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Abstract. Under minimal assumptions, we characterize the Fredholm prop-
erty and compute the Fredholm index of abstract differential operators −d/dt+
A(·) acting on spaces of functions f : R → X. Here A(t) are (in general) un-
bounded operators on the Banach space X and our results are formulated in
terms of exponential dichotomies on two halflines for the propagtor solving the
evolution equation u̇(t) = A(t)u(t) in a mild sense.

1. Introduction

In this paper we obtain the final version of the infinite dimensional Dichotomy
Theorem for well–posed differential equations

(Gu)(t) := −u′(t) + A(t)u(t) = f(t), t ∈ R, (1.1)

on a Banach space X. Our main Dichotomy Theorem 1.1 characterizes the Fred-
holm property of the (closure of the) operator G on, say, Lp(R, X) and determines
its Fredholm index in terms of the exponential dichotomies on half lines of the
propagator solving (1.1). The linear operators A(t), t ∈ R, on X are unbounded, in
general, and we only require that the corresponding initial value problem (1.3) be-
low is well–posed in a mild sense. We reduce the problem to the study of a weighted
shift operator on X–valued sequence spaces, and give a purely operator theoreti-
cal proof of our Theorem 1.1 based on the discrete version of the “input-output”
method from the theory of differential equations.

The Dichotomy Theorem is related to problems arising from finite dimensional
dynamics, Morse theory, and the theory of travelling waves. For a detailed discus-
sion concerning these connections, we refer to [12, Section 7]. This theorem can
further be viewed as an extension of a simple form of the celebrated Atiyah–Patodi–
Singer Index Theorem, cf. [22].

For finite dimensional X = Cd, versions of the Dichotomy Theorem were es-
tablished in the papers [6], [17], [18], and [23]. Here A(t) are matrices and G =
− d

dt +A(·) is defined on the Sobolev space W 1,p(R, Cd), for instance. In this case G
is Fredholm if and only if the propagator (or evolution family) {U(t, τ)}t≥τ solving

2000 Mathematics Subject Classification. Primary: 47A53, 47D06. Secondary: 34G10, 35P05.
Key words and phrases. Fredholm operator and index, exponential dichotomy, node operator,

evolution family, evolution equation, weighted shift operator, input-output method.
The authors would like to thank Yuri Tomilov for many useful discussions and Nguyen Thieu

Huy for important comments on a preliminary version of the paper. Research of the first author
was supported in part by the NSF grants 0338743 and 0354339, by the CRDF grant UP1-2567-OD-
03, and by the Research Board and the Research Council of the University of Missouri. Research
of the second author was supported in part by the NSF grant 0338743. The second author wishes
to thank R. Schnaubelt and the Analysis Group of Martin–Luther University for kind hospitality
during his visit in Halle. The third author is supported in part by the DAAD grant D/03/36798.

1



2 YURI LATUSHKIN, ALIN POGAN, AND ROLAND SCHNAUBELT

(1.1) has exponential dichotomies on R− and R+. However, applications to partial
differential equations require an infinite dimensional version of the Dichotomy The-
orem for unbounded A(t). Progresses in this direction have been made in [2], [3], [4],
[5], [9], [10], [12], [13], [19], [20], [21], [24], and the references therein. We stress that
the proofs of the finite and infinite dimensional versions of the Dichotomy Theorem
are quite different due to many new difficulties arising in the infinite dimensional
setting, as described in Sections 1 and 7 of [12].

Recently, several authors discussed the Fredholm property of the operator G
and related questions (such as perturbation results) in specific infinite dimensional
settings. In [20] and [21] a differential equation of the form (1.1) on a Banach
space X having the UMD property was studied, where the constant domain of the
operators A(t) is compactly embedded in X and A(t) → A± as t → ±∞. Assuming
that the spectra of A± do not intersect iR, it was proved that G is Fredholm on
Lp(R, X) for p ∈ (1,∞), and its index was computed in terms of the spectral
flow of A(·). (Here the Cauchy problem (1.3) could be ill–posed.) In [9] and [10]
theorems of this type are established for general (well–posed) parabolic problems.
The latter approach is based on a detailed study of the maximal regularity property
of the solutions to the (inhomogeneous) differential equation. The case of bounded
operators A(t) was considered in [1] in connection with applications to infinite
dimensional Morse theory. In [19] and [24] necessary and sufficient conditions for
the Fredholm property of G were given for a special class of infinite dimensional
differential equations having a backward uniqueness property, cf. (BU) below. This
work is related to a detailed study of travelling waves for elliptic problems on
cylinders. All these papers dealt with the asymptotically autonomous case (except
for [19]) and imposed restrictive regularity hypotheses ensuring the closedness of
G = − d

dt +A(·) defined on dom( d
dt )∩dom(A(·)). See [9], [10], [12] for more details.

In a different line of research, one starts with a strongly continuous evolution
family {U(t, τ)}t≥τ , and constructs an operator G on, say, Lp(R, X) as described
below. There are no additional restrictions on the regularity or the asymptotic
behaviour of A(·). If (1.3) is well–posed in a classical sense, then G is the closure
of G = − d

dt + A(·). In [5] (see also [2, 3, 4]) it was further assumed a priori that
{U(t, τ)}t≥τ has exponential dichotomies on semi–lines. Then a ‘node operator’
was introduced, and it was proved that G and the node operator are Fredholm at
the same time with equal indices. On the other hand, the authors in [12] required
X to be reflexive and imposed a condition of backward uniqueness on the evolution
family. Under these hypotheses, they could characterize the Fredholm property of
G as we do below. In the current paper we discard any additional assumption and
establish the following theorem (the relevant definitions are given in Section 2).

Theorem 1.1. Assume that U = {U(t, τ) : t ≥ τ ; t, τ ∈ R} is a strongly continuous,
exponentially bounded evolution family on a Banach space X, and let G be the
generator of the associated evolution semigroup defined on E(R) = Lp(R, X), p ∈
[1,∞), or on E(R) = C0(R, X). Then the operator G is Fredholm if and only if
there exist real numbers a ≤ b such that the following two conditions hold:

(i) The evolution family U has exponential dichotomies with the family of pro-
jections {P−

t }t≤a and {P+
t }t≥b on (−∞, a] and [b,∞), respectively.

(ii) The node operator N(b, a), acting from ker P−
a to ker P+

b and defined by
the rule N(b, a) = (I − P+

b )U(b, a)|ker P−a
, is Fredholm.
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Moreover, if G is Fredholm, then we have the equalities dim kerG = dim ker N(b, a),
codim imG = codim im N(b, a), and indG = indN(b, a). In particular, the Fred-
holm properties of G are independent of the choice of the function space E(R).

In Proposition 6.1 we further give a description of the range of G in the spirit of
the classical Fredholm alternative using the adjoint evolution family.

The evolution semigroup T = {T (t)}t≥0 mentioned in Theorem 1.1 is defined on
Lp(R, X), p ∈ [1,∞), or on C0(R, X) by the formula (T (t)f)(τ) = U(τ, τ−t)f(τ−t),
τ ∈ R, t ≥ 0, see [2], [7], [25]. This is a strongly continuous semigroup, and we
denote its generator by G. The operator G can be described in terms of mild
solutions to an inhomogenous evolution equation, as shown by the following lemma,
see [7, Proposition 4.32].

Lemma 1.2. A function u belongs to the domain domG of the operator G on
Lp(R, X), p ∈ [1,∞), resp., on C0(R, X), if and only if u ∈ Lp(R, X) ∩ C0(R, X),
resp., u ∈ C0(R, X), and there exists an f ∈ Lp(R, X), resp., f ∈ C0(R, X), with

u(t) = U(t, τ)u(τ)−
∫ t

τ

U(t, σ)f(σ)dσ for all t ≥ τ in R. (1.2)

If (1.2) holds, then Gu = f .

Suppose for a moment that the differential equation

u′(t) = A(t)u(t), t ≥ τ, u(τ) = x ∈ dom(A(τ)), (1.3)

is well–posed in a classical sense, i.e., the operators A(t) are all densely defined and
there is an evolution family U such that U(t, τ) dom(A(τ)) ⊆ dom(A(t)) for t ≥ τ
and u(t) = U(t, τ)x is the unique C1–solution of (1.3). Then G is the closure of
the operator G = − d

dt + A(·) on Lp(R, X), p ∈ [1,∞), resp., on C0(R, X), with the
domain dom G = {u ∈ W 1,p(R, X) : u(t) ∈ dom A(t) a.e., A(·)u(·) ∈ Lp(R, X)},
resp. {u ∈ C0(R, X) : u(t) ∈ dom A(t) for t ∈ R, u′(·), A(·)u(·) ∈ C0(R, X)}, where
W 1,p(R, X), p ∈ [1,∞), is the usual Sobolev space, cf. [7, Theorem 3.12]. However,
one knows only rather restrictive assumptions on the operators A(t) implying well–
posedness in the above sense, and almost no necessary conditions, see the survey
given in [25]. Thus we only assume that the evolution family U exists, without any
reference to operators A(t).

Our Theorem 1.1 was shown in [12, Theorem 1.1] assuming in addition that X
is reflexive and U has the following backward uniqueness property (BU).

(BU.1): If u ∈ C0(R, X), u(t) = U(t, τ)u(τ) for all t ≥ τ in R, and u(τ) = 0
for some τ ∈ R, then u = 0.

(BU.2): If v ∈ Cw,∗
b (R, X∗), v(τ) = U(t, τ)∗v(t) for all t ≥ τ in R, and

v(τ) = 0 for some τ ∈ R, then v = 0.
(See also Remark 7.4 saying that for our purposes Cw,∗

b (R, X∗) can be replaced by
Cw,∗

0 (R, X∗) in (BU.2)). We point out that these properties do not hold for certain
evolution families solving parabolic partial differential equations. Some sufficient
conditions for (BU) are known for specific classes of partial differential equations.
However, in general it is rather difficult to verify (BU), cf. [9] and references therein.
In Section 7 we present two examples, where G is Fredholm but (BU) fails.

Our proof also shows that if U does satisfy the backward uniqueness property
(BU), then we can take a = b = 0 in our Theorem 1.1, see Proposition 7.1. Using
a different method, this result was proved in [12, Theorem 1.2] for reflexive X. As
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shown in Example 7.3, the conclusion of Theorem 1.1 with a = b = 0 is false in
general if (BU) is violated.

The proof of the (simpler) ‘if’ part of Theorem 1.1 given in [12] or [5] works
without the reflexivity assumption and without the backward uniqueness property.
The main objective of the current paper is to remove these additional conditions
in the proof of the ‘only if’ part. Without these hypotheses the problem at hand
becomes significantly more involved, and thus the methods used in the current
paper are quite different from those in [12]. We use an approach going back to
Daletskii and Krein, [8], and Levitan and Zhikov, [14], which is sometimes called
the “input-output method.”

