STABLE FOLIATIONS NEAR A TRAVELING FRONT FOR
REACTION DIFFUSION SYSTEMS

YURI LATUSHKIN, ROLAND SCHNAUBELT AND XINYAO YANG

ABSTRACT. We establish the existence of a stable foliation in the vicinity of
a traveling front solution for systems of reaction diffusion equations in one
space dimension that arise in the study of chemical reactions models and solid
fuel combustion. In this way we complement the orbital stability results from
earlier papers by A. Ghazaryan, S. Schecter and Y. Latushkin. The essential
spectrum of the differential operator obtained by linearization at the front
touches the imaginary axis. In spaces with exponential weights, one can shift
the spectrum to the left. We study the nonlinear equation on the intersection
of the unweighted and weighted spaces. Small translations of the front form
a center unstable manifold. For each small translation we prove the existence
of a stable manifold containing the translated front and show that the stable
manifolds foliate a small ball centered at the front.

1. INTRODUCTION

Traveling fronts are solutions to partial differential equations which move with
constant speed without changing their shapes and which are asymptotic to spatially
constant steady states. Traveling fronts are important by many reasons and have
intensively been studied. We refer to the books and review papers [F, VVV, X]
and to more recent sources such as [KP, LW, RM1, RM2, RM3, Sa, TZKS] that
contain further bibliography.

In this paper we study the dynamics in the vicinity of traveling fronts for a class
of reaction diffusion equations in one space dimension. A typical example arising
in combustion theory for solid fuels, cf. [BLR, GLSS, MS], is given by

Ut = Ugy + 0g(U), U = €Uzy + KVG(1), (1.1)

where u,v € R, € > 0, kK € R, and g(u) = e~ /% for u > 0 and g(u) = 0 for u < 0.
These and more general equations covered by our hypotheses often appear in the
work on chemical reaction models and in combustion models, see, e.g., [GSM, SMS,
SKMS, T, VV]. In such systems the spectrum of the linearization of the equation
at the front touches the imaginary axis, cf. [Sa, SS]. To shift the spectrum to the
left, one employs exponentially weighted spaces. This idea goes back to [S] and
[PW]. However, in weighted spaces one can lose the Lipschitz properties of the
nonlinearity. We shall study reaction terms with a certain ”product” structure as
in (1.1) which allows one to overcome these difficulties. The investigation of this
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class of nonlinearities was initiated by A. Ghazaryan in [G] and then continued in
[GLS1, GLSS, GLS2], see also the review paper [GLS3]. In particular, it was proved
in [GLS2| that under appropriate assumptions on the nonlinearity the traveling
front is orbitally stable; that is, any solution originating in a small vicinity of the
front converges exponentially in the weighted norm to a translation of the front.

In this paper we continue the work in [GLS2] now utilizing the theory of invariant
manifolds, cf. [BJ, CHT, Lu]. We analyze the dynamics in greater detail by proving
in Theorem 4.1 the existence of a stable foliation near the front. Specifically, we
observe that the set of all translations of the front serves as a local central unstable
manifold consisting of fixed points. Next, using the Lyapunov-Perron method, cf.
e.g. [LL, LPS1, LPS2], we establish the existence and the fundamental properties
of a locally invariant stable manifold going through each translation of the front.
We also show that these manifolds foliate a small neighborhood of the front and
therefore each point in the neighborhood belongs to one of them, cf. [BLZ, CHT].
Moreover, the orbit of the point converges to the translation of the front along the
stable manifold as proved in [GLS2].

In the construction of the local stable manifolds we have to face the problem that
the linearization enjoys good decay properties only in weighted spaces on which the
nonlinearity is not locally Lipschitz. To overcome this difficulty, we use both the
product structure of the nonlinearity (cf. Hypothesis 2.2) and additional decay
properties of the linearization at the limit of the traveling front as £ — —oo, see
Lemmas 3.1 and 3.2.

The paper is organized as follows. In Section 2 we formulate our assumptions
and prove several preliminary results. In Section 3 we study the Lyapunov-Perron
operator whose fixed points define the stable manifolds. In Section 4 we formulate
and prove our main result on the existence of the stable manifolds and discuss two
examples.

Acknowledgement. We thank S. Walsh for pointing out the important paper
[R], and the anonymous referee for many valuable comments.

Notation. Throughout the paper, |-| and (-, -) are the Euclidean norm and the
scalar product in R”. For a given map f : R™ — R¥_ its differential with respect to
y is written as 9, f : R™ — B(R™,R¥). We let B(E, F) be the set of linear bounded
operators between Banach spaces € and F, and abbreviate B(E) = B(E,E). We
denote by C' a generic constant that may change from one estimate to another,
and use T to designate transposition. For a Banach space with norm ||-||, we write
Bs(||-||) for the closed ball of radius ¢ centered at 0.

We denote by & with norm ||, either the Sobolev space H' or the space BUC
of bounded uniformly continuous functions on R with vector values, and by &, with
norm ||, the respective space of (exponentially) weighted functions, see (2.12). Let
|| be the norm on the intersection space &g 1= EoNé&aj i.e., |yl := max{|ylo, [y|a}

2. THE SETTING
We consider the system of reaction diffusion equations
Y; = DY,. + R(Y), zeR, t>0, (2.1)

where D = diag(dy,...,dy), dj > 0, Y(t,z) € R", and R : R" — R" is a C*
function satisfying additional properties listed below.
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Passing in (2.1) to the moving coordinate frame £ = x — ¢t and redenoting &
again by x, we arrive at the nonlinear equation

Y; = DYyo + Yo + R(Y), zeR, t>0. (2.2)
We discuss the wellposedness of this system in Remark 2.3.

Hypothesis 2.1. We assume that for some velocity ¢ > 0 the system (2.2) admits
a stationary solution Yo € C*(R); i.e, (2.1) possesses the traveling front solution
Y(t,z) = Yo(x — ct). It is also required that Yy(x) converges to the end states Yy
as x — +o0o exponentially; i.e.,

Yo(z) - Y_| < Ce™-2, <0,
Yo(a) = Vil € Ce™+7, @20,

for some w_ < 0 < wy and C > 0. Replacing R by R(Y) := R(Y +Y_), we can
and will assume that Y_ =0 (and we then drop the tilde).

(2.3)

We further assume that the nonlinear term R in (2.1) and (2.2) has the following
product structure.

Hypothesis 2.2. The nonlinear term R belongs to C*(R™,R™). In appropriate
variables Y = (U, V)T with U € R™, V € R™ and ny + na = n, we have

R(U,0) = (A1U,0) (2.4)
for a constant ny X ny matriz A;.

In other words, we suppose that

(AU +R(U,V)
R(U,V)—< Ra(ULV) )

where the maps R; belong to C*(R™,R") and satisfy R;(U,0) = 0 for j € {1,2}
and U € R™. Note that condition (2.4) yields R(0,0) = R(Y_) = 0. We also split

D= (l;l £2> . where Dj=diag(dy,...,dn,), Dy=diag(dn,4+1,-..,dn).

