MAXIMAL REGULARITY WITH TEMPORAL WEIGHTS FOR
PARABOLIC PROBLEMS WITH INHOMOGENEOUS BOUNDARY
CONDITIONS

MARTIN MEYRIES AND ROLAND SCHNAUBELT

ABSTRACT. We develop a maximal regularity approach in temporally weighted L,-spaces for
vector-valued parabolic initial-boundary value problems with inhomogeneous boundary con-
ditions, both of static and of relaxation type. Normal ellipticity and conditions of Lopatinskii-
Shapiro type are the basic structural assumptions. The weighted framework allows to reduce
the initial regularity and to avoid compatibility conditions at the boundary, and it provides
an inherent smoothing effect of the solutions. Our main tools are interpolation and trace
theory for anisotropic Slobodetskii spaces with temporal weights, operator-valued functional
calculus, as well as localization and perturbation arguments.

1. INTRODUCTION

In recent years parabolic equations with fully nonlinear boundary conditions have attracted
a lot of interest since they arise in the analysis of free boundary value problems such as
the Stefan problem with surface tension, see e.g. [7], [11] and [18]. These papers use an L,-
approach to such problems which yields strong solutions in maximal regularity classes. In this
framework the boundary conditions are attained in a classical sense up to initial time, and
not just weakly. This approach is based on linearization and on a sharp L,-regularity theory
for linear inhomogeneous initial-boundary value problems, as established in [4], [5] and [6] by
Denk, Hieber, Priiss and Zacher. Besides the usual static boundary conditions, one also has
to treat dynamical boundary conditions of relaxation type which arise in the context of the
Stefan problem with surface tension and in related problems.

However, this approach requires regularities of the initial values (and hence of the nonlinear
phase spaces) which are stronger than the norms one can control by standard a priori estimates
for the nonlinear problems. In related situations it is known that one can reduce the required
initial regularity by means of temporal weights. In the L,-setting, it is natural to work in

Lpp(3X) ={u:J =X : t'7"ue L,(J;X)} (1.1)

endowed with its natural norm, where p € (1,00), p € (1/p,1], T € (0,00], J := (0,T), and
t!=Fy denotes the function ¢ +— t'7#u(t) on J. The corresponding weighted Sobolev spaces
are defined by

WE(J:X)={u:J =X : u, ., u® eL,,(J;X)} (1.2)
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for k£ € N. These spaces and the corresponding anisotropic spaces like E, ,(J) defined below
are studied by the authors in detail in [16]. To a large extent they enjoy analogous properties
as the corresponding unweighted spaces.

To see the effect of the weight, we consider a generator —A of an analytic semigroup on a
Banach space X. Then the orbit u(t) = e *4ug belongs to the ‘maximal regularity space’

W]},M(R+; X)n Lp,u(RJr; D(A))
if and only if the initial value ug belongs to the real interpolation space

(X’ D(A))/.L—l/p,p )

see e.g. Theorem 1.14.5 in [21]. Recall that one often fixes a large p € (1,00) to treat non-
linearities. Hence, in the unweighted case 4 = 1 the resulting initial regularity is close to
D(A). On the other hand, taking p near 1/p one almost reaches the base space X. Further,
for Banach spaces X of class H7 (see Section 2), Priiss and Simonett have proved in [17] that
the inhomogeneous evolution equation

u'(t) + Au(t) = f(t), t>0, u(0) =0, (1.3)

has a unique solution in W1}7M(R+; X)NLy,(Ry; D(A)) for each f € Ly, (J; X) if and only if
this fact holds for the unweighted case p = 1. Since the unweighted case is well understood,
see e.g. [13], the L, ,-approach is quite convenient for parabolic problems covered by (1.3).

Unfortunately, it seems that a sharp regularity theory for inhomogenous boundary value
problems is not possible within the abstract framework of an evolution equation like (1.3).
Instead one has to restrict to a PDE setting. So we investigate vector-valued linear parabolic
systems with inhomogeneous boundary conditions, such of static type, i.e.,

ou+ A(t,z, D)yu = f(t,x), x €, teld,
Bj(t,xz, D)u = g;(t, ), xel, teJ, ji=1,...,m, (1.4)
U(O,l’) = ’U,()(-T), x €,
as well as such of relaxation (or dynamic) type, i.e.,
Ou+ A(t,z, D)u = f(t,x), x € Q, teJ,
atp+BO(t7x7D)u+CO(t7$7DF)p:g()(tux)v zel, ted,
Bj(t,z, D)u+Cj(t,z, Dr)p = g;(t, x), xel, teJ, j=1,..,m, (1.5)
U(O,l‘) = UO(w)a T €,
p(0,2) = po(x), rel,
It is assumed that Q@ C R" is a (inner or outer) domain with compact smooth boundary
['=900Q.In (1.4) and (1.5) the unknown u = u(t, z) takes values in a Banach space F, and in
(1.5) the additional unknown p = p(t, x), which only lives on the boundary T", takes values in
another Banach space F'. Throughout we assume that FE and F are of class H7 ; for instance F
and F' can be finite dimensional leading to usual parabolic systems. The differential operator
A is of order 2m, where m € N, and B; are corresponding boundary operators of order m; not
larger than 2m — 1. In (1.5) the differential operators C; contain tangential derivatives of any
order up to k; € Ng. We assume certain ellipticity and Lopatinskii-Shapiro type conditions

and impose regularity conditions on the coefficients that are appropriate for the applications

to quasilinear problems, see e.g. [14], [15]. The details are described in Section 2.
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We look for strong solutions w of (1.4), resp. (u,p) of (1.5), which satisfy the respective
equations pointwise almost everywhere. In particular, u shall belong to

Eupu(J) =W, (J; Lp(Q E)) N Ly, (J; W™ E)).

The space E, ,(J) for p is chosen in accordance to the structure of (1.5) and to the trace
theorems established in our paper [16], see Section 2. In our main results Theorems 2.1 and
2.2 we show the maximal L, ,-regularity for (1.4) and (1.5) on J. This means that there are
data spaces Dstat(J) and Dy (J) such that (1.4) and (1.5) have unique solutions u € E,, ,(J)
and (u, p) € Eyu(J) x E, ., (J), respectively, if and only if the data satisfies

(f7 g1, "'7gm7u0) S Dstat(J) and (f7 g0, 91, -~7gmaU07pO) S Drel(J)7

respectively. The data spaces contain the necessary regularities for the data and their com-
patibility conditions at ¢ = 0 enforced by the static and dynamical boundary equations in
(1.4) and (1.5). The precise formulations of these spaces is suggested by the space-time trace
theorems from [16]. In the unweighted case u = 1 and with essentially the same assumptions,
the maximal L,-regularity for (1.4) and (1.5) has been shown by Denk, Hieber & Priiss [5]
and Denk, Priiss & Zacher [6], respectively.

We note that the problem (1.5) is more involved in the several respects. Clearly, it contains
a second variable and a second evolutionary equation. Moreover, the operators C; can make
the main parts of the equations at the boundary highly non homogeneous which then leads
to a rather sophisticated solution space E, ,(J) and to a complicated analysis. It further can
happen that d;p is continuous in ¢ up to ¢t = 0 so that the dynamical equation for p leads to an
additional compatibility condition on the regularity of By(0, -, D)ug + Co(0, -, Dr)po — go(0, -).

The main feature of the weighted approach is the flexibility for the regularity of the initial
values as p varies in (1/p, 1]. We describe these properties in more detail at the end of Section 2,
indicating here the basic points. We can solve (1.4) and (1.5) with the Besov regularity ug €
Bg,([,kl/ P) (Q; E) which approaches L, (€; E) as i tends to 1/p. Moreover, if the initial regularity
is sufficently low we loose the compatibility conditions such as B;(0, -, D)ug +C;(0, -, Dr)po =
g5(0,-). Since the weight has an influence only at ¢ = 0, our approach yields an inherent
smoothing effect for the solutions. In particular, for (1.4) one can control the norm of wu(t)
in Bg%fl/p)(Q;E) by the much lower norm of ug in B;(f,‘*l/p)(Q;E). For bounded €2, this
fact gives the important compactness of the semiflow solving the related nonlinear problems.
Also for unbounded 2 one can thus ‘upgrade’ the usual a priori estimates in low norms up to

Bgfpl*l/ ?) (©; E) if one is able to handle the involved nonlinearities. See [14], [15] and also [10]
in the framework of [17], as well as [11]. In these papers the weighted approach was used to
establish convergence to equilibria and the existence of global attractors in high norms.

