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Abstract. We develop a complete local wellposedness theory for a
Maxwell system on R3 and a large class of nonlinear material laws which
are nonlocal in time. Such constitutive relations are typical for nonlinear
optics. The problem was treated before in the Sobolev space Hs for
s > 3/2 by means of energy methods. Using a recently shown Strichartz
estimate, we can lower this level of regularity to s > 1. In this context
’charge-type’ terms would spoil the analysis. We avoid them by the
Helmholtz projection for the divergence operator with coeffients, which
requires mapping properties of the projection also in Hα,q with q ̸= 2.

1. Introduction

Electromagnetic theory is based on the Maxwell equations. They contain
constitutive relations that describe the interaction of the material and the
fields, where retarded material laws play an important role in optics, for
instance. We treat a large class of nonlinear relations, as discussed in [4], [6]
or [9]. If the coefficients of the nonlinearity are differentiable in time (which
is true in the standard models), the system is of semilinear nature though
nonlocal in time. One can treat it using energy methods in the Sobolev space
Hs with s > 3

2 , since this is a Banach algebra. On the spatial domain R3,
existence and uniqueness of solutions was shown in [2] in such a framework,
see also [7] for recent results on domains for s = 2 and [9] for the linear
case. In this paper we study the full space case and establish a complete
local wellposedness theory within Hs for s ∈ (1, 32 ]. This reduction of the
regularity level is caused by dispersive methods, using a Strichartz estimate
from the current paper [16]. For instantaneous material laws, which lead to
quasilinear problems, related progress was achieved in [17] in the 2D setting
and in [16], [18] for certain 3D cases.

The system of macroscopic Maxwell equations is given by

∂tD = curlH− J, ∂tB = − curlE, t ≥ 0, x ∈ R3, (1.1)
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where we use a unit system for which the constants ε0 and µ0 are 1. The
two Gauß laws

divD = ρ, divB = 0

for the charge ρ can be absorbed into the initial conditions divD(0) = ρ(0)
and divB(0) = 0 since solutions of (1.1) satisfy

divD(t) = divD(0)−
∫ t

0
div J(τ) dτ, divB(t) = divB(0) (= 0) (1.2)

because of div curl = 0. The electric displacement D = E +P is related to
the electric field E by the polarisation P describing the density of electric
dipoles in the medium. Analogously, the magnetic field H = B−M is given
by the magnetic induction B and the magnetisation M caused by the density
of magnetic dipoles. Moreover, we assume that the free current density is of
the form J = σE+J0, where σ denotes the conductivity of the medium and
J0 is a given, externally applied current density.

So far, (1.1) is underdetermined and has to be complemented by material
laws specifying the dependence of P and M on the fields. In this work we
study nonlinear material laws which include retardation effects, such as

P(E)(t, x) = χe(x)E(t, x) +

t∫
−∞

t∫
−∞

R(t− r, t− r′, x)[E(r, x),E(r′, x)] dr dr′

for t ≥ 0, x ∈ R3, and a bilinear response function R(t, t′, x) : R3×R3 → R3.
Actually we treat finite sums of analogous n-linear terms and also allow
for a nonlinear and retarded magnetization, where all nonlocal terms may
depend on (E,H) = u. We assume that the kernels are C2 or H2 in x and
W 1,1 ∩W 1,∞ in time, roughly speaking. See Section 2 for the details, and
[4] or [6] for the background in nonlinear optics, for instance. We stress that
the retarded terms act on history functions ut : r 7→ u(t + τ) for τ ≤ 0. So
one has to prescribe the prehistory uh(τ) for τ ≤ 0 in (1.1).

Under our assumptions, in (1.1) one can differentiate the nonlocal terms
in time without applying ∂t to the fields. One can then control the result-
ing terms in Hs(R3) for s > 3

2 since this space embeds into L∞(R3), see
[2]. To lower the regularity level to s ∈ (1, 32 ], we involve the Sobolev spa
Hα,q(R3) ↪→ L∞(R3) with α > 3

q and large q. This is only possible if one
exploits dispersive behavior, namely Strichartz estimates, as the linear part
does not leave invariant such spaces unless q = 2. Recently in [16] such
estimates were shown for scalar permittivity ε := 1 + χe and permeability
µ = 1+χm, see [17] for the 2D case. Here we need C2

b coefficients to prevent
a regularity loss, see [16]. At least for the 2D case these results are sharp,
[17]. We are only aware of one earlier paper [8] on Strichartz estimates for
the Maxwell system, where the coefficients were assumed to be smooth and
constant outside a compact set. For matrix-valued coefficients the available
theory in 3D is still restricted to special cases, see [16] and [18].

In the next section we discuss the basic framework and the material laws.
Here the analysis is quite involved because of the nonlocality and complex
structure of the nonlinear terms, and also since we have to work with the
norms of both Hs and Hα,q in the estimates. In Section 3 we reformulate
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the system (1.1) as the retarded evolution equation (3.1). Moreover, we
recall that the linear and instantaneous part is governed by a C0-group in
Hs. Then we discuss the Strichartz estimate (3.6) for the linear and in-
stantaneous Maxwell system from [16]. It bounds the norm of the fields in
Lp((0, T ), H−γ,q) by the L2-norm of the initial value and the norm of the
inhomogeneity in L1((0, T ), L2), where p, q ≥ 2, 1

p + 1
q = 1

2 and γ = 1 − 2
q .

One thus increases the spatial integrability at the prize of a loss in regularity,
compared to the energy estimate. Here the endpoint q = ∞ has to be ex-
cluded, see [20]. This fact prevents us to reach the regularity level H1 in the
local wellposedness theory. In contrast to the analogous results for the wave
equation, see [21] and [22], the Strichartz estimate (3.6) contains also charge
terms on the right. Extra regularity of ρ is needed to counteract the large
kernel of curl. In Theorem 3.4 we shift the regularity level from L2 to Hs

with s ∈ (1, 32 ] and to Hs−γ,q, by means of lengthy commutator arguments.
Our main arguments are based on linearization and perturbation argu-

ments, treating the nonlocal part as an inhomogeneity. It thus causes ad-
ditional charges compared with the unperturbed system, which would spoil
the final result. As a remedy we apply the Helmholtz projection Q map-
ping onto the kernel N(curl)×N(curl) along N(div(ε •))×N(div(µ •)). This
splits the problem into a ‘charge free’ part and a part without curls, which
are treated by the Strichartz inequality respectively direct estimates. For
this we need mapping peoperties of Q also in Hα,q(R3) that we establish in
Section 4, based on elliptic regularity and a bootstrapping argument.

Based on these preparations, in the last section we then establish local
wellposedness of the Maxwell problem (3.1) in Hs for s ∈ (1, 32 ], including
a blow-up criterion and continuous dependence on data. We also show that
our solutions coincide with those obtained for more regular data with the
maximal existence times, if the relevant conditions are met, see Proposi-
tion 5.7. This fact is crucial if one has to approximate data by regular one
to justify, e.g., energy estimates. In all the arguments we have to take care
of the influence of the prehistory and work in paces C(J,Hs) ∩ Lp(J,Hα,q).

2. Function spaces and constitutive relations

We use the standard (complex) function spaces Ck
b (R3) and Cr

b (R3) of
bounded continuously differentiable and Hölder continuous functions for k ∈
N0 and r ∈ R>0 \ N. Moreover, we work with usual Lebesgue and Sobolev
spaces Lp and W k,p, and with the maximal domains H(curl) and H(div) of
curl and div in L2(R3)3. We write a ≲ b if a ≤ cb for some constant c > 0 etc.
The Fourier transform is given by Fu(ξ) = û(ξ) = (2π)−

3
2

∫
R3 u(x)e

−ix·ξ dx

for f ∈ L1(R3), and F also denotes its extension to the space of tempered
distributions S∗(R3).

In the context of homogeneous fractional derivatives we also use the sub-
space S∗

h(R3) of u ∈ S∗(R3) such that ∥θ(λD)u∥L∞ → 0 as λ → ∞ for any
θ ∈ C∞

c (R3), where θ(λD)u := F−1
(
θ(λ·)û

)
. We note that u ∈ S∗(R3) with

û ∈ L1
loc(R3) belong to S∗

h(R3). See p.22 in [3]. We need the fractional deriva-
tives ⟨∇⟩s u := F−1

(
⟨ξ⟩s û

)
and |∇|s u := F−1

(
|ξ|s û

)
for s ∈ R, u ∈ S∗(R3),

resp. u ∈ S∗
h(R3). Here ⟨ξ⟩s stands for the map ξ 7→ ⟨ξ⟩s = (1 + |ξ|2)

s
2 etc.
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The fractional Sobolev spaces are then given by

Hs,p(R3) =
{
u ∈ S∗(R3)

∣∣ ⟨∇⟩s u ∈ Lp(R3)
}

for s ∈ R and p ∈ (1,∞), endowed with the canonical norm, where we put
Hs(R3) := Hs,2(R3). For s ∈ N0, it is known that Hs,p(R3) coincides with
the usual Sobolev space.

The following conditions on parameters will be used thoughout the paper.
Triples (p, q, γ) satisfying the first statement are called strict wave admissible.

Assumption 2.1. Let p, q ∈ (2,∞) fulfill 1
p + 1

q = 1
2 and set γ = 1 − 2

q ∈
(0, 1). Let s ∈

(
1, 32
]

with s > 1 + 1
q and define α = s− γ ∈

(
3
q ,

3
2

)
.

Note that Hα,q(R3) ↪→ L∞(R3) by Sobolev’s embedding which is crucial in
the following. The next two lemmas are frequently used to handle products
appearing in our model for the constitutive relations below. They follow
from Sobolev’s embedding, interpolation, and Theorem 4.6.4.2 in [15], for
instance.

Lemma 2.2. Let Assumption 2.1 be true, m ∈ H2(R3) + C2
b (R3), u ∈

Hs(R3), and v ∈ Hα,q(R3). Then the products mu and mv belong to Hs(R3)
and Hα,q(R3), respectively, and they satisfy

∥mu∥Hs ≲ ∥m∥H2+C2
b
∥u∥Hs , ∥mv∥Hα,q ≲ ∥m∥H2+C2

b
∥v∥Hα,q .

Lemma 2.3. Assumption 2.1 be true, u, v ∈ Hs(R3)∩Hα,q(R3), and ũ, ṽ ∈
Hα,q(R3). Then uv ∈ Hs(R3), ũṽ ∈ Hα,q(R3), and we have

∥uv∥Hs ≲ ∥u∥Hs∥v∥Hα,q + ∥u∥Hα,q∥v∥Hs , ∥ũṽ∥Hα,q ≲ ∥ũ∥Hα,q∥ṽ∥Hα,q .

We now introduce the function space in which we obtain solutions to the
Maxwell system in Section 5. For parameters s, p, q, and α satisfying the
conditions of Assumption 2.1 and b ∈ R, we define

Zs,p
α,q(b) := Cb

(
(−∞, b], Hs(R3)6

)
∩ Lp

(
(−∞, b), Hα,q(R3)6

)
,

with the canonical norm. We often write just Z(b).
Constitutive relations (or material laws) describe the interaction of phys-

ical systems with electromagnetic fields. We choose E and H as variables,
and for polarization and magnetization we impose a relation of the form

P(E,H)(t, x) = χe(x)E(t, x) + P̃(E,H)(t, x),

M(E,H)(t, x) = χm(x)H(t, x) + M̃(E,H)(t, x),
(2.1)

where χe and χm are the electric respectively magnetic susceptibilities, which
we assume to be scalar-valued. The terms χeE and χmH describe a linear,
isotropic, local-in-space and instantaneous response of the medium to fields
E and H. We focus on the nonlinear, anisotropic and retarded contributions
P̃(E,H) and M̃(E,H). In many cases, P can be regarded as independent of
H and M as independent of E, leading to a standard model in nonlinear op-
tics (if M̃ = 0), see [4], [6], and [9]. This is not true in so-called bianisotropic
materials which exhibit a coupling of electric and magnetic effects. In our
model we allow for such couplings in the retarded terms of (2.1). Introducing
the permittivity ε := 1 + χe and permeability µ := 1 + χm, we obtain

D = εE+ P̃(E,H), B = µH+ M̃(E,H).
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We combine E and H into a variable u = (E,H). The retarded part is given
by N summands

(P̃(E,H), M̃(E,H)) =: Γ(u) =
N∑

n=1

Γ(n)(u),

which can be written in components as

Γ
(n)
j0

(u)(t, x) (2.2)

=

∫ t

−∞
. . .