In [8] this technique was used to characterize the exponential stability of an
evolution family U . The basic idea is to solve the equation Gu = f on R+ for
functions of the form f(t) = ϕ′(t)U(t, s)x (where ϕ is a suitable scalar function).
For such f it can be seen that u(t) = −ϕ(t)U(t, s)x using a version of Lemma 1.2.
If G is invertible on R+, one can then deduce the required exponential estimate
by means of the boundedness of G−1. A variant of this argument shows that the
stable and unstable subspaces of U yield a time depending decomposition of X if
G is invertible on R, leading to a characterization of exponential dichotomy on R
given in [14]. In the more recent contributions [15] and [16], this approach was
employed to characterize exponential dichotomy on R+. Here additional difficulties
appear at the initial time t = 0 which correspond to the fact that the dichotomy
projections are not unique in the half line case, in general. We point out that the
input–output method is quite different from the approach used in [2], [3], [4], and
[7] (and its modifications in [5] and [12]), where the main tool for the construction
of the exponential dichotomy, say, on R was the Riesz projection of the semigroup
generated by G.

In the present paper we deal with operators G being Fredholm. This fact forces
us to ‘delete’ the kernel and co–kernel of G. Moreover, we can only expect to obtain
exponential dichotomies of U on (possibly disjoint) semi-lines (−∞, a] and [b,∞),
see Example 7.3. Thus we must control the behaviour of U(t, s) at a, b, and in
between. In order to achieve this, we first discretize the problem (see Section 2).
In Section 3, we then treat the stable subspaces on Z+ and the unstable subspaces
on Z−. These spaces are somewhat easier to handle since they are given explicitly
in terms of U , see (3.1) and (3.2). The main difficulty is the construction of the
correct complements of these spaces. Here we need several decompositions of X
given in Lemma 3.6. In Sections 4 and 5 we construct the dichotomies on [b,∞)
and (−∞, a] by propagating the “traces” of the kernel and co-kernel of G at the
points b and a (Lemmas 4.2 and 5.2). In Section 6 we deal with the node operator
to show condition (ii) in Theorem 1.1, and the formulas for the defect numbers. In
Section 7 we describe the backward uniqueness properties in terms of the traces of
the kernel and co-kernel of G, and show that one can take a = b = 0 in Theorem
1.1 when the backward uniqueness properties hold, see Proposition 7.1.

2. Notation, definitions, and preliminary results

We set R+ = {t ∈ R : t ≥ 0}, R− = {t ∈ R : t ≤ 0}, Z+ = {n ∈ Z : n ≥ 0},
Z− = {n ∈ Z : n ≤ 0}, and we use t, τ, σ to denote real numbers and n, m, k, j to
denote integers. We write c for a generic (positive) constant. A∗, dom(A), ker A,
im A are the adjoint, the domain, the kernel and the range of an operator A on a
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Banach space X with dual space X∗, and A|Y is the restriction of A on the subspace
Y of X. The set of all bounded linear operators from a Banach space X to a Banach
space Y is designated by B(X, Y ), and B(X, X) =: B(X). For a subspace Y∗ ⊆ X∗,
we use the (non-standard !) notation Y ⊥

∗ = {x ∈ X : 〈x, ξ〉 = 0 for all ξ ∈ Y∗}
for the preannihilator, where 〈·, ·〉 is the (X, X∗)–pairing. If P and Q are two
projections on X, then X = im P ⊕ ker P = im Q ⊕ ker Q, where throughout
‘⊕’ denotes a decomposition of a Banach space into closed subspaces with trivial
intersection. With respect to these decompositions, each A ∈ B(X) can be written
as the 2× 2 operator matrix

A =
[

PAQ PA(I −Q)
(I − P )AQ (I − P )A(I −Q)

]
.

C0(R, X) is the space of continuous functions f : R → X vanishing at ±∞;
Cw,∗

b (R, X∗) is the space of bounded, weak star continuous functions f : R → X∗;
Lp(R, X) is the space of (equivalence classes of) Bochner p-integrable functions
f : R → X, where p ∈ [1,∞). We denote by χM the characteristic function of a set
M . If (ϕk)k∈Z is a numerical sequence and x ∈ X, then ϕ⊗x denotes the X–valued
sequence (ϕkx)k∈Z.

An evolution family U = {U(t, τ)}t≥τ on a set J ⊆ R is a family of operators
U(t, τ) ∈ B(X), t ≥ τ , t, τ ∈ J , satisfying

U(t, t) = I(the identity operator onX);

U(t, τ)U(τ, σ) = U(t, σ) for all t ≥ τ ≥ σ with t, τ, σ ∈ J.

It is called strongly continuous if the map (t, τ) 7→ U(t, τ)x is continuous for all
x ∈ X and t ≥ τ in J . If ‖U(t, τ)‖ ≤ Meω(t−τ) for some constants M ≥ 1 and
ω ∈ R and all t ≥ τ in J , then U is exponentially bounded.

Definition ED. An evolution family U has an exponential dichotomy on J ⊆ R
if there exist closed subspaces {Xs(t)}t∈J and {Xu(t)}t∈J of X such that

(iJ) X = Xs(t)⊕Xu(t) for all t ∈ J and U(t, τ)Xs(τ) ⊆ Xs(t), U(t, τ)Xu(τ) ⊆
Xu(t) for all t ≥ τ in J;

(iiJ) U(t, τ)|Xu(τ) is an invertible from Xu(τ) to Xu(t) for all t ≥ τ in J;
(iiiJ) there are constants N , ν > 0 such that

‖U(t, τ)|Xs(τ)‖ ≤ Ne−ν(t−τ), ‖(U(t, τ)|Xu(τ))−1‖ ≤ Ne−ν(t−τ) for all t ≥ τ in J.

We denote by Pt the projection onto Xs(t) parallel to Xu(t). If J = [b,∞) or
J = Z∩ [b,∞) we write X+

s,u(t) and P+
t for the respective dichotomy subspaces and

the dichotomy projections, and if J = (−∞, a] or J = Z∩ (−∞, a] we write X−
s,u(t)

and P−
t for the respective dichotomy subspaces and the dichotomy projections. If U

is strongly continuous and exponentially bounded on an unbounded interval J and
(iJ) − (iiiJ) hold, then the function t 7→ Pt is strongly continuous and uniformly
bounded on J , see [8, Lemma IV.1.1, IV.3.2] or [15, Lemma 4.2].

In order to prove Theorem 1.1, we pass from continuous time to discrete time;
i.e., we replace the operator G in the statement of Theorem 1.1 by the difference
operator D defined by the formula

D(xn)n∈Z = (xn − U(n, n− 1)xn−1)n∈Z, (2.1)

cf. [3], [7], [11]. The operator D is acting on the sequence space E(Z), where
E(Z) = `p(Z, X) if E(R) = Lp(R, X), p ∈ [1,∞) and E(Z) = c0(Z, X) if E(R) =



6 YURI LATUSHKIN, ALIN POGAN, AND ROLAND SCHNAUBELT

C0(R, X). This replacement is possible due to Theorem 1.4 and Lemma 1.5 of
[12] (cf. also [11, Thm.7.6.5], [3, Thm.1], [4, Thm.2]). These results say that U
has an exponential dichotomy on R± if it has an exponential dichotomy on Z±
and that imG is closed if and only if im D is closed, dim kerG = dim ker D, and
codim imG = codim im D. In particular, the operator G is Fredholm if and only
if D is Fredholm, and indG = ind D. Since we focus our attention on the proof of
the ‘only if’ part of Theorem 1.1, throughout Sections 2–5 we will assume that D
is a Fredholm operator.

In the following we collect some basic properties of the spaces

Xn = {x ∈ X : ∃ (xk)k∈Z ∈ ker D so that x = xn} and (2.2)

Xn,∗ = {ξ ∈ X∗ : ∃ (ξk)k∈Z ∈ ker D∗ so that ξ = ξn}, (2.3)

where n ∈ Z. Simple computations show that

D∗(ξn)n∈Z = (ξn − U(n + 1, n)∗ξn+1)n∈Z,

ker D = {(xn)n∈Z ∈ E(Z) : xn = U(n, m)xm for all n ≥ m} (2.4)

ker D∗ = {(ξn)n∈Z ∈ E(Z)∗ : ξm = U(n, m)∗ξn for all n ≥ m}. (2.5)

These formulas imply that U(n, m)Xm = Xn and U(n, m)∗Xn,∗ = Xm,∗ for all
n ≥ m. Because of these identities and the Fredholm property of D, we obtain
0 ≤ dim Xn+1 ≤ dim Xn ≤ dim kerD < ∞ and 0 ≤ dim Xn,∗ ≤ dim Xn+1,∗ ≤
dim kerD∗ < ∞ for all n ∈ Z. Hence, there are a, b ∈ Z with a ≤ b such that
dim Xn and dim Xn,∗ are constant for n ≤ a and n ≥ b.

Without loss of generality, we may assume that a = 0 and b ≥ 1 due to the fol-
lowing translation argument: For a ∈ Z, consider the strongly continuous evolution
family Ua defined by Ua(t, τ) = U(t+a, τ +a) for t ≥ τ in R, and the shift operator
Sa on E(Z) acting by Sa(xn)n∈Z = (xn+a)n∈Z. If Da is the difference operator as-
sociated to Ua as in (2.1), then Da = SaDS−1

a , and thus Da and D have the same
Fredholm properties. So, choosing an appropriate a, we have that dim Xn(Ua) and
dim Xn,∗(Ua) are constant for n ≤ 0. To sum things up, we impose the following
assumption, without loss of generality.

Hypothesis 1. U is a discrete, exponentially bounded evolution family on Z, D is
a Fredholm operator, and dim Xn and dim Xn,∗ are constant for n ≥ b and n ≤ 0,
for some 1 ≤ b ∈ Z.

Lemma 2.1. Let Hypothesis 1 be satisfied. Then dim Xn ≤ dim kerD < ∞ and
dim Xn,∗ ≤ dim kerD∗ < ∞ for n ∈ Z and the following assertions hold.

(i) U(n, m)Xm = Xn for all n ≥ m;
(ii) U(n, m)∗Xn,∗ = Xm,∗ for all n ≥ m;
(iii) U(n, m)|Xm

: Xm → Xn is invertible if m ≤ n ≤ 0 or n ≥ m ≥ b;
(iv) U(n, m)∗|Xn,∗

: Xn,∗ → Xm,∗ is invertible if m ≤ n ≤ 0 or n ≥ m ≥ b;
(v) Xn ⊆ X⊥

n,∗ for all n ∈ Z;
(vi) x ∈ X⊥

m,∗ if and only if U(n, m)x ∈ X⊥
n,∗, where n ≥ m in Z.

Proof. We already observed after (2.4) and (2.5) that the first assertion and state-
ments (i) and (ii) hold. Assertions (iii) and (iv) follow from these assertions and Hy-
pothesis 1. In order to show (v), take x = (xk)k∈Z ∈ ker D, ξ = (ξk)k∈Z ∈ ker D∗,
and n ∈ Z. Then (2.5) and (2.4) imply that

〈xn, ξn〉 = 〈xn, U(k, n)∗ξk〉 = 〈U(k, n)xn, ξk〉 = 〈xk, ξk〉



DICHOTOMY AND FREDHOLM PROPERTIES OF EVOLUTION EQUATIONS 7

for all k ≥ n. Letting k → ∞, we deduce 〈xn, ξn〉 = 0 since x ∈ c0(Z, X) and ξ is
bounded. Thus assertion (v) holds. The last assertion follows from the identities

〈x, ξm〉 = 〈x,U(n, m)∗ξn〉 = 〈U(n, m)x, ξn〉

for all n ≥ m and all ξ = (ξn)n∈Z ∈ ker D∗. �

Since X0 ⊆ X⊥
0,∗ and dim X0 < ∞, we can choose a closed subspace X ′

0 of X with

X⊥
0,∗ = X0 ⊕X ′

0 (2.6)

Moreover, we define the following closed subspaces of E(Z) and E(Z)∗

F = {x = (xn)n∈Z ∈ E(Z) : xn ∈ X⊥
n,∗ for all n ∈ Z}, (2.7)

F0 = {x = (xn)n∈Z ∈ F : x0 ∈ X ′
0}, (2.8)

Fb,∗ = {ξ = (ξn)n∈Z ∈ E(Z)∗ : ξn ∈ Xn,∗ for all n ∈ Z, ξb = 0}. (2.9)

On these spaces the operators D0 := D|F0 and Db,∗ := D∗
|Fb,∗

have better properties
than D and D∗, respectively, as stated in the next lemma.

