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ABSTRACT. We develop a complete local wellposedness theory for a
Maxwell system on R? and a large class of nonlinear material laws which
are nonlocal in time. Such constitutive relations are typical for nonlinear
optics. The problem was treated before in the Sobolev space H® for
s > 3/2 by means of energy methods. Using a recently shown Strichartz
estimate, we can lower this level of regularity to s > 1. In this context
‘charge-type’ terms would spoil the analysis. We avoid them by the
Helmholtz projection for the divergence operator with coeffients, which
requires mapping properties of the projection also in H%? with ¢ # 2.

1. INTRODUCTION

Electromagnetic theory is based on the Maxwell equations. They contain
constitutive relations that describe the interaction of the material and the
fields, where retarded material laws play an important role in optics, for
instance. We treat a large class of nonlinear relations, as discussed in [4], [6]
or [9]. If the coefficients of the nonlinearity are differentiable in time (which
is true in the standard models), the system is of semilinear nature though
nonlocal in time. One can treat it using energy methods in the Sobolev space
H? with s > %, since this is a Banach algebra. On the spatial domain R?,
existence and uniqueness of solutions was shown in [2]| in such a framework,
see also [7] for recent results on domains for s = 2 and [9] for the linear
case. In this paper we study the full space case and establish a complete
local wellposedness theory within H® for s € (1, %] This reduction of the
regularity level is caused by dispersive methods, using a Strichartz estimate
from the current paper [16]. For instantaneous material laws, which lead to
quasilinear problems, related progress was achieved in [17] in the 2D setting
and in [16], [18] for certain 3D cases.

The system of macroscopic Maxwell equations is given by

oD =curlH-J, 9,B=—curlE, t>0, zeR3 (1.1)
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where we use a unit system for which the constants g and pg are 1. The
two Gauk laws

divD =p, divB=0
for the charge p can be absorbed into the initial conditions divID(0) = p(0)
and div B(0) = 0 since solutions of (1.1) satisfy

divD(t) = divD(0) — /t divJ(7)dr, divB(t) = divB(0) (=0) (1.2)
0

because of divcurl = 0. The electric displacement D = E + P is related to
the electric field E by the polarisation P describing the density of electric
dipoles in the medium. Analogously, the magnetic field H = B — M is given
by the magnetic induction B and the magnetisation M caused by the density
of magnetic dipoles. Moreover, we assume that the free current density is of
the form J = ¢E + Jy, where ¢ denotes the conductivity of the medium and
Jo is a given, externally applied current density.

So far, (1.1) is underdetermined and has to be complemented by material
laws specifying the dependence of P and M on the fields. In this work we
study nonlinear material laws which include retardation effects, such as

P(E)(t,x) = xe(x)E(t,x) + / /R(t —r,t—7" 2)[E(r,z), E(r', z)] drdr’

—0o0—00

for t > 0, z € R3, and a bilinear response function R(t,t',z) : R3 x R3 — R3,
Actually we treat finite sums of analogous n-linear terms and also allow
for a nonlinear and retarded magnetization, where all nonlocal terms may
depend on (E,H) = u. We assume that the kernels are C? or H? in z and
W AW in time, roughly speaking. See Section 2 for the details, and
[4] or [6] for the background in nonlinear optics, for instance. We stress that
the retarded terms act on history functions u; : 7 — u(t + 7) for 7 < 0. So
one has to prescribe the prehistory uy(7) for 7 <0 in (1.1).

Under our assumptions, in (1.1) one can differentiate the nonlocal terms
in time without applying 0; to the fields. One can then control the result-
ing terms in H*(R?) for s > 3 since this space embeds into L(R?), see
[2]. To lower the regularity level to s € (1,3], we involve the Sobolev spa
H*I(R3) — L*(R3?) with o > % and large ¢. This is only possible if one
exploits dispersive behavior, namely Strichartz estimates, as the linear part
does not leave invariant such spaces unless ¢ = 2. Recently in [16] such
estimates were shown for scalar permittivity € := 1 4+ x. and permeability
t =1+ xm, see [17] for the 2D case. Here we need C7 coefficients to prevent
a regularity loss, see [16]. At least for the 2D case these results are sharp,
[17]. We are only aware of one earlier paper [8] on Strichartz estimates for
the Maxwell system, where the coefficients were assumed to be smooth and
constant outside a compact set. For matrix-valued coefficients the available
theory in 3D is still restricted to special cases, see [16] and [18].

In the next section we discuss the basic framework and the material laws.
Here the analysis is quite involved because of the nonlocality and complex
structure of the nonlinear terms, and also since we have to work with the
norms of both H® and H*Y in the estimates. In Section 3 we reformulate
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the system (1.1) as the retarded evolution equation (3.1). Moreover, we
recall that the linear and instantaneous part is governed by a Cy-group in
H?®. Then we discuss the Strichartz estimate (3.6) for the linear and in-
stantaneous Maxwell system from [16]. It bounds the norm of the fields in
LP((0,T), H=74) by the L?norm of the initial value and the norm of the
inhomogeneity in L'((0,T), L?), where p,q > 2, % + % = % and vy =1— %.
One thus increases the spatial integrability at the prize of a loss in regularity,
compared to the energy estimate. Here the endpoint ¢ = oo has to be ex-
cluded, see [20]. This fact prevents us to reach the regularity level H' in the
local wellposedness theory. In contrast to the analogous results for the wave
equation, see [21]| and [22], the Strichartz estimate (3.6) contains also charge
terms on the right. Extra regularity of p is needed to counteract the large
kernel of curl. In Theorem 3.4 we shift the regularity level from L? to H*®
with s € (1, %] and to H*~ 74, by means of lengthy commutator arguments.
Our main arguments are based on linearization and perturbation argu-
ments, treating the nonlocal part as an inhomogeneity. It thus causes ad-
ditional charges compared with the unperturbed system, which would spoil
the final result. As a remedy we apply the Helmholtz projection ) map-
ping onto the kernel N (curl) x N(curl) along N(div(e+)) x N(div(p+)). This
splits the problem into a ‘charge free’ part and a part without curls, which
are treated by the Strichartz inequality respectively direct estimates. For
this we need mapping peoperties of Q also in H®4(R?) that we establish in
Section 4, based on elliptic regularity and a bootstrapping argument.
Based on these preparations, in the last section we then establish local
wellposedness of the Maxwell problem (3.1) in H*® for s € (1,3], including
a blow-up criterion and continuous dependence on data. We also show that
our solutions coincide with those obtained for more regular data with the
maximal existence times, if the relevant conditions are met, see Proposi-
tion 5.7. This fact is crucial if one has to approximate data by regular one
to justify, e.g., energy estimates. In all the arguments we have to take care
of the influence of the prehistory and work in paces C(J, H*) N LP(J, H*19).

2. FUNCTION SPACES AND CONSTITUTIVE RELATIONS

We use the standard (complex) function spaces Cf(R?) and Cy(R3) of
bounded continuously differentiable and Holder continuous functions for k €
Np and r € Rsy \ N. Moreover, we work with usual Lebesgue and Sobolev
spaces LP and W*P and with the maximal domains H(curl) and H(div) of
curl and div in L?(R?)3. We write a < b if a < cb for some constant ¢ > 0 etc.
The Fourier transform is given by Fu(§) = u(§) = (2%)_% Jps u(z)e € d
for f € L'(R3), and F also denotes its extension to the space of tempered
distributions S*(R3).

In the context of homogeneous fractional derivatives we also use the sub-
space S;(R?) of u € S*(R3) such that ||0(AD)ul ;e — 0 as X\ — oo for any
9 € C>(R?), where O(AD)u := F~1(8(\-)d). We note that u € S*(R?) with
u € Li.(R?) belong to Sj(R?). See p.22 in [3]. We need the fractional deriva-
tives (V) w:=F~1((§)°0) and |V[*u := F1(|¢°0) for s € R, u € S*(R?),
resp. u € Si(R3). Here (£)° stands for the map & — (£)° = (1+¢[?)2 etc.
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The fractional Sobolev spaces are then given by

H¥P(R?) = {u € S*(R?) | (V)*u € LP(R?)}
for s € R and p € (1,00), endowed with the canonical norm, where we put
H3(R3) := H%2(R3). For s € Ny, it is known that H*?(R?) coincides with
the usual Sobolev space.

The following conditions on parameters will be used thoughout the paper.
Triples (p, ¢, ) satisfying the first statement are called strict wave admissible.

Assumption 2.1. Let p,q € (2,00) fulfill % +é = % and set v =1 — % €

(0,1). Let s € (1,%] with s > 1+% and define a« = s —y € (%,%)

Note that H%4(R?) — L°°(IR?) by Sobolev’s embedding which is crucial in
the following. The next two lemmas are frequently used to handle products
appearing in our model for the constitutive relations below. They follow
from Sobolev’s embedding, interpolation, and Theorem 4.6.4.2 in [15], for
instance.