Let ¢ € R. We write Y, (z) = Yy(x — ¢) for the shifted wave. Since (2.2) is
translationally invariant, Y, is again a steady state solution of (2.2) and thus yields
a traveling wave solution for (2.1). Linearizing (2.2) at Y, (that is, substituting
Y, +Y instead of Y in (2.2)), we arrive at the equation

Y=L, Y + F,(Y), where LY = DY, +cY, + Oy R(Y,)Y. (2.5)
Here, Oy is the differential with respect to Y € R™ and the nonlinear term Fj :
R"™ — R" is written as

F,(Y) = /O 1 (Oy R(Y, + 1Y) — y R(Y,)) Y dt. (2.6)

The linearization of (2.2) at Y_ = (0,0)7 is given by
Y, =LY +G(Y), where L7Y = DYy, +cY, + 8y R(0)Y (2.7)
and G:R" - R™; G(Y) = R(Y) — Oy R(0)Y. We remark that
(Ly—L7)Y =B,Y  with B,(z) =0y R(Y,(z)) — dyR(0).  (2.8)

Below we impose conditions on Ly at ¢ = 0; i.e., on the linearization at the original
traveling wave Yy. We further consider L, for |¢| < go with some gy > 0, which
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will be fixed sufficiently small in the final theorem. The shifted wave Y, decays as
in Hypothesis 2.1 with the same exponents wy and constants C' only depending on
qo. Assumption (2.4) also yields the formulas

(A1 OvR:(0,0) _ (LY 9y Ry(0,0)
aYR(O’O)_<o o R(0,00) =10 L@ (2:9)

with the differential expressions
LU = DU,y + cUy + AU,

(2.10)
LAV = DoV, + Vi 4 8y Ra(0,0)V.

Remark 2.3. We consider the equations (2.2) and (2.5) on the space & which is
either the Sobolev space H'(R)" or the space of bounded uniformly continuous
functions BUC(R)™. It is straightforward to check that the nonlinearites R and F,
are Lipschitz on bounded subsets of &.

For the differential expressions L, and L~ defined in (2.5) and (2.7), respectively,
we denote by £, and L~ the differential operators on & on their natural domain
D defined as follows. For & = H'(R)™, the domain D of £, and of £~ consists of
the vector functions Y = (Y;)}_; whose components Y; belong to H3R) if d; >0
and to H?(R) if d; = 0. For & = BUC(R)", we choose the domain analogously
with H3(R) replaced by BUC?(R) and H?(R) replaced by BUC(R), the spaces of
differentiable functions which are bounded and have bounded, uniformly continuous
derivatives. The operators £, and £~ generate strongly continuous semigroups
{T,(t) }1>0 and {S(t)}i>0 on &, respectively, cf. e.g. [GLS1, §2.2].

Standard results then show the local wellposedness of (2.5) in & for initial values
Yo in the domain of £,, where the (classical) solutions belong to C'([0,0), &) and
take values in D. They are given by Duhamel’s formula

Y(t) = T,(t)yo + /Ot Tyt — 1) Fy(Y (7)) dr, t>0. (2.11)

See e.g. Theorems 6.1.4 and 6.1.6 in [P]. A function Y € C([0,t),&p) satisfying
(2.11) is called a mild solution of (2.5). This concept is strictly weaker than that
of classical solvability. We mostly work with mild solutions. Similar remarks apply
to (2.2) and the differential expression D0y, + ¢0, equipped with the same domain
D. Approximating a given initial value Y; +yo with yo € & in Y; + & by functions
in Y, + D, we see that all mild solutions of (2.2) are given by Y, + Y (¢) where Y (¢)
solves (2.11). <&

Let a = (a_,ay) € R2. We say that 7, : R — R is a weight function of class « if
Yo i8 C3, Yo (x) > 0 for all x € R, and v, (x) = -2 for & < —zg and v, (x) = e*+*
for x > zy for some xg > 0. We shall always assume that

0<a- <—-w_ and 0 < oy <wy, (2.12)

where wy are the exponents mentioned in (2.3). Given such a pair o = (a_, ay),
we introduce the weighted space &, = {u : R — R" : y,u € &} with the norm
[u|lo = [Yaulo. (Recall that & with norm |- |g is either H!(R)"™ or BUC(R)™.) The
intersection space £g = & N &, is endowed with the norm |u|g = max{|u|o, |u|a}-
The differential expressions Ly, L™ etc. equipped with their natural domains define
operators in &£, which are denoted by L, ., £, etc. (cf. Remark 2.3). On the
spectrum of Ly o, we impose the following assumptions.
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Hypothesis 2.4. In addition to Hypotheses 2.1 and 2.2, we assume that there
exists a = (a_,ay) € R? such that (2.12) with wy from (2.3) and the following
assertions hold.

(a) sup{ReA : X\ € Spess(Lo,a)} < 0 for the differential expression Lo defined
in (2.5).

(b) The only element of Sp(Lo,o) in {\ € C:ReA >0} is a simple eigenvalue
at A =0 with Yy being the respective eigenfunction.

Here the essential spectrum Spegs(A) of a closed densely defined operator contains
all points in the spectrum Sp(A) which are not isolated eigenvalues of finite algebraic
multiplicity. We discuss various consequences of the above hypothesis which are
important for our proofs.

Lemma 2.5. Let Hypotheses 2.1 and 2.2 hold. We claim that assertions (a) and
(b) in Hypothesis 2.4 are satisfied for & = H'(R)™ or & = BUC(R)™ if and only
if they hold when &y is replaced by the space Lo(R)™ and &, by the space L2 (R)"
of functions u with you € L*(R) which is endowed with the norm |u|o = |yau|Lz.

Proof. The “if” part of the lemma is proved in Lemma 3.8 of [GLS2]. So we
assume Hypothesis 2.4 for & = H'(R)" or & = BUC(R)". Then assertion (a)
of this hypothesis for & = L?(R)" is true since the right-hand boundary of the
essential spectra of Ly  is the same for all three spaces by [GLS2, Lemma 3.5].
To show assertion (b) for & = L*(R)", we assume that Lo, on L2(R)™ has an
isolated eigenvalue X of finite algebraic multiplicity with Re A > 0. By means of the
isomorphism wu(-) — y(-)u(-) between L2(R)™ and L?(R)™ we obtain a differential
operator £ in L*(R)" which is similar to Lo in L2(R)", cf. [GLS2, Eqn. (3.2)],
and hence possesses the unstable isolated eigenvalue A, too. Palmer’s Dichotomy
Theorem in [Pa] says that the first order system corresponding to the second order
eigenvalue problem for £ admits exponential dichotomies on R_ and R;. Arguing
as in the proof of Lemma 3.8 of [GLS2], we see that the respective eigenfunction Z
decays exponentially as x — +00 since its value at zero belongs to the intersection
of the dichotomy subspaces. The eigenfunction thus belongs to BUC(R)", and also
to H*(R)™ since Z, can be bounded by Z itself due to the eigenvalue equation, see
(3.3) in [GLS2]. As a result, £ in H'(R)" or BUC(R)™ has the unstable eigenvalue
A of the same multiplicity and therefore also Ly, in &. Hypothesis 2.4(b) for
& = HY(R)" or & = BUC(R)"™ now shows that A\ = 0 and that it is simple,
completing the proof of the lemma. O

The exponential decay of the eigenfunction in the proof of the previous lemma
also follows from a general (even multidimensional) result of this type proved in [R,
Theorem 3.1(iii)].