Lemma 2.2. Let Hypothesis 1 be satisfied. Then the following assertions hold.

(i) F is D-invariant and D|F : F → F is surjective.
(ii) The operator D0 = D|F0 : F0 → F is invertible;
(iii) Db,∗ = D∗

|Fb,∗
is uniformly injective, that is, ‖Db,∗ξ‖(E(Z))∗ ≥ c‖ξ‖(E(Z))∗

for all ξ ∈ Fb,∗ and a constant c > 0.

Proof. Assertions (i) and (ii) can be shown exactly as [12, Lemma 2.2] and [12,
Lemma 2.3], respectively. To prove (iii), we have to verify that Db,∗ : Fb,∗ → E(Z)∗

is injective and has closed range. If ξ = (ξn)n∈Z ∈ ker Db,∗ then ξn = U(b, n)∗ξb = 0
for n ≤ b and U(n, b)∗ξn = ξb = 0 for n ≥ b by (2.5). Lemma 2.1(iv) implies that
ξn = 0 for n ≥ b, proving that Db,∗ is injective. Next, take η = limn→∞ Db,∗ξn

with ξn ∈ Fb,∗. Since D∗ is Fredholm, im D∗ is closed and thus there is ζ ∈ E(Z)∗

with η = D∗ζ. Moreover, there exist an operator D† ∈ B(E(Z)∗) and a finite
rank operator R such that D†D∗ = I + R and im R ⊆ ker D∗. Observe that
D∗(ζ − ξn) → 0 as n → ∞. Then it follows that ζ − ξn + wn → 0 as n → ∞ for
wn = R(ζ−ξn) ∈ ker D∗. Passing to the elements of the sequences, we deduce that
ζk = lim

n→∞
(ξk,n − wk,n) ∈ Xk,∗ for each k ∈ Z, where ζ = (ζk)k∈Z , ξn = (ξk,n)k∈Z

and wn = (wk,n)k∈Z. There is a vector θ = (θk)k∈Z ∈ ker D∗ with ζb = θb by (2.3).
Hence, ζ − θ ∈ Fb,∗ by (2.9) and η = D∗(ζ − θ) = Db,∗(ζ − θ). So the range of
Db,∗ is closed. �

We will need the following elementary lemma which is probably well-known.

Lemma 2.3. Let V be a subspace of X, {ξ1, . . . , ξd} be a set of linearly independent
vectors in X∗, and Y∗ = Span{ξ1, . . . , ξd}. Then the following assertions hold.

(i) There are x1, . . . , xd ∈ X such that 〈xi, ξj〉 = δij for all i, j ∈ {1, . . . , d},
where δij is the Kronecker Delta.

(ii) Let v1, . . . , vd ∈ V satisfy 〈vi, ξj〉 = δij for all i, j ∈ {1, . . . , d} and set
W = Span{v1, . . . , vd}. Then V = (V ∩ Y ⊥

∗ )⊕W.
(iii) codim Y ⊥

∗ = d < ∞.
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Proof. (i) It is clear that assertion (i) holds if d = 1. Assume that it is true for
some d ∈ N and let {ξ1, . . . , ξd, ξd+1} be a system of linearly independent vectors.
We want to prove by contradiction that

d⋂
i=1

ker ξi * ker ξd+1. (2.10)

Take x ∈ X and let {x1, . . . , xd} satisfy the induction hypothesis. If (2.10) were
false, then we would obtain

x−
d∑

j=1

〈x, ξj〉xj ∈
d⋂

i=1

ker ξi ⊆ ker ξd+1 , i.e., ξd+1 =
d∑

j=1

〈xj , ξd+1〉ξj .

This is a contradiction, and so (2.10) is true. Thus there exists xd+1 ∈
⋂d

i=1 ker ξi

with 〈xd+1, ξd+1〉 = 1, concluding the proof of (i).
(ii) Let x ∈ V and set y = x−

∑d
j=1〈x, ξj〉vj ∈ V . Then

〈y, ξi〉 = 〈x, ξi〉 −
d∑

j=1

〈x, ξj〉δji = 0

for all i ∈ {1, . . . , d}. As a consequence, y ∈ V ∩ Y ⊥
∗ and so x ∈ (V ∩ Y ⊥

∗ ) + W .
We have shown that V ⊆ (V ∩ Y ⊥

∗ ) + W . The converse inclusion follows directly
from W ⊆ V . If x ∈ (V ∩ Y ⊥

∗ ) ∩ W , then there are λ1, . . . , λd ∈ C such that
x =

∑d
j=1 λjvj . Therefore

λi =
d∑

j=1

λjδji =
d∑

j=1

〈λjvj , ξi〉 = 〈x, ξi〉 = 0

for all i ∈ {1, . . . , d}, and hence (V ∩ Y ⊥
∗ ) ∩W = {0}. Thus (ii) holds.

(iii) The third assertion follows from (i) and (ii). �

Lemma 2.4. Let (an)n∈Z+ be a sequence of positive numbers and (bn)n∈Z+ ∈
c0(Z+, R+) such that am+n ≤ bnam, for all n, m ∈ Z+. Then there are N, ν > 0,
depending only on (bn)n∈Z+ such that an+m ≤ Ne−νnam for all n, m ∈ Z+.

Proof. Take n0 ∈ Z+ such that bn0 < e−1. We set N = e(max{b0, . . . , bn0} + 1),
ν = 1/n0, and p = [ n

n0
] for n, m ∈ Z+. Then we obtain

an+m ≤ bn−pn0apn0+m ≤ N

e
apn0+m ≤ N

e
(bn0)

pam

≤ Ne−p−1am ≤ Ne−
n

n0 am = Ne−νnam . �

3. Dichotomy estimates on the stable subspaces of Z+ and the
unstable subspaces on Z−

In this section we will use the notations E(Z±) = `p(Z±, X) if E(Z) = `p(Z, X),
p ∈ [1,∞), and E(Z±) = c0(Z±, X) if E(Z) = c0(Z, X). We introduce the stable
and unstable subspaces of U on Z+ and Z−, respectively, by

X+
s (k) = {x ∈ X : (U(n + k, k)x)n∈Z+ ∈ E(Z+)}, k ≥ 0, (3.1)

X−
u (k) = {x ∈ X : ∃ (xn)n∈Z− ∈ E(Z−) with xn = U(n, m)xm for m ≤ n ≤ 0

and xk = x}, k ≤ 0. (3.2)
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We observe that

U(n, m)X+
s (m) ⊆ X+

s (n) for all n ≥ m ≥ 0, (3.3)

U(n, m)X−
u (m) = X−

u (n) for all m ≤ n ≤ 0. (3.4)

Let U+
s (n, m) : X+

s (m) → X+
s (n) and U−

u (n, m) : X−
u (m) → X−

u (n) be the linear
operators defined by U+

s (n, m)x = U(n, m)x for n ≥ m ≥ 0 and x ∈ X+
s (m) and

by U−
u (n, m)x = U(n, m)x for m ≤ n ≤ 0 and x ∈ X−

u (m). The following lemma
shows in particular that the above subspaces do not match at n = 0, in general.

Lemma 3.1. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) X+

s (0) + X−
u (0) = X⊥

0,∗;
(ii) X+

s (0) ∩X−
u (0) = X0.

Proof. (i) Let ξ = (ξn)n∈Z ∈ ker D∗. Then ξ is bounded, and U(k, 0)∗ξk = ξ0 by
(2.5). For x ∈ X+

s (0), equation (3.1) yields U(k, 0)x → 0 as k →∞. We compute

〈x, ξ0〉 = 〈x,U(k, 0)∗ξk〉 = 〈U(k, 0)x, ξk〉
for all k ≥ 0. Letting k → ∞, we deduce 〈x, ξ0〉 = 0 and thus x ∈ X⊥

0,∗. For
x ∈ X−

u (0), there is (xk)k∈Z− ∈ E(Z−) such that xn = U(n, m)xm for all m ≤ n ≤ 0
and x0 = x due to (3.2). In this case we have xk → 0 as k → −∞ and

〈x, ξ0〉 = 〈x0, ξ0〉 = 〈U(0, k)xk, ξ0〉 = 〈xk, U(0, k)∗ξ0〉 = 〈xk, ξk〉
for all k ≤ 0. Letting k → −∞, we now infer that x ∈ X⊥

0,∗. Hence, X+
s + X−

u ⊆
X⊥

0,∗.
Assume that x ∈ X⊥

0,∗. Then the sequence y = −χ{1} ⊗ U(1, 0)x belongs to F
due to (2.7) and Lemma 2.1(vi). Lemma 2.2(i) gives a sequence x = (xn)n∈Z ∈ F
with Dx = y. This equation implies that x1 − U(1, 0)x0 = y1 = −U(1, 0)x and
xn − U(n, 1)x1 = yn = 0 for n ≥ 2. We conclude that U(n, 0)(x − x0) = −xn for
all n ≥ 1, and thus x − x0 ∈ X+

s (0) by (3.1). Using Dx = y again, we obtain
xn − U(n, m)xm = yn = 0 for all m ≤ n ≤ 0, so that x0 ∈ X−

u (0) by (3.2).
Therefore, x = x− x0 + x0 ∈ X+

s (0) + X−
u (0), proving (i).

(ii) Let x ∈ X+
s (0)∩X−

u (0). Then xn = U(n, 0)x defines a sequence (xn)n∈Z+ ∈
E(Z+) by (3.1), and there is a sequence (xn)n∈Z− ∈ E(Z−) so that x = x0 and
xn = U(n, m)xm for all m ≤ n ≤ 0 due to (3.2). It is easy to check that xn =
U(n, m)xm for all n ≥ m in Z, and thus x ∈ X0 by (2.2) and (2.4). Hence,
X+

s (0) ∩X−
u (0) ⊆ X0. The converse inclusion follows directly from the definitions

of X0, X+
s (0), and X−

u (0) in (2.2), (3.1), and (3.2). �

Remark 3.2. Using the same arguments as in the proof part (i) of Lemma 3.1, one
can establish that X+

s (k) ⊆ X⊥
k,∗ for all k ≥ 0 and X−

u (k) ⊆ X⊥
k,∗ for all k ≤ 0. 3

In the derivation of the dichotomy estimates we make use of the following se-
quences, where n ∈ Z+ and p ∈ [1,∞):

αn =

{
(n + 1)1−

1
p if E(Z) = `p(Z, X),

(n + 1) if E(Z) = c0(Z, X),
βn =

{
(n + 1)

1
p if E(Z) = `p(Z, X),

1 if E(Z) = c0(Z, X).

