR C p(—Ag) hold. Let P be
the stable projection for T(:), @ = I — P, 69 := dist(iR, p(—Ag)) > 0, and
5 € (0,00). Then the following assertions hold.

(a) There are numbers rf, > 1, > 0 and rf > 0 with k € {s,u}, and C} maps

¢s : Dy = {¢ € PEY | €l po <15} — QF, ¥s: Dy — PE,,
u: Du:={§ € QB ||{]p <715} — PE,
such that ¢5(0) = 95(0) = ¢u(0) = 0, ¢5(0) = U5(0) = ¢/,(0) = 0 and
M = {wo = we + £+ 05(E) + ¢s(€) | € € Ds, (wo — wi)y <75} (5.2)
= {wy € M| (wo — ws)y < rs, I solution w = (u, p) of (1.1) on Ry with
(W(t) —wi)y = [w(t) —wilp, +1pE)| 2 <76 (VE=0)},  (5.3)
My = {wy = wi + £+ Dy (§) | £ € Dy, (wo — ws)y <1y} (5.4)
= {wy € M| (wo — ws)y < 1y, 3 solution w = (u,p) of (1.1) on R_ with
(W(t) —wi)y = [w(t) —wilp, +1pE)| 2 <7, (VES0)}  (5.5)
The above solutions w are given by w = wy + Ps(PQ(wy — wy)) if wy € Mg

and w = wy + Py, (Q(wo — wy)) if wog € My, where @5 € CL(Dg; Eq(Ry,6)) and
P, € CH(Dy; E1(R_, —08)) with ®5(0) = 0 and ®,(0) = 0. It further holds

W(t) = walp, + 30z, < ce Ot wp—ws)y (V1) if woe M,
lw(t) — wi| B, + |p(t)]2, < et |wo — wy| g (Vt<0) if wype M,.

(b) If wo € Mg and the forward (resp., a backward) solution w of (1.1)
satisfies (w —wy)y < 15 on [0,t] for somet >0 (resp., on [t,0] for somet < 0),
then w(t) € Ms. If wg € My and the forward solution w of (1.1) fulfills
(W — wy)y < 1y on [0,t] for some t > 0, then w(t) € My. If wg € M, and
the solution w from (5.5) fulfills (w — wy) < 1y on [t,0] for some t < 0, then
w(t) € My.

(c) We have MsN My = {w.}.

(d) The dimension of M is equal to the dimension of QE. If o(—Ag)NC4 #
0, then w, is (Lyapunov) unstable in E, x Z% for (1.1).

(e) If (RR) holds, then there is a7y € (0,73) such that the map ¢y, is Lipschitz
from Dy, :={¢ € QF |1¢|e < 7y} to PEy, and the operators ¢,,(€) are uniformly
bounded in L(QE, PEy) for & € D,,.
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Proof. (1) Construction of the stable manifold Ms. Let 6 € [0,d0). Observe

that es7T'(-) has an exponential dichotomy by the assumptions. Let & € PE,(; C
Eg (see (4.6)) and ¢ = (v,0) € Wi(Ry, ). Using Proposition 4.9, (3.4) and

Corollary 2.7, we see that (§+N,G(¢(0)), F(¢), G(p)) € D(RL,§), cf. the proof
of Theorem 3.3(b). Here, we set F' = F' — A, ;G as before. It follows that
(€ + PNL,G(9(0)), F(¢),G(¢)) € D(R4,0) by (4.7). To apply Proposition 4.5,
we put ¢ = £+ PN,G(¢(0)) and wg := ¢+ ¢§ = Pwo + Quo, where ¢ is given
by (4.9) with f = F(¢) and g = G(¢). We then define
Ts : PE) x Wi(Ry,6) — Ei(Ry,0);
Ts(&p) = 0 — Ly, p(€ + PN, G(9(0)), F(p), G())-

The above mentioned results imply that 75 € Cl(PEg X Wi(R4,9); E1(Ry, 9)),
75(0,0) = 0 and 0275(0,0) = I. The implicit function theorem thus gives a
radius r§ > 0 and a map ®, € C}(B(r§); Wi (R4, d)) such that ®,4(0) = 0 and
Ts(&, @5(8)) = 0 for € € B(rf) = BPEg(O,TS). Due to Proposition 4.5, the
function ¢ = (v,0) = ®4(&) solves (3.7) with the initial value

