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Abstract. Let A generate a C0–semigroup T (·) on a Banach space X such that the
resolvent R(iτ, A) exists and is uniformly bounded for τ ∈ R. We show that there exists
a closed, possibly unbounded projection P on X commuting with T (t). Moreover, T (t)x
decays exponentially as t → ∞ for x in the range of P and T (t)x exists and decays
exponentially as t → −∞ for x in kernel of P . The domain of P depends on the Fourier
type of X. If R(iτ, A) is only polynomially bounded, one obtains a similar result with
polynomial decay. As an application we study a partial functional differential equation.

1. Introduction and preliminaries

Exponential stability and dichotomy are among the most basic and most important

asymptotic properties of a strongly continuous operator semigroup T (·) on a Banach

space X. One strives to characterize these notions in terms of the generator A of T (·)
which is the given object in most applications. There is a well developed theory for this

problem which nevertheless does not answer several important questions. In this paper

we want to address one of these open issues, treating also polynomial dichotomies within

the same approach.

To provide the background for our main theorems, let us describe the relevant known

results in this area. Our notation is explained at the end of this section. We first re-

call the well known resolvent estimates which are necessary for exponential stability and

dichotomy, namely

T (·) is exp. stable =⇒ s(A) < 0 and ‖R(λ,A)‖ ≤ c, Reλ ≥ 0, (1.1)

T (·) is exp. dichotomous =⇒ iR ⊂ ρ(A) and ‖R(iτ, A)‖ ≤ c, τ ∈ R. (1.2)

If t 7→ T (t) is continuous in operator norm for some t > 0, then the pure spectral criteria

s(A) < 0, resp. iR ⊂ ρ(A), already imply the exponential stablity, resp. dichotomy, of T (·),
see e.g. [8, Cor.IV.3.11, Thm.V.1.17]. In this way exponential stability and dichotomy

of, e.g., analytic semigroups can be characterized very conveniently. Unfortunately, for

general semigroups these criteria fail even on a Hilbert space X, see [4, Ex.5.8], [5, §2.1.5],

[8, §IV.3.a], [19, Ex.1.2.4]. (Some of these examples arise from wave equations.) On the

other hand, on a Hilbert space X Gearhart’s spectral mapping theorem establishes the

converse implications in (1.1) and (1.2); i.e., it holds

T (·) is exp. stable ⇐⇒ s(A) < 0 and ‖R(λ,A)‖ ≤ c, Reλ ≥ 0, (1.3)

T (·) is exp. dichotomous ⇐⇒ iR ⊂ ρ(A) and ‖R(iτ, A)‖ ≤ c, τ ∈ R, (1.4)
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if X is a Hilbert space, see e.g. [5, §2.1], [19, Thm.2.2.4], and [19, p.70] for further

references. However, on non Hilbertian X there are semigroups violating the implications

‘⇐’ in (1.3) and (1.4), see [5, §2.1.5], [8, §IV.3.a], [19], [25, §4].

Going back to the general case of a C0–semigroup on a Banach space X without addi-

tional regularity properties, one can look for stronger assumptions on the resolvent which

imply the exponential stability or dichotomy of T (·). Such conditions were found in the

papers [5, §2.2], [11], [12], [13], [14], [18, Thm.A-III-7.10], [24]. However, these conditions

are quite sophisticated and (as it seems) difficult to check in applications. Alternatively,

one can ask whether the uniform boundedness of R(λ,A) for λ ∈ iR or Reλ ≥ 0 implies

interesting asymptotic properties of the semigroup which are related to stability or di-

chotomy. In the case of exponential stability this question was settled in a line of research

culminating in the paper [25] by Weis and Wrobel, see also [19], [20], [23], [24], and the

references therein. Theorem 3.2 and Remark 3.3 of [25] (or [19, Thm.4.2.4]) show that

‖R(λ,A)‖ ≤ c, Reλ ≥ 0 =⇒ ‖T (t)x‖ ≤Me−εt‖(w − A)βx‖ (1.5)

for β = 1
p
− 1

p′
, x ∈ D((w − A)β), and some constants M, ε > 0. Here w is a fixed real

number larger than the growth bound of T (·), p′ = p/(p− 1), and p ∈ [1, 2] is the Fourier

type of X, i.e., the Fourier transform F is bounded from Lp(R, X) to Lp′(R, X). Clearly,

each Banach space has at least Fourier type p = 1. Hilbert spaces have Fourier type p = 2

by Plancherel’s theorem. In fact, only Hilbert spaces have Fourier type 2. The space

X = Lq(Ω) has Fourier type p = min{q, q′}. Moreover, uniformly convex Banach spaces

have nontrivial Fourier type p > 1. (See [19, p.116] for references concerning these facts.)

In particular, (1.5) implies (1.3) if X is a Hilbert space. By means of an example it can

be shown that the exponent β in (1.5) is optimal, see [25, §4] or [19, Ex.4.2.9].

In Theorem 2.2 we establish a result on exponential dichotomy which is analogous to

the Weis–Wrobel theorem. As in (1.5) we expect exponential estimates only for x in

a space Xα := D((w − A)α), correspondingly the dichotomy projection P will only be

defined on a subspace D(P ) of X containing Xα. This leads us to the following concept

which is weaker than the usual exponential dichotomy (where α = 0 and D(P ) = X).

