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Abstract. We develop a wellposedness and regularity theory for a large
class of quasilinear parabolic problems with fully nonlinear dynamical
boundary conditions. Moreover, we construct and investigate stable and
unstable local invariant manifolds near a given equilibrium. In a companion
paper we treat center, center–stable and center–unstable manifolds for such
problems and investigate their stability properties. This theory applies e.g.
to reaction–diffusion systems with dynamical boundary conditions and to
the two–phase Stefan problem with surface tension.

1. Introduction

In this paper we develop a wellposedness and regularity theory for a large
class of quasilinear parabolic problems with fully nonlinear dynamical boundary
conditions. In this framework we construct and investigate stable and unstable
local invariant manifolds near a given equilibrium. In the companion paper [37]
we treat center, center–stable and center–unstable manifolds for such systems
and investigate their stability properties. This theory applies e.g. to reaction–
diffusion problems with dynamical boundary conditions and to the two–phase
Stefan problem with surface tension.

Quasilinear parabolic problems have been studied successfully from various
perspectives. An important, widely used theory was created by Amann in e.g.
[1] and [2]. This approach applies applies in particular to quasilinear problems
with conormal boundary conditions, which are understood in a weak sense
on the state space of the resulting flow (typically W 1

p ). In this framework a
dynamical theory was developed which covers center manifolds or bifurcation,
for instance, see e.g. [13], [38] or [39].

A somewhat different approach to such systems is based on maximal regular-
ity of type Lp of linearized equations, see [30] for a detailed exposition and also
[33], [35]. In our previous papers [17], [19], [20], and [25] we have investigated
quasilinear parabolic problems with fully nonlinear static boundary conditions
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using maximal Lp regularity of the linearizations, see also [33]. Here the equa-
tions at the boundary are understood classically and the evolution equation in
the spatial domain holds in Lp sense. We have established a theory of local
well-posedness, smoothing properties, invariant manifolds near equilibria and
asymptotic stability of certain invariant manifolds and of periodic orbits.

For fully nonlinear problems, it seems that one has to work in a framework
of higher regularity as it is presented e.g. in the monograph [22], where also
invariant manifolds and bifurcation are discussed, see also [4] or [29]. In this
setting one obtains classical solutions, but this enforces additional compatibil-
ity conditions. Moreover, such problems do not exhibit the usual parabolic
smoothing, in general.

The development of the theory has been much influenced by the study of
free boundary problems. Some of them can be treated in the framework of
Amann’s theory, for instance the Mullins–Sekerka system which is a quasista-
tionary Stefan problem, see e.g. [13]. Others require the theory of fully nonlinear
problems, see e.g. [4]. But a large class of systems comprising in particular the
Stefan problem with surface tension fits very well to a different approach in-
troduced in [12] which is based on maximal Lp regularity of the linearizations.
A detailed analysis of the Stefan problem with surface tension was then car-
ried out in particular in [31] and [34]. Analytic solutions of the classical Stefan
problem have been constructed in [32] within this Lp approach. We refer to
[15], [21], [26] and the references in [12] and [34] for other approaches.

The methods of [12] had inspired the paper [8] which established a theory
of maximal Lp regularity for a class of inhomogeneous linear systems with dy-
namical boundary conditions In this paper we investigate a corresponding class
of nonlinear problems whose linearizations fit to [8], thereby covering the Ste-
fan problem with surface tension (see Example 2.2) and also a wide range of
quasilinear parabolic problems with nonlinear dynamical boundary conditions
(see Example 2.1). We refer to [5], [11], [14], [16] [23], [36], [41], [42] and the
references therein for various approaches to specific reaction diffusion systems
or phase field models with dynamical boundary conditions. We treat the system

∂tu(t) +A(u(t), ρ(t))u(t) = R(u(t), ρ(t), ρ̇(t)), on Ω, t > 0,

∂tρ(t) +D0(u(t), ρ(t)) = 0, on Ω, t > 0,

Dj(u(t), ρ(t)) = 0, on Σ, t ≥ 0, j = 1, · · · ,m,
u(0) = u0, on Ω,

ρ(0) = ρ0, on Σ, (1.1)

on a spatial domain Ω which either has the smooth boundary Σ (one phase
setting) or is the disjoint union of two domains whose boundary consists of
the common part Σ and possibly of further disjoint ‘outer parts’ (two phase
setting). On these outer parts we impose linear boundary conditions not shown
in (1.1). The solutions u and ρ take values in finite dimensional vector spaces.

In Ω act the main quasilinear diffusion type operator A of (differential) order
2m and the lower order perturbation R. On the boundary we have a dynamical
boundary condition governed by the nonlinear term D0 and static boundary
condition governed by D1, · · · ,Dm. One can also consider this system as an
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evolution equation for the function w = (u, ρ), where u and ρ are directly
coupled via the nonlinearities and also via the static boundary condition. In the
operators Dj the orders with respect to u are stricly less than 2m. However, the
orders in ρ are not bounded apriori. The solution space for ρ has to be adapted
to the degree of unboundedness of these operators. We will assume that the
nonlinearities are C1 on the solution spaces of the linear theory and that the
resulting linearized boundary value problems are normally elliptic and satisfy
Lopatinsky–Shapiro conditions. Our setting is described Section 2, where we
also recall the necessary theory from [8].

Another main difficulty in (1.1) is the occurence of a time derivative of the
second component ρ in the evolution equation for u. Such terms arise if one
transforms a problem with moving boundaries to a fixed domain, cf. Exam-
ple 2.2. In (1.1) this term can be treated as a perturbation, which requires
extra time regularity of ∂tρ provided by the solution space of ρ. However, it
is not so clear how to incorporate such terms into the spectral theory of the
linearization which is crucial for our results on the longterm behavior. To deal
with this difficulty, we insert the second line into the first thereby eliminat-
ing the extra time derivative. The resulting perturbation problem is solved in
Corollary 2.6.

In Section 3 we establish the local wellposedness of (1.1) in a strong sense
in which the equations at the boundary are understood classically and the evo-
lution equation in Ω holds in Lp, see Theorem 3.3. Propositions 3.4 and 3.5
further show a smoothing effect of the solution with corresponding estimates
which give extra regularity of some of the invariant manifolds, see e.g. Theo-
rem 5.1(e). This property is crucial for the convergence analysis in [37]. Another
important issue is the description of the nonlinear solution manifold M given
in Lemma 3.2 based on its linear counterpart Corollary 2.7. This manifold in-
corporates first the static boundary conditions (which give a constraint by a
nonlinear equation) and second a ‘dynamical’ regularity constraint coming from
the dynamical boundary condition. The latter arises because ∂tρ(t) possesses
extra space regularity which must also be fulfilled by D0(u(t), ρ(t)).

In Section 4 we develop the linear analysis needed for the asymptotic theory
and also for [37]. The main difficulty is that the maximal regularity theory from
[8] fits very well to nonlinear theory of (1.1), in the sense that it provides the
needed extra time regularity for ∂tρ. However, the corresponding semigroup
lives on a smaller state space. See Theorem 2.5 and Corollary 2.6. More-
over, the extra time regularity induces the additional ’dynamical’ compatibility
condition which does not really fit into the semigroup framework. The latter
point can be seen e.g. when dealing with the spectral decomposition which is
crucial for our asymptotic theory, see the proof of Proposition 4.5. We can
deal with these problems using the parametrizations of M mentioned above
and also extrapolation theory for semigroups. For purely static conditions we
have developed the relevant techniques in [19]. However, it required much work
and several new arguments to extend these methods to dynamical boundary
conditions.

In our second main result, Theorem 5.1, we construct local stable and unsta-
ble manifoldsMs andMu near an equilibrium w∗ such that the linearization Λ0
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at this equilibrium has no spectrum on iR. We further characterize these man-
ifolds as spaces of initial values near w∗ such that the corresponding solutions
stay close to w∗ for all t ≥ 0, resp. t ≤ 0. Actually, the solutions then converge
to w∗ exponentially. In addition, these manifolds are locally invariant, have
trivial intersection and are tangential to the corresponding spectral subspaces
of Λ0. We use the implicit function theorem, the differentiability of the nonlin-
ear maps, the regularity properties of the linearized inhomogeneous problem,
see (2.25), and modifications of known techniques in dynamical systems.

Notation. We set Dk = −i∂k = −i∂/∂xk and use multi index notation. The
time derivative is denoted by ∂tu = u̇. For a linear operator A on a Banach
space we write D(A), σ(A) and ρ(A) for its domain, spectrum and resolvent set,
respectively. For Banach spaces X, Y and Z, L(X,Y ) is the space of bounded
linear operators, where L(X) := L(X,X), and L2(X × Y, Z) is the space of
bounded bilinear operators. A ball in X with the radius r and center at u will
be designated by BX(u, r). For an open set U ⊂ Rn with (sufficiently regular)
boundary ∂U , Ck(U) (resp., Ckb (U), Ckub(U), Ck0 (U)) are the spaces of k–times
continuously differentiable functions u on U (such that u and its derivatives up
to order k are bounded, bounded and uniformly continuous, vanish at ∂U and
at infinity (if U is unbounded), respectively), where Ckb (U) is endowed with its

canonical norm. For Ck(U), Ckb (U), Ckub(U), we require in addition that u and
its derivatives up to order k have a continuous extension to ∂U . For unbounded
U , we write Ck0 (U) for the space of u ∈ Ck(U) such that u and its derivatives
up to order k vanish at infinity. By W k

p (U) we denote the standard Sobolev
spaces and by W s

p (U) the Slobodetskii spaces endowed with the norm

|v|pW s
p (U) = |v|pLp(U)+

∑
|α|=k

[∂αv]pWσ
p (U) , [w]pWσ

p (U) =

∫∫
U2

|w(y)− w(x)|p

|y − x|n+σp
dx dy,

for s = k+σ with k ∈ N0 and σ ∈ (0, 1), see Remark 4.4.1.2 in [40]. The Sobolev-
Slobodetskii spaces on ∂U are defined via local charts, see Definition 3.6.1 in
[40]. In some exceptional cases we also use the Besov spaces Bk

pp(∂U) for k ∈ N,
see Definition 3.6.1 in [40], where Bs

pp(∂U) = W s
p (∂U) for non-integer s > 0. We

write C+ = {λ ∈ C |Reλ > 0} and J for a real interval with nonempty interior.
Finally, c is a generic constant and ε : R+ → R+ is a generic nondecreasing
function with ε(r)→ 0 as r → 0.

2. Setting and preliminaries

We fix numbers m ∈ N, mj ∈ {0, 1, 2m − 1}, and kj ∈ N0 ∪ {−∞} for
j ∈ {0, 1, . . . ,m}, describing the order of the differentiable operators appearing
in (1.1), where kj = −∞ if Dj does not depend on ρ, see (R) and (2.21) below.
We consider two different types of domains.

In the one phase setting, let Ω ⊂ Rn be an open connected set with a
compact boundary ∂Ω of class C2m+`−m0 and outer unit normal ν(x), where
` ∈ {m0,m0 +1, · · · } is given by (2.8) below. We set Σ := ∂Ω and Γ1 = Γ2 := ∅

In the two phase setting, let Ω = Ω1 ∪̇Ω2 for two open subsets Ωj ⊆ Rn
having compact boundaries of class C2m+`−m0 , where ∂Ωj = Σ ∪̇Γj for j = 1, 2,
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∂Ω1 ∩ ∂Ω2 = Σ, and Γj may be empty. In this case, ν(x) is the outer normal
of the interface Σ with respect to Ω1.

Since we will impose fixed linear homogeneous boundary conditions on Γj , in
both settings Σ is the important part of the boundary. Throughout, we fix

p ∈ (n+ 2m,∞) (2.1)

Let Vu and Vρ be finite dimensional Banach spaces with norms | · |, being the
range spaces of the solutions to (1.1). As function spaces on Ω we use

X = Lp(Ω;Vu) in the one and in the two phase case;

X1 = W 2m
p (Ω;Vu), Xγ = W 2m(1−1/p)

p (Ω;Vu), in the one phase case;

X1 = {v∈W 2m
p (Ω;Vu) |B0v = 0}, Xγ =(X,X1)1− 1

p
,p in the two phase case,

where B0 is an m-tuple of fixed linear boundary operators on Γ1 ∪ Γ2 which
are given by (2.22) and satisfy (LS) below. Moreover, by interpolation we have

Xγ ⊆ {v ∈W 2m(1−1/p)
p (Ω;Vu) |B0v = 0} in the two phase case,∗ using also that

X1 is dense in Xγ and that B0 ∈ B(W
2m(1−1/p)
p (Ω;Vu), X). We note that in

the two phase case X, Xγ and X1 can be identified with the product of the
corresponding spaces on Ω1 and Ω2.

Recall that the spatial trace operator γΘ induces continuous maps

γΘ : W s
p (Θ;Vu)→W s−1/p

p (∂Θ;Vu) (2.2)

for 1/p < s ≤ k if s− 1/p is not an integer and Θ has a compact boundary of
class Ck. At the boundary we employ the spaces

Yu = Lp(Σ;Vu), Yjγ = W
2mκj−2m/p
p (Σ;Vu), Yj1 = W

2mκj
p (Σ;Vu),

Yρ = Lp(Σ;Vρ), Y0γ = W 2mκ0−2m/p
p (Σ;Vρ), Y01 = W 2mκ0

p (Σ;Vρ),

Yk = Y0k × · · · × Ymk, Ŷk = Y1k × · · · × Ymk ,

for j ∈ {1, · · · ,m}, k ∈ {1, γ}, and the numbers

κj := 1− mj

2m
− 1

2mp
, j = 0, 1, . . . ,m. (2.3)

These spaces are thus determined by the orders mj of the differentiable (trace
type) operators in (1.1) mapping the solution u from Ω to the boundary. We
observe that X1 ↪→ Xγ ↪→ X, Yj1 ↪→ Yjγ ↪→ Yu, Y01 ↪→ Y0γ ↪→ Yρ,

Xγ ↪→ C2m−1
0 (Ω;Vu) in the one phase case,

Xγ ↪→ C2m−1
0 (Ω1;Vu)× C2m−1

0 (Ω2;Vu) in the two phase case;

Yjγ ↪→ C2m−1−mj (Σ;Vu), and Y0γ ↪→ C2m−1−m0(Σ;Vρ)

(2.4)

for j = 1, . . . ,m due to (2.1), (2.3), and standard embeddings, cf. §4.6.1 in [40].

∗Here it should hold equality due to our assumption (LS). Unfortunately, it is not so easy
to find this result in the literature in the full generality. We do not need this equality.
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For the investigation of (1.1), we need several spaces of functions on J × Ω
and J × Σ, where J ⊂ R is an interval with a nonempty interior. The base
space and solution space for u in (1.1) are

E(J) = Lp(J ;Lp(Ω;Vu)) = Lp(J ;X) and

Eu(J) = W 1
p (J ;X) ∩ Lp(J ;X1) ⊆ W 1

p (J ;Lp(Ω;Vu)) ∩ Lp(J ;W 2m
p (Ω;Vu)),

respectively, where the last inclusion is an equality in the one phase case. These
Banach spaces are endowed with their natural norms. We may omit J in the
notation if the interval is irrelevant or clear from the context. If J not compact,
we write Eloc(J) for the space of functions whose their restrictions to each
interval [a, b] ⊆ J belong to E([a, b]). Analogous notations are used for Eu and
the other function spaces introduced below.

We denote by γt : u 7→ u(t) the trace operator at time t ∈ J (if it is defined).
Very often we use the crucial facts

Eu(J) ↪→ Cub(J ;Xγ) ↪→ Cub(J ;C2m−1
0 (Ω;Vu)) (one phase), (2.5)

Eu(J) ↪→ Cub(J ;Xγ) ↪→ Cub(J ;C2m−1
0 (Ω1;Vu)× C2m−1

0 (Ω2;Vu)) (two phase);

γt : Eu(J)→ Xγ is continuous and has a bounded right inverse

for all t ∈ J , cf. Theorem III.4.10.2 in [3] and (2.4). The norms of the first
embeddings in (2.5) are uniform for J of length greater than a fixed d0 > 0.
For functions vanishing at t = inf J , this constant can be chosen independent
of J (see e.g. Theorem 4.2 of [27]).

In the one phase setting, the spatial trace and derivatives extend to contin-
uous operators

γΩ∂
β : Eu(J)→W

1− k
2m
− 1

2mp
p (J ;Yu) ∩ Lp(J ;W

2m−k− 1
p

p (∂Ω;Vu)) (2.6)

for 0 ≤ |β| ≤ k < 2m, where the trace has a bounded right inverse. See §3 of
[7] and also Lemma 3.4 and Theorem 4.5 of [27]. The natural trace spaces of
the solution space Eu are thus given by

Fj(J) = W
κj
p (J ;Lp(Σ;Vu)) ∩ Lp(J ;W

2mκj
p (Σ;Vu)) = W

κj
p (J ;Yu) ∩ Lp(J ;Yj1),

F0(J) = W κ0
p (J ;Lp(Σ;Vρ)) ∩ Lp(J ;W 2mκ0

p (Σ;Vρ)) = W κ0
p (J ;Yρ) ∩ Lp(J ;Y01)

for j ∈ {1, · · · ,m} endowed with their canonical norms, where we put

F(J) = F0(J)× · · · × Fm(J) and F̂(J) = F1(J)× · · · × Fm(J).

If we replace here Vu or Vρ by another space W , we write Fj(J ;W ) etc. We
further have

Fj(J) ↪→ Cub(J ;Yjγ) ↪→ Cub(J × Σ;V )

γt : Fj(J)→ Yjγ is continuous and has a bounded right inverse
(2.7)

for t ∈ J , j = 0, 1, . . . ,m and V = Vu if j ≥ 1 and V = Vρ if j = 0. (See §3 of
[7] and also Theorem 4.2 of [27].) The same remarks as after (2.5) apply.

The solution space Eρ for ρ in (1.1) is rather sophisticated. It is chosen such
that the operators Dj in (1.1) map Eρ into the trace spaces Fj of the solutions
u. It thus strongly depends on the orders kj of the differential operators acting
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on ρ in (1.1), which are not restricted a priori. We follow the presentation in

[8] and put J̃ =
{
j ∈ {0, 1, . . . ,m}

∣∣ kj 6= −∞} as well as

`j = kj −mj +m0, ` = max
j=0,1,...,m

`j ≥ m0. (2.8)

It is important to note that

2mκj + kj = 2mκ0 + `j , j = 0, 1, . . . ,m. (2.9)

We then define

Eρ(J) = W 1+κ0
p

(
J ;Lp(Σ;Vρ)

)
∩ Lp

(
J ;W `+2mκ0

p (Σ;Vρ)
)

∩W 1
p

(
J ;W 2mκ0

p (Σ;Vρ)
)
∩
⋂

j∈J̃
W

κj
p

(
J ;W

kj
p (Σ;Vρ)

)
.

(2.10)

Observe that ρ has extra space and time regularity compared to u. This is
needed in important applications and for the underlying linear theory, see Ex-
ample 2.2 and Theorem 2.5. One can visualize Eρ by the points (0, 1 + κ0),

(`+2mκ0, 0), (2mκ0, 1) and (kj , κj) for j ∈ J̃ , corresponding to the space-time
differentiability of the spaces Fi on the right-hand side of (2.10). The Newton
polygon NP for Eρ is then defined as the convex hull of these points together
with (0, 0). The leading part LNP of NP is the part of its boundary connecting
(0, 1 + κ0) to (`+ 2mκ0, 0) counterclockwise. We set

J = {j ∈ J̃
∣∣ `j = ` or (kj , κj) ∈ LNP}.