Remark 3.3. We note some obvious properties of the above sequences.
(i) αnβn = n + 1 for all n ≥ 0;

(ii)
m+n∑
k=m

‖xk‖ ≤ αn‖x‖E(Z) for all m ∈ Z, n ≥ 0, x = (xk)k∈Z ∈ E(Z);
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(iii) ‖χ{m,...,m+n} ⊗ x‖E(Z) = βn‖x‖ for all x ∈ X, m ∈ Z, n ≥ 0. 3

We can now establish the dichotomy estimates of U+
s (n, m) for n ≥ m ≥ 0, as

well as the invertibilty of U−
u (n, m) and the dichtomoy estimates of U−

u (n, m)−1 for
m ≤ n ≤ 0.

Lemma 3.4. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) There are constants N, ν > 0 such that

‖U+
s (n, m)‖ ≤ Ne−ν(n−m) for all n ≥ m ≥ 0;

(ii) X+
s (m) is a closed subspace of X for all m ≥ 0.

Proof. Let m ≥ 0, x ∈ X+
s (m), and (ϕk)k∈Z be a finitely supported numerical

sequence. We define the sequences x = (xk)k∈Z and y = (yk)k∈Z by

xk =


0, k ≤ m,(

k∑
j=m+1

ϕj

)
U(k, m)x, k > m,

yk =

{
0, k ≤ m,

ϕkU(k, m)x, k > m.
(3.5)

Remark 3.2 and (3.3) imply that x ∈ F0, see (2.8). It is straightforward to check
that y = Dx = D0x. We first take (ϕk)k∈Z = χ{m+1}. Lemma 2.2(ii) and the
exponential boundedness of the evolution family U yield

‖U(n, m)x‖ =
∥∥∥ n∑

j=m+1

χ{m+1}(j) U(n, m)x
∥∥∥ ≤ ‖x‖E(Z)

≤ c‖D0x‖E(Z) = c‖y‖E(Z) = c‖U(m + 1,m)x‖ ≤ cMeω‖x‖
for all n ≥ m + 1. It follows that

‖U+
s (k, j)‖ ≤ c for all k ≥ j ≥ 0. (3.6)

Second, we take n > l > m and set (ϕk)k∈Z = χ{l,...,n}. For x and y defined in
(3.5), estimate (3.6), Remark 3.3, and Lemma 2.2(ii) imply that

1
2

(n− l + 2)(n− l + 1) ‖U+
s (n, m)x‖ =

n∑
k=l

(k − l + 1)‖U+
s (n, k)U+

s (k, m)x‖

≤ c

n∑
k=l

k∑
j=m+1

ϕj‖U(k, m)x‖ = c

n∑
k=l

‖xk‖ ≤ cαn−l‖x‖E(Z)

≤ cαn−l‖y‖E(Z) ≤ cαn−l‖χ{l,...,n} ⊗ U+
s (l, m)x‖E(Z)

= cαn−lβn−l‖U+
s (l, m)x‖ = c(n− l + 1)‖U+

s (l,m)x‖.
So we have shown that ‖U(n, m)x‖ ≤ bn−l‖U(l,m)x‖ for all n ≥ l ≥ m ≥ 0 and all
x ∈ X+

s (m), where b0 = 1 and bj = c(j + 2)−1 for j ≥ 1. By Lemma 2.4, there are
N, ν > 0 such that ‖U(n, m)x‖ ≤ Ne−ν(n−l)‖U(l,m)x‖ for all n ≥ l ≥ m and all
x ∈ X+

s (m), which proves (i). Assertion (ii) follows easily from (i) and (3.1). �

Lemma 3.5. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) U−

u (n, m) : X−
u (m) → X−

u (n) is bijective for m ≤ n ≤ 0;
(ii) There are constants N, ν > 0 such that

‖(U−
u (n, m))−1‖ ≤ Ne−ν(n−m) for all m ≤ n ≤ 0;

(iii) X−
u (k) is a closed subspace of X for k ≤ 0.
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Proof. (i) Fix m ≤ n ≤ 0. The surjectivity of U−
u (n, m) was already stated in (3.4).

Take x ∈ X−
u (m) with 0 = U−

u (n, m)x = U(n, m)x. By (3.2) there is a sequence
x = (xk)k∈Z− ∈ E(Z−) such that xk = U(k, j)xj for all j ≤ k ≤ 0 and x = xm.
We extend x to a sequence from x ∈ E(Z) by setting xk = 0 for k > 0. Since
x0 = U(0, n)U(n, m)x = 0, the sequence x belongs to kerD. Hence, x ∈ Xm by
(2.2). Lemma 2.1(iii) now yields x = 0, and so (i) is established.

(ii) Take w = (wk)k∈Z− ∈ E(Z−) with wk = U(k, j)wj for all j ≤ k ≤ 0. Let
(ϕk)k∈Z ⊆ C have finite support. We define x = (xk)k∈Z and y = (yk)k∈Z by

xk =


0, k ≥ 0,(

0∑
j=k+1

ϕj

)
wk, k ≤ −1,

yk =

{
0, k ≥ 1,

−ϕkwk, k ≤ 0.
(3.7)

Observe that x ∈ F0 since wk ∈ X−
u (k) ⊆ X⊥

k,∗ for all k ∈ Z− (see (2.8), (3.2),
and Remark 3.2). Moreover, y = Dx = D0x. Let m ≤ n − 1 < 0 and choose first
(ϕk)k∈Z = χ{n}. Lemma 2.2(ii) implies that

‖wm‖ = ‖xm‖ ≤ ‖x‖E(Z) ≤ c‖y‖E(Z) = c‖wn‖. (3.8)

Second, take (ϕk)k∈Z = χ{m+1,...,n}. Estimate (3.8), Lemma 2.2(ii), and Re-
mark 3.3 now yield

1
2
(n−m)(n−m + 1)‖wm‖ =

n−1∑
k=m

(n− k)‖wm‖ ≤ c

n−1∑
k=m

n∑
j=k+1

ϕj‖wk‖

= c

n−1∑
k=m

‖xk‖ ≤ cαn−m−1‖x‖E(Z) ≤ cαn−m−1‖y‖E(Z)

≤ cαn−m−1‖χ{m+1,...,n} ⊗ wn‖E(Z) = cαn−m−1βn−m−1‖wn‖ = c(n−m)‖wn‖,

which implies that ‖wm‖ ≤ c
(n−m+1)‖wn‖ for all m ≤ n − 1 < 0. Applying

Lemma 2.4 to the sequences an = ‖w−n‖ and bn = c(n + 1)−1, we obtain con-
stants N, ν > 0 (independent of the choice of w = (wk)k∈Z) such that ‖wm‖ ≤
Ne−ν(n−m)‖wn‖ for all m ≤ n ≤ 0. We can now deduce (ii) from the definition of
w = (wk)k∈Z and (i).

(iii) It suffices to consider k = 0 due to (i) and (ii). Take x ∈ X and x(n) ∈ X+
u (0),

n ∈ Z+, with x(n) → x as n → ∞. Let y(n) = (y(n)
k )k∈Z− be a sequence in E(Z−)

such that y
(n)
k = U(k, j)y(n)

j for all j ≤ k ≤ 0 and y
(n)
0 = x(n) for all n ≥ 0.

Assertion (ii) yields

‖y(n)
k − y

(m)
k ‖ = ‖(U−

u (0, k))−1(x(n) − x(m))‖ ≤ Neνk‖x(n) − x(m)‖

for all n, m ≥ 0 and all k ≤ 0, and thus

‖y(n) − y(m)‖E(Z) ≤ c‖x(n) − x(m)‖ for all n, m ≥ 0.

As a result, there exists y = (yk)k∈Z− ∈ E(Z−) with y(n) → y in E(Z−) as n →∞.
It follows that yk = U(k, j)yj for all j ≤ k ≤ 0 and y0 = x; i.e., x ∈ X−

u (0). �

As a preparation for the following two sections, we construct several splittings of
X. Recall from Lemma 2.1 that X0,∗ is finite dimensional, and let {ξ(1)

0 , . . . , ξ
(d0)
0 }
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be a basis of X0,∗. By Lemma 2.3 there exist vectors {x(1)
0 , . . . , x

(d0)
0 } ⊆ X such

that 〈x(i)
0 , ξ

(j)
0 〉 = δij for all i, j ∈ {1, . . . , d0} and

X = X⊥
0,∗ ⊕ Y, where Y := Span{x(1)

0 , . . . , x
(d0)
0 }. (3.9)

Recall from (2.6) that we have X⊥
0,∗ = X0⊕X ′

0 where X0 is given by (2.2). In order
to relate these spaces with X+

s (0) and X−
u (0), we further introduce the subspaces

Z1 = X ′
0 ∩X+

s (0) and Z2 = X ′
0 ∩X−

u (0). (3.10)

Lemma 3.6. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) X+

s (0) = Z1 ⊕X0 and X−
u (0) = Z2 ⊕X0;

(ii) X ′
0 = Z1 ⊕ Z2;

(iii) X = X+
s (0)⊕ (Z2 ⊕ Y ) = X−

u (0)⊕ (Z1 ⊕ Y ).

Proof. (i) We have seen in Lemma 3.4(ii) and Lemma 3.5(iii) that X+
s (0) and X−

u (0)
are closed subspaces of X. Since X ′

0 is also a closed subspace of X, the spaces Z1

and Z2 are closed in X. We have Z1 ∩ X0 = {0} and Z1 ⊆ X+
s (0) by (3.10) and

(2.6). Lemma 3.1(ii) yields X0 ⊆ X+
s (0), so that X0+Z1 ⊂ X+

s (0). Let x ∈ X+
s (0).

Then x ∈ X⊥
0,∗ = X0⊕X ′

0 by Lemma 3.1(ii) and (2.6). So we can write x = x0 +x′0
for some x0 ∈ X0 and x′0 ∈ X ′

0, implying x′0 = x− x0 ∈ X+
s (0). Hence, x′0 ∈ Z1 by

(3.10). Thus the first equation in (i) is verified. The second one can be established
in the same way.

(ii) The identities (3.10), Lemma 3.1(ii), and (2.6) yield Z1 ⊆ X ′
0, Z2 ⊆ X ′

0, and

Z1 ∩ Z2 = X ′
0 ∩X+

s (0) ∩X−
u (0) = X ′

0 ∩X0 = {0}.
Let x ∈ X ′

0. Then we deduce from (2.6) and Lemma 3.1(i) that x ∈ X⊥
0,∗ = X+

s (0)+
X−

u (0). So assertion (i) provides us with z1 ∈ Z1, z2 ∈ Z2, and v1, v2 ∈ X0 such that
x = z1+z2+v1+v2. Using again Zj ⊆ X ′

0, we obtain that v1+v2 = x−z1−z2 ∈ X ′
0.

Hence, v1 + v2 ∈ X ′
0 ∩ X0 = {0}. So we have shown that X ′

0 ⊆ Z1 + Z2, and the
desired decomposition holds.

