EXPONENTIAL AND POLYNOMIAL DICHOTOMIES OF OPERATOR
SEMIGROUPS ON BANACH SPACES

ROLAND SCHNAUBELT

ABSTRACT. Let A generate a Cy—semigroup T'(-) on a Banach space X such that the
resolvent R(iT, A) exists and is uniformly bounded for 7 € R. We show that there exists
a closed, possibly unbounded projection P on X commuting with 7'(¢t). Moreover, T'(t)x
decays exponentially as t — oo for = in the range of P and T(t)z exists and decays
exponentially as t — —oo for = in kernel of P. The domain of P depends on the Fourier
type of X. If R(ir, A) is only polynomially bounded, one obtains a similar result with
polynomial decay. As an application we study a partial functional differential equation.

1. INTRODUCTION AND PRELIMINARIES

Exponential stability and dichotomy are among the most basic and most important
asymptotic properties of a strongly continuous operator semigroup 7'(-) on a Banach
space X. One strives to characterize these notions in terms of the generator A of 7'()
which is the given object in most applications. There is a well developed theory for this
problem which nevertheless does not answer several important questions. In this paper
we want to address one of these open issues, treating also polynomial dichotomies within
the same approach.

To provide the background for our main theorems, let us describe the relevant known
results in this area. Our notation is explained at the end of this section. We first re-
call the well known resolvent estimates which are necessary for exponential stability and
dichotomy, namely

T(-) is exp. stable = s(A) <0 and [[R(N\,A)|| <¢, ReA>0, (1.1)
T(-) is exp. dichotomous = iR C p(A) and ||R(iT,A)|| <e¢, T€ER. (1.2)

If t — T'(t) is continuous in operator norm for some ¢ > 0, then the pure spectral criteria
s(A) < 0, resp. iR C p(A), already imply the exponential stablity, resp. dichotomy, of T'(+),
see e.g. [8, Cor.IV.3.11, Thm.V.1.17]. In this way exponential stability and dichotomy
of, e.g., analytic semigroups can be characterized very conveniently. Unfortunately, for
general semigroups these criteria fail even on a Hilbert space X, see [4, Ex.5.8], [5, §2.1.5],
8, §IV.3.a], [19, Ex.1.2.4]. (Some of these examples arise from wave equations.) On the
other hand, on a Hilbert space X Gearhart’s spectral mapping theorem establishes the
converse implications in (1.1) and (1.2); i.e., it holds

T(-) is exp. stable <= s(A) <0 and ||[R(N\,A)|| <¢, ReA>0, (1.3)
T(-) is exp. dichotomous <= iR C p(A) and ||R(iT,A)|| <e¢, T€R, (1.4)
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if X is a Hilbert space, see e.g. [5, §2.1], [19, Thm.2.2.4], and [19, p.70] for further
references. However, on non Hilbertian X there are semigroups violating the implications
‘“=’1in (1.3) and (1.4), see [5, §2.1.5], [8, §IV.3.a], [19], [25, §4].

Going back to the general case of a Cy—semigroup on a Banach space X without addi-
tional regularity properties, one can look for stronger assumptions on the resolvent which
imply the exponential stability or dichotomy of T'(-). Such conditions were found in the
papers [5, §2.2], [11], [12], [13], [14], [18, Thm.A-III-7.10], [24]. However, these conditions
are quite sophisticated and (as it seems) difficult to check in applications. Alternatively,
one can ask whether the uniform boundedness of R(A, A) for A € iR or Re A > 0 implies
interesting asymptotic properties of the semigroup which are related to stability or di-
chotomy. In the case of exponential stability this question was settled in a line of research
culminating in the paper [25] by Weis and Wrobel, see also [19], [20], [23], [24], and the
references therein. Theorem 3.2 and Remark 3.3 of [25] (or [19, Thm.4.2.4]) show that

IR\ A)[ < e, ReA>0 = [IT(t)z] < Me™™|[(w — A)’x| (1.5)

for g = l — [%, z € D((w — A)?), and some constants M, e > 0. Here w is a fixed real
number larger than the growth bound of T'(+), p’ = p/(p—1), and p € [1, 2] is the Fourier
type of X, i.e., the Fourier transform F is bounded from LP(R, X) to L” (R, X). Clearly,
each Banach space has at least Fourier type p = 1. Hilbert spaces have Fourier type p = 2
by Plancherel’s theorem. In fact, only Hilbert spaces have Fourier type 2. The space
X = L9(Q) has Fourier type p = min{q, ¢'}. Moreover, uniformly convex Banach spaces
have nontrivial Fourier type p > 1. (See [19, p.116] for references concerning these facts.)
In particular, (1.5) implies (1.3) if X is a Hilbert space. By means of an example it can
be shown that the exponent 3 in (1.5) is optimal, see [25, §4] or [19, Ex.4.2.9].