Lemma 2.6. Assume that Hypothesis 2.4 holds. Then assertions (a) and (b) in
Hypothesis 2.4 are satisfied by the operator L o instead of Lo o and by the function
Y, instead of Y.

Proof. The operators £, o and Ly o are similar via the transformation Y — Y'(-—q)
which also maps Y into Y. The assertions then easily follow. d

Lemma 2.6 says that A = 0 is an isolated simple eigenvalue for £, .. We let
Py denote the spectral projection for L, , in &, onto ker Ly, = span{Y:]’}, and
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write P; = I — P/ for the complementary projection. The following lemma collects
important properties of these operators.

Lemma 2.7. Assume Hypothesis 2.4. Let qo > 0. The projection Py is given by

PY =¢(N)Y), GO =1, (2.13)
for an element (, in the one dimensional kernel of L}, . It induces maps

P € B(Ea) N B(Es. €a) N B(Ea, ) N B(E5) N B(Ea, &) N B(Es, &),

Py € B(&a) N B(Ep) N B(Es, Ea) N B(Es, o),

whose norms are uniformly bounded for |q| < qo. (We use the same notation Py
and P? on all these spaces.) The projections further satisfy

q
1Py — Byllses) < Cla—pl, 1Py = Bylse.) < Cla—pl (2.14)
for |pl, lg] < go and a constant independent of p and q.

Proof. Basic operator theory (see, e.g., [DL, Lemma 2.13]) yields
ran(lg, — P;) = ker P; = ran(Lg,q)-

Assertion (2.13) then follows since the kernel of the adjoint operator is also one
dimensional, cf. [K, Theorem IV.5.13]. As in the proof of Lemma 2.6, the operators
L5 ., and L , are similar and therefore the norms of ¢, € & are bounded uniformly
for |q| < go. Also, in view of Lemma 3.3 in [GLS2], the first three derivatives of the
shifted wave Y, are bounded by Ce %~ for £ < 0 and by Ce “+¢ for &€ > 0 with

w4 from Hypothesis 2.1 and constants C only depending on gy. We conclude that
[PiY o = [¢(Y)[[Yyla < ClYa|Ygla < ClY5(Yla,

1P7Y o = I¢(Y)I [Yglo < CY|a [Yglo < CIY|5[Y o,

which yields the asserted mapping properties of P; and P;.
To show (2.14), we note that (2.5) yields

Lq — Ly = 0y R(Yo(- — q)) — Oy R(Yo(- — p))

1
= /0 Iyy R(sYy + (1 —8)Y,)ds [Yo(- — q) — Yo(- — p)],

1
Yol —a) = Yow —p) =~ [ ¥ilw~p=sta—p)la—p)ds. (2.15)
0
For & = BUC we deduce
14,0 = LpallseE.) = sup |0y R(Yo(z — q)) — 9y R(Yo(x — p))| < Clg —pl,
€

2.16
1£q = LpllBen) = sup 10y R(Yo(z — q)) — Oy R(Yo(z — p))| < Clg —pl, (2.16)
xTE

and similarly for & = H'. These estimates can easily be transferred to the resol-
vents on a sufficiently small circle around 0 which implies the claim (2.14). O

Remark 2.8. To provide extra information, we now determine {, from (2.13) as a
solution of a differential equation. Lemma 2.5 yields that Hypothesis 2.4 is also
true if we replace & by L?(R). We first determine (, for the operator L} , acting
on the dual L2(R)* of the space L2(R) of functions with the exponential weight
Y- We recall that the operator 7, : L2(R) — L*(R); Y(-) = v.()Y ("), is an
isometric isomorphism. Moreover, L2 (R)* can be identified with L2-space with the
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weight 1/74, where the duality map between L2 (R) and L2(R)* is given by the
usual (real) L2-scalar product. Hence, the adjoint operator 7 : L?(R) — L2 (R)*
coincides with the multiplication operator by .

The operator 7o Ly.075 " in L?(R) is Fredholm since it is similar to the Fredholm
operator L, o in L2(R). The adjoint of 74 L4075 " in L?(R) is also Fredholm, and
it is equal to v, 152@% since v} = 7o. We note that the dimension of the kernels
is preserved by similarity and duality. The functional ¢, € ker £} , from (2.13) is
then represented by (, = 74 Z, where Z, € L?(R) belongs to ker ('y;lﬁz,a%‘). In
other words, Z, € L*(R) is the unique (up to a normalization) solution on R of the
differential equation (’y; 1E27a7a) Zq = 0. Reasoning as in the proof of Lemma 3.8 in
[GLS2] (see also Lemma 2.5) we conclude that the solution Z, decays exponentially
to zero as x — too. Moreover, Z, is the translation Zy(- — g) of Zy, and the decay
of the function Z; is thus uniform in ¢ for |¢| < go. Formula (2.13) now yields

PEY = m(Y)Y!  with m(Y) = /R (Zo(2), Yo (@)Y () de (2.17)

for all Y € L2 (R), where Z4 is the exponentially decaying function normalized such
that m,(Y,) = 1.

The exponential decay of Z, also follows from a general (even multidimensional)
result of this type proved in [R, Theorem 3.1(iii)].

Finally, returning to the cases & = H*(R)" or & = BUC(R)"™, we notice that
74(+) is a bounded functional on &, in both cases. Using also the decay properties
of Y recalled in the proof of Lemma 2.7, we confirm from (2.17) once again that
Py is a bounded operator from both £ and &, into &g, with uniform constants for

q € [—q0, qo)- <&

Let B, be multiplication operator induced by the matrix valued function By(-)
from (2.8). The next result follows from Lemma 8.2 of [GLS2] and its proof.

Lemma 2.9. Let Hypothesis 2.4. The operator B, belongs to B(Eqa, &) and satisfies
| Bq— Byllpe. e0) < Cla—p| for ¢,p € [~qo,qo]. Here the constant does not depend
on p and q, but on qq.

The operators £, and L, . generate strongly continuous semigroups on & and
Ea, respectively, which are both denoted by {7, (t)}¢>0, see e.g. [GLSI, §2.2]. By
Lemma 2.6, there are numbers

0> —v >sup{ReX: X € Sp(Lya)\{0}},
Lemma 3.13 of [GLS2] then yields the exponential decay
ITo(t) P e,y < Ce™™,  t>0, (2.18)

see also [GLS1]. The constant C' can be chosen uniform in ¢ because of the trans-
formation used in the proof of Lemma 2.6.

