DICHOTOMY AND FREDHOLM PROPERTIES OF EVOLUTION
EQUATIONS
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ABSTRACT. Under minimal assumptions, we characterize the Fredholm prop-
erty and compute the Fredholm index of abstract differential operators —d/dt+
A(+) acting on spaces of functions f : R — X. Here A(t) are (in general) un-
bounded operators on the Banach space X and our results are formulated in
terms of exponential dichotomies on two halflines for the propagtor solving the
evolution equation u(t) = A(t)u(t) in a mild sense.

1. INTRODUCTION

In this paper we obtain the final version of the infinite dimensional Dichotomy
Theorem for well-posed differential equations

(Gu)(t) := —u/(t) + A(t)u(t) = f(t), t e R, (1.1)

on a Banach space X. Our main Dichotomy Theorem 1.1 characterizes the Fred-
holm property of the (closure of the) operator G on, say, LP(R, X)) and determines
its Fredholm index in terms of the exponential dichotomies on half lines of the
propagator solving (1.1). The linear operators A(t), t € R, on X are unbounded, in
general, and we only require that the corresponding initial value problem (1.3) be-
low is well-posed in a mild sense. We reduce the problem to the study of a weighted
shift operator on X—valued sequence spaces, and give a purely operator theoreti-
cal proof of our Theorem 1.1 based on the discrete version of the “input-output”
method from the theory of differential equations.

The Dichotomy Theorem is related to problems arising from finite dimensional
dynamics, Morse theory, and the theory of travelling waves. For a detailed discus-
sion concerning these connections, we refer to [12, Section 7]. This theorem can
further be viewed as an extension of a simple form of the celebrated Atiyah—Patodi—
Singer Index Theorem, cf. [22].

For finite dimensional X = C¢, versions of the Dichotomy Theorem were es-
tablished in the papers [6], [17], [18], and [23]. Here A(t) are matrices and G =
—% + A(-) is defined on the Sobolev space WP (R, C?), for instance. In this case G
is Fredholm if and only if the propagator (or evolution family) {U(t, 7)}:>- solving
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(1.1) has exponential dichotomies on R_ and R. However, applications to partial
differential equations require an infinite dimensional version of the Dichotomy The-
orem for unbounded A(t). Progresses in this direction have been made in [2], [3], [4],
[5], [9], [10], [12], [13], [19], [20], [21], [24], and the references therein. We stress that
the proofs of the finite and infinite dimensional versions of the Dichotomy Theorem
are quite different due to many new difficulties arising in the infinite dimensional
setting, as described in Sections 1 and 7 of [12].

Recently, several authors discussed the Fredholm property of the operator G
and related questions (such as perturbation results) in specific infinite dimensional
settings. In [20] and [21] a differential equation of the form (1.1) on a Banach
space X having the UMD property was studied, where the constant domain of the
operators A(t) is compactly embedded in X and A(t) — Ay ast — +oo. Assuming
that the spectra of AL do not intersect iR, it was proved that G is Fredholm on
LP(R,X) for p € (1,00), and its index was computed in terms of the spectral
flow of A(+). (Here the Cauchy problem (1.3) could be ill-posed.) In [9] and [10]
theorems of this type are established for general (well-posed) parabolic problems.
The latter approach is based on a detailed study of the maximal regularity property
of the solutions to the (inhomogeneous) differential equation. The case of bounded
operators A(t) was considered in [1] in connection with applications to infinite
dimensional Morse theory. In [19] and [24] necessary and sufficient conditions for
the Fredholm property of G were given for a special class of infinite dimensional
differential equations having a backward uniqueness property, cf. (BU) below. This
work is related to a detailed study of travelling waves for elliptic problems on
cylinders. All these papers dealt with the asymptotically autonomous case (except
for [19]) and imposed restrictive regularity hypotheses ensuring the closedness of
G =—4 + A(") defined on dom(:£) Ndom(A(-)). See [9], [10], [12] for more details.

In a different line of research, one starts with a strongly continuous evolution
family {U(t,7)}1>-, and constructs an operator G on, say, LP(R, X) as described
below. There are no additional restrictions on the regularity or the asymptotic
behaviour of A(-). If (1.3) is well-posed in a classical sense, then G is the closure
of G = f% + A(-). In [5] (see also [2, 3, 4]) it was further assumed a priori that
{U(t,7)}+>- has exponential dichotomies on semi-lines. Then a ‘node operator’
was introduced, and it was proved that G and the node operator are Fredholm at
the same time with equal indices. On the other hand, the authors in [12] required
X to be reflexive and imposed a condition of backward uniqueness on the evolution
family. Under these hypotheses, they could characterize the Fredholm property of
G as we do below. In the current paper we discard any additional assumption and
establish the following theorem (the relevant definitions are given in Section 2).

Theorem 1.1. Assume thatU = {U(t,7) : t > 7;1,7 € R} is a strongly continuous,
exponentially bounded evolution family on a Banach space X, and let G be the
generator of the associated evolution semigroup defined on E(R) = LP(R, X), p €
[1,00), or on E(R) = Co(R, X). Then the operator G is Fredholm if and only if
there exist real numbers a < b such that the following two conditions hold:

(i) The evolution family U has exponential dichotomies with the family of pro-
jections {P; }1<a and {P; };>p on (—o00,a] and [b, 00), respectively.

(ii) The node operator N(b,a), acting from ker P, to ker P,” and defined by
the rule N(b,a) = (I — P,H)U(b,a)|,., p-» is Fredholm.
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Moreover, if G is Fredholm, then we have the equalities dim ker G = dimker N (b, a),
codimim G = codimim N (b, a), and ind G = ind N (b,a). In particular, the Fred-
holm properties of G are independent of the choice of the function space E(R).

In Proposition 6.1 we further give a description of the range of G in the spirit of
the classical Fredholm alternative using the adjoint evolution family.

The evolution semigroup T = {T'(¢) };>o mentioned in Theorem 1.1 is defined on
LP(R, X), p € [1,00), or on Co(R, X) by the formula (T'(¢) f)(7) = U(r, 7—1) f(T7—1),
TR, t>0,see [2], [7], [25]. This is a strongly continuous semigroup, and we
denote its generator by G. The operator G can be described in terms of mild
solutions to an inhomogenous evolution equation, as shown by the following lemma,
see [7, Proposition 4.32].

Lemma 1.2. A function u belongs to the domain dom G of the operator G on
LP(R,X), p € [1,00), resp., on Co(R, X), if and only if u € LP(R, X) N Co(R, X),
resp., u € Co(R, X), and there exists an f € LP(R, X), resp., [ € Co(R, X), with
t
u(t) = U, m)u(r) — / U(t,o)f(o)do forall t>71 in R (1.2)

T

If (1.2) holds, then Gu = f.
Suppose for a moment that the differential equation
u'(t) = A()u(t), t>T, u(7T) = 2 € dom(A(T)), (1.3)

is well-posed in a classical sense, i.e., the operators A(t) are all densely defined and
there is an evolution family U such that U(¢,7)dom(A(7)) C dom(A(t)) for t > 7
and u(t) = U(t,7)x is the unique C'-solution of (1.3). Then G is the closure of
the operator G = —% + A(-) on L,(R, X), p € [1,00), resp., on Co(R, X), with the
domain dom G = {u € WHP(R, X) : u(t) € dom A(t) a.e., A(-)u(-) € LP(R, X)},
resp. {u € Cop(R, X) : u(t) € dom A(¢) for t € R, v/(+), A(-)u(-) € Co(R, X)}, where
WLP(R, X), p € [1,00), is the usual Sobolev space, cf. [7, Theorem 3.12]. However,
one knows only rather restrictive assumptions on the operators A(t) implying well—
posedness in the above sense, and almost no necessary conditions, see the survey
given in [25]. Thus we only assume that the evolution family U exists, without any
reference to operators A(t).

Our Theorem 1.1 was shown in [12, Theorem 1.1] assuming in addition that X
is reflexive and U has the following backward uniqueness property (BU).

(BU.1): If u e Co(R,X), u(t) =U(t, 7)u(r) for all t > 7 in R, and u(7) =0
for some 7 € R, then u = 0.
(BU.2): If v € C," (R, X*), v(r) = U(t,7)*v(t) for all ¢ > 7 in R, and
v(7) = 0 for some 7 € R, then v = 0.

(See also Remark 7.4 saying that for our purposes C;”" (R, X*) can be replaced by
Cy " (R, X*) in (BU.2)). We point out that these properties do not hold for certain
evolution families solving parabolic partial differential equations. Some sufficient
conditions for (BU) are known for specific classes of partial differential equations.
However, in general it is rather difficult to verify (BU), cf. [9] and references therein.
In Section 7 we present two examples, where G is Fredholm but (BU) fails.

Our proof also shows that if U does satisfy the backward uniqueness property
(BU), then we can take @ = b = 0 in our Theorem 1.1, see Proposition 7.1. Using
a different method, this result was proved in [12, Theorem 1.2] for reflexive X. As
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shown in Example 7.3, the conclusion of Theorem 1.1 with a = b = 0 is false in
general if (BU) is violated.