In Theorem 2.2 we establish a result on exponential dichotomy which is analogous to
the Weis—Wrobel theorem. As in (1.5) we expect exponential estimates only for z in
a space X, = D((w — A)*), correspondingly the dichotomy projection P will only be
defined on a subspace D(P) of X containing X,. This leads us to the following concept
which is weaker than the usual exponential dichotomy (where o = 0 and D(P) = X).

Definition 1.1. Let T(-) be strongly continuous semigroup on a Banach space X and
a > 0. We say that T(-) has an exponential a—dichotomy if there is a closed projection
P on X and constants N, > 0 such that

(a) Xo — D(P), T@t)D(P)cC D(P), T(t)Px=PT(t)x, z € D(P),

(b) T(t) : N(P) — N(P)  has the bounded inverse Tg(—t),

(c) ITt)Pz| < Ne™*[[(w — A)*zl, [[To(—t)(I — P)z|| < Ne=*||(w — A)*x||

fort >0 and x € X,. We call o and  the regularity and decay exponent, respectively.

We note that unbounded splitting projections also occur in the study of bisectorial
operators, see e.g. [17], [22]. However, this is a different situation in so far bisectorial
generators already generate analytic semigroups.

Our main Theorem 2.2 shows that T'(-) has an exponential a—dichotomy if R(it, A)
exists and is uniformly bounded for 7 € R and o > 1% — 1% > 0, where p € [1,2] is the
Fourier type of X. We can take @ = 1 in the case of a non—trivial Fourier type p > 1 (e.g.,
if X is uniformly convex). In this case Definition 1.1(c) gives exponential estimates for

x € D(A), i.e., for classical solutions u(t) = T'(t)z of the Cauchy problem. Unfortunately,
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we do not quite obtain the exponent a@ = % — 1% from (1.5). For P = I, our theorem
corresponds to the results of the paper [20], where (1.5) was shown for 5 > }D — z%' Then
in [25] additional arguments were developed which allow to pass to the equality 8 = 217 — ]%
in the regularity exponent. A different approach is contained in the proof of Theorem 4.5.2
of [19]. But it seems that these techniques do not work in the presence of an unbounded
projection or if one deals with a spectral gap (as in our situation).

We are aware of only one result dealing with dichotomies in the setting of Theorem 2.2,
namely Theorem 5.5 of the paper [7] by deLaubenfels and Latushkin. These authors obtain
an exponential dichotomy on a Banach space Z such that D(A?) C Z C X assuming that
R(A\, A) is bounded on iR. But it seems that Z is hard to describe conveniently and
that it is smaller than our X,. The approach of [7] is based on deLaubenfels’ work on
regularized functional calculi, [6]. (Concerning these calculi we also refer to the recent
contribution [10] and the fundamental work by McIntosh in e.g. [16] and [17].) We proceed
in a different, rather direct and self-contained way: The contour integrals (2.8) and (2.2)
define operators on X which turn out to be equal to T'(¢)P(w — A)~* and Tg(—t)(I —
P)(w — A)~ and to have the asserted properties. Our reasoning is inspired by methods
from [12], [14], [20] and from the theory of functional calculi. But the verification of the
exponential estimates in Definition 1.1(c) and the presence of an unbounded projection
posed several new difficulties. We also note that we do not use the Weis—Wrobel theorem
in our arguments, cf. Remark 2.3.

In Example 2.5 we study a parabolic partial differential equation in L?(2) with a delay
in the highest spatial derivatives, based on Theorem 2.2 and our work in [4]. We show
that the exponential a—dichotomy follows also in this case from a resolvent type estimate
(where o > |$ — §|), and we give quite explicit sufficient conditions in a special case.
Here pure spectral criteria for exponential dichotomy may fail, see [4, Ex.5.8].

In fact, our main Theorem 2.2 is stated in a somewhat more general way allowing for
polynomial growth of R(\, A) on an open vertical strip around ¢R. This extension only
affects the value of the regularity exponent . If one merely assumes that ||R(iT, A)| <
c(1+|7|7) for 7 € R and some 7 > 0, then it may happen that the spectrum approaches
the imaginary axis at +ico. There are various examples arising from wave equations where
o(A) belongs to the open left half plane, the semigroup is bounded (thus s(A) = 0), and
T(t)x decays polynomially, but not exponentially as t — oo for x € D(A), see e.g. [1],
3], [15], and the references therein. This situation was investigated in detail in [3]. To
our knowledge there are no papers treating the case that the generator spectrum o(A)
approaches iR at +ioo from the left and the right. We address this point in the third
section. In fact, the arguments of Section 2 can be modified in order to obtain again
a closed projection P with the properties from Definition 1.1 except for (¢) where we
now take a > v + % — z%' In particular we have X, — D(P). Extending the methods
of Section 2, we can further show the polynomial decay on appropriate subspaces, see
Theorem 3.1, (3.3), and (3.4).