Also the operators £~ and £, generate strongly continuous semigroups on &
and &,, designated by {S(t)};>0. Since the multiplication operator B, is bounded
on these spaces, formula (2.8) implies the variation of constant formula

t
Tq(t—T)zS(t—T)—i—/ S(t —s)B,Ty(s — 7)ds, t>7>0, ¢geR. (2.19)
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The upper triangular structure of the operator £~ indicated in (2.9) implies an
analogous representation of the semigroup

S(t)=<510(t> gz((i))) and  Q(t) = /0 Si(t — 5)9y R1(0,0)S5(s) ds.  (2.20)

Here {S;(t)}¢>0 and {S2(t)}¢>0 are the semigroups generated by the operators £()
and £ from (2.10), respectively. On these semigroups we impose the following
assumptions.

Hypothesis 2.10. The strongly continuous semigroup {S1(t)}+>0 is bounded and
the semigroup {S2(t)}i>0 is uniformly exponentially stable on &; that is,

1S10)lpey <C; I1S2(t)llpe,) < Ce™
for some p >0 and all t > 0.

In particular, Re(Sp(A4;1)) < 0 and Re(Sp(dv R2(0,0))) < 0; see also [GLS2, Ap-
pendix A] on further comments on the relations of the hypothesis and the spectrum
of Al.

Hypothesis 2.10 and (2.20) imply the boundedness of {S(¢)}:>0 on &o; i.e.,

1S®)llpe,y <C, t>0. (2.21)
We next show that the semigroup {T,(¢)}:>0 is bounded on the space Eg, too

Lemma 2.11. Assume Hypotheses 2.4 and 2.10. Take qo > 0 and let o = (a—, ay)
satisfy (2.12). Then we have

sup sup ||Tq(t)||3(gﬁ) < 0. (2.22)
lg|<qo t=0

Proof. The variation of constant formula (2.19) yields on &g

¢

T,(H)P = S(H)P! + / S(t — $)B,T, ()P ds. (2.23)
0

As noted in Lemma 2.7 and (2.21), the projection P; belongs to B(Es, &) and to

B(Es,Ey) while the semigroup S(t) is uniformly bounded in & for |¢| < ¢o and

t > 0, respectively. Using (2.23), these facts, Lemma 2.9 and the exponential decay

in (2.18), we can estimate

1Ty () Pyl 5egs.e0) < CllP; IBs.0)

t
e / 1Byllsen oo ITa(s) P2 e | P2 e o ds

t
§C+C/ e Vlds < C
0

for all ¢t > 0 and |¢| < ¢o, with uniform constants. In view of the inequality
1Ty (t) Pl e,y < Ce " from (2.18), we have proved (2.22) with T, (t) replaced by
T,(t)P;. Writing the semigroup as T,(t) = Ty (t)P; + T,(t)Ps on &g, it remains
to show (2.22) with T;(¢) replaced by T,(t)P;. Recall from Lemma 2.7 that P =
I — P; € B(&p) projects £z onto the kernel of the generators £, ¢ and £, o of the
semigroup {7;(t)}+>0 on & and &,. We conclude that T, (t)P;Y = PgY for all
Y € s and t > 0. Therefore, || T (t) Py ||5,) < C for t > 0, completing the proof
of (2.22). O
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3. THE LYAPUNOV-PERRON OPERATOR

In this section we introduce the Lyapunov-Perron operator associated with the
nonlinear equation (2.5) and show that it is a contraction of a small ball in a certain
space of functions v : R — £y N&,. First, we establish the main technical estimates
for the nonlinearity F, : R — R™ defined in (2.6).

Lemma 3.1. Assume that o = (a_,ay) satisfies (2.12) and that the nonlinearity
R € CHR"™,R") fulfills (2.4). Let 61 > 0 and choose a radius § € (0,01]. Then for
all functions y = (u,v) and § = (4,v) from Eg with |y|s,|§lg < J the estimates
[Eq(W)lo < Clylo (|yla + [vlo),

|Fq(y ‘oc < C|y|0 |y‘0¢7

[Fa(y) = Fo(Dlo < C(ly = Flo (Iyla +17la) + Iy = Flo [v]o + [7lo [v — Tlo),
1Fo(y) = Fy(D)la < Cly = dla (lylo + [7lo)

are true, where C = C(d1,q0) and |g| < qo.

3.1)
3.2)
3.3)
3.4)

Proof. Let |y|s,|ylsg < 6 < d1. From the proof of Lemma 8.3 in [GLS2] we recall
the representation

W) = Li(y) + La(y) + I3(y) + La(y) + Is(y),

where Y, = (Uy, V), y = (u,v),
Li(y) = /01 (Our(Yq + ty) — 0ur(Yy)) uVy dt,
Iy(y) = /01 (Our(Yq + ty)u) tv dt,
I3(y) = /01 (Our(Yq + ty) — Our(Yy)) vVg dt,
Iu(y) = /01 (Our(Yy + ty)v) tv dt,
Is(y) = /01 (r(Yg +ty) — r(Yy)) vdt,

and the function r € C3(R", R"*") is given by

1
r(u,v):/ Oy R(u, tv) dt.
0

We note that r is only applied to functions which are uniformly bounded by C(1+
01). It is then straightforward to check the inequalities |I;(y)]o < Clylo|v]o for j €
{2,...,5} and |1;(y)|a < Clylo [yl for j € {1,2,...,5}. Since uV, = (you)(v5'Vy)
and (y,'V,) € BUC*(R)™ by Lemma 3.7 of [GLS2], we can further estimate
II1(y)lo < Clylo|y|a, finishing the proof of (3.1) and (3.2). Here and below the
constants only depend on 1 and gq.

To show (3.3) and (3.4), we deal with each integral I; separately. The terms
ly —lo (Jyla + |Ula) and |y — §la (Jylo +|7lo) come from I; while the remaining ones
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originate from I through I5. We first represent I (y) — I1(g) as

L)~ I(y) = / / B, Bur (Y + st(y — 7) + tg)uVyt(y — 7) ds dt
(3.5)

1 1
+ / / 0yOur(Yy + sty)(u — u)Vyty dsdt.
0o Jo

Using uVy(y — 9) = (auw)(7a ' Vo) (y — 9) and (v — u)Voy = (u — @) 75" Vg Yay as
above, we conclude that |11 (y) — I1(§)|o < Cly — ¥lo (|yla + |Fla). If we multiply
(3.5) by 7va, we directly estimate |I1(y) — I1(9)|la < C(lylo + |7lo) |y — Fla since
lu| < |y|. Likewise, we write I5(y) — I5(y) as

Is(y) - I;(5) = / / (O (Y, + sty) — Oy (Y, + st)) tyo ds dt
+ /0 /0 Oyr(Yy + tsy)tv(y — g) dsdt (3.6)