The proof of the (simpler) ‘if’ part of Theorem 1.1 given in [12] or [5] works
without the reflexivity assumption and without the backward uniqueness property.
The main objective of the current paper is to remove these additional conditions
in the proof of the ‘only if’ part. Without these hypotheses the problem at hand
becomes significantly more involved, and thus the methods used in the current
paper are quite different from those in [12]. We use an approach going back to
Daletskii and Krein, [8], and Levitan and Zhikov, [14], which is sometimes called
the “input-output method.”

In [8] this technique was used to characterize the exponential stability of an
evolution family &. The basic idea is to solve the equation Gu = f on Ry for
functions of the form f(t) = ¢’ (t)U(t, s)x (where ¢ is a suitable scalar function).
For such f it can be seen that u(t) = —p(t)U(t, s)x using a version of Lemma 1.2.
If G is invertible on R, one can then deduce the required exponential estimate
by means of the boundedness of G~!. A variant of this argument shows that the
stable and unstable subspaces of U yield a time depending decomposition of X if
G is invertible on R, leading to a characterization of exponential dichotomy on R
given in [14]. In the more recent contributions [15] and [16], this approach was
employed to characterize exponential dichotomy on R,.. Here additional difficulties
appear at the initial time ¢ = 0 which correspond to the fact that the dichotomy
projections are not unique in the half line case, in general. We point out that the
input—output method is quite different from the approach used in [2], [3], [4], and
[7] (and its modifications in [5] and [12]), where the main tool for the construction
of the exponential dichotomy, say, on R was the Riesz projection of the semigroup
generated by G.

In the present paper we deal with operators G being Fredholm. This fact forces
us to ‘delete’ the kernel and co—kernel of G. Moreover, we can only expect to obtain
exponential dichotomies of & on (possibly disjoint) semi-lines (—oo, a] and [b, 00),
see Example 7.3. Thus we must control the behaviour of U(t,s) at a, b, and in
between. In order to achieve this, we first discretize the problem (see Section 2).
In Section 3, we then treat the stable subspaces on Z, and the unstable subspaces
on Z_. These spaces are somewhat easier to handle since they are given explicitly
in terms of U, see (3.1) and (3.2). The main difficulty is the construction of the
correct complements of these spaces. Here we need several decompositions of X
given in Lemma 3.6. In Sections 4 and 5 we construct the dichotomies on [b, 00)
and (—oo,a] by propagating the “traces” of the kernel and co-kernel of G at the
points b and ¢ (Lemmas 4.2 and 5.2). In Section 6 we deal with the node operator
to show condition (ii) in Theorem 1.1, and the formulas for the defect numbers. In
Section 7 we describe the backward uniqueness properties in terms of the traces of
the kernel and co-kernel of G, and show that one can take ¢ = b = 0 in Theorem
1.1 when the backward uniqueness properties hold, see Proposition 7.1.

2. NOTATION, DEFINITIONS, AND PRELIMINARY RESULTS

Weset Ry ={teR:t>0}, R.={teR:t<0},Zy ={neZ:n>0}
Z_ ={n €Z:n <0}, and we use t, 7,0 to denote real numbers and n, m, k, j to
denote integers. We write ¢ for a generic (positive) constant. A*, dom(A), ker 4,
im A are the adjoint, the domain, the kernel and the range of an operator A on a
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Banach space X with dual space X*, and A}y is the restriction of A on the subspace
Y of X. The set of all bounded linear operators from a Banach space X to a Banach
space Y is designated by B(X,Y), and B(X, X) =: B(X). For a subspace Y, C X*,
we use the (non-standard !) mnotation Y- = {x € X : (z,£) = 0 for all £ € Y.}
for the preannihilator, where (-,-) is the (X, X*)-pairing. If P and Q are two
projections on X, then X = im P @ ker P = im @ & ker ), where throughout
‘@’ denotes a decomposition of a Banach space into closed subspaces with trivial
intersection. With respect to these decompositions, each A € B(X) can be written
as the 2 x 2 operator matrix

PAQ PA(I - Q)
(I-P)AQ (I-P)AI-Q) |’

Co(R, X) is the space of continuous functions f : R — X vanishing at too;
C," (R, X*) is the space of bounded, weak star continuous functions f : R — X*;
L,(R,X) is the space of (equivalence classes of) Bochner p-integrable functions
f:R — X, where p € [1,00). We denote by x s the characteristic function of a set
M. If (k) kez is a numerical sequence and x € X, then ¢ @z denotes the X—valued
sequence (prT)kez-

An evolution family U = {U(t,7)}1>, on a set J C R is a family of operators
U(t,7) e B(X),t>r,t,7 € J, satisfying

U(t,t) = I(the identity operator onX);
U(t,7)U(r,0) =U(t,0) forallt >7 >0 witht 7,0 € J
It is called strongly continuous if the map (¢,7) — U(t, 7)x is continuous for all

x € X and t > 7in J. If |U(t,7)|| < Me**=7) for some constants M > 1 and
w € R and all t > 7 in J, then U is exponentially bounded.

A:

Definition ED. An evolution family U has an exponential dichotomy on J C R
if there exist closed subspaces {Xs(t) ey and {Xu(t) }res of X such that
(1) X =Xs(t)®Xu(t) forallt € J and U(t,7)X4(7) C X((t), U(t, 7)Xu(7) C
Xu(t) for allt > 7 in J;
(iiy) U(t,7)x,(r) is an invertible from X, (7) to Xy(t) for all t > 1 in J;
(#917) there are constants N, v > 0 such that

Ut 7) x|l < Ne"ED 0 (Ut 7)1x0 ) M < Ne ") for all t > 7 in J.

We denote by P; the projection onto X (t) parallel to X, (¢t). If J = [b,00) or
J = ZN b, 00) we write X, (t) and P;" for the respective dichotomy subspaces and
the dichotomy projections, and if J = (—oc,a] or J = ZN (—o0,a] we write X, (¢)
and P, for the respective dichotomy subspaces and the dichotomy projections. If U
is strongly continuous and exponentially bounded on an unbounded interval J and
(2g) — (itiy) hold, then the function ¢ — P; is strongly continuous and uniformly
bounded on J, see [8, Lemma IV.1.1, IV.3.2] or [15, Lemma 4.2].

In order to prove Theorem 1.1, we pass from continuous time to discrete time;
i.e., we replace the operator G in the statement of Theorem 1.1 by the difference
operator D defined by the formula

D(J;n)neZ = (xn - U(n,n - 1)xn—1)nEZa (21)

cf. [3], [7], [11]. The operator D is acting on the sequence space £(Z), where
E(Z)=r(Z,X)if ER) = LP(R,X), p € [1l,00) and E(Z) = ¢y(Z,X) if ER) =



6 YURI LATUSHKIN, ALIN POGAN, AND ROLAND SCHNAUBELT

Co(R, X). This replacement is possible due to Theorem 1.4 and Lemma 1.5 of
[12] (cf. also [11, Thm.7.6.5], [3, Thm.1], [4, Thm.2]). These results say that
has an exponential dichotomy on R, if it has an exponential dichotomy on Z4
and that im G is closed if and only if im D is closed, dimker G = dim ker D, and
codimim G = codimim D. In particular, the operator G is Fredholm if and only
if D is Fredholm, and ind G = ind D. Since we focus our attention on the proof of
the ‘only if’ part of Theorem 1.1, throughout Sections 2-5 we will assume that D
is a Fredholm operator.
In the following we collect some basic properties of the spaces

X, ={x € X :3 (vx)kez € ker D so that z = z,} and (2.2)
Xn«=1{6 € X" :3(&)rez € ker D* so that £ =&, }, (2.3)
where n € Z. Simple computations show that
D*(&n)nez = (&n —U(n + 1,n)"¢nt1)nez,

ker D = {(zp)nez € E(Z) : xy, = U(n,m)xy, for all n > m} (2.4)
ker D* = {(&n)nez € E(Z)" : &y = U(n,m)*E, for all n > m}. (2.5)
These formulas imply that U(n,m)X,, = X,, and U(n,m)*X,, . = X, . for all

n > m. Because of these identities and the Fredholm property of D, we obtain
0 <dimX,;; <dimX, <dimkerD < oo and 0 < dimX,, ., < dimX, 1. <
dimker D* < oo for all n € Z. Hence, there are a,b € Z with a < b such that
dim X,, and dim X, . are constant for n < a and n > b.

Without loss of generality, we may assume that a = 0 and b > 1 due to the fol-
lowing translation argument: For a € Z, consider the strongly continuous evolution
family U, defined by U, (t,7) = U(t+a,7+a) for t > 7 in R, and the shift operator
Sq on E(Z) acting by S (n)nez = (Tnta)nez. If D, is the difference operator as-
sociated to U, as in (2.1), then D, = S,DS; !, and thus D, and D have the same
Fredholm properties. So, choosing an appropriate a, we have that dim X, (U,) and
dim X, .(U,) are constant for n < 0. To sum things up, we impose the following
assumption, without loss of generality.

Hypothesis 1. U is a discrete, exponentially bounded evolution family on Z, D is
a Fredholm operator, and dim X,, and dim X, , are constant for n > b and n <0,
for some 1 < beZ.

Lemma 2.1. Let Hypothesis 1 be satisfied. Then dim X,, < dimker D < oo and
dim X, . < dimker D* < oo for n € Z and the following assertions hold.