In Sections 3 and 4 we prove Theorems 2.1 and 2.2. We first consider model problems with
homogeneous constant coefficient operators on the full-space R"™ and on the half-space R’}
in Section 3. The full-space case, where boundary conditions are not involved, is treated by
means of [17]. For the half-space case with boundary conditions we apply the Fourier transform
with respect to time and space. The solution operators for the resulting ordinary initial value
problems have been analysed in [5] and [6] for the unweighted case. We now use a recent
operator-valued Fourier multiplier theorem in the L, ,-spaces due to Girardi & Weis [8] and
several isomorphisms acting on a scale of weighted anisotropic fractional order spaces which
are investigated in [16]. It is then possible to invert the Fourier transforms and to solve the

3



half-space problem in the required norms. The case of a general domain is then a consequence
of perturbation and localization arguments, and it is considered in Section 4.

Finally we discuss several important special cases of (1.4) and (1.5) arising as lineariza-
tions of various quasilinear parabolic problems with nonlinear static or dynamic boundary
conditions. For instance, the linearization of a reaction-diffusion system with nonlinear Robin
boundary conditions is of the form (1.4) for

E =RV, m=1, A(D) = —-A, Bi(x,D) =0, :=v-trqV,

where A is the Laplacian and v denotes the outer unit normal field on I'. The linearization of
Cahn-Hilliard phase-field models leads to similar problems of order 4 (i.e., m = 2). If we take

Bl = trq, Cl = _17

the static boundary condition for j = 1 in (1.5) reads u|r = p, which leads to inhomogeneous
dynamic boundary conditions. Hence p is simply the spatial trace of u in this case. Now one can
take Co(x, Dr) = —Ar, the Laplace-Beltrami operator on I', to obtain boundary conditions
describing surface diffusion, i.e.,

Owulr + Oyu — Apulr = go on T, te

If we choose

up+Arp=¢g1  onT, tedJ
as the first static boundary condition in (1.5), we arrive at the linearization of the Stefan
problem with surface tension as studied in [7]. Here the graph of p(t,-) is related to the

unknown boundary at time t. We refer to Section 3 of [6] for further interesting problems that
may be written in the form (1.5).

Notations. We write a < b for some quantities a, b if there is a generic positive constant
C with a < Cb. If A is a sectorial operator on a Banach space E, § € (0,1) and ¢ € [1, 0],
then we set D (6, p) := (E, D(L))e , for the real interpolation scale between E and D(L). If

X,Y are Banach spaces we denote by B(X,Y) the space of bounded linear operators between
them, with B(X) := B(X, X).

2. THE ASSUMPTIONS AND THE RESULTS

Throughout we assume that the Banach spaces E, F are of class H7 (or, equivalently, are
UMD spaces). This means that the Hilbert transform is bounded on Ly(R; X) which holds,
e.g., in Hilbert spaces X or if X is a reflexive Lebesgue or (fractional) Sobolev space; see
Sections II1.4.3-4.5 of [1]. We first describe the differential operators in (1.4) and (1.5) in
detail. For both problems the operator A is given by

A(t,x, D) = Z aq(t, z)D®, x € Q, tedJ,
|| <2m
where m € N and D = —iV with the euclidian gradient V = (0,,,...,0z,) on R™. Hence

the order of A is 2m. The coefficients take values in the bounded linear operators on E, i.e.,
aq(t,z) € B(E). Also for both problems the boundary operators B; are of the form

Bj(t,x,D) = Z big(t, z)troDP, el teJ, j=0,..,m,
[B]<m;



where m; € {0,...,2m — 1} is the order of B; and the coefficients satisfy bos(t,z) € B(E, F)
and bjg(t, ) € B(E) for j = 1,...,m. We note that B; acts on u by applying first the euclidian
derivatives and then the spatial trace trg. We assume that each of these operators is nontrivial,
ie.,, Bj # 0 for all j.

In problem (1.5), the boundary conditions of relaxation type involve another set of operators
Co, ..., Cm, which act only on p in the following way. For ¢ € J it is assumed that C;(¢, -, Dr) is
a linear map

C*¥(IGF) — Li(I F)
such that for all j = 0,...,m, all local coordinates g for I" and all p € C*°(T'; F') it holds

(C;(t,-, Dr)p) o g(x) = Z ¢t (t,x)D;_y(pog)(z), recg (TNU), ted,
IyI<k;

where U C R" is the domain of the chart corresponding to g. Here we have D,,_1 = —iV,,_
with the euclidian gradient V,,_; on R"~!. The order k; € Ny of C; is given independently of
the orders of A and the B;. The local coefficients c%, that may depend on the coordinates g,
are assumed to satisfy cf. (t,2) € B(F) and ¢, (t,2) € B(F, E) for j = 1,...,m. It is assumed
that at least one operator C; is nontrivial. If an operator C; is trivial, i.e., C; = 0, then we set
k; := —o0 as its order. Note that we do not assume that an operator C; has global coefficients,
in the sense that there are functions cj, on I' satisfying C?v = ¢jy o g in all coordinates g. In
contrast to that, the coefficients of the B; are globally defined on I'. The standard examples
for such an operator C; are the Laplace-Beltrami operator Ar and a convection term V - Vr,
where V is a tangential vector field and Vr is the surface gradient on I'. Throughout we let

pe(lor) and pe(1/p1]
We look for solutions u of (1.4) and (u, p) of (1.5) such that
w€ Byy =Wy, (Ji Lp( E)) N Ly (J; W™ (4 E)).

The weighted vector-valued L, ,-spaces and the corresponding Sobolev spaces spaces WI}’ , are
defined in (1.1) and (1.2), respectively, and ng(Q; E) is the E-valued Sobolev space of order
2m over €). For such solutions u the differential equation on the domain € holds for a.e. (¢, x).

The regularity of u yields
f € Eoy = Ly (J: Ly(% E)).

From the mapping properties of the temporal trace described in Theorem 4.2 of [16], we deduce
Uli=o = up € Xy 1= Bzg(u—l/p)(Q;E)'

Here B, ,(§%; ) denotes the E-valued Besov spaces over 2. We refer to [2], [19] or [24] for
a definition and the properties of these spaces. Further, Lemma 3.4 of [16] shows that the
operator D? maps E,,, continuously into

1

Hy "™ (J; Ly(Q E)) 0 Ly o (J; W™ ™ (Q; E)) (2.1)

for |B] < m; < 2m — 1. Due to Theorem 4.6 of [16], the spatial trace tro maps the space in
(2.1) continuously into

Wy, (J; Lp(T; B)) 0 Ly (J; W™ (T, E)),  j=0,...,m,
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where the number x; is defined by

.M 1 _

nj.—l—%—%, 7=0,....,m.
Below we assume that x; # 1 — pu+ 1/p for all j = 0,...,m. The weighted Sobolev spaces
Hp , and the Slobodetskii spaces Wy , of fractional order s > 0 are defined by complex and
real interpolation, respectively. The properties of W x and Hy  are studied in [16]. Moreover,
WPS(F; E) is the E-valued Sobolev-Slobodetskii space of order s, where W = By , for s ¢ Np.
Since the dynamic boundary equation in (1.5) takes place in F' and the static boundary
equations in (1.4) and (1.5) take place in E, these considerations suggest that we should look
at boundary data

g0 € Fo = WS (J; Ly(T; F)) N Ly (J; W™ (I's F)),
95 € By = Wy (J; Lp(T5 B)) 0 Ly (J; W, " (D3 B)), - G =1,.,m.
For convenience we write
Fpu:=Fou X ... xFpp, g9 =1(90,---,9m) € Fy,

and similiarly INFM =F1, x..xFy,and g = (g1,....,9m) € IAE:‘M.