1 1
+ / / Oyr(Yy + sty)ty(v — v)dsdt
0 0

and obtain the bounds |I5(y) — I5(%)lo < C(ly — glo [v|o + |7lo |v — D|o), recalling
that |ylo < §; by assumption. After multiplying (3.6) by 7., it also follows that
15(y) = Is()la < Clyloly — Fla + [Flov — v]a) since [v] < |y|. Similarly, the
formulas

B(w) = 1a5) = | (@ur(Y, -+ t) = 0ur (¥, + 1) utval (3.7)
+ /0 Our(Yy +tg)(u — w)todt + /0 Our(Yy + tg)ut(v — o) dt,
1

1) = 140) = | (@ur (Y, 1) = 0, (Y, + ) ot (3.8)

1 1
+ / Opr(Yy +t7) (v — v)tv dt + / Oy (Yy + ty)vt(v — v) dt
0 0
imply the inequalities

[2(y) — L2(9)lo < C(ly = Flo [vlo + [lo [v = lo),
114(y) = 14(5)lo < C(ly — Flo [v]o + [Flo [v — vlo).
Multiplying (3.7) and (3.8) by 74, we also derive

1L2(y) = L2(9)]a < Clylo |y — Fla + 17l [v = v]a),
114(y) — La(®)]a < Clylo ly — Fla + |Flo [v — V]a).
We finally compute

1 1
Is(y) — Ia() = /0 /0 8,0, (Y + st(y — §) + tg)oVit(y — ) dsdt

1 1
+ / / 0y 0y (Yy + stg) (v — 0)Vytyds de.
o Jo
Again we infer that

1I3(y) — I3(5)lo < C(ly = Flo [vlo + [7lo [v = vlo),
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Is(y) — Is(§)la < Cllylo ly — Yla + [7lo [v = V]a).
This completes the proof of the lemma. (]

It follows from the observations after Lemma 2.9 that the realization of L, in
&g = & N &, generates a strongly continuous semigroup. The Lipschitz properties
proved in the above lemma thus imply that the semilinear equation (2.5) is locally
wellposed also in &g, cf. Remark 2.3. O

We next establish basic properties of the Lyapunov-Perron operator ®,(y, zo)
defined for ¢t > 0 by

t e}
Dq(y, 20)(t) = Ty(t)P; 20 +/ Ty(t — 1) Py Fy(y(r)) dr —/ Py Fy(y(r))dr, (3.9)
0 t
where |q| < go and zg € & N E, = & satisfies

|20]5 = max{|20]o, |z0[a} < o, (3.10)

for some 9 > 0. Here we use that P; maps into the kernel of the generator of
{T4(t)}+>0, see Lemma 2.7, so that the semigroup is just the identity on the range
of P; and we can omit it in the second integral in (3.9).

For a continuous map y = (u,v) : Ry — £3 = & N &, we define the norms

1Yllw.0 = sup e[y (®)la, Ilylloo =suply®)o, [[vllw.o = supefo(t)lo,
>0 t>0 t>0

where w > 0 is specified below and o = (a_,ay) is given by (2.12). Let § > 0.
Then (Bs, || - ||) is the set of continuous functions y : Ry — & N &, such that

[yl := max (|yllw.a: [¥llo.0, [1V]lw.0) < 0. (3.11)
We recall from Hypothesis 2.10 and (2.18) the exponential estimates

1S2(®)llsesy < Ce™, | Ty(t)Pyllse.) < Ce™ (3.12)

for t > 0. For technical reasons (see the next proof), if necessary we have to modify
these exponents such that

O<w<p<u. (3.13)

This is always possible, though one may lose information here. By Lemma 2.11,

the semigroup {7, (¢)}+>0 is bounded in €. The above constants do not depend on

lg| < qo.
Lemma 3.2. Take qo > 0. Let § > 0 and 9 = d0(d,q0) > 0 be small enough. For

each z0 € Bs,(|'|) the Lyapunov-Perron operator y — ®q(y,z0) leaves Bs(| - [|)

invariant and is a strict contraction on this ball for all |q| < qo. Moreover, for the
norm || - || defined in (3.11) one has

194(y; 20) = q(9, 20)|| < Clz0 — 20l5 + Cdlly — 4l (3.14)
for some C'> 0 and all 29,0 € Bs, (| - |5), v, € Bs(|| - [}), and |q| < qo.

PTOOf' Let ¢ > Oa 5550 > 0’ 20,20 € B§0(| : |,3)7 y7g € IB5(” ) ||)7 and |Q| < q0-
Below the constants are uniform for §, dg and ¢ in bounded subsets. By miy = u
and moy = v, we denote the projection of y = (u,v) onto its first and second
components. Formulas (2.19) and (2.20) yield

t
woTy(t — 7) = So(t — 7)ma + / Sa(t — s)meB/Ty(s —1)ds, 0<7 <t (3.15)
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la) Using (3.15), (3.12), Lemmas 2.7 and 2.9, the second component of the first
integral in (3.9) can be estimated by

t
et 7r2/ Tyt — )Py Fy(y(r))dr (3.16)
0 0
t t
<o [ (eI + [ e e eI o) ds ) dr
0 T
since
|S2(t — )2 Py Fy(y(7))|o < [1S2(t — T) 2l Ben) |12 1B(e 5 ,60) [ Fa(y(T))]g,  (3.17)
|S2(t — s)maByTy(s — 1) Py Fy(y(7))lo (3.18)

< (152t = s)m2lls(eq) | Ball sisa.£0) 1 Ta (s = 7) Ff B(a) [Fa(y(7))la-
Because of (3.1) and (3.2), the formulas (3.16) and (3.13) yield

Ty /0 T,(t — 7)P, Fy(y(r))dr

ewt

0

t
< Cevt / ( P e () 4 [0()]o) (Pl
t
# [ e ey 1)y )l ds o

t
| / elo=P)(t=7) 47
0
t t
+Clllla Iyl [ 0= ( / e-p<t-s>e—v<s—ﬂds) ar
0 T

< Clyl* < €o”.
We next employ (3.12), (3.2) and (3.13) to bound

< C(l[Yllw.a + lvllw.0)

ewt

< C/ wt —ut T) —w'reo.)-r|y(7_)|0 |y(7—)|a dr

S Cliylloo [yllw.a < €62,

/Ot T, (t — 7) P F, (y(r dT

To finish with the first integral in (3.9), it remains to control the ||, norm of its first
component. Here (2.19), (2.21), Lemma 2.7 (in particular, that P; € B(&s,&)),
Lemma 2.9, (3.1), (3.12), (3.2) and (3.13) imply the inequalities

7r1/ Tt = ) EE(y(r) dr)

7T1/St—7’ )P F, dT—|-7T1/ /St—sBT( —7)P;Fy(y(r))dsdr

0

<0 [ IR+ CIB s [ [ s = DEE s or
sc/o Ty )|oem(|y(7)|a+|U(T)|0)d7+0/0 / ey (1) o ly(r) ds dr

// =Tdse w7 dr

o Ul + o) [
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< C8.
1b) We now treat the term T (t)Pyzo in (3.9). From (3.12) and (3.13) we infer
e“’t|Tq(t)P;z0\a < Ce*" e 20l < Cl20lg < Cyp.