Let Fi and Fj be two different spaces on the right-hand side of (2.10). It is
known that Fi ∩ Fj embeds into all spaces whose space-time regularity corre-
sponds to the line segment connecting the two points that represent Fi and Fj
in NP, see §2 of [8] and also Proposition 3.2 of [27]. Consequently, the defi-
nition of Eρ given in (2.10) may contain redundant spaces. Below we discuss
nonredundant descriptions of Eρ taken from §2 of [8], see also §2 in [28]. From
there we will also recall the representations of the temporal trace space Zγ of
Eρ and of the temporal trace space Z1

γ of the time derivative ρ̇ of ρ ∈ Eρ. In
particular, it holds

∂β ∈ B(Eρ(J),Fj(J)), Eρ(J) ↪→ Cub(J ;Zγ), ∂t ∈ L(Eρ(J), Cub(J ;Z1
γ))

(γt, γt∂t) ∈ L(Eρ(J), Zγ × Z1
γ) has a bounded right inverse, (2.11)

γt ∈ L(Eρ(J), Zγ) has a bounded right inverse,

if |β| ≤ kj and t ∈ J . The assertion in the second line of (2.11) is shown in §4.1
of [8], and it implies the last one. The same remarks as after (2.5) apply. The
trace spaces Zγ and Z1

γ are given by W s
p (Σ;Vρ) for the numbers s > 0 such that

(s, k + 1/p) belongs to leading part of NP for k = 0 and k = 1, respectively,
see §2 of [8] and also Theorem 4.2 of [27].

To state the descriptions of Eρ, Zγ and Z1
γ , one has to distinguish between

three cases, where we write Lp instead of Lp(Σ;Vρ) etc. and use that κj > 1/p
holds for all j due to (2.1).

Case 1: ` = 2m. One has

Eρ(J) = W 1+κ0
p (J ;Lp) ∩ Lp(J ;W 2m(1+κ0)

p )
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since all other spaces in (2.10) correspond to points on or below the straight
line s = 1 + κ0 − r/2m from (0, 1 + κ0) to (2m + 2mκ0, 0), due to (2.9). It
further holds

Zγ = W 2m(κ0+1−1/p)
p (Σ;Vρ), Z1

γ = W 2m(κ0−1/p)
p (Σ;Vρ) = Y0γ .

Case 2: ` < 2m. One has

Eρ(J) = W 1+κ0
p (J ;Lp) ∩ Lp(J ;W `+2mκ0

p ) ∩W 1
p (J ;W 2mκ0

p )

since (1, 2mκ0) lies above the line segment s = 1 + κ0 − r(1 + κ0)/(` + 2mκ0)
from (0, 1 + κ0) to (` + 2mκ0, 0) and all points (κj , kj) are below the line s =
1 + (2mκ0− r)/` connecting (1, 2mκ0) and (0, `+ 2mκ0). One also obtains the
trace spaces

Zγ = W 2mκ0+`(1−1/p)
p (Σ;Vρ), Z1

γ = W 2m(κ0−1/p)
p (Σ;Vρ) = Y0γ .

Case 3: ` > 2m. Now (1, 2mκ0) belongs to the interior of NP. The leading
part is given by the vertices

P0 = (0, 1 + κ0), P1 = (kj1 , κj1), . . . , Pq = (kjq , κjq), Pq+1 = (`+ 2mκ0, 0)

for some q ∈ N, where these pairs are ordered with increasing kj and decreasing
κj . It can be seen that `ji ∈ (2m, `) for i = 1, . . . , q − 1 and `q = `. It holds

Eρ(J) = W 1+κ0
p (J ;Lp) ∩ Lp(J ;W l+2mκ0

p ) ∩
⋂

j∈J
W

κj
p (J ;W

kj
p ).

For later use, see (LS±∞) below, we define k−1 := 0, κ−1 := 1 + κ0,

J2i :=
{
j ∈ J ∪ {−1}

∣∣ (kj , κj) = Pi
}
, i = 0, . . . , q,

J2i+1 :=
{
j ∈ J ∪ {−1}

∣∣ (kj , κj) ∈ NPi}, i = 0, . . . , q,

where NPi is the edge connecting Pi and Pi+1. In case 3 it finally holds

Zγ = W `+2m(κ0−1/p)
p (Σ;Vρ), Z1

γ = B
kj1 (κ0−1/p)/(1+κ0−κj1 )
pp (Σ;Vρ).

(Recall that Bs
pp = W s

p if s > 0 is not an integer.)

We now come back to the general situation. To state our main assumptions,
we introduce the spaces

Z = W 2mκ0
p (Σ;Vρ) = Y01, Z1 = W `+2mκ0

p (Σ;Vρ),

E = X × Z, E1 = X1 × Z1, Eγ = Xγ × Zγ , E1(J) = Eu(J)× Eρ(J),

for the solutions (u(t), ρ(t)). Clearly, Z1 ↪→ Zγ ↪→ Z.
Throughout, Wγ denotes a nonempty convex open subset of Eγ . We define

W1 = {w0 ∈ E1

∣∣w0 ∈Wγ},
W1(J) = {w ∈ E1(J)

∣∣w(t) ∈Wγ (∀ t ∈ J)}
(2.12)

Then, W1 is convex and open in E1, and W1(J) is convex and (if J is compact)
open in E1(J), due to (2.5) and (2.11). The nonlinear maps in (1.1) shall satisfy

(R) A ∈ C1(Wγ ;L(X1, X)), R ∈ C1(Wγ×Y0γ ;X), and D = (D0, . . . ,Dm) ∈
C1(W1;Y1) induces a map D ∈ C1(W1(J);F(J)) for any compact J . The
first derivatives of these maps are bounded and uniformly continuous on
all closed balls.
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We consider A′(w) as bilinear map from Eγ×X1 to X and A′(w)v as a bounded
linear map from Eγ to X, where w ∈ Wγ and v ∈ X1. The embeddings (2.5),
(2.7), (2.11) and (2.19) then imply that these operators also induce maps

A ∈ C1(W1(J);Cb(J ;L(X1, X))) ∩ C1(W1(J)× Lp(J ;X1);E(J)),

R ∈ C1(W1(J);Cb(J ;X)), D ∈ C1(Wγ ;Yγ),

respectively. We set D̂ = (D1, . . . ,Dm). Occasionally, we will need one more
degree of smoothness of the operators as recorded in the following hypothesis.

(RR) Condition (R) holds and the maps A′ : Wγ → L2(Eγ × X1, X), R′ :
Wγ×Y0γ → L(Eγ×Y0γ , X), D′ : W1(J)→ L(E1(J),F(J)) are Lipschitz
on closed balls.

We introduce two basic types of examples for such maps covering the three
cases ` = 2m, ` < 2m and ` > 2m. In the first example we use the one phase
setting, whereas the second one involves two phases.

Example 2.1. Let Ω ⊆ Rn be a domain with a compact boundary of class
C2+`−m0 . Reaction–diffusion equations or phase field models on Ω with dynam-
ical boundary conditions on ∂Ω lead to the following operators, where ρ = γΩu,
V := Vu = Vρ = CN and we write the diffusion part in non-divergence form:

[A(u)v](x) =
∑
|α|=2

aα(x, u(x),∇u(x))Dαv(x), x ∈ Ω,

[R(u)](x) =f(x, u(x),∇u(x)), x ∈ Ω, (2.13)

[D0(u, ρ)](z) =b(z, γΩu(z), γΩ∇m0u(z)) + cg(y, ρ(g(y)), . . . ,∇k0ρ(g(y))),

z = g(y) ∈ Σ, for m0 ∈ {0, 1}, k0 ∈ N0, local coordinates g at x ∈ ∂Ω, functions
u ∈ Xγ , v ∈ X1, and ρ ∈ Z1, where the term γΩ∇m0u disappears if m0 = 0
and the terms cg shall induce a map which does not depend on the coordinates.
Finally, we set D1(u, ρ) = γΩu− ρ, i.e., k1 = m1 = 0. We assume that

(a) aα ∈ C1(V × V n;Cb(Ω;L(V ))) for α ∈ Nn0 with |α| = 2, and
aα(x, 0) −→ aα(∞) in L(V ) as x→∞ if Ω is unbounded;

(b) f ∈ C1(V × V n;Cb(Ω;V )), and f(·, 0, 0) ∈ Lp(Ω) if Ω is unbounded;
(c) b ∈ C2(∂Ω× V × V n;V ) if m0 = 1 and b ∈ C3(∂Ω× V ;V ) if m0 = 0,

(d) cg ∈ C3−m0(∂Ω× V × · · · × V (nk0 );V ) for all local coordinates g.

In view of (2.5) and (2.11), only continuous functions will be inserted into
the nonlinearites. One can check (R) as in Proposition 10 of [19], where the
case c = 0 was treated. Here we have ` = max{k0,m0}. For k0 = 2 (surface
diffusion) we are in Case 1. If k0 = 1 (surface convection), we are in Case 2.
Similarly one can treat higher order problems, cf. [19]. ♦

Example 2.2. The Stefan problem with Gibbs–Thompson law is a prototypical
example for our setting in Case 3, see the introduction for references.

Two phases of a substance occupy at time t ≥ 0 open subsets Di(t) of a fixed
bounded domain D ⊆ Rn with ∂D ∈ C2 and outer unit normal νD, where the
liquid phase is contained in D1(t) and the solid one in D2(t), say. The domains
have the compact interface Γ(t) ⊆ D so that D1(t) ∪̇Γ(t) ∪̇D2(t) = D. We
assume that Γ(t) ∩ ∂D = ∅ for all t ≥ 0. The phases have the temperatures
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ui(t), which are subject to the standard heat equations in Di(t) with a Neumann
boundary condition on ∂D. On the interface the temperature u1(t) = u2(t) is
proportional to the mean curvature H(Γ(t)) of Γ(t), where the mean curvature
is chosen to be negative at x ∈ Γ(t) if D1(t) is convex near x. (In the classical
Stefan problem one assumes that u1(t) = u2(t) = 0 on the interface.) Moreover,
the interface is driven by the Stefan condition saying that its normal velocity
V (t) is proportional to the jump in the heat fluxes, where the normal ν of Γ(t)
is defined with respect to D1(t). Here the interface and the temperatures are
unknown. We thus obtain the system

∂tui − di∆ui = 0, t > 0, x ∈ Di(t),

∂νDu2 = 0, t ≥ 0, x ∈ ∂D,
ui = σH(Γ(t)), t ≥ 0, x ∈ Γ(t), (2.14)

d2∂νu2 − d1∂νu1 = lV, t ≥ 0, x ∈ Γ(t),

ui(0) = ui0, x ∈ Di
0, Γ(0) = Γ0,

for constants d1, d2, σ, l > 0, initial domains Di
0 ⊆ D and a closed compact C2

hypersurface Γ0 ⊆ D with with Γ0 = ∂D1
0 and D1

0 ∪̇Γ0 ∪̇D2
0 = D, and initial

temperature distributions ui0 on Di
0. Actually, this a simplified model and we

refer to [34] for a thermodynamically consistent version allowing for different
heat capacities in the phases, kinetic undercooling and coefficients depending
on the temperature. This problem could also be treated by the methods in the
present paper, but for simplicity we restrict ourselves to the system (2.14).

The approach of [12], [31], and [34] relies on the so called Hanzawa transfor-
mation to a fixed domain. One chooses a domain Ω1 ⊂ Ω1 ⊂ D with smooth
boundary Σ = ∂Ω1 being close to Γ0 in Hausdorff distance. Let Ω2 = D \ Ω1

and Ω = Ω1 ∪̇Ω2. Then Ω2 is connected, but Ω1 may have finitely many com-
ponents. One can parametrize a tubular neighborhood around Σ by base points
y on Σ and the signed normal distance r to Σ. If the distances are less than a
number 2a > 0 (determined by Σ), this parametrization gives rise to a diffeo-
morphism. Given a height function ρ(t) : Σ → (a, a), we can now describe an
interface Γ(t) at time t ≥ 0 by the map Σ 7→ D, y 7→ y + ρ(t, y)νΣ(y). This
map can be extended to a diffeomorphism Θρ : Rn → Rn mapping Σ onto Γ(t)
and Ωi onto Di(t), which is constant outside a neighborhood of Σ.

We can now make the transformation v = u ◦ Θρ =: Φ∗ρu with inverse

u = v ◦ Θ−1
ρ =: Φρ

∗v. Let Γ(ρ) = Θρ(Σ) and d = d11D1 + d21D2 . We then

define the transformed operators by A0(ρ) = −Φ∗ρ(d∆)Φρ
∗, H(ρ) = Φ∗ρH(Γ(ρ)),

R0(ρ, ∂tρ) = ∂t − Φ∗ρ∂tΦ
ρ
∗, and put C(ρ) = −β(ρ)−1Φ∗ρ(d2∂ν − d1∂ν)Φρ

∗ with a
certain function β(ρ) > 0. We thus obtain the system

∂tv +A0(ρ)v = R0(ρ, ∂tρ)v, t > 0, x ∈ Ω,

∂νDv = 0, t ≥ 0, x ∈ ∂D,
v − σH(ρ) = 0, t ≥ 0, x ∈ Σ,

∂tρ+ C(ρ)v = 0, t ≥ 0, x ∈ Σ,

v(0) = v0, x ∈ Ω, ρ(0) = ρ0, x ∈ Σ,
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which is of the form (1.1) with m = 1, m0 = 1, k0 = −∞ (cf. Example 2.4),
k1 = 2, m1 = 0, ` = 3 > 2m = 2. We observe that here

Eu(J) = Lp(J,W
2
p (Ω) ∩N(∂νD)) ∩W 1

p (J, Lp(Ω)),

Eγ = (W
2− 2

p
p (Ω) ∩N(∂νD))×W

4− 3
p

p (Σ),

Eρ(J) = Lp(J,W
4− 1

p
p (Σ)) ∩W

1− 1
2p

p (J,W 2
p (Σ)) ∩W

3
2
− 1

2p
p (J, Lp(Σ)),

↪→ C(J ;C3(Σ)) ∩ C1(J ;C(Σ)),

and the restrictions v|Ωi belong to C(J ;C1(Ωi)). We set Wγ = {(v, ρ) ∈
Eγ | |ρ|C1 < b} for a sufficiently small b ∈ (0, a]. From the explicit formulas
for these maps given e.g. in Section 2 of [34] one can deduce that (RR) (and
also (S) below) holds, cf. Lemma 7.4 in [12] or part (iv) in the proof of Theo-
rem 3.5 of [34]. ♦

We further impose ellipticity conditions on the linearizations of our non-
linear maps A, R, Dj . For functions w∗ = (u∗, ρ∗) ∈ W1(J), t ∈ J and
j ∈ {0, 1, . . . ,m}, we define

Bj(t) = ∂1Dj(u∗(t), ρ∗(t)) ∈ L(X1, Yj1) ∩ L(Xγ , Yjγ),

Cj(t) = ∂2Dj(u∗(t), ρ∗(t)) ∈ L(Z1, Yj1) ∩ L(Zγ , Yjγ),

A(t) = A(w∗(t)) ∈ L(X1, X), (2.15)

A∗u(t) =A(w∗(t))+∂1A(u∗(t), ρ∗(t))u∗(t)−∂1R(u∗(t), ρ∗(t), ρ̇∗(t)) ∈ L(X1, X),

A∗ρ(t) = ∂2A(u∗(t), ρ∗(t))u∗(t)− ∂2R(u∗(t), ρ∗(t), ρ̇∗(t)) ∈ L(Zγ , X),

A∗ρ̇(t) = −∂3R(u∗(t), ρ∗(t), ρ̇∗(t)) ∈ L(Y0γ , X),

A∗(t) = (A∗u(t), A∗ρ(t), A∗ρ̇(t)) ∈ L(X1 × Zγ × Y0γ , X).

For a time independent w0 = (u0, ρ0) ∈ Wγ , we take some (u∗, ρ∗) ∈W1([0, 1])
with u∗(0) = u0 and ρ∗(0) = ρ0 (e.g. with ρ̇∗(0) = 0) and write A = A(0),
Bj = Bj(0) and Cj = Cj(0), cf. (2.5), (2.7), (2.11). For (w0, y0) ∈W1 × Y0γ we
define A∗ by inserting (w0, y0) instead of (w∗(t), ρ̇∗(t)). For an equilibrium w0

we will always take y0 = 0. For simplicity, we set

B = (B0, . . . , Bm), B̂ = (B1, . . . , Bm), C = (C0, . . . , Cm), Ĉ = (C1, . . . , Cm).

We also make use of the operator matrices

Λ =

(
A 0
B0 C0

)
, Λ∗ =

(
A∗u −A∗ρ̇B0 A∗ρ −A∗ρ̇C0

B0 C0

)
(2.16)

acting from E1 to E, see (2.15), with given w0 ∈ Wγ for Λ and (w0, y0) ∈
W1× Y0γ for Λ∗. (If we deal with equilibria we put y0 = 0.) We see below that
these matrices generate analytic semigroups after restricting them to suitable
domains. The semigroup generated by −Λ∗ will play an important role in the
study of asymptotic properties of (1.1) later on. In the third case (` > 2m)
these semigroups do not act on E but on the smaller space E0 defined by

Z0 = Bς
pp(Σ;Vρ), where ς = 2mκ0 if ` ≤ 2m, ς =

kj1κ0

1 + κ0 − κj1
if ` > 2m,

E0 = X × Z0. (2.17)
11



The space Z0 occurs naturally in view of the embedding

Eρ ↪→W 1
p (J ;Z0), (2.18)

see p.3157 in [8] or Proposition 3.2 of [27]. The trace spaces are ordered as

Z0 ↪→ Z, Z1 ↪→ Zγ ↪→ Z0 ↪→ Z1
γ ↪→ Y0γ . (2.19)

(For the first and last embedding use (2.9) and `j1>2m in Case 3.) The domain
of the generators will contain compatibility conditions expressed by the spaces

Ẽγ = {(v, σ) ∈ Eγ
∣∣B0v + C0σ ∈ Z1

γ},

E0
γ = {(v, σ) ∈ Ẽγ

∣∣ B̂v + Ĉσ = 0}, (2.20)

E0
1 = {(v, σ) ∈ E1

∣∣B0v + C0σ ∈ Z0, B̂v + Ĉσ = 0},

which are Banach spaces endowed with the canonical norms |(v, σ)|Eγ + |B0v+
C0σ|Z1

γ
and |(v, σ)|E1 + |B0v + C0σ|Z0 , respectively, due to (2.15) and (2.19).

We equip Λ with the domain D(Λ) = E0
1 and denote by Λ0 the restriction of

Λ∗ to D(Λ0) = E0
1 .

For a given (u∗, ρ∗) ∈ W1([0, T ]) and any T > 0, we will assume that the
operators A(t), B(t) and C(t) with t ∈ [0, T ] satisfy the assumptions of [8]; i.e.,
they are differentiable operators

A(t)v(x) =
∑
|α|≤2m

aα(t, x)Dαv(x), Bj(t)v(y) =
∑
|β|≤mj

bjβ(t, y)γΩD
βv(y)

Cj(t)σ ◦ g(z) =
∑
|γ|≤kj

cg
jγ(t, z)Dγ

n−1(σ ◦ g)(z) (2.21)

for (v, σ) ∈ Eγ , j ∈ {0, 1, . . . ,m}, x ∈ Ω, y ∈ Σ, t ∈ [0, T ], local coordi-
nates g for Σ and z belonging to the domain of g in Rn−1. Usually we omit
the trace operator here. Observe that the coefficients of Cj(t) depend on the
local coordinates g, but the operator itself is independent of the choice of co-
ordinates. In the two phase case the term bjβ(t, y)γΩD

βv(y) is understood as

b1jβ(t, y)γ1
ΩD

βv(y)− b2jβ(t, y)γ2
ΩD

βv(y) where γiΩ gives the trace of functions on

Ωi to the interface Σ. Still in the two phase case, on the (possibly empty)
outside boundaries Γ1 and Γ2 we consider boundary operators

B0
j v(y) =

∑
|β|≤m0

j

b0jβ(y)γΩD
βv(y) (2.22)

of order m0
j ∈ {0, · · · , 2m−1} for y ∈ Γ1 ∪̇Γ2 and j = {1, . . . ,m}. We set B0 =

(B0
1 , . . . , B

0
m). We start with the regularity assumptions for the coefficients.

