THE FREDHOLM ALTERNATIVE FOR PARABOLIC EVOLUTION
EQUATIONS WITH INHOMOGENEOUS BOUNDARY CONDITIONS

LAHCEN MANIAR AND ROLAND SCHNAUBELT

ABSTRACT. We study the Fredholm properties of parabolic evolution equations on R
with inhomogeneous boundary values. These problems are transformed into evolution
equations with inhomogeneities taking values in certain extrapolation spaces. Assuming
that the underlying homogeneous problem is asymptotically hyperbolic, we show the
Fredholm alternative for these equations.

1. INTRODUCTION

In recent years the Fredholm properties of evolution equations
u'(t) = A(t)u(t) + f(1), t € R, (1.1)

on a Banach space X have attracted considerable interest. In this work we establish a
Fredholm alternative for a large class of parabolic inhomogeneous boundary value prob-
lems, see (1.4), which can be transformed into a problem similar to (1.1) with inhomo-
geneities f taking values in spaces X! ; larger than X. Before discussing the contents of
our paper, we first want to recall related results concerning (1.1) with f: R — X.

A main line of research concentrates on parabolic problems, where the operators A(t)
generate an evolution family U(t,s), t > s, having regularity properties similar to those
of analytic semigroups. Moreover, it is assumed that (1.1) possesses maximal regularity
on a space F' of functions f : R — X (cf. [7]). Roughly speaking, this notion means
that the operator G%u = —u’ + A(-)u is closed in F on the ‘minimal’ domain D(G°) =
D(d/dt) N D(A(-)) = {u € F : u(t) € D(A(t)), v, A(-)u € F'}. This property typically
requires function spaces such as F' = LP(R, X) or C*(R, X) with p € (1,00) or a € (0,1)
(the choice F' = LP leads to additional restrictions on X and A(¢)). Finally, one supposes
that the operators A(t) converge to operators A1, ast — £00 in a suitable sense and that
1R belongs to the resolvent sets of A4, i.e., the problem is ‘asymptotically hyperbolic’.
It is then known that U(-,-) has an exponential dichotomy on intervals [T, +o0) and
(—o0, =T for possibly large T' > 0, see [8], [29], [31].

In this setting, the (Semi-)Fredholmity of G® was characterized in terms of properties
of the stable and unstable subspaces of U(t,s) at t = T, see [1], [15], [16], [17], [24], [27],
28], and the references therein (compare also Theorem 3.6 below). This characterization
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implies that G is Fredholm if the unstable subspaces of A, have finite dimensions d.
(e.g., if D(A1) is compactly embedded in X), and then G° has the index d_ — d,.

The above setting occurs if one linearizes a nonlinear parabolic problem on a bounded
domain along a heteroclinic orbit connecting two hyperbolic equilibria. In this case the
Fredholm property of G° is crucial to study the bifurcation behaviour of the heteroclinic
orbit by means of the Lyapunov-Schmidt reduction, see e.g. [15], [27], [28]. We add that
the property of maximal regularity makes it posssible to show the persistence of Fredholm
properties under large classes of perturbations, see [17].

If one discards the strong assumption of maximal regularity (i.e., G° is not required to
be closed), then it seems to be most appropriate to define G via the ‘mild equation’

u(t) = U(t, s)u(s) +/ U(t,7)f(r)dr, t>s, (1.2)

for a given exponentially bounded ‘evolution family’ U(t, s), t > s, with time interval R
(i.e., (2.3) below holds and (¢, s) — U(t, s) is strongly continuous for ¢ > s). We say that
a function u € F belongs to the domain D(G) and Gu = f if there is a function f € F
such that (1.2) holds for all t > s in R. If the Cauchy problem

u'(t) = Alt)u(t), t>s, u(s) =, (1.3)

is well-posed, then G is the closure of G° as defined above, where F = Cy(R, X) or
F=LPR,X)with1 <p < oo, cf. [11], [30]. In the recent paper [21] it is shown that G is
Fredholm on F' if and only if U(-, -) has exponential dichotomies on intervals (—oo, a] and
[b, +00) and a certain ‘node operator’ connecting the dichotomies is Fredholm in X. We
refer to [22] for somewhat stronger results under stronger assumptions and also to [9]. In
fact, the ‘if” implication of the results from [9], [21], [22] coincides with the corresponding
assertions in [15], [16], [17], see [15, §5.3]. We further mention that the invertibility of G
on F'is equivalent to the exponential dichotomy of U(-,-) on R, see [11].

In the present paper we study the (Semi-)Fredholm properties of the parabolic inho-
mogeneous boundary value problem

' (t) = Ap(H)u(t) + g(t), teR,

B(t)u(t) = h(t), teR. (1.4)

Here the linear operators A,,(t) and B(t) are defined on a subspace Z; of X (e.g., Z; =
W2(Q) if X = LP(Q)), Ann(t) maps Z; into the state space X, and B(t) maps Z; into a
‘boundary space’ Y such as I/Vp1 i/ (02). The inhomogeneities g and h are continuous
with values in X and Y, respectively. Typically, A,,(f) is an elliptic differential operator
and B(t) is a differential operator of lower order. It is assumed that the restrictions A(t) of
A,,(t) to the kernel of B(t) satisfy the Acquistapace-Terreni conditions stated in (2.1) and
(2.2). These conditions are quite flexible in so far they only require a Holder condition in ¢
and they allow for non—dense and time varying domains D(A(t)). Under these conditions
the family A(-) generates an evolution family U(-, -) on X having parabolic regularity due

to [3] and [4], as described in the following section.
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For a fixed operator A(t) and a € (0, 1), we further define the real interpolation spaces
X! of order («,00) between D(A(t)) and X. In Section 2 we also introduce the corre-
sponding extrapolation spaces X! ; which are larger than X. In general, both X! and
X! _, depend on t. The operator A(t) possesses an extension A,_1(t) : X}, — X! . We
further suppose that the abstract boundary value problem

(w—A,(t)v =0, B(t)v = ¢,

has a unique solution v = D(t)p for ¢ € Y and that Z, — X!, for some o € (0,1).
(Here w is a fixed large real number.) As we see in Section 4, one can rewrite (1.4) as the
evolution equation

u'(t) = Aa_1(t)u(t) + (1), t € R, (1.5)
where f := g+ (w — Aa—1(-))D(-)h. This reformulation of a boundary value problem
seems to go back to work in boundary control theory, see e.g. [12], [26]. We also refer
to [2], [7], [10], [13], [19] and [23, §5.1] for related results and techniques. We then show
that f belongs to the space F,_; for some « € (0, 1) which is the extrapolation space for
the multiplication operator A(-) defined on F := Cy(R, X). It is crucial for our approach
that the operators U(t, s) have locally uniformly bounded extensions U,_1(t,s) : X5 _; —
X! | which map X? | into X with norm less than c(t — s)*™! for 0 < t — s < 1, see
Proposition 2.1 and Lemma 5.1.

Thus we can define an operator G,_; as in (1.2): A function v € E belongs to D(G,_1)
and G,_qu = f if there is an f € E,_; such that

u(t) = U(t, s)u(s) +/ Usp1(t,7)f(7)dr Vt>s inR. (1.6)

A function u € C(R, X) satisfying (1.6) is called a ‘mild solution’ of (1.5). In Proposi-
tion 2.6 we show that a function u satisfying (1.6) indeed solves (1.5) pointwise in the
space Xj_, for every 3 € (0,a). In so far the ‘mild definition’ of G, is justified. How-
ever, in this work we will concentrate on the asymptotic behaviour of (1.5), and we will
not study the local regularity of the solutions to (1.5) in further details. These matters
are treated in depth in [7, §V.2] assuming that for some a € (0,1) the spaces X! and
X! | do not depend on t, see also [2] and [14].

We further suppose that U(-,-) has exponential dichotomies on half lines (—oo, —T]
and [T, +o0) for some T" > 0. (This property holds in the asymptotically hyperbolic
case where the resolvents R(w, A(t)) converge in norm as ¢ — oo to the resolvents of
operators Ay, with iR C p(Aiw), see [31] and also [8], [29]). We prove in Proposition 2.2
that U,—1(-, ) inherits the exponential dichotomies of U(,-).

We characterize the (Semi-)Fredholm properties of G,_1 in terms of the stable and
unstable subspaces of U(t,s) at T in Theorem 3.6. In the asymptotically hyperbolic
case, G_1 is Fredholm with index d_ — d, if the unstable subspaces of AL, have finite
dimensions dy. We further describe the kernel and range of G,_; in Propositions 3.5
and 3.8. We point out that our conditions do not involve the extrapolated spaces X! _;.
These results lead to a Fredholm alternative for the mild solutions u € Cy(R, X) of (1.5) in

Theorem 3.10. This theorem in turn implies a Fredholm alternative for the mild solutions
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of (1.4) stated in Theorem 4.4. In Example 4.5 we study a variant of this result, namely
a diffusion equation formulated in the space X = C(Q). In this case, the spaces X!, and
X! | will depend on ¢, in general.