(i) Un,m)X,, = X,, for alln > m;

(i) Uln,m)* X, « = Xp s for all n > m;

(iii) U(n,m)|x,, : Xm — Xn is invertible if m <n <0 orn >m > b;
(iv) U(n, m)lX t Xnx = Xon o s dnvertible if m <n <0 orn>m>b;
(v) Xn C X, fm“ alln € Z;

i) € X, if and only if U(n,m)z € X, where n > m in Z.

(v

Proof. We already observed after (2.4) and (2.5) that the first assertion and state-
ments (i) and (ii) hold. Assertions (iii) and (iv) follow from these assertions and Hy-
pothesis 1. In order to show (v), take x = (xg)xez € ker D, € = (& )rez € ker D*,
and n € Z. Then (2.5) and (2.4) imply that

<xn,§n> = <xn>U(kan)*€k> = <U(k7n)xna£k> = <xk,£k>
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for all kK > n. Letting k& — oo, we deduce {x,,&,) = 0 since = € ¢p(Z,X) and & is
bounded. Thus assertion (v) holds. The last assertion follows from the identities

(#,6m) = (2, U(n,m)*&,) = (U(n,m)z,§,)
for all n > m and all € = (&,)nez € ker D*. O

Since Xy C XOL,* and dim X, < oo, we can choose a closed subspace X{ of X with
Xo. = Xo® X{) (2.6)
Moreover, we define the following closed subspaces of £(Z) and £(Z)*

F={x=(xn)nez € E(Z) : xp, € Xi* for all n € Z}, (2.7)
Fo={x=(@n)nez € F 1 g € X6}7 .
Foro={6=Enez €E@)" : &, € Xy for all n € Z, & = 0}. (2.9)

On these spaces the operators Dy := D\, and Dp x := Dl*fb _ have better properties
than D and D*, respectively, as stated in the next lemma.

Lemma 2.2. Let Hypothesis 1 be satisfied. Then the following assertions hold.

(i) F is D-invariant and Dz : F — F is surjective.
(i) The operator Dy = Dz, : Fo — F is invertible;
(iii) Dpy = Dl*fb,* is uniformly injective, that is, || Dy +€ll(g(z))- = clléllez))-
for all § € Fp . and a constant ¢ > 0.

Proof. Assertions (i) and (ii) can be shown exactly as [12, Lemma 2.2] and [12,
Lemma 2.3], respectively. To prove (iii), we have to verify that Dy, , : Fp .« — E(Z)*
is injective and has closed range. If £ = (§,)nez € ker Dy . then &, = U(b,n)*&, =0
for n < band U(n,b)*¢, =& = 0 for n > b by (2.5). Lemma 2.1(iv) implies that
&, = 0 for n > b, proving that Dy, is injective. Next, take n = lim, o Dp &,
with &, € Fp .. Since D* is Fredholm, im D* is closed and thus there is ¢ € £(Z)*
with § = D*¢. Moreover, there exist an operator D € B(E(Z)*) and a finite
rank operator R such that DID* = T+ R and im R C ker D*. Observe that
D*(¢ —&,) — 0 as n — co. Then it follows that ¢ — €, + w,, — 0 as n — oo for
w, = R(¢—&,,) € ker D*. Passing to the elements of the sequences, we deduce that
Ck = nlLII;O (5167" — wk,n) S Xk7* for each k € Z, where C = (Ck)kEZ s fn = (gk,n)kEZ
and w,, = (wg,n)rez. There is a vector 8 = (0y) ez € ker D* with (, = 6, by (2.3).
Hence, ¢ — 0 € Fp. by (2.9) and n = D*(¢{ — 0) = D, .(¢ — 6). So the range of
Dy . is closed. O

We will need the following elementary lemma which is probably well-known.

Lemma 2.3. Let V be a subspace of X, {&1,...,84} be a set of linearly independent
vectors in X*, and Y. = Span{&1,...,&€a}. Then the following assertions hold.
(i) There are x1,...,2q € X such that (z;,§;) = §;; for all 4,5 € {1,...,d},
where d;; is the Kronecker Delta.
(i) Let vi,...,vq € V satisfy (v;,&;) = 05 for all 1,5 € {1,...,d} and set
W = Span{vy,...,va}. Then V. =(VNY;)dW.
(iii) codimY =d < occ.
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Proof. (i) It is clear that assertion (i) holds if d = 1. Assume that it is true for
some d € N and let {&,...,&4, €411} be a system of linearly independent vectors.
We want to prove by contradiction that

d
ﬂkerfi ¢ ker&giq. (2.10)

i=1
Take © € X and let {z1,..., x4} satisfy the induction hypothesis. If (2.10) were
false, then we would obtain
d d

(@, &)z, € (]kergZ C ker&gyr, le., &iy1= Z(xj,§d+1>£j.

j=1 i=1 Jj=1

M&

This is a contradiction, and so (2.10) is true. Thus there exists z441 € ﬂle ker &;
with (2441, &a+1) = 1, concluding the proof of (i).
(ii) Let z € V and set y = « — Z;.l=1<:r,§j>vj € V. Then
d

<y7§i> = <x7§i> - Z<xvgj>6ﬂ =0
j=1
for all i € {1,...,d}. As a consequence, y € VNY} andsoz € (VNYS )+ W.
We have shown that V C (VN Y1)+ W. The converse inclusion follows directly
from W C V. If x € (VNY} )N W, then there are Aj,...,\q € C such that
T = Z;l:l Ajv;. Therefore

d d
:ZAJ Z)\vj)gl x£z>_
j=1 j=1

for all i € {1,...,d}, and hence (V NY)NW = {0}. Thus (ii) holds.
(iii) The thlrd assertion follows from (i) and (ii). O

Lemma 2.4. Let (an)nez, be a sequence of positive numbers and (by)nez, €
co(Zy,Ry) such that amin < bpam, for all n,m € Z,. Then there are N,v > 0,
depending only on (by)nez, such that anym < Ne " ap, for all n,m € Z,..

Proof. Take ng € Z, such that b,, < e”t. We set N = e(max{bg,...,bn,} + 1),
v =1/ng, and p = [;*] for n,m € Z. Then we obtain

aner S bnfpnoapnoer S ;apnoer S ;(bno)pam
_n _
< Ne P tq,, < Ne "oa,, = Ne ""a,, . O

3. DICHOTOMY ESTIMATES ON THE STABLE SUBSPACES OF Z4 AND THE
UNSTABLE SUBSPACES ON Z_

In this section we will use the notations £(Z1) = (?(Zy, X) if E(Z) = P(Z, X),
p € [1,00), and E(Z4) = ¢o(Zy, X) if E(Z) = co(Z,X). We introduce the stable
and unstable subspaces of U on Z, and Z_, respectively, by
XF(k)={z e X : (Un+kk)x)nez, €E(Zy)}, k>0, (3.1)
X, (k) ={r e X :3 (zn)nez_ € E(Z_) with z,, = U(n,m)z,, for m <n <0
and zp =z}, k <0. (3.2)
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‘We observe that

U(n,m)XS(m) C XF(n) foral n>m>0, (3.3)
U(n,m)X, (m)=X, (n) foral m<n<O0. (3.4)
Let Uf (n,m) : X (m) — XF(n) and U, (n,m) : X, (m) — X, (n) be the linear

operators defined by U} (n,m)z = U(n,m)z forn > m > 0 and z € X} (m) and
by U, (n,m)z = U(n,m)z for m <n <0 and z € X, (m). The following lemma

shows in particular that the above subspaces do not match at n = 0, in general.

Lemma 3.1. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) X5(0)+ X, (0) = Xg.;
(i) XF(0)N X7 (0) = Xo.

Proof. (i) Let & = (&,)nez € ker D*. Then £ is bounded, and U(k,0)*&, = & by
(2.5). For x € X (0), equation (3.1) yields U(k,0)z — 0 as k — oco. We compute

<£l?,§0> = <93, U(ka 0)*§k> = <U(k7 O)xa§k>
for all k& > 0. Letting k& — oo, we deduce (z,&) = 0 and thus z € Xd:*. For
x € X, (0), there is (z)rez_ € E(Z_) such that x, = U(n, m)x,, forallm <n <0
and xg = = due to (3.2). In this case we have x, — 0 as k — —oo and

<l‘,£0> = <z07§0> = <U(O7k)xkv€0> = <xka U(07k)*£0> = <x1€7£1€>
for all k < 0. Letting k — —oo, we now infer that € Xg,. Hence, X} + X, C
Xq-.

Assume that x € Xd:*. Then the sequence y = —x113 ® U(1,0)x belongs to F
due to (2.7) and Lemma 2.1(vi). Lemma 2.2(i) gives a sequence X = (T, )nez € F
with Dx = y. This equation implies that 1 — U(1,0)zg = y1 = —U(1,0)z and
xn —U(n, D)z =y, = 0 for n > 2. We conclude that U(n,0)(z — z¢) = —x, for
all n > 1, and thus z — zp € XS (0) by (3.1). Using Dx = y again, we obtain
Ty — U, m)z,, =y, = 0 for all m < n < 0, so that zy € X, (0) by (3.2).
Therefore, x = z — zg + ¢ € X (0) + X, (0), proving (i).