(S) The operators A(t), B(t) and C(t) are given by (2.21). If |α| = 2m,
then aα ∈ C([0, T ]×Ω;L(Vu)) and, if Ω is unbounded, a(t, x) converges
as |x| → ∞ to some a(t,∞) uniformly in t ∈ [0, T ]. If |α| < 2m, then
aα ∈ (Lp + L∞)([0, T ] × Ω;L(Vu)). For β ≤ mj , |γ| ≤ kj , j = 0, . . . ,m
and all coordinates g, it holds bjβ, c

g
jγ ∈ Fj([0, T ];V ) in the one phase

case as well as b1jβ, b
2
jβ, c

g
jγ ∈ Fj([0, T ];V ) and b0jβ ∈ C

2m−m0
j (Γ1∪̇Γ2;Vu)

(for j ≥ 1) in the two phase case.
12



Here we have V = L(Vu, Vρ), resp. V = L(Vu), for bjβ and j = 0, resp. j ≥ 1,
and V = L(Vρ), resp. V = L(Vρ, Vu), for cg

jβ and j = 0, resp. j ≥ 1. The

function spaces Fj arise naturally in view of (2.6) and (2.11).
The symbols of the principal parts of the linear differential operators are

denoted by A#, Bj# and Cj#, cf. e.g. [6], where we put Cj#(t) = 0 if j /∈ J .
We first assume that the operators A(t) are normally elliptic; i.e.,

(E) σ(A#(t, x, ξ)) ⊂ C+ and (if Ω is unbounded) σ(A#(t,∞, ξ)) ⊂ C+, for

x ∈ Ω, t ∈ [0, T ] and ξ ∈ Rn with |ξ| = 1.

To formulate the Lopatinskii–Shapiro conditions, at a given point x ∈ Σ we
rotate the coordinate system such that ν(x) = (0, ..., 0,−1) ∈ Rn, without
changing the notation. Moreover, in the two phase case we reflect the coeffi-
cients and functions in Ω2 in normal direction to Ω1. On Ω1 we thus obtain a
system of two components: the given one on Ω1 and the reflected one from Ω2.
The latter is still normally elliptic. For x ∈ Σ, the conditions below shall refer
to this modified system in the two phase setting, where we set V = Vu in the
one phase case and V = V 2

u in the two phase case.

(LS) For each x ∈ Σ, t ∈ [0, T ], λ ∈ C+ and ξ′ ∈ Rn−1 with |λ|+ |ξ′| 6= 0, the
ordinary initial value problem(

λ+A](t, x, ξ′, Dy)
)
v(y) = 0, y > 0,

B0](t, x, ξ
′, Dy)v(0) +

(
λ+ Cg

0](t, x, ξ
′)
)
σ = 0,

Bνj](t, x, ξ′, Dy)v(0) + Cg
j](t, x, ξ

′)σ = 0, j = 1, . . . ,m,

has only the trivial solution (v, σ) = 0 in C0([0,∞);V )× Vρ. Moreover,
in the two phase case on the outside boundaries Γ1 ∪̇Γ2 the analogous
condition shall hold for A and B0

j .

In Cases 2 and 3, the following additional ‘asymptotic’ conditions are required,
respectively.

(LS−∞) Let ` < 2m. For each x ∈ Σ, t ∈ [0, T ], λ ∈ C+ and ξ′ ∈ Rn−1 with
|λ|+ |ξ′| 6= 0, the ordinary initial value problem(

λ+A](t, x, ξ′, Dy)
)
v(y) = 0, y > 0,

Bνj](t, x, ξ′, Dy)v(0) = 0, j = 1, ...,m,

and for all λ ∈ C+ and |ξ′| = 1 the problem

A](t, x, ξ′, Dy)v(y) = 0, y > 0,

B0](t, x, ξ
′, Dy)v(0) +

(
λ+ Cg

0](t, x, ξ
′)
)
σ = 0,

Bj](t, x, ξ′, Dy)v(0) + Cg
j](t, x, ξ

′)σ = 0, j = 1, . . . ,m,

only have the trivial solution (v, σ) = 0 in C0([0,∞);V )× Vρ.
(LS+

∞) Let ` > 2m. For each x ∈ Σ, t ∈ [0, T ], λ ∈ C+ and ξ′ ∈ Rn−1 \ {0}, the
ordinary initial value problem(

λ+A](t, x, ξ′, Dy)
)
v(y) = 0, y > 0,

Bj](t, x, ξ′, Dy)v(0) + δj,J2q+1C
g
j](t, x, ξ

′)σ = 0, j = 0, . . . ,m,
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and for all λ ∈ C+ \ {0}, |ξ′| = 1 and i = 1, . . . , 2q, the problem(
λ+A](t, x, 0, Dy)

)
v(y) = 0, y > 0,

B0](t, x, 0, Dy)v(0) + δ−1,Jiλσ + δ0,JiC
g
0](t, x, ξ

′)σ = 0,

Bj](t, x, 0, Dy)v(0) + δj,JiC
g
j](t, x, ξ

′)σ = 0, j = 1, . . . ,m,

have only the trivial solution (v, σ) = 0 in C0([0,∞);V ) × Vρ. Here,
δj,Ji = 1 if j ∈ Ji and δj,Ji = 0 otherwise.

We first give typical examples for these cases.

Example 2.3. We continue to discuss Example 2.1. One can show (S) as in
in Proposition 10 of [19], where also the derivatives were computed for c = 0.
To illustrate the ellipticity conditions, we recall two typical linearizations from
Examples 3.6 and 3.2 of [8], respectively. Here m = 1 and σ = γΣv is the
static boundary condition so that m1 = k1 = 0. The linear model problems for
dynamic boundary conditions with surface convection looks like

∂tv −∆v = g, t > 0, x ∈ Ω,

∂tσ + ∂νv + a · ∇Σσ = h, t > 0, x ∈ Σ,

for the surface gradient ∇Σ and a tangential vector field a ∈ C1(Σ,Rn−1). The
ellipticity conditions in Case 2 hold with k0 = m0 = 1. Dynamic boundary
conditions with surface diffusion are described by the system

∂tv −∆v = g, t > 0, x ∈ Ω,

∂tσ + ∂νv + ∆Σσ = h, t > 0, x ∈ Σ,

for the Laplace Beltrami operator ∆Σ. It satisfies the ellipticity conditions in
Case 1 with m0 = 1 and k0 = 2. Similarly one treats the Cahn–Hilliard phase
field model, where m = 2, see Example 3.3 in [8]. ♦

Example 2.4. In the framework of Example 2.2 we focus on the most impor-
tant case for later results, namely the linearization at an equilibrium which is
given by a sphere Σ of radius R > 0 and by constant temperature. (General
initial configurations are similarly treated in e.g. [34].) Here we obtain

∂tv − d∆v = f, t > 0, x ∈ Ω,

l ∂tρ− (d2∂νv2 − d1∂νv1) = g, x ∈ Σ,

∂νDv = 0, x ∈ ∂D,

v + σ
( 1

R2
+

1

n− 1
∆Σ

)
ρ = h, t ≥ 0, x ∈ Σ,

see equations (1.8) in [31] and (4.3) in [34]. One can check that the ellipticity
assumptions hold as in Example 3.4 of [8] for the one phase case. Here, m0 = 1,
m1 = 0, 2m = k1 = 2, k0 = −∞ and ` = `1 = 3 > 2m. ♦

Condition (LS) is analogous to the usual Lopatinski Shapiro conditions, see
e.g. [6], [7] and the references therein. The other two conditions have been
introduced and discussed in [8]. There it is also shown that (E), (LS) and,
if if ` 6= 2m, (LS±∞) are necessary for the following crucial regularity result.
It is taken from Theorems 2.1 and 2.2 of [8], where part (c) can be shown as
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Corollary 2.3 of [8]. However, the results in [8] were only proved in the one phase
setting. To extend them to the two phase case, we proceed as in Theorem 3.3 of
[34]. One first reduces the assertion via localization and perturbation to model
problems with constant coefficients on the full space for the interior points x, on
the halfspace for x in the outer boundaries Γ1 ∪Γ2 and on Rn−1× (R \ {0}) for
x on the interface Σ (where Ω2 corresponds to the lower halfplane). The first
two problems have been solved in [6] and [7]. To solve the third one, we reflect
the functions the lower halfplane to one on the upper halfplane, obtaining a
second component. Employing the Lopatinski Shapiro conditions stated above,
one can then proceed as in [8] in the one phase case.

Theorem 2.5. Assume that the operators A(t), B(t), C(t) and B0, t ∈ J =
[0, T ], are defined for some w∗ ∈ E1([0, T ]) and satisfy (S), (E), (LS), and
(LS−∞) if ` < 2m or (LS+

∞) if ` > 2m. Then the following assertions are true.
(a) There is a unique solution (u, ρ) ∈ E1(J) of the problem

∂tu(t) +A(t)u(t) = f(t), on Ω, t ∈ (0, T ],

∂tρ(t) +B0(t)u(t) + C0(t)ρ(t) = g0(t), on Σ, t ∈ [0, T ],

Bj(t)u(t) + Cj(t)ρ(t) = gj(t), on Σ, t ∈ [0, T ], j = 1, . . . ,m,

B0u(t) = 0, on Γ1 ∪ Γ2, t ∈ [0, T ],

(u(0), ρ(0)) = (u0, ρ0), on Ω× Σ, (2.23)

(where we drop the equation B0u(t) = 0 in the one phase setting) if and only if
f , g, u0 and ρ0 belong to the data space

D(J) :=
{

(u0, ρ0, f, g) ∈ Xγ × Zγ × E(J)× F(J)
∣∣Bj(0)u0 + Cj(0)ρ0 = gj(0)

for j = 1, . . . ,m; g0(0)−B0(0)u0 − C0(0)ρ0 ∈ Z1
γ

}
.

The corresponding solution operator S : D(J) → E1(J) is continuous. The
norm of S is bounded uniformly in T ′ ∈ (0, T ] if we restrict it to the subspace
D0([0, T ′]) of D([0, T ′]) of data with g(0) = 0.

(b) If the coefficients do not depend on time, the operator −Λ with D(Λ) = E0
1

generates an analytic C0–semigroup in E0.
(c) There is a µ0 ≥ 0 larger than the growth bound of −Λ such that the results

on (2.23) hold on J = R+ if we replace ∂t by ∂t +µ (2.23) for any µ ≥ µ0, and

‖(u, ρ)‖Lp(R+;E)) ≤
c

µ
‖(u0, ρ0, f, g)‖D(R+) (2.24)

Here D(J) is a Banach space endowed with the norm

‖f‖E(J) + ‖g‖F(J) + |(u0, ρ0)|Eγ + |g0(0)−B0(0)u0 − C0(0)ρ0|Z1
γ

and D0 is closed in it, due to (2.7), (2.15) and (2.19). The assertion concerning
D0 can be checked as in e.g. Theorem 2.2 of [28]. We note that the compatibility
conditions expressed by D are preserved by the solutions of (2.23). Later we
mostly need the following variant of the above theorem which involves lower
order terms, cf. (2.15) and (2.16).

15



Corollary 2.6. Assume that (R) and the assumptions of Theorem 2.5 are valid.
Then the assertions (a) and (b) of this theorem still hold for the problem

∂tu(t) +A∗u(t)u(t) +A∗ρ(t)ρ(t) +A∗ρ̇(t)ρ̇(t) = f(t), on Ω, t ∈ (0, T ],

∂tρ(t) +B0(t)u(t) + C0(t)ρ(t) = g0(t), on Σ, t ∈ [0, T ],

B̂(t)u(t) + Ĉ(t)ρ(t) = ĝ(t), on Σ, t ∈ [0, T ],

B0u(t) = 0, on Γ1 ∪ Γ2, t∈ [0, T ],

(u(0), ρ(0)) = (u0, ρ0), on Ω× Σ, (2.25)

(where we drop the equation B0u(t) = 0 in the one phase setting) instead of
(2.23) and the operator Λ0 := Λ∗|E0

1 instead of Λ. (Λ∗ is defined for (w∗, y∗) ∈
W1 × Y0γ, see (2.16) and (2.20).) After increasing µ0 if needed, for every
(u0, ρ0, f, g) ∈ D(R+) there is a unique solution (u, ρ) ∈ E1(R+) of the system

∂tu(t) + (A∗u(t) + µ−A∗ρ̇(t)B0(t))u(t)

+(A∗ρ(t)−A∗ρ̇(t)C0(t))ρ(t) = f(t), on Ω, t ∈ (0, T ],

∂tρ(t) +B0(t)u(t) + (C0(t) + µ)ρ(t) = g0(t), on Σ, t ∈ [0, T ],

B̂(t)u(t) + Ĉ(t)ρ(t) = ĝ(t), on Σ, t ∈ [0, T ],

B0u(t) = 0, on Γ1 ∪ Γ2, t ∈ [0, T ],

(u(0), ρ(0)) = (u0, ρ0), on Ω× Σ, (2.26)

(where we drop the equation B0u(t) = 0 in the one phase setting) for each
µ ≥ µ0, and it holds ‖(u, ρ)‖E1(R+) ≤ c ‖(u0, ρ0, f, g)‖D(R+).

Proof. (1) To solve the problem (2.25) on J = [0, T ], we fix (u0, ρ0, f, g) ∈ D(J).
Let (v, σ), (v, σ) ∈ E1(J). We set

f̃(v, σ) = f̃ := f + (A−A∗u)v −A∗ρσ −A∗ρ̇σ̇ ∈ E(J).

Let Φ(v, σ) ∈ E1(J) be the solution (2.23) for the data (u0, ρ0, f̃ , g) ∈ D(J).
The function Φ(v, σ)−Φ(v, σ) then solves (2.23) with u0 = 0, ρ0 = 0 and g = 0.
Theorem 2.5, (2.15), and the embeddings (2.5), (2.11), (2.19) thus yield

‖Φ(v, σ)− Φ(v, σ)‖E1(J) ≤ c ‖f̃(v, σ)− f̃(v, σ)‖E(J)

≤ cT 1/p
(
‖v − v‖C(J ;Xγ) + ‖σ − σ‖C(J ;Zγ) + ‖∂t(σ − σ)‖C(J ;Z1

γ)

)
≤ c̃T 1/p‖(v, σ)− (v, σ)‖E1(J) .

Here we can take the same constants if we replace T by T ′ ∈ (0, T ] since the
involved differences vanish at t = 0. For T ′ = min{T, (2c̃)−p} we obtain a fix
point (u, ρ) = Φ(u, ρ) ∈ E1([0, T ′]) which solves (2.25). By a finite iteration,
the first assertion follows.

(2) Note that (A∗ρ̇(t)B0(t), A∗ρ̇(t)C0(t)) ∈ L(Eγ , X), and hence Λ − Λ0 is a
lower order perturbation of (Λ, D(Λ)), due to (2.15) and (2.16). So the assertion
about Λ0 holds. If the data belong to D(R+) and µ ≥ µ0, we further obtain a
solution (u, ρ) ∈ Eloc

1 of (2.26) as in Step (1). Theorem 2.5 then implies that

‖(u, ρ)‖E1([0,T ]) ≤ c ‖(u0, ρ0, f , g)‖D([0,T ])

≤ ĉ
(
‖(u0, ρ0, f, g)‖D([0,T ]) + ‖(u, ρ)‖Lp([0,T ];Eγ)

)
,
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where f = f +A∗ρ̇B0u+A∗ρ̇C0ρ. Here and below, the constants do not depend
on T ≥ 1 and µ ≥ µ0. On the right hand side we can now interpolate Xγ

between X and X1, as well as Zγ between Z and Z1. By means of Young’s
inequality and (2.24), we deduce

‖(u, ρ)‖Lp([0,T ];Eγ) ≤ (4ĉ)−1 ‖(u, ρ)‖Lp([0,T ];E1) + c ‖(u, ρ)‖Lp([0,T ];E)

≤ (4ĉ)−1 ‖(u, ρ)‖Lp([0,T ];E1) + c/µ
(
‖(u0, ρ0, f, g)‖D([0,T ]) + ‖(u, ρ)‖Lp([0,T ];Eγ)

)
.

Fixing a sufficiently large µ0 ≥ 0, we conclude that ‖(u, ρ)‖E1([0,T ]) ≤
c ‖(u0, ρ0, f, g)‖D([0,T ]) for all T ≥ 1; thus arriving at the asserted estimate. �

In order to treat the nonlinear compatibility conditions related to (1.1), we
need an ‘almost right inverse’ of the map (B,C) constructed in the next lemma,
cf. Proposition 5 in [19] for the simpler case of static boundary conditions.

Corollary 2.7. Assume that (R) holds. Given (u0, ρ0) ∈ Wγ, take some
(u∗, ρ∗) ∈ W1([0, T ]) and T > 0 with u∗(0) = u0 and ρ∗(0) = ρ0. Assume
that the corresponding operators A(t), B(t), C(t) and B0, t ∈ [0, T ], satisfy
(S), (E), (LS), and (LS−∞) if` < 2m or (LS+

∞) if` > 2m. Put A = A(0),
B = B(0) and C = C(0). Then there is a map Nγ ∈ L(Yγ , Eγ) such that

(B̂, Ĉ)Nγ = I1, (B0, C0)Nγ − I0 ∈ L(Yγ , Z
1
γ), where I0(ψ0, . . . , ψm) = ψ0 and

I1(ψ0, . . . , ψm) = (ψ1, . . . , ψm) =: ψ̂.

Proof. We first note that T > 0 and (u∗, ρ∗) ∈W1([0, T ]) with u∗(0) = u0 and
ρ∗(0) = ρ0 exist due to (2.5) and (2.11). Using (2.7), for given ψ ∈ Yγ we
find a function g ∈ F([T/2, T ]) with g(T/2) = ψ and ‖g‖F ≤ c |ψ|Yγ . Set g(t) =

2tT−1g(T −t) for t ∈ [0, T/2]. Note that ‖g‖F([0,T ]) ≤ c |ψ|Yγ . Then (0, 0, 0, g) ∈
D([0, T ]) and Theorem 2.5 gives a solution (v, σ) ∈ E1([0, T ]) of (2.23) for this

data. Defining Nγψ := (v(T/2), σ(T/2)), we see that (B̂, Ĉ)Nγψ = ψ̂ and
(B0, C0)Nγψ − ψ0 = σ̇(T/2) ∈ Z1

γ . The asserted continuity follows from

|(v(T/2), σ(T/2))|Eγ + |σ̇(T/2)|Z1
γ
≤ c ‖(v, σ)‖E1 ≤ c ‖g‖F ≤ c |ψ|Yγ ,

because of Theorem 2.5 and the embeddings (2.5), (2.11). �

We conclude this section with a simple lemma concerning Slobodeckii spaces.

Lemma 2.8. Let a < b < d, q ∈ (1,∞), κ > 1/q, and V be a Banach space.
If u ∈ W κ

q ((a, b);V ) and v ∈ W κ
q ((b, d);V ) satisfy u(b) = v(b) (where the trace

exists by Sobolev’s embedding), then the function w given by w = u on (a, b] and
w = v on [b, d) belongs to W κ

q ((a, d);V ) with ‖w‖Wκ
q
≤ cW (‖u‖Wκ

q
+ ‖v‖Wκ

q
).