Our arguments are based on the properties of the extrapolated evolution family
Ua-1(-,-), and they are insprired by the techniques of [16] and [17]. The main differ-
ence arises from the fact that we work with an ‘integral’ definition of G,_; instead of the
more explicit definition G° = —d/dt + A(-). The approach via G® would run into severe
difficulties here. First, even if we consider homogeneous boundary conditions h = 0 in
(1.4) (i-e., (1.5) on E = Cy(R, X) with a = 1), we cannot expect that (1.5) has maximal
regularity since we work with sup norm in time. This means that G° is not closed, and
typically its closure GG has a rather complicated domain. Second and more importantly,
we want to allow for f taking values in time depending extrapolation spaces X!, | so that
a direct treatment of the differential equation (1.5) is quite unconvenient, cf. Section 5.
Fortunately, the mild description (1.6) of G,_; suffices for the questions studied in this
paper. On the other hand, the results from [21] or [22] do not apply since we work in
extrapolation spaces and (t,s) — U(t, s) need not to be strongly continuous at ¢ = s.

In the next section we collect the background material for our investigations. We further
show several auxiliary facts concerning the extrapolated evolution family U,_1(t, s), its
exponential dichotomies, and the bounded solvability of Cauchy problems on half lines.
The third section contains our main results on the operator GG,_; which are based on a
careful analysis of the behaviour of its restrictions to the intervals [T',+00) and (—oo, 7.
Here the main difficulty comes from the fact that in general U(t, s) only has dichotomies
on disjoint intervals (—oo, =T and [T, +00), see [16], [21], and [31, §4.2] for a discussion of
this phenomenon. In Section 4 we translate the results of Section 3 to the boundary value
problem (1.4). The last section contains a proof of the regularity result Proposition 2.6.
In a forthcoming paper we will treat perturbation results for the Fredholm index.

2. NOTATIONS, ASSUMPTIONS, AND PRELIMINARIES

We denote by D(A), N(A), R(A), 0(A), p(A) the domain, kernel, range, spectrum and
resolvent set of a linear operator A. Moreover, R(\, A) := (\[ — A)"! = (A — A)~! for
A € p(A) and L(X) is the space of bounded linear operators on a Banach space X. By
c(a, - -+) we designate a generic constant depending on quantities a, - - - .

We investigate linear operators A(t), t € R, on a Banach space X subject to the
following hypotheses introduced by P. Acquistapace and B. Terreni in [3] and [4]. There
are constants w € R, 6 € (7/2,7), K > 0 and u,v € (0, 1] such that 1+ v > 1 and

NEHAD — @) IROCAW® -9 £ (2.)
I(A®) - RO, — )[R, A) - Rl A < K0 22

for all t € R and A € C\ {0} with |arg(\)| < 6. Observe that the domains D(A(t))
are not required to be dense. These conditions imply that the operators A(:) generate

an evolution family U(¢,s), t > s, t,s € R. More precisely, for ¢ > s the map (¢, s) —
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U(t,s) € L(X) is continuous and continuously differentiable in ¢, U(t,s)X C D(A(t)),
and 0, U(t,s) = A(t)U(t,s). We further have

U(t,s)U(s,r) =U(t,r) and U(t,t)=1 for t>s>r; (2.3)

Moreover, for s € R and o € D(A(s)), the function ¢t — wu(t) = U(t, s)x is continuous at
t = s and w is the unique solution in C([s, 00), X) N C*((s,00), X) of the Cauchy problem

u'(t) = A(t)u(t), t>s, u(s) = x.

These facts have been established in [3] and [4], see also [2], [7], [23], [32], [33].

Before stating additional regularity properties of U(t, s), we have to introduce the inter-
and extrapolation spaces for A(t). We refer to [7], [18], and [23] for proofs and further
information. Let A be a sectorial operator on X (i.e., (2.1) holds with A(¢) replaced by
A) and a € (0,1). We make use of the real interpolation space

XA ={r e X |z||? :=sup,o ||r*(A — w)R(r, A — w)z|| < o0},

which is a Banach space endowed with the norm || - ||[4. For convenience we further write

X& =X, ||z]|g! = ||z||, Xi* .= D(A) and ||z := ||(w — A)z||. We also need the closed
subspace X4 := D(A) of X. Moreover, we define the extrapolation space X4, as the

completion of X4 with respect to the norm ||z||4, := |[R(w, A)z|. Then A has a unique
continuous extension A_; : X* — X4, The operator A_; satisfies (2.1) in X4, it is
densely defined, it has the same spectrum as A, and it generates the semigroup e*4-* on
X4, being the extension of e'4. As above, we can then define the space

Xoy = (X)g™ with the norm [la[lfy = [|2|37 = sup,. [Ir*R(r, Ay — w)a]].

The restriction A, ; : X2 — XA | of A_; is sectorial in X7 | with the same type as A,
it has the same spectrum as A, and the semigroup e4e=1 on X2 | is the extension of e!4.
Observe that w — A, : X2 — X/ | is an isometric isomorphism. We will frequently use
the continuous embeddings

D(A) — X} < D((w— A)*) — X2 — X" C X,

2.4
X — XE‘_l — D((w—A1)") = Xoty — X4 24

for all 0 < a < # < 1, where the fractional powers are defined as usually. In general,
D(A) is not dense in the spaces X and X and X is not dense in X2

21, but we have the
inclusions

A
-4 A_AH'”afl

X} — D(A) (2.5)
for 0 < a < # < 1. More precisely, one has the following fact: For x € X g‘_l, the vectors

and X fi4—1 —

2, = nR(n,A_)z, n > w, belong to X4, lznllgy < cllzllf, and 2, — 2 in X7 .
Moreover, X4 is dense in D((w — A_;)*) and X4,.
Given operators A(t), t € R, satisfying (2.1), we set
At o >
X! = X(f(t), X! = Xaﬁl), Xt.= x40

for 0 < o <1 and t € R, with the corresponding norms. Then the embeddings in (2.4)

hold with constants independent of ¢ € R. Let J C R be a closed interval. We further
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define on £ = E(J) := Cy(J, X) (the space of continuous functions, vanishing at infinity
if J is unbounded) the multiplication operator A(-) by

(AN == A)f(t) fort € J, D(A()) = {f € E: () € D(A®)), A()f € E}.

It is clear that the operator A(-) is also sectorial. We can thus introduce the spaces

Eo=E) E,,:=E) and E:=D(A())

a—1>
for o € [0,1], where Ey := E and E; := D(A(-)). We observe that £_; C [[,., X, and
that the extrapolated operator A(-)_; : E — E_y is given by (A(-)_1f)(t) := A_{(t) f(¢)
for t € J and f € E. Further, E,_; has the norm
[flla—1 := supsup [[r*R(r, A_1(s) — w) f(s)]|

r>0 seJ

Let (2.1) and (2.2) hold. Then there exists a constant C' = C'(ty) > 0 such that

l(w = A@®)*e™ O < O, (2.6)

Ut s)alle < C(t—s) |3, (2.7)

Ut s)(w = A(s)’yl < C (u—=0)7(t = 5)llyll, (2.8)

[(w = A(s))"(R(w, A(s)) = R(w, A(1))[| < C (t = s)", (2.9)
Iw—=A@)™" = (w=A(s) | < C(t =) (2.10)

forall t,s e Rand tg > 0 with 0 <t —s <thpandall 0 <7 <15, 0 <[ < a <1,
0<0<pu,0<vy<v, ze X andy € D((w— A(s))’). Here, (2.6) is well known,
(2.7) follows from [4, Thm.2.3] by interpolation, and (2.8) was proved in [33, Thm.2.1] in a
slightly different setting, but the proof also works under the present assumptions. Finally,
(2.9) and (2.10) are straightforward consequences of (2.1) and (2.2), cf. [31] and [32]. We
state an easy consequence of (2.8) which is crucial for our work, see also Lemma 5.1.

Proposition 2.1. Assume that (2.1) and (2.2) hold and let 1 —p < a <1 and0 < g < 1.
Then the following assertions hold for s <t < s+ ty and tg > 0 with constants possibly
depending on tg.

(i) The operators U(t, s) have continuous extensions Un—1(t,s) : X2 | — X satisfying

WUaca(t ) lecxs_ 0 < ela)(t — )°7" (2.11)

and Up—1(t,8)z =U,1(t,s)z forl—p<vy<a<landz e X: ;.
(i) The map {(t,s) :t > s} > (t,s) — Ua—1(t,s)f(s) € X is continuous for f € E,_;.
(iii) For x € X2_, we have

1Ua-s(t, s)zlls < cla)(t = s)* 7 |25y (2.12)

Proof. Let s <t < s+ty. Due to (2.8), we can uniquely extend U (t, s) to operators from
D((w— A_1)**®) to X, with norms bounded by c(t — s)* **¢ where 1 — u < a e < 1.
Assertion (i) now follows by reiteration employing (2.4) and e.g. Theorem 1.2.15 and

Proposition 2.2.15 in [23]. The map @ : (¢t,s) — U,_1(¢,)f(s) € X is continuous for
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t>sif feFE. For f € E,_, the continuity of ® is shown by approximation using (2.11)
and (2.5). Finally, (2.7) and (2.11) yield

Wa-a(t,s)ells = UGt (¢ + ))Uasr (At + 5), )zl
<2°C(t = 5)7 Ua-a(5(t + ), 8)2]| < c(a)(t — )" |25,
forx e X7 _,. O

Exponential dichotomies are another important tool in our study, cf. [11], [23], [30],
[31]. We recall that an evolution family U(-,-) is said to have an ezponential dichotomy
in an interval J C R if there exists a family of projections P(t) € L(X), t € J, being
strongly continuous with respect to ¢, and numbers §, N > 0 such that

(a) U(t,s)P(s) = P(t)U(t,s), N

(b) U(t,s): Q(s)(X) — Q(t)(X) is invertible with inverse U(s,t),
(c) Ut s)P(s)]] < N2,

(d) UG, )Q) < Ne™ot=),

for all s,t € J with s < t, where Q(t) := I — P(t) is the ‘unstable projection.” In the
parabolic case one easily obtains regularity properties of the exponential dichotomy, see
e.g. [31, Proposition 3.18]. For instance, ||A(t)Q(t)|| < ¢(n) for t € J, t —n > inf J and
each 7 > 0since A(t)Q(t) = A{)U(t,t—n)U(t—n,t)Q(t). In the next proposition we state
some results concerning extrapolation spaces. We use the convention +oo + r = fo0 for
r € R, and we set J' = J\ {sup J}, i.e.,, J = J if J is unbounded from above. Moreover,
we write Uy(t, s) := U(t, s), Py(t) := P(t), and Qo(t) := Q(t), where X} = X by definition.