By means of (2.19), (2.21), Lemma 2.7 (in particular, that P; € B(s,&)) and
Lemma 2.9, as well as (3.12), we next compute

t
|7T1Tq(t)P;ZO‘0 § |S(t)P;ZO|Q +/ |S(t - S)BqTq(S)PqSZ()|O ds
0

t

< Claals +C [ 1Blae, ce™folads
0
< C|2’0|5 < 050

Finally, formulas (3.15), (3.12), Lemmas 2.7 and 2.9, as well as inequality (3.13)
imply

t
eu)t|7T2Tq(t)PsZo|0 < ewt‘S2(t)7T2P;ZO|O +/ |Sg(t - S)TFQBqTq(S)P;ZdQ ds
0

t

< Ce“ P 05 + C/ e“te Pt=9)e7V5 50|, ds
0

S C|Zo‘5 S 050

1c) To show the invariance, it remains to bound the norms of the last integral
n (3.9). Lemma 2.7 (in particular, that Py € B(£4,&p)) and estimate (3.2) yield

ewt

lwggwmmf

<c / et [ Fy(y(7)) ] dr
ﬂ t

o0

SC/ e“te e |y(7) o ly(7)|a AT
t

< Cllylloo 1Yllw,a < CS>.

We thus have shown that ®,(-,z) leaves the ball Bs(| - ||) invariant if first § > 0
and then §p > 0 are chosen small enough.
2) For the contractivity we have to estimate the difference

Dy (y, 20) — P4(y,20) = /0 T,(t — )Py (Fy(y(7)) — Fy(y(r))) dr (3.19)

-/ P (B, () — Fy(g(r))) dr.

2a) Using (2.19), (2.21), (3.12), Lemma 2.7 (in particular, that P; € B(s,&)) and
Lemma 2.9, we bound the first integral by

‘ /Oth(t —T)P; (Fy(y(T)) — Fy(y(7))) dT‘

0

<

/O S(t — )Py (Fy(y(7)) = Fy(g(r))) dr

0

+

s
ﬁ
S~—
S~—"
S—
o,
v
o
\]

/0 / S(t—s)BTy(s—71)P, (Fy(y(r)) — Fy(
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<0 [ 1) - FEED, i
e / IBalle. cpe™ " [Eyfy(r)) - Ey(5(r), dsdr.

The inequalities (3.3) and (3.4) then lead to

| [ 7t -7 () - Faae)

0
< [ e [ly(r) = 5Ol e (o)l + 157 + [o())
150 eTlo(r) = (7o + €7 ly(r) = 5l (o + 5(7lo)] dr

e / = |y(r) — G(m)]a (9(P)o + [5(7)]0) dr

< Clly = glo.o (Iyllwa + 17lw.a + [0]lw0) + Cllglloo v = Bllw,o
+C”y—g”w,a( 5 )
< Colly -yl

The |-| ,-norm of the first integral in (3.19) is estimated by

/O Ty(t — 1) By (Fy(y(7) — Fy(5(r))) dr

ewt

[0

t
< [ et ey r) — g(r)la (u(r)lo+a(Dl) dr
0

0)

t
gc/ewﬂmﬁhhmfymﬂ<
0
< Cslly — gl

employing (3.12), (3.4), and (3.13). As in (3.17) and (3.18), for the second com-
ponent we use formulas (3.15) and (3.12), Lemma 2.7 (in particular, that Py €
B(Es,&)) and Lemma 2.9, as well as inequalities (3.3), (3.4) and (3.13) to derive
the estimates

“t |, / Tyt — ) P2 (Fy(y(7) — Fy(5(r)) dr

e

0

< @t

/0 Sa(t — T)ma P (Fa(y(r) — Fy((r))) dr

0

+ et /o /T Sa(t — s)meByTy(s — )Py (Fy(y(7) — Fo(y(r))) dsdr

0
<c / =760 [y (r) — 5o (o + [Tl + o()]0)
Il lo(r) —5@)lo + 9(r) ~ Tl (o + [77)l0)] dr
e / / P B[ e e y(r) — Gyl + [7(7)lo)dr

< C(Ily = Glloo([¥llw,a + 17llw.a + [vllw.0) + [1Fllo.0 [0 = Dllw.0
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+ 1y = Fllwwa (Iylloo + 17100))
< Colly—gl.

As a result, the || - [[-norm of the first integral in (3.19) is dominated by C¢ ||y — 7|
2b) For the second integral in (3.19), Lemma 2.7 and inequality (3.4) yield

| Pitre) - B ar],

ewt

< C‘/too ew(t—r)ewr|y(7') - g(7)|a (|y(7-)|0 + |g(7-)‘0) dr

< Clly = gllw,alllyllo,o + [17llo,0)
<Cslly -yl
We have thus established
104y, 20) — ®4(7 20)| < €3 ly — 7l (3.20)

finishing the proof of the first part of Lemma 3.2.
3) The remaining estimate
194(y; 20) = Pq(y, 20) | = 1T4(-) Py (20 — 20)l| < Clz = Z0p (3.21)

was already shown in step 1c). O

4. STABLE MANIFOLDS

For a small ¢y > 0 and each ¢ € [—qo, qo], we now construct a function ¢, :
ran(P;) — P; whose graph contains Y, and it is a stable manifold M for the
system (2.2). We further prove that the sets M satisfy the standard properties of
stable manifolds and that they foliate a small neighborbood of Yj.

Let 0,09 > 0 be sufficiently small and go > 0. Take |¢| < go and 2o € ran(P;) N
Bs, (| - [5). Lemma 3.2 then yields a unique function y¢ : Ry — &£ which belongs
to Bs(|| - ||) and is a fixed point of the Lyapunov-Perron operator ®,(-, zo); that is,

o0

t
{5 (t) =T,(t)z0 + /0 T,(t — T)P;Fq(ygo (r))dr — / chFq(ng (r))dr (4.1)
t
for t > 0. At ¢t = 0 we obtain the identity
v, =20 [ PR () ar
0

for all zg € ran(P;) NBs,(| - |s). We define the function ¢, : ran(P;) NBs, (| - [5) —
ran(Py) by

6o(20) = — /O PR (2 (7)) dr. (4.2)

In this notation, we have y? (0) = 2o + ¢4(20) so that yZ (0) belongs to the graph
graph; @, of ¢, over the small neighborhood ran(P;) NBj, (|- [5) of 0. Adding and

substracting the term fg‘ PgFy(yd (7)) d, we deduce from (4.1) that the fixed point
y =y, of the Lyapunov-Perron operator satisfies the equation

y(t) = T ()y(0) +/0 Ty(t = m)Fy(y(r))dr, ¢ >0. (4.3)

Consequently, y = y?  is the mild solution of the nonlinear equation (2.5) in Bs(||-|),
and the function Y;+y solves (2.2) in the mild sense, cf. Remark 2.3. By uniqueness,
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yg is the 0 function. Let also Z belong to ran(P;) NBs, (| - |s). Taking a sufficiently
small 6 > 0 in (3.14), we deduce the estimates

192, — %, < Clzo — Zols, 194, ]l < Clzols- (4.4)
For a number 7 > 0 to be fixed below, the stable manifold M is then defined by
MG =Yg+ 20 + ¢q(20) : 20 € ran(F]) NBs, (| - [5)} N (Yo + By (|- 15)),  (4.5)

where |g| < go and Yy + B, (| - |g) is the closed ball in £ = &, N & with radius n
and centered at the original traveling wave Yj.