Lemma 2.2. Let Assumption 2.1 be true, m € H2*(R®) + C}(R®), u €
H*(R3), and v € H*4(R3). Then the products mu and mv belong to H*(R3)
and HI(R?), respectively, and they satisfy

Imullgrs S Imllge gz lullgs s Imollgea S Imillgzcz 101 e -

Lemma 2.3. Assumption 2.1 be true, u,v € H*(R3) N H%I(R3), and @, €
H*9(R3). Then uwv € H*(R3), av € H*(R3), and we have

luollzs S llullgs vl ge + ull zeallvllas,  |@o]|ges S (@l geal[0] g
We now introduce the function space in which we obtain solutions to the

Maxwell system in Section 5. For parameters s, p, ¢, and « satisfying the
conditions of Assumption 2.1 and b € R, we define

Z;’Z(b) = Cb((—OO, b]: HS(R?))G) N Lp((_oov b)? Ha’q(Rg)G)v
with the canonical norm. We often write just Z(b).
Constitutive relations (or material laws) describe the interaction of phys-

ical systems with electromagnetic fields. We choose E and H as variables,
and for polarization and magnetization we impose a relation of the form

P(Ev H)(tv .73) = Xe(x>E<t7 .%') + ﬁ(E7 H)<t7 .%'),
M(E, H)(t, z) = xm(2)H(t, 2) + M(E, H)(t, z),

where x and yp, are the electric respectively magnetic susceptibilities, which
we assume to be scalar-valued. The terms y.E and x,,H describe a linear,
isotropic, local-in-space and instantaneous response of the medium to fields
E and H. We Afgcus on the nonlinear, anisotropic and retarded contributions
1~3(E, H) and M(E, H). In many cases, P can be regarded as independent of
H and M as independent of E, leading to a standard model in nonlinear op-
tics (if M = 0), see [4], [6], and [9]. This is not true in so-called bianisotropic
materials which exhibit a coupling of electric and magnetic effects. In our
model we allow for such couplings in the retarded terms of (2.1). Introducing
the permittivity € := 1+ x. and permeability p := 1+ xm, we obtain

D =<E+ P(E,H), B=H+M(E, H).

(2.1)
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We combine E and H into a variable v = (E, H). The retarded part is given
by N summands

(P(E,H), M(E, H)) Z ™ (y,

which can be written in components as

T\ () (t, (2.2)

/ / R;ZJI gat=r .t =g )y (r, @) g, (T, @) dry . drg.

for jo € {1,...,6}. (We use the Einstein convention of summing over re-
peated indices.) Here R = (R(-n)» ) RY, x R? — RS“' s called

JoJ1---dn
the nth order response function and R(™ (T1,...,Tn, ) is a tensor of rank
n+1 for each (71,...,m,z) € RY, X R3. It weights the contributions of the
electromagnetic fields at times 71, ..., 7, to the polarisation and magnetisa-
tion at time ¢. The material response described by (2.2) is local in space,
but nonlocal in time. Due to causality, the integrals run only up to time ¢.
The model incorporates time invariance, since the response functions only
depend on time differences t — ;. By a substitution, we can also write

Fg.’;) (u)(t,z) = /n R§Z;1--.jn (1,) H Uj,, (t — T, ) dT. (2.3)
>0 m=1

From now on, we omit the spatial variable z. On the material coefficients
and the external current density Jo we impose the following assumptions.
While the conductivity o is matrix-valued with entries in H%(R?) 4+ CZ(R3),
permittivity € and permeability p have to be strictly positive scalars and
belong to CZ(R3). The response functions are assumed to be twice differ-
entiable in space and once in time, with a decaying memory described by a
map ¢. An additional function ¢g,, defined by shifts of ¢ is needed in the
proof of the continuity of I', see Lemma 2.8.

Assumption 2.4. Let Assumption 2.1 be true, letn >0, and &, u € CZ(R3)
be real-valued functions satisfying e(x),u(x) > n for all z € R3. Let o
be contained in H*(R3)**3 + CZ(R®)**3 and Jo in L{ ([0,00), H*(R?)?
H>1(R3)3).

Also, R™ et (Rgo, H?(R3) + CZ(R®)) is real-valued and bounded by

JO---Jn

max {|[B (1) oy [0m RS 5 ()| o } < TT 0m)
m=1

for amap ¢ € L*((0,00))NC,([0,00)) and alln € {1,...,N}, £ € {1,...,n},
Jos--rgn € {1,-+-,6}, T = (11,...,7n) € RY%,. Finally, the function
dsup : R>0 — R defined by -

Gsup(t) =sup{@(t+h) | -1 <h<1,t+h>0}
is contained in L' ((0,00)) N L>((0,00)).
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We note that Assumption 2.4 implies that e~! and ;! are also contained

in CZ(R3). The parameters ¢ and p are combined into the matrix

o — <€Ig><3 0 >
' 0 ulzxs)’

We define the space L? M(R?’)G as L?(R3)% endowed with the scalar product

((E,H)’(E,ﬁ))@u - (EE’E>L2(R3)3 + (“H’ﬁ>L2(R3)3’

where (F|G) 2gsys = Jgs F - G dz is the usual scalar product on L*(R?)?.

An often used model to describe the optical properties of materials is the
Lorentz oscillator model, in which electrons bound to atoms are treated as
damped harmonic oscillators, see Section 7.5 of [11]. This model can be
generalized by including anharmonic and anisotropic terms in the potential.
One obtains expressions for the response functions that include trigonometric
polynomials times decaying exponentials and that satisfy Assumption 2.4 for
a function ¢ of the form Ke™ " with K,y > 0, see e.g. Appendix A.2 of [5].

Since (1.1) contains 9;D and 9;B, we need an expression for 9,I'(u). A
formal differentiation of (2.2) (justified in Lemma 2.11) yields

Z[/ / Or Rg:] (T)uj, (t —711) ... uj, (t — 7)) d7i ... dmy,

(=1

/ / o j (715 Te—1,0, Tge1s - -, T)ujy (8= 71) - owj,, (8 — Te—1)

- Uj, (t)uje.H (t - TZJrl) an( ) dry ... dm_q dTngl ...dm,
— Z/nﬁTZRJO i Hujm t—"Tm)dT +/<9R” ol Hujm t—Tm)
= V™ () (1) (2.4)

Jo

We set Y (u) := SN V) (u) with Y ™) (u) given by (2.4) for jo € {1,...,6}.

In the remainder of this section we study properties of the retarded part of
the material law and show that 0;,I'(u) = Y (u) holds in a weak sense. First
a useful formula is recalled, using the standard convention that empty sums
and products evaluate to zero respectively one.

Lemma 2.5. Let v; and w; be elements of a commutative ring for i €
{1,...,n} and n € N. Then it holds

n n n -1 n
[T o= TLwn =3 (Tl emtor—wn TT wn).
m=1 m=1 /=1 “m=1 m=¢+1

One can check that the expressions (2.3) and (2.4) are well-defined ele-
ments of H%4(R3) for a.e. t < b and suitable functions u.

Lemma 2.6. Let Assumption 2.4 be true, b € R and u be contained in
LP((—o00,b), H**(R*)%). Take n € {1,...,N} and jo € {1,...,6}. Then
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the maps Fj((?’t), Gg:’t) : Ry — H*I(R3) defined by
(n.) -
Fjo (1) = Jo Jn H uﬂm
m=1

Z%Rgo n H i (t = Tim)

are Bochner integrable for every t € (—oo,b). The map H](-:’t) : ORY) —
H%9(R3) defined by

n

]O ]n H ujm Tm

is Bochner integrable for a.e. t € (—o0,b).

H™ (1) =

Jo

Here the measurability is shown approximating by simple functions and
using Lemmas 2.2, 2.3 and 2.5. The latter also yield the integrability via

/Rn HF(nt( )HHada< Z H/ () [, (t = 7o) | e A7

17 7_]n*l?n 1
< HqﬁHLp/((o,oo)) HUHLP((foo,b%Ha,q) ) (2.5)

and analogously for the other maps.

Since our spaces are separable, strong measurability of a map f is equiva-
lent to that of (f, @) for all test functions ¢, say. So we can transfer measur-
ability from H%(R3) to H*(R3) based on Lemma 2.6. The integrability in
H? is then shown by Lemmas 2.2 and 2.3 and Hoélder’s inequality via, e.g.,

/ |FOO ()| dr (2.6)
RZY
< Z > [ ot st =l TT ool =l

Jisenjn=14=1 m=1,m#l

n—1
< H¢HL1 ((0,00)) H¢HLP ((0,00)) f}gb) ()|l s ”,U’HLP((—oo,b),Ha,Q)'

Corollary 2.7. Let Assumption 2.4 be true, b € R, u € Z(b), ne{l,...,N},

and jo € {1,...,6}. Then the maps F]-(gl’t),Ggg’t) : R2, — H*(R®) defined

as in Lemma 2.6 are Bochner integrable for every t € (—oo,b). The map

J(O b : ORY ) — H*(R3) defined as in Lemma 2.6 is Bochner integrable for

a.e. t € (—00,b).
We next show boundedness and continuity in time of the nonlinearity.

Lemma 2.8. Let Assumption 2.4 be true, b € R, u € Z(b) and n €
{1,...,N}. Then T'(u) is contained in the space Cy((—o0,b], H*4(R?)® N
H*(R*)%) and satisfies

sup [0 (w) (1)

ur S N ullEo (oo by, Hroay -

Hea
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sup [T @)(0)| 5 sup 1Oz Il py 10y
t<b H t<b

Proof. Let n € {1,...,N}, jo € {1,...,6}, and ¢ < b. The boundedness of
I'(u) follows as in (2.5) and (2.6) by

(v <u><t>H

Hr H 1l 2 0,000 19177 0009 sup||u( el gy e -

o < Hé”g;ﬂ (0,00)) Hqup (—00,b),H:1) >

We now prove continuity from the right. (The other case is done similarly.)