∫ t

−∞
R

(n)
j0j1...jn

(t− r1, . . . , t− rn, x)uj1(r1, x) . . . ujn(rn, x) dr1. . . drn.

for j0 ∈ {1, . . . , 6}. (We use the Einstein convention of summing over re-
peated indices.) Here R(n) =

(
R

(n)
joj1...jn

)
: Rn

≥0 × R3 → R6(n+1) is called
the nth order response function and R(n)(τ1, . . . , τn, x) is a tensor of rank
n+1 for each (τ1, . . . , τn, x) ∈ Rn

≥0 ×R3. It weights the contributions of the
electromagnetic fields at times τ1, . . . , τn to the polarisation and magnetisa-
tion at time t. The material response described by (2.2) is local in space,
but nonlocal in time. Due to causality, the integrals run only up to time t.
The model incorporates time invariance, since the response functions only
depend on time differences t− ri. By a substitution, we can also write

Γ
(n)
j0

(u)(t, x) =

∫
Rn
>0

R
(n)
j0j1...jn

(τ, x)
n∏

m=1

ujm(t− τm, x) dτ. (2.3)

From now on, we omit the spatial variable x. On the material coefficients
and the external current density J0 we impose the following assumptions.
While the conductivity σ is matrix-valued with entries in H2(R3) +C2

b (R3),
permittivity ε and permeability µ have to be strictly positive scalars and
belong to C2

b (R3). The response functions are assumed to be twice differ-
entiable in space and once in time, with a decaying memory described by a
map ϕ. An additional function ϕsup defined by shifts of ϕ is needed in the
proof of the continuity of Γ, see Lemma 2.8.

Assumption 2.4. Let Assumption 2.1 be true, let η > 0, and ε, µ ∈ C2
b (R3)

be real-valued functions satisfying ε(x), µ(x) ≥ η for all x ∈ R3. Let σ
be contained in H2(R3)3×3 + C2

b (R3)3×3 and J0 in L1
loc

(
[0,∞), Hs(R3)3 ∩

Hα,q(R3)3
)
.

Also, R(n)
j0...jn

∈ C1
(
Rn
≥0, H

2(R3) + C2
b (R3)

)
is real-valued and bounded by

max
{∥∥R(n)

j0...jn
(τ)
∥∥
H2+C2

b
,
∥∥∂τℓR(n)

j0...jn
(τ)
∥∥
H2+C2

b

}
≤

n∏
m=1

ϕ(τm)

for a map ϕ ∈ L1
(
(0,∞)

)
∩Cb

(
[0,∞)

)
and all n ∈ {1, . . . , N}, ℓ ∈ {1, . . . , n},

j0, . . . , jn ∈ {1, · · · , 6}, τ = (τ1, . . . , τn) ∈ Rn
≥0. Finally, the function

ϕsup : R≥0 → R defined by

ϕsup(t) = sup
{
ϕ(t+ h)

∣∣ −1 ≤ h ≤ 1, t+ h ≥ 0
}

is contained in L1
(
(0,∞)

)
∩ L∞((0,∞)

)
.
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We note that Assumption 2.4 implies that ε−1 and µ−1 are also contained
in C2

b (R3). The parameters ε and µ are combined into the matrix

κ :=

(
εI3×3 0
0 µI3×3

)
.

We define the space L2
ε,µ(R3)6 as L2(R3)6 endowed with the scalar product(

(E,H)
∣∣∣(Ẽ, H̃)

)
L2
ε,µ

:=
(
εE
∣∣∣Ẽ)

L2(R3)3
+
(
µH
∣∣∣H̃)

L2(R3)3
,

where (F|G)L2(R3)3 :=
∫
R3 F ·Gdx is the usual scalar product on L2(R3)3.

An often used model to describe the optical properties of materials is the
Lorentz oscillator model, in which electrons bound to atoms are treated as
damped harmonic oscillators, see Section 7.5 of [11]. This model can be
generalized by including anharmonic and anisotropic terms in the potential.
One obtains expressions for the response functions that include trigonometric
polynomials times decaying exponentials and that satisfy Assumption 2.4 for
a function ϕ of the form Ke−γt with K, γ > 0, see e.g. Appendix A.2 of [5].

Since (1.1) contains ∂tD and ∂tB, we need an expression for ∂tΓ(u). A
formal differentiation of (2.2) (justified in Lemma 2.11) yields
n∑

ℓ=1

[∫ ∞

0
· · ·
∫ ∞

0
∂τℓR

(n)
j0...jn

(τ)uj1(t− τ1) . . . ujn(t− τn) dτ1 . . . dτn

+

∫ ∞

0
. . .

∫ ∞

0
R

(n)
j0...jn

(τ1, . . . , τℓ−1, 0, τℓ+1, . . . , τn)uj1(t− τ1) . . . ujℓ−1
(t− τℓ−1)

· ujℓ(t)ujℓ+1
(t− τℓ+1) . . . ujn(t− τn) dτ1 . . . dτℓ−1 dτℓ+1 . . . dτn

]

=
n∑

ℓ=1

∫
Rn
>0

∂τℓR
(n)
j0...jn

(τ)
n∏

m=1

ujm(t−τm) dτ +

∫
∂Rn

>0

R
(n)
j0...jn

(τ)
n∏

m=1

ujm(t−τm) dτ

=: Y
(n)
j0

(u)(t). (2.4)

We set Y (u) :=
∑N

n=1 Y
(n)(u) with Y (n)(u) given by (2.4) for j0 ∈ {1, . . . , 6}.

In the remainder of this section we study properties of the retarded part of
the material law and show that ∂tΓ(u) = Y (u) holds in a weak sense. First
a useful formula is recalled, using the standard convention that empty sums
and products evaluate to zero respectively one.

Lemma 2.5. Let vi and wi be elements of a commutative ring for i ∈
{1, . . . , n} and n ∈ N. Then it holds

n∏
m=1

vm −
n∏

m=1

wm =
n∑

ℓ=1

( ℓ−1∏
m=1

vm (vℓ − wℓ)
n∏

m=ℓ+1

wm

)
.

One can check that the expressions (2.3) and (2.4) are well-defined ele-
ments of Hα,q(R3) for a.e. t < b and suitable functions u.

Lemma 2.6. Let Assumption 2.4 be true, b ∈ R and u be contained in
Lp
(
(−∞, b), Hα,q(R3)6

)
. Take n ∈ {1, . . . , N} and j0 ∈ {1, . . . , 6}. Then
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the maps F (n,t)
j0

, G
(n,t)
j0

: Rn
>0 → Hα,q(R3) defined by

F
(n,t)
j0

(τ) = R
(n)
j0...jn

(τ)
n∏

m=1

ujm(t− τm),

G
(n,t)
j0

(τ) =

n∑
ℓ=1

∂τℓR
(n)
j0...jn

(τ)

n∏
m=1

ujm(t− τm)

are Bochner integrable for every t ∈ (−∞, b). The map H
(n,t)
j0

: ∂Rn
>0 →

Hα,q(R3) defined by

H
(n,t)
j0

(τ) = R
(n)
j0...jn

(τ)
n∏

m=1

ujm(t− τm)

is Bochner integrable for a.e. t ∈ (−∞, b).

Here the measurability is shown approximating by simple functions and
using Lemmas 2.2, 2.3 and 2.5. The latter also yield the integrability via∫

Rn
>0

∥∥∥F (n,t)
j0

(τ)
∥∥∥
Hα,q

dτ ≲
6∑

j1,...,jn=1

n∏
m=1

∫ ∞

0
ϕ(τm) ∥ujm(t− τm)∥Hα,q dτm

≤ ∥ϕ∥n
Lp′ ((0,∞))

∥u∥nLp((−∞,b),Hα,q) , (2.5)

and analogously for the other maps.
Since our spaces are separable, strong measurability of a map f is equiva-

lent to that of ⟨f, ϕ⟩ for all test functions ϕ, say. So we can transfer measur-
ability from Hα,q(R3) to Hs(R3) based on Lemma 2.6. The integrability in
Hs is then shown by Lemmas 2.2 and 2.3 and Hölder’s inequality via, e.g.,∫

Rn
>0

∥∥F (n,t)
j0

(τ)
∥∥
Hs dτ (2.6)

≲
6∑

j1,...,jn=1

n∑
ℓ=1

∫
Rn
>0

ϕ(τℓ) ∥ujℓ(t− τℓ)∥Hs

n∏
m=1,m ̸=ℓ

ϕ(τm)∥ujm(t− τm)∥Hα,q dτ

≤ ∥ϕ∥L1((0,∞)) ∥ϕ∥
n−1
Lp′ ((0,∞))

sup
r≤b

∥u(r)∥Hs ∥u∥n−1
Lp((−∞,b),Hα,q) .

Corollary 2.7. Let Assumption 2.4 be true, b ∈ R, u ∈ Z(b), n∈{1, . . . , N},
and j0 ∈ {1, . . . , 6}. Then the maps F (n,t)

j0
, G

(n,t)
j0

: Rn
>0 → Hs(R3) defined

as in Lemma 2.6 are Bochner integrable for every t ∈ (−∞, b). The map
H

(n,t)
j0

: ∂Rn
>0 → Hs(R3) defined as in Lemma 2.6 is Bochner integrable for

a.e. t ∈ (−∞, b).

We next show boundedness and continuity in time of the nonlinearity.

Lemma 2.8. Let Assumption 2.4 be true, b ∈ R, u ∈ Z(b) and n ∈
{1, . . . , N}. Then Γ(u) is contained in the space Cb

(
(−∞, b], Hα,q(R3)6 ∩

Hs(R3)6
)

and satisfies

sup
t≤b

∥∥∥Γ(n)(u)(t)
∥∥∥
Hα,q

≲ ∥u∥nLp((−∞,b),Hα,q) ,
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sup
t≤b

∥∥∥Γ(n)(u)(t)
∥∥∥
Hs

≲ sup
t≤b

∥u(t)∥Hs ∥u∥n−1
Lp((−∞,b),Hα,q) .

Proof. Let n ∈ {1, . . . , N}, j0 ∈ {1, . . . , 6}, and t ≤ b. The boundedness of
Γ(u) follows as in (2.5) and (2.6) by∥∥∥Γ(n)

j0
(u)(t)

∥∥∥
Hα,q

≲ ∥ϕ∥n
Lp′ ((0,∞))

∥u∥nLp((−∞,b),Hα,q) ,∥∥∥Γ(n)
j0

(u)(t)
∥∥∥
Hs

≲ ∥ϕ∥L1((0,∞))∥ϕ∥
n−1
Lp′ ((0,∞))

sup
τ≤b

∥u(τ)∥Hs∥u∥n−1
Lp((−∞,b),Hα,q) .

We now prove continuity from the right. (The other case is done similarly.)
Let h ∈ [0, 1] with t+ h ≤ b. We set Wt = (−∞, t)n and write k(n)j0...jn

(t, h, r)
for the norm∥∥R(n)

j0...jn
(t+ h− r1, . . . , t+ h− rn)−R

(n)
j0...jn

(t− r1, . . . , t− rn)
∥∥
H2+C2

b
.

As above, Lemmas 2.2 and 2.3 yield∥∥∥Γ(n)
j0

(u)(t+ h)− Γ
(n)
j0

(u)(t)
∥∥∥
Hα,q

≲
6∑

j1,...,jn=1

[ ∫
Wt

k
(n)
j0...jn

(t, h, r)

n∏
m=1

∥ujm(rm)∥Hα,q dr

+

∫
Wt+h\Wt

∥∥R(n)
j0...jn

(t+ h− r1, . . . , t+ h− rn)
∥∥
H2+C2

b

n∏
m=1

∥ujm(rm)∥Hα,q dr

]

≲ f1(h) ∥u∥nLp((−∞,b),Hα,q) +
6∑

j1,...,jn=1

n∑
k=1

∫ t+h

t
ϕ(t+ h− rk)∥ujk(rk)∥Hα,q drk

·
n∏

m=1,m ̸=k

∫ t+h

−∞
ϕ(t+ h− rm) ∥ujm(rm)∥Hα,q drm

≲
(
f1(h) + h

1
p′ ∥ϕ∥L∞((0,∞)) ∥ϕ∥

n−1
Lp′ ((0,∞))

)
∥u∥nLp((−∞,b),Hα,q)

with

f1(h) :=

6∑
j1,...,jn=1

(∫
Wt

k
(n)
j0...jn

(t, h, r)p
′
dr
) 1

p′
.

We have f1(h) → 0 as h → 0+ by Lebesgue’s theorem, using the continuity
in time of the response functions as well as the estimate

k
(n)
j0...jn

(t, h, r) ≤ 2

n∏
m=1

ϕsup(t− rm) (2.7)

and Assumption 2.4. The calculation in Hs(R3) proceeds similarly with
some modfications as in (2.6). We omit the details. □

We now turn to the question in which sense the formal differentiation of
Γ(u) in (2.4) can be justified. As a first step, using the algebra property
of H2(R3), we can differentiate sufficiently regular u in a classical sense.
The proof is rather standard (though tedious) and a minor modification of
Lemma 3.17 in [5], so that it is not presented here.
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Lemma 2.9. Let Assumption 2.4 hold, b∈R, and u∈Cb

(
(−∞, b], H2(R3)6

)
.