©(0) = £ + PNy G(®5())
- /0 To(—7)QIF(D:(£)(7)), Go(®s(€)(7))) + LG (D4(&) (7)) d7

= £+ Us(E) + ds(8)-

Combining the above results with Corollary 2.7, the embedding (2.7), Q €
L(E_y, EY), Propositions 4.4 and 4.9, we conclude that ¢5 € C}(B(r§); QEF),
Dy € CL(B(): PE,) , 6(0) = 9,(0) = 0, and @,(0) = 9,(0) = 0.

We now define My as in (5.2), where we choose a sufficiently small rg > 0
below. Our construction yields that Mg C M. Take wg = po+w, € Mg, where
wo = (up, po) and @g = (vo, 0¢). It follows that wy = wy + & + 95(€) + ¢s(§) for
some £ € B(rf), and that ¢ = (v,0) = ®4(§) € Wi(R4, §) solves (3.7). We set
w = (u, p) = wyx + @. It further holds

el ®s 0 = [Ps(§) = Ps(0) Iy Ry 0) < Cl€] B0 (5.6)
To control £ by ¢g, we compute
& = P(wo — wy — NyyoG(P5(€))) = P(wo — wi — NyyoG(w — wy)),
€lmo < C(\SOO —/\/wG(SD())\E7 + |(Bo, Co)[wo — we — Ny G (wo — w*)]}z%)
< ¢(lwo = wilp, + |(Bo, Co)(wo — w.) = Go(wo — w.)|
+ |Goluwo = w.) = (Bo, Co)N: Gy — w.)]| 1)
< e(wo — wi)y + |G (wo — wi)ly, ) < T {wp — wi),
where we used (4.6), (3.4) and Corollary 2.7. We now choose r; > 0 such that
¢ry < r§. Hence, |§]Eg <y if (wo —ws)y < rsand rg € (0,r1]. In view of (5.1),
we then obtain

e fw(t) —wilp, + e |5(t)] 22 < cllelle @y .5 < € (wo —ws), (5.7)
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for all ¢ > 0. Possibly after decreasing r1 > 0, Proposition 3.4 finally implies
the exponential estimate on M in assertion (a).

(2) Description of the stable manifold Mg. Take an initial value wg € M
with a solution w = w(-;wp) of (1.1) on Ry and assume that

(w(t) —wy)y <r' forall t>0 (5.8)

for some number ' > 0 with Bg_ (w., ) C W,. We want to find a sufficiently
small 7; > 0 such that
lw = walg, ey < e’ (5.9)
is true whenever (5.8) holds with 7’ € (0,7]]. Again we put ¢ = (v,0) = W—w.
To prove this claim, let w satisfy (5.8) for some r’ > 0 which is small enough
to allow the application of Theorem 3.3 with initial values w(t) € M. This
theorem then shows that ||¢[|g, (pnt3) < ¢(p(n)), < e’ for all n € Nyg. Let
Jp=I,n+1],J, =[n—1,n+2]NR; and § € (0,d0/2]. We then deduce

1ol2, sy = e ol ) < €(6) ()P,
n=0

using Lemma 4.7. Since also e_s7'(-) has an exponential dichotomy, Proposi-
tion 4.5, Lemma 4.7 and (3.1) imply that

“‘P”ﬁl(ﬂg+7,5) < C(<SO(0)>Z =+ ”F(‘P)H%(R%ﬂs) + HG(‘P)H%(R%fg))

< c{p(0)f + e e (IF@)E ) + IG5,
n=0

< c(p(0))h + ()P Z e 0P H‘:DH%[(J;L)
n=0

< (O + (" 9l s
Fixing a small a sufficiently small 7 > 0 and choosing 0 < 7’ < 7}, we conclude

lollg, y,—5) < ¢(@(0)), < e (5.10)

for constants independent of §. Observe that 0;(e_so) tends to d;0 pointwise
as 6 — 0 and that the integrands in the Slobodeckii parts of [|¢||g, &, —s)
converge pointwise to those of |||k, ). Letting 0 — 0, we thus deduce (5.9)
for 0 < v/ <7} from (5.10) and Fatou’s lemma.