Definition 1.1. Let T (·) be strongly continuous semigroup on a Banach space X and

α ≥ 0. We say that T (·) has an exponential α–dichotomy if there is a closed projection

P on X and constants N, δ > 0 such that

(a) Xα ↪→ D(P ), T (t)D(P ) ⊂ D(P ), T (t)Px = PT (t)x, x ∈ D(P ),

(b) T (t) : N (P ) → N (P ) has the bounded inverse TQ(−t),
(c) ‖T (t)Px‖ ≤ Ne−δt ‖(w − A)αx‖, ‖TQ(−t)(I − P )x‖ ≤ Ne−δt ‖(w − A)αx‖

for t ≥ 0 and x ∈ Xα. We call α and δ the regularity and decay exponent, respectively.

We note that unbounded splitting projections also occur in the study of bisectorial

operators, see e.g. [17], [22]. However, this is a different situation in so far bisectorial

generators already generate analytic semigroups.

Our main Theorem 2.2 shows that T (·) has an exponential α–dichotomy if R(iτ, A)

exists and is uniformly bounded for τ ∈ R and α > 1
p
− 1

p′
≥ 0, where p ∈ [1, 2] is the

Fourier type of X. We can take α = 1 in the case of a non–trivial Fourier type p > 1 (e.g.,

if X is uniformly convex). In this case Definition 1.1(c) gives exponential estimates for

x ∈ D(A), i.e., for classical solutions u(t) = T (t)x of the Cauchy problem. Unfortunately,
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we do not quite obtain the exponent α = 1
p
− 1

p′
from (1.5). For P = I, our theorem

corresponds to the results of the paper [20], where (1.5) was shown for β > 1
p
− 1

p′
. Then

in [25] additional arguments were developed which allow to pass to the equality β = 1
p
− 1

p′

in the regularity exponent. A different approach is contained in the proof of Theorem 4.5.2

of [19]. But it seems that these techniques do not work in the presence of an unbounded

projection or if one deals with a spectral gap (as in our situation).

We are aware of only one result dealing with dichotomies in the setting of Theorem 2.2,

namely Theorem 5.5 of the paper [7] by deLaubenfels and Latushkin. These authors obtain

an exponential dichotomy on a Banach space Z such that D(A2) ⊂ Z ⊂ X assuming that

R(λ,A) is bounded on iR. But it seems that Z is hard to describe conveniently and

that it is smaller than our Xα. The approach of [7] is based on deLaubenfels’ work on

regularized functional calculi, [6]. (Concerning these calculi we also refer to the recent

contribution [10] and the fundamental work by McIntosh in e.g. [16] and [17].) We proceed

in a different, rather direct and self–contained way: The contour integrals (2.8) and (2.2)

define operators on X which turn out to be equal to T (t)P (w − A)−α and TQ(−t)(I −
P )(w − A)−α and to have the asserted properties. Our reasoning is inspired by methods

from [12], [14], [20] and from the theory of functional calculi. But the verification of the

exponential estimates in Definition 1.1(c) and the presence of an unbounded projection

posed several new difficulties. We also note that we do not use the Weis–Wrobel theorem

in our arguments, cf. Remark 2.3.

In Example 2.5 we study a parabolic partial differential equation in Lq(Ω) with a delay

in the highest spatial derivatives, based on Theorem 2.2 and our work in [4]. We show

that the exponential α–dichotomy follows also in this case from a resolvent type estimate

(where α > |1
q
− 1

q′
|), and we give quite explicit sufficient conditions in a special case.

Here pure spectral criteria for exponential dichotomy may fail, see [4, Ex.5.8].

In fact, our main Theorem 2.2 is stated in a somewhat more general way allowing for

polynomial growth of R(λ,A) on an open vertical strip around iR. This extension only

affects the value of the regularity exponent α. If one merely assumes that ‖R(iτ, A)‖ ≤
c(1 + |τ |γ) for τ ∈ R and some γ > 0, then it may happen that the spectrum approaches

the imaginary axis at ±i∞. There are various examples arising from wave equations where

σ(A) belongs to the open left half plane, the semigroup is bounded (thus s(A) = 0), and

T (t)x decays polynomially, but not exponentially as t → ∞ for x ∈ D(A), see e.g. [1],

[3], [15], and the references therein. This situation was investigated in detail in [3]. To

our knowledge there are no papers treating the case that the generator spectrum σ(A)

approaches iR at ±i∞ from the left and the right. We address this point in the third

section. In fact, the arguments of Section 2 can be modified in order to obtain again

a closed projection P with the properties from Definition 1.1 except for (c) where we

now take α > γ + 1
p
− 1

p′
. In particular we have Xα ↪→ D(P ). Extending the methods

of Section 2, we can further show the polynomial decay on appropriate subspaces, see

Theorem 3.1, (3.3), and (3.4).

Notation and definitions. For Banach spaces X and Y the space of bounded linear

operators is denoted by B(X, Y ), where B(X) := B(X,X). By D(B), N (B), R(B), σ(B),

ρ(B), we designate the domain, kernel, range, spectrum, resolvent set of a linear operator

B, respectively, and we set R(λ,B) = (λI − B)−1 = (λ − B)−1. The domain of a linear

operator B is always endowed with the graph norm of B. For p ≥ 1 we set p′ = p/(p− 1)
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if p > 1 and p′ = ∞ if p = 1. The Fourier transform is defined by Ff(τ) =
∫

R e
−iτtf(t) dt,

τ ∈ R, for f ∈ L1(R, X). We write c = c(α, β, · · · ) for a generic constant depending on

the quantities α, β, · · · .
Let A be the generator of a C0–semigroup T (·) = (T (t))t≥0 on X. The spectral bound

of A is defined by s(A) = sup{Reλ : λ ∈ σ(A)}, and the growth bound by ω0(A) =

inf{w ∈ R : ∃M : ‖T (t)‖ ≤ Mewt, t ≥ 0}. We say that T (·) is exponentially stable if

ω0(A) < 0. Recall that s(A) ≤ ω0(A) < ∞. We fix a number w > ω0(A) and define for

α > 0 the fractional power

(w − A)−α =
1

2πi

∫
Γ

(w − λ)−αR(λ,A) dλ (1.6)

where Γ is a piecewise smooth path in the set {λ ∈ C : Reλ > ω0(A), λ /∈ [w,∞)},
running from ∞e−iφ to ∞eiφ for some 0 < φ < π/2. We further set (w − A)0 = I.