Proof. For simplicity, we assume that a and d are finite. Define u0 = u − u(b)
on (a, b) and v0 = v − v(b) on (b, d) and extend these functions by 0 to (a, d)
keeping the notation. It holds that

‖u0‖Wκ
q ((a,d);V ) ≤ c ‖u0‖Wκ

q ((a,b);V ) ≤ c ‖u‖Wκ
q ((a,b);V ),

and similarly for v. (The continuity of the 0–extension is shown by interpolation
between Lq and W 1

q with 0 boundary conditions.) The assertion now follows

from w = u0 + v0 + 2u(b). �
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3. Wellposedness and regularity

In our main results we use the following linearization setup. Assume that
(R) holds and define the operators from (2.15) for any given w∗ = (u∗, ρ∗) ∈
W1(J) = W1. We put W∗1 = W1 − w∗ and define the nonlinear maps

F ∈ C1(W∗1;E) and G ∈ C1(W∗1;F) with

loc. bdd. derivative, F (0) = 0, G(0) = 0 and F ′(0) = 0, G′(0) = 0,
(3.1)

by setting

F (v, σ) =
(
A(w∗)v −A(w∗ + (v, σ))v

)
−
(
A(w∗ + (v, σ))u∗ −A(w∗)u∗ − [A′(w∗)u∗](v, σ)

)
+
(
R(w∗ + (v, σ), ρ̇∗ + σ̇)−R(w∗, ρ̇∗)−R′(w∗, ρ̇∗)(v, σ, σ̇)

)
,

G(v, σ) = D′(w∗)(v, σ) +D(w∗)−D(w∗ + (v, σ)), (3.2)

for (v, σ) ∈W∗1. We put Ĝ = (G1, . . . , Gm). It holds

F ′(ϕ)(u, ρ) = [A(w∗)−A(w∗ + ϕ)]u+ [A′(w∗)u∗ −A′(w∗ + ϕ)(u∗ + v)](u, ρ)

+ [R′(u∗ + v, ρ∗ + σ, ρ̇∗ + σ̇)−R′(u∗, ρ∗, ρ̇∗)](u, ρ, ρ̇),

G′(ϕ)(u, ρ) = [D′(w∗)−D′(w∗ + ϕ)](u, ρ) (3.3)

for ϕ = (v, σ) ∈ W∗1 and (u, ρ) ∈ E1. The asserted mapping properties easily

follow from (R) and the embeddings (2.5), (2.11), (2.19). Observe that D̂(w∗) =
0 and D0(w∗)(t) = −ρ̇∗(t) ∈ Z1

γ if w∗ solves (1.1) and that also D0(w∗) = 0 if
w∗ is an equilibrium of (1.1). Replacing here σ̇ by y ∈ Y0γ and fixing t ∈ J , we
obtain maps

F (t) ∈ C1((W1 − w∗(t))× Y0γ ;X),

G(t) ∈ C1(W1 − w∗(t);Y1) ∩ C1(Wγ − w∗(t);Yγ)
(3.4)

with the analogous properties as in (3.1).
Let w∗ = (u∗, ρ∗) ∈W1(J) be a solution of (1.1) for some J with min J = 0

and initial values (u0∗, ρ0∗). In view of the embeddings (2.5), (2.11), (2.19) and
the mapping properties in (R), the initial values and the solutions at time t
must belong to the solution manifold

M = {w0 = (u0, ρ0) ∈Wγ

∣∣ D̂(w0) = 0, D0(w0) ∈ Z1
γ}. (3.5)

For (u0, ρ0) ∈Wγ and w = (u, ρ) ∈ E1(J), we put (v0, σ0) = (u0−u0∗, ρ0−ρ∗0)
and (v, σ) = (u−u∗, ρ−ρ∗). Using the linearization described above and (2.15),
we see that (u0, ρ0) ∈M if and only if (v0, σ0) belongs to

M∗ =M− (u0∗, ρ0∗) = {(v0, σ0) ∈Wγ − (u0∗, ρ0∗)
∣∣ (B̂, Ĉ)(v0, σ0) = Ĝ(v0, σ0),

B0v0 + C0σ0 −G0(v0, σ0) ∈ Z1
γ}. (3.6)

Moreover, (u, ρ) ∈W1 solves (1.1) if and only if (v, σ) ∈W∗1 solves

∂tv(t) +A∗(t)(v(t), σ(t), σ̇(t)) = F (v, σ)(t), on Ω, t ∈ (0, T ],

∂tσ(t) +B0(t)v(t) + C0(t)σ(t) = G0(v, σ)(t), on Σ, t ∈ [0, T ],

B̂(t)v(t) + Ĉ(t)σ(t) = Ĝ(v, σ)(t), on Σ, t ∈ [0, T ]
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B0v(t) = 0, on Γ1 ∪ Γ2, t ∈ [0, T ],

(v(0), σ(0)) = (v0, σ0), on Ω× Σ. (3.7)

Here we drop the equation B0u(t) = 0 in the one phase setting. This equation
is mostly omitted in the following since it is already contained in the domain
of A∗(t) and in the solution space. We start with the basic existence and
uniqueness result for (1.1).

Proposition 3.1. Let (R) and (S) be true. Assume that (E) and (LS), as well
as (LS±∞) if ` ≷ 2m, hold for all functions (u0∗, ρ0∗) ∈Wγ. Let w0 = (u0, ρ0) ∈
M. Then there is a number T = T (w0) > 0 such that the problem (1.1) has a
unique solution w = (u, ρ) ∈W1([0, T ]) ↪→ C([0, T ];Wγ).

Proof. By (2.5) and (2.11) there exists a function w∗ = (u∗, ρ∗) ∈ E1(J) ↪→
C(J,Eγ) with w∗(0) = w0 and ∂tρ∗(0) = −D0(w0). Since w0 ∈ Wγ and w∗ is
continuous in Eγ there is a T0 > 0 with w∗ ∈ W1([0, T0]), cf. (2.12). For this
w∗, we define A(t), B(t) and C(t) as in (2.15). Consider the problem

∂tũ(t) +A(t)ũ(t) = R(w∗(t), ρ̇∗(t)) =: f0(t),

∂tρ̃(t) +B0(t)ũ(t) + C0(t)ρ̃(t) = D′0(w∗(t))w∗(t)−D0(w∗(t)) =: g0
0(t),

B̂(t)ũ(t) + Ĉ(t)ρ̃(t) = D̂′(w∗(t))w∗(t)− D̂(w∗(t)) =: ĝ0(t),

(ũ(0), ρ̃(0)) = (u0, ρ0), (3.8)

for t ∈ [0, T0]. Observe that f0 ∈ E([0, T0]), g0 ∈ F([0, T0]), ĝ0(0) = D̂′(w0)w0−
D̂(w0) = B̂(0)u0 + Ĉ(0)ρ0 and g0

0(0) − B0(0)u0 − C0(0)ρ0 = −D0(w0) ∈ Z1
γ .

Theorem 2.5 thus yields a solution w̃ = (ũ, ρ̃) ∈ E1([0, T0]) of (3.8). As above,
we find a T1 ∈ (0, T0] such that w̃ ∈ W1([0, T1]). It further holds ∂tρ̃(0) =
−D0(w0) = ∂tρ∗(0).

There is an r1 > 0 such that the closed ball in E1([0, T1]) with center w̃ and
radius r1 belongs to W1([0, T1]). We now define the space

Σ(T, r) = {w ∈ E1([0, T ])
∣∣w(0) = w0, ‖w − w̃‖E1([0,T ]) ≤ r} ⊆W1([0, T1])

for any r ∈ (0, r1] and T ∈ (0, T1]. The set Σ(T, r) is closed in E1([0, T ]). For a
given w = (u, ρ) ∈ Σ(T, r), we look at the linear problem

∂tv(t) +A(t)v(t) = R(w(t), ρ̇(t)) +A(t)u(t)−A(w(t))u(t),

∂tσ(t) +B0(t)v(t) + C0(t)σ(t) = D′0(w∗(t))w(t)−D0(w(t)),

B̂(t)v(t) + Ĉ(t)σ(t) = D̂′(w∗(t))w(t)− D̂(w(t)),

(v(0), σ(0)) = (u0, ρ0), (3.9)

for t ∈ [0, T ]. As above, Theorem 2.5 yields a solution ϕ = (v, σ) =: Φ(w) ∈
E1([0, T ]) of (3.9). Notice that w = (u, ρ) ∈ Σ(T, r) solves (1.1) if and only if
w = Φ(w). To obtain such a fixed point, we show that Φ is a strict contraction
on Σ(T, r) provided that T, r > 0 are small enough.

Let (z, τ) = Φ(w)−w̃ ∈ E1([0, T ]). We set g = D′(w∗)(w−w∗)−D(w)+D(w∗).
We observe that problems (3.8) and (3.9) show that (z, τ) satisfies

∂tz(t) +A(t)z(t) = R(w(t), ρ̇(t))−R(w∗(t), ρ̇∗(t))
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+ (A(w∗(t))−A(w(t)))u(t) =: f(t),

∂tτ(t) +B0(t)z(t) + C0(t)τ(t) = g0(t),

B̂(t)z(t) + Ĉ(t)τ(t) = ĝ(t),

(z(0), τ(0)) = 0,

for t ∈ [0, T ]. We note that g(0) = D(w0)−D(w0) = 0, as well as f ∈ E([0, T ])
and g ∈ F([0, T ]) by (R). Theorem 2.5 and (R) thus yield

‖(z, τ)‖E1([0,T ]) ≤ c (‖f‖E([0,T ]) + ‖g‖F([0,T ]))

≤ c
(
‖w − w∗‖Lp([0,T ];Eγ) + ‖∂t(ρ− ρ∗)‖Lp([0,T ];Y0γ) + ‖w − w∗‖C([0,T ];Eγ)

· ‖u‖Lp([0,T ];X1) + ε(‖w − w∗‖E1([0,T ])) ‖w − w∗‖E1([0,T ])

)
.

We next write w−w∗ = w− w̃+ w̃−w∗, estimate the p-norm by the supnorm,
use the embeddings (2.5), (2.11), (2.19) and the inquality ‖w − w̃‖E1 ≤ r. It
then follows

‖Φ(w)− w̃‖E1([0,T ]) ≤ c T
1
p
(
r + ‖w̃ − w∗‖C([0,T ];Eγ) + r+‖∂t(ρ̃− ρ∗)‖C([0,T ];Z1

γ)

)
+ c

(
r + ‖w̃ − w∗‖C([0,T ];Eγ))(r + ‖ũ‖Lp([0,T ];X1)

)
+ ε(r + ‖w̃ − w∗‖E1([0,T ])) (r + ‖w̃ − w∗‖E1([0,T ])).

Here the constants in Theorem 2.5 and the embeddings do not depend on
T ∈ (0, T1] since all relevant functions vanish at t = 0. Using once more
w̃(0) = w∗(0) and ∂tρ̃(0) = ∂tρ∗(0), we obtain T2 ∈ (0, T1] and r2 ∈ (0, r1]
such that ‖Φ(w) − w̃‖E1([0,T ]) ≤ r whenever T ∈ (0, T2] and r ∈ (0, r2]; i.e., Φ
leaves Σ(T, r) invariant for such T and r. By analogous arguments, we can fix
T ∈ (0, T2] and r ∈ (0, r2] such that Φ has a Lipschitz constant less or equal
1/2 on Σ(T, ρ). The resulting fixed point w is a local solution of (1.1) on [0, T ].

Assume there is a different solution ŵ of (3.7) on [0, T ]. Then there are
numbers t0, tn ∈ [0, T ) such that tn ↘ t0 as n→∞, w(t) = ŵ(t) for t ∈ [0, t0],
and w(tn) 6= ŵ(tn). We may apply the above argument with some T ′, r′ > 0,
the initial time t0, and the initial value w(t0) =: w1 ∈ M. This leads to a
contradiction establishing the uniqueness assertion. �

We now introduce in a standard way the maximal existence interval for the
solution with initial value w0 ∈M. Under the assumptions of Proposition 3.1,
let t+(w0) be the supremum of those T > 0 such that (1.1) has a solution
w ∈ E1([0, T ]). Proposition 3.1 implies that t+(w0) > 0. Moreover, for two
given solutions w1 on [0, a] and w2 on [a, b] of (1.1) with w1(b) = w2(b), we
obtain a solution w of (1.1) on [0, b] by setting w = w1 on [0, a] and w = w2 on
[a, b]. To see this, note that ρ̇1(a) = −D0(w1(a)) = ρ̇2(b), where wi = (ui, ρi),
so that w ∈ E1([0, b]) by Lemma 2.8.

To state our main well–posedness result, we need some more notation and
results related to the solution manifold M, recalling the definitions (2.15) and
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(3.2). For w∗ ∈M and ψ = (v0, σ0) ∈ Ẽγ (see (2.20)), we define

〈ψ〉γ = |ψ|Eγ +[ψ]γ , [ψ]γ = |D0(ψ + w∗)−D0(w∗)|Z1
γ

= |(B0, C0)ψ −G0(ψ)|Z1
γ
,

〈ψ〉1 = |ψ|E1 +[ψ]1, [ψ]1 = |D0(ψ + w∗)−D0(w∗)|Zγ = |(B0, C0)ψ −G0(ψ)|Zγ
(3.10)

For a solution ψ(t) = (v(t), σ(t)) of (3.7), the above quantities simplify to

〈ψ(t)〉γ = |ψ(t)|Eγ + |σ̇(t)|Z1
γ
, 〈ψ(t)〉1 = |ψ(t)|E1 + |σ̇(t)|Zγ . (3.11)

We note that [ψ]γ ≤ c |ψ|Eγ if ` ≤ 2m since then Z1
γ = Y0γ as observed in

Section 2, and thus |ψ|Eγ and 〈ψ〉γ are locally equivalent in this case. Given
r > 0, we further introduce

M∗(r) := {ψ ∈M∗
∣∣ 〈ψ〉γ < r}.

The next lemma gives a local chart for such restrictions of the solution manifold.

Lemma 3.2. In the setting of Corollary 2.7, we define G by (3.2) for some
w∗ = (u∗, ρ∗) ∈ M. Then the map Q = I − NγG belongs to C1(Wγ − w∗;Eγ)
with a locally bounded derivative, Q(0) = 0 and Q′(0) = I. It maps M∗ into
E0
γ (see (2.20)) with |ψ − NγG(ψ)|E0

γ
≤ c 〈ψ〉γ for ψ ∈ M∗. We can invert

I − NγG on some ball BEγ (0, r0) ⊆ Wγ − w∗ and set h = NγG(I − NγG)−1.
There is a radius r > 0 such that M∗(r) is the graph of h, i.e.,

M∗(r) = {ψ = ξ + h(ξ)
∣∣ ξ ∈ BE0

γ
(0, r0), 〈ψ〉γ < r}.

In particular, w∗ +E0
γ is the tangent plane of M at w∗ and Q is a local chart.

Proof. Corollary 2.7 and (3.4) imply that the first sentence about Q holds. The
inverse mapping theorem then shows that Q is invertible in Eγ near 0, so that
Q−1 is defined on BEγ (0, r0) ⊆Wγ −w∗ for some r0 > 0. For ψ = (v, σ) ∈M∗,
we obtain Q(ψ) ∈ E0

γ since

(B̂, Ĉ)(ψ −NγG(ψ)) = (B̂, Ĉ)ψ − Ĝ(ψ) = 0,

|Q(ψ)|Eγ + |(B0, C0)Q(ψ)|Z1
γ
≤ |ψ|Eγ + |NγQ(ψ)|Eγ + |(B0, C0)ψ −G0(ψ)|Z1

γ

+ |G0(ψ)− (B0, C0)NγG(ψ)|Z1
γ

≤ c 〈ψ〉γ + c |G(ψ)|Yγ ≤ c 〈ψ〉γ , (3.12)

where we use w∗ ∈M, ψ ∈M∗ and again Corollary 2.7 and (3.4).
Let ξ ∈ E0

γ with |ξ|Eγ < r0. Define h = NγG(I −NγG)−1 on BEγ (0, r0) and

set ψ = ξ + h(ξ). Then, ψ = (I −NγG)−1(ξ) ∈Wγ −w∗ and ξ = ψ −NγG(ψ).
Corollary 2.7 thus yields

(B̂, Ĉ)ψ = (B̂, Ĉ)(NγG(ψ) + ξ) = Ĝ(ψ),

(B0, C0)ψ −G0(ψ) = (B0, C0)NγG(ψ)−G0(ψ) + (B0, C0)ξ ∈ Z1
γ .

As in (3.12), we obtain 〈ψ〉γ ≤ ĉ |ξ|E0
γ
, so that ψ ∈M∗(r) for all r ∈ (0, ĉr0).

Conversely, take ψ ∈ M∗(r) for some r ∈ (0, ĉr0). Set ξ = Q(ψ) ∈ E0
γ .

Fixing a sufficiently small r > 0, estimate (3.12) yields |ξ|Eγ < r0 if 〈ψ〉γ < r.
It follows that

ξ + h(ξ) = ψ −NγG(ψ) +NγG(I −NγG)−1(ψ −NγQ(ψ)) = ψ.
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Thus M∗(r) is the graph of h, and the other assertions follow. �

Our main result on wellposedness shows that (1.1) generates a local semiflow
on the nonlinear phase spaceM. Moreover, the problem possesses a smoothing
effect. We write tw for the function t 7→ tw(t).

Theorem 3.3. Let (R) and (S) be true. Assume that (E) and (LS), as well as
(LS±∞) if ` ≷ 2m, hold for all functions (u0, ρ0) ∈ Wγ. Let w0∗ = (u0∗, ρ0∗) ∈
M. Proposition 3.1 yields a solution w∗ = w(·;w0∗) of (1.1) with w∗(0) = w0∗.
Take T ∈ (0, t+(w0∗)) and set J = [0, T ] and J+ = [0, t+(w0∗)). Then the
following assertions are true.

(a) If t+(w0∗) < ∞, then ‖w∗‖E1(J+) = ∞ or there are J+ 3 tn → t+(w0∗)
such that w∗(tn) tends to ∂Wγ in Eγ as n→∞. Moreover, then (w∗(t), σ̇∗(t))
does not converge in Wγ × Z1

γ as t→ t+(w0∗).
(b) There is a radius r > 0 such that for each ϕ0 = (v0, σ0) ∈ M∗(r) there

exists a solution w = (u, ρ) ∈ W1(J) of (1.1) with w(0) = w0 = (u0, ρ0) =
w0∗ + ϕ0. The map ϕ0 7→ w − w∗ from M∗(r) to W1(J) is C1

b . It holds

‖w−w∗‖E1(J) ≤ c 〈w0 −w0∗〉γ = c |w0 −w0∗|Eγ + c |D0(w0 +w0∗)−D0(w0∗)|Z1
γ

(c) We have t∂tw ∈ E1(J), and thus

tu ∈W 2
p (J ;X) ∩W 1

p (J ;X1) ∩ C1(J ;Xγ),

tρ ∈W 2+κ0
p (J ;Lp)∩W 2

p (J ;Z) ∩W 1
p (J ;Z1) ∩ C1(J ;Zγ) ∩

⋂
j∈J̃

W
1+κj
p (J ;W

kj
p ).

Proof. (a) Suppose that t+(w0∗) <∞, w∗ ∈ E1(J+) and dEγ (w∗(t), ∂Wγ) ≥ δ >
0 for all t ∈ J+. By the embeddings (2.5), (2.11) and (2.19), w∗(t) converges
in Eγ to some w1 ∈ Wγ as t → t+(w0∗). Due to (1.1) and (R), we obtain

D̂(w1) = 0 in the limit, and ρ̇∗(t) = −D0(w∗(t)) converges to D0(w1) in Z1
γ . As

a result, w1 belongs to M and we can extend the solution across t+(w0∗) by
the remarks before Lemma 3.2, contradicting the definition of t+(w0∗).

(b) We linearize the problem along w∗(t), t ∈ J , and obtain the operators
given by (2.15) and (3.2). Let S : D(J) → E1(J) be the solution operator for
(2.25). For ξ ∈ E0

γ (see (2.20)) and ψ = (v, σ) ∈W∗1(J) = W∗1, we define

Φ(ξ, ψ) = ψ − S(ξ +NγG(ψ(0)), F (ψ), G(ψ)).

Due to Corollary 2.7, (2.7) and ξ ∈ E0
γ , we have (B̂, Ĉ)(ξ + NγG(ψ(0))) =

Ĝ(ψ(0)) and (B0, C0)(ξ + NγG(ψ(0))) − G0(ψ(0)) ∈ Z1
γ . Corollary 2.6,

(3.1) and (3.4) thus yield that that Φ(0, 0) = 0, Φ ∈ C1(E0
γ × W∗1;E1(J)),

and ∂2Φ(0, 0) = I. Therefore the implicit function theorem gives a ball
B(r0) = B(0, r0) in E0

γ and a map φ ∈ C1
b (B(r0);W∗1) such that φ(0) = 0

and Φ(ξ, φ(ξ)) = 0 for all ξ ∈ B(r0). (One obtains the boundedness of the
derivative by decreasing r0 if necessary.) In particular, φ(ξ) solves (3.7) with
the initial value ξ + Nγγ0G(φ(ξ)) ∈ M∗. If we start with a given function
w0 = (u0, ρ0) ∈ M, we set ϕ0 = (v0, σ0) = w0 − w0∗ ∈ M∗. Lemma 3.2 yields
that ξ := Q(ϕ0) belongs to E0

γ with |ξ|Eγ0 ≤ c 〈ϕ0〉γ . We can thus find an r > 0

such that |ξ|Eγ0 < r0 if 〈ϕ0〉γ < r. Then ϕ := φ(ξ) ∈ W∗1 solves (3.7) with the
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initial value ϕ(0) = ϕ0 +Nγ(G(ϕ(0))−G(ϕ0)) ∈Wγ . We further conclude that

|ϕ(0)|Eγ ≤ c ‖ϕ‖E1(J) = c ‖φ(ξ)− φ(0)‖E1(J) ≤ c |ξ|E0
γ
≤ c 〈ϕ0〉γ ≤ cr.