Let h € [0,1] with t + h < b. We set W; = (—o0,t)™ and write kj(o)j (t,h,r)
for the norm

HR(n t—i—h—rl,...,t—i—h—rn)—R(-n) (t=Tr1,.. ot —Ty)

Jo---Jn Jo---Jn HH2+03'

As above, Lemmas 2.2 and 2.3 yield

HF )(t+h) T (u H
Hoa
6
< v [/ K ) TT g ()
Jiyegn=1 £/ Wi m=1

n
+/ IR (b=t b= )| o e T ot ()l @
Wi n \We bm=1

t+h
Fr () [l ey ey + 5 Z/ 6t + h — i)l (75 o A
.]17 7]n 1 k=1
t+h

H O b= ) [, ) e A

m=1,m#k

S (A1) + 1 19l e (0.0 1910 )||u||zp<(_oo,b),ﬂa,q>
with

6 1
A=Y </‘@?]@hrydﬂ
Jiseesgn=1 Wi
We have fi(h) — 0 as h — 07 by Lebesgue’s theorem, using the continuity
in time of the response functions as well as the estimate

k'](g)] t h ’l" <2 H ¢sup Tm (27)

and Assumption 2.4. The calculation in H*(R3) proceeds similarly with
some modfications as in (2.6). We omit the details. O

We now turn to the question in which sense the formal differentiation of
I'(u) in (2.4) can be justified. As a first step, using the algebra property
of H?(R3), we can differentiate sufficiently regular u in a classical sense.
The proof is rather standard (though tedious) and a minor modification of
Lemma 3.17 in [5], so that it is not presented here.
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Lemma 2.9. Let Assumption 2.4 hold, beR, and ue Cb((—oo, b], H2(R3)6).
Then T'(u) belongs to C*((—oo,b), H*(R3)S) with 9, (u) =Y (u), see (2.4).

In our setting, u is less regular than H? and we only obtain &;,I'(u) = Y (u)
in a weak sense. As a preparation for proving this in Lemma 2.11, we state
estimates that easily follow from Lemma 2.8 and the variants of inequality

(2.6) for G and H{™.

Lemma 2.10. Let Assumption 2.4 be true, a,b € R with a < b, J = (a,b),
ue Z(b), andn € {1,...,N}. Then I'(u) and Y (u) are contained in the
space L' ((a,b), H*(R3)%) and satisfy

(n) < (p_

[P ] 1 ey S €= @ SR Iz Tl s (2.8)
(n) _ _ L/ ! n—1

RO Y (RO R L T ) gl 5oy

We can now differentiate the polarisation and magnetisation in time.

Lemma 2.11. Let Assumption 2.4 hold, a,b € R with a < b and u € Z(b).
Then I'(u) belongs to W ((a,b), H*(R*)®) with 8;I'(u) =Y (u), see (2.4).

Proof. We use mollifiers y in R® and define u(*®)(t) = X1k * u(t) for t < b
and k € N. Since u®) € Cp((—o00,b], H3(R?)%), Lemma 2.9 implies that
I'(u®)) is contained in C! ((—o00,b), H*(R?)%) with 9, (u(k)) =Y (u(k)). It
thus remains to show the limits T' (u®)) — T (u) and Y (u®)) — Y (u) in
L'((a,b), H*(R?)5) as k — co. Let n € {1,...,N} and jo € {1,...,6}.

1) We start with the convergence of (F (u(k)))k. Using Lemmas 2.2
and 2.5, we obtain

HFEZ) ( (k)) ©- 52) H“ < Z/n H24C}
T 60— ) 26— 7 = st =) T s — 7],
m=1

m=~{+1

R(" ‘

Jo-- ]n

for a.e. t < b. The products of the fields can be estimated using Lemma 2.3.
This leads to

}Hsrgi/n Iz‘(mk)(tﬂ')dﬂ
1) (4 r) = H¢T] n [ZH (t=m)| . ﬁ -Hu(k)(t—Tm)‘

[T (u®) (£) = T (u) (¢)

=1 meti Heq
: Hu(k) (t—70) —u(t— Tz)’ .y mli[+1 1wt — 7o) || e } ,
nk:) — i i [ﬁ Hu(k’)(t_Tm)‘ .

j=1 (=1 “m=1



10 CHRISTOPHER BRESCH AND ROLAND SCHNAUBELT

. Hu(k) (t—72) —ult - ”)HHS ﬁ l(t — 7)o ] ,

m=¢+1

n n n -1
1) =] ot > = ml IT e - o)
=1 m=

j=1 i=0+1

Ho.a

n
BV | QG

: Hu(k) (t — 7o) —u(t — Tg)}
m=0+1,m#i

In the case n =1, both I fl’k) and Iél’k) vanish. The properties of mollifiers

show that Ii("’k) (t,7) converges to 0 as k — oo for a.e. (t,7) € (—o00,b) xRZ,
all j € {1,2,3}. We further estimate

n (-1
n,k)
[( (t,7) <QZZ¢ (i sup||u( )| s H (m) lu(t — 7m) | gova
(=1 i=1 m=1,m##i
n,k
I( ) <22q§ (¢ supHu( )| s H O(7im) [u(t — 7)) grca »
m=1,m#L
nk -
B9 <230 Y osup g [ 6w ot~ 7)o
(=1 i=0+1 = m=1,m#i

The integrals over RZ, of the terms ﬂ )(t 7) on the right are bounded by
1601009 191557 oy 500 1) T35y 10y < 0

for a.e. t < band all j € {1, 2,3} due to Holder, so that T (u®)) tends to
rm (u) pointwise in H® as k — oo by dominated convergence. Since also

[P @®)e) =T @)@, % s 1) s Nl ooy

Lebesgue’s theorem implies the convergence in L'((a,b), H*(R?)%).
2) We now prove Y (u®) — Y () in L!((a,b), H*(R?)%) as k — oo.

The convergence of the summands involving 8T£R(”) is shown as in step 1).
The remaining ones have to be treated a bit differently. As above we estimate

n 3
n,k
RS« (H Pt = 7n) = ] win =) | 31"

m=1 1=1
for a.e. t < b. In the case n = 1, we have Ifl’k) = Iél’k) =0 for all k € N and
[ BUnar =100 Sswpfuily. <o (29)

8R>0 T'Sb
For n > 1, j € {1,2,3} and a.e. t < b it holds

7(n)
/ I7(t,r)dr (2.10)
ORZ

< s () 57 (1l oty + 1O ) I35ty sy <
>
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As in step 1), Lebesgue’s theorem now implies

n
[ B T —mar — [ 2,0 [t m e

ORZ,

in H*(R3). Using (2.9) and (2.10) for the majorant, we arrive at the limit

[ B T mmar — [ 2 0 T v (=i

ORY
in L'((a,b), HS(R3)) as k — oo, again by Lebesgue’s theorem. O

Let Assumption 2.4 hold. Lemma 2.11 motivates to define the map F' :
Z(0) — H*(R3)® given by F = SN | FO) for F(M : Z(0) — H*(R?)S and

Fj(O”)( = —yjo[ / O, Rjg) n(T) H wj, (—75) dr
+/ Wq, (—Tg dT:|
BR” .70 ]n H jk

for jo € {1,...,6}, where vj, = e~ if jo < 3 and vj, = p~ b if jo > 4. If
u= (E,H) € Z(b) for some b € R, in (1.1) we can thus write

e 'P(EH)() | _ -
o (u‘lM(E,th)) =—w AW = Fw)  (211)

for a.e. t < b. Here we use the history function u; € Z(0) given by w;(7) :=
u(t + 7) for all 7 < 0.
Since e 7! € CZ(R3), Lemmas 2.2 and 2.11 show that F(u.) : ¢t — F(u) is

contained in i ((—o0,b), H*(R?*)%). The next result collects estimates for

F needed in our main wellposedness results.

Lemma 2.12. Let Assumption 2.4 be true. Let r,b > 0 and u,u € Z(b)
satisfy |lull ) < 7 and ||ul| 54y < r. Then we have the estimates

1
IF @)l oy S (2+67) (1+77),
1 ~
IF () = F@) s oy arey S (5407 ) (L4 flu =l
1 ~
1F () = F (@) g oy S (b+07) (1471 =l

Proof. The first estimate follows directly from (2.8). We proceed similarly
to the proof of Lemma 2.11 for the other two statements, focusing on the
more complicated case H®. (The Banach algebra H®? can be treated more
easily.) Let 0 <t <band n € {1,...,N}. We compute

HF (ug) — F) ut <Z/ tTdT+Z/ Ii(t,7)dr,

ORZY
-1 /-1

Wt T ;:Z [ &(7) |u(t — 7))l s H O(7im) lu(t = 7im) | roua

(=1 i=1 m=1,m##1i
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n

6(r0) ult = 70) = Wt = )l ggos ] &) it = 7)o .

m=¢+1
n /—1
Iy(t,7) = Z[HM lealt = 7o)l o0 S(7e) (= ) = it = 70)l| -
l= m=1
T o)t = 7)o |-
m=~¢+1
n n -1
Ioft,7) =" S o) it = 7)llge TT @) st = 7l o
=1 i=0+1 m=1
o) [ult = 7) =t = 7)o [T &) I = 7)o |

m=L+1,m%#i

If n =1, wehave I} = 0= I3 and Ir(¢t,71) = ¢(11) ||u(t — 1) —u(t — 1) -
So the claim is clear. For n > 1 we deduce

3
> [ Lendr s -l
j=1"7R%0

again by means of Holder’s inequality. The integral over ORZ leads to the
six cases where u,u and v — u are evaluated on the boundary either in the
H?- or the H*%-norm. This results in

3
S [ B dr S o =l 1 ) =l

+ " A e 1w = ll 5y + 7" ) = G e -

Holder’s inequality in time then implies the assertion. U

3. THE LINEAR PART AND STRICHARTZ ESTIMATE

We write the Maxwell system (1.1) as the retarded evolution equation
u'(t) = (A+ Bu(t) + F(u) +g(t), t=0, (3.1)
u(t) = un(t), t<0, '

with the Mazwell operator

0 L curl _15; 0
J— € 1 J—
A= <_;1¢ curl 0 > and the perturbation B = < 6 O> . (3.2)

The external current density Jo from Assumption 2.4 leads to the inhomo-
geneity g : [0,00) — RS defined by

—e 1Jo(t
o= (7 50). (33)
which belongs to Lj ([0, 00), H*(R*)%) N L ([0, 00), H*(R?)®). Since the
nonlinear term F'(u;) at time ¢ depends on all values w(r) for r < ¢, the
initial condition u(0) is not sufficient, but instead a whole history function

uy, has to be prescribed.
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To treat (3.1), we use the strongly continuous group generated by A, =
A+ B. On L§7M(R3)6, the operator A is equipped with the domain D(A) =
H(curl) x H(curl). It is well known to be skew-adjoint and therefore gener-
ates a unitary Cop-group S(-) by Stone’s theorem, cf. [1]. Since B is bounded
on Lg#(ﬂ@)ﬁ, the sum A, on D(A) generates a Cyp-group S,(-), also on
L?(R?)S. These groups can be restricted to H*®(R3)S.