(iii) The spaces Z1 ⊕ Y and Z2 ⊕ Y are closed subspaces of X since Z1 and
Z2 are closed in X by (i) and dim Y < ∞ by (3.9). We then derive the splitting
X = X0 ⊕Z1 ⊕Z2 ⊕ Y from (3.9), (2.6), and (ii). Hence, (iii) follows from (i). �

4. Exponential dichotomy on Z+ ∩ [b,∞)

The main difficulty in establishing the dichotomy on Z+∩ [b,∞) is the construc-
tion of the correct complement of the stable subspace X+

s (k). To that purpose, we
first deal with the ‘good part’ of X+

u (k) by propagating the space Z2 from (3.10);
i.e., we set

Z2(k) = U(k, 0)Z2 for k ∈ Z+. (4.1)
Observe that, due to (3.10), a vector x ∈ Z2 can be propagated backwards to
an element (xn)n∈Z− of E(Z−) with x = U(0, n)xn, but this sequence can not be
extended to a non–zero element of ker D. These facts are crucial for the next result.

Lemma 4.1. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) U(n, m)|Z2(m) is bijective from Z2(m) to Z2(n) for all n ≥ m ≥ 0.
(ii) There are constants N, ν > 0 such that

‖(U(n, m)|Z2(m))−1‖ ≤ Ne−ν(n−m) for all n ≥ m ≥ 0;

(iii) Z2(k) is a closed subspace of X for all k ≥ 0.
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Proof. (i) The definition (4.1) implies that U(n, m)Z2(m) = Z2(n) for all n ≥ m ≥
0. Take x ∈ Z2(m) with U(n, m)x = 0. By (4.1), there exists a vector z2 ∈ Z2 such
that x = U(m, 0)z2. Since

U(j, 0)z2 = U(j, n)U(n, m)U(m, 0)z2 = U(j, n)U(n, m)x = 0

for all j ≥ n, we obtain z2 ∈ X+
s (0) (see (3.1)). Lemma 3.6(iii) then shows that

z2 = 0, and so x = 0. Thus U(n, m) : Z2(m) → Z2(n) is bijective.
(ii) Let z2 ∈ Z2\{0}. By (3.10) and (3.2) there is a sequence w = (wk)k∈Z− ∈

E(Z−) such that wk = U(k, j)wj for all j ≤ k ≤ 0 and w0 = z2. Let (ϕk)k∈Z be a
finitely supported numerical sequence. Define x = (xk)k∈Z and y = (yk)k∈Z by

xk =


∞∑

j=k+1

ϕjU(k, 0)z2, k ≥ 1,

∞∑
j=1

ϕjwk, k ≤ 0,
yk =

{
−ϕkU(k, 0)z2, k ≥ 1,

0, k ≤ 0.

We have wk ∈ X−
u (k) ⊆ X⊥

k,∗ for all k ≤ 0 due to (3.2) and Remark 3.2. Equations
(3.10) and (2.6) and Lemma 2.1(vi) further imply that U(k, 0)z2 ∈ X⊥

k,∗ for k ≥ 0.
Since also x ∈ E(Z) and w0 = z2 ∈ X ′

0 by (3.10), the vector x belongs to F0 (see
(2.8)). Moreover, y = Dx = D0x. Let n > m ≥ 0. Choose first (ϕk)k∈Z = χ{n}.
Then Lemma 2.2(ii) yields

‖U(m, 0)z2‖ = ‖xm‖ ≤ ‖x‖E(Z) ≤ c‖y‖E(Z) ≤ c‖U(n, 0)z2‖. (4.2)

Second, take (ϕk)k∈Z = χ{m+1,...,n}. In this case, estimate (4.2), Remark 3.3, and
Lemma 2.2(ii) imply that

1
2
(n−m)(n−m + 1)‖U(m, 0)z2‖ =

n−1∑
k=m

(n− k)‖U(m, 0)z2‖

=
n−1∑
k=m

∞∑
j=k+1

ϕj‖U(m, 0)z2‖ ≤ c

n−1∑
k=m

∞∑
j=k+1

ϕj‖U(k, 0)z2‖ = c

n−1∑
k=m

‖xk‖

≤ cαn−m−1‖x‖E(Z) ≤ cαn−m−1‖y‖E(Z)

≤ cαn−m−1‖cχ{m+1,...,n} ⊗ U(n, 0)z2‖E(Z)

≤ cαn−m−1βn−m−1‖U(n, 0)z2‖ = c(n−m)‖U(n, 0)z2‖.

Therefore ‖U(m, 0)z2‖ ≤ c
n−m+1‖U(n, 0)z2‖, and in particular U(n, 0)z2 6= 0, for

all n ≥ m ≥ 0. Applying Lemma 2.4 to the sequences an = ‖U(n, 0)z2‖−1 and
bn = c(n + 1)−1, we obtain constants N, ν > 0 (independent of z2) such that
‖U(m, 0)z2‖ ≤ Ne−ν(n−m)‖U(n, 0)z2‖ for all n ≥ m ≥ 0. Using (i), we can now
conclude that (ii) holds.

(iii) Since U(k, 0)|Z2(0) : Z2(0) → Z2(k) is an isomorphism by (i) and (ii), the last
assertion follows from (4.1) and the closedness of Z2 proved in Lemma 3.6(i). �

We next introduce the remaining complement of the unstable subspace. Let
{ξ(1)

b , . . . , ξ
(db)
b } be a basis of Xb,∗ (cf. Lemma 2.1). By Lemma 2.3(i), there are

vectors x
(1)
b , . . . , x

(db)
b in X such that 〈x(i)

b , ξ
(j)
b 〉 = δij for all i, j ∈ {1, . . . , db}.

Lemma 2.3(ii) shows that

X = X⊥
b,∗ ⊕ Y +(b), where Y +(b) := Span{x(1)

b , . . . , x
(db)
b }. (4.3)
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We note that Z2 is contained in X⊥
0,∗ due to (3.10) and (2.6). Lemma 2.1(vi) and

equation (4.1) then imply that

Z2(n) = U(n, 0)Z2 ⊆ X⊥
n,∗ for all n ∈ Z+. (4.4)

Hence, Z2(b) ∩ Y +(b) = {0}. Moreover, Z2(b) is closed by Lemma 4.1(iii). So we
can define a closed subspace of X by

X+
u (b) = Z2(b)⊕ Y +(b). (4.5)

We see below that X+
u (b) is indeed the unstable subspace. We propagate these

spaces by the evolution family; i.e., we set

X+
u (k) = U(k, b)X+

u (b) and Y +(k) = U(k, b)Y +(b) for all k ≥ b. (4.6)

Finally, we let U+
u (n, m) = U(n, m)|X+

u (m) for n ≥ m ≥ b. Here we take k ≥ b in
order to make sure that dim Xk,∗, and thus dim Y +(k), is constant.

Lemma 4.2. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) X+

u (k) is closed in X and X+
u (k) = Z2(k)⊕ Y +(k) for all k ≥ b;

(ii) U+
u (n, m) is invertible from X+

u (m) to X+
u (n) and U(n, m)|Y +(m) is

invertible from Y +(m) to Y +(n) for all n ≥ m ≥ b;
(iii) X = Y +(k)⊕X⊥

k,∗ for all k ≥ b.

Proof. (i) Let w ∈ Z2(k) ∩ Y +(k) for some k ≥ b. Then w = U(k, b)x for a vector
x ∈ Z2(b)∩Y +(b) by Lemma 4.1(i) and (4.6). Thus equation (4.5) yields x = 0, and
so w = 0. Moreover, Z2(k)⊕Y +(k) is closed since Z2(k) is closed by Lemma 4.1(iii)
and Y +(k) is finite dimensional by (4.3). Assertion (i) is now a consequence of (4.6),
(4.5), and Lemma 4.1(i).

(ii) Let n ≥ m ≥ b. The surjectivity of U(n, m) : X+
u (m) → X+

u (n) and of
U(n, m) : Y +(m) → Y +(n) follows from (4.6). Take x ∈ X+

u (m) with U+
u (n, m)x =

0. By our definitions (4.6), (4.5), and (4.1), there are z2 ∈ Z2 and yb ∈ Y +(b) such
that x = U(m, b)(U(b, 0)z2 + yb). Therefore, 0 = U(n, m)x = U(n, 0)z2 + U(n, b)yb.
On the other hand, U(n, 0)z2 ∈ X⊥

n,∗ by (4.4). For ξ = (ξk)k∈Z ∈ ker D∗ equation
(2.5) thus yields

〈yb, ξb〉 = 〈yb, U(n, b)∗ξn〉 = 〈U(n, b)yb, ξn〉 = −〈U(n, 0)z2, ξn〉 = 0.

We obtain yb ∈ X⊥
b,∗ ∩ Y +(b) = {0} taking into account (4.3). As a result,

U(j, 0)z2 = U(j, n)U(n, 0)z2 = 0 for all j ≥ n, which means that z2 ∈ X+
s (0) ∩ Z2.

Lemma 3.6(iii) now yields z2 = 0. This fact leads to x = 0, and so U+
u (n, m) :

X+
u (m) → X+

u (n) is also injective. The assertions then follow from (i) and (4.6).
(iii) As we have seen before (4.3), there exist bases {ξ(1)

b , · · · , ξ
(db)
b } of Xb,∗

and {x(1)
b , · · · , x

(db)
b } of Y +(b) such that 〈x(i)

b , ξ
(j)
b 〉 = δij for all i, j ∈ {1, . . . , db}.

Lemma 2.1(iv) and part (ii) show that {(U(k, b)∗)−1ξ
(1)
b , · · · , (U(k, b)∗)−1ξ

(db)
b } is

a basis of Xk,∗ and {U(k, b)x(1)
b , · · · , U(k, b)x(db)

b } is a basis of Y +(k). Moreover
〈U(k, b)x(i)

b , (U(k, b)∗)−1ξ
(j)
b 〉 = δij for all i, j ∈ {1, . . . , db}. Lemma 2.3(ii) thus

yields the assertion. �

Let n ∈ Z+ and p ∈ [1,∞). The following sequences are used below when we
estimate the inverses of U+

u (n, m).

α∗n =

{
(n + 1)

1
p if E(Z) = `p(Z, X),

(n + 1) if E(Z) = c0(Z, X),
β∗n =

{
(n + 1)1−

1
p if E(Z) = `p(Z, X),

1 if E(Z) = c0(Z, X).
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Remark 4.3. We note some immediate properties of the above defined sequences.
(i) α∗nβ∗n = n + 1 for n ≥ 0;

(ii)
n+m∑
k=m

‖ξk‖ ≤ α∗n‖ξ‖E(Z)∗ for m ∈ Z, n ≥ 0, ξ = (ξk)k∈Z ∈ E(Z)∗;

(iii) ‖χ{m,...,m+n} ⊗ ξ‖E(Z)∗ = β∗n‖ξ‖ for ξ ∈ X∗, m ∈ Z, n ≥ 0. 3

Lemma 4.4. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) There are constants N, ν > 0 such that

‖(U(n, m)∗|Xn,∗
)−1‖ ≤ Ne−ν(n−m) for n ≥ m ≥ b;

(ii) There are constants N, ν > 0 such that

‖(U+
u (n, m))−1‖ ≤ Ne−ν(n−m) for n ≥ m ≥ b.

Proof. (i) Let ξ = (ξk)k∈Z ∈ ker D∗ and (ϕk)k∈Z be a finitely supported numerical
sequence. We define the sequences η = (ηk)k∈Z and ζ = (ζk)k∈Z by

ηk =


0, k ≤ b,(

k∑
j=b+1

ϕj

)
ξk, k ≥ b + 1,

ζk =

{
0, k ≤ b− 1,

−ϕk+1ξk, k ≥ b.