Theorem 4.1. Assume Hypotheses 2.4 and 2.10. Let q¢ > 0, 6 > 0, §y =
00(0,q0) > 0, n = n(dp) > 0 be all sufficiently small, |q] < qo, and w > 0 be
given by (3.13). Then the ball Yo + B, (| - |g) is foliated by the stable manifolds M
from (4.5) for the nonlinear equation (2.2) and the following assertions hold.

(i) Each M is a Lipschitz manifold in Eg. If Y (0) € M; and the mild solution
Y (t;Y(0)) of (2.2) belongs to Yo+B, (|- |g) for somet > 0, then Y (¢;Y(0))
is contained in M.
(ii) For each Y (0) € M there exists a solution Y (t;Y (0)) of (2.2) which exists
for allt > 0 and satisfies |Y (¢;Y(0)) — Yq|g < 0 as well as
(a) [V (5 Y (0)) — Yyla < Ceo [V (0) — Yy,
(b) [mi (Y (6 Y(0)) — ¥,) — Uplo < C Y (0) — Vs,
(©) Ira(Y (1 Y(0)) — o) — Valo < Ce=! [V (0) ~ V5
for allt > 0. Here, Y, = (U, Vy) = Yo(- — q) is the shifted traveling wave,
m:Y=UV)=>U,andnme: Y =(U, V)= V.
(ili) If Y (;Y(0)), t > 0, is a mald solution of (2.2) with Y(0) € Yo + B, (| - |5)
that satisfies properties (a)—(c) in item (i), then Y (0) belongs to My.
(iv) For q # q, we have MyN Mg = 0. Moreover, Yo +B,(| - [5) = U,y<4 Mo
(v) The map [—qo,qo] — ran(Py); q = ¢q(P; 20), is Lipschitz for each 2o €
(S
As a result, for each Y (0) € Yo+B, (|- |5) there exists exactly one shift g € [—qo, qo]
such that Y(0) € M.

The following lemma will be used in the proof of Theorem 4.1. Recall the
definition of the ball Bs(|| - ||) in (3.11).

Lemma 4.2. Assume Hypotheses 2.4 and 2.10. Let g9 > 0, § > 0, dg = do(d, qo) >
0 be chosen small enough, and let |q| < qo. Take yo € € = Ea N&y. Lety =
Y (590) € C([0,t0),E N &) be the mild solution of the nonlinear equation (2.5)
with the initial value y(0) = yo, where to € (0,00]. Set zg = Pjyo and assume that
|20l < 8. Then the following assertions are equivalent.

(a) Yo = 20 + ¢q(20) € graphy g

(b) y can be extended to a global mild solution of (2.5) in Bs(|| - ||), and it is

the fized point yl —of the Lyapunov-Perron operator ®4(-, z0) from (3.9).
(¢) y can be extended to a global mild solution of (2.5) in Bs(|| -|)-

Proof. (a)=(b): Assertion (a) and the equations (4.2) and (4.1) yield
(o)
Yo = 20 + ¢q(20) = 20 — / chFq(ygo (7)) dr = y2,(0),
0

where y? € Bs(]| - []) is the fixed point of (-, z9). Since their initial values are the
same, the mild solutions y and y¢ coincide by uniqueness of (4.3); i.e., (b) holds.
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(b)=(c): This implication is obvious.
(¢)=(a): In view of (c), Lemma 3.2 shows that the integral

ze := Pgyo —|—/ P Fy(y(r))dr € ran(FP)).

exists. Since y solves (4.3) and T, (¢ — 7) is the identity on ran(Py), we can write

y(t) = Ty(tyo + / T,(t — 7)Fy(y(r)) dr
:Tq(t)P;yO+/O T,(t — 7)PSF(y(r ))dT—/tOO PCF(y(r)) dr

00 t
+ Pyo +/ P;F(y(T))dTJr/ P F(y(r))dr,
t 0
using again Lemma 3.2 and (c). The definition of ®,(y, z0) in (3.9) then yields

y(t) = @4y, 20)(t) + 2, >0, (4.6)

Due to the invariance of Bs(|| - ||) with respect to the Lyapunov-Perron operator,
(c) and (3.11), the functions y and ®4(y, z0) tend to 0 in &, as t — oo, and hence
ze = 0. Equation (4.6) thus implies y = ®,4(y, z0) so that (a) is a consequence of
the observations after (4.2). O

Proof of Theorem 4.1. Recall from Remark 2.3 that all mild solutions of (2.2) are
given by y + Y, for a mild solution y of (2.5).

(i) and (ii). Equations (4.1) and (4.2) show that zg + ¢4(20) is the value of
(20, ¢4(20)) at t = 0. From (4.4) we then deduce that ¢, and hence M are
Lipschitz in £ = £ N &,.

Let yo+Y; belong to M, where 2o = P;yo € ran(P;)NBs,(|-[5). By Lemma 4.2,
the fixed point yZ is the mild solution Y( yo) of (2.5) in Bs(]| - ||) with the initial
value yo. Combined with (4.4) and (3.11), these facts imply (ii).

Take to > 0 such that |y(to) + Y, — Yo|g < n. It is easy to see that y(to + -) still
belongs to Bs(]| - ||) and that it is the mild solution of (2.5) with the initial value
y(to). Moreover, Remark 2.7 (in particular, that P; € B(E3)) and (2.15) yield

[P7y(to)ls < C(ly(to) + Yy = Yols + [Yo = Yolg) < C(n +g]) < do, (4.7)

if we choose 1 > 0 and ¢g small enough. (Note that the constants are uniform for
g in compact intervals and independent of 7.) Therefore, y(t9) + Y; is contained in
M, thanks to Lemma 4.2. So (i) is shown.

(iii). Take Y(0) € Yy + B, (| - |p) that satisfies properties (a)—(c) in item (ii).
The function y(t) = Y (¢;Y(0)) — Y, is a mild solution of (2.5) with initial value
Y (0) — Y;. Using again (2.15), we can estimate

Y (0) = Yylp < [Y(0) = Yols + [Yg — Yol <n+ Clgl.