(2.13)

Proposition 2.2. Assume that (2.1) and (2.2) hold and that U(t,s) has an exponential
dichotomy on an interval J. Letn > 0 and 1 — u < a < 1. Then the operators P(t)
and Q(t) admit continuous extensions P,_1(t) : X! | — X! | and Qu_1(t) : X! | — X,
respectively, for t € J'; which are uniformly bounded for t < supJ — n. Moreover, the
following assertions hold fort,s € J with t > s.
(a) Qa1 (t)X5 ) = Q)X
(b) Ua—1(t, 8)Pa—1(s) = Pa1()Us—1(t, s); N
(€) Ua—1(t,8) : Qu-1(8)(XZ_1) = Qa_1(t)(XL_,) is invertible with inverse Uy_1(s,t);
(d) [|Ua-1(t; ) Pai ()]l < N(a,m) max{(t—s)*~", e |z[|;_, forz € X5 and
s<t<supJ —mn;
(€) [|Un1(5,8)Qu1(t)z]| < N(a,n)e 5 )|\ z||._, forz € XL, and s <t < supJ—p.
(f) Let Jy C J' be a closed interval and f € Eq_1(Jy). Then P(-)f € Ey—1(Jo) and
Q()f € Co(Jo, X).

Proof. Let t € J such that t +n <supJ, 1 — 3 < 6 < u, and z € D((w — A(t))?). The
estimates (2.8) and (2.13)(d) imply that

Q) (w — A@®) || = U (tt +mQ(t + MUt +n, ) (w — A1) x| < c(n)]].
The embeddings (2.4) thus yield

IRyl < e(mll(w — Aa (1)) "yl = e(m)ll(w — A () ylley < c)llyllz,  (2.14)
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for all y € X. Observe that (2.14) is true for a = (3, in particular. Taking § < « and
using the remarks after (2.5) (with reversed roles of a and [3), we see that Q(t) has a
uniformly bounded extension Q,_1(t) : X! ; — X for t < supJ — n. Then the operator
I —Qa1(t) € L(X]_,) is a uniformly bounded extension of P(t).

Assertion (a) is a consequence of the fact that Q,_1(¢) has values in X and that it is a
projection. Assertion (b) follows from (2.13)(a) by approximation using (2.5) and (2.11).
To show (c), let y € Qu—1(t)X!_; = Q(t)X. Due to (2.13)(b), there is a unique vector
€ Q(S)X = Qa1(5)X:_, such that y = U(t, s)x = Uy_1(t, s)z.

Let t > s+ 1 and x € X]_;. Using the exponential dichotomy of U and the estimate
(2.11), we obtain

1Ua-1(t, 8) Paca (s)z]| = U (t, s + 1)P(s + 1)Usr (s + L, s)a]| < e Jzf5 .

If 0 <t—s <1, assertion (d) follows from (b) and (2.11). Assertion (e) is a consequence
of (a), (2.13), and (2.14).

Let f € Eq-1(Jy). Then there are f, € Cy(Jy, X) converging to f in Eg_1(Jy) for
B € (1—p,a). Then Q(-)f, converges in Cy(Jy, X) to Qu-1(-)f, whence (f) follows. [

We further use the operator family

a-1(t,8)Pac1(s), ¢t =s, 1, "
Foy(ts) = {U~1( $)Pa—1(s) s, t,seJ (2.15)

—Upo1(t,8)Qa-1(s), t<s, t,seJ.

In some results we shall assume that A(-) is asymptotically hyperbolic, i.e., there are
two operators A_, : D(A_o) — X and A, : D(A,) — X satisfying (2.1) and
lim R(w,A(t)) = R(w, A_), tliin R(w, A(t)) = R(w, Ato) (in £(X)); (2.16)

t——o0

7(Aio) NiR = 0(A_) NiR = 0. (2.17)

Under assumptions (2.1), (2.2), (2.16), (2.17), there exists T" > 0 such that U(t, s) has
exponential dichotomies in (—oo, =7 and in [T, +00). For the interval [T, +00), this has
been shown in Theorem 4.3 of [31]. The proofs given there extend in a straightforward
way to the interval (—oo, —T]. The case of dense domains was treated before in [8] and,
for a slightly stronger version of (2.16), in [29]. Moreover, we have

dim Q)X =dim QiX, t>T, dim Q)X =dimQ_X, t<-T, (2.18)

by [31, Thm.3.2], where ()1 are the projections for Ai,. Due to Proposition 2.2, our
extrapolated evolution family U,_; (¢, s) has then exponential dichotomies in (—oo, —T))
and in [T, +00). From (2.18) and Proposition 2.2 (a), we conclude that

dimQ, 1 ()X, | =dimQ X, t>T, dimQ, ()X |, =dimQ_oX, t< T,

«

if (2.1), (2.2), (2.16), and (2.17) hold.

Remark 2.3. In the proof of Theorem 4.3 of [31], the projections P(t) (for t > T

and t < —T', respectively) are obtained as the restriction of projections for a parabolic
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evolution family having an exponential dichotomy on J = R. Hence, assumptions (2.1),
(2.2), (2.16), and (2.17) imply that
U(-,-) has exponential dichotomies on [T, +00) and (—oo, —T] for some 7' > 0

2.19
and the assertions of Proposition 2.2 are true with n = 0. ( )

Definition 2.4. We assume that (2.1) and (2.2) hold, take 1 — p < o < 1, and let
J C R be a closed interval. Let f(t) € X! _,,t € J, such that f|[a,b] € E,_1([a,b]) for all

a—1»
subintervals [a,b] C J. We say that u € C(J, X) is a mild solution of
u'(t) = A (tult) + f(t), te (2.20)

if the equation
u(t) = Ul(t, s)u(s) + / Uo-1(t,0)f(0)do (2.21)

holds for all t > s in J. If in addition v € E(J) and f € E,_1(J), then we write
u € D(Gy-1) and Go—1u = f, where Gy =: G. If u is a mild solution of (2.20) for
J = [ty, +00), resp. J = (—o0,to], with u(ty) = x, then we call w a mild solution of the
initial, resp. final, value problems

u'(t) = A (Ou(t) + f(t), t>to, u(ty) = z; resp., (2.22)
u(t) = A (Ou(t) + f(t), t<to, u(ty) = x. (2.23)

Remark 2.5. We make the assumptions stated in Definition 2.4. Then there always exists
a unique mild solution of (2.22) with u(ty) = 2 € X', Moreover, a function u € C(J, X)
can be the mild solution of (2.20) for at most one f, so that G,_1 is single-valued. Finally,
Ga-1:D(Gu-1) C E(J) — E4-1(J) is a closed linear operator.

Proof. The first assertion follows easily from Proposition 2.1. For the second assertion,
take f and g such that f(t),g(t) € X!_, for t € J, f|[a,b],g|[a,b] € E,_1(]a,b]) for all
subintervals [a,b] C J, and (2.21) holds for some u € C(J, X) and both f and g. Setting
h = f — g, we thus obtain

t
/ U (toVh(o)do =0 Vit seJ with t>s,

and hence U,_1(t,s)h(s) = 0 for all £ > s due to Proposition 2.1(ii). Take 6 € (1 — v, u)
such that § > 1—a. Then (w—A_1(-))"%h € E([a,b]) by (2.4), and thus Lemma 5.1 yields
h=0,ie., f=g. (Wecantake any @ € (1—p,1—60) when applying Lemma 5.1. We point
out that in the proof of this lemma we use no results established after Proposition 2.1.)
The last assertion is a straightforward consequence of (2.11). 0J

The next proposition shows that a mild solution of (2.20) is in fact a differentiable
solution of (2.20) in a slightly weaker topology, see Section 5 for the proof. However, it
is more convenient for us to work with the integral equation (2.21).

Proposition 2.6. Assume that (2.1) and (2.2) hold and that f € Eq_1(J) for 1 —pu <

a <1 and some closed interval J C R. Let uw € C(J, X) be a mild solution of (2.20) and
9



let 0 < 3 < min{a,v}. Then u(t) € Xj, the map s — u(s) is differentiable at s =t in
the norm of Xj_,, and (2.20) holds pointwise in Xj_,, for each t € J \ inf J.

Employing exponential dichotomies on halflines, we can derive existence results for
forward and backward Cauchy problems with inhomogeneities in extrapolation spaces.