Let again w = ¢ + w, be the solution of (1.1) on Ry satisfying (5.8). Put
wo = wy — wy. Note that ¢ € Wi(R,) by (5.8) and (5.9). Proposition 4.5 then
shows that ¢ = LX()’P(P@(), F(¢),G(¢)). The function & := P(po — N;G(po))
belongs to EY and satisfies lf\Eg < ¢{po)y < ¢’ due to Lemma 3.2 and (4.6).
Choosing a sufficiently small 7' € (0, r}] such that ¢r’ < r§, we can now apply
Step (1) of the proof with this £ and obtain a solution g = ®4(£) € Wi(R4,0) C
Wi(Ry) of (3.7), where [|@|lg, r, 5 < cr’ in view of (5.6). By construction, it
holds » = LXOJD(& + PN,G(%(0)), F(¥),G(®)), and hence

¢ =P =Ly, p(Ppo— & — PN,G(®(0), Fy) — F(), G(p) — G())

= L}, p(PN5[G((0)) = G(2(0))], F(¢) — F(2),G(y) — G())-
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We set ¢ = PNL(G((0)) — G((0)). Corollary 2.7 and (4.7) yield (¢, F(p) —
F(®),G(¢) — G(¥)) € D(R4). Since ¢ and @ have norms less than ¢’ in
E;(R4), Propositions 4.5 and 4.9, Corollary 2.7 and (2.7) imply that

le = Bllie, (=y) < (O + I1F(0) = F@)llrer,) + 1G(9) = G@)llr,))
<e() le — Plle, (rs)-
Fixing a small v, € (0,r]] in (5.8), we deduce ¢ = . On the other hand,
due to (5.7), in the definition of Mg we can now choose an ry € (0,r1] with
rs < 1, such that |w(t) — w«|p, + |0ep(t)| 71 < ! for all ¢ > 0 and any solution
w with initial value wy € Ms. If we finally assume that (¢g) < 75 we arrive at
o € wx + M and the equality in (5.3).

(3) Construction of the unstable manifold M,. We proceed as in Step (1)
and thus focus on the necessary changes. In view of Proposition 4.6, we define

Tu: QE x Wi(R_, =0) = E1(R_, =6); Tu(& ) = — Ly, p(&, F(p), G(¥))-

As before we see that T, € CH(QEx W% (R_, —6); E1(R_, —04)), T.(0,0) = 0 and
027,(0,0) = I. The implicit function theorem thus gives a radius r§ > 0 and
a map @, € C}(B(ry); Wi(R_, —4)) such that ®,(0) = 0 and Ty (&, ®,(£)) =0
for £ € B(ry) := Bgr(0,70). Due to Proposition 4.6, the function ¢ = (v,0) =
®,,(&) solves (3.7) on R_ with the final value

0 - ~
e(0) =¢ +/_ T(—=7)P-1[(F(2s()(7)), Go(Ps(£)(7))) + HG(Ps(&)(7)] dT
:5+P70(I)u(§) :€+¢u(5) (5'11)

Combining the above results with the embeddings (2.5) and (2.11) we conclude
that ¢, € C}(B(ro); PE,) and ¢,(0) = 0. Propositions 4.4 and 4.9 further
yield ¢/,(0) = 0 if we differentiate the above integral representation in E_;.
We now define M, as in (5.4), where we choose r,, > 0 below. Our construc-
tion yields that M, C M. Take wg = ¢¢ + ws« € My, where wy = (ug, po) and
wo = (vo,00). It follows wy = wy + & + ¢y (§) for some § € B(ry), and that
(v,0) = D5(€) € Wi(R_, —9) solves (3.7). Since £ = Qyo, we have the estimate

lelle, ®_,—5) = [[Pu(§) — Pu(0)|lg, (r_—5) < clé|lE < clpolE- (5.12)

We then choose 71 > 0 such that |Q|z(gyr1 < rg and take any 7, € (0,71]. In
view of (5.1) we thus obtain

e w(t) —wilp, +e " [p(t)|z < cllpllz,@_ -5 < clwo —wilp  (5.13)

for all £ < 0. Possibly after decreasing r1 > 0, Proposition 3.4 implies the
exponential estimate on M, in assertion (a).

