ROBUSTNESS OF FREDHOLM PROPERTIES OF PARABOLIC
EVOLUTION EQUATIONS UNDER BOUNDARY PERTURBATIONS

LAHCEN MANIAR AND ROLAND SCHNAUBELT

ABSTRACT. We study perturbations at the boundary of linear nonautonomous para-
bolic boundary value problems. Our approach relies on a transformation of the given
inhomogeneous boundary value problem to an evolution equation in larger, time varying
extrapolation spaces. We establish the well-posedness of this equation and Duhamel’s
formulas relating the evolution families solving the perturbed and the unperturbed prob-
lem. By means of these formulas, we can show that the perturbed evolution equation
inherits the exponential dichotomy and Fredholm properties of the unperturbed one if the
perburbations are small in norm or compact. This result leads to a Fredholm alternative
for the given perturbed boundary value problem.

1. INTRODUCTION

We study perturbations at the boundary of linear nonautonomous parabolic boundary
value problems. Such perturbations occur for instance if a feedback mechanism is applied
at the boundary of a system governed by a parabolic differential equation. Our main
results show that the perturbed problem inherits the well-posedness and the long term
behaviour of the unperturbed system under suitable assumptions on the perturbations.
Our interest is focussed on the exponential dichotomy of the homogeneous equation and
on Fredholm properties of the inhomogeneous problem on the time interval R. Namely,
we establish a Fredholm alternative for the perturbed problem with inhomogeneities at
the boundary.

Following a common approach in, e.g., control theory (see [1] and the references in [16]),
we transform the given perturbed boundary value problem into the evolution equation

W(t) = A ()u(t) + But) + f(t), teR, (1.1)

see Section 5. Here A(t), t € R, are sectorial operators in a Banach space X, Xt is
the closure of the domain D(A(t)) in X, and A_i(¢) : X! — X!, is the extension of
A(t) in the extrapolation space X', which is the completion of X! with respect to the
norm ||(w — A(t))"tz|, for some w € p(A(t)). In particular, (1.1) is an equation in X?;.
The operators B(t) (resp., the function f) contain the extrapolated operators A_;(t), the
solution operator of the elliptic boundary value problem associated with A(¢) and the
given perturbation (resp., the given inhomogeneity) at the boundary; see Section 5.

In our main analysis we abstract from this special structure and consider perturbations
B(t) which, for some a € (0, 1), map the continuous interpolation space (X, D(A(t)))a =:
X! to (X', X", = X! |. (These concepts are recalled in Section 2.) Our crucial
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assumption says that the norm of R(w, A_1(t))B(t) in £(X},) is smaller than an explicitely
given constant for a sufficiently large @ > 0 and for each t € R. The case o = 1 (i.e,
perturbations B(t) : D(A(t)) — X) was already treated in [7] in a somewhat more special
setting, so that we exclude it from our investigations for simplicity. We further assume
that the sectorial operators A(t) satisfy the so—called Acquistapace—Terreni conditions
(2.1) and (2.2). These conditions are quite flexible in so far they only require a Holder
condition in ¢t and they allow for non-dense and time varying domains D(A(t)). Under
these conditions the family A(-) generates an evolution family U(+,-) on X having parabolic
regularity, as described in Section 2. Linear elliptic partial differential operators with time
varying coefficients and boundary conditions typically lead to operators A(t) satisfying
(2.1) and (2.2), cf. Example 5.9.

Since we are mainly interested in the asymptotic behaviour, we only look for solutions
of (1.1) in an integrated sense, as introduced at the end of Section 3. But we note that
due to Proposition 2.6 of [16] such mild solutions actually solve (1.1) pointwise in the
spaces X,é’—1 for 3 < a. (See also [4, §5.2] for the case of time independent X! = X, and
X! | = X,-1.) Our analysis relies on Proposition 3.6 which states that the parts C(t) of
A_1(t) + B(t) in X again satisfy the Aquistapace—Terreni conditions, and thus generate
an evolution family Ug(-,-) on X having parabolic regularity. In particular there exist the
corresponding inter/extrapolation spaces Xg ® and XS_(tl) . Moreover, in Theorem 3.7 we
establish Duhamel’s formulas

Up(t,s)o = Ut )z + / Uy (6 7) B U (7, 8)a d,
‘. (1.2)
Ugp(t,s)x =Ul(t,s)x + / Ug,a—1(t,7)B(T)U(r, s)x dr,

x € X and t > s. Here the subscript ‘a— 1’ denotes the extensions of the evolution families
to the spaces X!,_; and Xg_(tl), respectively, which exist because of the Aquistapace—Terreni
conditions, see Proposition 2.1. Of course, these formulas only make sense if embeddings

such as X, gfg — X! and X! | — XOC[L(? hold. These embeddings are in fact established

a—1

in Lemma 3.3. In Proposition 3.4 we even prove that Xifj and Xgﬁtj) are isomorphic
( = 0,1) under somewhat stronger conditions on B(t). In all these results it is crucial to
check that the resulting constants do not depend on t. We note that the sectoriality of
C(t) was shown in [12] in a slightly different setting. In [10] the isomorphy of X} and Xﬂc(t)
for f € (o — 1, ) was verified in a more general situation. To our knowledge there are no
corresponding perturbations results concerning the Aquistapace—Terreni conditions, and
also the equations (1.2) were not known before.

Based on the formulas (1.2) and the regularity properties of U(-,-) and Ug(-,-), we can
then derive our main results concerning the asymptotic behaviour of (1.1) in Section 4. If
the operators B(t) have sufficiently small norms in £(X!, X! _;), then Ug(-,-) inherits the
exponential dichotomy of U (-, -) due to Theorem 4.1. Moreover, the Fredholmity of the full
equation (1.1) follows from the Fredholmity of (1.1) with B(¢) = 0 by Theorem 4.2, and
this implication is also valid if the operators B(t) are compact and vanish at infinity, see
Theorem 4.3. These facts lead to a Fredholm alternative for (1.1) stated in Theorem 4.5.
In Section 4 we use the Fredholm theory developed in [13], [14] and [16]. For further
information on this subject we refer to the references therein and [6], [7]. In [16] we have

studied the Fredholm properties of (1.1) for the case B(t) = 0 in detail. It turns out that
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(1.1) with B(t) = 0 is Fredholm if the resolvents (w — A(t))~! converge in norm to the
resolvents (w — Aioo)_1 as t — +oo, where A4, are sectorial operators with compactly
embedded domains and without spectrum on iR, cf. Example 5.9 and [16, Corollary 3.7].
In the last section we then translate our main results from Section 4 into the setting of
our motivating application to boundary perturbations.

Notation. We denote by D(A), N(A), R(A), 0(A), p(A) the domain, kernel, image,
spectrum and resolvent set of a linear operator A, and we set R(\, A) := (\[ — A)~! =
(A — A)~! for A € p(A). Moreover, L(X,Y) is the space of bounded linear operators
between two Banach spaces X and Y, where £(X, X) = £(X). For ¢ € (0, 7] and w € R,
we define 34, = {A € C\ {w} : |arg(A — w)| < ¢} and Xy := Xp9. By c(a,---) we
designate a generic constant depending on quantities - - -.

2. EVOLUTION FAMILIES AND EXTRAPOLATION

We investigate linear operators A(t), ¢ € R, on a Banach space X subject to the fol-
lowing hypotheses introduced by P. Acquistapace and B. Terreni in [2] and [3]. There are
constants w € R, ¢ € (7/2,7), K,L > 0 and p,v € (0, 1] such that 1+ v > 1 and

Zow COAW)  IRAAG) < o (21)
I(A(0) ~ ROV AW) (R, A®) - R AN < LEZT0 (22)

forallt € Rand X € 3y ,,. Observe that the domains D(A(t)) are not required to be dense.
These conditions imply that the operators A(-) generate a unique evolution family U (t, s) of
parabolic type. This means that U(t, s)U(s,r) = U(t,r) and U(t,t) = I fort > s > r in R,
that the map (¢,s) — U(t,s) € L(X) is continuous for ¢t > s, and that t — U(t,s) € L(X)
is continuously differentiable, U(t,s)X C D(A(t)), and 0;U(t,s) = A(t)U(t,s) for t > s.
Moreover, for s € R and z € D(A(s)), the function ¢ — wu(t) = U(t, s)z is continuous at
t = s and u is the unique solution in C([s,00), X) N C((s,00), X) of the Cauchy problem

u'(t) = A(t)u(t), t> s, u(s) = x.

Finally, we have U(t,s)r — z as s /'t if x € D(A(t)). These facts have been established
in [2] and [3], see also [1], [4], [15], [19], [20].