(ii) Let 2 € X} (0) N X, (0). Then z,, = U(n,0)z defines a sequence (x,)nez, €
E(Z4) by (3.1), and there is a sequence (xy)nez_ € E(Z_) so that x = xo and
xn = U(n,m)x,, for all m < n < 0 due to (3.2). It is easy to check that z, =
U(n,m)z,, for all n > m in Z, and thus z € X by (2.2) and (2.4). Hence,
XF(0)n X, (0) C Xo. The converse inclusion follows directly from the definitions
of Xo, X+(0), and X (0) in (2.2), (3.1), and (3.2). O

Remark 3.2. Using the same arguments as in the proof part (i) of Lemma 3.1, one
can establish that X} (k) C X,i-,* for all k > 0 and X (k) C X,ﬁ:* forall k<0. ¢

In the derivation of the dichotomy estimates we make use of the following se-
quences, where n € Z, and p € [1,00):
1) itEz) = (2, X), P G )p if £(Z) = °(Z, X),
" (n+1) if £(Z) = co(Z,X), " |1 if £(Z) = co(Z, X).
Remark 3.3. We note some obvious properties of the above sequences.
(i) apfp =n+1forall n > 0;

m—4n
(i) > |lzxll < anllxllez) for all m € Z, n > 0, x = (zx)rez € E(Z);

k=m
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(111) HX{m,‘.wm-i-n} ® T’”S(Z) = ﬁn”'rH forallz € X, meZ,n=>0. ¢

We can now establish the dichotomy estimates of U (n,m) for n > m > 0, as
well as the invertibilty of U, (n,m) and the dichtomoy estimates of U,, (n,m)~! for
m<n<Q0.

Lemma 3.4. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) There are constants N,v > 0 such that

U (n,m)|| < Ne~v(n—m) for all n>m > 0;
(ii) XF(m) is a closed subspace of X for all m > 0.

Proof. Let m > 0, z € XJ(m), and (¢k)rez be a finitely supported numerical
sequence. We define the sequences x = (zx)rez and y = (yx)kez by

0, k<m,
{0, k<m,
Y =

= k 3.5
o < > %) Uk, m)z, k>m, oUkm)e, ksm D)

Jj=m+1

Remark 3.2 and (3.3) imply that x € Fy, see (2.8). It is straightforward to check
that y = Dx = Dox. We first take (or)rez = X{m+1}. Lemma 2.2(ii) and the
exponential boundedness of the evolution family U/ yield

10 mel =] Y Xy () Ulnma]| < Ixllecz)
Jj=m+1
< el Doxlle(z) = ellylle = elU(m + Lm)a| < cMe”a]

for all n > m + 1. It follows that
|UF(k,j)| <c  forall k>j>0. (3.6)

Second, we take n > | > m and set (Yx)rez = X{i,...,n}- For x and y defined in
(3.5), estimate (3.6), Remark 3.3, and Lemma 2.2(ii) imply that

n

% (n—1+2)(n—1+1)|US(n,m)z| = Z(kz — 1+ D|UF (n, k)US (k,m)z||
k=l

n k n
<eY Y eillutkmyall = ] < canilx|le
k=l

k=l j=m+1
< canillylle@) < conilixq,...ny @ US ([, m)z e
= can1BallUF (L m)e]| = en — 1+ DU G m)a].
So we have shown that |U(n, m)z|| < b,—||U(l,m)z|| for alln > 1> m > 0 and all
z € X} (m), where by = 1 and b; = ¢(j +2)~! for j > 1. By Lemma 2.4, there are
N,v > 0 such that [|U(n,m)z| < Ne ?=D||U(l,m)z|| for all n > [ > m and all
x € X (m), which proves (i). Assertion (ii) follows easily from (i) and (3.1). O
Lemma 3.5. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) U, (n,m): X, (m) — X, (n) is bijective for m <n < 0;
(ii) There are constants N,v > 0 such that
(U7 (n,m))"Y| < Ne7"™=™)  for all m <n <0;

(i) X, (k) is a closed subspace of X for k <O0.
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Proof. (i) Fix m < n < 0. The surjectivity of U, (n,m) was already stated in (3.4).
Take z € X, (m) with 0 = U, (n,m)x = U(n,m)z. By (3.2) there is a sequence
X = (zr)kez_ € E(Z_) such that x, = U(k,j)z; for all j < k <0 and 2 = zp,.
We extend x to a sequence from x € £(Z) by setting 2 = 0 for & > 0. Since
xo = U(0,n)U(n,m)x = 0, the sequence x belongs to ker D. Hence, z € X,,, by
(2.2). Lemma 2.1(iii) now yields = 0, and so (i) is established.

(ii) Take w = (wi)kez_ € E(Z_) with wy, = U(k, j)w; for all j < k < 0. Let
(¢k)kez € C have finite support. We define x = (x)rez and y = (yx)kez by

0, k>0,
0 0, k>1, (3.7)
Tp = = .
g ( Z @j) wg, k< -1, Yk —prwi, k<0
j=k+1

Observe that x € Fy since wy, € X, (k) C X,ﬂ:* for all k € Z_ (see (2.8), (3.2),
and Remark 3.2). Moreover, y = Dx = Dgx. Let m < n —1 < 0 and choose first
(0r)kez = X{n}- Lemma 2.2(ii) implies that

[wm | = [lzm]l < [xlle@) < clylle@ = cllwnll- (3-8)

Second, take (Yx)kez = X{m+1,..n}. Dstimate (3.8), Lemma 2.2(ii), and Re-
mark 3.3 now yield

1 n—1 n—1 n
3 =m)(n—m+1)|wnl = Y n—E)wnl <ed D wjllwll
k=m k=m j=k+1
n—1
=C Z ||~rk|| < COén—m—1||X||£(2) < Can—m—l”YHE(Z)
k=m
< Can—m—l||X{m+1,...,n} ® wn“E(Z) = Can—m—lﬂn—m—l”'wn” = C(Tl - m)HwnHa

which implies that ||wp,| < m\\wnH for all m < n—1 < 0. Applying
Lemma 2.4 to the sequences a,, = ||w_,| and b, = ¢(n + 1)7!, we obtain con-
stants N,v > 0 (independent of the choice of w = (wy)kez) such that ||wy,| <
Ne (=™, || for all m < n < 0. We can now deduce (ii) from the definition of
W = (’wk)kez and (1)

(iii) Tt suffices to consider k = 0 due to (i) and (ii). Take z € X and 2™ € X+ (0),
n € Z, with 2™ — 2 as n — oo. Let y() = (y,(ﬁn))kezf be a sequence in £(Z_)
such that y,in) = U(k,j)yj(n) for all j < k < 0 and yén) = 2™ for all n > 0.
Assertion (ii) yields

g — ™ N = (U (0,k)" (2™ — 2(™)|| < Nevk||z™ — 2™
for all n,m > 0 and all k¥ <0, and thus
Iy™ —y™le@) < ella™ — 2™ for all n,m > 0.

As a result, there exists y = (yp)rez. € E(Z_) with y — y in £(Z_) as n — oo.
It follows that y, = U(k, j)y; for all j <k <0 and yo = z; i.e., x € X, (0). O

As a preparation for the following two sections, we construct several splittings of
X. Recall from Lemma 2.1 that X , is finite dimensional, and let {f((]l), - ,f(()d”)}
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be a basis of X¢ .. By Lemma 2.3 there exist vectors {J}él), e ,:z:(()d")} C X such
that (z{”, &) = 6;; for all i,j € {1,...,do} and

X = X(i* Y, where Y := Span{xél), . ,;v(()dO)}. (3.9)

Recall from (2.6) that we have X3, = Xo® X, where X, is given by (2.2). In order
to relate these spaces with X (0) and X (0), we further introduce the subspaces

Zi=X,nX0) and  Zy,=X,nX;(0). (3.10)

Lemma 3.6. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) Xj(()) =71 ® Xo and X;(O) = Zs ® Xo;
(i) X =XF0)® (Z20Y)=X,(0)&(Z18Y).

Proof. (i) We have seen in Lemma 3.4(ii) and Lemma 3.5(iii) that X (0) and X (0)
are closed subspaces of X. Since X| is also a closed subspace of X, the spaces Z;
and Zy are closed in X. We have Z; N Xy = {0} and Z; € X (0) by (3.10) and
(2.6). Lemma 3.1(ii) yields Xo C X (0), so that Xo+Z; C X} (0). Let z € X} (0).
Then z € Xg-, = Xo & X{) by Lemma 3.1(ii) and (2.6). So we can write z = ¢ + )
for some zy € Xy and x(, € X{, implying z(, = x — 2o € X (0). Hence, z{, € Z; by
(3.10). Thus the first equation in (i) is verified. The second one can be established
in the same way.

(ii) The identities (3.10), Lemma 3.1(ii), and (2.6) yield Z; C X{, Z2 C X{;, and

Z1NZy=X,NXT(0)N X, (0)=X,N X = {0}

Let z € X{. Then we deduce from (2.6) and Lemma 3.1(i) that z € Xg", = X (0)+
X, (0). So assertion (i) provides us with z; € Z1, z3 € Zs, and vy, v2 € X such that
x = z1+22+v1 +ve. Using again Z; C X/, we obtain that v1 +vy = v —21— 22 € X.
Hence, v + v2 € X) N Xy = {0}. So we have shown that X C Z; + Z5, and the
desired decomposition holds.