Lemma 3.1. Let Assumption 2.4 be true. Then the restrictions S(-)|HS and
SJ(')’HS to H*(R3)S are again Cy-groups which are generated by the part

A‘HS of A in H*(R?)S, respectively AU’HS.

Proof. We use the isomorphism L = I — A : H*(R3)® — L?(R3)5. Since
the coefficients belong to CZ, the operator LA,L™! on D(A) is a bounded
perturbation of A,. Standard semigroup theory now yields that SU(-)‘ 2 is
a Cp-group generated by A‘7|H2’ cf. Theorems 4.5.5 and 4.5.8 in [14]. The
assertion then follows by interpolating between L?(R?)% and H?(R3)®. O

In the following we mostly omit the restriction symbols. In the crucial fixed-
point argument of Lemma 5.1 we regard the nonlinearity in (3.1) as an
inhomogenity (by freezing u), in which we also absorb the term Bu. So we
consider the evolution equation

u'(t) = Au(t) + f(t), t>0, u(0) = up. (3.4)

Let f € L*((0,T), H*(R?)®) for some T > 0 and up € H*(R*)®. Then the
problem (3.4) has a unique mild solution u € C([0,T], H*(R?)®) given by

u(t) = S(t)ug +/0 S(t—7)f(r)dr, te][0,T]. (3.5)

In contrast to (3.3), here we allow for nonzero ‘magnetic’ components in f
since they appear in the analysis.

Remark 3.2. In the above situation, note that the mild solution u is con-
tinuous in H*(R3)5. Since this space is contained in D (A!qu)v Theo-
rem 8.1.3 in [25] implies that u belongs to W1((0,T), H*~!) and solves
(3.4) in H"Y(R3)® for a.e. t > 0. It is called a strong H*-solution. Con-
versely, a strong solution satisfies (3.5) by Theorem 8.1.1 of [25].

To control the nonlinearity F' in (3.1), we need the space H*4. However,
the above groups do not leave invariant L%-spaces for ¢ # 2. To overcome
this fundamental difficulty in wave-type problems, Strichartz estimates are a
powerful tool. We use the recent result Theorem 1.3 of [16] for the isotropic
linear Maxwell system due to Schippa, which we state in a simplified version.

Theorem 3.3. Let e, n € C'(R x R*, R) satisfy 0%(e, ) € L' (R, L>(R?)?)
for all @ € N§ with || = 2 and n < e(t,x),u(t,x) < n~t for all (t,z) €
R x R? and some n > 0. Set

_ (elz3x3 0 o 0 curl a -1
K= < 0 MI3><3>’ Aco = <—Curl 0 >, L:=0,— Acok™ ",

v = (v1,v2) withvi,vo :RxR3 =5 R3 p= (div(vy), div(v2)).
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Let p,q € [2,00] satisfy % + % = % and (p,q) # (2,00), v 1= % — % — %, and
T € (0,1]. Then we have the estimate
H‘V|_7UHLP((O,T),L‘1) 5 ”UHLOO((O’T)’LQ) + ||Lv||L1((0,T),L2) (36)

9172 2O 2 + 119172 Dl o,
provided the right-hand side is finite.

Observe that for the triple (p,q,v) = (00,2,0) the result holds trivially.
In the above estimate one controls increased space integrability g > 2, but
has to pay a prize in regularity and time regularity. The conditions on the
exponents cannot be improved (if v(0) # 0), in particular the endpoint case
(2,00, 1) is forbidden, cf. [20]. We note that the ‘charge’ p is given by the data
v(0) and Lw, cf. (1.2). Moreover, it is needed to counteract the huge kernel
of A¢, containing functions x(V, Vi) T which may belong to L2\ H~4.

We next bring the estimate (3.6) into a form more suited to our problem,
given by the next theorem. One could replace T' < 1 by any T > 0 obtaining
a constant Cgi;(T') nondecreasing in 7.

Theorem 3.4. Let Assumption 2.4 be true, T € (0,1], up € H*(R?)®, and

f e L(0,T), H*(R®)®). Then the mild solution v = (E,H) of (3.4) is
contained in the space Lp((O,T), HQ’Q(R3)6) and satisfies

lull Lo (0.7, 11000y < Cte (ol s + 1l o), 120y + 12O

+ 10ep||

N

LY((0,7),H°" %) ): (3.7)

if the norms of p = (div(eE), div(uH)) are finite.

Proof. We consider ¢ and p as constant functions on [0, 7] and extend them
to maps satisfying the conditions of Theorem 3.3.

1) We first replace the homogeneous fractional derivatives by Sobolev
spaces, cf. §3.2.1 in [16]. To this aim, we use the Fourier cut-off Sg = F~1xF
for a smooth function x being 1 on B(0, 1) and with support in B(0, 2). Since

1 3

—y — % =5 Sobolev’s embedding and Plancherel imply

1 1
1Sovll Lo (0,1, 159y S IKE) P XV Lo (0,1),22) S TP |0l Loo (0,7, 125

Note that Sy commutes with div, (V)¢ and 9y, that Sp is bounded on L?(R?)S
and that |£] =~ (£) on R3\ B(0,1). By (3.6) and Plancherel the high-frequency
part w = v — Syv can thus be estimated via

_ 1
VI wllzeqom),0) S lwllzes oy, c2)+ 1 Lawll Loy, e2y+ T2 (e (O -4

Note that [Sp, L] = (Acor1)So + [£71, AcoSo]. Since k1 is Lipschitz, the
second commutator is bounded on L2(R3)% by Proposition 4.1.A in [23].
Hence (3.6) is also true with inhomogeneous fractional derivatives.

2) Next we pass to u = (E,H) and to H*. We set v = x~1v. Since ¢, u €
CZ(R3), k! is contained in B(H 74 (R3 )®) by interpolation, and duality then
implies k= € B(H™74(R%)%). So step 1) yields the estimate

101l Lo (0,1, 579y S N0l oo (0,7),22) + 1L(EO) | L1 (0,7), 12
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PO,y + 1071, (38)

0,7),H"2)
for p:= (div(evy), div(uv2)), 0= (01,02), omitting the dependence on T'<1.

Let up € H*(R®)®, f = (K,L) € L'((0,T), H*(R?)*"?), and v = (E, H)
be the mild solution of (3.4). By Remark 3.2 it is a strong H®-solution. By
(3.5), the map w := (V)® u satisfies the energy-type estimate

[wll oo 0,1y, 15) = 1wl oo 0,7),22) S Nlwoll s + (1 L1 o,my,mey - (3.9)

This estimate, (3.8) and o = s — v from Assumption 2.1 imply

[ell Lo 0.7y, ey = Wl ooy, -0y S Nwoll s + Il Lrqory.as)  (3:10)

+ ”L(Hw)”[/l((O,T),LQ) + ||p8(0)||H—% + ||atpSHL1((D T) H—%)

with L(kw) = k(8w — ™1 Acow) and p, := (div(e (V)* E), div(n (V)  H)).
As (V)* € B(H*"', H™'), 8w belongs to L' ((0,T), H*(R?)®). Equation
(3.4) leads to
Orw = <V>S(/<a_1ACOu + f) =k e (V)You + [<V>S, H_l]ACOU +(V)*f.
(3.11)
Theorem 1.4 in [13] yields the commutator estimate
(V)7 (68) =6 (V) %l 12 SICV)T Sl poc [9 LoH1V D oo [ (V)00 2 (3.12)
for 7 > 0 and 7 # 1. We further have

IKV) (00) = & (V) ¢l 2 S Il 9]l 2 (3.13)

for 7 € (0, 1] by Proposition 4.1.A in [23]. Remark 2.2.2.3 and Theorems 2.3.8
and 2.5.7 in [24] imply that (V)7 is a bounded operator from Cj(R?) to
L>®(R3) for r > 7. With 7 = s, inequality (3.12) shows the boundedness
of the commutators [(V)*,v] and [(V)*,v7!] from H*"!(R?) to L*(R?) for
ve{e,pu}ass<3andv e CE So (3.11) and (3.9) lead to

I Csw) 1 0,),22) S (1000 = 674 Acow]| o, 29 (3.14)

S Acoull Lo,y 51y + 1 lLr o0y, 29) S Nlwoll s + 1 o,y 19 -

We now turn to the terms involving pg, treating only the first component.
(The second one does not differ.) Here the commutators [(V)*,d;¢] and
[(V)*,0; 1] occur for i € {1,2,3}. To avoid additional regularity of & and

u, we have to exploit that ps is estimated only in H ~3. Observe that
1 s s 1 1 s
(V)72 (), m] = [(V)72 m] + [m, (V)2 ] (V)
+ (V)72 [(V),m] (v)*!