Before stating further regularity properties of U (t, s), we have to introduce the inter- and
extrapolation spaces for A(t). We refer to [4], [8], and [15] for proofs and more details. Let
A be a sectorial operator on X (i.e., (2.1) holds with A(t) replaced by A) and o € (0,1).
We define the new norm on D(A) by

12 = sup, I (A = w)R(r, A — w)z]),

(R
“ which are Banach spaces

and consider the continuous interpolation spaces X2 := D(A)
endowed with the norms || - [|4. For convenience we further write X§' := X, ||z||¢" := ||z],
X{ := D(A) and ||z||{ := ||(w — A)z||. We also need the closed subspace X4 := D(A)
of X. Moreover, we define the extrapolation space X 141 as the completion of X4 with
respect to the norm ||z||4; := ||[R(w, A)z||. Then A has a unique continuous extension
Aq: XA > X4,. The operator A_; satisfies (2.1) in X4,, it is densely defined, it has
the same spectrum as A, and it generates the analytic semigroup e*4-1 on X fl being the
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extension of 4. As above, we can then define the space
XA = (X_)A4' with the norm ||z||2_; := ||| = sup,~q |[r*R(r, A_1 — w)z].

The restriction A,_1 : X2 — X7 | of A_; is sectorial in X | with the same constants
as A, it has the same spectrum as A, and the analytic semigroup e*4e-1 on X &4_1 is the
extension of e!4. Observe that w — A,_1 : X' — X' | is an isometric isomorphism. We

will frequently use the continuous embeddings
D(A)<—>X§‘<—>D((w—A)O‘)<—>XA<—>XACX (2.3)
X = X§—1 = D((w—A1)") = XL, — X4

for all 0 < oo < 8 < 1, where the fractional powers are defined as usually, cf. [4]. Using
the above definitions, one easily deduces the estimates

K
R(\ A < 2.4
H ( ) 1)"L(X&4)—1+‘)\_w|7 ( )
IROA- Dl <1+K, (2.5)
1RO Ay < 7o (26)
5 41—1 ‘C(X(f,l)— 1+‘)\—W|’ .
IR, Allpxxay <+ A —w))*h, (2.7)
1RO, Ao, ) ST+ M- w2, (2.8)
for every A € ¥y, and 0 < 8 < o < 1, and some constant ¢ only depending on K.
Given operators A(t), t € R, satisfying (2.1), we set X, = xa® , Xt = Xofgtl), and

Xt = XAW for 0 < o < 1 and t € R, and denote the corresponding norms by ”JZHZC_]
Then the norms of the embeddings in (2.3) and the constants in the estimates (2.4)—(2.8)
(replacing A by A(t)) do not depend on t € R. Let J C R be a closed interval containing
more than a point. We further define on E = E(J) := Cy(J, X) (the space of continuous
functions, vanishing at infinity if J is unbounded) the multiplication operator A(-) by

(AN = A@)f(t) fort e J, D(AC)) :={f € E: f{t) € D(A®)), A()f € E}.

It is clear that the operator A(-) is also sectorial. We can thus introduce the spaces
Eo:=E2) E, 1 :=E) and E:=D(A())

for a € [0, 1], where Ey := E and E; := D(A(-)). We observe that E_; C [[,c, X", and
that the extrapolated operator A(-)_1 : B — E_ is given by (A(-)_1f)(t) = A_1(t)f(t)
for t € J and f € E. Further, F,_1 has the norm

[flla=1 == supsup [[r*R(r, A_1(s) — w) f(s)]-
r>0 seJ

Let (2.1) and (2.2) hold. Then there exists a constant C' = C(tp) > 0 such that

l(w — A@))* ™) < o7, (2.9)

U2, 8)(w = A())’yll < C (=)'t = 5)|lyll, (2.10)

l(w = A(s))"(R(w, A(s)) = R(w, A(1)))]| < C (¢ = s)", (2.11)
I(w = A®))™! = (w = A()) T < C (t - 5) (2.12)

forallt,s e Randtg >0 with0<t—s<tpandall 0 < 7<%, 0<a<1,0<0 <p,

0<~vy<v,and y € D((w — A(s))?). Here, (2.9) is well known and (2.10) was proved in
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[20, Thm.2.1] in a slightly different setting, but the proof also works under the present
assumptions. Finally, (2.11) and (2.12) are straightforward consequences of (2.1) and
(2.2), cf. [18] and [19]. We state the following result which is crucial for our work.

Proposition 2.1. Assume that (2.1) and (2.2) hold and let 1 —p < a <1 and0< 3 < 1.
Then the following assertions hold for s <t < s+ tg and tg > 0 with constants possibly
depending on tg.

(i) The operators U(t, s) have continuous extensions Uo—1(t,s) : X5_; — X satisfying

1Ua—1(t,8)leexs ,x) < ela)(t =), (2.13)

and Uq—1(t,s)z = Uy—1(t,s)x forl —p<y<a<landz e X;_;.
(i) The map {(t,s) :t > s} > (t,8) — Us—1(t, s)f(s) € X is continuous for f € Eq_1.
(i1i) For x € X | we have

a—1

1Uaa(t, 5)2lls < (@)t — )20 alls_. (2.14)
(i) For x € X3, we have
ot

gU(t s)x = —Uqy—1(t,5)Aa—1(s)r (in X). (2.15)

Proof. The assertions (i)-(iii) follow from Proposition 2.1 in [16]. To prove assertion (iv),
by rescaling we may assume that conditions (2.1) and (2.2) hold with w = 0. Fix § €
(1 —p,v), t > s, hg € (0,t —s), and 2 € X3 — D((—A(s))?), where 3 < a. Take
h € [0, ho]. Then t > h 4+ s. We use the identities

U(t,s+h)z—U(t,s)z
=U(t,s+h)(=A(s + W) P(—A(s + h)* Lz — U(s + h,s)x)

 Upr(ty s+ B) (= A (s + B) P (= A(s))* — (—A(s + 1)) / As)e™A 3 g
+ U 1 (t,s +h)(—A_1(s+ h)) AT — A (—A(s))P Lz
FUsa(ty s+ B)(—A_g(s + h))'—? /s+h(—A(s + )P (s + hy7) (—A(r) P
- (—A(7))°[R(0, A(s)) — R(O,;(7))](—A(S))l_ﬁe(T_s)A(s)(—A(S))ﬁx dr

=: 51+ 59 + S3.

It is not difficult to check these equalities for the Yosida approximations A, (t) and the
evolution family U,(-,-) generated by A, (:). The above formula then follows by letting
n — oo and using [19, Prop.2.1] and the proofs of [16, Lem.5.1] and [19, Prop.3.1]. We
now derive that

H%SIH < Ch_lhuhﬁ - 0’ %SQ - _Uafl(tvs)Aafl(S)l’a
s+h
1485]| < ch—l/ (r— (r — )0 dr = i1,

as h — 0 by means of (2.9)—(2.12) and [16, Lemma 5.1]. (Note that the constants may
depend on t — hy — s, but not on h.) O

Exponential dichotomies are another important tool in our study, cf. [5], [15], [17], [18].

We recall that an evolution family U(-,-) is said to have an exponential dichotomy in an
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interval J C R if there exists a family of projections P(t) € L(X), t € J, being strongly
continuous with respect to t, and numbers §, N > 0 such that
(a) U(t,s)P(s) = P()U(t, s),
(b) Ul(t,s): Q(s)(X) — Q(t)(X) is invertible with inverse U(s,t),
() U, s)P(s)]| < Nemo(=2),
@) [[U(s,)Q)|| < Ne=0l=2),
for all s,t € J with s < ¢, where Q(¢t) := I — P(t) is the ‘unstable projection’.

(2.16)

3. PERTURBATION RESULTS

We investigate the perturbed evolution equation
u'(t) = A_1(t)u(t) + B(t)u(t), teR, (3.1)
where the operators A(t),t € R, satisfy the conditions (2.1) and (2.2) on a Banach space X
and B(t) : x40 _, X;jﬁtl), t € R, are bounded linear perturbations for some o € (0,1).
Then A(-) generates an evolution family U(-,-) on X, as recalled in the previous section.
Under certain additional hypotheses, we show that the parts C(t) of Ay_1(t) + B(t) in X
also satisfy the conditions (2.1) and (2.2), and hence generate an evolution family Ug(-, -)
on X. Our main purpose is to show Duhamel’s formulas (1.2) for Ug(-,-) which will be
the key for our study of the asymptotic behavior of Ug(-,-) in the next section.
We start with preliminary results about the persistence of inter/extrapolation spaces

under perturbations, working in the following setting.
(H1) Let A be a sectorial operator with the constants w =0, K > 0, and ¢ € (7/2, 7).
Let B € £(XZ, XA |) for some a € (0,1). Set q := ﬁ and cp := 1+ m We
assume that there is an @ > 0 such that one of the following two conditions hold.

(a) HR(E, Aa—l)BHC(Xa‘\) < q.
(b) ||BR(E7 Aa*l)”ﬁ(xo/jil) <gq.

Remark 3.1. Hypothesis (H1) holds for the following classes of perturbations B of a
sectorial operator A with constants w = 0 and K > 0. Here (H1)(a) is satisfied in the
cases (A), (B) and (D), and (H1)(b) in the cases (B) and (C).

(A) B: X2 — XA | is a compact operator. Indeed, we have R(r, Ay_1)Bz — 0 as
r — oo in X2 uniformly for z in X2 with ||z[|2 < 1.

(B) HB||£(X&47X£71) < (2¢9(1 + K))~!. Here we can take @ = 0. (Use estimate (2.5).)