We have η ∈ Fb,∗ since ξ ∈ ker D∗ and ηb = 0 (see (2.3) and (2.9)). Moreover,
ζ = D∗η = Db,∗η. Let n ≥ m + 1 ≥ b. We first choose (ϕk)k∈Z = χ{m+1}. Then
Lemma 2.2(iii) yields

‖ξn‖ = ‖ηn‖ ≤ ‖η‖E(Z)∗ ≤ c‖ζ‖E(Z)∗ = c‖ξm‖. (4.7)

Second, choose (ϕk)k∈Z = χ{m+1,...,n}. Making use of estimate (4.7), Remark 4.3,
and Lemma 2.2(iii), we calculate

1
2
(n−m)(n−m + 1)‖ξn‖ =

n∑
k=m+1

(k −m)‖ξn‖ ≤ c

n∑
k=m+1

k∑
j=b+1

ϕj‖ξj‖

= c

n∑
k=m+1

‖ηk‖ ≤ cα∗n−m−1‖η‖E(Z)∗ ≤ cα∗n−m−1‖ζ‖E(Z)∗

= cα∗n−m−1β
∗
n−m−1‖ξm‖ = c(n−m)‖ξm‖.

As a result, ‖ξn‖ ≤ c
n−m+1‖ξm‖ for all n ≥ m ≥ b. Lemma 2.4 provides constants

N, ν > 0 (independent of ξ) such that ‖ξn‖ ≤ Ne−ν(n−m)‖ξm‖ for all n ≥ m ≥ b
and ξ = (ξk)k∈Z ∈ ker D∗, proving (i).

(ii) The decomposition X = Y +(k) ⊕ X⊥
k,∗ from Lemma 4.2(iii) implies that

Y +(k)∗ = Xk,∗ for all k ≥ b since Xk,∗ is finite dimensional. Thus we have

((U(n, m)|Y +(m))−1)∗ = ((U(n, m)|Y +(m))∗)−1 = (U(n, m)∗|Xn,∗
)−1

for all n ≥ m ≥ b by Lemmas 4.2(ii) and 2.1(iv). Assertion (i) now yields

‖(U(n, m)|Y +(m))−1‖ ≤ Ne−ν(n−m) for all n ≥ m ≥ b. (4.8)

Lemmas 4.1 and 4.2 show that U+
u (n, m)−1 has the matrix representation[

(U(n, m)|Z2(m))−1 0
0 (U(n, m)|Y +(m))−1

]
: Z2(m)⊕ Y +(m) −→ Z2(n)⊕ Y +(n)

for all n ≥ m ≥ b. So the assertion follows from Lemma 4.1(ii) and (4.8). �
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Theorem 4.5. Let Hypothesis 1 hold. Then U has an exponential dichotomy on
Z+∩ [b,∞) with subspaces X+

s (k) and X+
u (k) given by (3.1) and (4.6), respectively.

Proof. The spaces X+
s (m) and X+

u (m), m ≥ b, are closed and invariant under
U(n, m) due to Lemmas 3.4 and 4.2 and formula (3.3). We have shown the in-
vertibility of U+

u (n, m) : X+
u (m) → X+

u (n) in Lemma 4.2(ii), and the exponential
estimates of U+

s (n, m) and U+
u (n, m)−1 in Lemmas 3.4 and 4.4. It remains to verify

that X+
s (m)⊕X+

u (m) = X for m ≥ b. In view of Lemma 4.2 this fact follows from
the decomposition

X⊥
m,∗ = X+

s (m)⊕ Z2(m) for all m ≥ 0. (4.9)

We prove (4.9). Let x ∈ X+
s (m)∩Z2(m) for some m ≥ 0. Then Lemma 4.1(ii) and

Lemma 3.4(i) yield

‖x‖ ≤ Ne−ν(n−m)‖U(n, m)x‖ ≤ N2e−2ν(n−m)‖x‖ for all n ≥ m,

which implies that x = 0. Take x ∈ X⊥
m,∗ for some m ≥ 0. We define the sequence

y = (−χ{m+1}⊗U(m+1,m)x)m∈Z which belongs to F by Lemma 2.1(ii) and (2.7).
Lemma 2.2(i) gives a sequence x = (xk)k∈Z ∈ F such that Dx = y. It follows that

xk − U(k, k − 1)xk−1 = yk = 0 for all k ∈ Z\{m + 1},
xm+1 − U(m + 1,m)xm = −U(m + 1,m)x.

(4.10)

Therefore xk = U(k, j)xj for all j ≤ k ≤ 0, and so x0 ∈ X−
u (0) = Z2 ⊕X0 by (3.2)

and Lemma 3.6(i). Thus we can write x0 = z2 +v0 with z2 ∈ Z2 and v = (vk)k∈Z ∈
ker D (see (2.2)). The equations (4.10) further yield xj = U(j, m)(xm − x) for all
j ≥ m+1 and xm = U(m, 0)x0 = U(m, 0)z2 + vj , using also (2.4). We then deduce

U(j, m)(x− U(m, 0)z2) = −xj + U(j, m)(xm − U(m, 0)z2) = −xj + vj

for all j ≥ m+1. The vector x−U(m, 0)z2 thus belongs to X+
s (m) since x,v ∈ E(Z)

(see (3.1)). We thus obtain x = (x − U(m, 0)z2) + U(m, 0)z2 ∈ X+
s (m) + Z2(m)

due to Lemma 4.1(i); i.e., X⊥
m,∗ ⊆ X+

s (m) + Z2(m). The converse inclusion follows
from Remark 3.2 and (4.4). �

5. Exponential dichotomy on Z−
The situation on Z− is simpler than in the previous section since we have dealt

with the unstable subspaces already in Lemma 3.5. We first define our candidates
for the stable subspaces on Z− by setting

X−
s (0) = Z1 ⊕ Y and X−

s (k) = {x ∈ X : U(0, k)x ∈ X−
s (0)} (5.1)

for all k ∈ Z−. Recall from (3.9) that Y is finite dimensional and from Lemma 3.6
that Z1 is closed and Z1 ∩Y = {0}. We further denote U−

s (n, m) = U(n, m)|X−
s (m)

for m ≤ n ≤ 0, and we introduce the auxiliary spaces

Z1(k) = {x ∈ X : U(0, k)x ∈ Z1} ⊆ X−
s (k) for all k ∈ Z− . (5.2)

Remark 5.1. Since the subspaces X−
s (0) and Z1 are closed, X−

s (m) and Z1(m) are
closed subspaces of X for all m ∈ Z−. Moreover, U(n, m)X−

s (m) ⊆ X−
s (n) and

U(n, m)Z1(m) ⊆ Z1(n) for all m ≤ n ≤ 0. 3

Lemma 5.2. Let Hypothesis 1 hold. Then the following assertions hold for k ≤ 0.
(i) Z1(k) = X−

s (k) ∩X⊥
k,∗;

(ii) X = X−
s (k)⊕X−

u (k).
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Proof. (i) Since Z1 ⊆ X⊥
0,∗ by (3.10) and (2.6), Lemma 2.1(vi) and (5.2) yield

Z1(k) ⊆ X−
s (k) ∩X⊥

k,∗ for k ∈ Z−. Let x ∈ X⊥
k,∗ ∩X−

s (k). Due to (5.1), there are
z1 ∈ Z1 and y ∈ Y such that U(0, k)x = y + z1. We take ξ = (ξn)n∈Z ∈ ker D∗ and
calculate

〈y, ξ0〉 = 〈U(0, k)x, ξ0〉 − 〈z1, ξ0〉 = 〈x,U(0, k)∗ξ0〉 = 〈x, ξk〉 = 0

using (2.5) and Z1 ⊆ X⊥
0,∗. So we obtain y ∈ Y ∩X⊥

0,∗ = {0} employing also (3.9).
Hence, U(0, k)x = z1 ∈ Z1; i.e., x ∈ Z1(k).

(ii) Lemma 3.6(iii) and (5.1) show that X = X−
s (0)⊕X−

u (0). Hence, given x ∈ X,
there exist x−1 ∈ X−

s (0) and x−2 ∈ X−
u (0) with U(0, k)x = x−1 + x−2 . By (3.2) there

is a sequence x = (xn)n∈Z− ∈ E(Z−) such that xn = U(n, m)xm for all m ≤ n ≤ 0
and x0 = x−2 . Observe that xk ∈ X−

u (k) by (3.2). We further compute

U(0, k)(x− xk) = U(0, k)x− x−2 = x−1 ∈ X−
s (0),

so that x − xk ∈ X−
s (k) by (5.1). As a result, X = X−

s (k) + X−
u (k). Take x ∈

X−
s (k) ∩ X−

u (k). Then equation (3.4) yields U(0, k)x ∈ X−
u (0). As above we see

that U(k, 0)x ∈ X−
u (0). Hence, U(0, k)x = 0 and Lemma 3.5(i) implies x = 0. �

Lemma 5.3. Let Hypothesis 1 hold. Then there are constants N, ν > 0 such that

‖U(n, m)|Z1(m)‖ ≤ Ne−ν(n−m) for all m ≤ n ≤ 0.

Proof. Let m ≤ −1, x ∈ Z1(m), and (ϕk)k∈Z be a finitely supported numerical
sequence. We define the sequences x = (xk)k∈Z and y = (yk)k∈Z by

xk =



0, k ≤ m− 1,
k∑

j=m

ϕjU(k, m)x, m ≤ k ≤ −1,

−1∑
j=m

ϕjU(k, m)x, k ≥ 0,

yk =


0, k ≤ m− 1,

ϕkU(k, m)x, m ≤ k ≤ −1,

0, k ≥ 0.

We have x ∈ E(Z) and x0 ∈ X ′
0 because of U(0,m)Z1(m) ⊆ Z1 = X+

s (0) ∩X ′
0 (see

(5.2), (3.10), and (3.1)). Lemmas 5.2(i) and 2.1(vi) further yield U(k, m)x ∈ X⊥
k,∗

for k ≥ m. Therefore x ∈ F0 (see (2.8)). Moreover, y = Dx = D0x. Let
m ≤ n ≤ −1. Choose first (ϕk)k∈Z = χ{m}. Using Lemma 2.2(ii), we estimate

‖U(n, m)x‖ =
n∑

j=m

ϕj‖U(n, m)x‖ = ‖xn‖ ≤ ‖x‖E(Z) ≤ c‖y‖E(Z) = c‖x‖. (5.3)

As a consequence of estimate (5.3), Remark 3.3, and Lemma 2.2(ii), for (ϕk)k∈Z =
χ{m,...,n}, we obtain that

1
2
(n−m + 1)(n−m + 2)‖U(n, m)x‖ =

n∑
k=m

(k −m + 1)‖U(n, m)x‖

=
n∑

k=m

k∑
j=m

ϕj‖U(n, k)U(k, m)x‖ ≤
n∑

k=m

k∑
j=m

ϕjc‖U(k, m)x‖ = c

n∑
k=m

‖xk‖

≤ cαn−m‖x‖E(Z) ≤ cαn−m‖y‖E(Z) = cαn−mβn−m‖x‖ = c(n−m + 1)‖x‖.

