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Abstract

For finite-dimensional systems the Hautus test is a well-known and easy checkable
condition for observability. Russell and Weiss (SIAM J. Control Optim. 32:1-23,
1994) suggested an infinite-dimensional version of the Hautus test, which is neces-
sary for exact infinite-time observability and sufficient for approximate infinite-time
observability of exponentially stable systems. In this paper the notion of observabil-
ity is studied for polynomially stable systems. Several known results for exponen-
tially stable systems are extended to the setting of polynomially stable systems. By
means of an example the obtained results are illustrated.
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1 Introduction

In this paper we study the observability of the system

y(t) = Cx(t), t >0, (1.1)

on a Banach space X. We assume that A is the infinitesimal generator of a strongly
continuous semigroup 7'(-) = (7'(t))t>0 on X, and that C' is a linear bounded operator
from the domain of A, denoted by X; := D(A), to another Banach space Y. Here we have
equipped D(A) with the graph norm. By a solution of #(¢) = Ax(¢) with initial condition
x(0) = zo € X we mean the continuous function

z(t) = T'(t)zo, t > 0.
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These assumptions are not sufficient to guarantee that the output of the system, the
function y(-), is an element of L? (R,,Y). In order to guarantee this, we assume that
C' is an admissible observation operator for 7(-). The notion of admissible observation
operators was introduced by Weiss [22] as follows.

Definition 1.1 An operator C' € B(X;,Y) is an admissible observation operator for
T(-) if the map Vooxr = CT(-)x (initially defined on Xi) has a continuous extension
Uy : X — L (R,,Y) (where L2, is endowed with the usual Fréchet topology).

Here B(X,Y) denotes the set of bounded linear operators from X to Y. For further
information concerning admissibility we refer the reader to the survey [10]. In this paper
we discuss in particular the following observability concepts.

Definition 1.2 The system (1.1) is called approximately infinite-time observable if U, :
X — L} (R.,Y) is injective. If

Voot || 2@y vy = & [|2]

holds for a constant k > 0 and for every x € X, then the system (1.1) is called exactly
infinite-time observable. (Here the left hand side is taken to be oo if Voo & L*(R,,Y).)

It is well known that for reflexive Banach spaces X and Y the concept of admissible ob-
servation operators is dual to that of admissible control operators (see e.g. Salamon [21]),
and the notion of approximate (exact) infinite-time observability is dual to approximate
(exact) infinite-time controllability (see e.g. Dolecki and Russell [6]). Controllability and
observability are important properties of a distributed parameter system, which have been
extensively studied in the literature, see for example [2], [14] and [19].

The Hautus Lemma, due to Popov [18] and Hautus [9], is a powerful and well known
test for observability of finite-dimensional systems. It states that the system (1.1) with
A e C™ and C € CP*" is observable if and only if

sl — A
rank =n for all s € C. (1.2)

C

Russell and Weiss [20] proposed the following generalization of the Hautus test to the
infinite-dimensional situation: There exists a m > 0 such that

I(s] = A)z|* + | Re(s)[Cx[|* = m|Re(s) || (RW)

for all complex s with negative real part and for all z € D(A). Under the assumption that
the semigroup 7'(-) is exponentially stable, they showed that condition (RW) is necessary
for the exact infinite-time observability of (1.1) and that it is sufficient for the approximate
infinite-time observability of (1.1). In several situations, such as if A is bounded [20], A



is a Riesz-spectral operator and dim Y < oo [11], or A + w/ is skew-adjoint [16], [23], the
Hautus test is in fact sufficient for exact infinite-time observability. However, in general
the Hautus test does not imply exact infinite-time observability even for exponentially
stable semigroups, [12]. A counterexample in [13] shows that for strongly stable systems,
that is, T'(t)x — 0 as t — oo for all z € X, the Hautus test is not a sufficient condition
for approximate infinite-time observability.