Notation and definitions. For Banach spaces X and Y the space of bounded linear
operators is denoted by B(X,Y'), where B(X) := B(X, X). By D(B), N(B), R(B), o(B),
p(B), we designate the domain, kernel, range, spectrum, resolvent set of a linear operator
B, respectively, and we set R(\, B) = (Al — B)™! = (A — B)~!. The domain of a linear
operator B is always endowed with the graph norm of B. For p > 1 we set p’ = p/(p—1)
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if p>1and p’ = oo if p = 1. The Fourier transform is defined by F f(7 fR e TE(t)
7 €R, for f € L'(R, X). We write ¢ = c¢(a, 3,---) for a generic constant dependmg on
the quantities «, 3, - - -

Let A be the generator of a Cy—semigroup T'(-) = (T'(t))s>0 on X. The spectral bound
of A is defined by s(A) = sup{ReX : A € 0(A)}, and the growth bound by wy(A) =
inf{w € R : IM : |T(t)|| < Me™, t > 0}. We say that T() is ezponentially stable if
wo(A) < 0. Recall that s(A) < wy(A) < oco. We fix a number w > wy(A) and define for
a > 0 the fractional power

1

(w—A)™ = 27i

[ (w =X RO, A)d) (1.6)

where I is a piecewise smooth path in the set {A € C: ReX > wy(A4), XA ¢ [w,0)},
running from ooe™ to ooe’ for some 0 < ¢ < 7/2. We further set (w — A)° = I.
The operators (w — A)~® are injective, bounded, and satisfy the power law with respect
to . In particular, (w — A)~* has a closed inverse denoted by (w — A)®. The domain
Xo = D((w — A)*) does not depend on the choice of w > wy(A4). It is known that
X,, = D(A") for n € N (with equivalent norms) and that Xz — X, — X for 8 > a >0,
where ‘=’ designates a continuous embedding (which is also dense in our case). Since
(w—A)"T(t) = T(t)(w — A)~® it is easy to see that the restriction A, : Xj,n — X,
of A generates the semigroup in X, given by the restrictions of T'(t) to X,. Moreover,
R(\, A,) is the restriction of R(\, A) to X, for A € p(A.) = p(A). We refer to [2] or [§]
for proofs of these facts.

2. EXPONENTIAL DICHOTOMY

Before presenting our main theorem we state a standard lemma on closed projections.
The proof is given for the reader’s convenience. Here a ‘closed projection” P on X is a
closed linear operator such that PD(P) C D(P) and Pz = P?z for x € D(P). Through-
out we set @@ = I — P with D(Q) = D(P).

Lemma 2.1. If P is a closed projection on a Banach space X, then the spaces N'(P) =
R(Q) and R(P) = N(Q) are closed in X and in D(P). Moreover, D(P) = N (P)®R(P).

Proof. We first observe that @ ist also a closed projection on X so that the kernels N'(P)
and N(Q) are closed in X and D(P). It is clear that N(Q) C R(P). Conversely,
a vector y = Px belongs to D(P) = D(Q) and Qy = Px — P?x = 0. As a result,
N(P) =R(Q) and N(Q) = R(I — Q) = R(P). To show that D(P) = N(P) & R(P), we
take x € N(P)NR(P). Then x = Pz = 0. Further, x € D(P) can be decomposed into
x=Pr+ (I —P)xr € R(P)+R(Q) =R(P)+ N(P). O

Theorem 2.2. Let A be the generator of a Co—semigroup T'(-) on a Banach space X with
Fourier type p € [1,2].
(1) Suppose that
(a) either iR C p(A) and |R(iT, A)|| < C for 7 € R and a constant C' > 0,
(b) or {A € C:|Re)| < 6} C p(A) and |R(\, A)|| < C(1L+|A]) for |[ReA| < & and
some constants C, 8, > 0.
In case (a), we set v =0 and take § € (0,1/C). Let a > % - z% + 7. Then T(-) has an

exponential a—dichotomy with decay exponent § and a constant N = N(«).
4



(2) Conversely, if T'(-) has an exponential a—dichotomy with decay exponent oy > 0, then
(b) holds with v = « and every 6 € (0, dp).