(4) Description of the unstable manifold M,. Again we argue similarly as
in Step (2). Take a final value wy € M and a solution w = ¢ + w, of (1.1) on
R_ satisfying

(w(t) —wy)y <r' forall t<0 (5.14)

and some r’ > 0 with Bg_ (ws, ") C W,. Put g = wo — ws. As in Step (2), we
find a sufficiently small 7§ > 0 such that

Jw — wllg, ®_y < cr’ (5.15)
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is true whenever (5.14) holds with ' € (0,7]]. Note that ¢ € Wj(R_) by
(5.14) and (5.15). Proposition 4.6 then shows that ¢ = L »(Qwo, F'(¢), G(¢)).
Choosing sufficiently small " € (0, 71] such that |Q|zg)r" < rff, we can now ap-
ply Step (3) of the proof with £ = Q¢ and obtain a solution ¥ € Wj(R_, —4) C
Wi(R-) of (3.7), where ||§|g,®&_,—5 < cr’ in view of (5.12). By construction,
it holds @ = Ly | p(Qwo, F(¥), G(®)), and hence

=9 =Ly, p(0, F(p) = F(9),G(¢) = G(9))-

Since ¢ and P have norms less than ¢ in E;(R_), Propositions 4.6 and 4.9
imply that

<c(|F(p) = F@)llew ) + 1G(@) = G@)llrw_))
<e() o — Bllg, )

Fixing a small 7/, € (0,7] in (5.14), we deduce ¢ = ». On the other hand,
due to (5.13), in the definition of M, we can now choose a radius r, € (0,71]
such that [w(t) — w.|p, + |9p(t)[ 22 < ), for all t < 0 and any solution w
with final value wg € M,. If we finally assume that (¢g), < ry, we arrive at
o € wsx + M, and the equality in (5.5). We have now shown assertion (a).

(5) Remaining properties. The local forward invariance of Mg and the local
backward invariance of M, follow directly from (5.3) and (5.5), respectively,
and the time invariance of (1.1). To show the local backward invariance of Mg
and the local forward invariance of M, we need in addition that we can glue
solutions as described before Lemma 3.2. Hence, (b) holds.

Let wg € Mg N M. Assertion (a) shows that (w(t) — w,), < ce’r, for all
t <0 and some 6 € (0,0p) and ¢ > 0. Since we fixed r,, > 0 only at the end of
Step (4), we can decrease it further, obtaining ¢r, < rs. The invariance thus
implies w(t) € Ms. Assertion (a) now yields

H(p - ¢||]E1(R,)

(w(t) — w.)y < e (w(0) — w.)y < e (w(t) - w),

for all ¢ <0, so that wy = w, and (c) is true.
The first part of assertion (d) is clear. If o(—Ag) N C4 # (), then there is
a wy € My \ {ws}. The corresponding solution tends to 0 in the sense that
(w(t) —wy)y — 0 as t = —oo. Since wy = w(—t;w(t)), the instability follows.
Let (RR) hold. We decrease r,, > 0 once more so that Proposition 3.5 can be
applied on M. Take 7 > 0 such that (£ + ¢u (), < clé|lp < ry if [{|E < T,
cf. (5.12) and (5.13). For &,€ € Bop(0,7Y) we have solutions w = ®,(£) and

w = ®,(&) of (1.1) on R_ with ¢,,(§) = P(w(0)—w.) and ¢,,(§) = P(w(0) —wy).
Proposition 3.5, (4.6), (5.1) and assertion (a) then imply
|6u(€) = du(E)|E, < clw(0) —@(0)|p, < c(w(-1) —w(-1)),
<cllw —wllg,®_ -5 = cl|[Pu(€) — PulE)llE, ®_—0)
<ClE—Elp;
i.e., the first part of (e) has been verified. Let ( € QE. We know that the limit

9,(€)¢ = lim . (6u (& + h¢) — du(§)) = lim D(h)

=1l
h—
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exists in E,. The above estimate further yields | Dy |, < ¢|¢|g for all sufficiently
small |h|. After passing to a subsequence, the vectors D), converge weakly in

Eq to ¢,(€)¢ so that |¢],(£)¢|r, < €|¢|E, as asserted. O
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