Then Γ(u) belongs to C1
(
(−∞, b), H2(R3)6

)
with ∂tΓ(u) = Y (u), see (2.4).

In our setting, u is less regular than H2 and we only obtain ∂tΓ(u) = Y (u)
in a weak sense. As a preparation for proving this in Lemma 2.11, we state
estimates that easily follow from Lemma 2.8 and the variants of inequality
(2.6) for G(n,t)

j0
and H(n,t)

j0
.

Lemma 2.10. Let Assumption 2.4 be true, a, b ∈ R with a < b, J = (a, b),
u ∈ Z(b), and n ∈ {1, . . . , N}. Then Γ(u) and Y (u) are contained in the
space L1

(
(a, b), Hs(R3)6

)
and satisfy∥∥∥Γ(n)(u)

∥∥∥
L1(J,Hs)

≲ (b− a) sup
τ≤b

∥u(τ)∥Hs ∥u∥n−1
Lp((−∞,b),Hα,q) , (2.8)∥∥∥Y (n)(u)

∥∥∥
L1(J,Hs)

≲
[
(b− a) + (b− a)

1
p′
]
sup
τ≤b

∥u(τ)∥Hs∥u∥n−1
Lp((−∞,b),Hα,q) .

We can now differentiate the polarisation and magnetisation in time.

Lemma 2.11. Let Assumption 2.4 hold, a, b ∈ R with a < b and u ∈ Z(b).
Then Γ(u) belongs to W 1,1

(
(a, b), Hs(R3)6

)
with ∂tΓ(u) = Y (u), see (2.4).

Proof. We use mollifiers χ in R3 and define u(k)(t) = χ1/k ∗ u(t) for t ≤ b

and k ∈ N. Since u(k) ∈ Cb

(
(−∞, b], H2(R3)6

)
, Lemma 2.9 implies that

Γ(u(k)) is contained in C1
(
(−∞, b), H2(R3)6

)
with ∂tΓ

(
u(k)

)
= Y

(
u(k)

)
. It

thus remains to show the limits Γ
(
u(k)

)
→ Γ (u) and Y

(
u(k)

)
→ Y (u) in

L1
(
(a, b), Hs(R3)6

)
as k → ∞. Let n ∈ {1, . . . , N} and j0 ∈ {1, . . . , 6}.

1) We start with the convergence of
(
Γ
(
u(k)

))
k
. Using Lemmas 2.2

and 2.5, we obtain∥∥∥Γ(n)
j0

(
u(k)

)
(t)− Γ

(n)
j0

(u)(t)
∥∥∥
Hs

≲
n∑

ℓ=1

∫
Rn
>0

∥∥∥R(n)
j0...jn

(τ)
∥∥∥
H2+C2

b

·
∥∥∥( ℓ−1∏

m=1

u
(k)
jm

(t− τm)
)(
u
(k)
jℓ

(t− τℓ)− ujℓ(t− τℓ)
) n∏
m=ℓ+1

ujm(t− τm)
∥∥∥
Hs

dτ

for a.e. t < b. The products of the fields can be estimated using Lemma 2.3.
This leads to∥∥Γ(n)

(
u(k)

)
(t)− Γ(n)(u)(t)

∥∥
Hs ≲

3∑
i=1

∫
Rn
>0

I
(n,k)
i (t, τ) dτ,

I
(n,k)
1 (t, τ) :=

n∏
j=1

ϕ(τj)

n∑
ℓ=1

[ ℓ−1∑
i=1

∥∥∥u(k)(t− τi)
∥∥∥
Hs

ℓ−1∏
m=1,m ̸=i

∥∥∥u(k)(t− τm)
∥∥∥
Hα,q

·
∥∥∥u(k)(t− τℓ)− u(t− τℓ)

∥∥∥
Hα,q

n∏
m=ℓ+1

∥u(t− τm)∥Hα,q

]
,

I
(n,k)
2 (t, τ) :=

n∏
j=1

ϕ(τj)
n∑

ℓ=1

[ ℓ−1∏
m=1

∥∥∥u(k)(t− τm)
∥∥∥
Hα,q



10 CHRISTOPHER BRESCH AND ROLAND SCHNAUBELT

·
∥∥∥u(k)(t− τℓ)− u(t− τℓ)

∥∥∥
Hs

n∏
m=ℓ+1

∥u(t− τm)∥Hα,q

]
,

I
(n,k)
3 (t, τ) :=

n∏
j=1

ϕ(τj)
n∑

ℓ=1

[ n∑
i=ℓ+1

∥u(t− τi)∥Hs

ℓ−1∏
m=1

∥∥∥u(k)(t− τm)
∥∥∥
Hα,q

·
∥∥∥u(k)(t− τℓ)− u(t− τℓ)

∥∥∥
Hα,q

n∏
m=ℓ+1,m̸=i

∥u(t− τm)∥Hα,q

]
.

In the case n = 1, both I(1,k)1 and I(1,k)3 vanish. The properties of mollifiers
show that I(n,k)i (t, τ) converges to 0 as k → ∞ for a.e. (t, τ) ∈ (−∞, b)×Rn

>0,
all j ∈ {1, 2, 3}. We further estimate

I
(n,k)
1 (t, τ) ≤ 2

n∑
ℓ=1

ℓ−1∑
i=1

ϕ(τi) sup
r≤b

∥u(r)∥Hs

n∏
m=1,m ̸=i

ϕ(τm) ∥u(t− τm)∥Hα,q ,

I
(n,k)
2 (t, τ) ≤ 2

n∑
ℓ=1

ϕ(τℓ) sup
r≤b

∥u(r)∥Hs

n∏
m=1,m ̸=ℓ

ϕ(τm) ∥u(t− τm)∥Hα,q ,

I
(n,k)
3 (t, τ) ≤ 2

n∑
ℓ=1

n∑
i=ℓ+1

ϕ(τi) sup
r≤b

∥u(r)∥Hs

n∏
m=1,m ̸=i

ϕ(τm) ∥u(t− τm)∥Hα,q .

The integrals over Rn
>0 of the terms Ĩ(n)j (t, τ) on the right are bounded by

∥ϕ∥L1((0,∞)) ∥ϕ∥
n−1
Lp′ ((0,∞))

sup
r≤b

∥u(r)∥Hs ∥u∥n−1
Lp((−∞,b),Hα,q) <∞

for a.e. t < b and all j ∈ {1, 2, 3} due to Hölder, so that Γ(n)(u(k)) tends to
Γ(n)(u) pointwise in Hs as k → ∞ by dominated convergence. Since also∥∥∥Γ(n)(u(k))(t)− Γ(n)(u)(t)

∥∥∥
Hs

≲ sup
r≤b

∥u(r)∥Hs ∥u∥n−1
Lp((−∞,b),Hα,q) ,

Lebesgue’s theorem implies the convergence in L1
(
(a, b), Hs(R3)6

)
.

2) We now prove Y (n)(u(k)) → Y (n)(u) in L1
(
(a, b), Hs(R3)6

)
as k → ∞.

The convergence of the summands involving ∂τℓR
(n) is shown as in step 1).

The remaining ones have to be treated a bit differently. As above we estimate∥∥∥R(n)
j0...jn

(τ)
( n∏

m=1

u
(k)
jm

(t− τm)−
n∏

m=1

ujm(t− τm)
)∥∥∥

Hs
≲

3∑
i=1

I
(n,k)
i (t, τ)

for a.e. t < b. In the case n = 1, we have I(1,k)1 = I
(1,k)
3 = 0 for all k ∈ N and∫

∂R>0

Ĩ
(1)
2 (t, τ) dτ = Ĩ

(1)
2 (t, 0) ≲ sup

r≤b
∥u(r)∥Hs <∞. (2.9)

For n > 1, j ∈ {1, 2, 3} and a.e. t < b it holds∫
∂Rn

>0

Ĩ
(n)
j (t, τ) dτ (2.10)

≲ sup
r≤b

∥u(r)∥Hs

(
∥u∥Lp((−∞,b),Hα,q) + ∥u(t)∥Hα,q

)
∥u∥n−2

Lp((−∞,b),Hα,q) <∞.
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As in step 1), Lebesgue’s theorem now implies∫
∂Rn

>0

R
(n)
j0...jn

(τ)
n∏

m=1

u
(k)
jm

(t− τm) dτ −→
∫
∂Rn

>0

R
(n)
j0...jn

(τ)
n∏

m=1

ujm(t− τm) dτ

in Hs(R3). Using (2.9) and (2.10) for the majorant, we arrive at the limit∫
∂Rn

>0

R
(n)
j0...jn

(τ)
n∏

m=1

u
(k)
jm

( • − τm) dτ −→
∫
∂Rn

>0

R
(n)
j0...jn

(τ)
n∏

m=1

ujm( • − τm) dτ

in L1
(
(a, b), Hs(R3)

)
as k → ∞, again by Lebesgue’s theorem. □

Let Assumption 2.4 hold. Lemma 2.11 motivates to define the map F :
Z(0) → Hs(R3)6 given by F =

∑N
n=1 F

(n) for F (n) : Z(0) → Hs(R3)6 and

F
(n)
j0

(u) = −νj0
[ n∑

ℓ=1

∫
Rn
>0

∂τℓR
(n)
j0...jn

(τ)
n∏

k=1

ujk(−τk) dτ

+

∫
∂Rn

>0

R
(n)
j0...jn

(τ)

n∏
k=1

ujk(−τk) dτ
]

for j0 ∈ {1, . . . , 6}, where νj0 = ε−1 if j0 ≤ 3 and νj0 = µ−1 if j0 ≥ 4. If
u = (E,H) ∈ Z(b) for some b ∈ R, in (1.1) we can thus write

−∂t

(
ε−1P̃(E,H)(t)

µ−1M̃(E,H)(t)

)
= −κ−1∂tΓ(u)(t) = F (ut) (2.11)

for a.e. t < b. Here we use the history function ut ∈ Z(0) given by ut(τ) :=
u(t+ τ) for all τ ≤ 0.

Since ε−1 ∈ C2
b (R3), Lemmas 2.2 and 2.11 show that F (u •) : t 7→ F (ut) is

contained in L1
loc

(
(−∞, b), Hs(R3)6

)
. The next result collects estimates for

F needed in our main wellposedness results.

Lemma 2.12. Let Assumption 2.4 be true. Let r, b > 0 and u, ũ ∈ Z(b)
satisfy ∥u∥Z(b) ≤ r and ∥ũ∥Z(b) ≤ r. Then we have the estimates

∥F (u •)∥L1((0,b),Hs) ≲
(
b+ b

1
p′
) (

1 + rN
)
,

∥F (u •)− F (ũ •)∥L1((0,b),Hα,q) ≲
(
b+ b

1
p′
) (

1 + rN−1
)
∥u− ũ∥Z(b) ,

∥F (u •)− F (ũ •)∥L1((0,b),Hs) ≲
(
b+ b

1
p′
) (

1 + rN−1
)
∥u− ũ∥Z(b) .

Proof. The first estimate follows directly from (2.8). We proceed similarly
to the proof of Lemma 2.11 for the other two statements, focusing on the
more complicated case Hs. (The Banach algebra Hα,q can be treated more
easily.) Let 0 ≤ t ≤ b and n ∈ {1, . . . , N}. We compute∥∥∥F (n)(ut)− F (n)(ũt)

∥∥∥
Hs

≲
3∑

i=1

∫
Rn
>0

Ii(t, τ) dτ +

3∑
i=1

∫
∂Rn

>0

Ii(t, τ) dτ,

I1(t, τ) :=
n∑

ℓ=1

ℓ−1∑
i=1

[
ϕ(τi) ∥u(t− τi)∥Hs

ℓ−1∏
m=1,m ̸=i

ϕ(τm) ∥u(t− τm)∥Hα,q



12 CHRISTOPHER BRESCH AND ROLAND SCHNAUBELT

· ϕ(τℓ) ∥u(t− τℓ)− ũ(t− τℓ)∥Hα,q

n∏
m=ℓ+1

ϕ(τm) ∥ũ(t− τm)∥Hα,q

]
,

I2(t, τ) :=
n∑

ℓ=1

[ ℓ−1∏
m=1

ϕ(τm) ∥u(t− τm)∥Hα,q ϕ(τℓ) ∥u(t− τℓ)− ũ(t− τℓ)∥Hs

·
n∏

m=ℓ+1

ϕ(τm) ∥ũ(t− τm)∥Hα,q

]
,

I3(t, τ) :=
n∑

ℓ=1

n∑
i=ℓ+1

[
ϕ(τi) ∥ũ(t− τi)∥Hs

ℓ−1∏
m=1

ϕ(τm) ∥u(t− τm)∥Hα,q

· ϕ(τℓ) ∥u(t− τℓ)− ũ(t− τℓ)∥Hα,q

n∏
m=ℓ+1,m ̸=i

ϕ(τm) ∥ũ(t− τm)∥Hα,q

]
.