We now determine the regularity of p and pp in (1.5). Assuming sufficient smoothness of
the coeflicients of the operators, we look for a space E,, for p such that each term in (1.5)
involving p acts continuously from E, , to the space IF; , where the respective equation takes
place. It can be seen as in Section 2 of [6] that

Eppu =Wpl™(J; Ly(T; F)) N Ly, (J; WM (T; F)) (2.2)
MW (W (T ) 0 (1) Woi (W (I3 F))
satisfies these requirements, where we put

T = {j €{0,...,m} : k; # —oo}, lj :=kj —mj + mo, [:= max ;.

7=0,....m
It is important to note that
2mekj + kj = 2mrg + 15, j=0,...,m. (2.3)

We represent E, , by the points (0,1 + ko), (I + 2mko,0), (2mko, 1) and (k;,K;), j € T,
corresponding to the space-time differentiability of the spaces Z; on the right-hand side of
(2.2). The Newton polygon NP for E,,, is then defined as the convex hull of these points
together with (0,0). The leading part of NP is the polygonal part of its boundary connecting
(0,1 + ko) to (I 4 2mkg,0) anti-clockwise.

Let Z; and Z; be two different spaces on the right-hand side of (2.2). It is shown in Propo-
sition 3.2 of [16] that Z; N Z; embeds into all spaces whose space-time regularity corresponds
to the line segment connecting the two points that represent Z; and Z; in N'P. Consequently,
the description of E, ,, given in (2.2) contains redundant spaces, in general. We derive a nonre-
dundant description of E, , as in the case ;= 1 presented in [6]. Here one has to distinguish
three cases. In each case, a direct application Theorem 4.2 of [16] further yields the temporal
trace space of p at t = 0, denoted by

Xop = tri=E, 1.
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In the same way we also obtain that the temporal derivative d;p has a trace at t = 0 if
ko > 1 — p+ 1/p. We denote the resulting trace space by
Xowppu = tri=o0iE, if kKo>1—p+1/p.

We remark that Theorem 4.2 of [16] means that these trace spaces are given by By ,(I'; F) for
the numbers o > 0 such that (o,k+1— p+ 1/p) belongs to leading part of NP for k = 0 and
k = 1, respectively. We can now give the nonredundant description of the spaces E, ,,, X, ,
and Xp,, .-

Case 1: Il = 2m. One has
Epp = Wy (J; Ly(Ty F)) N Ly (5 ng(H”@(F; F))

since all other spaces in (2.2) correspond to points on or below the straight line s = 1 4 kg —
r/2m from (0,1 + ko) to (2m + 2mrg,0) due to (2.3). It follows that

Xy = BEnsot =D By X, = B2so=(Smt DN F) if kg > 1— p+1/p.
Case 2: I < 2m. One has
Epp= Wpi™(J; Ly(T; F)) O Ly (J; Wm0, F)) 0 W, (T3 W5 F))
since (1,2mkg) lies above the line segment s = 1+ kg — r(1 + ko) /(I + 2mko) from (0, 1+ ko)

to (2m + 2mky,0) and all points (k;, k;) are below the line s = 1 + (2mkg — )/l connecting
(1,2mkg) and (0,1 + 2mkg). We then obtain the trace spaces

Xy = B2mrot =D Ry, Xp,,, = B2 (mt DN F) if kg > 1— p+ 1/p.
Case 3: I > 2m. Now (1, 2mkg) belongs to the interior of NP and it holds
Epp = Wpi™(J; Ly(T; F)) O Ly, (J; WHm50(T; F)) ﬂ Wi (J; Wi (T F)),

where J = {j1, -, Jgmax } C T, qmax € N, contains those indices j € J so that (kj, k) belongs
to the leading part of the Newton polygon, i.e., the points

P()Z(O,l-l-lﬁo), Plz(kjl,fijl), ..., P :(k‘

Gmax Jamax ? K/ijax )7

Pyoeir = (L +2mkg,0)

are the vertices of the leading part. It is assumed that 7 is ordered so that qul < qu2 and
Kjg, > Kijg, for 1 < qo. We also define k_1 := 0, k1 := 1 + kg, m_1 := mg — 2m and
l_1 := 2m. We further denote the edge in the Newton polygon connecting the points P, and
P,i1 by NPy, ¢ =0, ..., gmax, and set

Jog :={j € TU{-1} : (kj,Kj) = P}, g=0, ..., Gmax,
J2g+1 = {j e JU{-1} : (kj,Kj) 6./\/'77(1}, qg=0,..., ¢max-

The temporal trace space of 0;p is obtained by Theorem 4.2 of [16] from the spaces corre-
sponding to Py and P;. We thus deduce

_ Bkn(ﬁo (1 u+1/p))/(1+ﬁo—'fj1)(F; F)

Xopu = if kKo>1—p+1/p.

For X, one has to distinguish three more cases.
Case 3(i): If kj > 1 —p+1/pfor all j € J then

X,, = Béj;)?m(ﬁo—(l—uﬂ/p))(p; F).
Here we apply Theorem 4.2 of [16] to the spaces corresponding to P, and P,

‘max qmax+1"°
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Case 3(ii): Denote by j;, € J be the smallest index with xj, >1—pu+1/p, and by jg, € J
the largest index with r;,, <1—p+1 /p. Using the spaces corresponding to these indices, we
conclude that
iy + (g, (1= 1/p)) 222901
X, = Bpp Y2 N ).
Case 3(iii): If k; <1 —p+ 1/p for all j € J, then we employ the spaces related to Py and
P; to derive

kjy (Ro+p—1 1+K0—K;
Xop = By (rotud/p)/ (o ”“)(F; F).
For later purpose we finally note that in Case 3 the embedding

k; RO
E,, — W} (J;WS(T; F = 2.4

pp p#( s Wy (15 ), § 1+ ko — Ky, (2.4)

follows from Proposition 3.2 of [16] by interpolating of the spaces corresponding to Py and P;.
We next consider the assumptions on the coefficients of the operators. For a Banach space

X of class HT, we write
Fju(J X T5 X) i= Wy (J; Lyp(T; X)) 0 Ly, (J; W™ (T X)), 5 €{0,...,m}.

The following assumptions shall guarantee that each summand of the operators in (1.4) and
(1.5) maps continuously between the relevant spaces described above. In view of the mapping
properties of the traces and the derivatives, the multiplication with the coefficients has to be
a continuous map on F; , (J xI'' X ) for the relevant X. Moreover, to perform localization
and perturbation, we require that the top order coefficients of the operators are bounded and
uniformly continuous.

(SD) For |a| < 2m we have either 2m(u—1/p) > 2m—1+n/p and a, € Eq ,(J x Q; B(E)),
or aq € Loo(J x Q;B(E)). For |a| = 2m it holds aq, € BUC(J x Q; B(E)). If Q is
unbounded then for [a| = 2m in addition the limits a(t, 00) := lim, o0 aa(t, 7) exist
uniformly in ¢t € J.

(SB) Let & = B(E,F) and £ = B(E). For j = 0,...,m and || < mj; it holds either b;z €
C'7i2mT;j (ij;S) with some 7; > K, or bjg € IFj#(JxF;S) and x; > l—M—i—l/p—i—g—;Lzl).

(SC) Let Fy = B(F) and F = B(F,FE) and let g : V — I' be any coordinates for I'. For
j = 0,....m and |y| < kj it holds either ¢} € CTi2M7i (J x T} €) with some 7; > K,
or c% €Fu(JxViF)and k; >1—p+1/p+ %.

We discuss these assumptions. First, in (SD) one can relax the boundedness assumptions
for |a] < 2m, see e.g. [14]. The fact that

CT2M (] x T3 B(X)) - Fjp(J x I3 X) — Fju(J x Iy X)
for 7; > Kk can be seen using the intrinsic norm for W3, and Wimﬁj given in equation (2.6)

in [16] and Section 1 of [2|, respectively. If k; > 1 —pu+1/p+ %, then Theorem 4.2 of [16]
and Sobolev’s embeddings show that

Fju(J xI;X) — BUC(J xT'; X).
Using this fact and again the intrinsic norms of W; 4, and WI? "% we then derive

Fjpu(J x T3 B(X)) - Fjpu(J x T3 X) = Fju(J x T3 X).
8



The assumption k; > 1 —pu+1/p+ % is only valid if p and p > 1/p are sufficiently large.
In fact, the assumption is equivalent to p(2mu — m;) > n + 2m. The conditions in (SB) and
(SC) are not optimal. For all p € (1,00), one can determine weaker Sobolev regularities for
the coefficients than the ones given here which still meet the requirements described above,
see [5], [6] and Section 1.3.4 of [14]. On the other hand, (SB) and (SC) are already sufficient
for the applications to quasilinear problems, see e.g. [14] and [15].