for m = 0;e or 81% in C’l}. Since s < %, the commutators on the right are

L?-bounded thanks to (3.13). Thus [(V)®,m] : H*"! — H~ % is continuous.
The charge can be written in the form

div (e (V) E) = (V)*div(eE) + [, (V)’]divE + [Ve, (V)] - E
In H~% these terms are estimated by ||div(¢E)

lps O -3 < 1lp(0)

2

ey + Bl e

-1+ luollgs - (3.15)
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Next, working in H~2(R?) and using (3.11), we obtain
O (ps), = div (e (V)" O,E)
- div(curl (V*H +[(V)*,e7 ] cwrl H + (V)* eK + [¢, (V)°] K)
=Ve- ([(V)*, e cwrlH) +¢ [(V)*, VL] cwrlH
+(V)*div(eK) + [Ve, (V)] - K + [e, (V)*] div K.
Let E, = L1((0,T), H"). The properties of the commutators, (3.5) and the
equation div(eK) = 9, div(eE) — div curl H imply

Ve ([(V)°,e71] curlH)HE_l

<w e e m)],

|

SlewlHllg | Sllullg, Sllvollgs + 111, »
e [(v)*, V2] -ewlH| ;< llewlH|g < uoll g + [1£llg, »

(V) div(eK)l|p_, = [ldiv(EK) g, =110wlls

2 2
Ve, (V)] - Kl , SIKlg,, <flg,

[

|
ol

|

e, (V)°] divKllp_, S lldivK]g,_, <|fll,-

We arrive at

1960l 7 -4, S N0l + 1 s oryarey + 19601 4 7 oty - (316)

Formulas (3.10), (3.14), (3.15) and (3.16) lead to (3.7). O

Let M = 0 for simplicity. Then div(uH) = divB describes the mag-
netic charges and vanishes. But div(eE) does not describe the free electric
charges, since the contribution P of the polarisation to the D-field is missing.
Handling these ‘charge-like’ terms is difficult, so in Section 5 we use a projec-
tion operator to split our problem into a part involving p and a ‘charge-free’

part. The first one is handled directly and for the second one we can use the
Strichartz estimate. This projection operator is the topic of the next section.

4. HELMHOLTZ PROJECTION
To deal with the divergence and curl operators, we first define the spaces
Coo(R?) = {feC'°° R*)? | div f =0}, VOX(R®) ={Vo¢|¢ e CF(R?)},
L2(RY) = O (B), G(RY) = {f € L’(®%® | 36 € L, (R¥): f = Vo),

and collect known results on the Helmholtz decomposition of L?(R?)? into
divergence-free functions and gradients of scalar maps, cf. Lemmas 11.2.5.1

and 11.2.5.4 in [19].
Lemma 4.1. We have L?(R3)? = L2(R3) &, G(R3) and
LR = {f € L2RY? | div f = 0} = N(div), G(R®) = VORER?)"
The next lemma states that curl-free functions are given by gradients.
Lemma 4.2. It holds G(R?) = {v € L*(R3)3 |Curlv = 0} N(curl). More-
over, ¢ in G(R?) also belongs to Si(R?) and ¢ to LL_(R3).

loc



MAXWELL SYSTEMS WITH RETARDED MATERIAL LAWS 17

Proof. Since curl V = 0, we have G(R?) C N(curl) which implies N (curl)* C
G(R3)*. Let f € N(div) and g € N(curl). We use mollifiers and define
gn = X1 *g € C®(R3)3 N L°(R3)3 for n € N. Then we have g, — g in
L?(R%)3 as n — oo. Since curlg, = x1 * curlg = 0, it is well known that
there is a sequence (¢,) in C*°(R3) N L>(R3)? with g, = V¢, for all n € N.
Lemma 4.1 provides a sequence (f,) in C°(R?)3 N N(div) with limit f in
L?(R?)3. We infer

f-gdz = lim fn-Vo,dr =— lim div(f,)pn dz = 0,
R3 n—oo R3 n—oo R3

and hence N(div) C N(curl)*. The Helmholtz decomposition then yields
N(curl)t C G(R*)* = N(div) C N(curl)?t,

from which we conclude N (curl) = G(R3).

Note that i&,F¢, converges to gy in L?(R3) as n — oo, and thus also
pointwise a.e. and with a pointwise majorant h € L*(R3) for k € {1,2,3},
after passing to a subsequence. Hence, F¢,, is bounded by 3h/|¢|; € LY(B)
on B = B(0,1) and by 3k on R3\ B. Using dominated convergence, we see
that F¢,, tends to —igy/& =: ¥ in S*(R?) N LL (R3). For ¢ = F~1¢ we
infer V¢ = g and ¢ € Sj(R?), see p.22 in [3]. O

For the remainder of this section, let # € W1 °(R3) be bounded from

below by some positive constant 7. We define L2(R3)? as the space L%(R?)3
equipped with the weighted scalar product

o)y = [ of -gdo

For V. C L?(R?)? we denote by V1¢ the orthogonal complement of V/
with respect to (-|-) 2 The next lemma yields a Helmholtz decomposi-

tion with respect to this weighted scalar product, replacing div(f) by the
expression div(ff). We define the operators divy : H(div) — L?(R3) and
Ag : H(curl) — L%(R3)3 by dive(f) = div(6f) and Ag = 0 'curl. (Note
that divg(f) = 0div f + V6 - f).

Lemma 4.3. [t holds N(curl)¢ = N(divy).
Proof. Let u € N(curl):¢ and ¢ € C(R3). Since curl Vi = 0, it follows

/ Ou - Vodr = (u|Ve) ;2 =0,
R3 ¢

which implies u € H(div) and divg(u) = 0.
Conversely, let u € N(divg) and v € N(curl). Lemmas 4.1 and 4.2 provide
a sequence (¢,,) in C°(R3) with V¢, — v in L?(R3)3. So we obtain

(u\v)Lg = lim Ou - Ve, dr = — lim div(0u) ¢, dz = 0. O

n— o0 R3 n— o0 R3

Let Qg : L?(R3)? — L2(R3)?3 be the orthogonal projection with respect to
("')Lg onto N(curl) = N(Ap). The orthogonal projection onto N (Ag)L¢ is

thus given by ég := I — Qy. We collect basic properties.
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Lemma 4.4. We have N(Qp) = R(Qp) = N(divg) and R(Qg) = N(Qp) =
N(curl).

In the sequel, we need boundedness properties of Qy on our Sobolev spaces.
The next lemma states that Qg can be restricted to a bounded linear operator
on H*(R3)3 as well as to a bounded linear operator from L?(R3)3NH*4(R3)3
to H*(R3)3. We denote these restrictions also by Qg. We do not know
whether one can discard L? here, but this matter plays no role below (where
we only need a,s € [0,2]). For smooth § > 0 being 1 outside a compact
set, the arguments in §4.3 of 8] imply boundedness of Qg on H*? and H*.
They involve the theory of Fourier integral and pseudodifferential operators,
which we want to avoid.

Lemma 4.5. Letn >0,k €N, g € [2,00) and s € [0,k]. Let § € CF(R?)
satisfy 0(x) > n for all x € R3. Then we have

1900l 5.0 S 0l grs.a + [0l 2 5 (4.1)
1900l s < N[0l s
for all v € S(R3)3.

Proof. Let v € S(R3)3. Lemmas 4.1 and 4.2 provide a function ¢ € L2 (R3)N

S (R?) with Qpv = V¢ and gb € L} .(R3). By the Sobolev embedding, ¢
belongs to LS(R3) and ||¢|| s < |Qevlz2 < ||v]z2. (See Theorem 1.38 in [3].)
We define the differential operator £ by Lu = div(fVu) and observe that

L¢ = div(0Qgv) = div(v) — div(0(I — Qy)v) = div(fv) =: g € H™O(R?).

The main theorem in [12] shows that £ — ) is an isomorphism from H!6(R3)
to H=50(R3) for some A > 0. So ¢ = (£L—\)"1(g — \¢) lies in H50(R?) and

10l e S Mlgllg-—rs + 1l g-16 S vllzs + [0l s »

which implies | Qgoll o S 16l s S [0l o+ 10l 2. Hence, Qp € B(LA(R?)?)
restricts to a bounded linear operator from L?(R3)3 N LE(R3)3 to LS(R3)3.
Let 7 € [2,6] and take 8 € [0,1] with 1 = g + ﬂ. It follows

1Qovll - < 11Q00172 Qoo 15" S llvll 2 + vl s - (4.3)

Now we choose some § € (0,1] and set r := 3 — §. Since V¢ € L"(R?) and
¢ € S*(R3) by Proposition 2.2 in [10] the map ¢ is contained in L4(R?) for
= 6 — 3, and hence

19llze S 1Qevll e S Nollpe + (10l s -

As a result, ¢ belongs to LI(R3) for all ¢ € [6,00). By [12], the ~operator
L£—Xis an isomorphism from Hlvq(R?’) to H~14(R3) for some A = A(q) > 0.
Therefore ¢ = (£ — X)~ Yg— )\(ﬁ) € HY9(R3) is bounded by

1Dl e SNl gr-1a F Nl g-1.0 S NVllpa + 1@l Slvllpe + vl (4.4)

for all ¢ € [6,00). This inequality and (4.3) imply || Qpv| 10 S vl e + V]l 2
for all ¢ € [2,00) and therefore (4.1) for s = 0.
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Now let s € (0,1). We set ¢ := (V)® ¢ and have ||¢s]| ;¢ S |0l g1.0- By
the first part of Theorem 1.4 in [13], it holds (V)* (0V¢) = 6 (V)*Vé + R
with a remainder term R satisfying

IR0 S I09) Oll o 99l + 1901 (907 99| S Il
Because of div(0Qpv) = div(fv), we obtain the equation
div (V) = (V)* div(0V¢) — div(R) = (V)* div(fv) — div(R) =: gs.