(C) B: Xg‘ — X2 | is bounded for some 0 < 3 < «. Indeed, (2.8) implies that

_ A — —\3— A A
IBR(W, Aa-1)z[5-1 < HBHC(XZ?,XO‘?A)C(l +0)7 70 zll—y < gzl

for z € X2 | and a sufficiently large @ > 0 depending on o — 3, ||BH£(X2347XA_1), K, ¢.
(D) B: X4 — Xé471 is bounded for some o < < 1. Indeed, from inequality (2.8)
(after interchanging the roles of @ and () we deduce that
_ A _ - —\a— A A
IR@, A1) Bz[§ <e(1+®)* 7Bl gxaxa pllzla < allzla
for z € X2 and a sufficiently large @ depending on 3 — a, ||B||£(X£7X§71), K, ¢. O

For operators A and B satisfying (H1), we denote by C' the part of 4,1 + B in X
defined on the domain D(C) = {z € X2 : (Aa_1 + B)x € X}. We show the sectoriality of

C' in the following proposition. This result is essentially known (cf. [10] and [12]), but we
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give the proof since we have to determine the precise constants in the framework of our
hypothesis (H1).

Proposition 3.2. If (H1) holds, then C is sectorial with the constants @, ¢, and some K
only depending on K, ¢, and HB|’£(X6(4’XA71). For \ € 35 4, we further have

Proof. We assume that (H1)(a) holds. The arguments for the case (H1)(b) are analogous
(based on (3.4) instead of (3.2)) so that we do not treat this case. Let A € ¥z 4. The
resolvent equation, (H1)(a), and (2.4) yield

[RA, A1) Bllgxa) < [|1R(@, A1) Bllgxa) + [0 = A RA, A)R(@, A1) Bl £(x )

oA K 1
1+ — =4 sin(m —¢) — 2
Hence, the inverse (I — R(\, A_1)B)~! exists in £(X2) and its norm is bounded by 2 for
A € Y54 We also have (I — BR(\, A_1))~! € £(XZ ) with norm less than 1 + 2(1 +
K)||BH£(X&47XA71) because of (2.5) and

R(\,C) = R(\, A)+ R\, A_1)B[I — R(\, A_1)B]"'R(\, A) (3.2)
= R(\, A) + R(\,A_1)BR()\,C). (3.3)
R\, C) = R\, A) + RO\, A_))[I — BR(A\, A_1)] "' BR(\, A) (3.4)
=R\ A) + (A —As_1 — B)"'BR()\, A), (3.5)

h

)

<q+ Kq (3.6)

(I—BR(A\A_1))" ' =1+ B(I—R(\A_1)B) 'R\ A_). (3.7)

We further define
Ry :=R(\A_1)+ R\ A_1)B[I — R\ A_1)B] 'R(\, A_}) (3.8)
=R\ A1)+ R\ A_)[I—BR(\A_ )] 'BR()\ A_) (3.9)

for X € X5 4, where the second equality follows from (3.7). Using (3.8), (2.8), (3.6), and

(2.7), we estimate
IR K +22||Bllgxa x4 ) K
Aleeo = 1+ [ 1+ A—w]

setting K = (K + QCQHBHE(XA XA 1))m. Formulas (3.8), (2.5), and (3.6) also yield

(3.10)

IRl oxa o S1HE+3 20+ K) = 2(1 + K). (3.11)

For z € X2 | and \ € X5 4, we deduce from (3.8) that
(A= Aya_1 — B)Ryz =2 — BR(\,A_1)x + B[I — R(\,A_1)B]"'R(\, A_1)z
— BR(\, A_1)B[I — R(\,A_1)B]"'R(\,A_1)z
=z,
and for z € X2 that
R\(A— Ay 1 —B)x=2— R\ A_1)Bx+ R\, A_1)B[l - R(\,A_1)B] 'z
—~ R\ A_1)B[I - R(\,A_1)B]"'R(\,A_1)Bz



As a result, Ry is the inverse of A — A,_1 — B € L(X2, X2 |);ie., A€ p(C) and R(\,C)
is the restriction to X of Ry. In view of (3.10), C' is sectorial with the constants ¢, w, and
K. Moreover, the identities (3.2) and (3.4) are consequences of (3.8) and (3.9). Equations
(3.3), resp. (3.5), easily follow from (3.2), resp. from (3.4). O

The above formula (3.2) leads to the following embeddings of the inter/extrapolation
spaces for A and C.

Lemma 3.3. Let (H1) hold. Then the following assertions are true.

(i) We have X2 — XS and X2 | — XS |, where the norms of the embeddings are

bounded by a constant only depending on K, ¢, 0, and ||Bllz(xa xa -

a—1

(ii) We have Xg+e — XA for 0 < ¢ < 1 — «, where the norm of the embedding is
bounded by a constant only depending on K, ¢, W, and €.

Proof. As in Lemma 3.2, we only consider the assumption (H1)(a) since the case (H1)(b)
can be proved similarly.
(i) We treat the first embedding. For A > 0 and = € X2, equality (3.2) yields

AY(C —@)R\,C —©)z = AToRIN,C —T) — X%
= MR\ A — D)z — Xz
+ AR\ A —©)B[I — RO\, A1 —©)B] " 'AR(\, Ay — @)z
=: S{x + Sy
The sectoriality of A combined with the results in Section 2.2.1 of [15] implies that
1Stz|| = (A —@) A"\ — AR\, A — DA AR\, A)z||
<(1+wK)(1+42K)||\*ARN\, A)z|] — 0 (3.12)
as A — oo. Using (2.8) and (3.6), we further estimate

2C\* _
5 IBllgxaxa HIARO, Aq —©)zlf- (3.13)

cxf| <

Since A, is densely defined in X2, the term S5z converges to 0 as A\ — oo. As a result, =
belongs to X¢ by [15, §2.2.1]. Moreover, the estimates (3.12), (3.13), and (2.4) yield
— A — A
1S + Sall < (1 +@K)(1+2K)||z]|3 + 2¢K | Bllgxa xa ) llzl14
for A > 0, so that X2 — X¢ and
C — A
[2S < e 1Bl a3 lall2 (3.14)
For the second embedding, we identify X2 | with (X2, - [|2 ;)™ via the isomorphism
A A A ~ A
Jo: Xoq — (Xa ) H ’ ||a71) ;o Jor = (fIZn) +Na717
where z,, € X2 with x, — 2 in X2 | asn — oo and N2 | = {(yn) € X2 : y, —
0in X2 , asn — oo}. From (3.11) we know that R(\,C) has the continuous injective
extension (A — Ay_1 — B)7': X4 | — X for A\ >@. Let z € X7 | and (z,) € X be a
sequence with limit z in X2 |. Using (3.14) and (3.11), we estimate
lzn — &mlla—1 = |R@,C)(@n — zm)lg < c|R@,C)(zn —xm)la (3.15)
<cllzn — fEmHé—l-
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So we can define the linear map
T X3 — X =2 (XL 152 Jr = () + N
(Observe that we can identify JXZ with X2.) As in (3.15), it follows

C : C — A
[zlla—1 = lm |lzn]lg_y < (K 1Bl 2xa,x0-1) @) [[26-1-

If Jo = 0, then there are z,, € X2 with 2, — 0 in X{ ;| and x, — z in X2 |. Hence,
R(@,C)z, — 0 in X$ and R(@,C)z, — (@ — Ag1 — B) 'z in X2 < X¢. Therefore
(W—Ap—1 — B)_lx =0, and then z = 0. So we have shown that Xéé_l (N Xg_l.
(1t) For A € ¥g 4, the identity (3.2) and the inequalities (2.7) and (3.6) imply
c 2c 2c

c

- = .
L +[AD 2+ [AD A+ (A
Taking a <8 < a+ € <1 and z € X, we can thus estimate

| R(A, C)”ﬁ(x,xg) <

S c - o _
1@~ ) Pzlla < 7r/FIA—WI P ANz |dA] < e(K, @, ¢,0) |||

for a suitable path I' in C. This gives the assertion since X{,, — D((@ — C)?). O

€

In the following result we even obtain equality of the inter/extrapolation spaces of A
and C' under stronger assumptions on B, cf. Remark 3.1. For exponents strictly between
a and a — 1, such identities were also shown in [10, Thm.5.3] in a more general setting
using different methods.

Proposition 3.4. Let A be sectorial with constants K > 0, ¢ € (w/2,m), and w = 0.
Assume that either B € £(X[‘54,X&4_1) for some 3 € [0,a), or B € L(X(f,Xg‘fl) for some
Be (a1, or |Bllgxaxa y < ao:=[4(1+K)eo] " Then X3 = X and X1 = X4,

where the respective norms are equivalent with constants ¢(K,w, ¢, «, (3, HB||£(X§7XA_1)),

C(K7 w, ¢7 «, ﬁ7 HBHL(X(;?,XZ;‘_l)) and C(K7 ¢7w): Tespectz'vely.

[

Proof. Step 1. We first show the equivalence of || - |4 and || - || on D(C), respectively, of

| -4, and || - |, on X, in each of the three cases.