Proof. To show the second part of the theorem, assume that 7'(-) has an exponential
a—dichotomy with decay exponent g > 0, and let © € X,. Then the operator

R,\a::/ e_’\tT(t)det—/ MTo(—t)Qux dt
0 0

maps X, into X and is uniformly bounded for | Re \| < § and a fixed 0 < 6 < . It is then
straightforward to check that Ryz € D(A) and (A — A)Ryz = = and that R\(A—A)y =y
for y € Xy, Hence, A € p(A,) = p(A), where A, is the part of A in X,, and R(\, A)
is an extension of Ry. Property (b) now follows from [14, Lem.3.2] and the uniform
boundedness of R(\, A)(w — A)~* = Ry(w — A)~* for | Re A\| < 4.

We prove the first part of Theorem 2.2 in four steps. We first observe that assumption
(a) implies (b) with v = 0 and some 0 < § < 1/C by a standard perturbation argument.
We fix numbers o > é — z% +7>7v2>0,0<a<4d, and max{d,wy(A)} < @ < w. Hence,
|R(A, A)|| < ¢ for Re A > .

Step 1. First part of the construction of Tq(—t)Q. We define the path I'g =
(W + [—io0, +iocc]) U (a + [+ico, —ioco]) which is oriented counter clockwise. Let x € D(A)
and t > 0. Since
for |[ReA] < 6 or Re A = w, the integral
1
Got)r = — [ e M(w—N)""R(\ A)xd) (2.2)
2mi Jr,
converges absolutely. Consider the counter clockwise oriented rectangular path I',, with
vertices w + in and a +in. For s € [0,t] we then obtain
1

T(s)Go(t)r = Go)T(s)z = 5—

2mi Jr,

D

A=) (g — N [R()\, A)x — /s e T (r)x d?“] d\

n—oo 271

= Gg(t —s)r — lim 1 / e M) (g — )\)a/ e T (r)z dr d\
r, 0
= Go(t — s)z, (2.3)

where we have used Cauchy’s theorem and
/ e T (r)zdr = (eT(s) — I)R(\, Az = O(|A™Y)
0

on I'g as [Im A| — oo due to (2.1). We define

5 1 —100 1 w100
= = — —A)7° A Py —A) A
Qz = Go(0)x 2 Jo (w—=AN)""R(\ A)xd\+ 57 /ﬁ)—ioo (w—AN)"*R(\, A)x dA
1 “+100
=—— (w—=A)"*R\A)zd\+ (w— A) %z (2.4)

2T ) oo
for x € D(A). The last equality follows from a standard deformation of the path [@ —
100, W + i00] to the path I' from (1.6).

5



Observe that the function ¢ — Ty (t) := e “T(t) belongs to L*(R,,B(X)). Since
R(w+it, A)x = (FTy(-)x) (1) and p is the Fourier type of X, we obtain R(w + i-, A)x €
L” (R, X) with p/~norm less than c||z|. The resolvent equation further yields

|R(a +it, A)z|| = ||[{ + (@ — a)R(a + i1, A)] R(W + i, A)x||
<c(l+|7)||R(w +ir, A)x||. (2.5)
for 7 € R. We set
fi(r), A=a+ir, TER,

) = (w=A)""R\ Az = {fQ(T), A= +ir, T €R.

Let p € (1,2]. Holder’s inequality, estimate (2.5), and the relation (—a+~)pp'(p'—p) ' <
—1 then yield

P Pl -Pp
7

/RHfl(T)deT <c [/R‘|R(@+i7', A)z||” dT]p [/R(l—i- |T|)(_a+7)% dT] v
< c(o) [P 20

The function f; can be estimated similarly. Thus the identity
1 _
21 e Go(t)r = —,/ el Nt — M) TR\, Az dh = —(Ff1)(t) + "D (F f)(1),
Iq

]

inequality (2.6), and the Fourier type of X imply that

/0 le* Go()z || dt < c(ILAllh + I fll) < ela) [|z]”"

From this estimate and formula (2.3) we then deduce

1
le® Go(r)x||? S/O AT NT ()| | Go(r + s)al|” ds

r+1
<c [ e Goltal” di < cle) P

for » > 0 and = € D(A). Therefore we can extend Gg(t) to a bounded operator on X
denoted by the same symbol and satisfying

IGa)ll < c(a)e™,  t=>0, (2.7)

where we let @ = 8. In particular, the extension @ : X — X is bounded. The same results
hold for p = 1 by an analogous, but simpler argument.