We next state the structural assumptions on the operators, which are the same as in [5] and
[6]. In the sequel, the subscript § denotes the principle part of a differential operator, with an
important exception for the C; where we put

Cip:=0 ifj¢J.

We thus consider only the principle parts of the operators C; corresponding to a point on the
leading part of the Newton polygon for E, ,. First, we assume that A is normally elliptic:

(E) Forallt € J, z € Q and [¢{| = 1, it holds o (Ay(t,z,§)) C C4 :={Rez > 0}. If Q is
unbounded, then it holds in addition o (A(t,00,€)) C C4 for all t € J and [£] = 1.
We further need conditions of Lopatinskii-Shapiro type. In their formulation, local coordi-

nates g for the boundary I' are called associated to x € I' if the corresponding chart (U, ¢)
satisfies

e(z)=0, ¢ @) =0,4, eUNQCR},  UNT)CR"" x{0},

where O,(,) is a fixed orthogonal matrix that rotates the outer normal v(x) of I' at x to
(0,...,0,—1) € R™. It is easy to see that such a chart (U, ) always exists. For coordinates g
associated to z € I', we define the rotated operators A* and B}-’ by

AV (t,x, D) = A(t,x,OT )D), B(t,x, D) := B, (t,x,OZ(I)D), ji=0,..,m.

v(z

Moreover, we introduce the local operators CJQ with respect to g by setting

Co(t,x, Dy) = Y & (t,g ' (@)D) 4,  j=0,...m,
[vI<k;

where c% are the local coefficients from the definition of C;. We continue with the second

structural assumption concerning (1.4).

(LSstat) For each fixed t € J and € T, for each A € C and & € R"! with |A| + |¢/| # 0 and
each h € E™ the ordinary initial value problem

Xo(y) + AL (¢, Dyo(y) =0, y >0,
V(& Dyuly=o = hyj, G =1,.,m,

has a unique solution v € Cy([0,00); E).

Here the space Cy([0, 00); E) consists of the continuous E-valued functions on [0, 00) vanishing
at co. For the problem (1.5) with relaxation type boundary conditions we need two assumptions
of Lopatinskii-Shapiro type in the Cases 2 and 3. First, in each case we require a natural

analogue of (LSgtat)-
9



(LSre1) For each fixed x € T, choose coordinates g associated to x. Then for every t € J,
A€ Cy and ¢ € R with M|+ |¢'| # 0, hg € F and h; € E, j = 1,...,m, the
ordinary initial value problem

A+ AL (2,8 Dy))vly) = 0, y>0,
Bgﬁ(t7$>§,,Dy)U’y:O + ()‘ + Cogﬁ(taxaé./))a = ho,
2 (2,6 Dy)uly=o +C]gﬁ(t,a:,§’)a = hy, j=1,..,m,
has a unique solution (v,0) € Cy([0,00); E) x F.

In the Cases 2 and 3, the following additional ‘asymptotic’ conditions are required, respectively.

(LS_,) Let ! < 2m. For each fixed x € T', choose coordinates g associated to . Then for every
teJ, ho€ F,hj € E,j=1,..,m, and each A € C4, & € R"! with |\| + |¢/| #0,
the ordinary initial value problem

A+ At 2,8, Dy))vly) = 0, y>0,
]yﬁ(tvxaflvDy)wy:O = h]7 ] = 17"'7m7
and for all A € C; and |¢/| = 1 the problem
Ag(t,:ﬁ',fl, Dy)”(y) = 07 Yy > 07
B(V)ﬁ(t’xag’Dy)U’y=0 + ()‘ + ngj(tawagl))o- = ho,
2 (2, Dy)uly=o +C]gﬁ(t,x,§’)a = hj, j=1..m,
has a unique solution (v,0) € Cy(]0,00); E) x F, respectively.

(LS;"O) Let I > 2m. For each fixed x € I, choose coordinates g associated to x. Then for each
teJ, hg€ F,hj € E, j=1,..,m, and each X € C, and ¢ € R"1\{0}, the ordinary
initial value problem

(A Ao, €, DY)oly) = 0, y>0,

;ﬁ(taxaglvDy)v|y:0+5,qun,ax+1c_7ﬁ(t x 5)0- = h’]) .] :07“'7m

and further for all A € C;\{0}, |¢/| =1 and q = 1, ..., 2¢max, the problem
()\—I-.Ag(t:vOD)) (y) = 0, y >0,
B(I;ﬁ(t,x,o,D Jv ’y 0+ 90-1 Jq)\0+(5o Ta Ojj<t T f)a = hg,
2 (1, 2,0, Dy)vly=o0 + d5, 7, ]ﬁ(txf)a = hj, j=1,..,m,

has a unique solution (v,0) € Co([0,0); E) x F, respectively. Here §; 7, = 1if j € J,
and dj, 7, = 0 otherwise.

In [5] and [6] it is shown that these conditions are necessary for maximal L,-regularity of (1.5)
on finite intervals. In Section 3 of [6] they are verified for a variety of concrete problems from
the applications, see also [14] and [15]. If E and F are finite dimensional, it suffices to consider
ho = h; = 0 in the above conditions.

We can now state our maximal Ly, ,-regularity results. We start with the one for (1.4).

Theorem 2.1. Let E be a Banach space of class HT, p € (1,00) and p € (1/p,1]. Let

J = (0,T) be a finite interval, and let Q@ C R™ be a domain with compact smooth boundary
10



I' = 09Q. Assume that (E), (LSsat), (SD) and (SB) hold true and that x; # 1 — p+ 1/p for
7 =1,...,m. Then the problem

ou+ A(t,z, D)u = f(t,x), T €, tedJ,
Bj(t,z, D)u = g;(t,z), xel, ted, j=1,..,m,
u(0,2) = up(z), x € Q,
has a unique solution u = Lgat(f, g, u0) € Eyy if and only if (f, g, uo) € Dstat, where
Dytas = {(f, 9, u0) € Eoy x Fyy x Xy = for j = 1,...,m it holds
B;(0,-,D)ug = gj(0,-) on T if kj > 1 — p—1/p}.
The corresponding solution operator Lgat : Dstat — By y is continuous. If Lty Is restricted to
Dot = {(f,9,10) € Dstar : gilimo =0 if kj > 1= p—1/p, j=1,...,m},
for any given Ty > 0 the operator norm of the restriction is uniformly bounded for T' € (0, Tp].
In the situation of the theorem, it is clear that if the coeflicients
(—)ag, |l <2m,  (=0)Plbs, |8l <my, j=1,...m,

and the data are real-valued, then also the solution wu is real-valued. We next state the maximal
regularity result for (1.5).

Theorem 2.2. Let E and F' be Banach spaces of class HT, p € (1,00) and p € (1/p, 1]. Let
J = (0,T) be a finite interval, and let Q@ C R™ be a domain with compact smooth boundary
I' = 0. Assume that (E), (LSe1), (SD), (SB) and (SC) are valid and that, in addition, if
I < 2m condition (LSZ,) holds and if | > 2m condition (LST)) holds. Assume further that
kj #1—p+1/p for j =0,...,m. Then the problem
Ou+ A(t,z, D)u = f(t,x), xeQ, telJ,
Op + Bo(t,x, D)u + Co(t,x, Dr)p = go(t, x), zel, tel,
Bj(t,x,D)u+ Cj(t,z,Dr)p = g;(t, x), zel, tel, ji=1,..,m,
u(0, ) = ug
p(0,z)

has a unique solution (u, p) € Ey , x E,, if and only if (f, g,u0, po) € Drel, where

(x), x € Q,
= po(z), rel,

Drel := {(f,g,uo,po) €EouxF,xXy, xX,,: forj=1,..,mitholds
Bj(O, -,D)UO +C'(O, -,Dr)po = gj(() ) on I I'flij >1—pu+ l/p;
go( ) BQ(O, ,D)UO_CO(O, ,Dr)po EXatpu if ko > 1—u+1/p}.