Proposition 2.7. Assume that (2.1) and (2.2) hold, 1 —p < a < 1, and that U(t,s) has
an exponential dichotomy on an interval [T, +00). Let to > T, [ € Eo 1([T,4+00)), and
z € D(A(ty)). Then the mild solution u € C([ty,00), X) of (2.22) is bounded on [to, 00)
of and only iof

Qe =— [ 7 " (o, $)Qur(3) £(5)ds, (2.24)

to
in which case u is given by

ult) = U(t, o) P(to)z + / Unr(t, 8) Pacs (5) £ (5)ds — / T (t,5)Qur () f(s)ds. (2.25)
Proof. Let tg > T. The mild solution u of (2.22) satisfies
w(t) = Ua—1(t, to)u(to) + | Uaza(t,s)f(s)ds, t>t.

Using Proposition 2.2 and (2.15), we can write this equality as

t +oo
ut) = Ut to)ulte) + [ Vst 9)Pacs(6)£(5)ds = [ Tams(t,:9)Qua(5)(5)ds
to t
+oo
+ / Ua—l(t7 S)Qa_1<8)f(8)d8
¢
0 +OO oo
= U(t,t0) [u(to) + / Ua1(to, $)Qa-1 () (s)ds| + / Tuoi(t,s)f(s)ds (2.26)
to t
for ¢ > to. Proposition 2.2 and the boundedness of f on [tg, +00) show that u is bounded
if and only if the term in brackets [- - -] belongs to P(ty)X which is equivalent to (2.24).
In this case, (2.25) follows directly from (2.26). O
In the next proposition we may also take ty = —T" in the situation of Remark 2.3.

Proposition 2.8. Assume that (2.1) and (2.2) hold, 1 — p < a < 1, and that U(t,s) has
an exponential dichotomy on an interval (—oo, =T|. Let to < =T, f € Ey_1((—00,1%))
and x € X. Then there is a bounded mild solution u € C((—o0,ty],X) of (2.23) on
(—o0, to] if and only if

Plto)s — /_ Ui (to, 5) Par(5) f(5)ds, (2.27)

in which case u 1s given by

u(t) = ﬁ<t7t0>Q(t0>x_/tOUa1<t75)Qa1(S)f(8)d5+/_ Us1(t; 5)Par(s)f(s)ds. (2.28)
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Proof. 1t is straightforward to check that (2.28) gives a bounded mild solution of (2.23)
satisfying (2.27). Let to < =T, s <t < ty, and let u be a bounded mild solution of (2.23).
As in Proposition 2.7, we can write

t

u(t) = U(t, s) [P(s)u(s) —/ Ua,l(s,T)Pa,l(T)f(T)dT] —|—/ Ug1(t, 7)Po—1(7) f(T)dT

—00 —00

s

LUt 5)Q(s)uls) + / Unos(t,7) Qs (7) f(7)dr.

Since U(t, s)Q(s)u(s) + f; Unp-1(t, 7)Quo—1(7) f(T)dT = Q(t)u(t), we have

P(t)u(t) = U(t,s)P(s) [P(s)u(s) — / Uo—1(8,T)Poc1(7) f(T)dT

t
+/ Ua1(t,7)Pa_1(7) f(T)dr. (2.29)
Due to Proposition 2.2, the boundedness of u and f implies that the term in [---] is

bounded for s < ¢y. Therefore, letting s — —oo in (2.29), we deduce from (2.13) that

P(t)u(t) = / Ua_1(t,7)Pa_y(7) £ (7)dr, (2.30)

— 00

and in particular the condition (2.27) for ¢ = t,. Moreover, it holds

Q(to)u(to) = Ulto, t)Q(t)u(t) + /t OUa—l(tmT)Qa—l(T)f(T)dT>

Q(t)ult) = U(t, to)Q(to)u(to) _/tOUal(taT)Qal(T)f(T)dT'

The last equation together with (2.30) yield the formula (2.28). O

3. PROPERTIES OF THE OPERATOR (G _1

In this section we assume that the operators A(t), t € R, on X satisfy the hypotheses
(2.1), (2.2), and (2.19) (where the latter condition follows from (2.16) and (2.17)). Again,
U(t, s) is the evolution family on X generated by A(-) and U,_1(¢,s) is its extrapolated
evolution family on X? ;. Both families have exponential dichotomies on (—oo, —T] and
[T, +00) for some T' > 0 with projections P(-) and P,_;(+), respectively. To study the
operator G,_1 on J = R, we introduce the stable and unstable subspaces of U,_1(-,-).

Definition 3.1. Let to € R. We define the stable space at tg by
X(to) = {z e X2, : i (|Ua—i(, to)f| = 0},
and the unstable space at tg by
Xu(to) :={x € X : 3 a mild solution u € Cy((—o0,to], X) of (2.23) with f = 0}.

Observe that the function w in the definition of X, (to) satisfies u(t) = U(t, s)u(s) for

s <t <tyand u(ty) = x.
11



Lemma 3.2. Assume that the assumptions (2.1), (2.2), and (2.19) are satisfied and that
1—pu<a< 1. Then the following assertions hold.

(a) Xs(to) = Pa1(to) X2y forto >T;
(b) Xu(to) = Q(to)X forty < —T;
(C) Ua 1(t to)Xs(t()) - XS< ) fOTt > to m R,’
(d) Ut
(e) X(t
Proof. The inclusions ‘O’ in (a) and (b) are clear. Let t > to+1 >ty > T and = € X,(ty).
Due to Proposition 2.2, we obtain

2 WUas (s to)l] 2 V106 20) Qs ()] — U 6, 80) Pa ]
> N0 Qo (to)a]| — Ne U0 || Py (to)z |2y

,to) (to) = Xu(t) fO’/’t Z to m R,’
o) is closed in X' | fort, € R.

Letting ¢t — oo, this estimate implies that Q,_1(t9)z = 0; i.e., (a) is verified. Let ¢t <
to—1 < typ < =T and z € X,(to). Let u be as in Definition 3.1. We then have
P(to)u(ty) = Ulto, t)P(t)u(t), and thus

[P (to)z|| < Ne™?®=ju(t)]| < ce™.

Letting ¢t — —oo, we deduce P(ty)z = 0 so that (b) holds. The assertions (c) and (d) are
easy consequences of Definition 3.1. To show (e), let ¢y € R. If ¢y > T, the closedness of
X,(to) in X' | follows from (a). If ty < T, take x,, € X,(to) such that z, — z in X/,
Then assertions (a) and (c¢) and estimate (2.11) imply that

|Un_i(t, to)z|| = lim ||U(t, T)P(T)Un—1 (T, to) || < cNe 0T,
for t > T. Thus x € X,(to). O

Let 1 — pu < a < 1. The restrictions G _; and G, _; of G,_; to the halflines [T, +0c0)
and (—oo, T'] are defined as in Definition 2.4: A function u € Cy([T, +00), X) (respectively
u € Cy((—o00,T], X)) belongs to D(GY_,) (respectively D(G,,_,)) if there is a function
f € Ey1([T,+00)) (respectively f € E,_1((—o0,T])) such that

u(t) = Ul(t, s)u(s) +/ Uo-1(t,0)f(0)do

holds for all £ > s > T (respectively, for all s <t <T).
As in [16] and [17], we introduce on E,_1([T,4+00)) and on E,_;((—o0,T]) the right
inverses R , and R, , for G} | and G,_,, respectively, by setting

t

(Ri_ih)(t) = — /t N Unc1(t, 8)Qa—1(s)h(s)ds + / Ua_1(t,8)Pa_i(s)h(s)ds, t>T,

/_ Un1(t,5) Pas(s)h(s)ds — /t Tt 5)Qun (s)h(s)ds, t< T

/_T Ua—1(t, 8)Py_1(s)h(s)ds + /_tT Ug—1(t,s)h(s)ds, T <t<T.

12
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Proposition 3.3. Assume that the assumptions (2.1), (2.2), and (2.19) are satisfied and
that 1 — p < a < 1. Then the following assertions hold.
(a) RE | Eq ([T, +0)) — Co([T, +00), X) is bounded and G Rt |h = h for each
h € Ey ([T, +00)).
(b) R,y : Ea_1((—00,T]) — Co((—00,T], X) is bounded and G,,_yR__,h = h for each
h € Ey_1((—00,T]).

Proof. (a) Proposition 2.2 shows that sup,p |Ri_1h(t)||c < c||hlla—1 for a constant
¢>0and h € E, 1. Moreover, R} _h € Co(|T,+00),X) if h € Co([T,+00),X). For
h € Ey1([T,+00)) and 1 — p < 8 < «, there are h,, € Cy([T,+00), X) converging to h
in Eg_1([T, +00)) due to (2.5). Therefore Rj_ h,, — Rj_h = R _hin Cy([T, +o0), X)
(the space of bounded continuous functions), and the first part of (a) is shown. For
t > s> T, we further compute

U@ﬁﬂﬂlh@%b/b;ﬂuﬂh@MT

:/ﬂ@ﬁmWﬂ@—/ aH@ﬂ%Ammmhﬁqu@ﬂQAWMWh

T

t +o00
:/T Ua—1(t,7)Po_1(T)h(T)dT —/t Uo1(t,7)Qa1(T)h(T)dT = RE_|h(t).

Hence, R  h € D(G}_|) and G} R |h = h.
(b) The first part of (b) follows similarly as in (a). For h € E, 1((—o0,T]) and
s <t < —T, we calculate

/tUal(t, T)h(T)dT + U(t, s)R,_,h(s)

:/Ua_l(t,T)h<T>dS+/_s Ua_l(t,T)Pa_l(T)h<T>dT—/ Up1(t, 7)Qo—1(T)h(T)dT

[e.9]

=/ Ua_1<t,T)Pa_1(T)h(T)dT—/t ﬁa_l(t,r)Qa_l(T)h(T)dT = R, _,h(t).