(i) Assume that HBHE(X&“,X(;‘LI) < qo. Then (H1)(a) holds with @ = 0 by Remark 3.1,
and Lemma 3.3 yields X2 < X and X2 | < X¢ |. For the converse implications, take
A>0and z € D(C) — X2 (see Lemma 3.3). Equality (3.2) implies that

AAR(N, A)z — A*CR(\, C)x = NTOR(N, A)x — MR, Oz

= - X*R(\,A_1)B(I — R\, A_1)B)"'AR(\, A)z. (3.16)
Using (2.4), we estimate

A C A C A
lzllz < Nzl + 1Bl oxaxa )2KlzlE < llels + 5llzla

1
A C
lzlle < 2l
Similarly, for x € X — X &4_1 we obtain

A C A C A
lzlla—r < lellay + 1Bl oxg,xa )20+ K2l < lzlla—y + szl
( o @ 1)

A C
[zlla—1 < 2[lllg—1-



(i1) Let B € E(Xg‘,Xf_l) for 0 < 8 < a. Then (H1)(b) holds for some @ > 0 by
Remark 3.1, and hence X2 — X¢ and X2 ;| — X¢ | by Lemma 3.3. Let A > 0. From
(3.5) we deduce that

AN (A-DW)R(N, A —w)
= \(C —D)R\,C —T) = XA +T — Aq_1 — B)"'BAR(\, A — ).
For x € D(C) C X/ (see Lemma 3.3), this identity yields

JellA < cll2llS + ¢ sup | BAR(A, A — @)a|S_,
A>0
< el + e Bllooes xa ) sup AR, A~ B
>

< cllzll§ + e llzll, (3.17)
where ¢ = ¢(K, ¢, w, ‘|BH£(X§7X,471)) and we have used Lemma 3.3 and (2.4). We further
obtain Xg — Xﬁ by interpolating X{ < X2 and X — X. Consequently,

A c c
lzlla < ellzlla +ellzls-

If g < «a, we arrive at
A C
z]]& < cllzlly- (3.18)
Otherwise, we deduce that

A C
ezl < ellzllz-

(e

Hence, X gz — X g‘ by interpolation. So (3.17) yields

a2

A c c
lzlla < cllzlla +ellzllz -

We now iterate until g—n < « arriving at (3.18) with ¢ = ¢(K, @, ¢, «, 3, ||BH£(X§17X§71)).

As a consequence, R(p, C') has a uniformly bounded extesnion from X | to X2 for p > w.
By means of this fact and (3.3), we estimate

z[l5—1 < ¢ sup [A*R(A, A - @)a|
A>0
< cllzl|5_; + ¢ sup [A*R(A\, A — @) BR(, C — )z|
A>0
<cllaldy + ellBlloxa xa ) sup RO C = @)zg
A>0

< ellzllcs, (3.19)
where ¢ = ¢(K,W, ¢, ., 3, [| Bl gxa, x4 ,))-
(iii) Let B : X2 — Xg‘_l be bounded for some o < § < 1. Hence (H1)(a) holds by

Remark 3.1 so that X' < X¢ and X4 | < X¢ | by Lemma 3.3. For 2 € X/, formula
(3.16) and Lemma 3.3(ii) yield

z]|2 < esup {[|]A*(C = @) R\, C — @)z|| + c||N R\, ALy — @) BAT* PR\, C — ©)z||}
A>0

c - A
<clzlq +C|’B||L(X§,X§_1)§U% [XHPR(N, C - D)z,
>
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<clz|§ +e Sup 11+ MR, C —w)z|§ < cllzlls
>

where ¢ = ¢(K,w, ¢, , (3, HBHL(X;;‘,X;LI))' The inequality (3.19) can be shown similarly.

Step 2. Observe that the embeddings D(C) «— X2 — X respectively X «— X4 | —
XC |, are dense in | -
X &4 1 =X, c 1 (where the isomorphism is given by the embedding J constructed in the

proof of Lemma 3.3.) O

, respectively, in || - ||5_;. us we also obtain = an
IS, respectively, in || - §_;. Thus we also obtain X2 = XS and

We turn our attention to the nonautonomous situation and state our main hypothesis.
(H2) There are operators A(t) satisfying (2.1) and (2.2) for ¢t € R. For every t € R and
some a € (1 — p, 1), there is a Banach space X, with X! — X, < X and there
are operators B(t) € L( X4, X, A(t)) such that the norms of the embeddings and of
B(t) are bounded by a constant b, (H1) holds for A, (t) = A(t) —w and B(t) with

uniform constants, and
IR(@, Aa—1()B(t)z — R(®, Aa—1(s))B(s)z[lg < L[t — s[* [l2]la (3.20)

for some ¢ > 0 and @ > w and each x € X,, t,s € R. If @ > v, we assume in
addition that norms of X, and X! are uniformly equivalent for ¢ € R and that
the map R 3 ¢t — R(w, A(t)) € L(X, X,) is uniformly Holder continuous with
exponent y and constant /.

In the standard applications, the spaces X!, are in fact closed subspaces of a space X,
and R(w, A(+)) is Holder continuous in £(X, X, ), see e.g. Example 5.9.

Remark 3.5. (i) If (H2) holds for s and ¢ in a closed interval J C R, we can extend A(t),
B(t), X!, and X!, constantly to ¢t € R. The extensions satisfy again (H2) on R with the
same constants.

(ii) If condition (2.2) holds for some w € R, then it is true for each w’ > w with the same
constants p, v, ¢, and a constant L' = L'(L, K,w). Indeed, formula (2.8) in [18] yields

(A(t) = W )R(A + ', A1) [R(W', A(2)) — R(w', A(s))]

= (Au() = MR + o', A1) Au () R(A, Au (1)) [R(w, A() — R(w, A(s))] Au (s)R(w', A(s))
for A € ¥y and ¢,s € R. The resolvent equation further shows that the last condition in
(H2) still holds (possibly with a different ¢) if one replaces w by a number A > w.

(iii) Let (H2) hold. Then (3.20) is also true for A > w instead of @ with the same p and
«, and an £ depending on A and the constants in (H2). This fact follows from (H2) and
the equality

R()"Aa—l(t))B(t) R(A; Aa-1(s))B(s)
R(@, Aa-1(1))B(t) = R(@,
+ (@ = MR A1) )B(t) —
+ (@ = N[RA, A1) = R(A, A(s))] R(@, Aa-1(5)) B (8)

(iv) Let (H2) hold. Then the map ¢t — R(\, Aq—1(t))B(t)R(u, A(t)) € L(X) is Holder
continuous for A\, u > max{w,w}. This fact follows from (H2) and parts (ii) and (iii). ¢

Let (H2) hold. Due to Proposition 3.2 there exists the part C(t) of Aq—1(t) + B(¢) in

X for every t € R. We next prove that the operators C(t) also satisfy condition (2.2).
11



Proposition 3.6. Assume that (H2) holds. Then the operators C(t), t € R, fulfill
(2.1) and (2.2) with the constants K, ¢, W, u, min{v,a} (instead of v), and some
L = L(L,K,¢,w,b,l). Therefore C(-) generates an evolution family Ug(-,-) satisfying
the assertions of Proposition 2.1 with U(-,-) replaced by Ug(-,-) and A(-) by C(-).

Proof. Proposition 3.2 shows that (2.1) holds. Concerning (2.2), we only consider the case
a < wv. The case a > v is treated in the same way. Using formula (3.2), we write

[R(@, C(t)) — R(@,C(s))]x = [R(@, A(t)) — R(w, A(s))]x

+ R( 1) BH) — R@, A—1()B(1)] ™ [R@, A(t)) - R(@, A(s))]z
R(@, A1 () B(t)(I = R(@, A-1(t))B(t) " [R(@, A-1(1)) B(t) — R(@, A-1(s))B(s)]
(I R(@ ))B(s)) " R(@, A(s))x

A_ 1(8
+[R@, A_1(1))B(t) — R(@, A-1(s))B(s))(I - R(@, A-1(s))B(s)) "' R(@, A(s))z
for x € X and t,s € R. The above equation, Remark 3.5, (3.6) and (H2) yield

that [R(w,C(t)) — R(w,C(s))]x € x40, Taking also into account Proposition 3.2 and
Lemma 3.3, we then deduce

sup [[A*(C(t) —W)R(A, C(t) - ©)[R(@, C(t)) — R(w, C(s))]z|

PYII

= sup [(A +@ = C@) R, C(t) —@)[A|*(C(t) —@)R(|A, C(t) — D)
g

[R(@,C(t) — R(@w, C(s))l«|
(1+2K)SupHu( (t) = W) R(p, C(t) = W) [R(@, C(t)) — R(@,C(s)))«|

< ¢||[R@,C(1) = R@, C(s)z]a < eft — 5| ||]. .

We now come to the main result of this section relating the evolution family Ug(-,)
with U(-,-). In formula (3.22) below we identify X a(l) with subspace of X, (1) be means
of the embedding J constructed in Lemma 3.3.