Certain weakly damped or coupled wave equations lead to semigroups 7'(-) which do not
decay exponentially, but it holds

1Tl < ct™(l=]| + [ Az]) V¥ t>0, 2 € D(A) (1.3)

for some constants ¢, 3 > 0; see [1], [3], and the references therein. In these situations the
spectrum of A typically belongs to the open left halfplane and approaches iR at +ioco.
In Section 2 we briefly recall the relevant definitions and properties of such polynomially
stable semigroups. We note that every exponentially stable semigroup is polynomially
stable, and that every bounded, polynomially stable semigroup is strongly stable.

The above indicated results concerning the Hautus test cannot be applied to polynomially
stable semigroups. (One could apply them to the rescaled exponentially stable semigroup
(e7“'"T'(t))i>0 with w > 0, but this would give rather crude results; e.g., the behavior
of the spectrum of A near iR would be ignored.) In this paper we want to study the
Hautus test for polynomially stable semigroups. For these investigations it turns out to
be useful to introduce variants of the Hautus test (RW) and of approximate and exact
infinite time observability where one replaces X by fractional power spaces D((wl —A)%).
These concepts are defined and discussed in Section 3. In particular, in Definition 3.5 we
introduce the («,0)-Hautus test which is weaker than the Hautus test (RW). The main
result of this paper is as follows.

Theorem 1.3 Assume that the semigroup T'(-) is polynomially stable. Then the (v, 0)-
Hautus test is sufficient for the approximate infinite-time observability of the system (1.1)
and necessary for the exact infinite-time observability of the system (1.1).

Theorem 1.3 is a special case of Proposition 3.6 (for the necessity part) and of Theo-
rem 3.10 (for the sufficiency part). We point out that Theorem 3.10 improves Theorem 1.6
of [20] even in the case exponentially stable semigroups. As in the case of exponentially
stable semigroups, the theory can be complemented by several results concerning infi-
nite time admissibility, finite time exact observability and sufficient conditions for exact
infinite-time observability, see Section 3. We conclude the paper with an extended exam-
ple illustrating our concepts and results in the case of diagonal systems. This example
also shows that the exponents « in our results are optimal in several respects.



2 Preliminaries on polynomially stable semigroups

In this section we fix our notation and review some results on polynomially stable Cjy-
semigroups. By D(B), N(B) o(B), p(B), we denote the domain, kernel, spectrum, re-
solvent set of a linear operator B, respectively, and we set R(\, B) = (M — B)~'. The
open left and right half planes of C are designated by C_ and C,, respectively. We write
¢ =c(a, 3,---) for a generic constant depending on the quantities «, 3, - - . Throughout
this paper, A is the generator of a Cy-semigroup 7'(+) on a Banach space X.

Fix a real number w such that ||T(¢)|| < Me(™®=)* for some constants M,s > 0 and all
t > 0. We define the fractional powers of A, := wl — A by
Ca 1 a
Az = %/F(w ~A)CR(A, A) d),

where @ > 0 and I is any piecewise smooth path in the set {\ € C: ReA >w —e, A ¢
[w, 00)} running from ocoe™™ to ooe™® for some 0 < ¢ < 7/2, see [7, Section 11.5] or [17,
Section 2.7]. We further set A2 = I. The operator A is injective and bounded, hence it
has a closed inverse denoted by A%. We endow the domain D(A%) =: X, with the norm
|A%x||x =: ||z||a; @ > 0, where X, = X. Observe that X3 is continuously and densely
embedded in X, for > o > 0 and that ||z, is equivalent to the usual graph norm of
A™ for n € N. Moreover, the fractional powers commute with 7'(¢) and A.

Definition 2.1 A Cy-semigroup T(+) is called polynomially stable if there are constants
a, 3 >0 such that

1T AL < Nt (2.1)

for a constant N > 0 and all t > 1.
We note that inequality (2.1) is equivalent to
1T (t)z|| < Nt77||z||o Ve X, (2.2)

We note that in the case @ = 1 the inequality (2.2) is equivalent to (1.3). Observe
that estimate (2.1) with @« = 0 and 8 > 0 already implies that 7'(-) is exponentially
stable, i.e. ||[T(t)]| < Me = for t > 0 and some constants M, e > 0. It was shown in [3,
Proposition 3.1] that a polynomially stable semigroup satisfies