The operators (w − A)−α are injective, bounded, and satisfy the power law with respect

to α. In particular, (w − A)−α has a closed inverse denoted by (w − A)α. The domain

Xα := D((w − A)α) does not depend on the choice of w > ω0(A). It is known that

Xn = D(An) for n ∈ N (with equivalent norms) and that Xβ ↪→ Xα ↪→ X for β ≥ α ≥ 0,

where ‘↪→’ designates a continuous embedding (which is also dense in our case). Since

(w − A)−αT (t) = T (t)(w − A)−α it is easy to see that the restriction Aα : X1+α → Xα

of A generates the semigroup in Xα given by the restrictions of T (t) to Xα. Moreover,

R(λ,Aα) is the restriction of R(λ,A) to Xα for λ ∈ ρ(Aα) = ρ(A). We refer to [2] or [8]

for proofs of these facts.

2. Exponential dichotomy

Before presenting our main theorem we state a standard lemma on closed projections.

The proof is given for the reader’s convenience. Here a ‘closed projection’ P on X is a

closed linear operator such that PD(P ) ⊂ D(P ) and Px = P 2x for x ∈ D(P ). Through-

out we set Q = I − P with D(Q) = D(P ).

Lemma 2.1. If P is a closed projection on a Banach space X, then the spaces N (P ) =

R(Q) and R(P ) = N (Q) are closed in X and in D(P ). Moreover, D(P ) = N (P )⊕R(P ).

Proof. We first observe that Q ist also a closed projection on X so that the kernels N (P )

and N (Q) are closed in X and D(P ). It is clear that N (Q) ⊂ R(P ). Conversely,

a vector y = Px belongs to D(P ) = D(Q) and Qy = Px − P 2x = 0. As a result,

N (P ) = R(Q) and N (Q) = R(I −Q) = R(P ). To show that D(P ) = N (P )⊕R(P ), we

take x ∈ N (P ) ∩ R(P ). Then x = Px = 0. Further, x ∈ D(P ) can be decomposed into

x = Px+ (I − P )x ∈ R(P ) +R(Q) = R(P ) +N (P ). �

Theorem 2.2. Let A be the generator of a C0–semigroup T (·) on a Banach space X with

Fourier type p ∈ [1, 2].

(1) Suppose that

(a) either iR ⊂ ρ(A) and ‖R(iτ, A)‖ ≤ C for τ ∈ R and a constant C > 0,

(b) or {λ ∈ C : |Reλ| ≤ δ} ⊂ ρ(A) and ‖R(λ,A)‖ ≤ C̃(1 + |λ|γ) for |Reλ| ≤ δ and

some constants C̃, δ, γ > 0.

In case (a), we set γ = 0 and take δ ∈ (0, 1/C). Let α > 1
p
− 1

p′
+ γ. Then T (·) has an

exponential α–dichotomy with decay exponent δ and a constant N = N(α).
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(2) Conversely, if T (·) has an exponential α–dichotomy with decay exponent δ0 > 0, then

(b) holds with γ = α and every δ ∈ (0, δ0).

Proof. To show the second part of the theorem, assume that T (·) has an exponential

α–dichotomy with decay exponent δ0 > 0, and let x ∈ Xα. Then the operator

Rλx =

∫ ∞

0

e−λtT (t)Px dt−
∫ ∞

0

eλtTQ(−t)Qxdt

maps Xα into X and is uniformly bounded for |Reλ| ≤ δ and a fixed 0 < δ < δ0. It is then

straightforward to check that Rλx ∈ D(A) and (λ−A)Rλx = x and that Rλ(λ−A)y = y

for y ∈ X1+α. Hence, λ ∈ ρ(Aα) = ρ(A), where Aα is the part of A in Xα, and R(λ,A)

is an extension of Rλ. Property (b) now follows from [14, Lem.3.2] and the uniform

boundedness of R(λ,A)(w − A)−α = Rλ(w − A)−α for |Reλ| ≤ δ.

We prove the first part of Theorem 2.2 in four steps. We first observe that assumption

(a) implies (b) with γ = 0 and some 0 < δ < 1/C by a standard perturbation argument.

We fix numbers α > 1
p
− 1

p′
+ γ ≥ γ ≥ 0, 0 ≤ a ≤ δ, and max{δ, ω0(A)} < w̃ < w. Hence,

‖R(λ,A)‖ ≤ c for Reλ ≥ w̃.