Theorem 3.7. Let 1 — u < a < 1 and assume that the operators A(t) and B(t), t € R,

satisfy (H2). FoerX (),oz<ﬂ<1cmdt>s it holds
1

UBa—1(t,s)x = Uy—1(t,s)z + / Ua—1(t, 7)B(T)UB,a—1(T, §)z dT, (3.21)
t
UB,a—l(t7 8)37 = Ua_l(t, S)IL’ + / UB7a_1(t, T)B(T)Ua_l(T, s)x dr. (3.22)

Proof. Take xz € D(C(s)) — X2 and r € (s,t). Then Ug(r,s)z € X2 by Proposi-
tion 3.6 and Lemma 3.3, so that Proposition 2.1 yields

8+ ~U(t, ) Up(7,8)x = Uq—1(t, 7)(Aa—1(7)+B(7))UB(T, 5)x — Us—1(t,T7) Aa—1(T)UB(T, 5)x
= Ua-1(t,7)B()UB(7, 5)x =: f(7),
where ||f(7)|| < c|t —T|* 1||xHC(S Due to Remark 3.5(iv), the function
fu(T) = U(t, T)nR(n, Aa—1(7))B(T)nR(n, A(T))Us(T, s)x

is continuous from [s,t] to X for large n € N. Moreover, f,(7) — f(7) in X as n — oo

for 7 € [s,t) locally uniformly because of (2.13) and (2.8), so that f € C([s,t),X) N
12



L'([s,t), X). As a consequence,

t—e 8+ t—e
U(t,t —e)Up(t —e¢,s)x — U(t, s)x:/ a—U(t T)Up(T, s)xdr = f(r)dr

for 0 < € < t —s. Letting e — 0, equation (3.21) follows for z € D(C(s)). Using

(s)<—>X In a

Lemma 3.3, we then obtain (3.21) for x € X, Als) by approximation in X,
second step we approximate a given x € X?_(l) with a < < 1in XB—(I) by z, € Xa( ) in
order to derive the first assertion, again employing Lemma 3.3.

For the second formula, take 7 € (s,t) and = € Xé‘@ Lemma 3.3 and Propositions 2.1

and 3.6 imply that

T Ut TU(r,8) = ~Upa-i(t,7)(Aa1(7) + B(r)U (7, 8)z + Up(t, ) A(T)U (7, 5)x
= —Upa_1(t,7)B(M)U(r,s)z =: g(7),

where ||g(7)|| < c|t — 7|1 for T € [s,t). Arguing as above, we then derive (3.22) first for
T € X;? ) and then for X/g‘fsl) by approximation. O

As in [16], we can now study the inhomogeneous evolution equation

u'(t) = C(t)ult) + f(t), ted, (3.23)
u(ty) = x, (3.24)

for a closed interval J, ty € J, zg € X, and f € Egg A function v € C(J, X) is a mild
solution of (3.23) on J if

() UBtS /UBaltT ()d

for all t,s € J with t > s. It is a mild solution of the Cauchy problem (3.23)-(3.24) if in
addition u(tg) = xo. We recall that a mild solution of (3.23) satisfies (3.23) pointwise in

X (1 for < aand t € J \ inf J due to Proposition 2.6 of [16]. On J = R, we define the
closed operator

GBa-1:D(Gpa) CE— EY): Gpaqu=f, (3.25)

where u is the mild solution of (3.23) on R, cf. [16, Rem.2.5]. (Here E = E(R) and
ng% = ESE% (R).) We further have the analogous operator Go—1 on E (% given by
U(-,-). The following result relates these two operators.

Proposition 3.8. Assume that (H2) holds. Then the following assertions are true.

(i) Egl(') — Eg(') for B € [0,a] and E;;‘Ei — Eg_(% for B € o, 1].

(ii) Assume that the operators B(t) satisfy one of the conditions in Proposition 3.4 with
norms uniformly bounded in t € R. Then E,f(') = Eg() and Ea('% =F, ()

(i1i) Let v € (a,1] and f € EA(‘). Assume that B(t), t € R, has a uniformly
bounded restriction B(t) : X! — Xﬁ 1- If Gooqu = f for some u € D(Gq—1), then
u € D(Gpa-1) and Gpa—1u = Go—1u— B(-)u. If Gpo—1v = f for somev € D(Gp-1),
then v € D(Gq-1) and Go—1v = Gpo—1v + B(-)v.

(iv) Assume that B(t), t € R, has a uniformly bounded extension B(t) : ﬂ — X!,
for some 5 € [0,a) and v € (o, 1]. Then D(Go—1) = D(Gpa-1) C D(B(:)) ={u € E
u(t) € X!, (Vt €R), B(:)u € Eq—1} and Gpa—1 = Ga—1 — B(").
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Proof. In assertion (i), it suffices to consider the case = « since the general case then
follows by interpolation. The first embedding can be proved as the corresponding one in
Lemma 3.3(i). Let J(¢) : X(fftl) — X9® ¢ € R, be the embeddings constructed in the

a—1>
proof of Lemma 3.3(i). For f € E2O we define (JH(E) =J(@)f(t) € Xaftl). Lemma 3.3(i)
A
vields |77 < e[lf16%)
fin E (% as n — oo. Then Jfn € Eq A0 and J fn — Jf with respect to || - ||C()

a—1

and the injectivity of J. There are f, € Eg} ) converging to
and so

Jf e Eag Thus assertion (i) holds. Assertion (ii) is a consequence of Proposition 3.4
and an interpolation argument.

Under the assumptions of assertion (iv), we take u € D(Gq—1) and set f = Go—1u €
Eo_1:= EA() The equation

u(t) =U(t,r)u(r) +/ Ua—1(t, 7)f(T)dT, t>r,

and the estimate (2.14) show that ||u(t)||}_. < c for all t € R and some € € (0,a — 3).
By interpolation with v € Cp(R, X), it follows that ||u(t)\|tﬁ — 0 as |t| — oo. Thus
gn(t) == R(w, A_1(t))B(t)nR(n, A(t))u(t) tends to 0 in X as |[t| — oo, where n € N is
sufficiently large. Moreover, g, is continuous in X by Remark 3.5(iv). The assumptions
on B(t) further imply that g, converges in F to g = R(w,A_1(-))B(-)u as n — oo and
that [|g(¢)[|% < c for t € R. Hence, Corollary 2.2.3 in [15] implies that v € E,, and thus
B(-)u € E4—1. Since B(t) € E(Xﬂ, 1) is uniformly bounded, we can establish formula
(3.22) for x € XS _; as in the proof of Theorem 3.7. Using (3.22), Proposition 2.1 and
Lemma 3.3, we compute

u(t) = U(t, s)u(s) +/ Ua—1(t,7)f(T)dr
— Up(t,s)u(s) + / Up a1 (t,7) F(7) dr — / Up a1 (1, 7)B(1)U (7, 5)u(s) dr

//UBalta B(o)Uq-1(0,7)f(1)do dr.

Similarly as in the proof of Theorem 3.7 one checks that the integrands of the last integral
is measurable in X for s < 7 < ¢ < ¢t. Thus Fubini’s theorem yields

u(t) = Upl(t, s)u(s) +/ Upa-1(t,7) (f(r) — B(m)u(r))dr, t>s,t,s€eR,

so that u € D(Gp,q—1) and G a—1u = Go—1u— B(-)u. The converse inclusion is shown in
the same way taking into account part (ii). Assertion (iii) is proved similarly as assertion
(iv), using in addition part (i) and Lemma 3.3(i) in the second part. O

4. ROBUSTNESS OF EXPONENTIAL DICHOTOMY AND FREDHOLMITY

Assume that (H2) holds. We want to show that the evolution family Ug(-,-) generated
by the operators C(t) = (An—1(t) + B(t))| X, t € R, inherits the exponential dichotomy or
Fredholm properties of the evolution family U(-,-) generated by A(-) if the perturbations
B(t), t € R, are small in norm or compact. As a preparation, we note that formula (3.21),
Proposition 2.1, Lemma 3.3 and Proposition 3.6 imply the crucial estimate

1
|Us(s +1,8) — U(s + 1,8)lley <¢ suwp 1B eexe ) / (1 -7l dr
s<t<s+1 0
14



<c sup [[B()|gxz xt ) (4.1)
s<t<s+1

for s € R, where c only depends on the constants in (H2). Our first theorem on exponential
dichtomies is an immediate consequence of (4.1) and Theorem 4.1 of [18], where we set

I1B()lloo := sup | B)[| £(xt,xt_,) -
teR

a—1

Theorem 4.1. Assume that (H2) holds and that U(-,-) has an exponential dichotomy on
a closed interval J of R. If || B(+)||eo s sufficiently small, then Ug(-,-) has an exponential
dichotomy on J, and the unstable projections of U(-,-) and Ug(,-) have the same rank.

We next investigate the Fredholmity of the operator Gp—1 defined in (3.25), which
will lead to a Fredholm alternative for the equation (3.23) on J = R. To that purpose, we
introduce the stable and unstable subspaces of Ug(-,-) at ty € R by setting

XSB(tO) ={reX: tiigloo |Up(t,to)z|| = 0},

XB(ty) := {x € X : 3 a mild solution u € Cy((—o0,t],X) of (3.23) — (3.24)
on J = (—o0,tg] with f=0}.