ITOA S ey, t>1, (2.3)

for each v > 1. Moreover, inequality (2.3) holds for all v > 0 if T(-) is polynomially
stable and bounded (i.e., ||T'(t)|| < M for some constant M > 1 and all ¢ > 0). For every
semigroup 7'(-), estimate (2.1) with § =1 and « > 0 implies that o(A) C C_ and that

IR\, A)AZ°| < e(e),  ReA >0, (2.4)



for each € > 0, see [3, Proposition 3.3]. Conversely, if T'(-) is bounded and ||R(A, A)A,°||
is bounded for A € /R, then

ITOAS N <cle)t™,  t>1,
for each £ > 0 due to [3, Theorem 3.5]. We further remark that
IRN,A)A N <c VReA>0 <= [[RNA)| <c(1+|A\]*) VReA>0 (2.5)

for each generator A with o(A) C C_, see e.g. [3, Proposition 3.6]. There are bounded,
polynomially stable semigroups arising from coupled wave equations whose generator
spectrum o(A) is contained in C_ and approaches iR at +ico (so that these semigroups
are not exponentially stable). It may also happen that T'(-) is polynomially stable, but
|T(t)]] grows exponentially as ¢ — oo and o(A) C {A € C: ReX < —1}. We refer to [1]
and [3] for such examples and further results and references.

3 Observability concepts of polynomially stable systems

We now return to infinite-dimensional systems described by (1.1). Throughout this section
we assume that A generates a Cp-semigroup 7(-) on a Banach space X and that C' is an
admissible observation operator for 7°(-).

It is known that if 7'(-) is exponentially stable, then C' is infinite-time admissible; i.e.,
Uy : X — L*R,,Y) is bounded. In the following lemma we prove a similar fact for
polynomially stable semigroups. Observe that we can always assume that § > 1/2 in
(2.1) due to (2.3), possibly after increasing the initially given a.

Lemma 3.1 Assume that T(-) is polynomially stable with constants («, 3), where 3 >
1/2. Then ¥, : X, — L*(R,,Y) is bounded.

Proof: The admissibility of C' and inequality (2.2) imply that
9] 1 (9]
19 oozl|Z2m, v) = Z/O ICT ()T (k)=||* dt < ¢ > ||T (k)=
k=0 k=0

<ed K z)3 = c(B) [l=]

k=0

for x € X1,,. This estimate yields the assertion. ]

In Section 4 we present an example showing that Lemma 3.1 does not hold for 5 < 1/2.
Next we generalize the notion of exact infinite-time observability.

Definition 3.2 Let o« > 0. The system (1.1) is a-exactly infinite-time observable if

ool 2@y v) 2 A [[2]la



holds for some constant k > 0 and for every x € X,,. (Here the left hand side is taken to
be oo if Voo & L*(R,,Y).)

Observe that a-exact infinite-time observability implies -exact infinite-time observability
if « > [ > 0. An a-exactly infinite-time observable system may lose this property if one
increases the exponent «, see Section 4. Obviously, 0-exact infinite-time observability
coincides with exact infinite-time observability.

We further note that the system (1.1) is a-exactly infinite-time observable if and only if
there is a constant &' > 0 such that for each x € X, there is a constant ¢, > 0 with

1Vt || L2 (0,00),v) = K (12|

If « =0 and T'(+) is exponentially stable, then ¢, can be chosen independently of x € X
by [20, Proposition 2.8]. In other words, if 7'(-) is exponentially stable, then an exactly
infinite-time observable system is in fact exactly observable in a finite time ¢ > 0. We
obtain similar results for polynomially stable systems.

Proposition 3.3 Assume that T(-) is polynomially stable and bounded. Let C' be an
infinite-time admissible observation operator for T(-) and let a > 0. Then the follow-
ing statements are equivalent.

(a) The system (1.1) is a-ezactly infinite-time observable.
(b) There exist constants k', ty > 0 such that

"\Ilw$”L2((O,to),Y) > K HiBHa Vo€ Xa.