Step 1. First part of the construction of TQ(−t)Q. We define the path ΓQ =

(w̃+[−i∞,+i∞])∪ (a+[+i∞,−i∞]) which is oriented counter clockwise. Let x ∈ D(A)

and t ≥ 0. Since

R(λ,A)x = (w − λ)−1(R(λ,A)−R(w,A))(w − A)x = O(|λ|γ−1), | Imλ| → ∞, (2.1)

for |Reλ| ≤ δ or Reλ = w̃, the integral

GQ(t)x =
1

2πi

∫
ΓQ

e−λt(w − λ)−αR(λ,A)x dλ (2.2)

converges absolutely. Consider the counter clockwise oriented rectangular path Γn with

vertices w̃ ± in and a± in. For s ∈ [0, t] we then obtain

T (s)GQ(t)x = GQ(t)T (s)x =
1

2πi

∫
ΓQ

e−λ(t−s)(w − λ)−α
[
R(λ,A)x−

∫ s

0

e−λrT (r)x dr
]
dλ

= GQ(t− s)x− lim
n→∞

1

2πi

∫
Γn

e−λ(t−s)(w − λ)−α

∫ s

0

e−λrT (r)x dr dλ

= GQ(t− s)x, (2.3)

where we have used Cauchy’s theorem and∫ s

0

e−λrT (r)x dr = (e−λsT (s)− I)R(λ,A)x = O(|λ|γ−1)

on ΓQ as | Imλ| → ∞ due to (2.1). We define

Q̃x := GQ(0)x =
1

2πi

∫ −i∞

+i∞
(w − λ)−αR(λ,A)x dλ+

1

2πi

∫ w̃+i∞

w̃−i∞
(w − λ)−αR(λ,A)x dλ

= − 1

2πi

∫ +i∞

−i∞
(w − λ)−αR(λ,A)x dλ+ (w − A)−αx (2.4)

for x ∈ D(A). The last equality follows from a standard deformation of the path [w̃ −
i∞, w̃ + i∞] to the path Γ from (1.6).
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Observe that the function t 7→ Tw̃(t) := e−w̃tT (t) belongs to L2(R+,B(X)). Since

R(w̃+ iτ, A)x = (FTw̃(·)x) (τ) and p is the Fourier type of X, we obtain R(w̃+ i·, A)x ∈
Lp′(R, X) with p′–norm less than c‖x‖. The resolvent equation further yields

‖R(a+ iτ, A)x‖ = ‖[I + (w̃ − a)R(a+ iτ, A)]R(w̃ + iτ, A)x‖
≤ c (1 + |τ |)γ ‖R(w̃ + iτ, A)x‖. (2.5)

for τ ∈ R. We set

f(λ) = (w − λ)−αR(λ,A)x =

{
f1(τ), λ = a+ iτ, τ ∈ R,
f2(τ), λ = w̃ + iτ, τ ∈ R.

Let p ∈ (1, 2]. Hölder’s inequality, estimate (2.5), and the relation (−α+γ)pp′(p′−p)−1 <

−1 then yield∫
R
‖f1(τ)‖p dτ ≤ c

[ ∫
R
‖R(w̃ + iτ, A)x‖p′ dτ

] p
p′

[ ∫
R
(1 + |τ |)(−α+γ) pp′

p′−p dτ
] p′−p

p′

≤ c(α) ‖x‖p. (2.6)

The function f2 can be estimated similarly. Thus the identity

2π eatGQ(t)x =
1

i

∫
ΓQ

e(a−λ)t(w − λ)−αR(λ,A)x dλ = −(Ff1)(t) + e(a−w̃)t (Ff2)(t),

inequality (2.6), and the Fourier type of X imply that∫ ∞

0

‖eatGQ(t)x‖p′ dt ≤ c (‖f1‖p′

p + ‖f2‖p′

p ) ≤ c(α) ‖x‖p′ .

From this estimate and formula (2.3) we then deduce

‖earGQ(r)x‖p′ ≤
∫ 1

0

ep′a(r+s) ‖T (s)‖p′ ‖GQ(r + s)x‖p′ ds

≤ c

∫ r+1

r

‖eatGQ(t)x‖p′ dt ≤ c(α) ‖x‖p′

for r ≥ 0 and x ∈ D(A). Therefore we can extend GQ(t) to a bounded operator on X

denoted by the same symbol and satisfying

‖GQ(t)‖ ≤ c(α) e−δt, t ≥ 0, (2.7)

where we let a = δ. In particular, the extension Q̃ : X → X is bounded. The same results

hold for p = 1 by an analogous, but simpler argument.

Step 2. Construction of T(t)P. We define for x ∈ D(A) and t ≥ 0 the operator

GP (t)x =
1

2πi

∫ −a+i∞

−a−i∞
eλt(w − λ)−αR(λ,A)x dλ. (2.8)

Again (2.1) shows that the integral converges absolutely. If t = 0, we set

P̃ x := GP (0)x =
1

2πi

∫ +i∞

−i∞
(w − λ)−αR(λ,A)x dλ (2.9)

(after shifting a to 0). Thus (2.4) implies

P̃ x+ Q̃x = (w − A)−αx (2.10)
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for x ∈ D(A). There exists a bounded extension P̃ : X → X due to (2.7) and (2.10). For

x ∈ D(A2) and t ≥ 0 we further compute

GP (t)x =
1

2πi

∫ −a+i∞

−a−i∞
eλt(w − λ)−α−1(R(λ,A)−R(w,A))(w − A)x dλ

=
1

2πi

∫ −a+i∞

−a−i∞
eλt(w − λ)−α−1R(λ,A)(w − A)x dλ,

using the resolvent equation and

1

2πi

∫ −a+i∞

−a−i∞
eλt(w − λ)−α−1dλ = 0 (2.11)