Possibly decreasing 7,q0 > 0, we deduce from conditions (a)—(c) the inequality
(3.11) for y and from Lemma 2.7 the estimate |P; (Y (0) — Y,)|s < do. Lemma 4.2
now yields that y(0) € graphg, ¢4, proving (iii).

(iv). By Theorem 3.14 in [GLS2], we can fix a sufficiently small radius > 0 such
that for each point Y (0) in the ball Yy +B,,(|-[s; Yo) there exists a shift ¢ = ¢(Y(0))
such that the solution Y'(-;Y(0)) of (2.2) satisfies properties (a)—(c) of item (ii).
We remark that in Theorem 3.14 we can choose the same number § > 0 as in the
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current proof and exponents' v, p > w which are different from our exponents v
and p in (3.13). Item (iii) then implies that Y (0) is contained in Mg. If Y(0) is
also an element of M for some ¢ € [—qo, qo], then the corresponding solution y
would converge both to Y, and Y; as ¢t — oo, and so ¢ = ¢§. Hence, (iv) holds.

(v). Let |q],|q] < go and zp € Bs,(| - [3). The maps ¢ = P; € B(Ex,Ep),
g P; € B(E) and q = By € B(Eq, &) are Lipschitz for k € {3, a} due to (2.14)
and Lemma 2.9. Lemma 3.7 of [GLS2] implies that v,Y§ and v, Y] are bounded.
Using (2.6) and (2.15), we then deduce the estimate

[Fq(Y) = Fg(Y)ls < ClY s lg — g

forall Y € &; and k € {0,a}. In view of (4.2), for (v) it remains to check that the
map q — y? =:y, is Lipschitz for || - ||. Since y, is the fixed point, we infer from
(3.9) the identity

Yg — Yg = P4(Ygs 20) — P(yq, 20) + Pg(Ygs 20) — Pa(yg, 20)-

By (3.20), the second difference on the right hand side is bounded by C4 ||yq — y4l|
and can thus be absorbed by the left hand side possibly after decreasing § > 0
once more. To control the other difference, we note that the bounded perturbation
theorem and (2.16) imply that g — T,(t) € B(Ex) is Lipschitz for k € {0,a} and
uniformly for ¢ > 0 in compact sets, see Corollary 3.1.3 of [P]. To extend this
property to Ry, let t € (n,n + 1]. We write
T,(t) Py = Ta(t) P§ = (Ty(t — n) = Tg(t — n))Ty(n) Py + Tg(t — n)Ty(n) Py (Py —FyF)
n—1
+ Tt —n) Y Ty(n— k= 1) Py (Ty(1) — Ty(1))Ty(k) Py
k=0
+ T4t —n)(P; — P;)T;(n)P;.

In the exponential decay estimate (2.18) for T}, (¢) P; we can replace v by a slightly
larger number, see Lemma 3.13 of [GLS2]. This and the above mentioned facts lead
to the inequality

1T, () Py = Ty(t) Py llse.) < Ce "' lg—ql,  t=0.
As in Lemma 3.2 one can now show that
194 (yq: 20) — P4(yq, 20) || < Clg — -

Summing up, (v) is true. O

To conclude, we briefly mention two motivating examples borrowed from [GLS3]
that fit our setting. More details can be found in the papers [GLSS] and [GLS2],
respectively. We stress, however, that for this type of examples Hypotheses 2.1,
2.2 and 2.4 (a) can rigorously be verified not in all cases while the absence of

the unstable eigenvalues required in Hypothesis 2.4 (b) is usually checked only
numerically for certain ranges of the parameter values.

Example 4.3. Gasless combustion. A simple combustion model in one space dimen-
sion has been mentioned in the Introduction and is given by the system

Ot = Ogput + ’Ug(’U/), O = _ng(u)a

n (7) of Theorem 3.14 there is a misprint, one has to replace v by p.
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where g(u) = e % if u > 0 and g(u) = 0 if w < 0. In this system, u is the
temperature, v is the concentration of unburned fuel, g is the unit reaction rate,
and 8 > 0 is a constant parameter. This system was a primary guiding example
in [G, GLS1, GLSS, GLS2, GLS3]. One motivation for looking at this well-studied
problem, in which the reactant does not diffuse, was heat-enhanced methods of oil
recovery in which the reactant is coke contained in the rock formation, see [AY].
The value u = 0 represents the ignition temperature and is also taken to be the
background temperature, at which the reaction does not take place.

Clearly, Hypothesis 2.2 is satisfied here. One looks for traveling waves Yy =
(ug,vp) such that Y_ = (u_,0) with u— > 0, Y3 = (0,1), and (uo(z),vo(z))
approaches these end states exponentially as x — 4o0. For each § > 0 there is a
unique ¢ > 0 for which such a wave exists, cf. [GLS3, §3.2]. This wave represents
a combustion front that leaves behind of it high temperature u_ = 1/8 and no
fuel, while in front of it temperature is 0 and there is fuel, with concentration
normalized to 1. As discussed in Paragraph 3.2 of [GLS3], Hypothesis 2.10 is true
and Hypothesis 2.4 can be verified (partly numerically) for small g > 0.

We note the lack of diffusion in the second equation which inspired the linear
Lemma 3.13 in [GLS2] used to derive the exponential decay (2.18) from the spec-
tral assumptions in Hypothesis (2.4), and the form of the nonlinear term in this
and related problems which inspired the triangular and product structure of the
nonlinearity in the current paper that follows from Hypothesis 2.2.

Example 4.4. Exothermic-endothermic chemical reactions. A model in which two
chemical reactions occur at rates determined by temperature was studied in [SMS,
SKMS], see also [GLS2]. One reaction is exothermic (produces heat), the other is
endothermic (absorbs heat). The system reads

Owy1 = Ozt + Y2 f2(y1) — oys f3(y1), (4.8)
Ory2 = d20zay2 — Y2 fo(y1), (4.9)
Oy = d3022Y3 — TY3f3(y1)- (4.10)

Here y; is the temperature, ys is the quantity of an exothermic reactant, and ys is
the quantity of an endothermic reactant. The parameters o and 7 are positive, and

there are positive constants a; and b; such that f;(u) = aie’% foru > 0 and f;(u) =
0 for v < 0. In [SMS, SKMS] it is shown numerically that in certain parameter
regimes there exist traveling wave solutions Yj of (4.8)—(4.10) with speed ¢ > 0 and
the end states Y_ = (1 — 2,0,0) and Y, = (0,1,1). Moreover, both end states are
approached at an exponential rate, the zero eigenvalue of the linearization is simple,
and there are no other eigenvalues in the right half plane. A rigorous motivation for
the existence of such traveling wave is also given in [GLS2, Section 9.2]. Assuming
the existence of the traveling wave with these properties, the remaining hypotheses
of the current paper are easy to verify.
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