Corollary 2.7, (3.2) and (R) now yield

|ϕ(0)− ϕ0|Eγ ≤ c |G(ϕ(0))−G(ϕ0)|Yγ
≤ c

∣∣(D′(w∗)−D′(ϕ0 + w∗))(ϕ(0)− ϕ0)
∣∣
Yγ

+ c
∣∣D′(ϕ0 + w∗)(ϕ(0)− ϕ0) +D(ϕ0 + w∗)−D(ϕ(0) + w∗)

∣∣
Yγ

≤
(
ε(|ϕ0|Eγ ) + ε(|ϕ(0)− ϕ0|Eγ )

)
|ϕ(0)− ϕ0|Eγ

≤ ε(r) |ϕ(0)− ϕ0|Eγ .

Choosing a smaller r > 0 if necessary, we see that ϕ(0) = ϕ0, and thus
w := ϕ + w∗ solves (1.1) with the initial value w0. The asserted estimate
and differentiability now follow from the above results and Lemma 3.2.

(c) Let w = (u, ρ) solve (1.1) on [0, T ′], where w0 ∈ M and T ′ = (1 + ε)T <
t+(w0) for some ε ∈ (0, 1) and T > 0. Let J = [0, T ]. For λ ∈ (1− ε, 1 + ε) and
t ∈ J , we put wλ(t) = w(λt). We define the operators A∗(t), B(t) and C(t) as
in (2.15) with w∗ replaced by w. For ψ = (v, σ) ∈W1(J) = W1, we then set

F (λ, ψ(t)) = A∗(t)ψ(t)− λA(ψ(t))v(t) + λR(ψ(t), λ−1σ̇(t)),

G0(λ, ψ(t)) = B0(t)v(t) + C0(t)σ(t)− λD0(ψ(t)),

Ĝ(λ, ψ(t)) = B̂(t)v(t) + Ĉ(t)σ(t)− D̂(ψ(t)).

Then ψ = (v, σ) = wλ is the unique solution of the problem

∂tv(t) +A∗(t)ψ(t) = F (λ, ψ(t)), on Ω, a.e. t > 0,

∂tσ(t) +B0(t)v(t) + C0(t)σ(t) = G0(λ, ψ(t)), on Σ, t ≥ 0,

B̂(t)v(t) + Ĉ(t)σ(t) = Ĝ(λ, ψ(t)), on Σ, t ≥ 0,

(v(0), σ(0)) = w0, on Ω× Σ. (3.13)

Using (R) and (2.15), we infer F ∈ C1((1−ε, 1+ε)×W1;E) with ∂2F (1, w) = 0
and G ∈ C1((1 − ε, 1 + ε) ×W1;F) with ∂2G(1, w) = 0. As in Lemma 3.2 one
sees that ξ(λ) = w0 −NγG(λ,w0) ∈ E0

γ . We then define the map

Φ0(λ, ψ) = ψ − S(ξ(λ) +NγG(λ, ψ(0)), F (λ, ψ), G(λ, ψ)),

where S is the solution operator of (2.25) for the above introduced operators
A∗(t), B(t) and C(t). Since w solves (1.1), we have Φ0(1, w) = 0. As in part (b),
we deduce that Φ0 ∈ C1((1−ε, 1+ε)×W1;E1) and ∂2Φ0(1, w) = I. The implicit
function theorem thus yields an ε′ ∈ (0, ε) and a map φ0 ∈ C1

b ((1−ε′, 1+ε′);W1)
such that φ0(1) = w and Φ0(λ, φ0(λ)) = 0 for all λ ∈ (1 − ε′, 1 + ε′). Hence,
φ0(λ) solves (3.13) with w0 replaced by w0(λ) := [φ0(λ)](0) ∈M. Note that

w0(λ) = ξ(λ) +NγG(λ,w0(λ)) = w0 +Nγ
(
G(λ,w0(λ))−G(λ,w0)

)
,

w0(λ)− w0 = Nγ
(
D′(w0)(w0(λ)− w0) +D(w0)−D(w0(λ))

+ [(λ− 1)(D0(w0)−D0(w0(λ))), 0]
)
.
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Therefore, Corollary 2.7, (R), (2.5) and (2.11) yield

|w0(λ)− w0|Eγ ≤ c (ε(|w0(λ)− w0|Eγ ) + |λ− 1|) |w0(λ)− w0|Eγ
≤ c (ε(‖φ0(λ)− φ0(1)‖E1) + |λ− 1|) |w0(λ)− w0|Eγ

for constants c and functions ε with ε(r)→ 0 as r → 0 which do not depend on
λ. Decreasing ε′ > 0, we deduce that w0(λ) = w0, and thus φ0(λ) solves (3.13)
provided |λ− 1| is sufficiently small.

The uniqueness of (3.13) now yields wλ = φ0(λ), and hence λ 7→ wλ ∈ E1(J)
is continuously differentiable with derivative ( d

dλwλ)(t) = tẇ(λt). Taking λ = 1,
we deduce that t∂tw ∈ E1(J). Using also (2.5) and (2.11), we conclude that
∂t(tw) = t∂tw + w ∈ E1(J) ↪→ C(J ;Eγ); i.e., (c) is true (cf. (2.10)). �

We add a quantitative version of Theorem 3.3(c) which will allow us to im-
prove convergence from Eγ to E1 in Theorem 5.1 and in [37].

Proposition 3.4. In the setting of Theorem 3.3 we assume that w∗ ∈ E1 is an
equilibrium of (1.1). For T ∈ (0, t+(w0)), let r > 0 be given by Theorem 3.3.
Then there is an r′ ∈ (0, r] such that for w0 ∈ w∗ +M∗(r′) and T0 ∈ (0, T ) the
solution w = (u, ρ) = w(·;w0) ∈W1([0, T ]) satisfies

|w(t)−w∗|E1 + |ẇ(t)|Eγ ≤ c 〈w0−w∗〉γ , ‖t ∂t(w−w∗)‖E1([0,T ]) ≤ c 〈w0−w∗〉γ ,

for t ∈ [T0, T ] and constants independet of t and w0, where 〈w0 − w∗〉γ =
|w0 − w∗|Eγ + |D0(w0 + w∗)−D0(w∗)|Z1

γ
, see (3.10).

Proof. In contrast to the proof of Theorem 3.3(c) we now use (3.7) instead of
(1.1). We thus set v(t) = u(t)−u∗, σ(t) = ρ(t)−ρ∗, ϕ0 = (v0, σ0) = w0−w∗, and
linearize (1.1) at the equilibrium w∗, employing the operators from (2.15) and
(3.2) which now do not depend on time explicitely. Due to (3.7), the functions
vλ(t) = v(λt) and σλ(t) = σ(λt), t ∈ J = [0, T ], uniquely solve the problem

∂tz(t) +A∗(ψ(t), τ̇(t)) = A∗(ψ(t), τ̇(t))− λA∗(ψ(t), λ−1τ̇(t)) (3.14)

+ λF (ψ(t), λ−1τ̇(t)),

∂tτ(t) +B0z(t) + C0τ(t) = (1− λ)B0z(t) + (1− λ)C0τ(t) + λG0(ψ(t)),

B̂z(t) + Ĉτ(t) = Ĝ(ψ(t)),

(z(0), τ(0)) = (v0, σ0), (3.15)

for t ∈ J , where we write ψ = (z, τ) and take λ ∈ (1 − ε, 1 + ε) and ε ∈ (0, 1)
such that (1 + ε)T < t+(w0). We denote the right hand sides of (3.15) by

F (λ, ψ), G0(λ, ψ) and Ĝ(λ, ψ), respectively. We now proceed as in the proof of
Theorem 3.3(c) using the operator

Φ(λ, ψ) = ψ − S(ξ(λ) +NγG(λ, ψ(0)), F (λ, ψ), G(λ, ψ))

for λ ∈ (1 − ε, 1 + ε), ψ ∈ W∗1(J), and ξ(λ) = ϕ0 −NγG(λ, ϕ0). Here S is the
solution operator of (2.25) for the operators A∗, B and C. Since ϕ0 ∈ M∗,
we have ξ(λ) ∈ E0

γ by Corollary 2.7. As in Theorem 3.3, we then see that

Φ ∈ C1((1− ε, 1 + ε)×W∗1(J);E1(J)),

Φ(1, (v, σ)) = 0, and ∂2Φ(1, (v, σ)) = I − S(NγG′(ϕ0), F ′(v, σ), G′(v, σ)),
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where F and G are given by (3.2). In view of Corollaries 2.6 and 2.7, (3.1), (3.4)
and the estimate in Theorem 3.3(b), we obtain the invertibility of ∂2Φ(1, v, σ)
in E1(J) if r > 〈ϕ0〉γ is chosen small enough. Moreover, the inverse is uniformly
bounded. So the implicit function theorem provides us with a map φ ∈ C1((1−
ε̂, 1 + ε̂);W∗1(J)) such that φ(1) = (v, σ) and Φ(λ, φ(λ)) = 0 for |1− λ| ≤ ε̂ and
some ε̂ ∈ (0, 1). We set ϕ0(λ) = [φ(λ)](0) and note that φ(λ) solves (3.15) with
initial value ϕ0(λ) ∈M∗. We then compute

ϕ0(λ)−ϕ0 = Nγ [G(λ, ϕ(0)))−G(λ, ϕ0)]

= Nγ
[
G(ϕ0(λ))−G(ϕ0) + (1− λ)

(
D0(w∗+ϕ0(λ))−D0(w∗+ϕ0)

)]
= Nγ

[
(D′(w∗)−D′(w∗ + ϕ0))(ϕ0(λ)− ϕ0))

+D′(w∗ + ϕ0)(ϕ0(λ)− ϕ0) +D(w∗ + ϕ0)−D(w∗ + ϕ0(λ))

+ (1− λ)(D0(w∗ + ϕ0(λ))−D0(w∗ + ϕ0)))
]
.

Combined with Corollary 2.7, (2.5), (2.11) and (R), this identity leads to

|ϕ0(λ)− ϕ0|Eγ ≤ c
(
ε(|ϕ0|Eγ ) + ε(‖φ(λ)− φ(1)‖E1) + |λ− 1|

)
|ϕ0(λ)− ϕ0|Eγ .

We conclude that ϕ0(λ) = ϕ0, and hence φ(λ) = (vλ, σλ), if r > 0 and ε̂ > 0
are small enough. We put ϕ = (v, σ) = w − w∗, and further compute

∂1F (1, ϕ) = F (ϕ, σ̇)−A∗(ϕ, σ̇) + (A∗ρ̇ − ∂3F (ϕ, σ̇))σ̇

= A(w∗)u∗ ±A(w∗)u−A(w)u+R(w, ρ̇)−R(w∗, ρ̇∗) + (A∗ρ̇ − ∂3F (w, ρ̇))σ̇,

∂1G0(1, ϕ) = G0(ϕ)−B0v − C0σ = D0(w∗)−D0(w),

φ′(1)=−[∂2Φ(1, ϕ)]−1∂1Φ(1, ϕ) = [∂2Φ(1, ϕ)]−1S(0, ∂1F (1, ϕ), (∂1G0(1, ϕ), 0)).

Corollary 2.6, (R), (2.5), (2.11) and (2.19) thus yield

‖φ′(1)‖E1 ≤ c (‖v‖Eu+‖ϕ‖C(J ;Eγ) ‖u‖Eu + ‖ϕ‖Lp(J ;Eγ)+‖∂tσ‖Lp(J ;Y0γ )+‖ϕ‖E1)

≤ c ‖ϕ‖E1 ,

where we also use that ‖u‖Eu ≤ ‖u∗‖Eu + ‖v‖Eu ≤ c(1 + r) by Theorem 3.3(b).
Since t∂tϕ = φ′(1), we arrive at

‖t ∂t(w − w∗)‖E1(J) ≤ c ‖w − w∗‖E1(J) ≤ c 〈w0 − w∗〉γ ,

employing also Theorem 3.3(b). The remaining estimate then follows from
Sobolev’s embedding, (2.5) and (2.11). �

Finally, we replace in the above proposition the equilibrium w∗ by a gen-
eral solution w∗ of (1.1), under the somewhat stronger regularity assumption
(RR). This result will imply that certain invariant manifolds are Lipschitz in
E1 (instead of Eγ), see e.g. Theorem 5.1.

Proposition 3.5. In the setting of Theorem 3.3 we assume that (RR) holds
and that w∗ = (u∗, ρ∗) ∈ W1([0, T∗]) solves (1.1) with w∗(0) = w∗0 ∈ M.
Take T ∈ (0, T∗) and T0 ∈ (0, T ) and let r > 0 be given by Theorem 3.3(b).

25



Then there is an r′ ∈ (0, r] such that for every w0 ∈ w∗0 +M∗(r′) the solution
w = (u, ρ) ∈W1([0, T ]) of (1.1) satisfies

〈w(t)− w∗(t)〉1 ≤ c 〈w0 − w∗0〉γ , ‖t ∂t(w − w∗)‖E1([0,T ]) ≤ c 〈w0 − w∗0〉γ ,

for t ∈ [T0, T ] and constants independent of t and w0.

Proof. Theorem 3.3 gives the solution w = (u, ρ) ∈ W1([0, T ]) of (1.1) on
[0, T ]. Take ε > 0 with (1 + ε)T < T∗. We set ϕ = (v, σ) = w − w∗ and
ϕ0 = (v0, σ0) = w0 − w∗0, and linearize (1.1) at the function w∗ ∈ W1([0, T∗]),
employing the operators from (2.15) and (3.2). In view of (3.7), the functions
vλ(t) = v(λt) and σλ(t) = σ(λt), t ∈ J = [0, T ], uniquely solve the problem

∂tz(t) +A∗(t)(ψ(t), τ̇(t)) = A∗(t)(ψ(t), τ̇(t))− λA∗(λt)(ψ(t), λ−1τ̇(t))

+ λF (λt, ψ(t), λ−1τ̇(t)),

∂tτ(t) +B0(t)z(t) + C0(t)τ(t) = (B0(t)− λB0(λt))z(t) + (C0(t)− λC0(λt))τ(t)

+ λG0(λt, ψ(t)),

B̂(t)z(t) + Ĉ(t)τ(t) = (B̂(t)− B̂(λt))z(t) + (Ĉ(t)− Ĉ(λt))τ(t)

+ Ĝ(λt, ψ(t)),

(z(0), τ(0)) = (v0, σ0), (3.16)

for t ∈ J , where we write ψ = (z, τ) and take λ ∈ (1− ε, 1 + ε). We denote the

right hand sides of (3.16) by F (λ, ψ), G0(λ, ψ) and Ĝ(λ, ψ), respectively. Due
to (2.15) and (3.2), these maps can be written as

F (λ, ψ)(t) = A∗(t)(ψ(t), τ̇(t))− λA(w∗(λt) + ψ(t))(u∗(λt) + z(t))

+ λA(w∗(λt))u∗(λt) + λR(w∗(λt) + ψ(t), ρ̇∗(λt) + λ−1τ̇(t))

− λR(w∗(λt), ρ̇∗(λt))

G0(λ, ψ)(t) = B0(t)z(t) + C0(t)τ(t) + λD0(w∗(λt))− λD0(w∗(λt) + ψ(t)),

Ĝ(λ, ψ)(t) = B̂(t)z(t) + Ĉ(t)τ(t) + D̂(w∗(λt))− D̂(w∗(λt) + ψ(t)),

where (λ, ψ) ∈ (1 − ε, 1 + ε) × W∗1(J). As in the proof of Theorem A.1 in
[20], one deduces from Theorem 3.3(c) that the map λ 7→ w∗(λ ·) belongs to
C1((1− ε, 1 + ε);E1(J)) having the derivative ∂λw∗(λ ·) = tẇ∗(λ ·). Proceeding
as in Proposition 3.4, we then see that F ∈ C1((1− ε, 1+ ε)×W∗1(J);E(J)) and
G ∈ C1((1 − ε, 1 + ε) ×W∗1(J);F(J)) with F (1, ψ) = F (ψ), G(1, ψ) = G(ψ),
∂2F (1, ψ) = F ′(ψ) and ∂2G(1, ψ) = G′(ψ) for ψ ∈W∗1(J). We further obtain

∂1F (1, ψ) =
(
A(w∗)u∗ −A(w∗ + ψ)(u∗ + z)

)
+
(
A(w∗)u∗ −A(w∗ + ψ)

)
tu̇∗

+
(
A′(w∗)u∗ −A′(w∗ + ψ)

)
[tẇ∗, u∗]−A′(w∗ + ψ)[tẇ∗, z]

+
(
R(w∗ + ψ, ρ̇∗ + τ̇)−R(w∗, ρ̇∗)

)
− ∂3R(w∗ + ψ, ρ̇∗ + τ̇)[τ̇ ]

+
(
R(w∗ + ψ, ρ̇∗ + τ̇)−R(w∗, ρ̇∗)

)
[tu̇∗, tρ̇∗, tρ̈∗]

∂1G0(1, ψ) =
(
D0(w∗)−D0(w∗ + ψ)

)
+
(
D′0(w∗)−D′0(w∗ + ψ)

)
[tẇ∗],

∂1Ĝ(1, ψ) =
(
D̂′(w∗)− D̂′(w∗ + ψ)

)
[tẇ∗].
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for ψ = (z, τ) ∈ W∗1(J). Let S be the solution operator of (2.25). We now
proceed as in the previous proposition, using the operator

Φ(λ, ψ) = ψ − S(ξ +Nγγ0G(λ, ψ), F (λ, ψ), G(λ, ψ))

for λ ∈ (1 − ε, 1 + ε), ψ ∈ W∗1(J), and ξ := ϕ0 − NγG(λ, ϕ0) ∈ E0
γ , see

Corollary 2.7. So Corollaries 2.6 and 2.7, (2.7) and the above stated properties
of F (λ, ·) and G(λ, ·) yield that Φ ∈ C1((1− ε, 1 + ε)×W∗1(J);E1(J)),

Φ(1, ϕ) = 0, and ∂2Φ(1, ϕ) = I − S(NγG′(ϕ0), F ′(ϕ), G′(ϕ)).

Employing also (3.1), (3.4) and the estimate in Theorem 3.3(b), we obtain
the invertibility of ∂2Φ(1, ϕ) in E1(J) if r′ > 〈ϕ0〉γ is chosen small enough,
and the inverses are uniformly bounded. The implicit function theorem thus
gives a map φ ∈ C1((1 − ε̂, 1 + ε̂);W∗1(J)) such that φ(1) = ϕ = (v, σ) and
Φ(λ, φ(λ)) = 0 for |1 − λ| ≤ ε̂ and some ε̂ ∈ (0, 1). We set ϕ0(λ) = [φ(λ)](0)
and note that φ(λ) solves (3.16) with the initial value ϕ0(λ) ∈ M∗. As in the
proof of Proposition 3.4, we then compute

ϕ0(λ)− ϕ0 = Nγ [G(λ, ϕ0(λ))−G(λ, ϕ0)]

= Nγ
[
(D′(w∗0)−D′(w∗0 + ϕ0))(ϕ0(λ)− ϕ0))

+D′(w∗0 + ϕ0)(ϕ0(λ)− ϕ0) +D(w∗0 + ϕ0)−D(w∗0 + ϕ0(λ))

+(λ− 1)
(
D0(w∗0 + ϕ0))−D0(w∗0 + ϕ0(λ))

)]
.