For s < —T <'t, it holds

(/M”@ﬂMﬂm+Um$&“MQ

:/Ua_l(t,T)h(T)dS-f-/s Ua_l(t,T)Pa_l(T)h(T)dT—/_ ﬁa_l(t,T)Qa_l(T)h(T)dT

:/“ akﬂuﬂRkﬂﬂhUMT+/1U@Juﬂhﬁmfzfg4mw.

o) -T
Finally, for —T' < s <t < T, we compute

/tUa_l(t, T)h(T)dr + U(t, s)R,_,h(s)

:/Ua_l(t,T)h(T)dS—l—/__ Ua_l(t,T)Pa_l(T)h(T)dT+/_ST Ua—1(t, 7)h(T)dT
13



t

:/_ Ua_l(t,T>Pa_1(T>h(T)dT+/ Uo_1(t, T)h(T)dT = R,_h(t).

00 =T
As aresult, R, h € D(G,_,) and G,_ R, _h = h. O
Lemma 3.4. Assume that (2.1), (2.2), and (2.19) hold and that 1 — u < o < 1. Let

r € Q(T)(X). Then there exists u € D(Gq_1) such that R, _ju(T) =z, R, ju(T) =0,
and ||u||g + ||Ga—1ul|p < K||z||, where K > 0 is a constant independent of x.

Proof. We fix a test function ¢ with ¢(¢) = 0 for ¢ < T and [ ¢(s)ds = —1, and define
the functions

U, Tz, t>T, u(t):=0, t<T,
'OUt,T)z, t>T, ft):=0, t<T.

It is easy to check that R} ,u(T) =z and R, ju(T)
u(t) = U(t, s)u(s) = (o(t) — @(s)) UL, T)z

_ / U (1 7)) (1)U (7, Tz dir — / U o (t7)f(7) dr.

0. We further obtain

for t > s > T. The case s < T is treated similarly. As a result, u € D(G,_1) and
Go_1u = f, so that the asserted estimate follows. 0

We can now describe the range and the kernel of G,_;.

Proposition 3.5. Assume that (2.1), (2.2), and (2.19) are satisfied and that 1 — u <
a < 1. Then the following assertions hold for G, defined on E, 1 = E,_1(R).

(a) N(GE_) ={u e Cy([T,4+00), X)) :u(t) =U{t,T)x Vt>T, z € P(T)X"};

(b) N(G,_y) ={u € Cy((—o00,T]) :u(t) =U(t,s)u(s) Vs <t <T, u(T) e X, (T)};
(c) N(Gao1) ={u € Co(R, X) s u(t) = U(t,s)u(s) YVt > s, u(T) € P(T)X N X, (T)};
(d) R(Gor) = {f € Eamy : Ry 1 f(T) = Ry f(T) € P(T)X + X,(T)}, where for

f € R(Ga-1) a function u € D(Ga—1) with Go_1u = f is given by (3.1) below;

() R(Ga1) = {f € Eoo1 : RY (f(T) — R, _,f(T) € P(T)X + X,(T)}, where the
closure on the left (right) hand side is taken in E,_1 (in X ).

Proof. Assertions (a), (b) and (c) follow from Lemma 3.2 and P(T)X N X, (T)P(T)X™ N
Xu(T). To show (d), let Go—yu = f € E,_; for some u € D(G4-1). Then the restric-
tions of f to [T, 4o00) and (—oo,T] belong to R(G} ;) and to R(G,_,), respectively.
Proposition 3.3 shows that the functions

vp = (ul[T,+o0)) = Ry_1f  and v = (uf(—00,T]) = R, f
belong to the kernel of G} | and G,_,, respectively . Thus

(Re 1 )(T) = (Ry f)(T) = v—l(f) —0(T) € Xu(T) + P(T) X"



by (a) and (b). Conversely, let f € E,_1 with (R!_,f)(T) — (R,_1/)(T) = ys + yu €
P(T)X + Xu(T). Set zo := (R f)(T) = ¢ = yu + (Ry 1 f)(T) and

u(t) = = ~U(t,T)ys + (RE_)(t), t>T,
a0 =90 + (RN, t<T,
where © € N(G,_,) such that o(T") = y,. Using Propositions 2.1 and 2.2, one checks

that RY f(T) € XT for 0 < € < a, so that y, € X! C X7, Hence, u € Cy(R, X).
Proposition 3.3 further yields

(3.1)

ug(t) =U(t, s)us(s /Ua (t, ) f(m)dT

forall t > s > T and s < t < T, respectively. Let now s < T < t. Since uy(T) =
u_(T) = xg, we have

t

u(t) = us(t) = U(t, T)u_(T) + / Ui (t,7) f(7)dr

T

= U D) [U(T. 5pu_(s) + / (1) f(rydr] + / V(1) ()

= U(t, s)u(s) —|—/ Ug—1(t,7)f(7)dT.

Therefore G—1u = f, and (d) is established.

The inclusion ‘C’ in assertion (e) follows from (d) and Proposition 3.3. Take f € E,_;
and z := (R} _,f)(T) — (R, _,f)(T) such that there is a sequence z, € P(T)X + X,(T)
converging to z in X as n — oo. Set y, = z — 2, and z, := Q(T)y,. Lemma 3.4
yields a function f, € D(G4_1) such that (RY | f)(T) = z,, (R, _fn)(T) = 0, and
| fulle < K||z,|| for a constant K independent of n. Then the vector

(Raa(f = fI(T) = (R o (f = f))(T) = 2 = & = 20 + P(T)yn

belongs to P(T)X + X, (T), so that f — f,, € R(G,-1) by (d). Since E — E,_1, we can
estimate

1f = (f = Flllas < cllfnlle < e lanll < ez = 2all,

and thus assertion (e) is shown. O

Using the above results, we are able to describe other properties of the operator G_1,
in particular its Fredholmity, in terms of properties of the subspaces X(7') and X, (7)),
using similar arguments as in [16], see also [17] for LP spaces. For the convenience of
the readers, we give the complete proof. Recall that subspaces V' and W of a Banach
space E are called a semi-Fredholm couple if V + W is closed and if at least one of the
dimensions dim(V N W) and codim(V + W) is finite. The index of (V,W) is defined
by ind(V, W) := dim(V N W) — codim(V + W). If the index is finite, then (V, W) is a
Fredholm couple. Observe that in the next theorem the operator U(T, —T')g-1)x) is
trivially injective if 7" = 0.
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Theorem 3.6. Assume that (2.1), (2.2), and (2.19) are satisfied and that 1 —p < a < 1.
Then the following assertions hold for G,_1 defined on E, 1 = E4_1(R).

(a) R(Gya_1) is closed in E,_1 if and only if P(T)X + X, (T) is closed in X.

(b) Ga—1 is surjective if and only if P(T)X + X, (T) = X.

(¢) If Go_1 is ingective, then P(T)X N X, (T) = {0}. The converse is true if
U(T, =T)q-1)x) 15 injective, in addition.

(d) If Ga-1 is invertible, then P(T)X @& X,(T) = X. The converse is true if
U(T, =T)q-1)x) 15 injective, in addition.

(e) dim N(Ga_l) = dlm(P(T)X N XU(T)) + dim N(U(T, _T>|Q(7T)(X)>~
If R(Gy-1) is closed in Eq—_y, then codim(P(T)X + X, (T)) = codim R(G4—-1).

(f) If Go—1 is a semi-Fredholm operator, then (P(T)X,X,(T)) is a semi-Fredholm
couple, and ind(P(T)X,X,(T)) < indGu—1. If in addition the kernel of
U(T, =T)o(-1)(x) is finite dimensional, then

ind(P(T)X, XU(T)) = ind Ga—l — dim N(U(T, _T)|Q(—T)(X))‘ (32)

Conversely, if (P(T)X,X.(T)) is a semi-Fredholm couple and the kernel of
U(T, —T)|Q(_T)(X) is finite dimensional, then G,_1 is a semi-Fredholm operator
and (3.2) holds.

Proof. The ‘if” part of assertion (a) is a direct consequence of Proposition 3.5(d) and
(e). Assume that R(G,_1) is closed in E, ;. Take y¢ € P(T)X and y* € X,(T) with
ys+ oyt — yin X asn — oo. Set z = Q(T)y. By Lemma 3.4, there is a function
h € D(G,_1) such that R _h(T) =z and R, _;h(T) = 0. Since

z= lim Q(T)(y, +y,) = lim Q(T)y, = lim (y; — P(T)yy),

we obtain R} W(T) — R, h(T) = z € P(T)X + X,(T). Proposition 3.5 implies that
h € R(Gy-1) = R(G4-1), and thus z € P(T)X + X,(T) by Proposition 3.5(d). As a
result, y = P(T)y + z € P(T)X + X,(T), and so (a) holds. The ‘if” part of assertion (b)
follows from Proposition 3.5(d), and the converse can be shown as in statement (a).

Proposition 3.5(c) yields the first part of (c¢). For the converse, assume that
U(T,=T)o-1)(x) is injective and P(T)X N X,(T) = {0}, and let v € N(Gqs-1).
Then wu(t) = U(t,s)u(s) for all ¢ > s, and so u(T) = 0 by Proposition 3.5(c).
From Lemma 3.2(b) we further deduce u(—7) € Q(—T7)(X). Since 0 = u(T) =
U(T, =T)o(-1)x)u(—=T), our assumption yields u(—7") = 0 and thus u(t) = 0 for t > —T..
Finally, u(t) = U(t, = T)u(—T) for all t < —T by Proposition 2.8, so that u = 0. We have
thus shown (c). Assertion (d) is an easy consequence of (b) and (c).