(which can be shown by applying Cauchy’s theorem to the triangular path with vertices

−a− in, −a+ in, −n ). Because of the identity

d

dt
eλt(w−λ)−α−1R(λ,A)(w − A)x

= eλt(w − λ)−α−1R(λ,A)(w − A)Ax+ eλt(w − λ)−α−1(w − A)x,

equation (2.11), and the closedness of A, the function GP (·)x is continuously differentiable

in X, GP (t)D(A2) ⊂ D(A), and

d
dt
GP (t)x = GP (t)Ax = AGP (t)x, t ≥ 0, (2.12)

for x ∈ D(A2). Therefore the uniqueness of the Cauchy problem corresponding to A

yields

GP (t)x = T (t)P̃ x, t ≥ 0, (2.13)

at first for x ∈ D(A2). Since T (t)P̃ is bounded, we can extend GP (t) to a bounded

operator (denoted by the same symbol) which satisfies (2.13) for all x ∈ X. We have

AP̃x = P̃Ax on D(A2) by (2.12), so that

P̃D(A) ⊂ D(A), AP̃x = P̃Ax for x ∈ D(A), and hence

T (t)P̃ = P̃ T (t), t ≥ 0. (2.14)

Let p ∈ (1, 2]. As in the first step one shows that∫ ∞

0

‖eatT (t)P̃ x‖p′ dt ≤ c(α) ‖x‖p′

for x ∈ D(A). For r ≥ 1, this estimate implies that

‖earT (r)P̃ x‖p′ ≤
∫ 1

0

‖easT (s)‖p′ ‖ea(r−s) T (r − s)P̃ x‖p′ ds ≤ c(α) ‖x‖p′ .

Taking a = δ, we have shown that

‖T (t)P̃‖ ≤ c(α) e−δt, t ≥ 0, (2.15)

Again, this inequality still holds for p = 1 due to a similar argument.
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Step 3. The projection P. We define the bounded operator

P = P̃ (w − A)α : Xα → X. (2.16)

Observe the first part of Definition 1.1(c) now follows from (2.15). For x ∈ X1+α, formula

(2.9) and the closedness of the fractional power further imply that P̃X1+α ⊂ Xα and

Px =
1

2πi

∫ +i∞

−i∞
(w − λ)−αR(λ,A)(w − A)αx dλ = (w − A)αP̃ x.

Hence, P̃Xα ⊂ Xα and P = (w − A)αP̃ on Xα. Since (w − A)α is closed, the operator

P possesses a closure (denoted by (P,D(P ))) in X. We further obtain Xα ↪→ D(P ),

P̃D(P ) ⊂ Xα, P = (w − A)αP̃ on D(P ), and therefore

P̃ = P (w − A)−α, P̃ x = (w − A)−αPx for x ∈ D(P ). (2.17)

We set Q = I − P . Then the identities (2.10) and (2.17) yield

Q̃ = Q(w − A)−α, Q̃x = (w − A)−αQx for x ∈ D(P ). (2.18)

We are going to show that P is a projection. For x ∈ D(A2) and a > 0 we calculate

P̃ 2x =
1

2πi

∫ −a+i∞

−a−i∞

1

2πi

∫ +i∞

−i∞
(w − λ)−α(w − µ)−αR(λ,A)R(µ,A)x dµ dλ (2.19)

=
1

2πi

∫ −a+i∞

−a−i∞
(w − λ)−α 1

2πi

∫ +i∞

−i∞

(w − µ)−α

µ− λ
dµ R(λ,A)x dλ

− 1

2πi

∫ +i∞

−i∞
(w − µ)−α 1

2πi

∫ −a+i∞

−a−i∞

(w − λ)−α

λ− µ
dλ R(µ,A)x dµ

using the resolvent equation and Fubini’s theorem. The integration path of the scalar

λ–integral in the last line can be closed in the left halfplane where the integrand is

holomorphic. Thus the second summand on the right hand side is equal to 0. In the

scalar µ–integral in first summand, we use the triangular path with vertices −in, in, −n
for large n ∈ N such that the (fixed) number λ belongs to the interior of the triangle.

Then Cauchy’s integral formula yields

P̃ 2x =
1

2πi

∫ −a+i∞

−a−i∞
(w − λ)−2αR(λ,A)x dλ

=
1

2πi

∫ +i∞

−i∞
(w − λ)−2αR(λ,A)x dλ. (2.20)

On the other hand, by similar arguments we deduce

P̃ (w − A)−αx =
1

2πi

∫ +i∞

−i∞

1

2πi

∫
Γ

(w − λ)−α(w − µ)−αR(λ,A)R(µ,A)x dµ dλ

=
1

2πi

∫ +i∞

−i∞
(w − λ)−α 1

2πi

∫
Γ

(w − µ)−α

µ− λ
dµ R(λ,A)x dλ

− 1

2πi

∫
Γ

(w − µ)−α 1

2πi

∫ +i∞

−i∞

(w − λ)−α

λ− µ
dλ R(µ,A)x dµ

=
1

2πi

∫ +i∞

−i∞
(w − λ)−2αR(λ,A)x dλ. (2.21)
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In the first summand of the middle equation we have deformed a bounded part of the

path Γ from (1.6) to a path in {µ : Reµ < w} around the (fixed) number λ ∈ R. By

approximation, the identities (2.20) and (2.21) can be extended to all x ∈ X. These two

equations and (2.17) then yield

P̃ 2 = P̃ (w − A)−α = (w − A)−αP̃ .