Proof: The implication ‘(b)=-(a)’ is obvious. Let the system (1.1) be a-exactly infinite-
time observable. Using this assumption, the infinite-time admissibility and (2.2), we esti-
mate

Kl zlla < Vool 2@y, y) < IWeo|lL2((0,t0),v) T [[Woo T (t0)2 || 2R, vy
< Woo| r2((00)v) + € 1T (o) ]| < 1 Woo || 2((0,10)) + cto” %] as

for some constants (3, k,c > 0 and every t, > 0. Taking a sufficiently large t,5 > 0, we
arrive at assertion (b). n

We can weaken the assumptions on T'(-) and C' in the above proposition if we restrict
ourselves to sufficiently large a.

Proposition 3.4 Assume that T(-) is polynomially stable with constants (@, ), where
B > 1/2. Let C' be an admissible observation operator for T'(-) and let o > o := 2@.
Then the following statements are equivalent.

(a) The system (1.1) is a-ezactly infinite-time observable.



(b) There exist constants k', ty > 0 such that
1¥oo|l L2((0,t0),v) = K |z]la Vo€ X,
Proof: Assume that (a) holds. Then Lemma 3.1 and estimate (2.1) yield

Ellzlla < Weollzr, v) < 1WoollL2(0.t0).y) + WooT ()T 2R, v)
< Vool L2((0.10),v) + cll(wl — A)*T (to) ||
< | Woozll 200y + cto N (W — A)a||5

<P oo || 2((0,00)v) + to 17|

for some constants k,c > 0 and every t, > 0, where we also used a > 2a. As in the
previous proof, assertion (b) follows. The other implication is again obvious. [

In order to characterize observable polynomially stable systems, we introduce the following
version of the Hautus-test (RW) from the introduction.

Definition 3.5 Let o, 3 > 0. We say that the system (1.1) satisfy the («, 3)-Hautus test
if there is a constant m > 0 such that for all x € X1, N Xg and X € C_ there is a
constant my > 0 with

A — A)z|l2 +ma||C||* > m? [Re AP [Jz]3. (3.1)
If o« = 3 =0, then we say that (1.1) satisfies the Hautus test.

Observe that the (o, 3)-Hautus test implies the (o, 3)-Hautus test if o/ > a > 0 and
the (o, #')-Hautus test if 0 < # < (. It may happen that a valid Hautus test fails if
one decreases « for fixed 3, or if increases [ for fixed «, cf. Section 4. We remark that
on the right hand side of (3.1) the dependence on A can be weakened considerably, see
Remark 3.13, but for simplicity we work with the concept given in Definition 3.5.

In view of the Hautus test introduced by Russell and Weiss in [20], see the introduction,
we say that the system (1.1) satisfies the (a, 3)-Hautus test (RW) if the system (1.1)
satisfies the (o, 3)-Hautus test with my = |Re A|. The Hautus test (RW) with o = 3 =0
is well studied in the literature, as discussed in the introduction. We recall that Russell
and Weiss proved in [20] that exact infinite-time observability implies the Hautus test
(RW) and that the Hautus-test (RW) implies approximate infinite-time observability, for
exponentially stable semigroups. We shall extend several known results for exponentially
stable systems to the setting of polynomially stable semigroups, starting with a necessary
condition for #-exact infinite-time observability. In Section 4 we show that this condition
cannot be improved, in general.

Proposition 3.6 Let o, 3 > 0. Suppose that Vo, : X, — L*(R,,Y) is bounded (e.g., if
T(+) is polynomially stable with constants (v, 3), where 8 > 1/2) and that the system (1.1)

is B-exactly infinite-time observable. Then the system (1.1) satisfies the («, 3)-Hautus test
(RW).



Proof: We proceed as in [20] where the case o = § = 0 was considered. Let © € X0
and X\ € C_. Set ey (t) = e for t > 0 and ey(t) = 0 for ¢t < 0. We then have

T(t)r=e x—i—/ AE=IT(s)(A = M)z ds, t>0,
\Ifoox—e,\Cx+e,\*\Ifoo(A—)\I)x.