To show the first equality in (e), we define I' := {u € N(G,-1) : u(t) =0,t > T} and
the linear mapping

K : N(Ga_1)/T — P(T)X N Xu(T), [u] — u(T).

Proposition 3.5(c) implies that K is well defined and bijective. Since also dimI' =

dim N(U(T, =T)o(-7)(x)), the first identity holds. We next assume that R(G,_;) is
16



closed in E,_1. Hence, P(T)X + X, (T) is closed X by (a). Define the linear map

J 1 Boot/R(Gomr) — X/(P(T)X + Xu(T)),  [f] — (BRI () = (B 1 )(T)].
Due to Proposition 3.5(d), J is well defined and injective. Take x € X. By Lemma 3.4
there is a function f € E,_; such that (RY_, f)(T) — (R, _,f)(T) = Q(T)x =z — P(T)x.
Hence, J[f] = [((Rf_,f)(T) — (R, _,f)(T)] = [z]. Consequently, J is also surjective and

thus the second equality in (e) follows. Assertion (f) is a consequence of (a) and (e). O

Using (2.18) and the same arguments as in [16], we obtain the following sufficient
condition for the Fredholmity of G _;.

Corollary 3.7. Assume that (2.1), (2.2), (2.16), and (2.17) are satisfied and that 1 —p <
a < 1. Further suppose that dim Qi X < oo (which holds if D(ALc0) are compactly
embedded in X ). Then G,y is Fredholm and ind G,_1 = dim Q_ X — dim Q1 X.

We next characterize the range of G,_; in terms of the dual problem, see Remark 3.9
below. Related results have been shown in [17] and [21] for other settings by different
methods. We start with a simple observation. Let 0 < 6 < a < 1. Then X! _; is densely
embedded in D((w—A_1(¢))?) by (2.4). Since D((w—A(t)*)}") — [D((w—A_1(t))?)]*, we
deduce that D((w — A(t)*)'% — (X!_,)* for t € R with a uniform embedding constant.
We denote by V the space of v € C(R, X*) such that v(s) = U,_1(¢t, s)*v(t), v(t) €
D((w—A(t))17?), and (w — A(-)")' "% € LY(R, X*) for all t > s in R.

Proposition 3.8. Assume that (2.1), (2.2), and (2.19) hold and that 1 —p < 0 < a < 1.
Then the closure of R(Ga-1) is equal to the space

E={feE,: /(f(s),’u(s))x(sl_1 ds =0 for allv e V}.

R

Proof. We first show that under our assumptions it holds
V={veL'R X" :v(s)=Uy1(t,s)v(t) Vt > s} =V (3.3)

Clearly, V C V'. Take v € V'. Then v € C(R, X*) since U(t, s) is norm continuous
for t > s. We denote by V(t,s) the extension of U(t,s)(w — A(s))!™% to £(X). For
1 € D((w— A(s))'?), we then obtain

((w—A(s)' 2,0(s8)) = ((w—A(s)) P2, Up_1(5 + 1, 5) (s + 1))
= (V(s+1,8)z,v(s + 1)),
[{(w = A(5)) ™"z, 0(s))] < cflo(s + 1)l|x-[l«] (3.4)
due to (2.8). The estimate (3.4) yields
v(s) € D((w—A(s))'™)  and  [[(w — A(s)") v(s)]

x+ < cfo(s + 1)

X*-

Thus v € V and (3.3) is true. We now come to the main part of the proof. Proposition
3.5 shows that

fEeR(Ga) = z:= R F(T)— R-_,f(T) € P(D)X + Xo(T).
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Employing also [25, Theorem 4.7] and [20, (IV.4.11)], we deduce
fER(Ger) = z€ H((P(T)X + X (T)) <= z€ H(P(T)X) N (X (T))Y)

where Mt = {z* € X* : (z,2*) =0 Vo e M} for M C X and * N := {z € X : (z,2") =
0 Va* € N} for N C X*. Straightforward duality arguments imply that U(t, s)* has an
exponential dichotomy on [T, +00) and (—oo, —T] with projections P(¢)* and that

(P(T)X)" =Q(T) X", (Xu(T))" = N@Q(-T)"U(T,-T)), (3.5)
using also X, (T") = U(T,-T)Q(—T)X, see Lemma 3.2. We further compute

+oo T
<Zv y*> = _/ <Ua—1(T7 S)Qa—l(s)f(s)7 y*>X ds — / <Ua—1(T7 S)f(S), y*>X ds
T

=T

- /  Uaca(T, ) Pacs(8) F(5), o) ds

o0

= [ () vl
for all y* € (P(T)X)* N (X, (T))*, where v is given by
U(T,s)" ( )yt = U(T, )y, s> T,
v(s) = U(T, s)*y ~T<s<T, (3.6)
U(~T, s)* ( TVU(T, ~T)*y* = U(T, s)*y*, s< —T.

(Here we have used (3.5).) Summing up, we have shown that f € R(G,_1) if and only if

[ vlsh s =0

for all v as in (3.6) with y* € Q(T)*X*NN(Q(—=T)*U(T,—T)*). It remains to show that
V consists precisely of the functions defined in (3.6).

First, one verifies by a duality argument that each function v in (3.6) belongs to V' =V,
recall (3.3). Conversely, let v € V. Then we have

P(T)"o(T) = U®,T) P(t)o(t), [[P(T)u(T)I| < Ne " Dlfu()]

for t > T. There is a sequence t, — oo such that ||v(t,)|| is bounded since v € L'(R, X*).
Therefore, P(T)*v(T) = 0. For s < —T, one obtains

Q(s)"v(s) = U(=T,5)"Q(=T)"v(=T) = U(-T, S)*Q(—T)*U(T =T)(T),  (3.7)
IQ(=T)"U(T, =T)"o(T)|| = |U(s, =T)"Qs)"v(s)| < Ne™* T Ju(s)]|. (3.8)

As above, it follows that Q(=T7)*U(T, —T')*v(T') = 0. Consequently, v is of the form (3.6)
with y* = o(T) € Q(T)*X* N N(Q(~T)*U(T, —T)*). 0

Remark 3.9. One can see that the functions v € V, see (3.3), solve the dual evolution
equation

—v'(s) = A(s)*v(s), s € R, (3.9)
in a weak sense. The function v is a classical solution of (3.9) if also the adjoint operators

A(t)* satisfy the Acquistapace—Terreni conditions (2.1) and (2.2), see [2, Prop.2.9].
18



Theorem 3.6, Corollary 3.7, and Propositions 3.5 and 3.8 now yield the following Fred-
holm alternative, where we focus on a simplified setting.

Theorem 3.10. Assume that (2.1), (2.2), (2.16) and (2.17) are true, that dim Q1. X <
00, and that 1 —p < o < 1. Let f € E,1 = E,_1(R). Then there is a mild solution
u € Co(R, X) of (2.20) if and only if

[ e ds =0

for each w € LY(R, X*) with w(s) = Uy_1(t, s)*w(t) for all t > s. The mild solutions u
are given by

u(t) =v(t) U@ Tys + (Ri @),  t=T,

u(t) = o(t) +o(t) + (R, f)(E),  t<T,
where RE_| were defined before Proposition 3.3, (RT_f)(T) — (Ry_,f)(T) = ys + yu €
P(TX 4+ X.(T), v € Co((—00,T],X) with 9(T) = y, and v(t) = U(t,s)v(s) for all
T>t>s, andv € Co(R, X) with v(t) = U(t, s)v(s) for all t > s.

Note that in the above result we obtain mild solutions which are unique modulo the
finite dimensional subspace N(G,—1). We further remark that if U(-,-) has an exponential
dichotomy on R with projections P(t), t € R, then we can take 7' = 0 and we have
X.(0) = (I —P(0))X. Hence, G, is invertible by Theorem 3.6(d). As a result, for each
f € E4_1 we obtain a unique mild solution of u € Cy(R, X)) of (2.20) which is given by

u(t) = /Rra_l(t,T)f(T) dr, t € R,

due to (3.1); cf. [11] for this formula in the case a = 1. We conclude this section with two
remarks indicating straightforward variants of the results established so far. The details
are left to the reader.

Remark 3.11. Note that we allow for the case « = 1,1i.e., Go = Gon Ey = E = Cy(R, X),
in this section. In fact, in this case the results shown in this section remain valid for
each exponentially bounded evolution family U(t,s), t > s, (i.e., (2.3) holds) such that

(t,s) — U(t,s) is strongly continuous for ¢ > s and U(-,-) has exponential dichotomies
on halflines (—oo, =T and [T, +00). (Here one sets X' = X.)

Remark 3.12. All results established in this and the previous section remain valid with
the slightly simplified proofs if we replace the function spaces Cy(J, X) by Cy(J, X)
in the assertions and in Definitions 2.4 and 3.1 and set X,(t,) = {r € X,
SUPysgo 11 |Ua—1(t, to)x|| < oo}. Moreover, one can replace throughout the space X! _;
by the closure of X in X},

4. NON-AUTONOMOUS PARABOLIC BOUNDARY EVOLUTION EQUATIONS

In this section we study the non—autonomous parabolic boundary evolution equation

W) = Ap()ult) + g(t), > to,
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B(t)u(t) = h(t),  t>to, (4.1)

and its variant on the line
u'(t) = An(t)u(t) +g(t), teR,
B(t)u(t) = h(t), t € R.