The corresponding solution operator Lyel : Dyel — By, X K, Is continuous. If L, is restricted
to

,quel = {(f?gau[)u/)O) S Drel : gj‘t:O =0 If'%] >1 — K= 1/]77 j: 07"'7m}7

for any given Ty > 0 the operator norm of the restriction is uniformly bounded for T' € (0, Tp].
11



A similiar statement as above holds for real-valued solutions. In the theorems, the spaces
Dstar and Dyl are considered as closed subspaces of Eq j, x F uX Xy and Eg , xF, x X, , x X,
respectively. They contain the compatibility conditions of the boundary inhomogeneities and
the initial values at ¢ = 0, which are necessary for the solvability of (1.4) and (1.5), respectively.
One needs the spaces DY, and DY, with vanishing initial values since the resulting uniform
estimates are crucial for fixed point arguments arising in the context of quasilinear problems.
They are considered as closed subspaces of Eq , x gﬁu X Xy and Eg X oF, x Xy 0 x X, 4,
respectively, where oﬁ‘“ and olF, are defined as follows. For a Banach space X of class H7 and
s = [s] + s with [s] € No, s, € [0,1) we set

oWy (3 X) = (WL (J; X), oW (J: X))

Sw,p’
where (W), (J;X) = {u € W, (J;X) : w(0), ...,u*=D(0) = 0} is considered as a closed
subspace of W;f, 4(J;X), and then

0Fj 0= oWy (J; Lp(T; B)) N Ly (J; W™ (T, E)),  j=1,..,m.

Analogously we define the spaces oFo,, OIFM, oF ., oEy,, and oE, . It is shown in Proposi-
tion 2.10 of [16] that (W, , = W, ,if 0 < s <1—p+1/pand

OWIiH = {u S WZiM : u(l)((]) = 0, l e {0, ,k‘}}

ifk+1—p+1/p<s<k+2—pu+1/pfor k € Ny, with equivalent norms, respectively. In
other words, the trace at ¢ = 0 of a derivative of u € oW, , vanishes if it exists.

Compared to the unweighted approach, the maximal L, ,-regularity approach has the fol-
lowing advantages, where we restrict to the setting of (1.4). Analogous statements are valid
for (1.5).

e Flexible initial regularity: We obtain solutions for initial values in B, ,(€; E), where
s € (0,2m(1 —1/p)].

e Inherent smoothing effect: Away from the initial time, 7 € (0,T"), the solutions belong
to

W;; (T, T; Lp(S; E)) NL, (T, T; WpZm(Q; E)) s C(j; Bzg;(l_l/p)(Q; E))
e Control solutions in a strong norm at a later time by a weaker norm at an earlier time
and the data: For s = 2m(u — 1/p) € (0,2m(1 — 1/p)] it holds
(D) pzma-1/) gy < CDN( f o, + 1915, + |uol By, 0:))-

e Avoid compatibility conditions: Given p € (1,00), if u is sufficiently close to 1/p, we
have k; < 1—p+1/p for all j and thus obtain a unique solution v € E, , for arbitrary
data in Eq , X ﬁu X X -

The rest of the paper is concerned with the proofs of the Theorems 2.1 and 2.2.

3. THE MODEL PROBLEMS

We first consider the full-space case {2 = R™ without boundary conditions and assume that
the coefficients of the differential operator

AD)= > anD"

|a|=2m
12



are constant, i.e., aq, € B(E) are independent of (¢,x). Observe that there are no lower order
terms and that A is homogeneous of degree 2m. We have the following maximal L, ,-regularity
result for A on the half-line.

Lemma 3.1. Let E be a Banach space of class HT, p € (1,00), pn € (1/p,1], and assume
that the constant coefficient operator A satisfies (E). Then there is a unique solution u =
SF(f, UO) S Eu,,u(R—I— X Rn) of

u+ 0w+ A(D)u = f(t,x), z € R", t>0,
u(0,x) = up(x), r € R", (3.1)

if and only if
fe€Ey(Ry xR")  and wp € X, ,(R").

Proof. Lemma 4.2 of [5] shows that the realization of the operator 1+ A on L,(R"; E) with
domain D(1+ A) = ng(R"; FE) admits maximal L,-regularity on the half-line. Since

X (B = B0V B ) = (L, (B B), W2 (R )
the assertion follows from Theorem 3.2 of [17]. [ |

The model problems for (1.4) and (1.5) on the half-space involve boundary conditions
and thus require a much greater effort. To construct the solution, one uses an operator-
valued Fourier multiplier theorem in L, ,. For Banach spaces X, Y and a symbol m €
L1 joc (R; B(X, Y)) one introduces an operator T;, by setting

Tof = f_lm]:f, fef_lcé’o(R;X),

where F denotes the Fourier transform on the real line. We can restrict 7}, to functions on
R,. Observe that T}, is densely defined on L, ,(R4; X). We also use the analogous definition
on the space L,(R"; X). The next result is due to Girardi & Weis [8].

Theorem 3.2. Let p € (1,00), u € (1/p,1], and let X,Y be Banach spaces of class HT .
Assume that m € C'(R\{0}; B(X,Y)) satisfies R({m(\),Am/(\) : A # 0}) < oo. Then
Ty € B(Lypp(Ry; X), Ly u(Ros Y)).

Here, the R-bound of a family 7 C B(X,Y) is denoted by R(7). For a definition and
properties of R-boundedness we refer to [4] or [13]. Under more restrictive assumptions on the
symbol m we can give a short proof a multiplier theorem in L, ,, employing a result of Krée
[12] (which is also used in the proof in [8]).

Proposition 3.3. In addition to the assumptions of Theorem 3.2, suppose that m satisfies
me CHR0LB(X,Y)),  |m"(Wlsxy) S A2 for A#0.
Then Tp, € B(Lpu(Ry; X), Lp (R4 Y)).

Proof. The operator-valued multiplier theorem for the unweighted case u = 1 shows that 7,

extends to a bounded operator from L,(R;;X) to L,(R4;Y); see Theorem 3.4 of [22]|. More-

over, following the lines of the proof of Lemma VI1.4.4.2 of [20], the assumptions on m imply

that 7}, may be represented as a convolution operator with a kernel k£ € C(R\{0}; B(X,Y))

satisfying |k(t)|px,y) S [¢/7!. It now follows from Théoréme 2 of [12] that T, is also bounded

from L, ,(R4;X) to Ly (R Y), for all pe (1/p,1]. [ |
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We next treat the half-space model problem corresponding to (1.5), where we proceed simi-
larly as in Section 4 of [6]. On = R"} with boundary I' = R"~! we consider the homogeneous
differential operator

S a0

|a|=2m
and the homogeneous boundary operators
BJ(D) = Z bjgtl“]RiDﬁ, Cj(anl) = Z Cj’YDZ—l 7=0,....,m.
|81=m; [v|=k;
The coeflicients of the operators
aa,bjg € B(E), c¢jy € B(F,E), j=1,...m, bopgecB(E,F), coy€B(F)

are assumed to be independent of ¢t and z. If nothing else is indicated, now all spaces have to
be understood over R x R} and over R x R,

Lemma 3.4. Let E and F be Banach spaces of class HT, p € (1,00), and p € (1/p,1].

We assume that (E) and (LS,e) are valid and that condition (LSZ)) holds if | < 2m and

condition (LSL)) holds if I > 2m. Let (f,g,uo,po0) € Drel. Then there is a unique solution
(u,p) € Eyyp X E,, of

u+ Ou + A(D)u

p 4 Oip + Bo(D)u + Co(Dp_1)p

BJ’(D)U—FCJ'(Dn 1)pP

u(0, z)

p(0,z) =

ft,x), xz € RY, t>0,

go(t, x), zeR"Y >0,

gi(t,x), reR™L t>0 j=1,.,m, (3.2)
uo(z), xr € RY,

= po(x reR"L

)

Proof. (I) We first show uniqueness for (3.2). We use the space Z := Ly (R'}; E) x W35 (R"™1; F)
with s = 2mkg in the Cases 1 and 2 as well as s = kj, ko/(1 + ko — k5, ) in Case 3. On Z, we
introduce the operator A defined by

A(u, p) == ((1+ A)u, Bou + (14 Co)p), (u, p) € D(A),
with domain
D(A) == {(u,p) € WZ™RY; E) x W™ R F)
Biu+ (1+Cj)p=0, j=1,...m; Bou+Cop € W3R F)}.