If n = 1, we have I1 = 0 = I3 and I2(t, τ1) = ϕ(τ1) ∥u(t− τ1)− ũ(t− τ1)∥Hs .
So the claim is clear. For n > 1 we deduce

3∑
j=1

∫
Rn
>0

Ij(t, τ) dτ ≲ rn−1 ∥u− ũ∥Z(b) ,

again by means of Hölder’s inequality. The integral over ∂Rn
>0 leads to the

six cases where u, ũ and u − ũ are evaluated on the boundary either in the
Hs- or the Hα,q-norm. This results in
3∑

j=1

∫
∂Rn

>0

Ij(t, τ) dτ ≲ rn−1 ∥u− ũ∥Z(b) + rn−2 ∥u(t)∥Hα,q ∥u− ũ∥Z(b)

+ rn−2 ∥ũ(t)∥Hα,q ∥u− ũ∥Z(b) + rn−1 ∥u(t)− ũ(t)∥Hα,q .

Hölder’s inequality in time then implies the assertion. □

3. The linear part and Strichartz estimate

We write the Maxwell system (1.1) as the retarded evolution equation

u′(t) = (A+B)u(t) + F (ut) + g(t), t ≥ 0,

u(t) = uh(t), t ≤ 0,
(3.1)

with the Maxwell operator

A =

(
0 1

ε curl
− 1

µ curl 0

)
and the perturbation B =

(
−1

εσ 0
0 0

)
. (3.2)

The external current density J0 from Assumption 2.4 leads to the inhomo-
geneity g : [0,∞) → R6 defined by

g(t) :=

(
−ε−1J0(t)

0

)
, (3.3)

which belongs to L1
loc

(
[0,∞), Hs(R3)6

)
∩ Lp

loc

(
[0,∞), Hα,q(R3)6

)
. Since the

nonlinear term F (ut) at time t depends on all values u(r) for r ≤ t, the
initial condition u(0) is not sufficient, but instead a whole history function
uh has to be prescribed.
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To treat (3.1), we use the strongly continuous group generated by Aσ =
A+B. On L2

ε,µ(R3)6, the operator A is equipped with the domain D(A) =
H(curl)×H(curl). It is well known to be skew-adjoint and therefore gener-
ates a unitary C0-group S(·) by Stone’s theorem, cf. [1]. Since B is bounded
on L2

ε,µ(R3)6, the sum Aσ on D(A) generates a C0-group Sσ(·), also on
L2(R3)6. These groups can be restricted to Hs(R3)6.

Lemma 3.1. Let Assumption 2.4 be true. Then the restrictions S(·)|Hs
and

Sσ(·)|Hs
to Hs(R3)6 are again C0-groups which are generated by the part

A|Hs
of A in Hs(R3)6, respectively Aσ|Hs

.

Proof. We use the isomorphism L = I − ∆ : H2(R3)6 → L2(R3)6. Since
the coefficients belong to C2

b , the operator LAσL
−1 on D(A) is a bounded

perturbation of Aσ. Standard semigroup theory now yields that Sσ(·)|H2
is

a C0-group generated by Aσ|H2
, cf. Theorems 4.5.5 and 4.5.8 in [14]. The

assertion then follows by interpolating between L2(R3)6 and H2(R3)6. □

In the following we mostly omit the restriction symbols. In the crucial fixed-
point argument of Lemma 5.1 we regard the nonlinearity in (3.1) as an
inhomogenity (by freezing u), in which we also absorb the term Bu. So we
consider the evolution equation

u′(t) = Au(t) + f(t), t ≥ 0, u(0) = u0. (3.4)

Let f ∈ L1
(
(0, T ), Hs(R3)6

)
for some T > 0 and u0 ∈ Hs(R3)6. Then the

problem (3.4) has a unique mild solution u ∈ C
(
[0, T ], Hs(R3)6

)
given by

u(t) = S(t)u0 +

∫ t

0
S(t− τ)f(τ) dτ, t ∈ [0, T ]. (3.5)

In contrast to (3.3), here we allow for nonzero ‘magnetic’ components in f
since they appear in the analysis.

Remark 3.2. In the above situation, note that the mild solution u is con-
tinuous in Hs(R3)6. Since this space is contained in D

(
A|Hs−1

)
, Theo-

rem 8.1.3 in [25] implies that u belongs to W 1,1
(
(0, T ), Hs−1

)
and solves

(3.4) in Hs−1(R3)6 for a.e. t ≥ 0. It is called a strong Hs-solution. Con-
versely, a strong solution satisfies (3.5) by Theorem 8.1.1 of [25].

To control the nonlinearity F in (3.1), we need the space Hα,q. However,
the above groups do not leave invariant Lq-spaces for q ̸= 2. To overcome
this fundamental difficulty in wave-type problems, Strichartz estimates are a
powerful tool. We use the recent result Theorem 1.3 of [16] for the isotropic
linear Maxwell system due to Schippa, which we state in a simplified version.

Theorem 3.3. Let ε, µ ∈ C1
(
R×R3,R

)
satisfy ∂α(ε, µ) ∈ L1

(
R, L∞(R3)2

)
for all α ∈ N4

0 with |α| = 2 and η ≤ ε(t, x), µ(t, x) ≤ η−1 for all (t, x) ∈
R× R3 and some η > 0. Set

κ =

(
εI3×3 0
0 µI3×3

)
, Aco :=

(
0 curl

− curl 0

)
, L := ∂t −Acoκ

−1,

v = (v1, v2) with v1, v2 : R× R3 → R3, ρ =
(
div(v1),div(v2)

)
.
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Let p, q ∈ [2,∞] satisfy 1
p + 1

q = 1
2 and (p, q) ̸= (2,∞), γ := 3

2 − 3
q − 1

p , and
T ∈ (0, 1]. Then we have the estimate∥∥|∇|−γ v

∥∥
Lp((0,T ),Lq)

≲ ∥v∥L∞((0,T ),L2) + ∥Lv∥L1((0,T ),L2) (3.6)

+
∥∥|∇|−

1
2 ρ(0)

∥∥
L2 +

∥∥|∇|−
1
2 ∂tρ

∥∥
L1((0,T ),L2)

,

provided the right-hand side is finite.

Observe that for the triple (p, q, γ) = (∞, 2, 0) the result holds trivially.
In the above estimate one controls increased space integrability q > 2, but
has to pay a prize in regularity and time regularity. The conditions on the
exponents cannot be improved (if v(0) ̸= 0), in particular the endpoint case
(2,∞, 1) is forbidden, cf. [20]. We note that the ‘charge’ ρ is given by the data
v(0) and Lv, cf. (1.2). Moreover, it is needed to counteract the huge kernel
of Aco containing functions κ(∇φ,∇ψ)⊤ which may belong to L2 \H−γ,q.

We next bring the estimate (3.6) into a form more suited to our problem,
given by the next theorem. One could replace T ≤ 1 by any T > 0 obtaining
a constant CStr(T ) nondecreasing in T .

Theorem 3.4. Let Assumption 2.4 be true, T ∈ (0, 1], u0 ∈ Hs(R3)6, and
f ∈ L1

(
(0, T ), Hs(R3)6

)
. Then the mild solution u = (E,H) of (3.4) is

contained in the space Lp
(
(0, T ), Hα,q(R3)6

)
and satisfies

∥u∥Lp((0,T ),Hα,q) ≤ CStr

(
∥u0∥Hs + ∥f∥L1((0,T ),Hs) + ∥ρ(0)∥

Hs− 1
2

+ ∥∂tρ∥
L1((0,T ),Hs− 1

2 )

)
, (3.7)

if the norms of ρ =
(
div(εE),div(µH)

)
are finite.

Proof. We consider ε and µ as constant functions on [0, T ] and extend them
to maps satisfying the conditions of Theorem 3.3.

1) We first replace the homogeneous fractional derivatives by Sobolev
spaces, cf. §3.2.1 in [16]. To this aim, we use the Fourier cut-off S0 = F−1χF
for a smooth function χ being 1 on B(0, 1) and with support in B(0, 2). Since
−γ − 3

q = 1
p − 3

2 , Sobolev’s embedding and Plancherel imply

∥S0v∥Lp((0,T ),H−γ,q) ≲ ∥⟨ξ⟩
1
pχv̂∥Lp((0,T ),L2) ≲ T

1
p ∥v∥L∞((0,T ),L2),

Note that S0 commutes with div, ⟨∇⟩θ and ∂t, that S0 is bounded on L2(R3)6

and that |ξ| ≂ ⟨ξ⟩ on R3\B(0, 1). By (3.6) and Plancherel the high-frequency
part w = v − S0v can thus be estimated via

∥ |∇|−γ w∥Lp((0,T ),Lq) ≲ ∥w∥L∞(0,T ),L2)+ ∥Lw∥L1((0,T ),L2)+ T
1
2
(
∥ρ(0)∥

H− 1
2

+ ∥∂tρ∥
L1((0,T ),H− 1

2 )

)
.

Note that [S0, L] = (Acoκ
−1)S0 + [κ−1, AcoS0]. Since κ−1 is Lipschitz, the

second commutator is bounded on L2(R3)6 by Proposition 4.1.A in [23].
Hence (3.6) is also true with inhomogeneous fractional derivatives.

2) Next we pass to u = (E,H) and to Hs. We set ṽ = κ−1v. Since ε, µ ∈
C2
b (R3), κ−1 is contained in B

(
Hγ,q′(R3)6

)
by interpolation, and duality then

implies κ−1 ∈ B
(
H−γ,q(R3)6

)
. So step 1) yields the estimate

∥ṽ∥Lp((0,T ),H−γ,q) ≲ ∥ṽ∥L∞((0,T ),L2) + ∥L(κṽ)∥L1((0,T ),L2)
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+ ∥ρ̃(0)∥
H− 1

2
+ ∥∂tρ̃∥

L1((0,T ),H− 1
2 )

(3.8)

for ρ̃ :=
(
div(εṽ1),div(µṽ2)

)
, ṽ=(ṽ1,ṽ2), omitting the dependence on T ≤1.

Let u0 ∈ Hs(R3)6, f = (K,L) ∈ L1
(
(0, T ), Hs(R3)3+3

)
, and u = (E,H)

be the mild solution of (3.4). By Remark 3.2 it is a strong Hs-solution. By
(3.5), the map w := ⟨∇⟩s u satisfies the energy-type estimate

∥u∥L∞((0,T ),Hs) = ∥w∥L∞((0,T ),L2) ≲ ∥u0∥Hs + ∥f∥L1((0,T ),Hs) . (3.9)

This estimate, (3.8) and α = s− γ from Assumption 2.1 imply

∥u∥Lp((0,T ),Hα,q) = ∥w∥Lp((0,T ),H−γ,q) ≲ ∥u0∥Hs + ∥f∥L1((0,T ),Hs) (3.10)

+ ∥L(κw)∥L1((0,T ),L2) + ∥ρs(0)∥
H− 1

2
+ ∥∂tρs∥

L1((0,T ),H− 1
2 )

with L(κw) = κ(∂tw − κ−1Acow) and ρs :=
(
div(ε ⟨∇⟩sE),div(µ ⟨∇⟩sH)

)
.

As ⟨∇⟩s ∈ B
(
Hs−1, H−1

)
, ∂tw belongs to L1

(
(0, T ), H−1(R3)6

)
. Equation

(3.4) leads to

∂tw = ⟨∇⟩s
(
κ−1Acou+ f

)
= κ−1Aco ⟨∇⟩su+

[
⟨∇⟩s, κ−1

]
Acou+ ⟨∇⟩sf.

(3.11)
Theorem 1.4 in [13] yields the commutator estimate

∥⟨∇⟩τ (ϕψ)−ϕ ⟨∇⟩τψ∥L2 ≲∥⟨∇⟩τϕ∥L∞∥ψ∥L2+∥∇ϕ∥L∞

∥∥⟨∇⟩τ−1ψ
∥∥
L2 . (3.12)

for τ > 0 and τ ̸= 1. We further have

∥⟨∇⟩τ (ϕψ)− ϕ ⟨∇⟩τψ∥L2 ≲ ∥ϕ∥W 1,∞ ∥ψ∥L2 (3.13)

for τ ∈ (0, 1] by Proposition 4.1.A in [23]. Remark 2.2.2.3 and Theorems 2.3.8
and 2.5.7 in [24] imply that ⟨∇⟩τ is a bounded operator from Cr

b (R3) to
L∞(R3) for r > τ . With τ = s, inequality (3.12) shows the boundedness
of the commutators [⟨∇⟩s , ν] and

[
⟨∇⟩s , ν−1

]
from Hs−1(R3) to L2(R3) for

ν ∈ {ε, µ} as s ≤ 3
2 and ν ∈ C2

b . So (3.11) and (3.9) lead to

∥L(κw)∥L1((0,T ),L2) ≲
∥∥∂tw − κ−1Acow

∥∥
L1((0,T ),L2)

(3.14)

≲ ∥Acou∥L1((0,T ),Hs−1) + ∥f∥L1((0,T ),Hs) ≲ ∥u0∥Hs + ∥f∥L1((0,T ),Hs) .