(iii) The spaces Z1 @Y and Z; @ Y are closed subspaces of X since Z; and
Zy are closed in X by (i) and dimY < oo by (3.9). We then derive the splitting
X=X09Z1®Z> DY from (3.9), (2.6), and (ii). Hence, (iii) follows from (i). O

4. EXPONENTIAL DICHOTOMY ON Z, N [b, 00)

The main difficulty in establishing the dichotomy on Z N [b, o) is the construc-
tion of the correct complement of the stable subspace X (k). To that purpose, we
first deal with the ‘good part’ of X" (k) by propagating the space Zs from (3.10);
i.e., we set

Zs(k) =U(k,0)Z for keZ,. (4.1)
Observe that, due to (3.10), a vector x € Zy can be propagated backwards to
an element (z,,)nez_ of E(Z_) with x = U(0,n)z,,, but this sequence can not be
extended to a non—zero element of ker D. These facts are crucial for the next result.

Lemma 4.1. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) U(n,m)|z,(m) is bijective from Za(m) to Zs(n) for allm > m > 0.
(ii) There are constants N,v > 0 such that

(U (rn,m) 2y (m)) " < Ne~v(n=m) for all n>m >0;
(i) Za(k) is a closed subspace of X for all k > 0.
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Proof. (i) The definition (4.1) implies that U(n,m)Zy(m) = Z(n) for all n > m >
0. Take z € Zz(m) with U(n,m)z = 0. By (4.1), there exists a vector z2 € Z3 such
that © = U(m, 0)zz. Since
U(4,0)z2 = U(4,n)U(n,m)U(m,0)ze = U(j,n)U(n,m)z =0
for all j > n, we obtain z; € X} (0) (see (3.1)). Lemma 3.6(iii) then shows that
z9 =0, and so = 0. Thus U(n,m) : Za(m) — Zz(n) is bijective.
(ii) Let 25 € Z3\{0}. By (3.10) and (3.2) there is a sequence w = (wg)rez_ €

E(Z_) such that wy = U(k, j)w; for all j <k <0 and wg = z2. Let (pr)rez be a
finitely supported numerical sequence. Define x = (x)rez and y = (yi)kez by

U(k,0)z9, k>1,
_ j:Zk:Hsoj .0z _ {—wkU(k70)227 k>1,
T = o0 Y =
Z YW, k Sov 07 kSO
j=1

We have wy, € X, (k) C X,ﬂ:* for all £ <0 due to (3.2) and Remark 3.2. Equations
(3.10) and (2.6) and Lemma 2.1(vi) further imply that U(k,0)z € Xk,{* for k > 0.
Since also x € £(Z) and wy = z2 € X{; by (3.10), the vector x belongs to Fy (see
(2.8)). Moreover, y = Dx = Dox. Let n > m > 0. Choose first (ox)rez = X{n}-
Then Lemma 2.2(ii) yields

[U(m, 0)z2] = lzmll < [xlle@) < cllylle@) < cllU(n,0)z]. (4.2)

Second, take (¢r)rez = X{m+1,...n}- In this case, estimate (4.2), Remark 3.3, and
Lemma 2.2(ii) imply that

n—1
1
z(n=m)(n—m+1)||U(m,0)2| = Y (n=k)|U(m,0)z]
k=m
n—1 00 n—1 o] n—1
=Y > @ilUm0)z) <ed D @i lUR0)z0)l =c Y flaw]
k=m j=k+1 k=m j=k+1 k=m

S Can—m—IHXHS(Z) S Can—m—lHy”S(Z)
< can—m—1llcX{m1,...ny @ U(n,0)22|gz)
< cn—m—1Bn-m-1|U(n,0)22| = c(n — m)[|U(n, 0)z2]|.

Therefore |[U(m,0)22|| < =57 IU(n,0)22||, and in particular U(n,0)z; # 0, for
all n > m > 0. Applying Lemma 2.4 to the sequences a, = ||[U(n,0)z| "' and
b, = c¢(n + 1)7!, we obtain constants N,v > 0 (independent of z3) such that
|U(m,0)z|| < Ne=("="™)||U(n,0)z]| for all n > m > 0. Using (i), we can now
conclude that (ii) holds.

(iii) Since U(k,0)z,(0) : Z2(0) — Z2(k) is an isomorphism by (i) and (ii), the last
assertion follows from (4.1) and the closedness of Zs proved in Lemma 3.6(1). O

We next introduce the remaining complement of the unstable subspace. Let
{5,51),...,5,§db>} be a basis of X . (cf. Lemma 2.1). By Lemma 2.3(i), there are

vectors zl()l),...,x,()db) in X such that <a:l(f),§l§j)> = ¢;; for all 4,5 € {1,...,dp}.
Lemma 2.3(ii) shows that

X = Xli‘* @Y T(b), where YT (b):= Span{xél), e ,xl()db)}. (4.3)
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We note that Z; is contained in Xg-, due to (3.10) and (2.6). Lemma 2.1(vi) and
equation (4.1) then imply that
Zy(n) =U(n,0)Z C X, forall neZ,. (4.4)
Hence, Z5(b) N Y *(b) = {0}. Moreover, Zs(b) is closed by Lemma 4.1(iii). So we
can define a closed subspace of X by
X (b) = Za(b) @ YT (b). (4.5)
We see below that X;F(b) is indeed the unstable subspace. We propagate these
spaces by the evolution family; i.e., we set
X (k) =U(k,b)X (b)) and YT (k)=U(k,b)Y™(b) forall k >b.  (4.6)
Finally, we let U} (n,m) = U(n,m) x+ () for n = m = b. Here we take k > b in
order to make sure that dim X ., and thus dim Y " (k), is constant.

Lemma 4.2. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) X;F(k) is closed in X and X' (k) = Zo(k) ®@ YT (k) for all k > b;
(ii) U (n,m) is invertible from X (m) to X;F(n) and U(n,m)y+(mn) is
invertible from YT (m) to YT (n) for alln >m >b;
(i) X =Y (k)@ X, for all k >b.

Proof. (i) Let w € Zy(k) N YT (k) for some k > b. Then w = U(k,b)x for a vector
x € Z3(b)NY T (b) by Lemma 4.1(i) and (4.6). Thus equation (4.5) yields z = 0, and
so w = 0. Moreover, Z(k) DY T (k) is closed since Zs (k) is closed by Lemma 4.1(iii)
and Y (k) is finite dimensional by (4.3). Assertion (i) is now a consequence of (4.6),
(4.5), and Lemma 4.1(i).

(i) Let n > m > b. The surjectivity of U(n,m) : X;F(m) — X;F(n) and of
U(n,m): Y+ (m) — Y+ (n) follows from (4.6). Take x € X,/ (m) with U, (n,m)z =
0. By our definitions (4.6), (4.5), and (4.1), there are z3 € Z and y, € Y (b) such
that © = U(m, b)(U(b,0)2z2 + yp). Therefore, 0 = U(n,m)z = U(n,0)z2 + U(n, b)ys.
On the other hand, U(n,0)z; € X;-, by (4.4). For £ = (&)kez € ker D* equation
(2.5) thus yields

(U, &) = (4, U(n,0)76n) = (U(n, D)y, &n) = —(U(n,0)22,n) = 0.
We obtain y, € X3, NY*T(b) = {0} taking into account (4.3). As a result,
U(j,0)z2 = U(j,n)U(n,0)2e = 0 for all j > n, which means that zo € XF(0) N Zs.
Lemma 3.6(iii) now yields zo = 0. This fact leads to z = 0, and so U,/ (n,m) :
X;F(m) — X;F(n) is also injective. The assertions then follow from (i) and (4.6).

(iii) As we have seen before (4.3), there exist bases {§£1)7~-~ ,fédb)} of Xy .
and {.Tl()l),'“ ,acl()dh)} of Y (b) such that (J;l(f), lgj)> = 0;; for all 4,5 € {1,...,dp}.
Lemma 2.1(iv) and part (i) show that {(U(k,b)*) 1", -+, (U (k,b)*)1e{™)} is
a basis of Xy . and {U(hb)xél), . ,U(k,b)xl()db)} is a basis of Y (k). Moreover
Uk, b)2l? (U (k, b)) 1)y = 6, for all i, € {1,...,d}. Lemma 2.3(ii) thus
yields the assertion. O

Let n € Z4 and p € [1,00). The following sequences are used below when we
estimate the inverses of U, (n,m).

. {(n+1)é if £(z) = (2, X),

. ) itE@) =z, X),
" l(n+1) i E(Z) = (2, X), B

=11 if £(Z) = ¢o(Z, X).
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Remark 4.3. We note some immediate properties of the above defined sequences.
(i) B =n+1forn>0;

n+m
(i) kz €Il < agllélley~ for m € Z,n >0, § = (& )kez € E(Z)%;
(lll) HX{m m+n}®£HE(Z)* :B:;Hg“ forfEX*,mEZ, n > 0. &

Lemma 4.4. Let Hypothesis 1 be satisfied. Then the following assertions hold.
(i) There are constants N,v > 0 such that

[(U(n,m)x, )< Ne~vn=m) for n>m >0,
(ii) There are constants N,v > 0 such that
(U (n,m))7}]| < Ne~v(n=m) for m>m>b.