By (the proof of ) Theorem 2.2 of [6], A generates an analytic Cy-semigroup on Z. Due to (2.2)
and (2.4), the space E, , x E, , embeds into

G = Euu(Ry) x (W, ,(Ry; WS(R" Y F)) N Ly (Ry; W0 (R F))).

Let u € G be a solution of (3.2) with ug =0, po =0, f =0 and go = --- = g = 0. Since
Lyu(J;Z) — Li(J; Z), it follows that v is a mild solution of the inhomogeneous evolution
equation for A on Z with trivial data, and thus u = 0.

(IT) The rest of the proof is concerned with the existence of solutions of (3.2). We write
z = (¢/,y) € R} with 2/ € R"! and y > 0, as well as F,s and F; for the partial Fourier

transform with respect to #’ and ¢t € R, with covariable ¢’ € R~ and 0 € R, respectively. In
14



order to apply F;, we extend a function with compact support in Ry by 0 to R. In the same
way as in Section 4.1 of [6] one can see that it sufficies to consider the case

f = 07 g = (907 7gm> € OF,ua ug = 07 po = 0.
(See Lemma 3.2.2 and Proposition 3.2.3 of [14].) Moreover we first assume that
gE€D:=CPR; xR, Fx E™).

It can be seen as in Lemma 1.3.14 of [14] that D is dense in oF,. For such data the problem
(3.2) was solved in the proof of Theorem 2.1 of [6]. In the following we estimate the norm of
the solution (u, p) in the weighted solution space ¢E, , x oE,, by the norm of ¢ in ¢F,. For
this estimate, we have to derive an appropriate representation of (u, p). We apply F/F; to
(3.2) and arrive for any 6 € R and & € R"! at the ordinary initial value problem

(1410)v + A, Dy)v = y >0,
(1+i0)o + Bo(f , Dy)vly—o + Co(& )0’ (.7: ftgo) (9,5/), (3.3)
B;(&', Dy)vly=o + C;(£)o = (]: ftg])(0,£/)7 ji=1,..,m.

In Section 4.3 of [6] it is shown that (3.3) possesses for all § and & a unique solution
(v(8,¢,-),0(6,¢')) which may be represented as follows. We define the symbols

9= (1410 + |¢'[Pm)L/2m, b:= |g|, ¢:= é:|, a:= 11’%;0,
and the so-called boundary symbol s(6,&’) by
5(0,€) :=1+10 + || in the Cases 1 and 2,
50, :=1+1i0 + Z |&/|Fi grmo=m; in Case 3.

JjeJ
Then it holds
v(0,€,y) = first component of "4 P(b¢, a) M (b, (,9) (97" Fur Frg; (0,€))) .
a(0,€') = s(0,&) " ImOMY(b, ¢, 0) (9 Fur Frg;(6,€))
Here we have used holomorphic functions
Ap: C" 1 x C — B(E*™), P,:C"! x C — B(E*™),
M?: Dy x D¢ x ¥ — B(F x E™ E*™), M} : Dy x D¢ x £ — B(F x E™, F),
where Dy, C C and D, € C"!'\ {0} are bounded open sets satisfying
(Byj2(1/2))*™ c Dy,  {¢€R™ : |¢|=1}C D¢,

and X=%4={z € C\{0} : |argz| < ¢} is a sector with ¢ € (£, 7). The spectrum of iAo (b¢, a)
has a gap at the imaginary axis, and Ps(b(,a) is the spectral projection corresponding to the
stable part of the spectrum. The maps M? and MB have the crucial property that

=0,....m"

(€14 DgMB.1171,0) = o' € {0,137, €40, be Dy, JES}  (34)
is an R-bounded set of operators in B(F x E™, E?™), and that
{[€1¥Dg MD.€'1'171,0) = o' € {0, 13", €40, be Dy, JES} (35)
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is an R-bounded set of operators in B(F x E™, F'). For the solvability and the representation
of the solution of (3.3) in [6] only the condition (LS, ) is needed. In the Cases 2 and 3 the
asymptotic Lopatinskii-Shapiro conditions (LSy) and (LSL) are required to show the R-
boundedness of the sets in (3.4) and (3.5), because of the unboundedness of 9. In Case 1 the
symbols M? and Mg do not depend on 9, so that in this case additional conditions are not
necessary.

Since F,+Fig belongs for ¢ € D to the Schwartz class and all derivatives of the terms
involved in the representation of the solution grow at most polynomially, we can apply the
inverse Fourier transforms and obtain that

u = first component of ft_lfglemAO(bC’“)yPs(b(, a)M2(b,¢, ﬁ)(ﬂ_mjfz/ftgj)jzo
p=Fi Ty s(0.8) T TOM (5, C0) (07 FurFigy)

7=0,....m
is the unique solution of (3.2) with f =0, up =0, po =0 and g € D.

(IIT) We derive another representation of the solution by identifying the Fourier multipliers
with operators. For a function h € S(R"~!; E?™) and fixed (2/,y) € R we calculate

(F e pp) (a) = (F e oWt pee=#h) (250 (3.6)

:/ Oy (F e P Ao WHD) pe=vn) (21) dy
0

= / " (e p ! 719 1o jom i) (27) df
0

o0 —1iAp _ ~
- /0 (P00 p L0 o (Lo ) () ()
neglecting the arguments of Ay and Ps. Here the operator Ly is defined by
Lo =140+ (—Ap_1)™ = F, 0% For,

where the last equality holds, e.g., on Schwartz functions. We observe that for a bounded
holomorphic scalar function ¢ on a sector ¥, with 7 € (0, 7) the operator o(—A,_1) defined
via the H>-calculus for —A,_; on L,(R""%; E) coincides with the Fourier multiplier F, Lo(l-
|>)Fr, see Example 10.2 of [13]. Moreover, the H*-calculus extends the usual Dunford type

calculus for sectorial operators, see Remark 9.9 of [13]|. Therefore, the extension operator &,
which corresponds to y — e~¥?, is given by

1/2m
(Ef)@'y) =e 0 f(ah), 2 eR™E y>0,

for f € L,(R"1; E). We also obtain the equality
Fr0*me™h = Ly &g F,'h, he SR E™),
which we have used in the last line of (3.6). For § € R and f € L,(R';; E?™) we thus define
the operator 7 () by
1 —iA ~ _
(T(0)f)(2,y) := first component of /0 (.7: ’MO(“@P = 10) * f(,9)(2) dg.

The proofs of Lemmas 4.3 and 4.4 in [5] show that 7 € C* (R; B(L, (R’ ; E*™), ng(R’_}_; E)))
and that 5

{D°T(6), 6.5,D°T(0) : 0 R, |a] < 2m} (3.7)
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is an R-bounded set of operators in B(L,(R'}; E*™), L,(R"; E)). Further, as above one can

see that 97 F» = }.le;mj/zm on Schwartz functions, for j = 0, ..., m. This fact leads to

u = F T (0)LoaF 5 My(b, ¢, 0) For (L, ™" Fig))

7=0,....m"
The Dunford type calculus for sectorial operators yields for § € R and y > 0 the representation
1/2m 1 1/2m

LQ@*yLe =5 i ze Y? (z — L.g)*l dz,
where = = (00, §]e3™/2 U §eil37/2:737/21 4 [§, 00)e 137/2 for some sufficiently small § > 0. Hence

. 1/2m .
for each y > 0 the B(Lp(Rn_l; E))—Valued function @ +— Lge™¥%s " is smooth and all of its
derivatives are bounded. So we can apply the inverse Fourier transform with respect to ¢ and
obtain that

Loe V™" = FoLe—vl " F1
on Schwartz functions, where L := 14+ 0+ (—A,—1)" and £ := e LA Here, for X € {E, F'}
we consider L as an operator on Ly , (R ; L,(R"™%; X)) with the domain
D(L) = D(8;) + D((—An-1)™) = oW, ,(Ry; Ly(R* ™ X)) N Ly (Rys W™ (R™ 1 X))