We now turn to the terms involving ρs, treating only the first component.
(The second one does not differ.) Here the commutators [⟨∇⟩s , ∂iε] and[
⟨∇⟩s , ∂i 1

ε

]
occur for i ∈ {1, 2, 3}. To avoid additional regularity of ε and

µ, we have to exploit that ρs is estimated only in H− 1
2 . Observe that

⟨∇⟩−
1
2
[
⟨∇⟩s ,m

]
=
[
⟨∇⟩s−

1
2 ,m

]
+
[
m, ⟨∇⟩

1
2
]
⟨∇⟩s−1

+ ⟨∇⟩−
1
2
[
⟨∇⟩ ,m

]
⟨∇⟩s−1

for m = ∂iε or ∂i 1
ε in C1

b . Since s ≤ 3
2 , the commutators on the right are

L2-bounded thanks to (3.13). Thus
[
⟨∇⟩s ,m

]
: Hs−1 → H− 1

2 is continuous.
The charge can be written in the form

div (ε ⟨∇⟩sE) = ⟨∇⟩s div(εE) + [ε, ⟨∇⟩s] divE+ [∇ε, ⟨∇⟩s] ·E

In H− 1
2 these terms are estimated by ∥div(εE)∥

Hs− 1
2
+ ∥E∥Hs ; i.e.,

∥ρs(0)∥
H− 1

2
≲ ∥ρ(0)∥

Hs− 1
2
+ ∥u0∥Hs . (3.15)
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Next, working in H−2(R3) and using (3.11), we obtain

∂t
(
ρs
)
1
= div (ε ⟨∇⟩s ∂tE)

= div
(
curl ⟨∇⟩sH+ ε

[
⟨∇⟩s , ε−1

]
curlH+ ⟨∇⟩s εK+ [ε, ⟨∇⟩s]K

)
= ∇ε ·

([
⟨∇⟩s , ε−1

]
curlH

)
+ ε

[
⟨∇⟩s ,∇1

ε

]
· curlH

+ ⟨∇⟩s div(εK) + [∇ε, ⟨∇⟩s] ·K+ [ε, ⟨∇⟩s] divK.

Let Er = L1((0, T ), Hr). The properties of the commutators, (3.5) and the
equation div(εK) = ∂t div(εE)− div curlH imply∥∥∇ε · ([⟨∇⟩s , ε−1

]
curlH

)∥∥
E− 1

2

≲
∥∥([⟨∇⟩s , ε−1

]
curlH

)∥∥
E− 1

2

≲∥curlH∥Es−1
≲∥u∥Es

≲∥u0∥Hs + ∥f∥Es
,∥∥ε [⟨∇⟩s ,∇1

ε

]
· curlH

∥∥
E− 1

2

≲ ∥curlH∥Es−1
≲ ∥u0∥Hs + ∥f∥Es

,

∥⟨∇⟩s div(εK)∥E− 1
2

= ∥div(εK)∥E
s− 1

2

= ∥∂tρ∥E
s− 1

2

,

∥[∇ε, ⟨∇⟩s] ·K∥E− 1
2

≲ ∥K∥Es−1
≤ ∥f∥Es

∥[ε, ⟨∇⟩s] divK∥E− 1
2

≲ ∥divK∥Es−1
≤ ∥f∥Es

.

We arrive at

∥∂tρs∥
L1((0,T ),H− 1

2 )
≲ ∥u0∥Hs + ∥f∥L1((0,T ),Hs) + ∥∂tρ∥

L1((0,T ),Hs− 1
2 )
. (3.16)

Formulas (3.10), (3.14), (3.15) and (3.16) lead to (3.7). □

Let M̃ = 0 for simplicity. Then div(µH) = divB describes the mag-
netic charges and vanishes. But div(εE) does not describe the free electric
charges, since the contribution P̃ of the polarisation to the D-field is missing.
Handling these ‘charge-like’ terms is difficult, so in Section 5 we use a projec-
tion operator to split our problem into a part involving ρ and a ‘charge-free’
part. The first one is handled directly and for the second one we can use the
Strichartz estimate. This projection operator is the topic of the next section.

4. Helmholtz projection

To deal with the divergence and curl operators, we first define the spaces

C∞
c,σ(R3) =

{
f ∈ C∞

c (R3)3
∣∣ div f = 0

}
, ∇C∞

c (R3) =
{
∇ϕ
∣∣ϕ ∈ C∞

c (R3)
}
,

L2
σ(R3) = C∞

c,σ(R3)
L2

, G(R3) =
{
f ∈ L2(R3)3

∣∣ ∃ϕ ∈ L2
loc(R3) : f = ∇ϕ

}
,

and collect known results on the Helmholtz decomposition of L2(R3)3 into
divergence-free functions and gradients of scalar maps, cf. Lemmas II.2.5.1
and II.2.5.4 in [19].

Lemma 4.1. We have L2(R3)3 = L2
σ(R3)⊕⊥ G(R3) and

L2
σ(R3) =

{
f ∈ L2(R3)3

∣∣ div f = 0
}
= N(div), G(R3) = ∇C∞

c (R3)
L2

.

The next lemma states that curl-free functions are given by gradients.

Lemma 4.2. It holds G(R3) =
{
v ∈ L2(R3)3

∣∣curl v = 0
}
= N(curl). More-

over, ϕ in G(R3) also belongs to S∗
h(R3) and ϕ̂ to L1

loc(R3).
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Proof. Since curl∇ = 0, we haveG(R3) ⊆ N(curl) which impliesN(curl)⊥ ⊆
G(R3)⊥. Let f ∈ N(div) and g ∈ N(curl). We use mollifiers and define
gn := χ 1

n
∗ g ∈ C∞(R3)3 ∩ L∞(R3)3 for n ∈ N. Then we have gn → g in

L2(R3)3 as n → ∞. Since curl gn = χ 1
n
∗ curl g = 0, it is well known that

there is a sequence (ϕn) in C∞(R3)∩L∞(R3)3 with gn = ∇ϕn for all n ∈ N.
Lemma 4.1 provides a sequence (fn) in C∞

c (R3)3 ∩ N(div) with limit f in
L2(R3)3. We infer∫

R3

f · g dx = lim
n→∞

∫
R3

fn · ∇ϕn dx = − lim
n→∞

∫
R3

div(fn)ϕn dx = 0,

and hence N(div) ⊆ N(curl)⊥. The Helmholtz decomposition then yields

N(curl)⊥ ⊆ G(R3)⊥ = N(div) ⊆ N(curl)⊥,

from which we conclude N(curl) = G(R3).
Note that iξkFϕn converges to ĝk in L2(R3) as n → ∞, and thus also

pointwise a.e. and with a pointwise majorant h ∈ L2(R3) for k ∈ {1, 2, 3},
after passing to a subsequence. Hence, Fϕn is bounded by 3h/|ξ|1 ∈ L1(B)
on B = B(0, 1) and by 3h on R3 \B. Using dominated convergence, we see
that Fϕn tends to −iĝk/ξk =: ψ in S⋆(R3) ∩ L1

loc(R3). For ϕ = F−1ψ we
infer ∇ϕ = g and ϕ ∈ S∗

h(R3), see p.22 in [3]. □

For the remainder of this section, let θ ∈ W 1,∞(R3) be bounded from
below by some positive constant η. We define L2

θ(R3)3 as the space L2(R3)3

equipped with the weighted scalar product

(f |g)L2
θ
:=

∫
R3

θf · g dx.

For V ⊆ L2(R3)3 we denote by V ⊥θ the orthogonal complement of V
with respect to (·|·)L2

θ
. The next lemma yields a Helmholtz decomposi-

tion with respect to this weighted scalar product, replacing div(f) by the
expression div(θf). We define the operators divθ : H(div) → L2(R3) and
Aθ : H(curl) → L2(R3)3 by divθ(f) = div(θf) and Aθ = θ−1 curl. (Note
that divθ(f) = θ div f +∇θ · f).

Lemma 4.3. It holds N(curl)⊥θ = N(divθ).

Proof. Let u ∈ N(curl)⊥θ and φ ∈ C∞
c (R3). Since curl∇φ = 0, it follows∫

R3

θu · ∇φdx = (u|∇φ)L2
θ
= 0,

which implies θu ∈ H(div) and divθ(u) = 0.
Conversely, let u ∈ N(divθ) and v ∈ N(curl). Lemmas 4.1 and 4.2 provide

a sequence (ϕn) in C∞
c (R3) with ∇ϕn → v in L2(R3)3. So we obtain

(u|v)L2
θ
= lim

n→∞

∫
R3

θu · ∇ϕn dx = − lim
n→∞

∫
R3

div(θu)ϕn dx = 0. □

Let Qθ : L
2(R3)3 → L2(R3)3 be the orthogonal projection with respect to

(·|·)L2
θ

onto N(curl) = N(Aθ). The orthogonal projection onto N(Aθ)
⊥θ is

thus given by Q̃θ := I −Qθ. We collect basic properties.
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Lemma 4.4. We have N(Qθ) = R(Q̃θ) = N(divθ) and R(Qθ) = N(Q̃θ) =
N(curl).

In the sequel, we need boundedness properties of Qθ on our Sobolev spaces.
The next lemma states that Qθ can be restricted to a bounded linear operator
on Hs(R3)3 as well as to a bounded linear operator from L2(R3)3∩Hα,q(R3)3

to Hα,q(R3)3. We denote these restrictions also by Qθ. We do not know
whether one can discard L2 here, but this matter plays no role below (where
we only need α, s ∈ [0, 2]). For smooth θ > 0 being 1 outside a compact
set, the arguments in §4.3 of [8] imply boundedness of Qθ on Hα,q and Hs.
They involve the theory of Fourier integral and pseudodifferential operators,
which we want to avoid.

Lemma 4.5. Let η > 0, k ∈ N, q ∈ [2,∞) and s ∈ [0, k]. Let θ ∈ Ck
b (R3)

satisfy θ(x) ≥ η for all x ∈ R3. Then we have

∥Qθv∥Hs,q ≲ ∥v∥Hs,q + ∥v∥L2 , (4.1)
∥Qθv∥Hs ≲ ∥v∥Hs (4.2)

for all v ∈ S(R3)3.

Proof. Let v ∈ S(R3)3. Lemmas 4.1 and 4.2 provide a function ϕ ∈ L2
loc(R3)∩

S∗
h(R3) with Qθv = ∇ϕ and ϕ̂ ∈ L1

loc(R3). By the Sobolev embedding, ϕ
belongs to L6(R3) and ∥ϕ∥L6 ≲ ∥Qθv∥L2 ≲ ∥v∥L2 . (See Theorem 1.38 in [3].)

We define the differential operator L by Lu = div(θ∇u) and observe that

Lϕ = div(θQθv) = div(θv)− div
(
θ(I −Qθ)v

)
= div(θv) =: g ∈ H−1,6(R3).

The main theorem in [12] shows that L−λ is an isomorphism from H1,6(R3)
to H−1,6(R3) for some λ ≥ 0. So ϕ = (L−λ)−1(g−λϕ) lies in H1,6(R3) and

∥ϕ∥H1,6 ≲ ∥g∥H−1,6 + ∥ϕ∥H−1,6 ≲ ∥v∥L6 + ∥ϕ∥L6 ,

which implies ∥Qθv∥L6 ≲ ∥ϕ∥H1,6 ≲ ∥v∥L6+∥v∥L2 . Hence, Qθ ∈ B(L2(R3)3)
restricts to a bounded linear operator from L2(R3)3 ∩ L6(R3)3 to L6(R3)3.

Let r ∈ [2, 6] and take β ∈ [0, 1] with 1
r = β

2 + 1−β
6 . It follows

∥Qθv∥Lr ≤ ∥Qθv∥βL2 ∥Qθv∥1−β
L6 ≲ ∥v∥L2 + ∥v∥L6 . (4.3)

Now we choose some δ ∈ (0, 1] and set r := 3 − δ. Since ∇ϕ ∈ Lr(R3) and
ϕ ∈ S∗

h(R3), by Proposition 2.2 in [10] the map ϕ is contained in Lq(R3) for
q = 9

δ − 3, and hence

∥ϕ∥Lq ≲ ∥Qθv∥Lr ≲ ∥v∥L2 + ∥v∥L6 .