Step 2. Construction of T(t)P. We define for x € D(A) and ¢ > 0 the operator
1 —a-+100

Gp(t)r = — Mw — N)T*R(N, A)x d. (2.8)

27

Again (2.1) shows that the integral converges absolutely. If ¢ = 0, we set
_ 1 —+400
Pz :=Gp(0)x = 9 (w—A)"*R(\, A)x dA (2.9)

(after shifting a to 0). Thus (2.4) implies

Pz +Qr=(w—A) "z (2.10)
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for z € D(A). There exists a bounded extension P : X — X due to (2.7) and (2.10). For
z € D(A?) and t > 0 we further compute

1 —a+1i00

Gp(t)r = 57 Mw — N YR, A) — R(w, A))(w — A)z d)
™ —a—100
=TT o — A RO A (w0 — Al d
2mi —a—100 ’ ’

using the resolvent equation and

1 —a+100
— Mw — N7 ldA =0 (2.11)

2mi —a—100

(which can be shown by applying Cauchy’s theorem to the triangular path with vertices
—a —in, —a +in, —n ). Because of the identity
%e”(w—)\)_o‘_lR(A, A)(w— A)x

=eMw — A) TR\, A)(w — A)Ax + M(w — N Hw — A),
equation (2.11), and the closedness of A, the function Gp(-)z is continuously differentiable

in X, Gp(t)D(A?) C D(A), and

LGp(t)r = Gp(t) Az = AGp(t)z, t >0, (2.12)

for x € D(A?). Therefore the uniqueness of the Cauchy problem corresponding to A
yields

Gp(t)x = T(t)Pz, t>0, (2.13)

at first for € D(A?). Since T(t)P is bounded, we can extend Gp(t) to a bounded
operator (denoted by the same symbol) which satisfies (2.13) for all x € X. We have
APz = PAz on D(A?) by (2.12), so that

PD(A) C D(A), APz = PAx for x € D(A), and hence
T(t)P = PT(t), t>0. (2.14)

Let p € (1,2]. As in the first step one shows that

/ le™T(t) Pa|[” dt < c(a) |||
0

for x € D(A). For r > 1, this estimate implies that
1
e TPl < [ TP e Tlo = )Pl ds < )
0
Taking a = ¢, we have shown that

|IT()P| < c(a)e™®, >0, (2.15)

Again, this inequality still holds for p = 1 due to a similar argument.
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Step 3. The projection P. We define the bounded operator
P=Pw—A": X,— X. (2.16)

Observe the first part of Definition 1.1(c) now follows from (2.15). For z € X4, formula
(2.9) and the closedness of the fractional power further imply that PX;,, C X, and
1 +ioco 5
Pr=— (w—=AN)"*RNA)(w—A)cd\ = (w— A)*Px.

omi

Hence, PX, C X, and P = (w — A)*P on X,. Since (w— A)* is closed, the operator
P possesses a closure (denoted by (P,D(P))) in X. We further obtain X, — D(P),
PD(P) C X,, P=(w— A)*P on D(P), and therefore

P =Pw— A7, Pz = (w— APz for x € D(P). (2.17)
We set () = I — P. Then the identities (2.10) and (2.17) yield
Q=Qw—-A)%  Qr=(w—A"Qz for z e D(P). (2.18)
We are going to show that P is a projection. For € D(A?) and a > 0 we calculate
. 1 —a+1i00 1 4400
Pir=— — —N) "% w—p) RN\ A A)x dpd 2.1
rege | e[ e N = ROARG Ajrdudy (219)
1 —a+i00 1 +ico (w _ ,u)—a
= — -\ “— —————du R(\, A)x dA
2mi —a—100 (w ) 2mi \/—zoo = A a ( ’ )x
1 +i00 1 —a-+100 (w _ /\)—a
- — — ) Y — ——d\ R(p, A)xd
o [ e [ R A dy

using the resolvent equation and Fubini’s theorem. The integration path of the scalar
Aintegral in the last line can be closed in the left halfplane where the integrand is
holomorphic. Thus the second summand on the right hand side is equal to 0. In the
scalar p—integral in first summand, we use the triangular path with vertices —in, in, —n
for large n € N such that the (fixed) number A belongs to the interior of the triangle.
Then Cauchy’s integral formula yields

1 —a-+ioco

Pr = o (w— N)"2R(\, A)x dA
™ —a—100
1 +1i00
=5 (w— A)"**R(\, A)x d. (2.20)
™ —100

On the other hand, by similar arguments we deduce

Plw—A) == [ —— [ (w=\""w—p)™ RO\ A)R(s, A)z dp.d
(=) =an [ 2w 0T N w RO ARG A dy
1 +i00 1 (w—u)fa

= om — A= [ ————du R(\, A)zd)

omi ) = 2m'/F RO A

1 1 +i00 (w_)\),a
- — ) o= L d\ Azd
o F(w 2 2m‘/m y— R(p, A)z dp
1 4300

=— (w—A)**R(\, A)z d. (2.21)

21 ) oo
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In the first summand of the middle equation we have deformed a bounded part of the
path I' from (1.6) to a path in {s : Rep < w} around the (fixed) number A € R. By
approximation, the identities (2.20) and (2.21) can be extended to all z € X. These two
equations and (2.17) then yield

P? = P(w— A" = (w— A)~P.