Here ty € R, up € X, and the operators A,,(t) and B(t), t € R, are defined on a
Banach space Z; — X and map into the state space X and the ‘boundary space’ Y,

(4.2)

respectively. The inhomogeneities g and h take values in X and Y, respectively. In the
typical applications A,,(t) is a differential operator with 'maximal’ domain not containing
boundary conditions and B(t) are boundary operators. We further introduce the operators

Alt)u = Ap(t)u, w e D(A(t)) :={u € Z;: B(t)u = 0}.

More precisely, we make the following assumptions.

(A1) For every t € R there is a Banach space Z; <— X such that A,,(t) € L(Z;, X). The

opererators B(t) € L(Z;,Y) are surjective for t € R.

(A2) The operators A(t) = A, (t)|N(B(t)), t € R, satisfy (2.1) and (2.2).
Under these hypotheses, there is an evolution family (U (t, s))¢>s solving the problem with
homogeneous conditions ¢ = h = 0. Moreover, by [19, Lemma 1.2 | there exists the
Dirichlet map D(t) for w — A, (t), i.e., v = D(t)y is the unique solution of the abstract
boundary value problem

(w=An(t))v=0,  B(t)v=y,
for each y € Y. Fixing a € (1 — p, 1] (where p is given by (2.2)), we further assume that
(A3) Z, € X}, sup,cg | D(t)||lzv,xt) < 0o and R 5 ¢ +—— D(t)y is continuous in X for
eachy e Y.

If (A1)-(A3) hold with R replaced by a closed interval .J, we may extend A,,(t), B(?),
and Z; constantly to ¢t € R, and then (A1)—(A3) hold on R for this extension. Hypotheses
(A1)—(A3) describe one convenient general setting for the application of our results, in
particular suited for parabolic problems formulated on L or C® spaces. But our approach
is more flexible. So we treat in Example 4.5 an initial boundary value problem on the state

space X = C(f2) which does not fit in the above setting. We add a simple observation.

Lemma 4.1. Assume that assumptions (A1)-(A8) hold and that h € Cy(J,Y") for a closed
interval J. Then (w — A_1(-))D(-)h € E,_1(J).

Proof. Assumption (A3) yields D(-)h € E,(J) which implies the assertion. O

In order to apply the results from the previous sections to the boundary evolution
equation (4.1), we write it as the inhomogeneous Cauchy problem

u'(t) = Ay (t)u(t) + f(1), t > to,

ulte) = 1o, (4.3)
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setting f := g+ (w — A_1(-))D(:)h. We also consider the evolution equation
u'(t) = A1 ()u(t) + f(2), teR. (4.4)

If g€ Co(J,X) and h € Cy(J,Y), then f € E,_1(J) by Lemma 4.1. As in Definition 2.4,
we call a function u € C(J, X) a mild solution of (4.2) and (4.4) on J if the equation

Mﬂzﬂmm®+/MHw®M®+w—AAWD@MﬂM' (4.5)

holds for all ¢ > s in J. The function u is called a mild solution of (4.1) and (4.3)
if in addition u(ty) = wy and J = [ty,00). Mild solutions for the corresponding final
value problems are defined in the same way. We note that a function v € C*(J, X) with
u(t) € Z; satisfies (4.1), resp. (4.2), if and only if it satisfies (4.3), resp. (4.4), and then it
is given by (4.5). These facts can be shown as in Proposition 4.2 of [13].

Propositions 2.7 and 2.8 immediately imply two results on the existence of bounded
mild solutions for forward and backward boundary evolution equations.

Proposition 4.2. Assume that assumptions (A1)-(A3) hold with 1 — u < o < 1
and that U(t,s) has an exponential dichotomy on an interval [T,00). Let ty > T,
g € Co([T, =), X), h € Co([T,+),Y), and ug € D(A(ty)). Then the mild solution
u € C([to, +00), X) of the boundary evolution equation (4.1) is bounded on [ty, 00) if and

only if

+OON
Qtotuo == [ Tuslto:8)@0s (9)lg(5) + (= As(9) DII(3)] .

to

In this case u is given by

u(t) = Ul(t, to)P(to)uo + / Ua—1(t,8)Paz1(8)[g(s) + (w — A_1(s))D(s)h(s)] ds

- /too Un1(t,8)Qa1(5)[g(s) + (w — A_1(s))D(s)h(s)] ds, t > t,.

Proposition 4.3. Assume that assumptions (A1)-(A3) hold with 1 — p < o < 1 and
that U(t,s) has an exponential dichotomy on an interval (—oo, =T|. Let to < —T,
g € Co((—o0,=T),X), h € Co((—o00,=T1,Y), and uy € X. Then there is a bounded

mild solution u € C((—o0, ], X) of the backward boundary evolution equation
u(t) = An(tult) +9(t),  t <to,
B(t)u(t) = () t <o,
u(to) =

if and only if

-H%MwZ/oUaﬂmﬁﬁaﬂﬁwwrﬂw—AawbDﬁwwﬂ%.

—00

In this case u is given by

u(t) = U(t,t0)Q(to)uo — /t 0 Un-1(t,5)Qa-1(5)[g(s) + (w — A_1(5)) D(s)h(s)] ds
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+ / Ua_1(t, 8)Pa_1(8)[g(s) + (w — A_1(s))D(s)h(s)]ds, t < to.

— 00

Moreover, Theorem 3.10 implies the following Fredholm alternative for the mild solu-
tions of (4.2).

Theorem 4.4. Assume that assumptions (A1)-(A8) hold with 1 —p < a < 1, that (2.16)
and (2.17) are true, and that dim Q1o X < oco0. Let g € Co(R, X) and h € Cyh(R,Y).
Then there is a mild solution u € Cy(R, X) of (4.2) if and only if

/R (), w(s))x: - ds =0

for f =g+ (w—A_1(-))D(-)h and all w € L*(R, X*) with w(s) = Uy_1(t, s)*w(t) for all

t > s. The mild solutions u are given by

u(t) =v(t) = Ut Tys + (R f)(E),  t=T,

«

u(t) = v(t) +0(t) + (Re /), t<T,
where RE | were defined before Proposition 8.8, (R, f)(T) — (Ry 1 f)(T) = ys + yu €
P(T)X + X,(T), v € Co((—00,T],X) with o(T) = y, and v(t) = U(t,s)v(s) for all
T>t>s, andv € Co(R, X) with v(t) = U(t, s)v(s) for all t > s.

We add an example dealing with a parabolic pde in a sup norm context. One could

treat more general problems, in particular systems, cf. [17], and one could weaken the
regularity assumptions.

Example 4.5. We study the boundary value problem
Oru(t,x) = A(t,z, D)u(t,z) + g(t,xz), teR, xz e

4.
B(t,z, D)u(t,z) = h(t,z), teR, z €0, (46)

on a bounded domain  C R" with boundary 99 of class C? and outer unit normal vector
v(x), employing the differential expressions

A(tw, D)= an(t,2)00+ D ax(t,2) Ok + aolt, @),
We require that ay; = a; and b, are real-valued, ay,ap, a9 € C’If(R,C’(ﬁ)), br, by €
Cy (R, CM(09)),

n

> an(ta)& & =0l and > bt z)u(x) > 8
kl=1 k=1
for constants u € (1/2,1), 3,n > 0and all £ € R*, k,l =1,--- ,n, t € R, x € Q resp.
r € 0. (C} is the space of bounded, globally Holder continuous functions.) We set
X =C(Q),
_ 2 . re)
Z,={ue ﬂp>1 W2(Q) : A(t, -, D)u € C(Q)},
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A, (Hu = A(t, -, D)u and B(t)u = B(t,-, D)u for u € Z;, and A(t) = A,,(t)|N(B(t)), i.e.,
D(A(t)) ={u e ﬂp>1 W2(Q) : A(t,-, D)u € C(Q), B(t,-,D)u =0 on 09},

p

for ¢ € R. It is known that the operators A(t), t € R, satisfy (2.1) and (2.2), see [4], [23],
or [31, Exa.2.9]. Thus A(-) generates an evolution family U(-,-) on X. Let us fix numbers

a € (1—p,1/2) and p > 557 Then X ! = C?(Q) with uniformly equivalent constants
due to Theorem 3.1.30 in [23]. So Sobolev’s embedding theorem yields W§<Q) — X!

with a uniform constant. Standard elliptic theory tells us that for each ¢ € VVp1 ~i/p (092)
there is a unique D(t)p := u € W7(2) such that

(w—A(t,-,D)u=0 on €, B(t,-,D)u=¢ on 09,

where D(t) : W, /P(89) — W2(Q) is bounded uniformly in ¢ € R, see [6, Thm.15.2].
(The Slobodetskij spaces W (92) are defined in e.g. [5, §7.51].) For ¢ € W, P(8), the
properties of D(t) yield

(w—A(t,, D)) (D(t)p — D(s)¢) = (A(t,-, D) — A(s,-, D)) D(s)e,
B(t7 K D)(D(t)(p - D(S)SD) = (B(Sv R D) - B(t’ K D))D(S)QO,

so that [6, Thm.15.2] ) implies that

|1D(t)e — D(s)¢pllwz)
< C(H(A(ta D) — A(s, -, D>>D(3)<PHLP(Q) + [(B(s,-, D) — B(t, -, D))D(s)goHkal/p(aQ))
<clt = s|" [ D(s)ellwz) < clt = sl [ @lly1-1/m 50

for constants independent of ¢,s € R (using [5, §7.51]). So we see that D(-)h € E, if
h € Cy(R, W,}*l/p(aQ)). Further let ¢ € Cy(R, X). We define mild solutions of (4.6)
again by (4.5). (Observe that a solution u € CY(R,C(Q)) of (4.6) with u(t) € Z, for
t € R solves (4.6) formulated on X = LP(§2). On this state space, (A1l)-(A3) hold with
Zy = W2(Q) and Y = W, /P(89) by the above mentioned results. In this setting we
have already justified the concept of mild solutions given (4.5).) We further assume that

ao(t, ") — an(£o00,-) in C(Q) and bi(t,-) — bj(£oo,-) in C'(0NQ)

as t — too, where a = (k,l) ora=jfor k,l=1,--- ;nand j =0,--- ,n. We define the
sectorial operators A in the same way as A(t). Asin [17, Exa.5.1] one can check that
(2.16) holds. Finally we assume that iR C p(Ais). (Observe that the operators A,
have compact resolvent so that the spectrum consists only of eigenvalues. The spectrum
of AL, was studied in [17, Exa.5.1].) Then the Fredholm alternative Theorem 4.4 holds
for mild solutions of (4.6) on X = C(Q) for g € Cy(J, X) and h € Cp(R, Wpl*l/p((?Q)) due
to the results from Section 3.