Hence, R(P̃ 2) ⊂ Xα and P̃ = (w−A)αP̃ 2. Using again formula (2.17) and the closedness

of P , we conclude that P̃X ⊂ D(P ) and P̃ = PP̃ . This fact leads to P = P 2 on Xα,

due to (2.17). As a result, P is a projection. Combining (2.14) and (2.16) we further

deduce T (t)P = PT (t) on Xα, so that T (t)D(P ) ⊂ D(P ) and T (t)P = PT (t) on D(P )

by approximation.

Step 4. Second part of the construction of TQ(−t)Q. Formula (2.2) implies that

GQ(t)X1+α ⊂ Xα and GQ(t)(w − A)αx = (w − A)αGQ(t)x for x ∈ X1+α and t ≥ 0.

Thus GQ(t)Xα ⊂ Xα and GQ(t) commutes with (w − A)α. For x ∈ X1+α and t ≥ 0, the

equalities (2.3) and (2.18) then show that

(w − A)αGQ(t)T (t)x = (w − A)αQ̃x = Qx (2.22)

T (t)(w − A)αGQ(t)x = (w − A)αQ̃x = Qx. (2.23)

One can extend (2.22) to D(P ) and (2.23) to Xα. Therefore the restriction TQ(t) of T (t)

to N (P ) = R(Q) is injective; its (closed) inverse is denoted by TQ(−t). Then (2.23) and

an approximation argument yield

GQ(t)x = (w − A)−αTQ(−t)Qx

for x ∈ D(P ). Inserting this identity into (2.22), we see that T (t) : N (P ) → N (P ) is

bijective, and its inverse TQ(−t) : N (P ) → N (P ) is bounded by the closed graph theorem.

Moreover,

TQ(−t)Qx = GQ(t)(w − A)αx, x ∈ Xα ,

and the second part of Definition 1.1(c) follows from (2.7). �

Remark 2.3. Suppose that the assumptions of Theorem 2.2 hold for γ = 0. Let Ts(t)

be the restriction of T (t) to Xs := R(P ). Then the generator As of this semigroup is

the restriction of A to Xs. Definition 1.1(c) implies that R(λ,As)(w − As)
−α (initially

defined for Reλ > ω0(As)) has a bounded extension F (λ) to Reλ ≥ −δ/2. This means

that the spectral bound of the part of As in D((w − As)
α) is less than −δ/2, and hence

s(As) ≤ −δ/2 < 0. The boundedness of F (λ) = R(λ,As)(w − As)
−α further yields

‖R(λ,As)‖ ≤ c (1 + |λ|α) for Reλ ≥ −δ/2 by [14, Lem.3.2]. On the other hand, R(λ,As)

is the restriction of R(λ,A) for λ ∈ iR, and thus uniformly bounded on iR by assumption

(a). The Phragmen Lindelöf principle then implies that R(λ,As) is uniformly bounded

for Reλ ≥ 0. The Weis–Wrobel result (1.5) now shows that

‖T (t)x‖ ≤ Ne−δt‖(w − A)βx‖, t ≥ 0,

for β = 1
p
− 1

p′
and x ∈ R(P ) ∩ Xβ. Similar arguments work for the restriction −Au of

−A in Xu = R(Q) which generates the semigroup TQ(−t), t ≥ 0, on Xu. Hence

‖TQ(−t)x‖ ≤ Ne−δt‖(w − A)βx‖, t ≥ 0,
9



for x ∈ R(Q)∩Xβ. If one wants to derive an estimate for T (t)P as in our Definition 1.1,

then one obtains

‖T (t)Px‖ ≤ Ne−δt‖(w − A)βPx‖ ≤ ce−δt‖(w − A)β+αx‖

for x ∈ Xβ+α with α > 1
p
− 1

p′
(and analogously for TQ(−t)Q). Observe that one looses

β = 1
p
− 1

p′
in the regularity exponent, and it is thus necessary to estimate the products

T (t)P and TQ(−t)Q in order to prove Theorem 2.2.

Remark 2.4. Suppose that the assumptions of Theorem 2.2 hold. Arguing as in (2.21),

one can verify that

P̃ (w − A)−βx = (w − A)−βP̃ x =
1

2πi

∫ +i∞

−i∞
(w − λ)−α−βR(λ,A)x dλ

for β > 0 and x ∈ D(A). This identity implies in particular that the projection P in

Theorem 2.2 does not depend on the choice of α > 1
p
− 1

p′
+ γ.

In the next example we extend Theorem 4.4(a) and Proposition 5.7 from [4] from an

L2 to an Lq–setting. Due to the lack of a Weis–Wrobel type result for dichotomies, we

were forced to restrict ourselves to a Hilbert space setting in [4].

Example 2.5. Let A = ∆ be the Dirichlet Laplacian with D(A) = W 2,q(Ω)∩W 1,q
0 (Ω) =:

X1 on X = Lq(Ω) for 1 < q < ∞ and a bounded domain Ω with a C2 boundary. (In

fact, one can replace A by more general generators of analytic semigroups, see Hypothesis

(H) and Proposition 5.7 of [4] for the details.) Let r > 0 and B : [−r, 0] → B(X1, X)

be of bounded variation db such that db([−t, 0]) → 0 as t ↘ 0. We define the ‘history

function’ ut(θ) = u(t + θ) for u : [−r,∞) → X, t ≥ 0, and θ ∈ [−r, 0]. Let p ∈
[min{q, q′},max{q, q′}]. For ϕ ∈ W 1,p([−r, 0], X1) we study the retarded problem

u′(t) = Au(t) +

∫ 0

−r

dB(θ)u(t+ θ), t ≥ 0, u(t) = ϕ(t), t ∈ [−r, 0]. (2.24)

This problem can be solved using Theorems 7.4–7.6 of [21] which address even more gen-

eral equations. In [4] we have developed a semigroup approach which gives an alternative

proof of a part of these theorems. We need the real interpolation space Y := (X,X1)1−1/p,p.