Hence, R(P?) C X, and P = (w— A)*P2. Using again formula (2.17) and the closedness
of P, we conclude that PX C D(P) and P = PP. This fact leads to P = P? on X,,
due to (2.17). As a result, P is a projection. Combining (2.14) and (2.16) we further
deduce T'(t)P = PT(t) on X,, so that T'(t)D(P) C D(P) and T'(t)P = PT(t) on D(P)
by approximation.

Step 4. Second part of the construction of Tq(—t)Q. Formula (2.2) implies that
Go(t)X11a C X, and Go(t)(w — A)*z = (w — A)*Gg(t)x for v € X144 and t > 0.
Thus Gg(t) X, C X, and Gg(t) commutes with (w — A)*. For z € X1, and t > 0, the
equalities (2.3) and (2.18) then show that

(w — A)*Go(t)T(t)z = (w — A)*Qz = Qx (2.22)
T(t)(w — A)*Go(t)z = (w — A)*Qx = Q. (2.23)

One can extend (2.22) to D(P) and (2.23) to X,. Therefore the restriction T (t) of T'(t)
to N(P) = R(Q) is injective; its (closed) inverse is denoted by T (—t). Then (2.23) and
an approximation argument yield

Go(t)r = (w — A) " To(-t)Qx

for € D(P). Inserting this identity into (2.22), we see that T'(t) : N(P) — N(P) is
bijective, and its inverse T (—t) : N'(P) — N (P) is bounded by the closed graph theorem.
Moreover,

To(—t)Qr = Go(t)(w — A) %z, ze€X,,
and the second part of Definition 1.1(c) follows from (2.7). O

Remark 2.3. Suppose that the assumptions of Theorem 2.2 hold for v = 0. Let Ts(t)
be the restriction of T'(t) to X; := R(P). Then the generator A, of this semigroup is
the restriction of A to X,. Definition 1.1(c) implies that R(\, A;)(w — As)~® (initially
defined for Re A > wy(As)) has a bounded extension F'(\) to Re A > —d/2. This means
that the spectral bound of the part of A in D((w — As)®) is less than —0/2, and hence
s(As) < —0/2 < 0. The boundedness of F(A) = R(\, As)(w — Ag)~* further yields
IR\, Ag)|| < c(1+]|A]%) for ReA > —0/2 by [14, Lem.3.2]. On the other hand, R(\, A;)
is the restriction of R(\, A) for A € iR, and thus uniformly bounded on ‘R by assumption
(a). The Phragmen Lindelof principle then implies that R(\, As) is uniformly bounded
for Re A > 0. The Weis—Wrobel result (1.5) now shows that
1Tzl < Ne™™|[(w — A7zl t=0,

for = > — - and o € R(P) N Xs. Similar arguments work for the restriction —A, of
—Ain X, = R(Q) which generates the semigroup T(—t), ¢t > 0, on X,,. Hence

ITo(=t)all < Ne™*|[(w — Az, t>0,
9



for € R(Q) N Xp. If one wants to derive an estimate for T'(¢) P as in our Definition 1.1,
then one obtains

IT(t) Pl| < Ne ™||(w — A)PPx|| < ce™||(w — A)* ez

for v € Xgio with a > % - z% (and analogously for To(—t)@). Observe that one looses

0= %} — % in the regularity exponent, and it is thus necessary to estimate the products

T(t)P and Tp(—t)@ in order to prove Theorem 2.2.

Remark 2.4. Suppose that the assumptions of Theorem 2.2 hold. Arguing as in (2.21),
one can verify that
1 +i00

Plw— APz =(w—-A) PPz = 3 (w— X)"*PR(\, A)xd\
T

for > 0 and = € D(A). This identity implies in particular that the projection P in
Theorem 2.2 does not depend on the choice of a > % — z% + 7.

In the next example we extend Theorem 4.4(a) and Proposition 5.7 from [4] from an
L? to an L%-setting. Due to the lack of a Weis—Wrobel type result for dichotomies, we
were forced to restrict ourselves to a Hilbert space setting in [4].