5. APPENDIX: PROOF OF PROPOSITION 2.6

We start with a lemma giving an additional estimate on U,_1(t, s).
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Lemma 5.1. Assume that (2.1) and (2.2) hold. Let s <t < s+tg, to >0, 1 —v <0 < p,
and 1 —p <@ < 1—0. Then the operators V(t,s) = (w— A(t))Us_1(t,s)(w—A_1(s))’
defined on X belong to L(X) with norms bounded by a constant c(to,0). We further
set V(s,s) := I. Then the map (t,s) — V(t,s)f(s) is continuous for t > s and every
f e E(J), where J C R is a closed interval. For 1 — pu < o <1 the operators U,_y(t,s) :
X: | — X! | are locally uniformly bounded for s <t < s+ ty,

Proof. Let s <t < s+1p, o > 0, and 1 — v < 6 < p. By rescaling, we may assume
that (2.1) and (2.2) hold for some w < 0. Then the Yosida approximations A, (t) =
nA(t)R(n, A(t)), t € R, fulfill (2.1) and (2.2) with w = 0 and possibly different, but
n-independent constants, for sufficiently large n € N. Thus A, (-) generates an evolution
family U, (-, ) with estimates independent of n. These evolution families satisfy

Viu(t,s) == (=A, (1)ULt 5) (= An(s))? (5.1)
= el [ A,(6) 7 = (= An() (= A (o)) e

+/t Valt, 0)(=An(0)) 70 [(=An(0)) 7! = (= Au(5)) '] (= Au(s)) el do
In view of thje above integral equation for V,,(¢, s), we introduce the operators
an(t,s) = [(=Au(t)) " = (= Au(s) ™) (= Au(s)) e =4
ku(t, 5) = (= Aa ()7 [(= A1) ™ = (=Au(s) 7] (= An(s)) P4
The estimates (2.6), (2.9) and (2.10) yield
lan(t, )l < c(t—s)"" and [lka(t,s)] < ( )“ - (5.2)

with constants ¢ = ¢(ty) independent of n. Setting b, (¢, s) := Ans) 4 q,(t, 5), we can
rewrite (5.1) as

¢
Va(t,s) = b,(t,s) + / Vo (t, T)kn (T, 8)dT =: b, (t, 8) + (Vi % k) (¢, 5).
Theorem 11.3.2.2 and Lemma I1.3.2.1 of [7] now show that

Vo(t,s) = b,(t,s) + Z(bn ¥ [kox)))(t,5)  and  ||[Vi(t,s)|| <c (5.3)

for s <t < s+ 1y and the j—times ‘convolution’ [k, Y = k,, * - - - * k,,, where

[[Tens? (£, )| < ¢j(t =)™ with Y ¢; < o0, (5.4)
j=1
and the constants ¢ = ¢(ty) and ¢; = ¢;j(tp) do not depend on n. It is straightforward to
show that

Jim a,(t,5) = a(t, s) = [(= A1) = (~A(s) ] (- A(s)) %I,
lim by, (t,s) = b(t, s) == "4 4 [(—A(t)) 7 — (—A(s)) 7] (—A(s)) el =94C),

lim Fu(t, ) = k(t, 8) = (= A(0)~7 (= A1)~ — (~A(5) "] (~ A(s)) +el-940
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in £(X) locally uniformly for ¢ > s, cf. [32, Prop.2.1] and use Lemmas 4.1 and 4.2 of [3].
Moreover, the limit operators satisfy estimates analogous to (5.2) and (5.4). Therefore
(5.3) implies that V,,(¢, s) converges in £(X) and locally uniformly for ¢ > s to an operator
V(t, s) satisfying ||V (¢, s)|| < c(to) and

t

V(t,s) = et946) L q(t, s) +/ V(t,7)k(T,s)dr (5.5)

for s <t < s+tyand ty > 0. Since U,(t,s) — U(t,s) in L(X) by e.g. Proposition 2.5 of
[31], Viu(t, s)x converges to (w — A(t))°U(t, s)(w — A(s))%z for z € D((w — A(s))?). We
then deduce the first assertion from Proposition 2.1 and embedding (2.4) by approxima-
tion. Further, the third assertion follows by the reiteration (see e.g. Theorem 1.2.15 and
Proposition 2.2.15 in [23]). The second assertion was shown in Proposition 2.1 for ¢ > s.
Let f € E(J) and e > 0. Take g € D(A(-)) with ||f — g||ec < &. Using (5.5), we estimate

IV (t,9)f(s) = F)l < N4 =D Fs)l + 11 £(s) = fr)ll + e (t = s)"
< (4 = Dg(s)|| +ce + [1f(s) = f(r)l| + e (t —s)*.
This inequality shows that

limsup ||V (¢, 8)f(s) — f(r)| < ez,
(t,8)—(r,r)

and so the last assertion is established, too. O

Proof of Proposition 2.6. By rescaling, we can assume that (2.1) and (2.2) hold with w =
0. Let l—p<a<l, feFE,1(J),0<p<min{a,v}, s <tin J, and let u € C(J, X)
be a mild solution of (2.20). Formulas (2.21) and (2.12) yield

lu@®lls < 1U(E s)uls)ls + / [Uar(t,0) f(0)|ldo

< et = ) [lu(s )H+C/ (t =) f(o)5rdo

< c(t = 8)Pllu(s)ll + et = )77 flla-1,
so that u(t) € Xj. Moreover, we have

% (Ut + h, s) — U(t, s))u(s) — ADU(E, s)u(s)

in X as h — 0. So it remains to differentiate the term

= /: Uop_1(t,0)f(0)do

for t € J\inf J. Fix 6 with max{1 —v,1 —a} <0 < pand let h > 0. Then we can write
& (—AW®) (ot + h) = ()
1

= (—A(t))"% (Ut +h,t) = Dolt) + - /t (=A(t + 1)) "Us-s(t + h.0) f(0) do
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t+h
F((—AW) = (“A(t + b)) % /t Un (t+ h, o) (o) do

:251+SQ+83,

where we take a number @ € (1 — 1,1 — ) (thus @ < ). Since (—A_y(-))"?f(-) € E by
1 —6 < «aand (2.4), Lemma 5.1 shows that

1

Sa = E/t V(t+h,o)(=Ai(0)) " fo)do — (=A1()"f(t)

in X as h — 0. Using (2.10) and (2.11), we estimate
t+h
51| < ch“‘l/ (t+h—0) " do |fllacs < ch™ P — 0, h—0.
t

We note that (5.5) applied to # € X can be shown also for § = 0 (where V(t,s) =
U(t,s) and a(t,s) = 0) using similar methods, cf. [33, p.347]. The term S; can thus be
transformed into

t+h
s, = % (40 — T) (—A(t)) " (t) + %/t V(t+h,0)(=A(a))*

(= A@0)) 7 = (—A®) T (A@) e A (—A®) () do

h
(=A() (= A(0) T = (—AW) T (A1) eI A1) o(t) do
=: 511+ Si2 + Si3.

t+h
+(-AW) ™ = (AR + h))_‘g]l/t Ua-r(t+ h,0)(—A(0))"

Here we take v with 1 —pu < 1 — 60 < v < min{a,v}. Since v(t) € X!, the embedding
(2.4) yields that (—A(¢t))~v(t) € D(A(t)), and hence

1 _ _

lim - (4O = 1) (A1) 0 (t) = A (=A®) "o (t)

in X. Lemma 5.1 and the inequalities (2.6) and (2.9) allow to estimate
¢ [t
[ Sha|l < E/ (0 =t)"(o =) do [|(=A®) v ()| = K HI(=A®)v(B)| — 0.
¢
Finally, we deduce from (2.6), (2.8), (2.9) and (2.10) that
t+h
[S1s]| < Ch”_l/ (t+h—0)(o—t)" (o —t)"do [|(=A(t) v(t)]]
¢
< ch=0=1 . h — 0.
Therefore S; converges to A(t)(—A(t))%v(t) in X. Summarizing, we have established

: iy -
lim (= A() ™+ (u(t + k) —u(t)) = (=4 (1)) (A Bul®) + f(2)
in X. By (2.4), this limit exists in X*, and soin X} , for 0 < 8 < 1-0 < min{a,v}. O
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