It follows that ‖U(n, m)|Z1(m)‖ ≤ c
n−m+2 for all m ≤ n ≤ 0. This implies the

assertion by a standard argument, cf. [8, Theorem III.6.1]. �



18 YURI LATUSHKIN, ALIN POGAN, AND ROLAND SCHNAUBELT

Lemma 5.4. Let Hypothesis 1 hold. Then there are constants N, ν > 0 such that

‖U(n, m)∗|Xn,∗
‖ ≤ Ne−ν(n−m) for all m ≤ n ≤ 0.

Proof. Let ξ= (ξn)n∈Z ∈ ker D∗ and (ϕk)k∈Z be a finitely supported sequence.
Define the sequences η = (ηk)k∈Z and ζ = (ζk)k∈Z by setting

ηk =


0, k ≥ 0,
−1∑
j=k

ϕjξk, k ≤ −1,
ζk =

{
0, k ≥ 0,

ϕkξk, k ≤ −1.

Since ξ ∈ ker D∗, we obtain that η ∈ Fb,∗ (see (2.9) and (2.3)). Moreover, ζ =
Dη = Db,∗η due to (2.5). Let m ≤ n ≤ −1. First choose (ϕk)k∈Z = χ{n}. Then
Lemma 2.2(iii) yields

‖ξm‖ = ‖ηm‖ ≤ ‖η‖E(Z)∗ ≤ c‖ζ‖E(Z)∗ = c‖ξn‖. (5.4)

Second, choose (ϕk)k∈Z = χ{m,...,n}. Employing ineqality (5.4), Remark 4.3, and
Lemma 2.2(iii), we can estimate

1
2
(n−m + 1)(n−m + 2)‖ξm‖ =

n∑
k=m

(n− k + 1)‖ξm‖ =
n∑

k=m

−1∑
j=k

ϕj‖ξm‖

≤ c

n∑
k=m

−1∑
j=k

ϕj‖ξk‖ = c

n∑
k=m

‖ηk‖ ≤ cα∗n−m‖η‖E(Z)∗ ≤ cα∗n−m‖ζ‖E(Z)∗

≤ cα∗n−mβ∗n−m‖ξn‖ = c(n−m + 1)‖ξn‖.
Taking into account that ‖ξ−1‖ ≤ Meω‖ξ0‖, we infer ‖ξm‖ ≤ c

n−m+2‖ξn‖ for
all m ≤ n ≤ 0. An application of Lemma 2.4 to the sequences aj = ‖ξ−j‖ and
bj = c(j+2)−1 gives N , ν > 0 such that ‖ξm‖ ≤ Ne−ν(n−m)‖ξn‖ for all m ≤ n ≤ 0,
proving the lemma. �

Theorem 5.5. Let Hypothesis 1 be satisfied. Then U has an exponential dichotomy
on Z− with subspaces X−

s (k) and X−
u (k) given by (5.1) and (3.2), respectively.

Proof. Property (i) in the definition of exponential dichotomy was established in
Lemma 5.2(ii), Remark 5.1, and (3.4). Lemma 3.5 yields property (ii) and the
second exponential estimate in (iii). In order to prove the remaining estimate
for U−

s (n, m), we fix a basis {ξ(1)
0 , . . . , ξ

(d0)
0 } of the space X0,∗ (which is finite

dimensional by Lemma 2.1). There exist sequences η1 = (η(1)
k )k∈Z, . . . , ηd0

=
(η(d0)

k )k∈Z belonging to kerD∗ such that η
(j)
0 = ξ

(j)
0 for all j ∈ {1, . . . , d0}, see

(2.5). Lemma 2.1(iv) implies that {η(1)
k , . . . , η

(d0)
k } is a basis of Xk,∗ for all k ≤ 0.

Using Remark 3.2, we obtain X−
u (k) ⊆ X⊥

k,∗ =
⋂d0

j=1 ker η
(j)
k for all k ≤ 0. As

a consequence of Lemmas 2.3(i) and 5.2(ii) we then find vectors y
(1)
k , . . ., y

(d0)
k

contained in X−
s (k) such that 〈y(i)

k , η
(j)
k 〉 = δij for all i, j ∈ {1, . . . , d0} and k ≤ 0.

We now define Y −(k) = Span{y(1)
k , . . . , y

(d0)
k }. From Lemmas 2.3(ii) and 5.2(i) we

deduce

X−
s (k) = (X−

s (k) ∩X⊥
k,∗)⊕ Y −(k) = Z1(k)⊕ Y −(k) for all k ≤ 0. (5.5)

Let m ≤ n ≤ 0. We further introduce the space

Ỹ −(n, m) = Span{U(n, m)y(1)
m , . . . , U(n, m)y(d0)

m } = U(n, m)Y −(m), (5.6)
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where U(n, m)y(j)
m ∈ X−

s (n) for all j ∈ {1, . . . , d0} due to Remark 5.1. Moreover,

〈U(n, m)y(i)
m , η(j)

n 〉 = 〈y(i)
m , U(n, m)∗η(j)

n 〉 = 〈y(i)
m , η(j)

m 〉 = δij

for all i, j ∈ {1, . . . , d0} by (2.5). As in (5.5) we can conclude by Lemma 2.3(iii)
that

X−
s (n) = (X−

s (n) ∩X⊥
n,∗)⊕ Ỹ −(n, m) = Z1(n)⊕ Ỹ −(n, m). (5.7)

Our construction implies that dim Ỹ −(n, m)∗ = dim Xn,∗ < ∞. Therefore (5.7)
yields Xn,∗ ⊆ Ỹ −(n, m)∗, and hence Xn,∗ = Ỹ −(n, m)∗. Similarly, the equality
Y −(m)∗ = Xm,∗ follows from (5.5). Using Lemma 5.4, we arrive at

‖U(n, m)|Y −(m)‖ = ‖(U(n, m)|Y −(m))∗‖ = ‖U(n, m)∗|Xn,∗
‖ ≤ Ne−ν(n−m) (5.8)

for m ≤ n ≤ 0 and some constants N, ν > 0. In view of (5.5), (5.7), (5.6), and
Remark 5.1, the operator U−

s (n, m) has the matrix representation[
U(n, m)|Z1(m) 0

0 U(n, m)|Y −(m)

]
: Z1(m)⊕ Y −(m) −→ Z1(n)⊕ Ỹ −(n, m).

Thus the exponential estimate for U−
s (n, m) is a consequence of Lemma 5.3 and

inequality (5.8). �

6. Proof of Theorem 1.1

Sufficiency. Assume that (i) and (ii) in Theorem 1.1 hold. Then the Fredholm
property of G can be shown exactly as in Theorem 1.1 of [12]. (At this point of
the argument as well as in the proof of Theorem 1.4 and Lemma 1.5 the conditions
(BU.1) and (BU.2) have not been used in [12].)
Necessity. We proced similarly to [12]. Assume that G is Fredholm. As observed
in Section 2, Theorem 1.4 of [12] then implies Hypothesis 1 for U , where we may
assume that a = 0 without loss of generality. Then Theorems 4.5 and 5.5 show that
U has exponential dichotomies on [b,∞)∩Z+ and Z−. Lemma 1.5 of [12] (combined
with a translation argument) further implies that U has exponential dichotomies
on R− and [b,∞).

We further have to prove (ii), i.e., the Fredholm property of the node operator
N(b, 0) = (I − P+

b )U(b, a) : kerP−
0 → ker P+

b . Lemma 3.6(i) and (4.5) yield

ker P−
0 = X−

u (0) = Z2 ⊕X0 and ker P+
b = X+

u (b) = Z2(b)⊕ Y +(b). (6.1)

Recall from Lemma 2.1 and (4.3) that X0 and Y +(b) are finite dimensional. Thus
the Fredholm property of N(b, 0) follows from the equations

ker N(b, 0) = X0 and im N(b, 0) = Z2(b). (6.2)

For x = (xn)n∈Z ∈ ker D we obtain N(b, 0)x0 = (I−P+
b )xb = 0 using (2.4), so that

X0 ⊆ ker N(b, 0). Conversely, let x ∈ ker N(b, 0) ⊆ ker P−
0 . Due to (6.1) there are

z2 ∈ Z2 and x0 ∈ X0 with x = z2 + x0. We can then infer N(b, 0)z2 = N(b, 0)x = 0
because of X0 ⊆ ker N(b, 0). Since further U(b, 0)z2 ∈ Z2(b) ⊆ X+

u (b) = ker P+
b

by (4.1) and (4.5), we arrive at 0 = N(b, 0)x = U(b, 0)z2. Now Lemma 4.1(i)
shows that z2 = 0, and thus x = x0 ∈ X0. By the same arguments we deduce
im N(b, 0) = N(b, 0)Z2 = (I − P+

b )Z2(b) = Z2(b).
Finally, we want to show the index and dimension formulas in Theorem 1.1

assuming that G is Fredholm. Define R0 : kerD → X0 and Rb,∗ : kerD∗ → Xb,∗
by R0(xn)n∈Z = x0 and Rb,∗(ξn)n∈Z = ξb, respectively. The maps R0 and Rb,∗
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are surjective linear operators, by (2.4) and (2.5). Lemma 2.1(iii) and (iv) then
show that R0 and Rb,∗ are bijective, so that dim ker D = dim X0 and dim ker D∗ =
dim Xb,∗. Using Theorem 1.4 of [12] and (6.2), we conclude

dim kerG = dim ker D = dim X0 = dim ker N(b, 0).

Employing in addition (4.3) and (6.1), we further deduce

codim imG = codim im D = dim ker D∗ = dim Xb,∗

= dim Y +(b) = codim im N(b, 0).

Theorem 1.1 has been established. �
The image of G admits the following description in terms of trajectories v(τ) =

U(t, τ)∗v(t), i.e., the ‘solutions of the adjoint problem’; cf. [10] or [17]. In the
following proof it is again convenient to work with D instead of G since we know
D∗ explicitely.

Proposition 6.1. Let G be Fredholm on E(R). Then f ∈ imG if and only if∫
R
〈f(σ), v(σ)〉dσ = 0 ∀ v ∈ E∗(R)∩Cw,∗

b (R, X∗) with v(τ) = U(t, τ)∗v(t) ∀ t ≥ τ,

where E∗(R) = {v : R → X∗ : v is weakly star measurable, ‖v(·)‖ ∈ Lq(R)}, q = 1
if E(R) = C0(R, X), and 1

p + 1
q = 1 if E(R) = Lp(R, X) with p ∈ [1,∞).

Proof. Assume that f ∈ imG and v ∈ E∗(R)∩Cw,∗
b (R, X∗) with v(τ) = U(t, τ)∗v(t)

for all t ≥ τ. Due to Lemma 1.2, there is a function u ∈ E(R) ∩ C0(R, X) satisfying
(1.2). So we can compute∫ t

τ

〈f(σ), v(σ)〉dσ =
∫ t

τ

〈f(σ), U(t, σ)∗v(t)〉dσ =
∫ t

τ

〈U(t, σ)f(σ), v(t)〉dσ

= 〈
t∫

τ

U(t, σ)f(σ)dσ, v(t)〉 = 〈U(t, τ)u(τ), v(t)〉 − 〈u(t), v(t)〉

= 〈u(τ), v(τ)〉 − 〈u(t), v(t)〉

for all t ≥ τ . Letting τ → −∞ and t →∞, we deduce that∫
R
〈f(σ), v(σ)〉dσ = 0

by means of u ∈ C0(R, X) and v ∈ Cw,∗
b (R, X∗).