Since the norm of a convolution operator on L*(R) is bounded by the L'-norm of its
kernel, our assumptions imply that

kllzlls < Vool 2@, v) £ == ICz| + [(AL = A)z|a.
’ (fe) \/2|Re)\| IR Y

This estimate easily yields the assertion. ]

Remark 3.7 The proof of Proposition 3.6 also tmplies the following result: Suppose that
U, : X, — L*(R,,Y) is bounded for some o > 0 and that the system (1.1) is approxi-
mately infinite-time observable. Then

I(AT = A)z[|7 + [Re Al | C[|* > 0
for every x € X1.,\{0} and A € C_. <&

In the following two propositions we show that for certain classes of systems the (o, a)-
Hautus test (RW) is even sufficient for a-exact infinite-time observability. Recall that a
Riesz basis of a Hilbert space H is a sequence (¢, )nen in H such that ¢, = Se, for an
invertible operator S € B(H) and an orthonormal basis (e, )neny of H. A Riesz-spectral
operator A on H is an operator possessing a Riesz basis of eigenvectors. We do not require
additionally that the eigenvalues have a totally disconnected closure as in [5]. We also note
that in the following result one can weaken the assumption that C'is admissible to a+ 1-
admissibility; i.e, C' is admissible for the restriction of T'(-) to X,, see [15].

Proposition 3.8 Let X be a Hilbert space and A be a Riesz-spectral operator. Suppose
that the eigenvalues of A are contained in the open left half plane, that dimY < oo, and
that Uy, : X, — L2(R,,Y) is bounded for some o > 0. Then the following statements are
equivalent.

(a) The system (1.1) is a-exactly infinite-time observable.
(b) The system (1.1) satisfies the (o, o)-Hautus test (RW).

Proof: The assertion is a consequence of Theorem 2 in [11] if we consider the system
(1.1) on the space X,. |

The next result improves [8, Theorem 3.2] where it was shown that the Hautus-test (RW)
with m = 1 implies exact infinite-time observability if the semigroup 7'(+) is exponentially
stable. Recall that T'(-) is called strongly stable if T'(t)z — 0 as t — oo for all z € X.



Proposition 3.9 Assume that X is a Hilbert space, that T(-) is strongly stable and that
a > 0. If there exists a sequence (Sp)nen C (—00,0) such that lim,, . s, = —00 and

(sl — Azl + Isal [C2[* = [sul*ll2ll VR EN, 2 € Xiya, (3-2)
then the system (1.1) is a-exactly infinite-time observable.

Proof: Property (3.2) is equivalent to

|Cx||* + |Az|? > —(Ax,2)o — (z, AT)q forall n € N, x € Xi.4,.

1
|$n]
Letting n — oo, we obtain for each ¢ > 0 and = € X, the inequality
ICT(t)x|]* > (AT ()2, T(t)x) o — (T(t)x, AT (t)2) 4.
Let ty > 0. Integrating this inequality from 0 to ¢y, we deduce
fo 2 2 2
/0 [CT(@)z|"dt = [l — T (o)xll5

for v € Xi44. The assertion now follows from this estimate combined with the strong
stability of the semigroup 7'(-). n

We now give a sufficient condition for approximate infinite-time observability improving
Theorem 1.6 of [20] in two ways: We only require that 7'(+) is polynomially stable (instead
of exponentially stable), and we use the («, 0)-Hautus test instead of the stronger Hautus
test (RW). A counterexample in [13] shows that one cannot further reduce polynomial
stability to mere strong stability. In the next section we present an approximately infinite-
time observable and polynomially stable system which violates the («, 0)-Hautus test for
every choice of a > 0 and m, > 0; i.e., the converse of Theorem 3.10 does not hold.

Theorem 3.10 Let T'(-) be polynomially stable and assume that the system (1.1) satisfies
the (e, 0)-Hautus test for some a > 0. Then the system (1.1) is approximately infinite-time
observable.