This identity again leads to the estimate

|ϕ0(λ)− ϕ0|Eγ ≤ c
(
ε(|ϕ0|Eγ ) + ε(‖φ(λ)− φ(1)‖E1) + |λ− 1|

)
|ϕ0(λ)− ϕ0|Eγ .

We conclude that ϕ0(λ) = ϕ0, and hence φ(λ) = (vλ, σλ), if r > 0 and ε̂ > 0
are small enough. Observe that

φ′(1) = −[∂2Φ(1, ϕ)]−1∂1Φ(1, ϕ)

= −[∂2Φ(1, ϕ)]−1S
(
Nγγ0∂1G(1, ϕ), ∂1F (1, ϕ), ∂1G(1, ϕ)

)
.

The above formulas for ∂1F (1, ·) and ∂1G(1, ·), Corollaries 2.6 and 2.7, (RR),
Theorem 3.3 and the embeddings (2.5), (2.7), (2.11) and (2.19) thus yield

‖φ′(1)‖E1 ≤ c
(
‖ϕ‖C(J ;Eγ)(1 + ‖v‖Lp(J ;X1) + ‖∂tσ‖Lp(J ;Y0γ)) + ‖ϕ‖Lp(J ;Eγ)

+ ‖ϕ‖C(J ;Eγ) + ‖∂tσ‖C(J ;Y0γ) + ‖ϕ‖E1

)
≤ c ‖ϕ‖E1 ≤ c 〈ϕ0〉γ .

Taking also into account ∂t(tϕ) = ϕ+t∂tϕ = ϕ+φ′(1) and Sobolev’s embedding,
we arrive at the assertion as before. �

Example 3.6. We consider the Stefan problem with surface tension from Ex-
amples 2.2 and 2.4, taking as initial values interfaces Γ0 which are parametrized

by a function ρ0 ∈ W 4−3/p
p (Σ) over a sphere Σ as in Example 2.2 (i.e., Γ0 ∈

W
4−3/p
p ) together with initial temperatures u0 ∈ W 2−2/p

p (D \ Γ0). We further
assume the compatibility conditions u0i = σH(Γ0) on Γ0, d2∂νu2 − d1∂νu1 ∈
W

2−6/p
p (Γ0) and ∂νDu0 = 0 on ∂D. The above results then give local solutions of
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(2.14) still parametrized over Σ. In Theorem 3.1 of [34] a more realistic version
of (2.14) was solved for more general initial data (which would be also possible
here). Our results give additional differentiability with respect to initial data
and smoothing estimates, but see [12], [32]. ♦

4. Preparations for the asymptotic theory

We first establish several additional results about the linear problem (2.25)
and the operator Λ∗ from (2.16). We work under the following hypothesis.

Hypothesis 4.1. Let (w∗, y∗) ∈W1× Y0γ. Assume that (S), (E), (LS) and (if
` ≷ 2m) (LS±∞) hold at w∗. Define A∗ for (w∗, y∗).

Recall that the restriction −Λ0 of −Λ∗ to D(Λ0) = E0
1 generates an analytic

C0–semigroup T (·) on E0, see Corollary 2.6, (2.17) and (2.20). We need the
extrapolation space E−1 which is the completion of E0 with respect to the
norm |(µ + Λ0)−1w|E0 for any µ ≥ µ0 (where µ0 is given by Corollary 2.6).
There is a bounded extension −Λ−1 : E0 → E−1 of −Λ0 which is similar
to −Λ0 and generates the extension T−1(·) of T (·) on E−1. It further holds
T−1(t) ∈ L(E−1, E

0
1) for t > 0. (See e.g. [3] or [10].)

A solution of the problem (1.1), (2.25) or (3.7) (or of some equations of them)
on an (unbounded) interval J is a function w ∈ Eloc

1 (J) satisfying the respective
problem. Let α, β ∈ R. To study our equations on unbounded time intervals
we set eα(t) = eαt for t ∈ R, denoting restrictions of this function by the same
symbol. Moreover, on J = R we fix a smooth, strictly positive function eα,β
satisfying eα,β(t) = eα(t) for t ≤ −1 and eα,β(t) = eβ(t) for t ≥ 1. We then
introduce the weighted spaces

E1(R±, α) = {w
∣∣ eαw ∈ E1(R±)}, E1(α, β) = {w

∣∣ eα,βw ∈ E1(R)}, (4.1)

and their analogues for E, F and D, which are complete if endowed with the
canonical norms ‖w‖E1(R+,α) = ‖eαw‖E1(R+) etc. We also use the corresponding
norms on compact intervals J . We start with a version of the second part of
Corollary 2.6 for J ∈ {R−,R}.

Lemma 4.2. Assume that Hypothesis 4.1 holds. Let J ∈ {R−,R}, f ∈ E(J),
g ∈ F0(J). Then there is a unique w = (u, ρ) ∈ E1(J) satisfying the first three
equations of (2.26) on J for any µ ≥ µ0, where µ0 is given by Corollary 2.6.
Moreover, ‖w‖E1(J) ≤ c (‖f‖E(J) + ‖g‖F(J)).

Proof. For n ∈ N, we put Jn = J ∩ [−n, n] and take functions χn ∈ C2(Jn) with
uniformly bounded derivatives, χn(−n) = 0 and χn = 1 on J ∩ [−n+ 1, n]. We
set fn = χnf ∈ E(Jn) and gn = χng ∈ F(Jn). Due to Corollary 2.6 (and an
obvious time shift), there is a solution wn = (un, ρn) of (2.26) on Jn with data
(0, 0, fn, gn) ∈ D(Jn) and some µ ≥ µ0. Extending the data to [−n,∞) and
restricting the solution on [−n,∞) to Jn, we deduce from Corollary 2.6 that
the solution operator on Jn is bounded uniformly in n, and so

‖wn‖E1(Jn) ≤ c (‖fn‖E(Jn) + ‖gn‖F(Jn)) ≤ c (‖f‖E(J) + ‖g‖F(J)) =: c(f, g)

for all n ∈ N. We fix m ∈ N. There is a subsequence such that (unk , ρnk) ⇀
(um, ρm) weakly in E1(Jm). The limit functions also satisfy the first three
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equations of (2.26) with µ on Jm, due to the mapping properties of the lin-
ear operators described in (2.15), see also (R), (2.5) and (2.11). It still holds
‖(um, ρm)‖E1(Jm) ≤ c(f, g) for all m ∈ N. We can then take a subsubsequence

of (un, ρn) converging weakly in E1(Jm+1) to a solution (um+1, ρm+1) on Jm+1.
The functions (um+1, ρm+1) extend (um, ρm) since the subsubsequence still con-
verges weakly in E1(Jm) to (um, ρm). By induction, we thus obtain a solution
(u, ρ) of the first three equations of (2.26) on J fulfilling ‖(u, ρ)‖E1(J) ≤ c(f, g).

Let (v, σ) ∈ E1(J) satisfy the first three equations of (2.26) on J with f =
0 and g = 0. Due to the embedding (2.18), the function (v, σ) belongs to
W 1
p (R−;E0) ∩ Lp(R−;E1). Equations (2.26) thus imply (v, σ) ∈ Lp(R−;E0

1).

So Corollary 2.6 and (2.16) yield that (v(t), σ(t)) = e−µ(t−τ)T (t−τ)(v(τ), σ(τ))
for all t ≥ τ in J . Since this semigroup is exponentially stable by Corollary 2.6,
we derive (v, σ) = 0. �

The above lemma allows to solve the stationary problem related to (2.25).

Lemma 4.3. Assume that Hypothesis 4.1 holds. Let µ0 ≥ 0 be given by Corol-
lary 2.6 and set µ = µ0 + 1. Then there is an operator Sst ∈ L(X × Y1, E1)
such that, for any (x, y) ∈ X × Y1, the function Sst(x, y) is the unique solution
w ∈ E1 = X1 × Z1 of the boundary value problem

(µ+ Λ∗)w = (x, y0) and (B̂, Ĉ)w = ŷ.

Proof. Let (x, y) ∈ X × Y1. We set f = e1x ∈ E(R−) and g = e1y ∈ F(R−).
Lemma 4.2 gives a unique solution (ṽ, σ̃) ∈ E1(R−) of

(∂t + µ− 1)u(t) + (A∗u −A∗ρ̇B0)u(t) + (A∗ρ −A∗ρ̇C0)ρ(t) = f(t),

(∂t + µ− 1)ρ(t) +B0u(t) + C0ρ(t) = g0(t), (4.2)

B̂u(t) + Ĉρ(t) = ĝ(t),

for t ∈ R−. It further holds

‖(ṽ, σ̃)‖E1(R−) ≤ c (‖f‖E(R−) + ‖g‖F(R−)) ≤ c (|x|X + |y|Yγ ).

We set v = e−1ṽ and σ = e−1σ̃. Then (v, σ) solves the first three equations of
(2.26) with the constant inhomogeneities x and y. On the other hand, for any
r ≥ 0 the functions ṽr = erṽ(· − r) ∈ Eu(R−) and σ̃r = erσ̃(· − r) ∈ Eρ(R−)
also satisfy (4.2). Hence, ṽr = ṽ and σ̃r = σ̃ by the uniqueness. Since r ≥ 0
is arbitrary and (ṽ, σ̃) = e1(v, σ), it follows that (v, σ) =: Sst(x, y) does not

depend on time, and thus (µ+ Λ∗)w = (x, y0), (B̂, Ĉ)w = ŷ, and

|(v, σ)|E1 ≤ ‖(v, σ)‖E1([−1,0]) = ‖(e−1ṽ, e−1σ̃)‖E1([−1,0]) ≤ c ‖(ṽ, σ̃)‖E1([−1,0])

≤ c ‖(ṽ, σ̃)‖E1(R−) ≤ c (|ϕ|X + |ψ|Yγ ).

Let w = (v, σ) ∈ E1 satisfy (µ + Λ∗)w = 0 and (B̂, Ĉ)w = 0. Then
(B0, C0)w = −µσ ∈ Z1 ↪→ Z0 by (2.19) so that w ∈ E1

0 belongs to the kernel of
µ+ Λ0. Since µ ∈ ρ(−Λ0) by Corollary 2.6, the operator Sst is injective. �

We fix the number µ = µ0 +1 obtained in the above lemma for the remainder
of the paper. The next result allows to use the asymptotic behavior of T (·)
(determined by σ(Λ0)) in the investigation of the longterm behavior of the
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nonlinear problem (1.1), by means of the ‘mild formula’ in (d). Part (b) and
(2.19) give the embeddings

E0
1 ⊂ E1 ↪→ Eγ ↪→ E0 ↪→ E ↪→ E−1.

Observe that part (c) decribes the difference between Λ−1 and Λ∗ which ex-
presses the impact of the boundary conditions. We define

Π = (µ+ Λ−1)N1.

Proposition 4.4. Under Hypothesis 4.1, the following assertions hold.

(a) There are operators N1 ∈ L(Ŷ1, E1) and R ∈ L(E,E1) such that (µ +

Λ∗)N1 = 0 and (B̂, Ĉ)N1 = I
Ŷ1

, as well as (µ+ Λ∗)R = IE and (B̂, Ĉ)R = 0.

(b) We have E ↪→ E−1 and Λ−1w = Λ∗w for all w ∈ E1 with (B̂, Ĉ)w = 0.

(c) It holds Π ∈ L(Ŷ1, E−1) and Λ∗w = Λ−1w −Π(B̂, Ĉ)w for all w ∈ E1.

(d) Let J = [0, T ], (w0, f, g) ∈ D(J), and put f̃ := f − A∗ρ̇g0 ∈ E(J). Then
the solution w ∈ E1(J) of (2.25) is given by

w(t) = T (t)w0 +

∫ t

0
T−1(t− τ)[(f̃(τ), g0(τ)) + Πĝ(τ)) dτ, t ∈ J. (4.3)

Moreover, w is the solution of (2.26) with data (w0, f̃ , g) and µ = 0, where we

have ‖f̃‖E(J) ≤ c (‖f‖E(J) + ‖g0‖Lp(J ;Y0γ)) ≤ c (‖f‖E(J) + ‖g0‖F(J)).

Proof. (a) For (x, y0, ŷ) ∈ E × Y1 = X × Y01× Ŷ1, we set N1ŷ = Sst(0, 0, ŷ) and
R(x, y0) = Sst(x, y0, 0). Assertion (a) then follows from Lemma 4.3.

(b) Let (x, y0) ∈ E0. We then have (B0, C0)R(x, y0) = y0−µ[R(x, y0)]1 ∈ Z0

by (2.19), so that R maps E0 into E0
1 = D(Λ0) and

(µ+ Λ0)R(x, y0) = (µ+ Λ∗)R(x, y0) = (x, y0). (4.4)

As a result, R : E → E1 is a continuous extension of (µ + Λ0)−1. Since R is
injective by Lemma 4.3, one can see as in the proof of Lemma 3.3 of [24] that
E ↪→ E−1. We can then extend (4.4) to the equation (µ+ Λ−1)R = (µ+ Λ∗)R
on E, using R ∈ L(E,E1) and the density of E0 in E. Lemma 4.3 implies that

R is an isomorphism from E to {w ∈ E1

∣∣ (B̂, Ĉ)w = 0}; i.e., (b) holds.

(c) For w∈E1, parts (a) and (b) imply that (B̂, Ĉ)(w−N1(B̂, Ĉ)w) = 0 and

(µ+ Λ∗)w = (µ+ Λ∗)(w −N1(B̂, Ĉ)w) = (µ+ Λ−1)(w −N1(B̂, Ĉ)w),

as asserted. The mapping property of Π is clear.

(d) Let w = (u, ρ) be the solution of (2.25) and f̃ = f − A∗ρ̇g0. We insert
ρ̇ = g0 −B0u− C0ρ into the term A∗ρ̇ρ̇ in (2.25), obtaining

∂tw(t) + Λ∗w(t) = (f(t)−A∗ρ̇g0(t), g0(t)) = (f̃(t), g0(t)), t ∈ [0, T ]. (4.5)

Moreover, w satisfies (2.26) with data (w0, f̃ , g) and µ = 0. From (2.15), we

deduce that f̃ ∈ E([0, T ]) and the asserted estimate for f̃ . Part (c) and the

boundary condition (B̂, Ĉ)w(t) = ĝ(t) then lead to

∂tw + Λ−1w(t) = (f̃(t), g0(t)) + Πĝ(t), t ∈ [0, T ].

Since E ↪→ E−1, this is an evolution equation in E−1 so that (d) follows. �
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In the following we rewrite the solutions of (2.25) on unbounded time intervals
J ∈ {R±,R} as in (4.3). To treat the case J = R±, we assume that the
(rescaled) semigroup

{
eδtT (t)

}
t≥0

has an exponential dichotomy for δ ∈ [δ1, δ2]

and some segment [δ1, δ2] ⊂ R (i.e., σ(−Λ0 + δ) ∩ iR = ∅). Let P ∈ L(E0)
be the (stable) spectral projection for −Λ0 + δ corresponding to the part of
σ(−Λ0 + δ) in the open left halfplane, and set Q = I − P . Then, P ∈ L(E0

1),
P commutes with T (t) and Λ0, Q ∈ L(E0, E

0
1), T (t) is invertible on QE0 with

the inverse TQ(−t)Q, and ‖etδT (t)P‖L(E0), ‖e−tδTQ(−t)Q‖L(E0) ≤ ce−εt for
t ≥ 0 and some ε > 0. Further, there are extensions P−1 ∈ L(E−1) of P and
Q−1 ∈ L(E−1, E

0
1) of Q such that T−1(t) has an exponential dichotomy on E−1

with the same constants. Since Q = Q2, we throughout write Q instead of Q−1.
From P = I −Q, we deduce

P ∈ L(E1) ∩ L(Eγ) ∩ L(E0
γ) and P−1 ∈ L(E). (4.6)

Occasionally, we omit the subscript −1. (Compare e.g. §2 of [19] for these
facts.) It further holds:

If (w0, f, g) ∈ D(J), then (Pw0, f, g) ∈ D(J). (4.7)

In fact, we have (B,C)Pw0 = (B,C)w0 − (B,C)Qw0 and Qw0 ∈ E0
1 so that

(B̂, Ĉ)Pw0 = ĝ(0) and (B0, C0)Pw0 − g0(0) ∈ Z1
γ .

Let eδT (·) have an exponential dichotomy. Given (ϕ0, f, g) ∈ Eγ×E(R+, δ)×
F(R+, δ), resp. (ϕ0, f, g) ∈ E−1 × E(R−, δ)× F(R−, δ), we can then define

L+
P,Λ0

(ϕ0, f, g)(t) = T (t)ϕ0 +

∫ t

0
T−1(t− τ)P−1[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ (4.8)

−
∫ ∞
t
TQ(t− τ)Q[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, t ≥ 0,

φ+
0 = −

∫ ∞
0
TQ(−τ)Q[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, resp., (4.9)

L−P,Λ0
(ϕ0, f, g)(t) = TQ(t)Qϕ0 +

∫ t

−∞
T−1(t− τ)P−1[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ

−
∫ 0

t
TQ(t− τ)Q[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ, t ≤ 0, (4.10)

φ−0 =

∫ 0

−∞
T−1(−τ)P−1[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ. (4.11)

Here we set again f̃ := f − A∗ρ̇g0 ∈ E(J, δ). Using the properties of T (·) and
Proposition 4.4(c), it is easy to verify the existence of these integrals in E−1.

We now take (w0, f, g) ∈ D(J). Clearly, a function w = (u, ρ) ∈ Eloc
1 (J) solves

(2.25) if and only if w̃ = eδw ∈ Eloc
1 (J) is a solution of the rescaled problem

∂tv(t) + (A∗u − δ −A∗ρ̇B0)v(t) + (A∗ρ −A∗ρ̇C0)σ = eδ(f(t)−A∗ρ̇g0),

∂tσ(t) +B0v(t) + (C0 − δ)σ(t) = eδg0(t),

B̂(t)v + Ĉ(t)σ = eδ ĝ(t),

(v(0), σ(0)) = (u0, ρ0),
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for t ∈ J . The solution of this system is denoted by (v, σ) =: SΛ0−δ(w0, eδf, eδg),
cf. (2.26) in Corollary 2.6. Note that −Λ0 + δ generates the analytic semigroup
eδT (·) on E0. We start with the case J = R+. Using (4.3), (4.8) and (4.9), in
a standard way we compute

eδSΛ0(w0, f, g) = SΛ0−δ(w0, eδf, eδg) (4.12)

= eδT (·)[Qw0 − φ+
0 ] + L+

P,Λ0−δ(Pw0, eδf, eδg)

= L+
P,Λ0−δ(w0 − φ+

0 , eδf, eδg) = eδL
+
P,Λ0

(w0 − φ+
0 , f, g).

The next result is similar to Proposition 8 of [19] in the case of static boundary
conditions, but we cannot follow the proof given there. The main problem is
that we do not know whether the spectral projections P and Q leave invariant
E1(J) because of the extra time regularity in the ρ component.

Proposition 4.5. Assume that Hypothesis 4.1 holds and that for δ ∈ [δ1, δ2] ⊂
R the semigroup eδT (·) has an exponential dichotomy with the stable projection
P , and let Q = I −P . Given (w0, f, g) ∈ D(R+, δ), the following assertions are
equivalent.

(a) SΛ0(w0, f, g) ∈ E(R+, δ).
(b) L+

P,Λ0
(w0 − φ+

0 , f, g) ∈ E(R+, δ).

(c) φ+
0 = Qw0.

If these assertions hold, then (u, ρ) := SΛ0(w0, f, g) = L+
P,Λ0

(Pw0, f, g) belongs

to E1(R+, δ) and solves (2.25), and we have

‖SΛ0(w0, f, g)‖E1(R+,δ) ≤ c (|w0|Eγ + |(B0, C0)w0 − g0(0)|Z1
γ

+ ‖f‖E(R+,δ) + ‖g‖F(R+,δ)),

where c does not depend on w0, f , g or δ. (Note that ρ̇(0) = g0(0)−(B0, C0)w0.)