Proof. (i) Let & = (& )kez € ker D* and (¢k)rez be a finitely supported numerical
sequence. We define the sequences 1 = (ng)rez and ¢ = (Cx)kez by

0, k<b,
0, k<b-—1,
Ck =

e = k
< Z L)0]> fkn k Z b + 17 —Sﬁk+1§k, k Z b
Jj=b+1

We have n € Fp . since & € ker D* and n, = 0 (see (2.3) and (2.9)). Moreover,
¢ =D'n=Dy.n. Let n>m+12>b. We first choose (¢r)rez = X{m+1}- Then
Lemma 2.2(iii) yields

€]l = lmnll < Inlle@)- < cli€lle@)- = ellémll- (4.7)
Second, choose (Yr)kez = X{m+1,...,n}- Making use of estimate (4.7), Remark 4.3,
and Lemma 2.2(iii), we calculate
1 n n k
F(n=m)(n —m+1)||&al| = Sk=mlaall<e Yo > eilgl
k=m+1 k=m+1 j=b+1

n

—=c > el € caf_pilmlle@ye < cap_pmoil€lle):-
k=m+1

= 1 Pp—m—1l&mll = e(n —m)[|&m]|
As aresult, [[€n] < =g l€m |l for all n > m > b. Lemma 2.4 provides constants
N,v > 0 (independent of &) such that ||&,|| < Ne V("=™)||&,,|| for all n > m > b
and & = (&k)kez € ker D*, proving (i).
(ii) The decomposition X = Yt (k) & X,i:* from Lemma 4.2(iii) implies that
Yt (k)* = Xj . for all k > b since X}, , is finite dimensional. Thus we have

(U, m)py+my) ™) = (U, m)jy+(m)) )" = (U(n,m)jx, )"
for all n > m > b by Lemmas 4.2(ii) and 2.1(iv). Assertion (i) now yields

(U (n,m)jy+(my) "I < Ne7?™™™)  forall n>m >b. (4.8)
Lemmas 4.1 and 4.2 show that U, (n,m)~! has the matrix representation
(U(n7m)|Z2(m))_1 0 + +
_1| 1 Za(m) @Y (m Za(n) @Y (n
0 (U (nym) v+ (m)) 1 2(m) (m) — Z3(n) (n)

for all n > m > b. So the assertion follows from Lemma 4.1(ii) and (4.8). O
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Theorem 4.5. Let Hypothesis 1 hold. Then U has an exponential dichotomy on
Z N b, 00) with subspaces X} (k) and X1 (k) given by (3.1) and (4.6), respectively.

Proof. The spaces X} (m) and X;F(m), m > b, are closed and invariant under
U(n,m) due to Lemmas 3.4 and 4.2 and formula (3.3). We have shown the in-
vertibility of U, (n,m) : X;F(m) — X (n) in Lemma 4.2(ii), and the exponential
estimates of U (n,m) and U," (n,m)~! in Lemmas 3.4 and 4.4. It remains to verify
that X (m)® X,/ (m) = X for m > b. In view of Lemma 4.2 this fact follows from
the decomposition

X=X (m)® Zy(m)  forall m > 0. (4.9)

We prove (4.9). Let z € X (m)N Zy(m) for some m > 0. Then Lemma 4.1(ii) and
Lemma 3.4(i) yield
|z|| < Ne "= ||U(n, m)z|| < N2e=2=™)|z|| for all n > m,
which implies that x = 0. Take x € Xf;h* for some m > 0. We define the sequence
Y = (=X{m+13 ®U(m+1,m)z)mez which belongs to F by Lemma 2.1(ii) and (2.7).
Lemma 2.2(i) gives a sequence x = (zx)rez € F such that Dx = y. It follows that
xp —U(k,k—1Dag_1 =y =0 forall keZ\{m+1},
Tmg1 —U(m+1,m)x, = -U(m+1,m)z.
Therefore z;, = U(k, j)z; for all j <k <0, and so zp € X, (0) = Z> & X by (3.2)
and Lemma 3.6(i). Thus we can write g = 2o +vg with 20 € Zs and v = (vg)kez €
ker D (see (2.2)). The equations (4.10) further yield z; = U(j, m)(xm — x) for all
j>m+1and z,, = U(m,0)zo = U(m, 0)2z2 + v;, using also (2.4). We then deduce
U(]v m)(m - U(m70)22) =7 + U(ja m)(xm - U(mvo)ZQ) =%y + Uj
for all j > m+1. The vector x—U(m,0)z2 thus belongs to X (m) since x,v € £(Z)
(see (3.1)). We thus obtain = (z — U(m,0)z2) + U(m,0)z2 € XF(m) + Z2(m)
due to Lemma 4.1(i); i.e., X;5 , € X} (m) + Zo(m). The converse inclusion follows

myx =

from Remark 3.2 and (4.4). O

(4.10)

5. EXPONENTIAL DICHOTOMY ON Z_

The situation on Z_ is simpler than in the previous section since we have dealt
with the unstable subspaces already in Lemma 3.5. We first define our candidates
for the stable subspaces on Z_ by setting

X;0=Z10Y and X, (k)={xeX:U(0,k)ze X (0)} (5.1)

S

for all k € Z_. Recall from (3.9) that Y is finite dimensional and from Lemma 3.6
that Z; is closed and Z; NY = {0}. We further denote U, (n,m) = U(n, m)IX; (m)
for m < n <0, and we introduce the auxiliary spaces

Zi(k)={z e X:U0,k)xr € Z1} C X, (k) forall keZ_. (5.2)

Remark 5.1. Since the subspaces X (0) and Z; are closed, X, (m) and Z;(m) are
closed subspaces of X for all m € Z_. Moreover, U(n,m)X; (m) C X, (n) and
U(n,m)Zy(m) C Zy(n) for all m <n <0. &
Lemma 5.2. Let Hypothesis 1 hold. Then the following assertions hold for k < 0.
(1) Zi(k) = X7 (k) N X, s
(i) X =X, (k) X, (k).
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Proof. (i) Since Z; C Xg, by (3.10) and (2.6), Lemma 2.1(vi) and (5.2) yield
Z1(k) C X (k) ﬁXL forkeZ_. Letx € XL N X (k). Due to (5.1), there are
z1€Zrandy ey such that U (0, kj)x =y+ 2. We take & = (£, )nez € ker D* and
calculate

(y,€0) = (U0, k)z, &) — (21,80) = (2, U(0,k)"&o) = (2, &) =0
using (2.5) and Z; C Xg-,. So we obtain y € Y N Xy, = {0} employing also (3.9).
Hence, U(0,k)x = z1 € Zy; i.e., x € Z1(k).

(ii) Lemma 3.6(iii) and (5.1) show that X = X (0)® X, (0). Hence, given z € X,
there exist x; € X, (0) and z, € X, (0) with U(0,k)x = z] + x5 . By (3.2) there
is a sequence x = (2, )nez_ € E(Z_) such that z, = U(n,m)x,, for allm <n <0
and xg = x5 . Observe that x;, € X, (k) by (3.2). We further compute

U0,k)(x —xr) =U(0,k)xr —xy =x; € X, (0),

so that © — z, € X7 (k) by (5.1). As a result, X = X, (k) + X, (k). Take = €
X (k)N X, (k). Then equation (3.4) yields U(0,k)z € X (0). As above we see
that U(k,0)x € X, (0). Hence, U(0,k)z = 0 and Lemma 3.5(i) implies x =0. O

Lemma 5.3. Let Hypothesis 1 hold. Then there are constants N,v > 0 such that
U (n,m) 2, (my |l < Ne~v(n=m) for all m <n<O0.

Proof. Let m < —1, @ € Z1(m), and (pg)rez be a finitely supported numerical
sequence. We define the sequences x = (zy)rez and y = (yx)rez by

0, Ek<m-—1,
k 0, k<m-—1,
; <k<-1 -
. j;m o;U(k,m)z, m<k< -1, ve = d onU(ksm)z, m <k < —1,
—1
Z cij(k,m)z, k Z 07 07 k 2 0.
j=m

We have x € £(Z) and g € X{, because of U(0,m)Z1(m) C Z; = X7 (0) N X (see
(5.2), (3.10), and (3.1)). Lemmas 5.2(i) and 2.1(vi) further yield U(k,m)z € X,
for k > m. Therefore x € Fy (see (2.8)). Moreover, y = Dx = Dox. Let
m < n < —1. Choose first (¢r)rez = X{m}. Using Lemma 2.2(ii), we estimate

U (n,m)al| = 3~ @ |U(n,m)a|| = o]l < [Ix]lez) < cllylle@ = clzl].  (5.3)
Jj=m
As a consequence of estimate (5.3), Remark 3.3, and Lemma 2.2(ii), for (¢x)kez =
X{m,....,n}, We obtain that

n

%(n —m+1)(n—m+2)|U(n,m)x| = Z (k—m+1D)||U(n,m)z|

k=m
n k
=33 U, kU (k,m)z|| < Z Z%CHU ke, m)a|| —cZ [
k=m j=m k=m j=m

< can—mHXHE(Z) < Can—m”)’HE(Z) = cp—mPBn-m|z|| = c(n —m + 1)”73”

It follows that ||U(n,m)|z,m)ll < =575 for all m < n < 0. This implies the
assertion by a standard argument, cf. [8, Theorem II1.6.1]. O
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Lemma 5.4. Let Hypothesis 1 hold. Then there are constants N,v > 0 such that
[U(n,m)[x, I < Ne~vin=m) forall m <n <0.