We can bound g5 in H Y9(R3) by c(||v|lgse + [|¢]lg1a). As above and
using (4.4), we deduce

[©sll e S Ngsll -1 + 19sll -1 S N0ll s + 101 z1a S N0ll s + [0l 22,
1900l 5.0 = 1V)* VI Lo S 195l o S M0l s + IVl 2 -

The general result is then proved via induction, invoking the second part of
Theorem 1.4 in [13] at the end. O

Now we define the projection @ for the Maxwell problem on Lg} u(R?’)G by

E\ [(QE
*(n) = (&)
for (B,H) € L2(R*)% and we set Q := I — Q. The needed properties of

@ and @ follow from the above results on Qy. The statement on S(-) is a
consequence of the resolvent approximation.

Lemma 4.6. Letn > 0, ¢ € [2,00) and s € [0,2]. Assume that e, u € CZ(R3)
satisfy e(z), uw(x) > n for all x € R3. Let Q be defined as above, A by (3.2),
and S(-) denote the group generated by A.

Then the operator Q is the orthogonal projection onto N(A) in L2 ,(R?)°
with respect to (-[-) 2 g It satisfies

N(Q) = R(Q) = {(E,H) € L*(R*) | div(cE) = div(uH) = 0},
R(Q)=N(Q) = {(E,H) € L*(R®)® | cwlE = cwlH = 0}
as well as QAu = AQu =0 for all u € D(A) and QS(t) = S(t)Q fort € R.

Furthermore, Q‘ s and @Q 5 can be uniquely extended to bounded linear
operators on H*(R3)S and from L?(R3)5 N HS9(R3)6 to H*(R3)C.

By the above lemma we can simplify the Strichartz estimate (3.7) if the
data are ‘charge-free’.

Corollary 4.7. In the setting of Theorem 3.4, let Qug = 0 and Qf = 0.
Then the mild solution u of (3.4) is contained in LP((0,T), H**(R?)®) and
satisfies Qu =0 by (3.5) as well as the estimate

ull 2o (0.7, reay < Cste(Nlwollgs + 1l 20,7y, 15 ) - (4.5)



20 CHRISTOPHER BRESCH AND ROLAND SCHNAUBELT

5. LOCAL WELLPOSEDNESS

Our goal is to show local wellposedness for (3.1). (Recall the definitions
made before and after this equation.) Let Assumption 2.4 be true, J be an
interval with sup J > 0 which contains (—oo, 0], and uy, belong to Z(0). Set
J+ = JNRso. We say that u = (E, H) is a mild solution of (3.1) on J if u
is an element of C'(J, H*(R?)®) N LP((—o0,b), H*4(R*)%) for all b < sup J
and satisfies Duhamel’s formula

t::{&xw@%m»4¢ﬁ54t—TXF@M)+gh»dn teJ,,

un(t), t<0. (5:1)

Using standard perturbation theory for semigroups, one can equivalently
require

wlt) = {s<t> (un(0)) + Ji S(t = 7)(Bu(r) + F(ur) +g(7)) dr, €T,
un(t), t<0.

We stress that a mild solution belongs to Wt (J,, H¥71(R?)®) and satisfies
(3.1) for a.e. t > 0, see Remark 3.2. In particular, concatenating and shifting
mild solutions lead again to mild solutions.

If we applied the Strichartz estimate (3.7) to the mild solution u of (3.1),
the charge contributions on its right-hand side would spoil the resulting local
wellposedness theory. As a remedy we split the problem into two parts, using
the projection onto ‘charge-free’ fields from Lemma 4.6. Set © = v + w with
v:=Qu and w := @u Since ) commutes with A and maps into N(A) the
functions v and w are mild solutions of the two sub-problems

V'(t) = Q(Bult) + F(ur) + g(t)), t>0, (5:2)
v(t) = Quy(t), t<0, |

respectively
w'(t) = Aw(t) + Q(Bu(t) + F(w) + g(t)), t>0,
w(t) = Qun(t), <0,

As @ projects onto ‘charge-free’ fields, the Strichartz estimate from Corol-
lary 4.7 can be used for w. In the sub-problem for v, we can integrate the
nonlinearity F'(u;) directly by means of (2.11) and Lemmas 2.2 and 2.11,
leading to

t
Mﬂ==QUM0)+[:Q(BUU)+gﬁﬁ%h'%Qﬁ_%T@O®)FOU@D-(5@

Additionally we have to require that the curl-free part Quy,(0) at the initial
time lies in H*9(R3)%. As we see in Lemma 5.1, Quy,(0) € H%4(R3)% implies
the additional property Qu € C(J N[0, c0), Ho"q(RB’)G). This is needed for
the construction of a mild solution on a maximal time interval, where we
restart problem (3.1) using the shifted solution as a new initial history wy,.

The next lemma yields a local solution by means of the core fixed-point
argument. With the constant Cgi, from (5.10). we set

M= sup [|St)lggsy =1, K i=1+M+ Csy. (5.5)
0<t<1

(5.3)
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Lemma 5.1. Let Assumption 2.4 be true and rg > 0. Then there exists
a time by = bo(rg) € (0,1] such that for each uy, € Z(0) with Quy(0) €
H*(R*) and [|Qui(0)| o + ”UhHZ(o) + HgHLl((O,l),HSﬂHO‘»q) < 7o there is
a mild solution u € Z(by) of (3.1) on (—o0,bo]. It is the only mild solution
of (3.1) on (—o0, bo] satisfying HuHZ(bO) < 14+ Kry for K from (5.5), and Qu
is contained in C ([0, bo], H**(R*)%). For each b € (0,bg], the restriction of
u to (=00, b] is the unique mild solution on (—o0,b] with |lul| 54, <1+ Kro.

Proof. Let rg > 0 and uy, € Z(0) with Quy(0) € H*? and [|Qup(0)|| ja.q +
lunllz) + 19l Lre0,0), renmeay < 10 We set r := 14 Kro. For a time
b € (0,1] (specified later) we define the space

2(brr) = {u € Z0) [ = e Nl ) <7}

equipped with the complete metric induced by the norm of Z(b). On Z(b,r)
we introduce the fixed-point map ® = &, , by

() (t) S(t)u +f0 (t —7)(Bu(t) + F(ur) + g(1))dr, 0<t<b,
a Uh(t), t<0.
(5.6)
As above, we split @ into &1 + ®5 given by
Quy(0) + [T Q(Bu(r) + F(u;) + g(1))dr, 0<t<b,

P (u)(t) = {Quh( 9, 0 <0,

(t)Qup(0) + [ S )Q(Bu(r)+F(u,)+g(r))dr, 0<t<b,
Do (u)(t) = {Quh( ), 0 <0

Letu = (EH), 7 = (EH) € Z(b,r) and f := Bu+F(u)+g € L*((0,b), H*).

1) We first show that ® maps into Z(b,r). Clearly, ®(u) is contained in
C((—o0,b], H®). Set E4(b) = L*((0,b), H*). By Lemma 2.12, there exists a
constant C’ > 0 such that

110y, < 0l Bligas) Sup, @)l = + [1F(wo)ll g, ) + 19120

1
<A +rM)(0+b7) + gl g,y = @) + 19l g,
Hence, ®(u) belongs to Cy((—o0,b], H*(R*)%) with
sup () (Ol e < M (ro +w(b)). (5.7)

For LP((—o0,b), H*1), we start with ®;(u). As in (5.4), we can write
t
Dy (u)(t) = Quh(O)—i—/ QB(u(TH—g(T))dT—l—QFfl(F(u)(O)—F(u)(t)) (5.8)
for t € (0,b). Since b < 1, Lemmas 2.2, 2.8, 4.6 and Holder’s inequality yield

H/ QB (7’)) dT’

S ||BHog HQHB(mme,Hw) (Nl 10,00, mr50 7700y + N9l £1 (0,09, rsnrevay)

H>q

ST+ HQHLl((o,t),HSmHa«Q) )
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Q& (T(u)(0) — T(u) ()] ;o
< IT(u)(0) = T(w) (Bl 2 + [IT () (0) = D(w)(t) grae S 1+ 7Y

using also the assumption on uy,. We thus obtain
~ 1
[P (W)l Lo ((0,p), proay < CbP (479 +7™) (5.9)

for a constant C' > 0. For ®y(u) we use the Strichartz estimate. By Lem-
mas 2.2, 2.12 and 4.6, QQf belongs to Ll((O, b), HS) and satisfies

1
Q| ey < H((0+ D) (14 V) + 9z, ey) < LB (1 +7™) + N9l g, v )
for a constant L > 0. Corollary 4.7 then shows ®5(u) € LP((0,b), H*4) and

1
i + L(bp’ (1 + TN) + HgHES(b) ))

1220l (0.4),1100) < Cir (| Qunco)
< G (ro + b7 (14 7V)). (5.10)

Involving also uy, estimates (5.7), (5.9) and (5.10) lead to
1D (u)ll gy < (1+M +Cbr + Csie)T0 + (Cbp + Coueb? )1+ 7)) + Mw(b).