Proof. In view of (4.12), we only have to consider the case δ = 0. More-
over, (4.12) implies that (a) and (b) are equivalent and that the equality
SΛ0(w0, f, g) = L+

P,Λ0
(Pw0, f, g) follows from (c). We check below that the

integrals in (4.8) belong to E(R+). Hence, assertions (b) and (c) are equivalent.
We now assume that (w0, f, g) ∈ D(R+) and (c) holds, and estimate the

solution in E1(R+). Due to Corollary 2.6 and (4.7), there is a function ϕ =
(uµ, ρµ) ∈ E1(R+) solving (2.26) on R+ with µ from Lemma 4.3, the initial

value Pw0 and the inhomogenities f̃ = f −A∗ρ̇g0 and g. Moreover,

‖ϕ‖E1(R+) ≤ c
(
‖f̃‖E(R+) + ‖g‖F(R+) + |w0|Eγ + |(B0, C0)w0 − g0(0)|Z1

γ

)
≤ c ‖(w0, f, g)‖D(R+).

Using (2.26), integration by parts, Qϕ(0) = QPw0 = 0, Proposition 4.4, (4.9)
and (c), we further compute∫ ∞

0
TQ(−τ)Qµϕ(τ) dτ =

∫ ∞
0

TQ(−τ)Q[(f̃(τ), g0(τ))− ϕ̇(τ)− Λ∗ϕ(τ)] dτ

=

∫ ∞
0
TQ(−τ)Q[(f̃(τ), g0(τ)) + (Λ−1 − Λ∗)ϕ(τ)] dτ
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=

∫ ∞
0
TQ(−τ)Q[(f̃(τ), g0(τ)) + Πĝ(τ)] dτ = −Qw0.

Theorem 2.2 of [8] shows that the operator (Λ, E0
1) has maximal Lp regularity

in E0, so that the lower order perturbation Λ0 also has maximal Lp regularity
in E0. (See [3], [7] or [18] for this concept and Proposition III.1.6.3 in [3] for
the relevant perturbation result.) Since µϕ ∈ Lp(R+;E0) and Qw0 satisfy the
above equation, Theorem 2.4 in [9] now gives a unique function ψ = (v, σ) ∈
Lp(R+;E0

1) ∩W 1
p (R+;E0) =: E0

1(R+) such that

∂tψ(t) + Λ0ψ(t) = µϕ, t ≥ 0, ψ(0) = Qw0, (4.13)

and we have

‖ψ‖E0
1(R+) ≤ c

(
|Qw0|Eγ + ‖ϕ‖Lp(R+;E0)

)
≤ c ‖(w0, f, g)‖D(R+).

Therefore the function w = (u, ρ) := ϕ + ψ ∈ Lp(R+;E1) ∩W 1
p (R+;E) solves

(2.26) with µ = 0, the initial value w0 and the inhomogenities f̃ and g; i.e., w
satisfies (2.25). We have further shown that

‖w‖Lp(R+;E1) + ‖w‖W 1
p (R+;E) ≤ c ‖(w0, f, g)‖D(R+).

It remains to check that ‖(w0, f, g)‖D(R+) also dominates the norm of σ in the

other spaces forming Eρ(R+). We start with W
κj
p (R+;W

kj
p (Σ;Vρ)) for j ∈ J̃ .

We first note that (B̂, Ĉ)Qw0 = 0 and (B0, C0)Qw0 − µρµ(0) ∈ Z1
γ because

of Qw0 ∈ E0
1 , ρµ ∈ Eρ(R+), and (2.11). Corollary 2.6 thus gives a solution

ψ̃ ∈ E1([0, 2]) of (4.13). The embedding (2.18) yields ψ̃ ∈ W 1
p ([0, 2];E0) and

thus ψ̃ ∈ Lp([0, 2];E1
0) by (4.13) and µϕ ∈ Lp([0, 2];E0). As a consequence,

σ̃ ∈ E1
0([0, 2] and ψ = ψ̃ on [0, 2]. The properties of Q and (2.19) then imply

‖ψ‖E1([0,2]) ≤ c
(
|Qw0|Eγ + |(B0, C0)Qw0 − µρµ(0)|Z1

γ
+ ‖µuµ‖E([0,2])

+ ‖µρµ‖F0([0,2])

)
≤ c ‖(w0, f, g)‖D([0,2]).

To proceed, we recall from Theorem 2.4 in [9] that ψ is given by

ψ(t) =

∫ t

0
T (t− τ)Pµϕ(τ) dτ −

∫ ∞
t

TQ(t− τ)Qµϕ(τ) dτ =: ψ1(t) + ψ2(t)

for t ≥ 0. Let Jn = [n − 1, n + 1] for n ∈ N. As in the proof of Proposition 8
of [19], we now use smooth functions χn : Jn → R such that χn, χ′n and χ′′n are
uniformly bounded, χn(n − 1) = 1 and χn = 0 on [n − 1/2, n + 1], for every
n ∈ N. For t ∈ [n, n+ 1], we then write

ψ1(t) = P

∫ t

n−1
T (t− τ)(1− χn(τ))µϕ(τ) dτ (4.14)

+ T (t− n)T (1
2)

∫ n− 1
2

n−1
T (n− 1

2 − τ)Pχn(τ)µϕ(τ) dτ

+ T (t− n)T (1)

∫ n−1

0
T (n− 1− τ)Pµϕ(τ) dτ.

33



We denote the first integral by ψ11
n (t) and the sum of the other two sum-

mands by ψ12
n . In view of (4.3), ψ11

n is the solution of (2.26) on Jn with
data (0, µ(1 − χn)uµ, [µ(1 − χn)ρµ, 0]) ∈ D(Jn). Corollary 2.6 thus yields
‖ψ11

n ‖E1(Jn) ≤ c (‖uµ‖E(Jn) +‖ρµ‖F0(Jn)) =: cn. Because P = I−Q, QE−1 ⊂ E0
1

and (2.9), we can estimate the norm of [Pψ11
n ]2 in W

κj
p (Jn;W

kj
p (Σ;Yρ)) by

c ‖ψ11
n ‖E1(Jn) and thus by ccn. Standard semigroup theory further yields

|∂itψ12
n (t)|E1 ≤ c

∫ t

0
e−ε(t−τ)|ϕ(τ)|E0 dτ, |∂itψ2(t)|E1 ≤ c

∫ ∞
t
eε(t−τ)|ϕ(τ)|E0 dτ

for some ε > 0 and i = 0, 1. Using Lemma 2.8 and also a slight
variant of Lemma 4.7 below for ψ1, we now conclude (writing Gj(J) =

W
κj
p (J ;W

kj
p (Σ;Vρ)))

‖σ‖pGj(R+) ≤ c ‖(w0, f, g)‖pD([0,2]) + c ‖ψ2‖p
W 1
p (R+;E1)

+ c
∑
n≥1

(
‖[Pψ11

n ]2‖pGj(Jn)+ ‖[ψ
12
n ]2‖pW 1

p (Jn;Z1)

)
≤ c ‖(w0, f, g)‖pD(R+)+ c ‖ϕ‖pLp(R+;E0)+ c

∑
n≥1

(
‖uµ‖pE(Jn)+ ‖ρµ‖pF0(Jn)

)
≤ c ‖(w0, f, g)‖pD(R+).

This inequality, σ̇ = −B0v − C0σ + µρµ, (R) and (S) with time–independent
coefficients then imply

‖σ̇‖Wκ0
p (R+;Yρ) ≤ c

(
‖v‖Eu(R+) + ‖σ‖

W
κ0
p (R+;W

k0
p (Σ;Vρ))

+ ‖ρµ‖Wκ0
p (R+;Yρ)

)
≤ c ‖(w0, f, g)‖D(R+).

(We remark that we cannot use (R) to estimate C0σ since we do not yet know
that σ ∈ Eρ.) Summing up, it holds ‖w‖E1(R+) ≤ c ‖(w0, f, g)‖D(R+). �

The corresponding result for J = R− looks a bit different since in (4.10) we
have to write T (t)Qw0 rather than T (t)w0 for negative t. Moreover, Proposi-
tion 4.6 does not require a compatibility condition since it deals with a final
value problem on J = R−. The proof of this proposition is similar to the
previous one: The asserted equivalence and the representation of the solution
by L−P,Λ can be shown as in, e.g., Proposition 9 in [19]. As above, it suffices

to consider δ = 0. Lemma 4.2 gives a solution ϕ ∈ E1(R−) of the first three

equations of (2.26) on R− with inhomogeneities f̃ and g. Using Theorem 2.5
in [9], one again obtains a solution ψ ∈ E0

1(R−) of (4.13) on R− with final
value w0 − ϕ(0). The sum w = ϕ + ψ then solves (2.25) on R−, and it can be
estimated as in the proof of Proposition 4.5. (It is easy to see that the resulting
new term TQ(·)Q(w0−ϕ(0)) even belongs to W 2

p (R−;E0
1), with norm less than

c |Q(w0 − ϕ(0))|E .) We thus omit further details.

Proposition 4.6. Assume that Hypothesis 4.1 holds and that for δ ∈ [δ1, δ2] ⊂
R the semigroup eδT (·) has an exponential dichotomy with the stable projection
P , and let Q = I −P . Given (w0, f, g) ∈ E−1 ×E(R−, δ)× F(R−, δ), there is a
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solution w = SΛ0(w0, f, g) of (2.25) in E(R−, δ) if and only if P−1w0 = φ−0 . In
this case, this solution is unique, w = L−P,Λ0

(w0, f, g) ∈ E1(R−, δ), and

‖SΛ0(w0, f, g)‖E1(R−,δ) ≤ c (|Qw0|E + ‖f‖E(R−,δ) + ‖g‖F(R−,δ)),

where c does not depend on w0, f , g or δ.

We continue with the discussion of nonlinear maps F and G acting on ex-
ponentially weighted function spaces on unbounded time intervals, cf. (4.1).
We start with an elementary, but crucial lemma. The straightforward proof is
omitted. (It also uses Lemma 11 of [19] when treating the Slobodeckii spaces.)
The notation a ' b means that a ≤ c1b ≤ c2a for some constants c1, c2 > 0. We
put Z+ = N0 and Z− = {−1,−2, . . . }.

Lemma 4.7. Let V be a Banach space, J = R±, κ ∈ (0, 1), a > 0, d ≥ 0,
|δ| ≤ d, Jn = [n, n + 1], and J ′n = [n − a, n + 1 + a] ∩ J for n ∈ Z. Then the
following assertions hold with constants only depending on a and d.

(a) ‖eδh‖pLp(R±;V ) '
∑

n∈Z± eδnp ‖h‖pLp(Jn;V ).

(b) ‖eδh‖pW 1
p (R±;V )

'
∑

n∈Z± eδnp ‖h‖p
W 1
p (Jn;V )

.

(c) ‖eδh‖pWκ
p (R±;V ) '

∑
n∈Z± eδnp ‖h‖pWκ

p (J ′n;V ).

(d) ‖eδh‖pW 1+κ
p (R±;V )

'
∑

n∈Z±e
δnp ‖h‖p

W 1+κ
p (J ′n;V )

,

‖eδh‖pW 1+κ
p (R±;V )

≤ c
∑

n∈Z± eδnp
(
‖h′‖pWκ

p (J ′n;V ) + ‖h‖p
W 1
p (Jn;V )

)
.

(e) ‖h‖pEu(R±,δ) '
∑

n∈Z± eδnp ‖h‖pEu(Jn).

(f) ‖h‖pEρ(R±,δ) '
∑

n∈Z± eδnp ‖h‖pEρ(J ′n).

(g) ‖h‖pF(R±,δ) '
∑

n∈Z± eδnp ‖h‖pF(J ′n).

The same results hold on J = R if we use the function e(α, β) for |α|, |β| ≤ d
instead of eδ and replace Z± by Z.

We now collect the basic assumptions (and some of the notations) for the
rest of paper, where we strengthen Hypothesis 4.1.

Hypothesis 4.8. Let (R) be true, and (S), (E), (LS) and (if ` ≷ 2m) (LS±∞)
hold for any (w0, ρ0) ∈ Wγ. Let w∗ = (u∗, ρ∗) ∈ W1 be an equilibrium of
(1.1) and define the maps A∗, B, C, F , G, Λ∗ and Λ0 = Λ∗|E0

1 as well as the
expressions 〈ψ〉γ and 〈ψ〉1 for this w∗ as in (2.15), (3.2), (2.16), (2.20), (3.10).

Note that D(w∗) = 0 and ρ̇∗ = 0 if Hypothesis 4.8 holds, and that 〈ψ〉γ is
locally equivalent to |ψ|Eγ if ` ≤ 2m. The next result describes the properties
of F and G on R± with weights larger or equal than 1. For δ ≥ 0, we set

W1
∗(R±,±δ) = {w ∈ E1(R±,±δ) |w(t) ∈Wγ − w∗ for all t ∈ R±}.

It is straightforward to check that this set is open in E1(R±,±δ) if δ > 0 using
(5.1) below. Moreover, 0 belongs to the interior of W1

∗(R±) := W∗1(R±, 0).

Proposition 4.9. Let (R) hold, δ ∈ (0, d] and define F and G as in (3.2) for
an equilibrium w∗ = (u∗, ρ∗) ∈W1. We then have

F ∈ C1(W∗1(R±,±δ),E(R±,±δ)) and G ∈ C1(W∗1(R±,±δ),F(R±,±δ))
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and F (0) = 0, G(0) = 0, F ′(0) = 0, G′(0) = 0. Moreover, the derivatives are
bounded and uniformly continuous on closed balls. If δ = 0, the above results
hold on sufficiently small balls in E1(R±) with center 0.

Proof. We only consider the map G on J = R+, the other cases can be treated
in the same way. Let w = (u, ρ) ∈ W∗1(R±,±δ) and ϕ = (v, σ) ∈ E1(R±,±δ).
Set Jn = [n, n+ 1] and J ′n = [n− 1, n+ 2] ∩ R+. Lemma 4.7 and (3.1) yield

‖G(w)‖pF(R+,δ)
≤ c

∑
n∈N0

eδnp ‖G(w)‖pF(J ′n) ≤ c
∑
n∈N0

eδnp ‖w‖pE1(J ′n) ≤ c ‖w‖
p
E1(R+,δ)

so that G maps properly. Since δn ≥ 0, it is straightforward to check that

‖ϕ‖pE1(J ′n) ≤ eδnp‖ϕ‖pE1(J ′n) ≤ c ‖ϕ‖
p
E1(J ′n,δ)

≤ c ‖ϕ‖pE1(R+,δ)
. (4.15)

Using also this estimate, as above we obtain for g := G(w+ϕ)−G(w)−G′(w)ϕ

‖g‖pF(R+,δ)
≤ c

∑
n∈N0

eδnp ‖g‖pF(J ′n) ≤ c
∑
n∈N0

eδnp ε(‖ϕ‖E1(J ′n))
p ‖ϕ‖pE1(J ′n)

≤ c
∑
n∈N0

eδnp ε(‖ϕ‖E1(R+,δ))
p ‖ϕ‖E1(J ′n) ≤ ε(‖ϕ‖E1(R+,δ))

p ‖ϕ‖pE1(R+,δ)
.

Hence, G : W∗1(R+, δ)→ F(R+, δ) is differentiable. If ‖w‖E1(R+,δ) ≤ r for some
r, then ‖w‖E1(J ′n) ≤ cr for a constant c by (4.15). Let J ′ be any interval with
length 3 and cr <∞ be the supremum of the norms of G′(w) : E1(J ′)→ F(J ′)
for w ∈W∗1(J ′) with ‖w‖E1(J ′) ≤ cr, see (3.1). Lemma 4.7 then implies

‖G′(w)ϕ‖pF(R+,δ)
≤ c

∑
n∈N0

eδnp ‖G′(w)ϕ‖pF1(J ′n) ≤ cc
p
r

∑
n∈N0

eδnp ‖ϕ‖pE1(J ′n)

≤ c ‖ϕ‖pE1(R+,δ)
.

The equalities G(0) = 0 and G′(0) = 0 follow from (3.1). The continuity of G′

can be checked by the same methods as above. �

5. The saddle point property

In this section we construct the stable and unstable manifolds for (1.1) near
the equilibrium w∗ assuming Hypothesis 4.8 and that σ(−Λ0)∩ iR = ∅. (Recall
our notation stated in Hypothesis 4.8.) The next theorem shows in particular
that these manifolds are uniquely given as sets of initial values of solutions
starting near w∗ and staying in certain neighborhoods of w∗ for all t ≥ 0, resp.
all t ≤ 0. These solutions then converge exponentially to w∗ as t→∞, resp. as
t→ −∞. If σ(−Λ0) is contained in the open left half plane, then the theorem
gives a principle of linearized stability (which could be proved much easier, see
e.g. Proposition 16 in [19]).

The following observations are used below several times. Fix r0 > 0 such
that BEγ (0, r0) ⊂ W ∗γ . Take ϕ0 ∈ W ∗γ with |ϕ0|Eγ ≤ r < r0. Let ϕ = (v, σ) ∈
E1(R+, δ) with ‖ϕ‖E1(R+,δ) ≤ R satisfy ϕ(0) = ϕ0 for some R, δ ≥ 0. The
embeddings (2.5) and (2.11) imply that

|ϕ(t)|Eγ + |σ̇(t)|Z1
γ
≤ |eδtϕ(t)|Eγ + |eδtσ̇(t)|Z1

γ
≤ c ‖ϕ‖E1(R+,δ) ≤ cR (5.1)
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for all t ≥ 0. Hence, for sufficiently small R > 0 we deduce cR < r0, and
thus ϕ(t) ∈ W ∗γ for all t ≥ 0; i.e., ϕ ∈ W∗1(R+, δ). Such ϕ actually exist if r
is small enough. In fact, (2.5) and (2.11) give a function ψ ∈ E1([0, 1]) with
ψ(0) = ϕ0 and ‖ψ‖E1([0,1]) ≤ c |ϕ0|Eγ ≤ cr. We extend ψ to a compactly
supported function ϕ ∈ E1(R+) with norm less or equal c ‖ψ‖E1([0,1]) ≤ cr, so
that we can control R by cr. Analogous results hold for J = R− if δ ≤ 0.

Recall the definition of the space E0
γ in (2.20) and of the mapQ in Lemma 3.2.

By (3.11), for solutions (v, σ) ∈ E1(J) of (3.7) and t ∈ J , the expression
〈(v(t), σ(t))〉γ = |(v(t), σ(t))|Eγ+|σ̇(t)|Z1

γ
is the norm on the trace space Eγ×Z1

γ .

Theorem 5.1. Assume that Hypothesis 4.8 and iR ⊂ ρ(−Λ0) hold. Let P be
the stable projection for T (·), Q = I − P , δ0 := dist(iR, ρ(−Λ0)) > 0, and
δ ∈ (0, δ0). Then the following assertions hold.

(a) There are numbers r′k ≥ rk > 0 and rk0 > 0 with k ∈ {s, u}, and C1
b maps

φs : Ds := {ξ ∈ PE0
γ

∣∣ |ξ|E0
γ
< rs0} −→ QE, ϑs : Ds −→ PEγ ,

φu : Du := {ξ ∈ QE
∣∣ |ξ|E < ru0} −→ PEγ

such that φs(0) = ϑs(0) = φu(0) = 0, φ′s(0) = ϑ′s(0) = φ′u(0) = 0 and

Ms := {w0 = w∗ + ξ + ϑs(ξ) + φs(ξ)
∣∣ ξ ∈ Ds, 〈w0 − w∗〉γ < rs} (5.2)

= {w0 ∈M
∣∣ 〈w0 − w∗〉γ < rs, ∃ solution w = (u, ρ) of (1.1) on R+ with

〈w(t)− w∗〉γ = |w(t)− w∗|Eγ + |ρ̇(t)|Z1
γ
≤ r′s (∀ t ≥ 0)}, (5.3)

Mu := {w0 = w∗ + ξ + φu(ξ)
∣∣ ξ ∈ Du, 〈w0 − w∗〉γ < ru} (5.4)

= {w0 ∈M
∣∣ 〈w0 − w∗〉γ < ru, ∃ solution w = (u, ρ) of (1.1) on R− with

〈w(t)− w∗〉γ = |w(t)− w∗|Eγ + |ρ̇(t)|Z1
γ
≤ r′u (∀ t ≤ 0)} (5.5)

The above solutions w are given by w = w∗ + Φs(PQ(w0 − w∗)) if w0 ∈ Ms

and w = w∗ + Φu(Q(w0 −w∗)) if w0 ∈Mu, where Φs ∈ C1
b (Ds;E1(R+, δ)) and

Φu ∈ C1
b (Du;E1(R−,−δ)) with Φs(0) = 0 and Φu(0) = 0. It further holds

|w(t)− w∗|E1 + |ρ̇(t)|Zγ ≤ ce−δt 〈w0 − w∗〉γ (∀ t ≥ 1) if w0 ∈Ms,

|w(t)− w∗|E1 + |ρ̇(t)|Zγ ≤ ceδt |w0 − w∗|E (∀ t ≤ 0) if w0 ∈Mu.