(The above definition of XZ(tg) slightly differs from that of [16], but this fact does not
play a role in the results of [16] we use below.) Assume that Up(,-) has an exponential
dichotomy on (—oo, =T and on [T, 00) for some T' > 0. Theorem 3.6 and Remark 3.12 of
[16] then yield the following results.

(a) GB,a—1 has closed range in ESE{ if and only if XZ(T) + XB(T) is closed in X.
(b) If (a) holds, then codim R(Gp a—1) = codim(XZ(T) + X2(T)).
(¢) dim N(Gpa-1) = dim X2(T) N XB(T) + dim N(Up(T, -T)| X (-T)).

The analogous results hold for G and Gp in E, and for G,_1 in E;j('i. We further define

the maps
Dz = (zn —U(n,n —1)zy-1),c, and Dz = (z,—Up(n,n—1)zn_1),z

for sequences z = (x,) € ¢o(Z, X). Clearly, D and Dp are bounded opeators in ¢(Z, X).
Due to Theorem 1.4 of [14], the operator G (resp. Gg) on E is Fredholm if and and only if
D (resp. Dp) is Fredholm on ¢y(Z, X) and then ind D = ind G (resp. ind Dp = ind Gp).
(We remark that in [14] it was assumed that (¢,s) — U(t, s) is strongly continuous at
t = s, but the proof of Theorem 1.4 in [14] also works in our situation.) Moreover, in
the case that the domains D(A(t)) are all dense in X it was shown in [13, Theorem 1.1]
that U(-,-) has exponential dichotomies on (—oo,—T] and [T, 00) (for some 7' > 0) if
G is Fredholm in F. In the following result we can thus replace the assumption on the
dichotomies by the condition that A(t) is densely defined for all ¢ € R.

Theorem 4.2. Assume that (H2) holds, that G is Fredholm on E, and that U(-,-) has an
exponential dichotomy in X on (—oo,—T| and on [T, 00) for some T > 0. Let | B(-)||cc be
sufficiently small. Then Ug(-,-) has an exponential dichotomy in X on (—oo, —T] and on
[T,00), and Gp a1 is Fredholm in ESQ with the index ind(Gp o—1) = ind(G).

Proof. Since G is Fredholm on E, the operator D is Fredholm on ¢y(Z, X') with the same
index due to [14, Theorem 1.4]. Estimate (4.1) and Theorem IV.5.22 of [11] then imply
that Dp is Fredholm on ¢y(Z, X) with the same index provided that || B(:)||cc is smaller

than a certain number b > 0. Again by [14, Theorem 1.4], the operator Gp is thus
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Fredholm on E with the same index. Possibly after decrasing b > 0, we deduce from
Theorem 4.1 that Ug(-,-) has exponential dichotomies on (—oo, —T| and [T,00). Thus
[16, Theorem 3.6] shows that XZ(T)+ XJ(T) is a closed subspace of X with codimension
equal to codim R(Gp) and that

dim(XB(T) N XB(T)) + dim N(Up(T, -T)| X2 (~T)) = dim N(Gp) < .
The assertion then follows from [16, Theorem 3.6]. O

Theorem 4.3. Assume that (H2) holds, that A(t) is densely defined for every t € R, that
B(t) : x40 XAEtl) is compact for every t € R, and that ||B(t)|zx: xt ) — 0 as

(07 a—1
|t| — oo. Let G be Fredholm in E. Then the operator Gp o—1 is Fredholm in Eo(jg with
the index ind(Gp,o—1) = ind(G).

Proof. Due to our assumptions and [14, Theorem 1.4], the operator D is Fredholm in
co(Z, X ) with index ind G. For x = (z)nez € co(Z, X) we define

So = < /n U (P B Us(rn — )m 1 dT)

-1 neZ
Then Dp = D — S by (3.21), and thus S € L(co(Z,X)). We want to show that S is
compact. Take e > 0 and = = (zy,) € ¢o(Z, X) with ||z|| < 1. For z € X and n € Z, we set

Kpz = / Ua—1(n,7)B(T)Up(T,n — 1)z dr.
n—1

The operators K, converge to 0 in £(X) as |n|] — oo because of (4.1) and since
1Bl z(xz,xt_,) — 0as[t| — oo. So there exists an index N > 0 such that || Knzp—1|| <€
for all [n| > N. On the other hand, as seen in the proof of Theorem 3.7, the map
T — Gp(7)z := Uyp—1(n,7)B(17)Up(T,n — 1)z € X is continuous on (n — 1,n), and
|Gyl € LY (n—1,n). Moreover, the operator G,,(7) is compact in X for 7 € (n—1,n), due
to the compactness of B(7). Using Theorem C.7 of [8], we thus deduce that K, is compact
in X for each n € Z. This means that the set {K,z: z€ X, ||z| <1, n€ {—-N,--- ,N}}
is contained in a compact set K C X. Therefore S is compact.

Theorem IV.5.26 of [11] now shows that the operator Dp is Fredholm on ¢y(Z, X) with
the index ind G. Hence, Gp is Fredholm on E with the same index by [14, Theorem 1.4].
Moreover, Up has exponential dichotomies on (—oo, —7T] and [T, +00) for some T' > 0 due
to [13, Theorem 1.1]. (Here we need the density of the domains.) The assertions then
follow from [16, Theorem 3.6] as in the previous proof. O

In the next remark we collect sufficient conditions for a part of hypothesis (H2) used in
the above theorems.

Remark 4.4. Assume that the operators A(t), t € R, satisfy (2.1) and (2.2). Then the
following assertions hold.

(i) Suppose either that for some 3 € [0,a) the operators B(t) : X} — X[,_; are
uniformly bounded for ¢ € R, or that for some (8 € («, 1] the operators B(t) : X;, — Xj_,
are uniformly bounded for ¢ € R. Then (H1) holds for A(¢) and B(t) with a constant @ > w
for every t € R.

(ii) Suppose that the spaces X!, ¢t € R, are isomorphic to a space X, with uniformly
equivalent norms. Assume that B(t) : X, — X! ;| is compact, that 1B £(xa,xt_,) =
0 as |t| — oo and that R(w, A_1(:))B(-) € L(X4) is locally Holder continuous with expo-

nent p. Then (H2) holds.
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Proof. Assertion (i) follows from Remark 3.1. For assertion (ii) we have to show that A(t)
and B(t) satisfy (H1)(a) for t € R with the same @. Let ¢ = (2¢o)~! be given as in (H1).
Let ¢ be the constant for the equivalence of the norms of X! and X,. Take w > w, t € R,
and = € X,. Using (2.5) and choosing a sufficiently large T > 0, we first estimate

[R@, A1 (1)) B(t)z|ls < (1 + K) [ B)|l ixaxt_y Ellzlle < allzl
for [t| > Tp. Here Ty does not depend on @. Fix 6 > 0 such that
E(1+ K)o < 4, (4.2)

where ¢y is the Holder constant of R(w,A_1(-))B(-) on [-Tp,Tp]. We fix a partition
—To =ty <t1 < -+ <ty =Ty with t;, —t_1 <. Set € = q(2é(1 + K))_z. Since the
operators B(t) are compact, there exist vectors yig, ..., Ym,k € Xi’i 1 such that for each
x € X, with [|z]|o < é there is an index j = j(k, x) with

IB(tr)z =yl <e. (4.3)

Let ¢, be the maximum of all the norms |jy;x|* . Take t € [~Tp, Tp] and = € X, with
|z||f, < 1. Fix k € {0,..., N} such that |t — t;| < 4. Using (2.5), (2.4), (4.3), the Holder
continuity of R(w, A_1(-))B(-) and (4.2), we obtain
I1R(@, A-1(t)) B(t)lq
< R@, Aa(t)(w — A1 () [R(w, A—l(t))B(t) — R(w, A—1(te)) B(t)]
+IR@, A-1(t))(w — A—1(t)) R(w, A1 (t))[B(tr)z — yj.]lla
+[(w— A )) (@, A(t)) R(w, A 1(tk))ykat
< é(1+ K)||[R(w, A1 (8)) B()z — R(w, A1 (t)) B(ty)a|la+ (1 + K)?| B(ty)r — yxllay
w ol s + AR, AW) B, A (1))l
q EwK(1+K)c

2 w2 Y o o4 — 4
S EQ+ K" + 4+ — = HE[AR@, A)) Rlw, A1 (tk))y;klla

IN

q

for sufficiently large @ independent of ¢. (Observe that A(-)R(w, A(-)) converges in
C([-Tb,To], Xo) =: F to 0 as w — oo since the part of the multiplication operator A(-)
in F' is sectorial.) O

Using Theorems 4.2 and 4.3 as well as [13, Theorem 1.1] and (the proof of) [16, Theorem
3.10], we finally obtain the following Fredholm alternative for the perturbed evolution
equation

u'(t) = A1 (H)u(t) + B(t)u(t) + f(t), t €R. (4.4)

C()

Below we use the extensions to X of the dichotomy propjections Qg (t) and Pg(t) =