Since the right-hand side converges to (1 + M + 6'Str)ro = Krgas b — 0,
there exists a time b(()l)(ro) € (0,1] with [|®(u)|| ;) < r forall b € (0, b((]l) (r0)]

2) We now prove that the map ® is a strict contraction on Z(b,r) for
sufficiently small b. It holds

D (u)(t)—P(u)(t)= {J(;os(t—T)(B(u(T)—ﬂ(T)) + F(UT)—F(ﬂT))dT, Sit(f b,

Observe that

Sbflu— ﬁ”Z(b) : (5.11)
HS

t
/ S(t - 7)B(u(r) — u(r)) dr
0
Together with the properties of F' in Lemma 2.12, we infer
1 _ ~
@) (t) = D@ (Ol e S MB+07 )1+ lu =y, (5.12)
for all t € [0,b]. For LP((0, Ha’q) the part ®; = QP satisfies

b),
Q(B(u( u(r)) + F(ur) — F(u;))dr, 0<t<b,
t<0.

@ () (1)@ ) (1) = {07
As above, Lemma 2.12 yields
[@1(w) = @1(W) | 1o ((0,0), rovay S (bH% +0)(1+ V) lu = g - (5.13)
Concerning ®o = C~2<I>, Corollary 4.7, estimate (5.11), and Lemma 2.12 imply
[@(u) — ®2(0) | ooy s1m0) S Cstr (7 ) (147 Ju = @l 1 - (5.14)
Estimates (5.12), (5.13) and (5.14) lead to a time b\” € (0,1] with
[®(u) — ‘I’(H)Hz(b) < % Ju— aHZ(b)
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for all b € (0,65”]. So with by := min {6{", 5}, the map ® is a strict
contraction on Z(by,r) and Banach’s fixed-point theorem yields a unique
u € Z(bo,r) satisfying ®(u) = u. The variants with b < by are clear.
Finally Qu belongs to C([0, bo], H*(R?)%) because of (5.8), the assump-
tion Quy(0) € H*4(R?)® and the mapping properties of the involved maps,
see Lemmas 2.2, 2.8 and 4.6. U

The mild solution in Lemma 5.1 is only unique under a condition on its
size. We now show that mild solutions in Z(b) are unique unconditionally.

Lemma 5.2. Let Assumption 2.4 be true, up € Z(0), Quy(0) € H*4(R3)S,
andu € Z(T1), v € Z(Ts) be mild solutions of (3.1) on (—oo,T1] respectively
(—o00,Ts]. We then obtain u =v on (—oo, T3] with Ts = min{Ty,T>}.

Proof. Without loss of generality, let T7 < T5. We define
t=sup{t<T) | u(r) =v(r) for all T < ¢} .
Then we have £ > 0, and u(f) = v(f) by continuity. Suppose that < Ty. The

functions @ := u(- + ) and 9 := v(- + ) are mild solutions on (—oc, T} — 7]
if uy, is replaced by u(«+ %) and g by g(-+1). We set

7o = maX{H“h”Z(i) + ”g”Ll((E,1+f),HSﬂH%‘1) ’ HQ“h(f)HHM} :
Lemma 5.1 yields a time bo = bo(7p) > 0 and a mild solution w of
w' (t) = (A+ B)w(t) + F(wy) + g(t +1), t>0,
w(t) =u(t+1t), t<0,
on (—o0, bp] and it is the only one with Hw”Z(éo) <1+ Kry. There is also a
time by € (0, bo] with £+ by < Ty and ||| 5,y , |0l 55,y < 1+ K7o. It then
follows @ = w = © on (—o0, by], which contradicts the definition of £. O

We next show that solutions do not depend on the parameters (s, p, q, @)
as far as the assumptions are met.

Lemma 5.3. Let the conditions in Assumption 2.4 be true for (s,p,q, )
and (5,p,q,@). Let uy, belong to Zé’Z(O)ﬂZg’E(O) with Quy,(0) € H*4(R3)5N
HY(R3)S. Let u € Z3%(Th) and u € Zé’%(Tz) be mild solutions of (3.1) on
(=00, T1], resp. (—o0,T3]. Then u="1u on (—oo, T3] for Tz = min{T1,T>}.

Proof. We proceed as in the proof of Lemma 5.2, assume 77 < T, and define
t and 7o analogously for u, @, wuy, and ¢ in these spaces. The fixed-point
argument in the proof of Lemma 5.1 also works if Z(b) is replaced by Za%(b)N
Z2%(b) and H*(R?)S by H*(R?)® N H¥I(R?). This yields a solution in

this space for t >  which extends u and @, violating the definition of . O
Lemma 5.2 allows us to define the maximal existence time
t* (un, g) == sup{b > 0| 3 a mild solution u’ € Z(b) of (3.1) on (—oo, bl}.

The interval JT (uy, g) := (—00,t" (up,g)) is called the mazimal existence
interval. By means of uniqueness, setting u(t) := ub(t) for t < b < tT we
obtain a mild solution of (3.1) on J* (uy, g), called mazimal mild solution.



24 CHRISTOPHER BRESCH AND ROLAND SCHNAUBELT

We can now state the existence and uniqueness of a maximal mild solution
and give a blow-up condition.

Theorem 5.4. Let Assumption 2.4 be true. Let uy € Z(0) satisfy Quy(0) €
H*9(R3)S. Then the following assertions hold.

(1) There exists a unique mild solution u of (3.1) on J* (uyn,g) such that
Qu e C (J* (un, g) , H1(R?)9).

(2) If t* (un, g) < oo, then there exists a sequence (tx) in (0,t (un,g))
with t, — tT (uy, g) and

llute)ll s + ”uHLP((—oo,tk),HO‘vq) — 00, k— o0 (5.15)

Proof. The first statement is a consequence of Lemmas 5.1 and 5.2 and the
definition of the maximal existence interval.
We prove the second assertion by contradiction. Let t* :=tT (uy, g) < oo,
u = (E,H), and suppose (5.15) is false. By monotone convergence, we obtain
C = sup [Ju(?)| g + ||u||LP((—oo,t+),Ha»q) < 0.
t<tt
Let t < t*. Formula (5.4) and Lemma 2.8 yield

1
QU gos S N Quu(O) graa + (£7) " Nutll oo, 11000y + 19N L1 s+ ey

N

5 [l e oy + 1l ey 50 ()] < 0.

n=1 T§t+
Let C be the constant on the right and () be a sequence in (0,¢1) with
tp, — tt as k — oo. We set 7 := max {C, C’} and define sequences (fy) and
(gr) of functions by fi(t) := u(t + tx) and gx(t) := g(t + tg) for t < tT —ty,
and k € N. Then we have || fx|| ;) < 70 and [|Q fx(0)[| o.q < 7o for all k € N.

Lemma 5.1 provides a time by = bo(7o) > 0, independent of k, such that
V'(t) = (A+ B)v(t) + F(uv) + g(t), t>0, v(t) = fi(t), t<0,

has a mild solution vy on (—o0, Z;o} for all k € N. We now pick k € N with
t)+bo > tT and obtain a mild solution of (3.1) on the interval (—oo, t; + bg],
contradicting the definition of ¢T. O

Remark 5.5. Observe that the coefficients are real-valued and that ¢ and
the fractional derivatives appearing in the Strichartz estimate leave invariant
real-valued functions. Let the data uy, and g be real. Then Lemma 5.1 can
also be shown in spaces of real-valued functions, and the solution is real.

The next result provides continuous dependence on the initial data uy and
the inhomogenity g.

Theorem 5.6. Let Assumption 2.4 be true, uy, € Z(0), and satisfy Quy(0) €
H*4(R*)5. Let u be the mazimal mild solution of (3.1) on (—oo,t™ (uy, g))
and let b € (0,t"(un,g)). Then there exist constants 6 = (b, un,g) > 0
and C = C(b,un, g) > 0 such that for vy, wy € Z(0) with Quy(0), Quy(0) €
H*(R3)% and d,e € L ([0,00), H*(R3)% N H*(R?)®) satisfying

[[un = vnll z(0) + [1Q (un(0) = va ()| graa + 119 = ll L1((0,0), s Era0) < 65
[lun — wh”z(o) +11Q (un(0) = wn (0)|| grova + llg — eHLl((o,b),HsmHM) <9,
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we have min {t* (vy, d), t*(wp,e)} > b and

o= wll 50y + 5D 11Q (1) = w(®) e

0<t<b

< C(llon — wnl 0y + 12 (00(0) = w0 (0)) et + 14 — €l o) rorttonn )
where v and w are the mild solutions of (3.1) for vy and d, resp. wy and e.
Proof. We set b' = max{b, 1}, My := supo<i<p | S(t)llg(zr+) and

To = 14 [lull z) + 9l L1 o), rsnEa) + SUP (| Qu(E)|] e -
0<t<b

1) Let 61 € (0,1) and vy, wy, d, and e be as in the claim, with § replaced by
d1. In particular, we have the estimates

7o = max { [[vnll z(0) + 4l 1 (0,0, 1 ey » 1wnll 20y + Nell Lo ), rsnires) }s
7o = max {[|Qua(0)[| g , |Quwn(0)[| frava} -

Lemma 5.1 thus yields a time by := by(7o) € (0, 1] smaller than b, t* (v, d)
and t*(wy, €) such that 10l 20 » 10l 25y < 1+ KTo =:T and v = @y, 4(v)
and w = P, (w) on [0,by] with the fixed-point map from (5.6). Let 0 <
0 <t < by. Observe that

v(0) —w(0) = o, a(v)(0) = Py, a(w)(0) + Loy, a(w)(0) = Puy, e (w)(0). (5.16)
The first difference on the right is equal to

0
/0 S0 —7)(B(v(r) — w(r)) + F(v;) — F(w;)) dr. (5.17)

We write Ey(1) = L'((0,7), H%) and Eso(7) = L*((0,7), H* N H*9). Since

t < by <1, Lemmas 2.2 and 2.12 then imply
[@0,,a(0)(0) = o, a(w) (O)]| (5.18)
< M4(C1 |Bly ¢ sup [o(6) ~ wl®) . + | F(0-) - Flw)