For the proof of Theorem 3.10 we need the following lemma, which relies on the Phragmén—
Lindel6f principle: Let Z be a Banach space and f : {A € C: ReX > a} — Z be a
continuous function which is holomorphic for Re A > a and satisfies |f()\)| < ce A" for
Re A > a and constants a € R, ¢,b > 0, and 0 < v < 1. Then it holds

sup |[f(MI = sup [[F (V]I

ReA>a ReA=a

This fact is shown in e.g. [4, Corollary VI.4.2] for Z = C and can be extended to general
Z using linear forms.

Lemma 3.11 Assume that S(-) is a polynomially stable Cy-semigroup with generator B



on a Banach space Z such that
(Al = B)(wI — B)*z| = m[Re Al ||| (3.3)

forx € Zyyo = D(BLT), A € C_, some a > 0, a sufficiently large w € R, and a constant
m > 0. Then Z = {0}.

Proof: Since S(-) is polynomially stable there are constants «, 3, N > 0 such that (2.1)
holds for all £ > 1. Here we may assume that 3 = 1. (Use (2.3) with v > 1 if 5 € (0,1)
initially.) Due to (2.4) and (2.5), we know that ¢(B) C C_ and

IR B)[| < K (14 [A]) =: @ (]A])

for Re A > 0 and some constants K,y > 0. If o(B) # (), then there would exist A € o(B)
and \, € p(B) such that ReA, < ReA/2 =: = <0 forn € Nand \, — XA as n — 0.
Hence, ||R(A\,, B)|| — oo as n — oo. Take a natural number k£ > a. The identity

k
R(An, B)B_k = )‘;kR()\na B) + Z )\;jB—k—l—f—j

j=1
yields || R(\,, B)B~*| — oo as n — oo. On the other hand, (3.3) implies that
IR, BB = |1 BLB™ ROM, B)BLS| < .
mo
which is a contradiction. As a result, B has empty spectrum.
Let A\€ Cand z € Z,. If 0 > Re A > —(2¢(|Im A])) ™!, then
[R(A, B)I| < 2¢(] Tm Af) < 2¢(|A])

by a standard perturbation argument. The estimate (3.3) further yields

2¢(|Al)

1
m

m | Re Al

20(| Tm AJ)

R(\, B)z|| < a S —— ||Z]la <
IR(A, B)z| < 1lla <= ———=lIll

12| (3.4)

if ReA < —(2¢(|Im A|))~!. Summing up, we have established that
IR, B)z| < K'(1+ A7) [|2la (3.5)
on every right half plane {\ € C: Re A > —r}. Then [4, Corollary V1.4.2] and (3.3) show

2]l
mr

[R(A, B)z|| < sup |R(—r —is, B)z| <
seR

for all ReA > —r and r > 0. Letting r — oo, we obtain R(\, B)z = 0 for all (fixed) A € C
and z € Z,. The density of Z, in Z implies that R(\, B) = 0, and thus Z = {0}. n

Proof of Theorem 3.10: We have to show that Z = N (W) is trivial. The admissibility
of C'implies that Z is a closed subspace of X, and it is easy to see that Z is T'()-invariant.

10



Thus the restriction T(t) of T(t) to Z yields a Cy-semigroup on Z generated by the
restriction A of A to Z. Observe that T'(-) is still polynomially stable. If z € D(A), then
Cz = (V) (0) = 0. Thus the («, 0)-Hautus test implies that

IAT = A)(wl — A)*a]| > m |Re Al |l (3.6)

for A € C_ and 2 € D(A) N X14q. Since (3.6) is precisely (3.3) for B = A on the space
Z, Lemma 3.11 shows that Z = {0}. n

Remark 3.12 Theorem 3.10 still holds if one replaces the assumption of polynomial sta-
bility by the hypothesis that o(A) C C_ and ||R(N, A)|| < ¢(|]A]) for ReA > 0 and an
increasing function ¢ : Ry — Ry satisfying ¢(s) < cexp(bs?) for constants b,c > 0 and
0 < v < 1. The proofs of Theorem 3.10 and Lemma 3.11 carry over to this more general
setting. <&