Assume that f ∈ E(R) satisfies the condition in the proposition. We define the
operator R : E(R) → E(Z) by setting

(Rg)n = −
∫ n

n−1

U(n, τ)g(τ)dτ for all n ∈ Z.

We claim that Rf ∈ im D. Since G is a Fredholm operator, Theorem 1.4 in [12]
shows that im D is closed, and thus im D = (kerD∗)⊥. For ξ = (ξn)n∈Z ∈ ker D∗,
we define v : R → X∗ by v(τ) = U(n, τ)∗ξn for τ ∈ (n − 1, n] and n ∈ Z. Due
to (2.5), we obtain v ∈ E∗(R) ∩ Cw,∗

b (R, X∗) and v(τ) = U(t, τ)∗v(t) for all t ≥ τ.
Furthermore,

〈Rf, ξ〉 = −
∑
n∈Z

〈
∫ n

n−1

U(n, τ)f(τ)dτ, ξn〉 = −
∑
n∈Z

∫ n

n−1

〈f(τ), U(n, τ)∗ξn〉dτ
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= −
∑
n∈Z

∫ n

n−1

〈f(τ), v(τ)〉dτ = −
∫

R
〈f(τ), v(τ)〉dτ = 0,

proving the claim. Using [12, Lemma 6.1(iv)], we conclude that f ∈ imG. �

7. Backward uniqueness property

In the following proposition we describe the backward uniqueness property (BU)
(see the introduction) in terms of the spaces Xn and Xn,∗.

Proposition 7.1. Assume that the operator G is Fredholm on E(R). Then the
follwing assertions hold.

(i) (BU.1) holds if and only if dim Xn is constant for n ∈ Z;
(ii) (BU.2) holds if and only if dim Xn,∗ is constant for n ∈ Z;
(iii) If (BU.1) and (BU.2) hold, then we can take a = b = 0 in Theorem 1.1.

Proof. (i) Assume that (BU.1) holds. Take x ∈ Xm with U(n, m)x = 0 for some
n ≥ m. Then there is a sequence x = (xk)k∈Z ∈ ker D such that xm = x by (2.2).
We define the function u : R → X by u(t) = U(t, j)xj for t ∈ [j, j +1) and j ∈ Z. It
is easy to check that u ∈ C0(R, X) and u(t) = U(t, τ)u(τ) for all t ≥ τ using (2.4).
Since u(n) = U(n, m)xm = U(n, m)x = 0, (BU.1) shows that u(m) = x = 0. This
means that the map U(n, m) : Xm → Xn is injective, and hence it is bijective by
Lemma 2.1(i). As a result, dim Xm = dim Xn for all n ≥ m.

Assume that dim Xn is constant on Z. Let u ∈ C0(R, X) be a function satisfying
u(t) = U(t, τ)u(τ) for all t ≥ τ and u(τ0) = 0 for some τ0 ∈ R. Obviously, u(t) = 0
for all t ≥ τ0. By Theorem 1.1, U has an exponential dichotomy on (−∞, a] for
some a ∈ R. Thus, using that supτ ‖P−

τ ‖ < ∞, we can estimate

‖P−
t u(t)‖ = ‖U(t, τ)P−

τ u(τ)‖ ≤ Ne−ν(t−τ)‖P−
τ u(τ)‖ ≤ N ′e−ν(t−τ)‖u‖∞

for all τ ≤ t ≤ a. Letting τ → −∞, we obtain that P−
t u(t) = 0, i.e., u(t) ∈ X−

u (t),
for all t ≤ a. Then we derive the inequality

‖u(t)‖ = ‖U−
u (a, t)−1u(a)‖ ≤ Ne−ν(a−t)‖u(a)‖

for all t ≤ a. As a result, (u(n))n∈Z ∈ ker D which leads to u(n) ∈ Xn for all n ∈ Z
(see (2.4) and (2.2)). The identity dim Xn = dim Xm and Lemma 2.1 then yield
the invertibility of U(n, m) : Xm → Xn for all n ≥ m. Thus u(n) = 0 for all n ∈ Z
since u(n) = 0 for large n.

(ii) Assume that (BU.2) holds. Take ξ ∈ Xn,∗ with U(n, m)∗ξ = 0. Then there
is a sequence ξ = (ξk)k∈Z ∈ ker D∗ such that ξn = ξ by (2.3). We define the
function v : R → X∗ by v(t) = U(j, t)∗ξj for t ∈ (j − 1, j] and j ∈ Z. It is
straightforward to see that v ∈ Cw,∗

b (R, X∗) and v(τ) = U(t, τ)∗v(t) for all t ≥ τ .
Since v(m) = U(n, m)∗ξn = U(n, m)∗ξ = 0, (BU.2) yields v = 0, and thus ξ = 0.
Now Lemma 2.1(ii) implies that dim Xn,∗ = dim Xm,∗ for n ≥ m.

Assume that dim Xn,∗ is constant on Z. Let v ∈ Cw,∗
b (R, X) satisfy v(τ) =

U(t, τ)∗v(t) for all t ≥ τ and v(τ0) = 0 for some τ0 ∈ R. Hence, v(τ) = 0 for all
τ ≤ τ0. Theorem 1.1 shows that U has an exponential dichotomy on [b,∞). This
fact, due to supτ ‖P+

τ ‖ < ∞, leads to the estimate

|〈P+
τ x, v(τ)〉| = |〈P+

τ x,U(t, τ)∗v(t)〉| = |〈U(t, τ)P+
τ x, v(t)〉| ≤ N ′e−ν(t−τ)‖v‖∞‖x‖
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for all t ≥ τ ≥ b and x ∈ X. Letting t →∞, we obtain that 〈P+
τ x, v(τ)〉 = 0 for all

τ ≥ b and all x ∈ X. We can now conclude that

|〈x, v(τ)〉| = |〈U(τ, b)U+
u (τ, b)−1(I − P+

τ )x, v(τ)〉| = |〈U+
u (τ, b)−1(I − P+

τ )x, v(b)〉|

≤ Ne−ν(τ−b)‖I − P+
τ ‖ ‖x‖ ‖v(b)‖,

‖v(τ)‖ ≤ ce−ν(τ−b)‖v(b)‖

for all τ ≥ b and all x ∈ X. Consequently, (v(n))n∈Z ∈ ker D∗ and v(n) ∈ Xn,∗ (see
(2.5) and (2.3)). Since dim Xn,∗ = dim Xm,∗ for all n ≥ m, Lemma 2.1 implies the
invertibility of U(n, m)∗ : Xn,∗ → Xn,∗ for all n ≥ m. So we arrive at v(n) = 0 for
all n ∈ Z, and hence v = 0.

(iii) The last assertion follows from (i), (ii), and the definition of a and b given
after (2.5). �

We present the examples mentioned in the introduction. Observe that here X is
a Hilbert space and U is generated by piecewise constant operators A(t) = A+ for
t ≥ 0 and A(t) = A− for t ≤ 0.

Example 7.2. Let X = L2(R+), f0 = χ[0,1], and P0 : X → X, P0f = 〈f, f0〉f0, be
the orthogonal projection onto Span{f0}, and set Q0 = I−P0. Define (S1(t)f)(τ) =
e−tf(t + τ) for t, τ ≥ 0 and f ∈ X, and S2(t)f = etP0f + e−tQ0f for t ≥ 0 and
f ∈ X. Let U = {U(t, τ)}t≥τ be the strongly continuous, exponentially bounded
evolution family on X given by

U(t, τ) =


S1(t− τ), t ≥ τ ≥ 0,

S1(t)S2(−τ), t ≥ 0 ≥ τ,

S2(t− τ), 0 ≥ t ≥ τ.

G denotes the generator of the associated evolution semigroup defined on L2(R, X).
We claim that dim kerG = 1 and that, more percisely, kerG is the set of func-

tions u given by u(t) = S1(t)u(0) for t ≥ 0, u(t) = S2(t)u(0) for t ≤ 0, and
u(0) ∈ Span{f0}. Indeed, if u ∈ kerG, then Lemma 1.2 shows that u(t) =
U(t, 0)u(0) = S1(t)u(0) for all t ≥ 0 and u(0) = U(0, t)u(t) = S2(−t)u(t) for
all t ≤ 0. Since u ∈ L2(R, X), we must have Q0u(0) = 0. The proof of the converse
inclusion is straightforward. The claim is proved.

Let f ∈ L2(R+) and define u : R → L2(R+) by

u(t) =


−
∫ t

−∞
eτ−tQ0f(τ)dτ +

∫ 0

t

et−τP0f(τ)dτ , t < 0,

−
∫ t

0

S1(t− τ)f(τ)dτ − S1(t)Q0

∫ 0

−∞
eτf(τ)dτ , t ≥ 0.

Using Lemma 1.2 we see that u ∈ domG and Gu = f . Therefore G is surjective
and thus Fredholm.

Define u0 ∈ kerG by u0(t) = etf0 for t < 0 and u0(t) = S1(t)f0 for t ≥ 0. Then
u0(t) = U(t, τ)u0(τ) for all t ≥ τ . However, u0(0) = f0 6= 0 and (u0(2))(τ) =
e−2f0(2 + τ) = 0 for τ ≥ 0. As a result, (BU.1) fails for the function u = u0. �

Using the adjoint of the evolution family U in Example 7.2, one can construct
an example of the evolution family Ũ such that the operator G is Fredholm but
(BU.2) fails (and, of course, for the direct sum of U and Ũ both (BU.1) and (BU.2)
fail).
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Example 7.3. With the notations used in Example 7.2, we define the strongly
continuous evolution family V = {V (t, τ)}t≥τ by,

V (t, τ) =


S2(t− τ), t ≥ τ ≥ 1,

S2(t− 1)S1(1− τ)∗, t ≥ 1 ≥ τ,

S1(t− τ)∗, 1 ≥ t ≥ τ.

Arguing as in Example 7.2, we can establish the Fredholm property of the generator
of the evolution semigroup on L2(R, X) associated with V. It is clear that V has
exponential dichotomies on R− and [1,∞) with projections P−

t = I for t ≤ 0 and
P+

t = Q0 for t ≥ 1, respectively. Looking for a contradiction, we suppose that V
has an exponential dichotomy on R+. The definition of the exponential dichotomy
implies that X+

s (τ) = {f ∈ L2(R+) : V (t, τ)f → 0 as t → ∞}. Hence, X+
s (1) =

ker P0, so that X+
u (1) must be a (one dimensional) complement of ker P0. On the

other hand, P0V (1, 0) = P0S1(1)∗ = 0 contradicting the required surjectivity of
V (1, 0) : X+

u (0) → X+
u (1). �

Remark 7.4. In Propositions 6.1 and 7.1 we can replace Cw,∗
b (R, X∗) by the space

Cw,∗
0 (R, X∗) of continuous functions vanishing at ±∞ if E(R) = C0(R, X) or E(R) =

Lp(R, X) for p ∈ (1,∞). This fact follows from the proofs of these results because
for an orbit v(·) satisfying v(τ) = U(t, τ)∗v(t) for all t ≥ τ in R, the conditions
v ∈ Cw,∗

b (R, X∗) and v ∈ Cw,∗
0 (R, X∗) are equivalent provided U has exponential

dichotomies on (−∞, a] and [b,∞).
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