As a result, ϕ belongs to Lq(R3) for all q ∈ [6,∞). By [12], the operator
L− λ̃ is an isomorphism from H1,q(R3) to H−1,q(R3) for some λ̃ = λ̃(q) ≥ 0.
Therefore ϕ = (L − λ̃)−1

(
g − λ̃ϕ

)
∈ H1,q(R3) is bounded by

∥ϕ∥H1,q ≲ ∥g∥H−1,q + ∥ϕ∥H−1,q ≲ ∥v∥Lq + ∥ϕ∥Lq ≲ ∥v∥Lq + ∥v∥L2 (4.4)

for all q ∈ [6,∞). This inequality and (4.3) imply ∥Qθv∥Lq ≲ ∥v∥Lq + ∥v∥L2

for all q ∈ [2,∞) and therefore (4.1) for s = 0.
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Now let s ∈ (0, 1). We set ψs := ⟨∇⟩s ϕ and have ∥ψs∥Lq ≲ ∥ϕ∥H1,q . By
the first part of Theorem 1.4 in [13], it holds ⟨∇⟩s (θ∇ϕ) = θ ⟨∇⟩s∇ϕ + R
with a remainder term R satisfying

∥R∥Lq ≲ ∥⟨∇⟩s θ∥L∞ ∥∇ϕ∥Lq + ∥∇θ∥L∞

∥∥∥⟨∇⟩s−1∇ϕ
∥∥∥
Lq

≲ ∥ϕ∥H1,q .

Because of div(θQθv) = div(θv), we obtain the equation

div (θ∇ψs) = ⟨∇⟩s div(θ∇ϕ)− div(R) = ⟨∇⟩s div(θv)− div(R) =: gs.

We can bound gs in H−1,q(R3) by c
(
∥v∥Hs,q + ∥ϕ∥H1,q

)
. As above and

using (4.4), we deduce

∥ψs∥H1,q ≲ ∥gs∥H−1,q + ∥ψs∥H−1,q ≲ ∥v∥Hs,q + ∥ϕ∥H1,q ≲ ∥v∥Hs,q + ∥v∥L2 ,

∥Qθv∥Hs,q = ∥⟨∇⟩s∇ϕ∥Lq ≲ ∥ψs∥H1,q ≲ ∥v∥Hs,q + ∥v∥L2 .

The general result is then proved via induction, invoking the second part of
Theorem 1.4 in [13] at the end. □

Now we define the projection Q for the Maxwell problem on L2
ε,µ(R3)6 by

Q

(
E
H

)
=

(
QεE
QµH

)
for (E,H) ∈ L2(R3)6, and we set Q̃ := I − Q. The needed properties of
Q and Q̃ follow from the above results on Qθ. The statement on S(·) is a
consequence of the resolvent approximation.

Lemma 4.6. Let η > 0, q ∈ [2,∞) and s ∈ [0, 2]. Assume that ε, µ ∈ C2
b (R3)

satisfy ε(x), µ(x) ≥ η for all x ∈ R3. Let Q be defined as above, A by (3.2),
and S(·) denote the group generated by A.

Then the operator Q is the orthogonal projection onto N(A) in L2
ε,µ(R3)6

with respect to (·|·)L2
ε,µ

. It satisfies

N(Q) = R(Q̃) =
{
(E,H) ∈ L2(R3)6

∣∣ div(εE) = div(µH) = 0
}
,

R(Q) = N(Q̃) =
{
(E,H) ∈ L2(R3)6

∣∣ curlE = curlH = 0
}

as well as QAu = AQu = 0 for all u ∈ D(A) and QS(t) = S(t)Q for t ∈ R.
Furthermore, Q|S and Q̃|S can be uniquely extended to bounded linear

operators on Hs(R3)6 and from L2(R3)6 ∩Hs,q(R3)6 to Hs,q(R3)6.

By the above lemma we can simplify the Strichartz estimate (3.7) if the
data are ‘charge-free’.

Corollary 4.7. In the setting of Theorem 3.4, let Qu0 = 0 and Qf = 0.
Then the mild solution u of (3.4) is contained in Lp

(
(0, T ), Hα,q(R3)6

)
and

satisfies Qu = 0 by (3.5) as well as the estimate

∥u∥Lp((0,T ),Hα,q) ≤ CStr

(
∥u0∥Hs + ∥f∥L1((0,T ),Hs)

)
. (4.5)
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5. Local wellposedness

Our goal is to show local wellposedness for (3.1). (Recall the definitions
made before and after this equation.) Let Assumption 2.4 be true, J be an
interval with sup J > 0 which contains (−∞, 0], and uh belong to Z(0). Set
J+ = J ∩ R>0. We say that u = (E,H) is a mild solution of (3.1) on J if u
is an element of C

(
J,Hs(R3)6

)
∩ Lp

(
(−∞, b), Hα,q(R3)6

)
for all b < sup J

and satisfies Duhamel’s formula

u(t) =

{
Sσ(t)

(
uh(0)

)
+
∫ t
0 Sσ(t− τ)

(
F (uτ ) + g(τ)

)
dτ, t ∈ J+,

uh(t), t ≤ 0.
(5.1)

Using standard perturbation theory for semigroups, one can equivalently
require

u(t) =

{
S(t)

(
uh(0)

)
+
∫ t
0 S(t− τ)

(
Bu(τ) + F (uτ ) + g(τ)

)
dτ, t ∈ J+,

uh(t), t ≤ 0.

We stress that a mild solution belongs to W 1,1
(
J+, H

s−1(R3)6
)

and satisfies
(3.1) for a.e. t ≥ 0, see Remark 3.2. In particular, concatenating and shifting
mild solutions lead again to mild solutions.

If we applied the Strichartz estimate (3.7) to the mild solution u of (3.1),
the charge contributions on its right-hand side would spoil the resulting local
wellposedness theory. As a remedy we split the problem into two parts, using
the projection onto ‘charge-free’ fields from Lemma 4.6. Set u = v+w with
v := Qu and w := Q̃u. Since Q commutes with A and maps into N(A) the
functions v and w are mild solutions of the two sub-problems

v′(t) = Q
(
Bu(t) + F (ut) + g(t)

)
, t ≥ 0,

v(t) = Quh(t), t ≤ 0,
(5.2)

respectively

w′(t) = Aw(t) + Q̃
(
Bu(t) + F (ut) + g(t)

)
, t ≥ 0,

w(t) = Q̃uh(t), t ≤ 0,
(5.3)

As Q̃ projects onto ‘charge-free’ fields, the Strichartz estimate from Corol-
lary 4.7 can be used for w. In the sub-problem for v, we can integrate the
nonlinearity F (ut) directly by means of (2.11) and Lemmas 2.2 and 2.11,
leading to

v(t) = Quh(0) +

∫ t

0
Q
(
Bu(τ) + g(τ)

)
dτ +Qκ−1

(
Γ(u)(0)− Γ(u)(t)

)
. (5.4)

Additionally we have to require that the curl-free part Quh(0) at the initial
time lies in Hα,q(R3)6. As we see in Lemma 5.1, Quh(0) ∈ Hα,q(R3)6 implies
the additional property Qu ∈ C

(
J ∩ [0,∞), Hα,q(R3)6

)
. This is needed for

the construction of a mild solution on a maximal time interval, where we
restart problem (3.1) using the shifted solution as a new initial history uh.

The next lemma yields a local solution by means of the core fixed-point
argument. With the constant C̃Str from (5.10). we set

M := sup
0≤t≤1

∥S(t)∥B(Hs) ≥ 1, K := 1 +M + C̃Str. (5.5)
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Lemma 5.1. Let Assumption 2.4 be true and r0 > 0. Then there exists
a time b0 = b0(r0) ∈ (0, 1] such that for each uh ∈ Z(0) with Quh(0) ∈
Hα,q(R3)6 and ∥Quh(0)∥Hα,q + ∥uh∥Z(0) + ∥g∥L1((0,1),Hs∩Hα,q) ≤ r0 there is
a mild solution u ∈ Z(b0) of (3.1) on (−∞, b0]. It is the only mild solution
of (3.1) on (−∞, b0] satisfying ∥u∥Z(b0)

≤ 1+Kr0 for K from (5.5), and Qu
is contained in C

(
[0, b0], H

α,q(R3)6
)
. For each b ∈ (0, b0], the restriction of

u to (−∞, b] is the unique mild solution on (−∞, b] with ∥u∥Z(b) ≤ 1+Kr0.

Proof. Let r0 > 0 and uh ∈ Z(0) with Quh(0) ∈ Hα,q and ∥Quh(0)∥Hα,q +
∥uh∥Z(0) + ∥g∥L1((0,1),Hs∩Hα,q) ≤ r0. We set r := 1 + Kr0. For a time
b ∈ (0, 1] (specified later) we define the space

Z(b, r) :=
{
u ∈ Z(b)

∣∣ u|(−∞,0]
= uh, ∥u∥Z(b) ≤ r

}
equipped with the complete metric induced by the norm of Z(b). On Z(b, r)
we introduce the fixed-point map Φ = Φuh,g by

Φ(u)(t) =

{
S(t)uh(0) +

∫ t
0 S(t− τ)

(
Bu(τ) + F (uτ ) + g(τ)

)
dτ, 0 < t ≤ b,

uh(t), t ≤ 0.

(5.6)
As above, we split Φ into Φ1 +Φ2 given by

Φ1(u)(t) =

{
Quh(0) +

∫ t
0 Q
(
Bu(τ) + F (uτ ) + g(τ)

)
dτ, 0 < t ≤ b,

Quh(t), t ≤ 0,

Φ2(u)(t) =

{
S(t)Q̃uh(0) +

∫ t
0 S(t−τ)Q̃

(
Bu(τ)+F (uτ )+g(τ)

)
dτ, 0<t≤b,

Q̃uh(t), t ≤ 0.

Let u = (E,H), ũ = (Ẽ,H̃) ∈ Z(b, r) and f := Bu+F (u •)+g ∈L1((0, b), Hs).
1) We first show that Φ maps into Z(b, r). Clearly, Φ(u) is contained in

C
(
(−∞, b], Hs

)
. Set Es(b) = L1((0, b), Hs). By Lemma 2.12, there exists a

constant C ′ > 0 such that

∥f∥L1((0,b),Hs) ≤ b ∥B∥B(Hs) sup
0≤t≤b

∥u(t)∥Hs + ∥F (u •)∥Es(b)
+ ∥g∥Es(b)

≤ C ′(1 + rN )
(
b+ b

1
p′
)
+ ∥g∥Es(b)

=: ω(b) + ∥g∥Es(b)
.

Hence, Φ(u) belongs to Cb

(
(−∞, b], Hs(R3)6

)
with

sup
t≤b

∥Φ(u)(t)∥Hs ≤M
(
r0 + ω(b)

)
. (5.7)

For Lp
(
(−∞, b), Hα,q

)
, we start with Φ1(u). As in (5.4), we can write

Φ1(u)(t) = Quh(0)+

∫ t

0
QB

(
u(τ)+g(τ)

)
dτ+Qκ−1

(
Γ(u)(0)−Γ(u)(t)

)
(5.8)

for t ∈ (0, b). Since b ≤ 1, Lemmas 2.2, 2.8, 4.6 and Hölder’s inequality yield∥∥∥∫ t

0
QB

(
u(τ) + g(τ)

)
dτ
∥∥∥
Hα,q

≲ ∥B∥C2
b
∥Q∥B(L2∩Hα,q ,Hα,q)

(
∥u∥L1((0,t),Hs∩Hα,q) + ∥g∥L1((0,t),Hs∩Hα,q)

)
≲ r + ∥g∥L1((0,t),Hs∩Hα,q) ,
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(
Γ(u)(0)− Γ(u)(t)

)∥∥
Hα,q

≲ ∥Γ(u)(0)− Γ(u)(t)∥L2 + ∥Γ(u)(0)− Γ(u)(t)∥Hα,q ≲ 1 + rN ,

using also the assumption on uh. We thus obtain

∥Φ1(u)∥Lp((0,b),Hα,q) ≤ Ĉb
1
p
(
1 + r0 + rN

)
(5.9)

for a constant Ĉ > 0. For Φ2(u) we use the Strichartz estimate. By Lem-
mas 2.2, 2.12 and 4.6, Q̃f belongs to L1

(
(0, b), Hs

)
and satisfies∥∥Q̃f∥∥

Es(b)
≤ L

2

(
(b+ b

1
p′ ) (1 + rN ) + ∥g∥Es(b)

)
≤ L

(
b

1
p′ (1 + rN ) + ∥g∥Es(b)

)
for a constant L > 0. Corollary 4.7 then shows Φ2(u) ∈ Lp

(
(0, b), Hα,q

)
and

∥Φ2(u)∥Lp((0,b),Hα,q) ≤ CStr

(∥∥Q̃uh(0)∥∥Hs + L
(
b

1
p′ (1 + rN ) + ∥g∥Es(b)

))
≤ C̃Str

(
r0 + b

1
p′ (1 + rN )

)
. (5.10)

Involving also uh, estimates (5.7), (5.9) and (5.10) lead to

∥Φ(u)∥Z(b) ≤
(
1 +M +Ĉb

1
p + C̃Str

)
r0 +

(
Ĉb

1
p + C̃Strb

1
p′
)
(1 + rN ) +Mω(b).