Example 2.5. Let A = A be the Dirichlet Laplacian with D(A) = W24(Q)NW,4(Q) =:
X on X = LQ) for 1 < ¢ < oo and a bounded domain  with a C? boundary. (In
fact, one can replace A by more general generators of analytic semigroups, see Hypothesis
(H) and Proposition 5.7 of [4] for the details.) Let r > 0 and B : [-7,0] — B(X;, X)
be of bounded variation db such that db(|—t,0]) — 0 as t \, 0. We define the ‘history
function’ w(0) = wu(t + 0) for u : [-r,00) — X, ¢t > 0, and 6 € [-r,0]. Let p €
[min{q, ¢'}, max{q, ¢'}]. For ¢ € W'P([—r,0], X;) we study the retarded problem

0

u'(t) = Au(t) + / dB(@)u(t+#6), t>0, u(t) = p(t), te|—r0l. (2.24)
This problem can be solved using Theorems 7.4-7.6 of [21] which address even more gen-
eral equations. In [4] we have developed a semigroup approach which gives an alternative
proof of a part of these theorems. We need the real interpolation space Y := (X, X1)1_1/p,-
The product space X =Y x LP([—r,0],Y) has Fourier type min{q, ¢'}, see e.g. the proof
of [4, Thm.4.5]. There is a unique solution v € C'(Ry, Y)NW. (R, X,) of (2.24). There

loc
exists a Cp—semigroup 7 (-) on X satisfying

(u(t)) — T(t) (90(0))’ t> 0’

ut [%2) -

which is generated by

0 d

A= (A d_i) , D(A) ={(0) € X0 x WH([=r,0], X1) : p(0) = 2, Ly + Az € Y},

where Ly := f?r dB(0) p(0) for p € WP([—r,0], X;), see [4, Thm.3.6]. In certain cases
this semigroup violates the spectral mapping theorem, see [4, Ex.5.8]. Set Lyz = L(eyx)
for A € C, x € Xy, and e)(0) = €, § € [—r,0]. By Proposition 4.3 of [4], A € C belongs

to p(A) if and only if the operator H()\) = (A— A— L)™' exists in B(X, X;). One further
10



has ||R(A, A)|[sx) < cla) [|H(N)||Bx,x,) for A € p(A) with ReX > a. Thus Theorem 2.2

immediately implies that

sup || H (i7)||gx,x,) <oo = 7T(-) has an exp. a—dichotomy for o > |% - i .
TER

Observe that the dichotomy of 7 (-) means a splitting of both the solutions u(t) and their
history functions u; with decay estimates in the norm of X.
To obtain a more explicit condition, suppose in addition that B(6) = n(#)A, where

n € BV ([-r,0],C). We set

0
dn(/\):/ e dn(6), M eC.

-Tr

Then H(iT) : X — X exists and is uniformly bounded for 7 € R provided that
1+ dp(iR) ¢ {A e C\{0}:|arg\| < ¢ or |arg(—\)| < ¢}

for some 0 < 9 < /2, see the proof of Proposition 5.7 of [4]. In this case we thus obtain
an exponential a—dichotomy.

3. POLYNOMIAL DICHOTOMY

In this section we assume that A is a generator of a semigroup 7'(-) on a Banach space

X such that iR C p(A) and |R(it, A)|| < C (1 + |7]") for 7 € R and some v > 0. We
take again a > v + 1% — z% where p € [1,2] is the Fourier type of X. We want to repeat
the reasoning in steps 1-4 of the proof of Theorem 2.2 with a = = 0. This can be done
literally in the same way with the exception of (2.19). Here we have to replace the path

—a + 1R by the path IV given by
A =it —[2C (1 + |77, T eR
Standard perturbation arguments show that IV C p(A) and
IR A <20 (1+ [ImA]) <c(1+A[), Ael”.

The modification of (2.19) can be justified using Cauchy’s integral theorem. Then one
verifies (2.20) as before. Thus we have constructed a closed projection P on X such that
X, — D(P), T(t)D(P) C D(P), T(t)Px = PT(t)x for x € D(P), T(t) : N(P) — N(P)
has the bounded inverse T (—t). Moreover, T'(t)P(w — A)~*x and To(—t)Q(w — A)x,
t > 0, are given by (2.8) and (2.2) with a = 0 if x € D(A), and these operators are
uniformly bounded for ¢ > 0.