Proof. Let €= (§n)nez € ker D* and (pp)rez be a finitely supported sequence.
Define the sequences n = (i )kez and ¢ = (Cx)kez by setting

>
% £20, oo w0
" _Zk vie, k< -1, ’ orle, k< -1
]:

Since £ € ker D*, we obtain that n € Fp . (see (2.9) and (2.3)). Moreover, { =
Dn = Dy «n due to (2.5). Let m < n < —1. First choose (¢x)rez = X{n}. Then
Lemma 2.2(iii) yields

1mll = llmmll < lInlle@)- < cllClle@) = clléall- (5-4)

Second, choose (¢k)rez = X{m....n}- Employing ineqality (5.4), Remark 4.3, and
Lemma 2.2(iii), we can estimate

n n -1
1
s—m 1) =m+2)[enll = 3 (0= k+Dlgnll = 3 D willéml
k=m k=m j=k
n —1 n
<e Y > owllerll = Y el < cap_plmllezy < ca_mlCle:-
k=m j=k k=m

< B —mllénll = c(n —m + 1)[|6].
Taking into account that ||, < Me*||&]|, we infer [[&,] < =57z lléall for

all m < n < 0. An application of Lemma 2.4 to the sequences a; = ||£_;|| and
b = c(j+2)7" gives N, v > 0 such that ||&,|| < Ne7?(»=m)||¢,|| for allm < n <0,
proving the lemma. ([

Theorem 5.5. Let Hypothesis 1 be satisfied. ThenU has an exponential dichotomy
on Z_ with subspaces X, (k) and X, (k) given by (5.1) and (3.2), respectively.

Proof. Property (i) in the definition of exponential dichotomy was established in
Lemma 5.2(ii), Remark 5.1, and (3.4). Lemma 3.5 yields property (ii) and the
second exponential estimate in (iii). In order to prove the remaining estimate
for U; (n,m), we fix a basis {5(()1),...,56%)} of the space Xo . (which is finite
dimensional by Lemma 2.1). There exist sequences n; = (n,gl))kez, ey Mgy =
(U;(Cd()))kez belonging to ker D* such that n(()j) = {éj) for all j € {1,...,do}, see
(2.5). Lemma 2.1(iv) implies that {n,(cl), e ,n](gd())} is a basis of Xy . for all k£ < 0.
Using Remark 3.2, we obtain X, (k) C X,i-’* = ﬂj‘):l kern,ij) for all £ < 0. As
a consequence of Lemmas 2.3(i) and 5.2(ii) we then find vectors y,gl), C y,(ch)
contained in X (k) such that <y,(:),17,gj)> = 0;; for all ¢,j € {1,...,do} and k < 0.
We now define Y~ (k) = Span{y,gl), . ,y,ng)}. From Lemmas 2.3(ii) and 5.2(i) we
deduce

X7(k)=(X; ()N XE) @Y (k) =Zi(k)@Y (k)  forall k<0. (5.5)

S

Let m < n < 0. We further introduce the space
Y~ (n,m) = Span{U(n,m)y),...,U(n,m)yl)} = U(n,m)y~(m),  (5.6)

m
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where U(n,m)y%) € X, (n) for all j € {1,...,do} due to Remark 5.1. Moreover,

(U, myy nP) = S Un,m)*n?) = (y3),0)) = 535
for all 4,5 € {1,...,dp} by (2.5). As in (5.5) we can conclude by Lemma 2.3(iii)
that
X;(n)=(X,(n)N Xf;*) D ?*(n,m) =Zi(n)® ?*(n, m). (5.7)

Our construction implies that dim Y~ (n,m)* = dim X,, . < co. Therefore (5.7)
yields X, « € Y~ (n,m)*, and hence X,, . = Y~ (n,m)*. Similarly, the equality
Y~ (m)* = X, follows from (5.5). Using Lemma 5.4, we arrive at

< Ne7v(n=m) (5.8)

1U (n,m) 1y @yl = (U (0, 1m0) 1y = )| = U (0, m)xc,,

for m < n < 0 and some constants N,v > 0. In view of (5.5), (5.7), (5.6), and
Remark 5.1, the operator U; (n,m) has the matrix representation

U(n,m)|z, (m) 0 _ o
Zi(m)dY  (m Z1i(n)dY (n,m).

0 | ) @Y () — Zin) &V (m)

Thus the exponential estimate for U; (n,m) is a consequence of Lemma 5.3 and

inequality (5.8). O

6. PROOF OF THEOREM 1.1

Sufficiency. Assume that (i) and (ii) in Theorem 1.1 hold. Then the Fredholm
property of G can be shown exactly as in Theorem 1.1 of [12]. (At this point of
the argument as well as in the proof of Theorem 1.4 and Lemma 1.5 the conditions
(BU.1) and (BU.2) have not been used in [12].)

Necessity. We proced similarly to [12]. Assume that G is Fredholm. As observed
in Section 2, Theorem 1.4 of [12] then implies Hypothesis 1 for U, where we may
assume that a = 0 without loss of generality. Then Theorems 4.5 and 5.5 show that
U has exponential dichotomies on [b,0c0)NZ4 and Z_. Lemma 1.5 of [12] (combined
with a translation argument) further implies that &/ has exponential dichotomies
on R_ and [b, 00).

We further have to prove (ii), i.e., the Fredholm property of the node operator
N(b,0) = (I — P,")U(b,a) : ker Py — ker P;". Lemma 3.6(i) and (4.5) yield

ker Py = X, (0)=Z® Xy and ker Pt = X (b) =Z2(b) YT (b). (6.1)

u

Recall from Lemma 2.1 and (4.3) that Xy and Y+ (b) are finite dimensional. Thus
the Fredholm property of N(b,0) follows from the equations

ker N(b,0) = X, and  im N(b,0) = Zy(b). (6.2)

For x = (2,,)nez € ker D we obtain N (b,0)zo = (I — P, )z, = 0 using (2.4), so that
Xo C ker N(b,0). Conversely, let x € ker N(b,0) C ker P, . Due to (6.1) there are
2o € Zy and xy € X with ¢ = 29 + 9. We can then infer N(b,0)z2 = N(b,0)x =0
because of Xo C ker N(b,0). Since further U(b,0)z2 € Zo(b) C X;F(b) = ker P,"
by (4.1) and (4.5), we arrive at 0 = N(b,0)z = U(b,0)z;. Now Lemma 4.1(i)
shows that zo = 0, and thus x = zg € Xy. By the same arguments we deduce
im N(b,0) = N(b,0)Z2 = (I — P,") Z2(b) = Z»(b).

Finally, we want to show the index and dimension formulas in Theorem 1.1
assuming that G is Fredholm. Define Ry : ker D — X and Ry . : ker D* — X,
by Ro(2n)nez = %o and Ry «(&n)nez = &, respectively. The maps Ry and Rp .



20 YURI LATUSHKIN, ALIN POGAN, AND ROLAND SCHNAUBELT

are surjective linear operators, by (2.4) and (2.5). Lemma 2.1(iii) and (iv) then
show that Ry and Ry . are bijective, so that dimker D = dim X, and dimker D* =
dim X .. Using Theorem 1.4 of [12] and (6.2), we conclude

dimker G = dimker D = dim Xy = dim ker N (b, 0).
Employing in addition (4.3) and (6.1), we further deduce
codimim G = codimim D = dimker D* = dim Xj .
= dim Y *(b) = codimim N (b,0).

Theorem 1.1 has been established. (]

The image of G admits the following description in terms of trajectories v(7) =
U(t,7)*v(t), i.e., the ‘solutions of the adjoint problem’; cf. [10] or [17]. In the
following proof it is again convenient to work with D instead of G since we know
D* explicitely.

Proposition 6.1. Let G be Fredholm on E(R). Then f € im G if and only if

/(f(a)w(a))da =0 Vvel&(R)NC (R, X*) withv(r) =U(t,7)*v(t) Vi >,
R

where E.(R) = {v: R — X* : v is weakly star measurable, |[v(-)|| € LI(R)}, ¢ =1

if ER) = Co(R, X), and  + 2 =1 if ER) = LP(R, X) with p € [1,00).