Since the right-hand side converges to (1 +M + C̃Str)r0 = Kr0 as b → 0,
there exists a time b(1)0 (r0) ∈ (0, 1] with ∥Φ(u)∥Z(b) ≤ r for all b ∈ (0, b

(1)
0 (r0)]

2) We now prove that the map Φ is a strict contraction on Z(b, r) for
sufficiently small b. It holds

Φ(u)(t)−Φ(ũ)(t)=

{∫ t
0S(t−τ)

(
B(u(τ)−ũ(τ)) + F (uτ )−F (ũτ )

)
dτ, 0<t≤b,

0, t ≤ 0.

Observe that∥∥∥∥∫ t

0
S(t− τ)B

(
u(τ)− ũ(τ)

)
dτ

∥∥∥∥
Hs

≲ b ∥u− ũ∥Z(b) . (5.11)

Together with the properties of F in Lemma 2.12, we infer

∥Φ(u)(t)− Φ(ũ)(t)∥Hs ≲M
(
b+ b

1
p′
)
(1 + rN−1) ∥u− ũ∥Z(b) (5.12)

for all t ∈ [0, b]. For Lp((0, b), Hα,q), the part Φ1 = QΦ satisfies

Φ1(u)(t)−Φ1(ũ)(t) =

{∫ t
0 Q
(
B(u(τ)− ũ(τ)) + F (uτ )− F (ũτ )

)
dτ, 0<t≤b,

0, t≤0.

As above, Lemma 2.12 yields

∥Φ1(u)− Φ1(ũ)∥Lp((0,b),Hα,q) ≲
(
b
1+ 1

p + b
)
(1 + rN−1) ∥u− ũ∥Z(b) . (5.13)

Concerning Φ2 = Q̃Φ, Corollary 4.7, estimate (5.11), and Lemma 2.12 imply

∥Φ2(u)− Φ2(ũ)∥Lp((0,b),Hα,q) ≲ CStr

(
b+ b

1
p′
)
(1+ rN−1) ∥u− ũ∥Z(b) . (5.14)

Estimates (5.12), (5.13) and (5.14) lead to a time b(2)0 ∈ (0, 1] with

∥Φ(u)− Φ(ũ)∥Z(b) ≤
1
2 ∥u− ũ∥Z(b)
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for all b ∈
(
0, b

(2)
0

]
. So with b0 := min

{
b
(1)
0 , b

(2)
0

}
, the map Φ is a strict

contraction on Z(b0, r) and Banach’s fixed-point theorem yields a unique
u ∈ Z(b0, r) satisfying Φ(u) = u. The variants with b ≤ b0 are clear.

Finally Qu belongs to C
(
[0, b0], H

α,q(R3)6
)

because of (5.8), the assump-
tion Quh(0) ∈ Hα,q(R3)6 and the mapping properties of the involved maps,
see Lemmas 2.2, 2.8 and 4.6. □

The mild solution in Lemma 5.1 is only unique under a condition on its
size. We now show that mild solutions in Z(b) are unique unconditionally.

Lemma 5.2. Let Assumption 2.4 be true, uh ∈ Z(0), Quh(0) ∈ Hα,q(R3)6,
and u ∈ Z(T1), v ∈ Z(T2) be mild solutions of (3.1) on (−∞, T1] respectively
(−∞, T2]. We then obtain u = v on (−∞, T3] with T3 = min{T1, T2}.

Proof. Without loss of generality, let T1 ≤ T2. We define

t̂ := sup
{
t ≤ T1

∣∣ u(τ) = v(τ) for all τ ≤ t
}
.

Then we have t̂ ≥ 0, and u(t̂) = v(t̂) by continuity. Suppose that t̂ < T1. The
functions û := u( • + t̂) and v̂ := v( • + t̂) are mild solutions on (−∞, T1 − t̂]
if uh is replaced by u( • + t̂) and g by g( • + t̂). We set

r̂0 := max
{
∥uh∥Z(t̂) + ∥g∥L1((t̂,1+t̂),Hs∩Hα,q) ,

∥∥Quh(t̂)∥∥Hα,q

}
.

Lemma 5.1 yields a time b̂0 = b0(r̂0) > 0 and a mild solution w of

w′(t) = (A+B)w(t) + F (wt) + g(t+ t̂), t ≥ 0,

w(t) = u(t+ t̂), t ≤ 0,

on (−∞, b̂0] and it is the only one with ∥w∥Z(b̂0)
≤ 1 +Kr̂0. There is also a

time b1 ∈ (0, b̂0] with t̂+ b1 ≤ T1 and ∥û∥Z(b1)
, ∥v̂∥Z(b1)

≤ 1 +Kr̂0. It then
follows û = w = v̂ on (−∞, b1], which contradicts the definition of t̂. □

We next show that solutions do not depend on the parameters (s, p, q, α)
as far as the assumptions are met.

Lemma 5.3. Let the conditions in Assumption 2.4 be true for (s, p, q, α)

and (s, p, q, α). Let uh belong to Zs,p
α,q(0)∩Zs,p

α,q(0) with Quh(0) ∈ Hα,q(R3)6∩
Hα,q(R3)6. Let u ∈ Zs,p

α,q(T1) and u ∈ Zs,p
α,q(T2) be mild solutions of (3.1) on

(−∞, T1], resp. (−∞, T2]. Then u = u on (−∞, T3] for T3 = min{T1, T2}.

Proof. We proceed as in the proof of Lemma 5.2, assume T1 ≤ T2 and define
t̂ and r̂0 analogously for u, u, uh, and g in these spaces. The fixed-point
argument in the proof of Lemma 5.1 also works if Z(b) is replaced by Zs,p

α,q(b)∩
Zs,p
α,q(b) and Hα,q(R3)6 by Hα,q(R3)6 ∩Hα,q(R3)6. This yields a solution in

this space for t > t̂ which extends u and u, violating the definition of t̂. □

Lemma 5.2 allows us to define the maximal existence time

t+ (uh, g) := sup
{
b > 0

∣∣ ∃ a mild solution ub ∈ Z(b) of (3.1) on (−∞, b]
}
.

The interval J+ (uh, g) :=
(
−∞, t+ (uh, g)

)
is called the maximal existence

interval. By means of uniqueness, setting u(t) := ub(t) for t ≤ b < t+ we
obtain a mild solution of (3.1) on J+ (uh, g), called maximal mild solution.
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We can now state the existence and uniqueness of a maximal mild solution
and give a blow-up condition.

Theorem 5.4. Let Assumption 2.4 be true. Let uh ∈ Z(0) satisfy Quh(0) ∈
Hα,q(R3)6. Then the following assertions hold.

(1) There exists a unique mild solution u of (3.1) on J+ (uh, g) such that
Qu ∈ C

(
J+
(
uh, g

)
, Hα,q(R3)6

)
.

(2) If t+ (uh, g) < ∞, then there exists a sequence (tk) in
(
0, t+ (uh, g)

)
with tk → t+ (uh, g) and

∥u(tk)∥Hs + ∥u∥Lp((−∞,tk),Hα,q) −→ ∞, k → ∞. (5.15)

Proof. The first statement is a consequence of Lemmas 5.1 and 5.2 and the
definition of the maximal existence interval.

We prove the second assertion by contradiction. Let t+ := t+ (uh, g) <∞,
u = (E,H), and suppose (5.15) is false. By monotone convergence, we obtain

C := sup
t<t+

∥u(t)∥Hs + ∥u∥Lp((−∞,t+),Hα,q) <∞.

Let t < t+. Formula (5.4) and Lemma 2.8 yield

∥Qu(t)∥Hα,q ≲ ∥Quh(0)∥Hα,q +
(
t+
) 1

p′ ∥u∥Lp((0,t+),Hα,q) + ∥g∥L1(J+,Hα,q)

+
N∑

n=1

[
∥u∥nLp(J+,Hα,q) + ∥u∥n−1

Lp(J+,Hα,q) sup
τ≤t+

∥u(τ)∥Hs

]
<∞.

Let C̃ be the constant on the right and (tk) be a sequence in (0, t+) with
tk → t+ as k → ∞. We set r̃0 := max

{
C, C̃

}
and define sequences (fk) and

(gk) of functions by fk(t) := u(t+ tk) and gk(t) := g(t+ tk) for t < t+ − tk
and k ∈ N. Then we have ∥fk∥Z(0) ≤ r̃0 and ∥Qfk(0)∥Hα,q ≤ r0 for all k ∈ N.
Lemma 5.1 provides a time b̃0 = b0(r̃0) > 0, independent of k, such that

v′(t) = (A+B)v(t) + F (vt) + gk(t), t ≥ 0, v(t) = fk(t), t ≤ 0,

has a mild solution vk on (−∞, b̃0] for all k ∈ N. We now pick k ∈ N with
tk+ b̃0 > t+ and obtain a mild solution of (3.1) on the interval (−∞, tk+ b̃0],
contradicting the definition of t+. □

Remark 5.5. Observe that the coefficients are real-valued and that Q and
the fractional derivatives appearing in the Strichartz estimate leave invariant
real-valued functions. Let the data uh and g be real. Then Lemma 5.1 can
also be shown in spaces of real-valued functions, and the solution is real.

The next result provides continuous dependence on the initial data uh and
the inhomogenity g.

Theorem 5.6. Let Assumption 2.4 be true, uh ∈ Z(0), and satisfy Quh(0) ∈
Hα,q(R3)6. Let u be the maximal mild solution of (3.1) on

(
−∞, t+(uh, g)

)
and let b ∈

(
0, t+(uh, g)

)
. Then there exist constants δ = δ(b, uh, g) > 0

and C = C(b, uh, g) > 0 such that for vh, wh ∈ Z(0) with Qvh(0), Qwh(0) ∈
Hα,q(R3)6 and d, e ∈ L1

loc

(
[0,∞), Hs(R3)6 ∩Hα,q(R3)6

)
satisfying

∥uh − vh∥Z(0) + ∥Q (uh(0)− vh(0))∥Hα,q + ∥g − d∥L1((0,b),Hs∩Hα,q) ≤ δ,

∥uh − wh∥Z(0) + ∥Q (uh(0)− wh(0))∥Hα,q + ∥g − e∥L1((0,b),Hs∩Hα,q) ≤ δ,
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we have min {t+(vh, d), t+(wh, e)} > b and

∥v − w∥Z(b) + sup
0≤t≤b

∥Q (v(t)− w(t))∥Hα,q

≤ C
(
∥vh − wh∥Z(0) + ∥Q (vh(0)− wh(0))∥Hα,q + ∥d− e∥L1((0,b),Hs∩Hα,q)

)
,

where v and w are the mild solutions of (3.1) for vh and d, resp. wh and e.

Proof. We set b′ = max{b, 1}, Mb := sup0≤t≤b′ ∥S(t)∥B(Hs) and

r0 := 1 + ∥u∥Z(b) + ∥g∥L1((0,b′),Hs∩Hα,q) + sup
0≤t≤b

∥Qu(t)∥Hα,q .

1) Let δ1 ∈ (0, 1) and vh, wh, d, and e be as in the claim, with δ replaced by
δ1. In particular, we have the estimates

r0 ≥ max
{
∥vh∥Z(0) + ∥d∥L1((0,b),Hs∩Hα,q) , ∥wh∥Z(0) + ∥e∥L1((0,b),Hs∩Hα,q)

}
,

r0 ≥ max {∥Qvh(0)∥Hα,q , ∥Qwh(0)∥Hα,q} .

Lemma 5.1 thus yields a time b̄0 := b0(r0) ∈ (0, 1] smaller than b, t+(vh, d)
and t+(wh, e) such that ∥v∥Z(b̄0)

, ∥w∥Z(b̄0)
≤ 1 +Kr0 =: r and v = Φvh,d(v)

and w = Φwh,e(w) on [0, b̄0] with the fixed-point map from (5.6). Let 0 ≤
θ ≤ t ≤ b̄0. Observe that

v(θ)−w(θ) = Φvh,d(v)(θ)−Φvh,d(w)(θ)+Φvh,d(w)(θ)−Φwh,e(w)(θ). (5.16)

The first difference on the right is equal to∫ θ

0
S(θ − τ)

(
B(v(τ)− w(τ)) + F (vτ )− F (wτ )

)
dτ. (5.17)

We write Es(τ) = L1((0, τ), Hs) and Es,α(τ) = L1((0, τ), Hs ∩Hα,q). Since
t ≤ b̄0 ≤ 1, Lemmas 2.2 and 2.12 then imply∥∥Φvh,d(v)(θ)− Φvh,d(w)(θ)

∥∥
Hs (5.18)

≤Mb

(
C1 ∥B∥C2

b
t sup
0≤θ≤t

∥v(θ)− w(θ)∥Hs +
∥∥F (v •)− F (w •)

∥∥
Es(t)

)
≤ C1,bt

1
p′ (1 + rN−1) ∥v − w∥Z(t)

with a constant C1,b > 0. The term Φvh,d(w)(θ)− Φwh,e(w)(θ) is written as

D2(θ) = S(θ)
(
vh(0)− wh(0)

)
+

∫ θ

0
S(θ − τ)

(
d(τ)− e(τ)

)
dτ, (5.19)

and can be estimated by

∥D2(θ)∥Hs ≤Mb

(
∥vh(0)− wh(0)∥Hs + ∥d− e∥Es(θ))

)
. (5.20)

As v(t)−w(t) = vh(t)−wh(t) for t≤0, inequalities (5.18) and (5.20) lead to

sup
θ≤t

∥v(θ)− w(θ)∥Hs (5.21)

≤ C1,bt
1
p′ (1 + rN−1) ∥v − w∥Z(t) +Mb

(
∥vh−wh∥Z(0) + ∥d−e∥Es(t)

)
.