The product space X = Y × Lp([−r, 0], Y ) has Fourier type min{q, q′}, see e.g. the proof

of [4, Thm.4.5]. There is a unique solution u ∈ C1(R+, Y )∩W 1,p
loc (R+, X1) of (2.24). There

exists a C0–semigroup T (·) on X satisfying(
u(t)
ut

)
= T (t)

(
ϕ(0)

ϕ

)
, t ≥ 0,

which is generated by

A =

(
A L

0 d
dθ

)
, D(A) = {

(
x
ϕ

)
∈ X1 ×W 1,p([−r, 0], X1) : ϕ(0) = x, Lϕ+ Ax ∈ Y },

where Lϕ :=
∫ 0

−r
dB(θ)ϕ(θ) for ϕ ∈ W 1,p([−r, 0], X1), see [4, Thm.3.6]. In certain cases

this semigroup violates the spectral mapping theorem, see [4, Ex.5.8]. Set Lλx = L(eλx)

for λ ∈ C, x ∈ X1, and eλ(θ) = eλθ, θ ∈ [−r, 0]. By Proposition 4.3 of [4], λ ∈ C belongs

to ρ(A) if and only if the operator H(λ) = (λ−A−Lλ)
−1 exists in B(X,X1). One further
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has ‖R(λ,A)‖B(X ) ≤ c(a) ‖H(λ)‖B(X,X1) for λ ∈ ρ(A) with Reλ ≥ a. Thus Theorem 2.2

immediately implies that

sup
τ∈R

‖H(iτ)‖B(X,X1) <∞ =⇒ T (·) has an exp. α–dichotomy for α >
∣∣1
q
− 1

q′

∣∣.
Observe that the dichotomy of T (·) means a splitting of both the solutions u(t) and their

history functions ut with decay estimates in the norm of X .

To obtain a more explicit condition, suppose in addition that B(θ) = η(θ)A, where

η ∈ BV ([−r, 0],C). We set

d̂η(λ) =

∫ 0

−r

eλθ dη(θ), λ ∈ C.

Then H(iτ) : X → X1 exists and is uniformly bounded for τ ∈ R provided that

1 + d̂η(iR) ⊂ {λ ∈ C \ {0} : | arg λ| < ψ or | arg(−λ)| < ψ}

for some 0 < ψ < π/2, see the proof of Proposition 5.7 of [4]. In this case we thus obtain

an exponential α–dichotomy.

3. Polynomial dichotomy

In this section we assume that A is a generator of a semigroup T (·) on a Banach space

X such that iR ⊂ ρ(A) and ‖R(iτ, A)‖ ≤ Ĉ (1 + |τ |γ) for τ ∈ R and some γ > 0. We

take again α > γ + 1
p
− 1

p′
where p ∈ [1, 2] is the Fourier type of X. We want to repeat

the reasoning in steps 1–4 of the proof of Theorem 2.2 with a = δ = 0. This can be done

literally in the same way with the exception of (2.19). Here we have to replace the path

−a+ iR by the path Γ′ given by

λ = iτ − [2Ĉ (1 + |τ |γ)]−1, τ ∈ R.

Standard perturbation arguments show that Γ′ ⊂ ρ(A) and

‖R(λ,A)‖ ≤ 2Ĉ (1 + | Imλ|γ) ≤ c (1 + |λ|γ), λ ∈ Γ′.

The modification of (2.19) can be justified using Cauchy’s integral theorem. Then one

verifies (2.20) as before. Thus we have constructed a closed projection P on X such that

Xα ↪→ D(P ), T (t)D(P ) ⊂ D(P ), T (t)Px = PT (t)x for x ∈ D(P ), T (t) : N (P ) → N (P )

has the bounded inverse TQ(−t). Moreover, T (t)P (w −A)−αx and TQ(−t)Q(w −A)−αx,

t ≥ 0, are given by (2.8) and (2.2) with a = 0 if x ∈ D(A), and these operators are

uniformly bounded for t ≥ 0.

We use these formulas in order to derive the desired polynomial decay estimates, starting

with the stable case. First observe that we can replace α by α+γ in the above reasoning.

Let x ∈ D(A) and t ≥ 1. Then we obtain

tT (t)P (w − A)−α−γx =
1

2πi

∫ +i∞

−i∞
( d

dλ
eλt) (w − λ)−α−γR(λ,A)x dλ.