I —Qp(t) of Ug(:,-), ct. [16, Prop.2.2].
Theorem 4.5. Assume that the assumptions of Theorem 4.2 or 4.3 hold. Let f € EC()

Then there is a mild solution uw € Co(R, X) of (4.4) if and only if

/R<f(3)vw(5)>xg(sl) ds =0
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for each w € LY (R, X*) with w(s) = Upa—1(t,s)*w(t) for allt > s. Every mild solution
u 18 given by

u(t) = v(t) = Up(t, T)ys + (R F)(t), =T,
u(t) = o(t) + 8(t) + (Ry_y f)(1),  t<T

where (RE_ f)(T) = (Ry_1/)(T) = ys +yu € XZ(T) + X(T), 0 € Co((—00,T], X)
with 0(T) = yy, and 0(t) = Up(t,s)v(s) for all T > t > s, and v € Cy(R,X) with
v(t) = Upg(t, s)v(s) for all t > s. Finally, the functions R$—1f are defined by

t o
Rz_lf(t) = / UB,Oz—l(t7 S)PB7a_1(S)f(S) dS — / UB7a_1(t, S)Q37a_1(s)f(8) dS, t Z T,
T t

¢ ~T _
R, f(t)= /_ UB,a—1(t,s)Pp.a—1(s)f(s)ds /t UB,a-1(t,5)@B,a—1(5)f(s)ds, t < T,
t

-T
R(;flf(t) = / UB,afl(u S)PB,afl(s)f(S) ds + / UB,ozfl(tv S)f(S) dS, =T <t< T.

—00 =T

5. BOUNDARY PERTURBATIONS OF PARABOLIC EVOLUTION EQUATIONS

In this section we study the inhomogeneous perturbed boundary evolution problem

{u’(t) = An(t)u(t) +9(t), teR, (5.1)

L(t)u(t) = @(t)u(t) + h(t), teR,
on Banach spaces X and Y, where g € Cp(R, X ) and h € Cp(R,Y") are given. We introduce
our hypotheses.

(A1) For every t € R there is a Banach space Z; <— X and operators A,,(t) € L(Z;, X)
and L(t) € L(Z;,Y) such that the restrictions A(t) of A,,(t) to N(L(t)), t € R,
satisfy (2.1) and (2.2) with constants w € R, ¢ € (7/2,7), K,L > 0, and p,v €
(0,1]. For some « € (1 — p,1) and every t € R, we have Z; — X! with a uniform
embedding constant, and there are operators ®(t) € L(XL,Y).

Let (A1) hold. As recalled in Section 2, the operators A(-) then generate an evolution
family U(+,-) on X. We recall another concept used below. Let & € R. We say that the
abstract boundary value problem

(W—Ap(t)v =0, L(t)v = ¢, (5.2)

is well posed with solution operator D(t) if D(t) € L(Y, Z;) and, for each ¢ € Y, there
exists a unique solution v € Z; given by v = D(t)ep.

(A2) For some w > w and each ¢t € R, there exists a solution operator D(t) € L(Y, Z;)
of (5.2) such that D(t) : Y — X! is uniformly bounded and

1 1 K

-1
iy < qgi=— = — — .
IDOPOlcexy <a= 5= 5 [1+ =g+ tER

(A3) There is a Banach space X, such that X! — X, — X with a uniform embedding
constant and ||D(t)®(t)x — D(s)®(s)z|, < c|t — s|*||z|lq for all x € X, and
t,s € R. If a > v, we assume in addition that the norms of X, and X! are
uniformly equivalent for ¢t € R and that the map R 3 ¢ — R(w, A(+)) € L(X, Xa)
is uniformly Hoélder continuous with exponent pu.
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Remark 5.1. (i) The problem (5.2) is well posed if (A1) holds and L(t) is surjective, see
[9, Lemma 1.2].

(ii) If the problem (5.2) is well posed for some @ € R with solution operator D(t),
then it is well posed for every u € p(A(t)) with the solution operator D, (t) := [I — (u —
W)R(p, A(t))]D(t). In fact, the uniqueness of solutions follows from the injectivity of the
operator p — A(t) = (1 — A (t))|N(L(t)). Moreover, the operator D, (t) is bounded from
Y into Z;. Finally, for ¢ € Y we have

(= A () Dy (t)p = (1 — Am (1)) D(t) e — (1 — @) D(t)g
L(t)Du(t)p = L(t)D(t)p — (n — @) L(t) R(p, A(t ))) ( ) = .
(ili) In (ii) one further has R(w, A(t))Du(t) = R(u, A(t))D(t), due to the resolvent

equation.

As in [16], we can rewrite (5.1) as the inhomogeneous perturbed evolution equation
u'(t) = Aa—1(t)u(t) + B(t)u(t) + f(t), teR, (5.3)
where f(t) := g(t) + (w — Aa—1(t)) D, (t)h(t) and
B(t) := (w — Aa—1(t)) Dy, (1) (1), teR.

The mild solutions of (5.3) are said to be mild solutions of (5.1). We first investigate the
well posedness and the asymptotic behavior of the Cauchy problem corresponding (5.1),
where g = h = 0. Here we start with generation properties of the operators

Agp(t)x := A (t)z  with  D(As(t)) ={x € Z; : L(t)x = ®(t)x}, teR.

In some results we can replace (Al) by the following somewhat weaker assumption.
(A1) For every t € R there is a Banach space Z; <— X and operators A,,(t) € L(Z;, X)
and L(t) € L(Z,Y) such that the restrictions A(t) of A,,(t) to N(L(t)), t € R,
satisfy (2.1) with constants w € R, ¢ € (7/2,7) and K > 0. For some o € (0,1)

and every t € R, we have Z; — X! with a uniform embedding constant, and there
are operators ®(t) € L(XL,Y).

Proposition 5.2. If (A1°) and (A2) hold, then the following assertions are true fort € R.
(i) The operators A(t) and B(t) satisfy (H1) with uniform constants and Ag(t) satisfies

condition (2.1) with constants &, ¢, and some K depending on K, ¢, w, w. Moreover,

Ag(t) is the part C(t) of Aa—1(t) + B(t) in X.

(i1) x20 o x2e® gng X () Xo?f’ft), where the mnorms of the embeddings are

bounded by constants only dependmg on the constants in (A1°) and (A2).

(iii) X;?fe(t) < XA(t) for 0 < € < 1—a, where the norms of the embeddings are bounded
by constants only depending on € and the constants in (A1°) and (A2).

Proof. Remark 5.1 implies that
R(w,A_1(t))B(t) = (w — Aq—1(t))R(w, A_1(t))D(t)®(t) = D(t)P(t). (5.4)

Due to (5.4) and (A2), the operators B(t) are uniformly bounded from X}, to X! _; for
t € R, and the estimate (H1)(a) holds with w = &. If € D(Ag(t)) — X!, then we have

Ap(t)x = (Ap(t) —w)(x — Dy, (t)L(t)x) + wx = (A(t) — w)(z — Dy, (t)L(t)x) + wx
— Aa1 (D + (@ — A1 () Du(O)(Da = Aai (D + B(b)z.
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Hence, z € D(C(t)) and C(t)x = Ag(t)z, i.e, Ag(t) C C(t). For x € D(C(t)), we first
note that

(C(t) —w)r = (Aa—1(t) —w)(x — Dy, (t)®(t)z) € X.

Therefore x — D,,(t)®(t)z € D(A(t)). So we obtain z € Z; and 0 = L(t)(z — D, (t)®(t)x =
L(t)x — ®(t)z. As a result, x € D(Ag(t)) and thus Ag(t) = C(t). Proposition 3.2 and
Lemma 3.3 now imply the assertions. U

The next result gives a suffient condition for (A2) and for the equality of the in-
ter/extrapolation spaces of A(t) and Ag(t).

Proposition 5.3. Assume that (A1’) holds and that for some & > w and every t € R
there exists a solution operator D(t) of (5.2) such that d := supeg || D ()|l (v, xz) < oo
Moreover, suppose that one of the following three conditions are true.

(a) 18]l s v) < [4(1 + K)eod) ! for t € R.

(b) The operators ®(t), t € R, are uniformly bounded in E(XE,Y) for some 5 € [0, ).

(c) For t € R we have Z; — Xé with uniformly bounded embedding constants and the
operators Dy(t) are uniformly bounded in L(Y, X!) for some v € (o, 1].

Then condition (A2) and thus assertion (i) of Proposition 5.2 hold. Moreover, we have
X&q © _ X{j *® ond X;qftl) ~ Xﬁf?), where the respective norms are equivalent with
constants only depending on the given constants.

Proof. In the case (a), we have |[B(t)|lzxz xt ) < [4(1+ K)co)™! for all t € R. In the
case (b) and (c), one sees that B(t) is uniformly bounded from X} to X{,_; and from X,

to Xfyfl, repectively. Thus (5.4), Remark 5.1, and Proposition 3.4 yield the results. [

Proposition 5.4. Let (A1)-(A83) hold. Then the operators A(t) and B(t), t € R, satisfy
the hypothesis (H2), and the operators Ag(t), t € R, fulfill the conditions (2.1) and (2.2)
with exponents p and min{v, a}.