(b) If w0 ∈ Ms and the forward (resp., a backward) solution w of (1.1)
satisfies 〈w−w∗〉γ < rs on [0, t] for some t > 0 (resp., on [t, 0] for some t < 0),
then w(t) ∈ Ms. If w0 ∈ Mu and the forward solution w of (1.1) fulfills
〈w − w∗〉γ < ru on [0, t] for some t > 0, then w(t) ∈ Mu. If w0 ∈ Mu and
the solution w from (5.5) fulfills 〈w − w∗〉γ < ru on [t, 0] for some t < 0, then
w(t) ∈Mu.

(c) We have Ms ∩Mu = {w∗}.
(d) The dimension ofMu is equal to the dimension of QE. If σ(−Λ0)∩C+ 6=
∅, then w∗ is (Lyapunov) unstable in Eγ × Z1

γ for (1.1).
(e) If (RR) holds, then there is a r̂u0 ∈ (0, ru0 ) such that the map φu is Lipschitz

from D̂u := {ξ ∈ QE
∣∣ |ξ|E < r̂u0} to PE1, and the operators φ′u(ξ) are uniformly

bounded in L(QE,PE1) for ξ ∈ D̂u.
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Proof. (1) Construction of the stable manifold Ms. Let δ ∈ [0, δ0). Observe
that eδT (·) has an exponential dichotomy by the assumptions. Let ξ ∈ PE0

γ ⊂
E0
γ (see (4.6)) and ϕ = (v, σ) ∈ W∗1(R+, δ). Using Proposition 4.9, (3.4) and

Corollary 2.7, we see that (ξ+NγG(ϕ(0)), F̃ (ϕ), G(ϕ)) ∈ D(R+, δ), cf. the proof

of Theorem 3.3(b). Here, we set F̃ = F − A∗,ρ̇G0 as before. It follows that

(ξ + PNγG(ϕ(0)), F̃ (ϕ), G(ϕ)) ∈ D(R+, δ) by (4.7). To apply Proposition 4.5,
we put ζ = ξ+PNγG(ϕ(0)) and w0 := ζ+φ+

0 = Pw0 +Qw0, where φ+
0 is given

by (4.9) with f̃ = F̃ (ϕ) and g = G(ϕ). We then define

Ts :PE0
γ ×W∗1(R+, δ)→ E1(R+, δ);

Ts(ξ, ϕ) = ϕ− L+
Λ0,P

(ξ + PNγG(ϕ(0)), F (ϕ), G(ϕ)).

The above mentioned results imply that Ts ∈ C1(PE0
γ ×W∗1(R+, δ);E1(R+, δ)),

Ts(0, 0) = 0 and ∂2Ts(0, 0) = I. The implicit function theorem thus gives a
radius rs0 > 0 and a map Φs ∈ C1

b (B(rs0);W∗1(R+, δ)) such that Φs(0) = 0 and
Ts(ξ,Φs(ξ)) = 0 for ξ ∈ B(rs0) := BPE0

γ
(0, rs0). Due to Proposition 4.5, the

function ϕ = (v, σ) = Φs(ξ) solves (3.7) with the initial value

ϕ(0) = ξ + PNγγ0G(Φs(ξ))

−
∫ ∞

0
TQ(−τ)Q[(F̃ (Φs(ξ)(τ)), G0(Φs(ξ)(τ))) + ΠĜ(Φs(ξ)(τ)] dτ

=: ξ + ϑs(ξ) + φs(ξ).

Combining the above results with Corollary 2.7, the embedding (2.7), Q ∈
L(E−1, E

0
1), Propositions 4.4 and 4.9, we conclude that φs ∈ C1

b (B(rs0);QE),
ϑs ∈ C1

b (B(rs0);PEγ) , φs(0) = ϑs(0) = 0, and φ′s(0) = ϑ′s(0) = 0.
We now define Ms as in (5.2), where we choose a sufficiently small rs > 0

below. Our construction yields thatMs ⊂M. Take w0 = ϕ0+w∗ ∈Ms, where
w0 = (u0, ρ0) and ϕ0 = (v0, σ0). It follows that w0 = w∗ + ξ + ϑs(ξ) + φs(ξ) for
some ξ ∈ B(rs0), and that ϕ = (v, σ) = Φs(ξ) ∈W∗1(R+, δ) solves (3.7). We set
w = (u, ρ) = w∗ + ϕ. It further holds

‖ϕ‖E1(R+,δ) = ‖Φs(ξ)− Φs(0)‖E1(R+,δ) ≤ c |ξ|E0
γ
. (5.6)

To control ξ by ϕ0, we compute

ξ = P
(
w0 − w∗ −Nγγ0G(Φs(ξ))

)
= P

(
w0 − w∗ −Nγγ0G(w − w∗)

)
,

|ξ|E0
γ
≤ c
(∣∣ϕ0 −NγG(ϕ0)

∣∣
Eγ

+
∣∣(B0, C0)[w0 − w∗ −NγG(w0 − w∗)]

∣∣
Z1
γ

)
≤ c
(
|w0 − w∗|Eγ +

∣∣(B0, C0)(w0 − w∗)−G0(w0 − w∗)
∣∣
Z1
γ

+
∣∣G0(w0 − w∗)− (B0, C0)NγG(w0 − w∗)]

∣∣
Z1
γ

)
≤ c
(
〈w0 − w∗〉γ + |G(w0 − w∗)|Yγ

)
≤ c 〈w0 − w∗〉γ ,

where we used (4.6), (3.4) and Corollary 2.7. We now choose r1 > 0 such that
cr1 < rs0. Hence, |ξ|E0

γ
< rs0 if 〈w0−w∗〉γ ≤ rs and rs ∈ (0, r1]. In view of (5.1),

we then obtain

eδt |w(t)− w∗|Eγ + eδt |ρ̇(t)|Z1
γ
≤ c ‖ϕ‖E1(R+,δ) ≤ c 〈w0 − w∗〉γ (5.7)
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for all t ≥ 0. Possibly after decreasing r1 > 0, Proposition 3.4 finally implies
the exponential estimate on Ms in assertion (a).

(2) Description of the stable manifold Ms. Take an initial value w0 ∈ M
with a solution w = w(·;w0) of (1.1) on R+ and assume that

〈w(t)− w∗〉γ ≤ r′ for all t ≥ 0 (5.8)

for some number r′ > 0 with BEγ (w∗, r
′) ⊂ Wγ . We want to find a sufficiently

small r′1 > 0 such that
‖w − w∗‖E1(R+) ≤ cr′ (5.9)

is true whenever (5.8) holds with r′ ∈ (0, r′1]. Again we put ϕ = (v, σ) = w−w∗.
To prove this claim, let w satisfy (5.8) for some r′ > 0 which is small enough

to allow the application of Theorem 3.3 with initial values w(t) ∈ M. This
theorem then shows that ‖ϕ‖E1([n,n+3]) ≤ c 〈ϕ(n)〉γ ≤ cr′ for all n ∈ N0. Let
Jn = [n, n+ 1], J ′n = [n− 1, n+ 2] ∩ R+ and δ ∈ (0, δ0/2]. We then deduce

‖ϕ‖pE1(R+,−δ) '
∞∑
n=0

e−δnp ‖ϕ‖pE1(J ′n) ≤ c(δ) (r′)p,

using Lemma 4.7. Since also e−δT (·) has an exponential dichotomy, Proposi-
tion 4.5, Lemma 4.7 and (3.1) imply that

‖ϕ‖pE1(R+,−δ) ≤ c
(
〈ϕ(0)〉pγ + ‖F (ϕ)‖pE(R+,−δ) + ‖G(ϕ)‖pF(R+,−δ)

)
≤ c 〈ϕ(0)〉pγ + c

∞∑
n=0

e−δnp
(
‖F (ϕ)‖pE(Jn) + ‖G(ϕ)‖pF(J ′n)

)
≤ c 〈ϕ(0)〉pγ + ε(r′)p

∞∑
n=0

e−δnp ‖ϕ‖pE1(J ′n)

≤ c 〈ϕ(0)〉pγ + ε(r′)p ‖ϕ‖pE1(R+,−δ).

Fixing a small a sufficiently small r′1 > 0 and choosing 0 < r′ ≤ r′1, we conclude

‖ϕ‖E1(R+,−δ) ≤ c 〈ϕ(0)〉γ ≤ cr′ (5.10)

for constants independent of δ. Observe that ∂t(e−δσ) tends to ∂tσ pointwise
as δ → 0 and that the integrands in the Slobodeckii parts of ‖ϕ‖E1(R+,−δ)
converge pointwise to those of ‖ϕ‖E1(R+). Letting δ → 0, we thus deduce (5.9)
for 0 < r′ ≤ r′1 from (5.10) and Fatou’s lemma.

Let again w = ϕ + w∗ be the solution of (1.1) on R+ satisfying (5.8). Put
ϕ0 = w0 −w∗. Note that ϕ ∈W∗1(R+) by (5.8) and (5.9). Proposition 4.5 then
shows that ϕ = L+

Λ0,P
(Pϕ0, F (ϕ), G(ϕ)). The function ξ := P (ϕ0 −NγG(ϕ0))

belongs to E0
γ and satisfies |ξ|E0

γ
≤ c 〈ϕ0〉γ ≤ ĉr′ due to Lemma 3.2 and (4.6).

Choosing a sufficiently small r′ ∈ (0, r′1] such that ĉr′ < rs0, we can now apply
Step (1) of the proof with this ξ and obtain a solution ϕ = Φs(ξ) ∈W∗1(R+, δ) ⊂
W∗1(R+) of (3.7), where ‖ϕ‖E1(R+,δ) ≤ cr′ in view of (5.6). By construction, it

holds ϕ = L+
Λ0,P

(ξ + PNγG(ϕ(0)), F (ϕ), G(ϕ)), and hence

ϕ− ϕ = L+
Λ0,P

(
Pϕ0 − ξ − PNγG(ϕ(0)), F (ϕ)− F (ϕ), G(ϕ)−G(ϕ)

)
= L+

Λ0,P

(
PNγ [G(ϕ(0))−G(ϕ(0))], F (ϕ)− F (ϕ), G(ϕ)−G(ϕ)

)
.
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We set ζ = PNγ(G(ϕ(0)) − G(ϕ(0)). Corollary 2.7 and (4.7) yield (ζ, F (ϕ) −
F (ϕ), G(ϕ) − G(ϕ)) ∈ D(R+). Since ϕ and ϕ have norms less than cr′ in
E1(R+), Propositions 4.5 and 4.9, Corollary 2.7 and (2.7) imply that

‖ϕ− ϕ‖E1(R+) ≤ c
(
〈ζ〉γ + ‖F (ϕ)− F (ϕ)‖E(R+) + ‖G(ϕ)−G(ϕ)‖F(R+)

)
≤ ε(r′) ‖ϕ− ϕ‖E1(R+).

Fixing a small r′s ∈ (0, r′1] in (5.8), we deduce ϕ = ϕ. On the other hand,
due to (5.7), in the definition of Ms we can now choose an rs ∈ (0, r1] with
rs ≤ r′s such that |w̃(t)− w∗|Eγ + |∂tρ̃(t)|Z1

γ
≤ r′s for all t ≥ 0 and any solution

w̃ with initial value w̃0 ∈Ms. If we finally assume that 〈ϕ0〉γ < rs we arrive at
ϕ0 ∈ w∗ +Ms and the equality in (5.3).

(3) Construction of the unstable manifold Mu. We proceed as in Step (1)
and thus focus on the necessary changes. In view of Proposition 4.6, we define

Tu : QE ×W∗1(R−,−δ)→ E1(R−,−δ); Tu(ξ, ϕ) = ϕ− L−Λ0,P
(ξ, F (ϕ), G(ϕ)).

As before we see that Tu ∈ C1(QE×W∗1(R−,−δ);E1(R−,−δ)), Tu(0, 0) = 0 and
∂2Tu(0, 0) = I. The implicit function theorem thus gives a radius ru0 > 0 and
a map Φu ∈ C1

b (B(ru0 );W∗1(R−,−δ)) such that Φu(0) = 0 and Tu(ξ,Φu(ξ)) = 0
for ξ ∈ B(ru0 ) := BQE(0, r0). Due to Proposition 4.6, the function ϕ = (v, σ) =
Φu(ξ) solves (3.7) on R− with the final value

ϕ(0) = ξ +

∫ 0

−∞
T (−τ)P−1[(F̃ (Φs(ξ)(τ)), G0(Φs(ξ)(τ))) + ΠĜ(Φs(ξ)(τ)] dτ

= ξ + Pγ0Φu(ξ) =: ξ + φu(ξ). (5.11)

Combining the above results with the embeddings (2.5) and (2.11) we conclude
that φu ∈ C1

b (B(r0);PEγ) and φu(0) = 0. Propositions 4.4 and 4.9 further
yield φ′u(0) = 0 if we differentiate the above integral representation in E−1.

We now defineMu as in (5.4), where we choose ru > 0 below. Our construc-
tion yields that Mu ⊂M. Take w0 = ϕ0 + w∗ ∈Mu, where w0 = (u0, ρ0) and
ϕ0 = (v0, σ0). It follows w0 = w∗ + ξ + φu(ξ) for some ξ ∈ B(ru0 ), and that
(v, σ) = Φs(ξ) ∈W∗1(R−,−δ) solves (3.7). Since ξ = Qϕ0, we have the estimate

‖ϕ‖E1(R−,−δ) = ‖Φu(ξ)− Φu(0)‖E1(R−,−δ) ≤ c |ξ|E ≤ c |ϕ0|E . (5.12)

We then choose r1 > 0 such that |Q|L(E)r1 < ru0 and take any ru ∈ (0, r1]. In
view of (5.1) we thus obtain

e−δt |w(t)− w∗|Eγ + e−δt |ρ̇(t)|Z1
γ
≤ c ‖ϕ‖E1(R−,−δ) ≤ c |w0 − w∗|E (5.13)

for all t ≤ 0. Possibly after decreasing r1 > 0, Proposition 3.4 implies the
exponential estimate on Mu in assertion (a).

(4) Description of the unstable manifold Mu. Again we argue similarly as
in Step (2). Take a final value w0 ∈ M and a solution w = ϕ+ w∗ of (1.1) on
R− satisfying

〈w(t)− w∗〉γ ≤ r′ for all t ≤ 0 (5.14)

and some r′ > 0 with BEγ (w∗, r
′) ⊂Wγ . Put ϕ0 = w0−w∗. As in Step (2), we

find a sufficiently small r′1 > 0 such that

‖w − w∗‖E1(R−) ≤ cr′ (5.15)
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is true whenever (5.14) holds with r′ ∈ (0, r′1]. Note that ϕ ∈ W∗1(R−) by
(5.14) and (5.15). Proposition 4.6 then shows that ϕ = L−Λ0,P

(Qϕ0, F (ϕ), G(ϕ)).

Choosing sufficiently small r′ ∈ (0, r′1] such that |Q|L(E)r
′ < ru0 , we can now ap-

ply Step (3) of the proof with ξ = Qϕ0 and obtain a solution ϕ ∈W∗1(R−,−δ) ⊂
W∗1(R−) of (3.7), where ‖ϕ‖E1(R−,−δ) ≤ cr′ in view of (5.12). By construction,

it holds ϕ = L−Λ0,P
(Qϕ0, F (ϕ), G(ϕ)), and hence

ϕ− ϕ = L−Λ0,P
(0, F (ϕ)− F (ϕ), G(ϕ)−G(ϕ)).

Since ϕ and ϕ have norms less than cr′ in E1(R−), Propositions 4.6 and 4.9
imply that

‖ϕ− ϕ‖E1(R−) ≤ c
(
‖F̃ (ϕ)− F̃ (ϕ)‖E(R−) + ‖G(ϕ)−G(ϕ)‖F(R−)

)
≤ ε(r′) ‖ϕ− ϕ‖E1(R−).

Fixing a small r′u ∈ (0, r′1] in (5.14), we deduce ϕ = ϕ. On the other hand,
due to (5.13), in the definition of Mu we can now choose a radius ru ∈ (0, r1]
such that |w̃(t) − w∗|Eγ + |∂tρ̃(t)|Z1

γ
≤ r′u for all t ≤ 0 and any solution w̃

with final value w̃0 ∈ Mu. If we finally assume that 〈ϕ0〉γ < ru, we arrive at
ϕ0 ∈ w∗ +Mu and the equality in (5.5). We have now shown assertion (a).

(5) Remaining properties. The local forward invariance ofMs and the local
backward invariance of Mu follow directly from (5.3) and (5.5), respectively,
and the time invariance of (1.1). To show the local backward invariance ofMs

and the local forward invariance of Mu, we need in addition that we can glue
solutions as described before Lemma 3.2. Hence, (b) holds.

Let w0 ∈ Ms ∩Mu. Assertion (a) shows that 〈w(t) − w∗〉γ ≤ ĉeδtru for all
t ≤ 0 and some δ ∈ (0, δ0) and ĉ > 0. Since we fixed ru > 0 only at the end of
Step (4), we can decrease it further, obtaining ĉru < rs. The invariance thus
implies w(t) ∈Ms. Assertion (a) now yields

〈w(t)− w∗〉γ ≤ ceδt〈w(0)− w∗〉γ ≤ ce2δt〈w(t)− w∗〉γ
for all t ≤ 0, so that w0 = w∗ and (c) is true.

The first part of assertion (d) is clear. If σ(−Λ0) ∩ C+ 6= ∅, then there is
a w0 ∈ Mu \ {w∗}. The corresponding solution tends to 0 in the sense that
〈w(t)− w∗〉γ → 0 as t→ −∞. Since w0 = w(−t;w(t)), the instability follows.

Let (RR) hold. We decrease ru > 0 once more so that Proposition 3.5 can be
applied on Mu. Take r̂u0 > 0 such that 〈ξ + φu(ξ)〉γ ≤ c |ξ|E < ru if |ξ|E < r̂u0 ,

cf. (5.12) and (5.13). For ξ, ξ ∈ BQE(0, r̂u0 ) we have solutions w = Φu(ξ) and

w = Φu(ξ) of (1.1) on R− with φu(ξ) = P (w(0)−w∗) and φu(ξ) = P (w(0)−w∗).
Proposition 3.5, (4.6), (5.1) and assertion (a) then imply

|φu(ξ)− φu(ξ)|E1 ≤ c |w(0)− w(0)|E1 ≤ c 〈w(−1)− w(−1)〉γ
≤ c ‖w − w‖E1(R−,−δ) = c ‖Φu(ξ)− Φu(ξ)‖E1(R−,−δ)

≤ c̃ |ξ − ξ|E ;

i.e., the first part of (e) has been verified. Let ζ ∈ QE. We know that the limit

φ′u(ξ)ζ = lim
h→0

1
h(φu(ξ + hζ)− φu(ξ)) =: lim

h→0
D(h)
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exists in Eγ . The above estimate further yields |Dh|E1 ≤ c̃ |ξ|E for all sufficiently
small |h|. After passing to a subsequence, the vectors Dh converge weakly in
E1 to φ′u(ξ)ζ so that |φ′u(ξ)ζ|E1 ≤ c̃ |ξ|E , as asserted. �
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