Remark 3.13 Theorem 3.10, Lemma 3.11, and Remark 3.12 remain valid if we replace
in the Hautus test (3.1) and in the lower estimate (3.3) the factor m|Re A| by u(| Re A]),
where 11 : Ry — (0, 00) is an increasing unbounded function such that u(r) > cr” for some
constants c¢,v > 0 and sufficiently small r > 0. One only has to observe that in the proof
of Lemma 3.11 the inequality

1RO BY=) < [u(3 oAD" =lla

holds instead of (3.4) and the inequality

180, Bzl < max {2600, [1(3 AN )]}zl

holds instead of (3.5). The other arguments can be used without changes. &

4 Applications to diagonal systems

We want to illustrate the concepts introduced in the previous section and the results
established there. Let X = ¢? be the space of square summable complex sequences z =
(xn) = (n)nen with the canonical basis vectors e,. Given p, = —n~7 +in forn € N =
{1,2---} and some v > 0, we define Az = (u,x,) for x € D(A) = {z € *: (u,x,) € (*}.
Then the norm ||z||, is equivalent to the norm ||(n®xz,)||x and A generates the contractive
Co-semigroup T'(+) on X given by T'(t)x = (e#~'x,,). It is easy to see that T'(+) is polynomial
stable with (sharp) constants (-, 1), see [3, Proposition 4.2]. Hence, (2.1) holds for ao = 1y
and 3 = r with arbitrary r > 0 because of (2.3). Given a complex valued sequence (c,),
we define Cz = Y, ¢, x,. This operator is admissible for A if and only if (¢,) is bounded,
thanks to the Carleson measure criterion applied to A — I, see Proposition 7.1 in [22] and
the references therein. We thus assume that (c,) is bounded.

11



Suppose that ¥, € B(X,, L*(R,)) for some a > 0. Taking = = ¢,,, we obtain that

200 < 2 2 _ * oRent| . 290 _ S
n* > éllenlly > C”\I[ooen”L?(RJr) =c 0 ¢ |cu|”dt = 9 lcnl”,
and thus
| <En® 3 (4.1)

for some constants ¢, ¢,¢ > 0 and all n € N. (Since ¢, is bounded, condition (4.1) always
holds with ¢ = ||(¢,)]|eo if @ > v/2.) Conversely, if (4.1) is valid for all n € N, then the
operator C'(—A)"/2=* is admissible for A by the above observations. So we can estimate

o 1
[Watlae,) = 3 [ 1C(AY =TT (k) (~A)" 2l dr
k=0
<3 T (=A) "z
k=0
oo 1
= | (=A%l + Y [ ITOT(k+ 1= 7)(=A) 2|2 dr
k=0"0
<cllall2 +e [T IT@(-A) 2t
0
_ CHm“i —I—CZ/OO €2Reuntn2a—7|xn|2 dt
n=1 0

<c||?

for x € X, and @ > 0. As a result, ¥, : X, — L*(R,) is bounded if and only if (4.1)
holds for all n € N. In particular, if (¢,) satisfies

rlLIellf\l lcn| >0, (4.2)
then Wo, € B(X,, L*(R,)) if and only if @ > /2. So Lemma 3.1 is almost sharp.

Going back to a general admissible C', we assume that the system is a-exactly infinite-time
observable for some a > 0. Taking x = e,, we then deduce that

oo
n** < |len|]2 < c/ leFrte, |2 dt < en? e, |?, hence, |c,| > cn®2 (4.3)
0

for constants c¢,c > 0, obtaining a necessary condition for the a-exact infinite-time ob-
servability of our diagonal system. In particular, & must be smaller or equal /2 since
(¢n) is bounded. In the critical case a = /2, the estimate (4.3) coincides with (4.2).

An inequality analogous to (4.3) is necessary for the («, §)-Hautus test (RW). In fact, for
r = e, and A\ = pu,, this test implies that

[eal® > m? [ Re pin| |p0n[** > en® ™
with a constant ¢ > 0. In particular, 5 < /2 by the boundedness of (¢,). Moreover, let

C fulfill (4.2) and the («, §)-Hautus test (RW). Take x = ¢, e,41 — Chr1€n, and A = p,, — 1.
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Then Cx = 0, and so n?® < ¢(n+ 1)?* by this Hautus test. As a result, the («, 8)-Hautus
test (RW) for admissible C' satisfying (4.2) implies that o > £.