Es (t))

1
< Opat? (L4 7V o = wll 7

with a constant C; > 0. The term ®,, 4(w)(0) — Py, (w)(0) is written as

0
Dy (6) = S(0) (vn(0) — wy(0)) + /0 SO —7)(d(r) — e(r))dr,  (5.19)

and can be estimated by

ID2(0) 71+ < My (|[v6(0) — wn(0)][ s + [ld — el (0)))- (5.20)

As v(t) —w(t) = vp(t) —wn(t) for t <0, inequalities (5.18) and (5.20) lead to

sup [0(6) — w(®)]] - (5.21)
0<t

L _N_
< Cppt? (L4771 [lo = wl| 5y + My ([lon—wnll 50y + ld—€ll g sy ) -

We turn to the estimate for v — w in LP((0,t), H*%(R%)%). Like in (5.13)
and (5.14), one controls the term (5.17) via

1 _
H¢’Uh,d(7}) - @Uh7d(w)||Lp((07t)7HaaQ) S CQtp/ (1 + FN 1) ||U - w”Z(t) (522)
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for a constant Co >0. To treat (5.19), we again use the projection @) and set
t
x(t) == QD2(6) = Q(vn(0) — wy(0)) +/ Q(d(r) —e(r)) dr,
0

W(t) = QDa(8) = QS(t) (vn(0) — wy(0)) + /0 QS(t —7)(d(r) — e(r)) dr.
The first term is bounded by

Il 0.0y < [1Q(00(0) = wi(0) |70 + 1R 1 = €ll (0.9 srerszze) -

Since 1) solves
P!(t) = Ap(t) + d(t) — et), t > 0, 1(0) = Q(vn(0) — wn(0)),
we can apply the Strichartz inquality from Corollary 4.7 and infer
||1/1”Lp((0,t),Ha,q) S Cstr (”Uh - wh”z(o) +|ld - e”Ll((O,t),HS)> :
It follows

H(I)U}nd(w) - (I)wme(w)HLp( (0,t),H4) < HX”LP ((0,t),H9) + kuLP ((0,t),H:9)

< C3([1Q(vn(0) = wn(0))|l o + llvn — wnll 7oy + ld = ellg, ,iy) (5:23)
for a constant C3 > 0. Formulas (5.16), (5.22) and (5.23) yield

[0 = Wl Lo (oo ), ey < Cgti (L+7V"N) v - wll 71 (5.24)
+ ([l + C5) [H ( — wn(0))|[ s + 10 = whll 7o) + 14 —ell s, 1) ]-

Since Q(v(t) —w(t)) is given by

Qv (0 / Q(B(u(r) — w(r)) + F(vr) — F(uw,) +d(r) — e(r))dr.

Lemma 2.12 implies
1R(®) = w(®) [ ro.a < 1Q(n(0) = wn(0))]] e
1
+Ca(t (L +T7VN) o = wll 5y + 1 = ell g, 1))
for a constant Cy > 0. Together with (5.21) and (5.24), we arrive at

o= wlz + s Q) —w(m) | os < Conry 7 0 = il

+ Cop(llon = will £y + [|Q(vn(0) = wn(0)) || jrog + lld =€l 1))
for constants Csp7, > 0 and Cgp > 1. The first term on the right can be
absorbed for small ¢. For ¢ € [0, b;] and some by := b1 (7o) € (0, by, we obtain

I = wllzg) + sup, 1Q(v(7) = w(m))]| jraa (5.25)

< 2C65( lvn — whll £ (o) + [|Q (0 (0) = wn(0)) || jrag + ld = €l sy )-

2) If by > b, we have min {t*(vy),t" (wn)} > by > by > b and the proof is
complete with 0 :=¢; € (0,1) and C := 2Cy. If by < b we restrict 6; to be
smaller than (2Cg,)~!. Using the special case wy, = uy and e = g in (5.25),
we obtain |v|[4,) < To as well as |Qu(b1)|[gaq < To. Analogously, it
holds [[wl| 74,y < 7o and [[Qw(b1)| ga.s < To. Thus we can iterate the above
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procedure. Here it is crucial that the step size b; depends only on 7y and
b. Applying Lemma 5.1 to the shifted data v, := v(- + b1), wy, := w(- + by),
d :=d(- 4+ b1) and € := e(- + b1), we find mild solutions v = @ +(v) and
W = g, z(w) on [0,bo] satisfying max{[|v]| o 10l 55y} < T~ The same
estimates as above then yield

17 =@z + sup Q) = B()]] o

< 2Cua (7~ Bl + Q) = T(0) s + -
for all ¢ € [0, b1]. Shifting back, together with (5.25) we conclude

Es () )

o =wllz) + sup [|Q(on(r) = ()] e

< GCg,b( v — wHZ(O) + HQ(U(O) - w(O)) HHO‘vq +ld - QHES’Q(t) )

for all ¢ € [0,2b1]. If 2b; > b the proof is complete with 6 := §; €
(0,(2Csp)7") and C = 6062,b' Otherwise we iterate again. This proce-
dure terminates after a finite number of steps, depending on 7g. Hence, the
constants § and C' depend on uy, g, and b. (]

Let Assumption 2.4 be true. We look at data uy, and ¢g with additional reg-
ularity, namely uy € Cj((—o00,0], H¥(R3)%) N LP((—o0,0), H*(R?)%) with
Quy(0) € H*1(R3)% and g € L] ([0, 00), H*(R*)S)N LY, ([0, 00), H¥(R?)9)
for some % < § < 2. Theorem 5.4 provides a maximal mild solution in the
space C((—o0,t]), H*(R*)®) N LP(—o0, t}), H*I(R?)®). On the other hand,
the Banach algebra structure of H*(R3) allows to prove local wellposedness
in Cy((—00,0], H*(R®)®), without using the Strichartz estimate, cf. [2]. So
we also have a maximal mild solution @ of (3.1) in C'((—o0,t1), H¥(R?)5).
Here we write tJ and t; to distinguish between the two maximal existence
times. The next proposition shows that the two solutions coincide on the
intersection of their maximal existence intervals and that these intervals are
the same if s is close to 1 or § = 2. For simplicity, we restrict to § € (%, 2].
Larger values of § can be treated as well, but require higher regularity as-
sumptions on coefficients and on Jj.

Proposition 5.7. Let Assumption 2.4 be true, 3 < 5 < 2 and uy be con-
tained in Cy((—o0,0], H3(R*)®) N LP((—o0,0), H**(R?)®) with Quy(0) €
H*(R3)5. Let Jo also belong to Li. ([0,00), H*(R®)3). Then we have
t;“ > t+ and the above mentioned solutions u and U coincide for t < t7.

If additionally s > s + % - é, then it holds t;r =t and H® — H*9.

Proof. 1) Set @ = min{a,§—%—|—%} > % and 5 := @—i—l—% <'s. We thus have
the embeddings H%4(R3) — H%4(R3), H*(R3) — H*(R3) and H?(R3) —
H%4(R3). Hence, uy, is contained in Zg’fI(O) with Quy(0) € H%9(R3)% and
for any 7' < min {¢], ¢}, both u and U belong to Z;’Z(T). Therefore it
holds u(t) = u(t) for all ¢ < min{t],¢J} by Lemma 5.2.

2) Let b € (0,t]) and assume ¢t < b. The blow-up condition in H*(R3)S
then provides a sequence (tg) in (0,¢7) satisfying t;, — ¢ and |Ju(tg)| s —
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oo as k — oco. We set r := H“HZZ”;(b) < 00. Lemma 2.3 also holds if H*(R?)

is replaced by H*(R?). So as in Lemma 2.10, we can compute
1E (ur)ll s Sr sup [w(O)] s + IIU(T)IIHa,q/O ¢(0) |lu(r — )|l s O

forall 7 € [0,tF). Weset e(t) := sup, <, ||u(7)|| gz for t € [0,¢]) and estimate
Duhamel’s formula by

t
[ s < [lun(0)]] s +/0 1 ()l s A7+ Mgl 1o, 1%)

< Jun(0) 1 s + /0 e(r)dr + /O 1) g /0 " 6(0) [u(r — 0)]] s A0 dr

+ gl 1 ((0,8),55)-
Observe that

/O 6(0) 6 = 0) 1= 40 < 9]l 1 (0.0 €(0) + 6]l 1000 / (6) d6

¢
<1 +/ e(d)dé.
0
This inequality and f(f lw(T)]| fra.g dT < b1 lead to

e(t) < c—I—d/O e(r)dr

for all t € [0,¢7) with positive constants ¢ = c(b,r) and d = d(b,r). Gron-
wall’s inequality now implies e(ty) < ceds < ces < 00 as k — 0o which
contradicts the blow-up condition. So we have t;r > b and since b € (0,¢5)
is arbitrary, we conclude that t; > tf.

3) Let § > s+ % — %. Assumption 2.1 then yields § — % > a— %, SO

that H®(R3) — H*%(R3) by Sobolev’s embedding. In particular, Quy(0)
belongs to H*4(R3)8. Let b € (O,t;r) and suppose tf < b. Theorem 5.4
provides a sequence (t) in (0,t]) satisfying ¢, — tJ and wy, := |Ju(tg)|| s +
[l Lo ((—o0,ty), ey — 00 as k — 0o. But we can estimate wy by

1
C'sup |[u(7)]| gs + Cb» sup [[u(7)]lgs < oo
7<b 0<7<b

for all £ € N, where C' > 0 is a constant independent of k. Therefore we
have ¢} > b and since b € (0,t) is arbitrary, the claim follows. O
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