We turn to the estimate for v − w in Lp
(
(0, t), Hα,q(R3)6

)
. Like in (5.13)

and (5.14), one controls the term (5.17) via

∥Φvh,d(v)− Φvh,d(w)∥Lp((0,t),Hα,q) ≤ C2t
1
p′
(
1 + rN−1

)
∥v − w∥Z(t) (5.22)
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for a constant C2>0. To treat (5.19), we again use the projection Q and set

χ(t) := QD2(θ) = Q
(
vh(0)− wh(0)

)
+

∫ t

0
Q
(
d(τ)− e(τ)

)
dτ,

ψ(t) := Q̃D2(θ) = Q̃S(t)
(
vh(0)− wh(0)

)
+

∫ t

0
Q̃S(t− τ)

(
d(τ)− e(τ)

)
dτ.

The first term is bounded by

∥χ∥Lp((0,t),Hα,q) ≤
∥∥Q(vh(0)− wh(0)

)∥∥
Hα,q + ∥Q∥ ∥d− e∥L1((0,t),Hs∩Hα,q) .

Since ψ solves

ψ ′(t) = Aψ(t) + d(t)− e(t), t ≥ 0, ψ(0) = Q̃
(
vh(0)− wh(0)

)
,

we can apply the Strichartz inquality from Corollary 4.7 and infer

∥ψ∥Lp((0,t),Hα,q) ≲ CStr

(
∥vh − wh∥Z(0) + ∥d− e∥L1((0,t),Hs)

)
.

It follows

∥Φvh,d(w)− Φwh,e(w)∥Lp((0,t),Hα,q) ≤ ∥χ∥Lp((0,t),Hα,q) + ∥ψ∥Lp((0,t),Hα,q)

≤ C3

(
∥Q(vh(0)− wh(0))∥Hα,q + ∥vh − wh∥Z(0) + ∥d− e∥Es,α(t)

)
(5.23)

for a constant C3 > 0. Formulas (5.16), (5.22) and (5.23) yield

∥v − w∥Lp((−∞,t),Hα,q) ≤ C2t
1
p′
(
1 + rN−1

)
∥v − w∥Z(t) (5.24)

+ (∥Q∥+ C3)
[ ∥∥Q(vh(0)− wh(0)

)∥∥
Hα,q + ∥vh − wh∥Z(0) + ∥d− e∥Es,α(t)

]
.

Since Q(v(t)− w(t)) is given by

Q(vh(0)−wh(0)) +

∫ t

0
Q
(
B(v(τ)− w(τ)) + F (vτ )− F (wτ ) + d(τ)− e(τ)

)
dτ,

Lemma 2.12 implies∥∥Q(v(t)− w(t)
)∥∥

Hα,q ≤
∥∥Q(vh(0)− wh(0)

)∥∥
Hα,q

+ C4

(
t

1
p′ (1 + rN−1) ∥v − w∥Z(t) + ∥d− e∥Es,α(t)

)
for a constant C4 > 0. Together with (5.21) and (5.24), we arrive at

∥v − w∥Z(t) + sup
0≤τ≤t

∥∥Q(v(τ)− w(τ)
)∥∥

Hα,q ≤ C5,b,r0 t
1
p′ ∥v − w∥Z(t)

+ C6,b

(
∥vh − wh∥Z(0) +

∥∥Q(vh(0)− wh(0)
)∥∥

Hα,q + ∥d− e∥Es,α(t)

)
for constants C5,b,r0 > 0 and C6,b > 1. The first term on the right can be
absorbed for small t. For t ∈ [0, b1] and some b1 := b1(r0) ∈ (0, b̄0], we obtain

∥v − w∥Z(t) + sup
0≤τ≤t

∥∥Q(v(τ)− w(τ)
)∥∥

Hα,q (5.25)

≤ 2C6,b

(
∥vh − wh∥Z(0) +

∥∥Q(vh(0)− wh(0)
)∥∥

Hα,q + ∥d− e∥Es,α(t)

)
.

2) If b1 > b, we have min {t+(vh), t+(wh)} > b̄0 ≥ b1 > b and the proof is
complete with δ := δ1 ∈ (0, 1) and C := 2C6,b. If b1 ≤ b we restrict δ1 to be
smaller than (2C6,b)

−1. Using the special case wh = uh and e = g in (5.25),
we obtain ∥v∥Z(b1)

≤ r0 as well as ∥Qv(b1)∥Hα,q ≤ r0. Analogously, it
holds ∥w∥Z(b1)

≤ r0 and ∥Qw(b1)∥Hα,q ≤ r0. Thus we can iterate the above
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procedure. Here it is crucial that the step size b1 depends only on r0 and
b. Applying Lemma 5.1 to the shifted data ṽh := v(·+ b1), w̃h := w(·+ b1),
d̃ := d(· + b1) and ẽ := e(· + b1), we find mild solutions ṽ = Φ

ṽh,d̃
(ṽ) and

w̃ = Φw̃h,ẽ(w̃) on [0, b̄0] satisfying max{∥ṽ∥Z(b̄0)
, ∥w̃∥Z(b̄0)

} ≤ r. The same
estimates as above then yield

∥ṽ − w̃∥Z(t) + sup
0≤τ≤t

∥∥Q(ṽ(τ)− w̃(τ)
)∥∥

Hα,q

≤ 2C6,b

(
∥ṽ − w̃∥Z(0) +

∥∥Q(ṽh(0)− w̃h(0)
)∥∥

Hα,q +
∥∥d̃− ẽ

∥∥
Es,α(t)

)
for all t ∈ [0, b1]. Shifting back, together with (5.25) we conclude

∥v − w∥Z(t) + sup
0≤τ≤t

∥∥Q(vh(τ)− wh(τ)
)∥∥

Hα,q

≤ 6C2
6,b

(
∥v − w∥Z(0) +

∥∥Q(v(0)− w(0)
)∥∥

Hα,q + ∥d− e∥Es,α(t)

)
for all t ∈ [0, 2b1]. If 2b1 > b the proof is complete with δ := δ1 ∈(
0, (2C6,b)

−1
)

and C := 6C2
6,b. Otherwise we iterate again. This proce-

dure terminates after a finite number of steps, depending on r0. Hence, the
constants δ and C depend on uh, g, and b. □

Let Assumption 2.4 be true. We look at data uh and g with additional reg-
ularity, namely uh ∈ Cb

(
(−∞, 0], H s̃(R3)6

)
∩ Lp

(
(−∞, 0), Hα,q(R3)6

)
with

Quh(0) ∈ Hα,q(R3)6 and g ∈ L1
loc

(
[0,∞), H s̃(R3)6

)
∩Lp

loc

(
[0,∞), Hα,q(R3)6

)
for some 3

2 < s̃ ≤ 2. Theorem 5.4 provides a maximal mild solution in the
space C

(
(−∞, t+s ), H

s(R3)6
)
∩Lp(−∞, t+s ), H

α,q(R3)6
)
. On the other hand,

the Banach algebra structure of H s̃(R3) allows to prove local wellposedness
in Cb

(
(−∞, 0], H s̃(R3)6

)
, without using the Strichartz estimate, cf. [2]. So

we also have a maximal mild solution ũ of (3.1) in C
(
(−∞, t+s̃ ), H

s̃(R3)6
)
.

Here we write t+s and t+s̃ to distinguish between the two maximal existence
times. The next proposition shows that the two solutions coincide on the
intersection of their maximal existence intervals and that these intervals are
the same if s is close to 1 or s̃ = 2. For simplicity, we restrict to s̃ ∈ (32 , 2].
Larger values of s̃ can be treated as well, but require higher regularity as-
sumptions on coefficients and on J0.

Proposition 5.7. Let Assumption 2.4 be true, 3
2 < s̃ ≤ 2 and uh be con-

tained in Cb

(
(−∞, 0], H s̃(R3)6

)
∩ Lp

(
(−∞, 0), Hα,q(R3)6

)
with Quh(0) ∈

Hα,q(R3)6. Let J0 also belong to L1
loc

(
[0,∞), H s̃(R3)3

)
. Then we have

t+s̃ ≥ t+s and the above mentioned solutions u and ũ coincide for t < t+s .
If additionally s̃ ≥ s+ 1

2 − 1
q , then it holds t+s̃ = t+s and H s̃ ↪→ Hα,q.

Proof. 1) Set α = min{α, s̃− 3
2+

3
q} >

3
q and s := α+1− 2

q ≤ s. We thus have
the embeddings Hα,q(R3) ↪→ Hα,q(R3), Hs(R3) ↪→ Hs(R3) and H s̃(R3) ↪→
Hα,q(R3). Hence, uh is contained in Zs,p

α,q(0) with Quh(0) ∈ Hα,q(R3)6 and
for any T < min

{
t+s , t

+
s̃ }, both u and ũ belong to Zs,p

α,q(T ). Therefore it
holds u(t) = ũ(t) for all t < min{t+s , t+s̃ } by Lemma 5.2.

2) Let b ∈ (0, t+s ) and assume t+s̃ < b. The blow-up condition in H s̃(R3)6

then provides a sequence (tk) in (0, t+s̃ ) satisfying tk → t+s̃ and ∥u(tk)∥H s̃ →
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∞ as k → ∞. We set r := ∥u∥Zs,p
α,q(b)

<∞. Lemma 2.3 also holds if Hs(R3)

is replaced by H s̃(R3). So as in Lemma 2.10, we can compute

∥F (uτ )∥H s̃ ≲r sup
θ≤τ

∥u(θ)∥H s̃ + ∥u(τ)∥Hα,q

∫ ∞

0
ϕ(θ) ∥u(τ − θ)∥H s̃ dθ

for all τ ∈ [0, t+s̃ ). We set e(t) := supτ≤t ∥u(τ)∥H s̃ for t ∈ [0, t+s̃ ) and estimate
Duhamel’s formula by

∥u(t)∥H s̃ ≲ ∥uh(0)∥H s̃ +

∫ t

0
∥F (uτ )∥H s̃ dτ + ∥g∥L1((0,b),H s̃)

≲r ∥uh(0)∥H s̃ +

∫ t

0
e(τ) dτ +

∫ t

0
∥u(τ)∥Hα,q

∫ ∞

0
ϕ(θ) ∥u(τ − θ)∥H s̃ dθ dτ

+ ∥g∥L1((0,b),H s̃).

Observe that∫ ∞

0
ϕ(θ) ∥u(τ − θ)∥H s̃ dθ ≤ ∥ϕ∥L1((0,∞)) e(0) + ∥ϕ∥L∞((0,∞))

∫ τ

0
e(θ) dθ

≲ 1 +

∫ t

0
e(θ) dθ.

This inequality and
∫ t
0 ∥u(τ)∥Hα,q dτ ≤ b

1
p′ r lead to

e(t) ≤ c+ d

∫ t

0
e(τ) dτ

for all t ∈
[
0, t+s̃

)
with positive constants c = c(b, r) and d = d(b, r). Gron-

wall’s inequality now implies e(tk) ≤ cedtk ≤ cedt
+
s̃ < ∞ as k → ∞ which

contradicts the blow-up condition. So we have t+s̃ ≥ b and since b ∈ (0, t+s )

is arbitrary, we conclude that t+s̃ ≥ t+s .
3) Let s̃ ≥ s + 1

2 − 1
q . Assumption 2.1 then yields s̃ − 3

2 ≥ α − 3
q , so

that H s̃(R3) ↪→ Hα,q(R3) by Sobolev’s embedding. In particular, Quh(0)
belongs to Hα,q(R3)6. Let b ∈

(
0, t+s̃

)
and suppose t+s < b. Theorem 5.4

provides a sequence (tk) in (0, t+s ) satisfying tk → t+s and wk := ∥u(tk)∥Hs +
∥u∥Lp((−∞,tk),Hα,q) → ∞ as k → ∞. But we can estimate wk by

C sup
τ≤b

∥u(τ)∥H s̃ + Cb
1
p sup
0≤τ≤b

∥u(τ)∥H s̃ <∞

for all k ∈ N, where C > 0 is a constant independent of k. Therefore we
have t+s ≥ b and since b ∈ (0, t+s̃ ) is arbitrary, the claim follows. □
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