We now want to apply the implication ‘(b)=-(a)’ in Proposition 3.8 to the above system.
Hence we have to verify the (a,a)-Hautus test (RW) with o € [0,v/2] and we have
to suppose that (4.1) and (4.3) hold. In addition, we require that v > 1. Under these
assumptions we will obtain the a-exact infinite-time observability of our system for 0 <
a < /2, whereas we already know that this property does not hold if o > ~/2. If we
consider the borderline case o« = /2 (where (4.2) is valid), then the above observations
show that (a, 3)-Hautus test (RW) fails for & < # and § > /2, in general. Moreover,
Proposition 3.6 gives the optimal exponents in the Hautus test in the case o = § = /2.

In fact, we will check the (a, a)-Hautus test (RW) for nC' for some n > 0 fixed below.
Note that the sequence (nc,) is also bounded and satisfies (4.1) and (4.3) with ¢ and ¢
replaced by n¢ and nc, respectively. So Proposition 3.8 shows the a-exact infinite-time
observability for nC' which implies the same property for C'.

Observe that |p, —p;| > 1for all n, j € Nwith n # j. Take 2 € X;,,. First let Re A < —2.
In this case we have

1A = A)zllg = 32 1A = pal® " |2a]* > [Re A+ 1P[|2[[7, = § [Re AP” [l][3

n=1

Second, let ReA € (—2,0). Then there is at most one n € N such that A\ € B, =
B(pin, 1 | ReAl) C B(ptn, 3). If [N = pn| > 5 |ReA| for all n € N, then we see as above that

AL = A)z [l > 15| Re A [|][7

It remains to consider the case that A € B,, for some n € N, where Re A € (—2,0). Then
A — pj| > 1/2 for j # n. Setting y = x — x,e,, we can thus estimate

I = A)a 2 = 371N = g g [P [P > 5 Nlwlla
J#n

Using (4.1) and v > 1, one also deduces that C': X, — C is bounded, say with norm ¢.
So we can further compute

|Re A [nCz|* > n?*| Re Al (| |cazn] — |CY])* = 7?| Re A| (Jean|” — 2|cuza] |Cyl)
> n?|Re Al (% |camn|® — 8|Cy[?) > 20°c® [Re A [n®x,|* — 160°¢%||y||2% .

We now set 7 = (8y/2¢)71, so that

[Re Al [nCx|* > 5n°c* [Re AP [nz,[* — S [lyl2 -

1
2

On the other hand,

m? | Re AP ||z|? < 2°m? | Re AP [n®an|? + 4m? ||y .
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Putting these estimates together and fixing a sufficiently small m > 0, we see that the
(o, )-Hautus test (RW) holds for nC', as asserted.

Finally, we construct an approximately infinite-time observable diagonal system which
violates the (a,0)-Hautus test for all @ > 0 and every choice of my, even in the version
of Remark 3.13. Let « > 0 and let u be a function as described in Remark 3.13 with

a corresponding exponent v > 0. Define A as above for u, = —% +15. The sequence
b, = pu(1/n)n=2"Y2 tends to 0 as n — oo, hence a, := /1 —b2 € (0,1) for n > ng and
some ng € N. For n > ng, we set 2" = a,ea, + byea, 11 so that ||| = 1. For \, = po, we
obtain

u(1/n) T = A)a™[2 = (1)) 2 |pzn — o |21 B2 < /.

Next, define ¢o, = n™" for all n € N, copy1 = —anc2, /b, for n > ng and co,41 = 1 for
n=1,---,n9— 1, where kK = max{1, % + a+v}. Then Cz" = 0 and the Hautus test fails
for A and C (for arbitrary my). Moreover, |cony1| < n®™"+1/2 14(1/n)~! for large n, and so
0 < |en| < ¢/n. This fact shows that C' is bounded. Finally, the system given by A and C'
is approximately infinite-time observable by [5, Thm.4.2.3].
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