We use these formulas in order to derive the desired polynomial decay estimates, starting
with the stable case. First observe that we can replace o by a4y in the above reasoning.
Let € D(A) and ¢t > 1. Then we obtain

1 —+100
tT(t)P(w — A)™* g = el (L eM) (w—A)"*TTR(\, A)z d.
1 —+100

= eM(w — N\)TTR(N, A) 2w d)

T omi

—100

+i00
_aty / M(w — N0 IR, Az dh =1 Ji + o,
2m i
integrating by parts in the second equality. It is clear that ||J5|| is less than ¢ ||z||.

11



In order to estimate J;, we will use a duality argument. The dual space X* has the
same Fourier type as X by [9, Prop.2.3]. Let X® be the space of those z* € X* such
that t — T(¢)*z* is continuous in X*. The space X® is T(-)*~invariant and closed in X*
(possibly X* # X©) and the restriction T'(-)® of T(-)* to X© is generated by the part
A® of A* in X©, see e.g. [8, §11.2.6]. Moreover, the growth bounds of T'(-), T'(-)*, and
T(-)® coincide by [8, Prop.IV.2.18], and R(\, A®) is the restriction of R(A, A*) to X© for
Re A > wy(A). Note that also X® has Fourier type p. As in Step 1 of Section 2, we thus
obtain

[R(@ + i, A")a"|| o ) < [l27]]
for z* € X®. Finally, due to (I1.2.1) of [8] we have
lyll < sup{|(y,2")| - 2" € X, ||la"|| < M}

for y € X, where ||T(t)|| < Me** for t > 0. We take z* € X® with [|z*|| < M. First let
1 < p < 2. Proceeding as in (2.5), we can estimate

(2™ < ¢ / w — i |9 |(R(ir, A), R(ir, A%)a*)| dr
R

< c/(l + |7]) 7| R(w + iT, A)z|| |R(w + i, A%)x*|| dT
R

o

(-a) e / /
< c[/(1+ 7)) " dr| 7 [/ |R(@ + i, A)z | | R(@ + i, A*)a*||F dr|”
R R
< cl|R(w + i, Azl o g xy 1R(W + i, A2 o x09
< el [la"]] < eM ||z
where we have used Holder’s inequality and the relation

py—a) _ pp—p) _
2—-p  (2-py

As a result, also ||.J;|| is bounded by c||z||. If p = 2, the above estimates work even in the
case o = . The proof for p = 1 is similar but simpler. One can treat To(—t)(Q in the
same way. So we obtain the following result.

Theorem 3.1. Let A be the generator of a Cy—semigroup T(-) on a Banach space X
with Fourier type p € [1,2]. Suppose that iR C p(A) and ||R(iT, A)|| < C(1 + |7|7) for
7 € R and constants C,~v > 0. Let o > %D - 1% + . Then there is a closed projection
P on X such that X, — D(P), T(t)D(P) C D(P), T(t)Px = PT(t)x for x € D(P),
T(t) : N(P) — N(P) has the bounded inverse Tp(—t), and
N(e) N()

IT@Pel < =2 (- A all, | To(-0)Qu] < =

fort>1, x € Xopy, and a constant N(«) > 0. If p =2 we may take o =~y in (3.1). We
further have

l(w = A)* 7zl (3.1)

IT(t) Pl < N'() [[(w = A)%ll,  [[To(=)Qz| < N'() [[(w — A)*z| (3.2)

fort >0, z € X,, and a constant N'(«) > 0.
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If T(+) is a bounded semigroup, we obtained a similiar result in Theorem 3.5 of [3] with
P = I and an arbitrary a > 0 in (3.1). The difference in the regularity exponent is caused
by the unboundedness of T'(¢)P in Theorem 3.1.

Under the assumptions of Theorem 3.1, we easily obtain decay estimates on the spaces
X for each § > 0. First observe that T'(¢)P and Tp(—t)Q commute with fractional
powers (say, on X, for a sufficiently large n € N). Using (3.1), (3.2), and the moment
inequality, see e.g. [8, Thm.I1.5.34], we then deduce for 0 < # < 1 and ¢ > 1 that

IO Pw = A" < (@)™, [To(-t)Q(w — A) | <cla)t™’. (3.3)

Second, since T(t)Px = T(L)P---T(L)Pz and To(—t)Qz = To(—L)Q - To(—1)Qx,
the estimates (3.1) yield

IT(t) Pal| < cla,n)t™ ||[(w — A) ]|, | To(=)Qz| < e(a,n)t™ [[(w — A) |
forn € N, t > 1, and x € X,,(n44). Interpolating once more, we arrive at

1T P(w — A) " < e, )17, [[To(=1)Qw — A) " V|| < (e, )t (3.4)
for > 1, ¢ > 1, and a constant c¢(«, ) > 0.

Acknowledgement. [ like to thank the referee for pointing out a gap in the original
proof of Theorem 3.1.
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