In Lemma 3.1 of [16] we have established that L is invertible and sectorial with angle not larger
than 7/2. Similarly one can treat fractional powers and derive Le_mj /2m Fi L™l 2’”}?1.
We arrive at

u=Lyg = (F,'TO)F)LE (F, F ' MJ(b,(,0)FuF) (L—mj/%gj)

§=0,...m’

Analogous arguments show that the second component p can be represented by

p= Epg — S*leo/Qm (ft—lf;1M2<b7 §7 ﬁ)fr’ft) (L*mj/ng])

§=0,...,m’
with the operator
S:=1+0 + (—An,l)l/2 in the Cases 1 and 2,
S:=1+0+ Z(—An_l)kf/zL(mO*mj)ﬂm in Case 3.
JET
Using the properties of L proved in Lemma 3.1 of [16], it can be shown as in Section 4.2 of

6] that S is an iSOInOI‘phiSIIl between ()E and ()FO . Because D is a dense subset of ()IF s it
[N N “w
now remains to prove the estimate

|£ug|IEu,‘u + |£Pg|Ep,/,L 5 |g’O]F,u,’ g € D (38)

If (3.8) has been verified then the solution operator £ := (L, £,) extends continuously to an
operator from oF, to gE, , x oE, ,, and this extension yields the solution of (3.2).
(IV) Lemma 3.1 of [16] says that for s € (0,1] we have

Dp(s,p) = oW, (Ry; Lp(R*™ 1 X)) N Ly (R W™ (R™1 X)),

Therefore, for j = 1,...,m the operator L™™/?™ maps the space oF;, = Dr(kj,p) continu-
ously into

oYp = Dr(1—1/2mp,p) = W, '/*™(Ry; Ly(R"™ 5 E)) N Ly (Ry; W2 VPR E)).
17



The same arguments yield that L~™0/2™ maps 0Fo,,, continuously into oY, which is defined
as oY g with E replaced by F. We next prove that the operator

M= F I FIMO (b, ¢, 0) Fur F
on D with the symbol M?: D, x D¢ x £ — B(F x E™, E*™ x F) given by
M°(b,¢,0) == (MJ(b,¢,9), My (b,¢, ),

extends continuously to an element of B(OYF X oY, 0Y2Em X OYF). To this end, we consider
the approximating operators

MO = FLFIMO(b, 9 (1 +9) S FuF, e €(0,1).
Observe that M%¢(1 4 LY 2mye = M? on D. Cauchy’s formula yields the representation

1

0,e - =
M 472

/ FAFIMO(b, ¢, 0) (1 +9) "5 (b — b) 10 — 9) " Fp F dbdd,

29 JE

with Zy9 = (—o0,0]e™%* U [0, 00)e!?* for some ¢, € (7/4m, ¢), and where =, is a closed curve
in Dy surrounding (B 5(1/ 2))1/2m Since ¢ = é—:‘ is independent of 6, we may rewrite the
above equality as

Moé == [ F M)+ ) (- B) @ - L) b,
T JEy JE

where B := (=A,_1)"/2L=1/2™ corresponds to the symbol b = Vf,#. The realization of B
on Ly, (R+;LP(R”_1;E)) is a bounded operator, and its spectrum is contained in the set
(By2(1/ 2))1/2™_ This can be seen using the joint functional calculus for d; and (—A,_1)™ on
Lpu(Ry; Lp(R™™1; E)), see Theorem 4.5 of [9].

Due to the R-boundedness of the sets (3.4) and (3.5), the operator-valued Fourier-multiplier
theorem in R™"™! (Theorem 3.25 of [4], see also Theorem 4.13 of [13]) and real interpolation

imply that that the operators
MY (b, 0) == F A MO(b, -, 0) For, beD, JE,

extend continuously to elements of B(W;(R”fl; F x E™), W;(R”*I; E?*™ x F)), s > 0, with
uniformly bounded operators norms. Since M9 is holomorphic, also M is holomorphic in its
arguments. By canonical pointwise extension we thus obtain that

Ml : Db X 2 — B(QYF X ()YTEL,()Y%m X ()YF)

is bounded and holomorphic. Using L as an isomorphism D(L) — Ly, , (R+; Ly(R™ Y E)) that
commutes with B, we see that the spectrum of the realization of B on D(L) is also contained
in (§1/2(1/2))1/2m. By interpolation, the same holds on ¢Yp x oY%. Hence, we may rewrite

MPYE as

[y / / MY, 9)(1+9) (b — B)"'(d — L}/>) " dhdd,
Ey JEp

4m? )
where the curve integrals are now defined in B(OYF X oY, OY%m X OYF). We thus obtain
MYE = L

2 Jg,

M2@)(1+9)~°(9 — L'/?™)~1 a9
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for a bounded holomorphic map
M2 Y — B(OYF X OY%},OY%m X OYF)-

Since the realization of LY/2™ on Ly, (R.,.; L, (R E)) is sectorial with angle not larger than
7/4m, it follows from Corollary 1 of [3] that L'/?™ admits a bounded operator-valued H*-
calculus with H*°-angle not larger than m/4m on the real interpolation spaces (Y} and (Y,
respectively. From this fact and the boundedness of M? on ¥ we infer

’MO,E’B(oYFxoYTE”,QY%mXQYF) S Z}lp |MZ(9)(1+ D)"Y p oY 0v2m xovr) < O (3.9)
ex

where C' does not depend on ¢ € (0,1). Due to Proposition 2.2 of [4], for h € D(L?) the map
e — (1 + L'/?™)%h is continuous with values in Dr(1 — 1/2mp,p). Together with (3.9), this
fact yields

L1/2m)

Eh|0YF><0Y’§ S |h|oYF><0Y7§-

0 : 0,e
|M h’|0Y%m><0YF rs 11?jélp |M B(OYFXOYTE'],OYQEmXoYF) |(1 +

Since D(L?) is dense in Dy (1 — 1/2mp,p), we obtain that MY extends to an element of
B(OYF X OYg,OY%m X OYF), as asserted.
(V) Now we can show the required estimate for £,, i.e.,

|£ug’]Eu,u 5 ’g’oFuy g e D. (310>

_,L1/2m

The extension operator £ = e maps continuously

Dr(1—1/2mp,p) = Dyrjam(2m — 1/p,p) — Lp(Ry; D(L)),
and L maps the space L, (R+; D(L)) continuously into
Ly(Ry; Ly (Ry; Ly(R™ E))) = Ly, (Rys Ly(R'Y; E)).
Of course, here ¥ may be replaced by F. Thus L £ maps continuously
oYZ" x 0Yp — Ly, (Ry; Ly(R; E*™ x F)).

Theorem 3.2 and the R-boundedness of (3.7) imply that F; 7 (-)F; extends to a continuous
operator

Lp,u(Rs Lp(Ry; E*™)) — Lp (R ng(RKSE))‘
Alternatively, this fact follows from Proposition 3.3 since one can show that the operator
family

{GQ%DO‘T(Q) t 0 €R, |af <2m}
is bounded in B(Ly(R%; E*™), L,(R"; E)) arguing as in the proof of Lemma 4.4 of [5]. The
equation for u shows that its E, ,-norm can be controlled by its Ly, ,, (R+; W;m(Rﬁ; E))—norm.
So we have established (3.10). We finally consider the required estimate for £,. As above we

obtain that L™0/2™ maps continuously

oYr = Dr(1—1/p,p) — Dr(ko,p) = oFou.