Proof. Assume that f € im G and v € &, (R)NC,"" (R, X*) with v(7) = U(t, 7)*v(t)
for all ¢ > 7. Due to Lemma 1.2, there is a function u € £(R) NCy(R, X) satisfying
(1.2). So we can compute

/ (f(0),v(0)}do = / (f(0), U(t, o) v(t))do = / (U(t,0) (o), v(t))do

= (u(7),v(7)) = (u(t), v(t))

for all t > 7. Letting 7 — —o0 and t — oo, we deduce that

[ (7). v(ondo =0
R

by means of u € Co(R, X) and v € C;"" (R, X*).
Assume that f € £(R) satisfies the condition in the proposition. We define the
operator R : E(R) — £(Z) by setting

(Rg)n = —/ U(n,7)g(T)dr for all ncZ.
n—1

We claim that Rf € im D. Since G is a Fredholm operator, Theorem 1.4 in [12]
shows that im D is closed, and thus im D = (ker D*)*. For £ = (&,)nez € ker D*,
we define v : R — X* by v(1) = U(n,7)*¢, for 7 € (n — 1,n] and n € Z. Due
0 (2.5), we obtain v € E,(R) NC " (R, X*) and v(r) = U(t,7)*v(t) for all ¢t > 7.
Furthermore,

#1.) == vni@ang) ==Y [ ).00.7 6 )ir

nez Y11 nez
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== /n (f(7), v(r))dr = — /R<f(7),v(r)>d7 —0,

nez -1

proving the claim. Using [12, Lemma 6.1(iv)], we conclude that f € im G. |

7. BACKWARD UNIQUENESS PROPERTY

In the following proposition we describe the backward uniqueness property (BU)
(see the introduction) in terms of the spaces X,, and X, ..

Proposition 7.1. Assume that the operator G is Fredholm on E(R). Then the
follwing assertions hold.

(i) (BU.1) holds if and only if dim X,, is constant for n € Z;
(ii) (BU.2) holds if and only if dim X, , is constant for n € Z;
(iii) If (BU.1) and (BU.2) hold, then we can take a =b =0 in Theorem 1.1.

Proof. (i) Assume that (BU.1) holds. Take z € X,, with U(n,m)z = 0 for some
n > m. Then there is a sequence x = (zy)rez € ker D such that z,,, = = by (2.2).
We define the function u : R — X by u(t) = U(t,j)x; fort € [j,j+1) and j € Z. It
is easy to check that u € Co(R, X) and u(t) = U(t, 7)u(r) for all t > 7 using (2.4).
Since u(n) = U(n,m)x,, = U(n,m)x = 0, (BU.1) shows that u(m) = x = 0. This
means that the map U(n,m) : X,, — X,, is injective, and hence it is bijective by
Lemma 2.1(i). As a result, dim X,,, = dim X, for all n > m.

Assume that dim X, is constant on Z. Let u € Co(R, X) be a function satisfying
u(t) = U(t,7)u(r) for all t > 7 and u(7y) = 0 for some 75 € R. Obviously, u(t) =0
for all t > 79. By Theorem 1.1, &/ has an exponential dichotomy on (—oo,a] for
some a € R. Thus, using that sup, || P || < oo, we can estimate

1P u(t)| = 10 m)Pru(r)]| < Ne "D Pru(r)| < N'em 7 Jul|o

for all 7 <t < a. Letting 7 — —o0, we obtain that P, u(t) =0, i.e., u(t) € X, (¢),
for all £ < a. Then we derive the inequality

lu()]| = U, (a,t) " u(a)| < Ne " ju(a)]

for all t < a. As a result, (u(n)),ez € ker D which leads to u(n) € X,, for alln € Z
(see (2.4) and (2.2)). The identity dim X,, = dim X,, and Lemma 2.1 then yield
the invertibility of U(n,m) : X,;, — X,, for all n > m. Thus u(n) =0 for all n € Z
since u(n) = 0 for large n.

(ii) Assume that (BU.2) holds. Take { € X, . with U(n,m)*¢ = 0. Then there
is a sequence € = (&)kez € ker D* such that &, = £ by (2.3). We define the
function v : R — X* by v(t) = U(4,t)*¢; for t € (j —1,j] and j € Z. It is
straightforward to see that v € C;”" (R, X*) and v(7) = U(t,7)*v(¢) for all ¢ > 7.
Since v(m) = U(n,m)*¢, = U(n,m)*¢ =0, (BU.2) yields v = 0, and thus £ = 0.
Now Lemma 2.1(ii) implies that dim X, . = dim X, , for n > m.

Assume that dim X, . is constant on Z. Let v € C)"" (R, X) satisfy v(r) =
U(t,7)*v(t) for all t > 7 and v(79) = 0 for some 79 € R. Hence, v(7) = 0 for all
7 < 79. Theorem 1.1 shows that I/ has an exponential dichotomy on [b, c0). This
fact, due to sup, ||P;|| < oo, leads to the estimate

[(Pra,o(r)| = |(Pre, Ut 7)" (1) = (U, 7)PFe, o)) < N'e™ "7 |lvlo] 2]
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forallt > 7 > band z € X. Letting t — oo, we obtain that (P z,v(7)) = 0 for all
7> band all x € X. We can now conclude that

[, v(r))| = KU (7, 0)US (1,0)7 (I = Pz, v())| = (U (7,0) " (I = Pz, v(b)]
< Ne "IN = P 2] [lo(®)ll,
lo()]| < ce™ TP ju(b)]

for all 7 > b and all z € X. Consequently, (v(n))nez € ker D* and v(n) € X, . (see
(2.5) and (2.3)). Since dim X,, , = dim X, . for all n > m, Lemma 2.1 implies the
invertibility of U(n,m)* : X, « — X« for all n > m. So we arrive at v(n) = 0 for
all n € Z, and hence v = 0.

(iii) The last assertion follows from (i), (ii), and the definition of @ and b given
after (2.5). O

We present the examples mentioned in the introduction. Observe that here X is
a Hilbert space and U is generated by piecewise constant operators A(t) = Ay for
t>0and A(t) = A_ for t <0.

Example 7.2. Let X = L*(R,), fo = X[0,1], and Py : X — X, Py f = (f, fo) fo, be
the orthogonal projection onto Span{ fo}, and set Qo = I—Py. Define (S1(¢)f)(7) =
e tf(t+7) fort,7 > 0and f € X, and Sa(t)f = e'Pof + e 'Qof for t > 0 and
f e X Let U = {U(t,7)}1>- be the strongly continuous, exponentially bounded
evolution family on X given by

Si(t— 1), t>7>0,
Ult,7) = ¢ S1(t)Se(—7), t>0>T,
Sa(t—7), 0>t>r

G denotes the generator of the associated evolution semigroup defined on L?(R, X).

We claim that dimker G = 1 and that, more percisely, ker G is the set of func-
tions u given by w(t) = Si(t)u(0) for t > 0, u(t) = Sa(t)u(0) for ¢ < 0, and
u(0) € Span{fo}. Indeed, if u € ker G, then Lemma 1.2 shows that u(t) =
U(t,0)u(0) = S1(t)u(0) for all ¢ > 0 and u(0) = U(0,t)u(t) = Sa(—t)u(t) for
all t < 0. Since u € L?(R, X), we must have Qou(0) = 0. The proof of the converse
inclusion is straightforward. The claim is proved.

Let f € L?(R,) and define u : R — L?(R.) by

t 0
—/ e" Qo f(T)dr +/ e~ Py f(1)dr, t <0,
u(t) = P k 0
7/ S1(t—7)f(r)dr — Sl(t)Qo/ e f(r)dr, t>0.
0 —00o
Using Lemma 1.2 we see that v € dom G and Gu = f. Therefore G is surjective
and thus Fredholm.
Define ug € ker G by ug(t) = el fo for t < 0 and ug(t) = Sy (¢)fo for t > 0. Then
uo(t) = U(t,T)up(r) for all t > 7. However, uo(0) = fo # 0 and (uo(2))(7) =
e 2fo(2+7) =0 for 7 > 0. As a result, (BU.1) fails for the function u = uy. o

Using the adjoint of the evolutionjamily U in Example 7.2, one can construct
an example of the evolution family ¢/ such that the operator G is Fredholm but
(BU.2) fails (and, of course, for the direct sum of & and U both (BU.1) and (BU.2)
fail).
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Example 7.3. With the notations used in Example 7.2, we define the strongly
continuous evolution family V = {V (¢, 7) }s>- by,

Sa(t —7), t>71>1,
V(t,7) =14 Sa(t —1)S1(1—7)*, t>1>7,
Sy(t—1)%, 1>t>rT.

Arguing as in Example 7.2, we can establish the Fredholm property of the generator
of the evolution semigroup on L*(R, X) associated with V. It is clear that V has
exponential dichotomies on R_ and [1,00) with projections P, = I for ¢ < 0 and
P, = Qg for t > 1, respectively. Looking for a contradiction, we suppose that V
has an exponential dichotomy on R.. The definition of the exponential dichotomy
implies that X} (1) = {f € L2(Ry) : V(t,7)f — O ast — oo}. Hence, X} (1) =
ker Py, so that X;" (1) must be a (one dimensional) complement of ker Py. On the
other hand, P,V (1,0) = PyS1(1)* = 0 contradicting the required surjectivity of
V(1,0): X;F(0) — X,F(1). o
Remark 7.4. In Propositions 6.1 and 7.1 we can replace C;"" (R, X*) by the space
Cy"" (R, X*) of continuous functions vanishing at +o0 if £(R) = Co(R, X) or E(R) =
LP(R,X) for p € (1,00). This fact follows from the proofs of these results because
for an orbit v(-) satisfying v(7) = U(t,7)*v(t) for all ¢ > 7 in R, the conditions
v e (R,X*) and v € Cy"" (R, X*) are equivalent provided U has exponential
dichotomies on (—o0, a] and [b, 00).
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