Proof. Assumption (A3) combined with (5.4) implies (3.20) in (H2) for A(¢) and B(t).
The assertions thus follow from Propositions 5.2 and 3.6. (]

Thanks to the above proposition, the operators Ag(-) generate an evolution family
Us(-,-) with the properties stated in Section 2. In particular, it can be extended to a
family Ugp o—1(t, s) : ijﬁtl)

evolution equation (5.1). We write Gg o—1 instead of Gpq—1. Moreover, Theorem 3.7

— X which gives the mild solution of the boundary parabolic

implies the following variation of constants formulas.

Proposition 5.5. Assume that (A1)-(A3) hold. Then, for x € X and t > s, we have
t
Us(t,s)x =U(t,s)r + / Uap—1(t, 7)(w — Aa—1(7)) Dy (7)@(7)Us (7, s)x do,
t

Usp(t,s)x =Ul(t,s)xr + / Up a—1(t,7)(w— Aa—1(7)) Dy (1)@ (T)U (T, 5)2 dT.
S

From Theorems 4.1, 4.2, and 4.3 we further deduce the robustness results stated below.

The compactness assumption in the second result holds in particular if Z; is compactly

embedded in X!, for ¢ € R which typically holds in applications to partial differential

equations on a bounded spatial domain.
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Theorem 5.6. Assume that (A1)-(A3) hold and that sup,c [| ()l £(xz v is sufficiently
small. Then the following assertions are true.

(i) If U has an exponential dichotomy on a closed interval J of R, then Ug has an
exponential dichotomy on J and the unstable projections of U(-,-) and Ug(-,-) have the
same rank.

(ii) If U has exponential dichotomy on (—oo, =T and [T, 00) for some T >0 and G is
Fredholm on E, then Gg o—1 ts Fredholm on Efff) with the inder ind(Go o—1) = ind(G).

Theorem 5.7. Assume that (A1)-(A3) hold, that A(t) is densely defined for everyt € R,
that D(t)®(t) € [,(Xf(t)) is compact for every t € R and tends to 0 in norm as |t| — oo.
Let G be Fredholm in E. Then the operator Gg o—1 is Fredholm in Efff) with the index
ind(G.:p,a_l) = 1nd(G)

Theorem 4.5 now yields a Fredholm alternative for (5.1). We note that D, (-)h € E,

due to the additional assumptions on D(t), Remark 5.1(ii), and [15, Corollary 2.2.3]. We
write Py, Qa, X2(T), and X2 (T) instead of Pg, Qp, XB(T), and XB(T).
Theorem 5.8. Assume that the assumptions of Theorem 5.6 or 5.7 hold. Let g € Cp(R, X)
and h € Co(R,Y). Suppose that t — D(t)y € X is continuous for each y € Y and that
D(t):Y — Xf; is uniformly bounded for some 3 € (a,1). Then there is a mild solution
u € Cop(R, X) of (5.1) if and only if

/R<f(3)7w<3>>X£q,l(s) ds =0

for f =g+ (w—Aa-1(:))Du(-)h and all w € LY(R, X*) with w(s) = Up a—1(t,s)*w(t) for
all t > s. Every mild solution u is given by

u(t) =v(t) = Us(t,T)ys + (RE_, f)(t), t>T,
u(t) = v(t) +o(t) + (R ))(t),  t<T,
where (RE_f)(T) — (Ry_1/)(T) = ys + yu € X2(T) + XI(T), © € Co((—00,T), X)

with 9(T) = yu and 0(t) = Ug(t,s)v(s) for all T > t > s, and v € Co(R, X) with
v(t) = Us(t, s)v(s) for all t > s. Finally, RX | f are defined by

t oo
R f(t) = / Usp,a—1(t,8)Pp.a—1(5)f(s)ds —/ Up,a—1(t,8)Qa,a—1(s)f(s),ds, t>T,
T ¢

t -T _
R, f(t)= /_ Up a-1(t,5)Po.a—1(s)f(s)ds /t Uspa-1(t,s)Qa,a-1(5)f(s)ds, t < -T,
t

-7
R, f(t)= / Up.a—1(t,5)Ppa—1(s)f(s)ds + /T Upa-1(t,s)f(s)ds, =T <t <T.

We illustrate our results by an example in a sup norm context involving a nonlocal
unbounded perturbation at the boundary.
Example 5.9. We study the boundary value problem
Oru(t,z) = A(t,x, D)u(t,z), teR, ze€Q,
L(t,z,D)u(t,z) = (P(t)u)(t,z), teR, z €, (5:5)

on a bounded domain Q C R” with boundary 92 of class C? and outer unit normal vector
v(z), employing the differential expressions

Alt,e, D)= an(t,2)0k0 + Y ax(t,x) O + ao(t, ),
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L(t,z,D) = Zk bi(t, ) O + bo(t, z).

Here we can consider the second equation in (5.5) as a boundary feedback with the
Neumann type control L(t)u(t) = h(t) and the feedback law h(t) = ®(t)u(t), see be-

low. We require that ay = ay and by are real-valued, ag,ax,a0 € Ci'(R,C(Q)),
bk7 bO € Cﬁ(Ra 01(89))7

D anltx) &G =nlE?,  and bt z)k(z) = B

k=1 k=1

for constants u € (1/2,1), 3,n >0 and all ¢ € R®, k,l =1,---,n,t € R, x € Q resp.
z € Q. (Cf is the space of bounded, globally Hélder continuous functions.) We set
X =C(Q),Y =CHo9),

Zi={ue ﬂp>1 W2(Q) : A(t,-,D)u € X, L(t,-,D)u € Y},

Ap(t)u = A(t,-, D)u and L(t)u = L(t, -, D)u for u € Z;, and A(t) = Ap,(t)|N(L(t)).

As shown in [3, §6] the operators A(t), t € R, satisfy (2.1) and (2.2) with v = 1/2.
(We note that by the same methods it can be shown that for all p € (1,00) the map
t — R(w, A(t)) € L(X,W?P(Q)) is Hélder continuous with exponent g, but this fact is
not needed below.) In particular, A(-) generates an evolution family U(-,-) on X. Observe
that D(A(t)) is dense in X. We endow Z; with the norm ||ul|z, = ||u|loc + || Am ()ulloo +
||IL(t)u|ly. The completeness of this norm can be deduced from the elliptic LP—apriori
estimates, see e.g. [15, Theorem 3.1.1].

By standard elliptic theory, for each ¢ € Y there is a unique v € ﬂp>1 WpQ(Q) satisfying

(w—A(t,-,D))v=0 on £, L(t,-,D)v=¢ on 09,

and ||[v|l2p < ¢ ||¢|ly, where w > 0 is sufficently large. For p > n/2, Sobolev’s embedding
theorem yields A(t,-, D)v = wv € X and thus [|A(t,-, D)v||ss < c|lv|l2p < cll¢|ly. (Here
and below all constants do not depend on ¢.) As a result, the solution operator D,,(t)p := v
is continuous from Y to Z;. In [16, Example 4.5] we have checked that ¢t — D,(t) €
L(Y,WZ2(€2)) is Holder continuous of exponent x for all p € (1,00).

For o € (0,1/2), Theorem 3.1.30 in [15] shows that X! = h?*(Q) =: X,, where the
‘small Holder space’ hP is defined in [15, §0.2]. (Moreover, X%, is the kernel of L(t) in
h?*(Q) for a € (1/2,1).) Thus Z; is compactly embedded in X! for a € (0,1/2) and
t € R. We further assume that

ag(t,:) — ag(£oo,:) in X and bj(t,:) = bj(£o0,:) inY

as t — +oo, where § = (k,l) or = j for k,l =1,--- ,nand j = 0,--- ,n. Defining the
sectorial operators At in the same way as A(t), we also suppose that iR C p(Aieo).
(Observe that the operators A4, have compact resolvent so that the spectrum consists
only of eigenvalues. The spectrum of Ay, was studied in [7, Exa.5.1].) Then U(-,-) has
exponential dichotomies on (—oo, —T] and [T, 00) and the operator G is Fredholm on F
due to Theorem 4.3 of [18] and Corollary 3.7 and Example 4.5 of [16].

Fix a € (1 — p,1/2). We assume that ®(t) € L(X,,Y) is globally Holder continuous
of exponent y and [|®(t)| z(x,,y) — 0 as [t| — oo. For instance, one could take ®(t) =
ym(t,)(I — An)~P for the Neumann Laplacian Ay on X, 8 € [0,a], the trace operator
v and a function m € C{'(R,C'(Q)) N Co(R,C*(2)). For 3 = 0, we obtain the Dirichlet
type boundary feedback ®(t)u = ym(t,-)u, whereas the feedback is nonlocal for 5 > 0.
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Remark 4.4 and (5.4) imply that the estimate in (A2) holds for a sufficiently large
@ = w. We define the mild solutions of (5.5) again by (5.1). Then the Fredholm alternative

Theorem 5.8 holds for mild solutions of (5.5) on X = C(Q2) for g € Cp(R,X) and h €

Co(R,Y).
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