=
1

2πi

∫ +i∞

−i∞
eλt(w − λ)−α−γR(λ,A)2x dλ

− α+ γ

2πi

∫ +i∞

−i∞
eλt(w − λ)−α−γ−1R(λ,A)x dλ =: J1 + J2,

integrating by parts in the second equality. It is clear that ‖J2‖ is less than c ‖x‖.
11



In order to estimate J1, we will use a duality argument. The dual space X∗ has the

same Fourier type as X by [9, Prop.2.3]. Let X� be the space of those x∗ ∈ X∗ such

that t 7→ T (t)∗x∗ is continuous in X∗. The space X� is T (·)∗–invariant and closed in X∗

(possibly X∗ 6= X�), and the restriction T (·)� of T (·)∗ to X� is generated by the part

A� of A∗ in X�, see e.g. [8, §II.2.6]. Moreover, the growth bounds of T (·), T (·)∗, and

T (·)� coincide by [8, Prop.IV.2.18], and R(λ,A�) is the restriction of R(λ,A∗) to X� for

Reλ > ω0(A). Note that also X� has Fourier type p. As in Step 1 of Section 2, we thus

obtain

‖R(w̃ + i·, A∗)x∗‖Lp′ (R,X∗) ≤ c ‖x∗‖

for x∗ ∈ X�. Finally, due to (II.2.1) of [8] we have

‖y‖ ≤ sup{|〈y, x∗〉| : x∗ ∈ X�, ‖x∗‖ ≤M}

for y ∈ X, where ‖T (t)‖ ≤ Mewt for t ≥ 0. We take x∗ ∈ X� with ‖x∗‖ ≤ M . First let

1 < p < 2. Proceeding as in (2.5), we can estimate

|〈J1, x
∗〉| ≤ c

∫
R
|w − iτ |−α−γ |〈R(iτ, A)x,R(iτ, A∗)x∗〉| dτ

≤ c

∫
R
(1 + |τ |)−α+γ ‖R(w̃ + iτ, A)x‖ ‖R(w̃ + iτ, A∗)x∗‖ dτ

≤ c
[ ∫

R
(1 + |τ |)

(γ−α)p
2−p dτ

] 2−p
p

[ ∫
R
‖R(w̃ + iτ, A)x‖

p′
2 ‖R(w̃ + iτ, A∗)x∗‖

p′
2 dτ

] 2
p′

≤ c ‖R(w̃ + iτ, A)x‖Lp′ (R,X) ‖R(w̃ + iτ, A∗)x‖Lp′ (R,X∗)

≤ c ‖x‖ ‖x∗‖ ≤ cM ‖x‖

where we have used Hölder’s inequality and the relation

p(γ − α)

2− p
<

p(p− p′)

(2− p)pp′
= −1.

As a result, also ‖J1‖ is bounded by c ‖x‖. If p = 2, the above estimates work even in the

case α = γ. The proof for p = 1 is similar but simpler. One can treat TQ(−t)Q in the

same way. So we obtain the following result.

Theorem 3.1. Let A be the generator of a C0–semigroup T (·) on a Banach space X

with Fourier type p ∈ [1, 2]. Suppose that iR ⊂ ρ(A) and ‖R(iτ, A)‖ ≤ C(1 + |τ |γ) for

τ ∈ R and constants C, γ > 0. Let α > 1
p
− 1

p′
+ γ. Then there is a closed projection

P on X such that Xα ↪→ D(P ), T (t)D(P ) ⊂ D(P ), T (t)Px = PT (t)x for x ∈ D(P ),

T (t) : N (P ) → N (P ) has the bounded inverse TQ(−t), and

‖T (t)Px‖ ≤ N(α)

t
‖(w − A)α+γx‖ , ‖TQ(−t)Qx‖ ≤ N(α)

t
‖(w − A)α+γx‖ (3.1)

for t ≥ 1, x ∈ Xα+γ, and a constant N(α) ≥ 0. If p = 2 we may take α = γ in (3.1). We

further have

‖T (t)Px‖ ≤ N ′(α) ‖(w − A)αx‖ , ‖TQ(−t)Qx‖ ≤ N ′(α) ‖(w − A)αx‖ (3.2)

for t ≥ 0, x ∈ Xα, and a constant N ′(α) ≥ 0.
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If T (·) is a bounded semigroup, we obtained a similiar result in Theorem 3.5 of [3] with

P = I and an arbitrary α > 0 in (3.1). The difference in the regularity exponent is caused

by the unboundedness of T (t)P in Theorem 3.1.

Under the assumptions of Theorem 3.1, we easily obtain decay estimates on the spaces

Xβ for each β > 0. First observe that T (t)P and TQ(−t)Q commute with fractional

powers (say, on Xn for a sufficiently large n ∈ N). Using (3.1), (3.2), and the moment

inequality, see e.g. [8, Thm.II.5.34], we then deduce for 0 < θ < 1 and t ≥ 1 that

‖T (t)P (w − A)−(α+θγ)‖ ≤ c(α) t−θ , ‖TQ(−t)Q(w − A)−(α+θγ)‖ ≤ c(α) t−θ. (3.3)

Second, since T (t)Px = T ( t
n
)P · · ·T ( t

n
)Px and TQ(−t)Qx = TQ(− t

n
)Q · · ·TQ(− t

n
)Qx,

the estimates (3.1) yield

‖T (t)Px‖ ≤ c(α, n)t−n ‖(w − A)(α+γ)nx‖ , ‖TQ(−t)Qx‖ ≤ c(α, n)t−n ‖(w − A)(α+γ)nx‖

for n ∈ N, t ≥ 1, and x ∈ Xn(α+θ). Interpolating once more, we arrive at

‖T (t)P (w − A)−θ(α+γ)‖ ≤ c(α, θ) t−θ, ‖TQ(−t)Q(w − A)−θ(α+γ)‖ ≤ c(α, θ) t−θ (3.4)

for θ > 1, t ≥ 1, and a constant c(α, θ) ≥ 0.

Acknowledgement. I like to thank the referee for pointing out a gap in the original

proof of Theorem 3.1.
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