Since S~! is an isomorphism from oFo,. to o, ,, this gives the estimate for £,. [ |

The analogous half-space result for (1.4) reads as follows.
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Lemma 3.5. Let E be a Banach space of class HT , p € (1,00), u € (1/p, 1], and assume that
(E) and (LS) are valid. Then for (f,g,uo) € Dstat there is a unique solution v € E,, ,, of

u+8tu+A(D) = f(t,x), x e RY, t >0,
Bj(D)u = g;(t, z), zeR"YL t>0, j=1,..,m, 3.11
j
u((),x) = up(z), z e RY. [ |

We refrain from giving a detailed proof of this result, which is similar to the one of Lemma 3.4
and also less sophisticated. (See Section 2 of [14] for the details.) Again we may restrict to
the case f =0, g € oIF, and ug = 0. Applying the partial Fourier transforms with respect to ¢
and 2’ to (3.11) we arrive at an ordinary initial value problem, whose solution operator is for
regular data (g1, ..., gm) given by

5 F(r1-m;/2

L= T(L mj/ mggj)jzl,...,m’
due to Lemma 4.3 of [5]. Here T has the same properties as 7 and L, € are given as in the
proof of Lemma 3.4. The arguments given in the Steps IV and V of the proof above yield that
L € B(oFy,0E,,,), which implies the solvability of (3.11) as asserted.

4. THE GENERAL PROBLEM ON A DOMAIN

Theorems 2.1 and 2.2 are now a consequence of the above results for the model problems
and a perturbation and localization procedure, analogous to the one in e.g. Section 4.5 of [6].
We only sketch the proof below since the full procedure is rather lengthy and tedious. The
arguments are worked out in great detail in Sections 2.3, 2.4, 3.2.2 and 3.3 of [14]. Moreover,
we concentrate on (1.5) since the proof for (1.4) is similar and a bit simpler.

Proof of Theorem 2.2. (I) Let us first consider the necessary conditions on the data.
The considerations in Section 2 and the assumptions (SD), (SB) and (SC) yield that A €
B(Eu,#,EO,#) and B; € B(E%#,]Fj’#), Cj e B(EPM,]F'J',#) for j =0, ..., m. Moreover, we have

Wypii(J; Ly(T; E)) — BUC(J; Ly(T; E)) if kKj>1—p+1/p

for j =1,...,m, due to Proposition 2.10 of [16]. Thus in this case the j-th boundary equation
n (1.5) must hold up to ¢ = 0 by continuity, which explains the compatibility conditions
in D, for this case. Similiarly, for j = 0 the regularity compatibility at the boundary is
needed if kg > 1 — p+ 1/p, i.e., if Oip has a trace at t = 0. For the existence of a solution
(u,p) € Eyy x Ep . it is therefore necessary that the data in (1.5) belong to Dy

(IT) Let us show that (f,g,uo,po) € Drel is also sufficient for the existence of a unique
solution (u,p) € Ey , x E,,, of (1.5). Uniqueness follows as in Step I of the proof of Lemma
3.4. For the existence of the solution (u, p), note that it suffices to consider small T" > 0 by
a standard compactness argument. For simplicity, we assume that §2 is bounded. The case of
unbounded €2 requires minor modifications.

We cover €2 by a finite number of open balls B; such that B; NI =) for i = 1,..., Np and
B;NT' #( fori= Ng+1,..., Np, where Np, Ny € N. We further take a smooth partition of
unity ¢; for Q subordinate to this cover. Let (u,p) € Ey, X E, .. Now, (u, p) solves (1.5) if
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and only if (u;, p;) = (Yiu, ¥;p) satisfies
atui + Auz = wzf + [‘Aa %]Ua in QN Bia t e J7
Owpi + Boui + Copi = tigo + [Bo, ¥iJu + [Co,¢ilp, on T'NB;, teJ,
Bjui —i—Cj,Ol' = ¢igj + [Bo,I/)Z]u + [Co,lﬁi]p, on I'nB;, teJ, j=1,..,m, (4.1)
ui|t:0 = 1/}in, in QN BZ',
pilt=0 = Yipo, on I'N B,
foralli =1,..., Ny, where [A, ;Ju = A(;u)—1; Au. For i = 1, ..., Nr no boundary conditions
are involved in (4.1). We extend the coefficients of A outside B; to R™ such that (SD) is still
valid, and denote the operator with extended coefficients by A’. Then wu; solves (4.1) for
1 =1,..., Np if and only if it solves
Opu; + Alug = Ui f + [A, i]u, in R", ted,
Ui‘t:O = ’l/)z"LLo, in R™. (4.2)
Due to the continuity of the top order coefficients of A, the top order part of the operator A’
is a small perturbation of a homogeneous constant coefficient operator satisfying (E) if the ex-
tension of the coefficients is appropriate, provided T" and the radius of B; are sufficiently small.
Poincaré’s inequality in the L, ,-spaces (Lemma 2.12 in [16]) allows to estimate lower order
terms with constants decreasing to 0 as 7' — 0, see Lemma 1.3.13 of [14]. Using Lemma 3.1, we

can now solve (4.2) by a straightforward fixed point argument. We thus obtain a continuous
solution operator L% : Eg ,(J x R™") x X,, ,(R") — E,, ,(J x R™) for (4.2). It follows that

up = L% (i f + [A i, iuo) i=1,...,Np.
Observe that the commutator terms are of lower order. For i = Ng + 1, ..., Ny the boundary
conditions in (4.1) are present. We choose the B; so small that we have a chart ¢; for I’
with domain B; associated to some z; € I'. Denoting by ®; the corresponding push-forward
operator, i.e., ®;v = v o p; !, we obtain that (u;,p;) solves (4.1) if and only if (v;,0;) =
(@iui, (I)lpz) solves
Ov; + (P;AD; vy = O (Vi f + [A, ¥ilu), in R N ;i(B;),
i + (2iBo®; ) v; + Cioy = @i (¥igo + [Bo, ilu + [Co,¥ilp), on R nei(By),
(®iB;®; )vi + Cloy = D (Yugy + [Bj, diu + [Cj,¢ilp), on R Npi(By),
Vilt=0 = Pitsuo, in R} Ngi(B;),
oilt=0 = Pivipo, on R"'ny;(B;),

for t € J and j = 1,...,m. Recall that C]gi denotes the local representation of C; with respect

to the coordinates g; corresponding to ;. According to Theorem 10.3 of [23], at t € J and x;
the principal parts of the operators ®; A®,” ! and O, B;®, L are given by

Ag(t, i, 00,0 D), Bjs(t, @i, 05\ D),

respectively. Extending now the coefficients of the transformed operators ®; A®, L ®,B;®, !
and ng" such that (SD), (SB) and (SC) remain valid, we obtain that (®;u;, ®;p;) solves a half-
space problem with operators that are either of lower order or small perturbations of constant

coefficient operators satisfying the conditions of Lemma 3.4. As for the full-space case, if T
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and B; are sufficiently small, then a continuous solution operator C’H exists for this half-space
problem, which maps the relevant data space continuously into E, ,(J x R} ) x E, ,(J x R%).
For i = Np +1,..., Ng we thus obtain

(i, pi) = @7 RiLly (D5 (0 f + [A, ¥s]u), @5(vig + [B,hilu + [C,14]p), Pirbiug, Birhipo).

Here R; is the restriction to R} N;(B;) and we have set B = (By, ..., B;,) and C = (Co, ...,Cr)
for simplicity. Again, the commutator terms are of lower order.

(III) We next choose smooth functions ¢;, i = 1, ..., N, satisfying ¢; = 1 on supp¢; and
supp ¢; C B;. The above considerations show that if (u, p) solves (1.5) then it is a fixed point
of the map Gy g ug,p0 (W, p) := Y _; ¢i(ui, p;) on the complete metric space

Zug,po = {(u,p) €Euyu X Epy 1 ult=o = uo, plt=o = :00}'

We remark that Z,, ,, is nonempty by Lemma 4.4 of [16] and Lemma 3.2.2 of [14]. Since the
operators in the arguments of E% and EZH are of lower order, one can show that for all data
(f*, 9%, ub, p5) € Drer the map Gy« g+ 4z o« has indeed a unique fixed point on Z,; ,«, making
T and B; once more smaller if necessary. Another fixed point argument yields for given data
(f,9,u0,p0) € Drel the appropriate auxiliary data (f*,¢*, ug, pj) € Drel such that the fixed
point of G« g« yx px is the solution of (1.5).

(IV) To finish the proof, note that the continuity of the resulting solution operator L, for
(1.5) is a consequence of the open mapping theorem. Moreover, the norm of L, restricted
to D?el is uniform in 7" due to an extension argument. It uses the extension operator from
Lemma 2.5 of [16] for the oW, ,~spaces over J to the half-line, whose norm is independent of
the length of J. |
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