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Abstract The convergence of an alternating direction implicit method for
Maxwell’s equations on product domains is investigated. Unlike the classi-
cal Yee scheme and most other integrators proposed in the literature, this
method is both unconditionally stable and computationally cheap. We prove
second-order convergence of the time-discretization in the framework of oper-
ator semigroup theory. In contrast to formal considerations based on Taylor
expansions, our convergence analysis respects the unboundedness of the in-
volved differential operators. The proofs are based on results concerning the
regularity of the Cauchy problems, which then allow to apply an abstract
convergence proof by Hansen and Ostermann [13].
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1 Introduction

Maxwell’s equations provide the foundation for the modern theory of elec-
tromagnetism, and solving these equations numerically is a crucial task in
the analysis and design of antennas, photonic cristals, waveguides, and mo-
bile communication devices. In the majority of simulations, the solution of
Maxwell’s equations is approximated with finite-difference time-domain meth-
ods (cf. [22]). Within this class, the Yee scheme [27] is particularly popular,
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but since this method is explicit, instability can only be avoided if a suffi-
ciently small step size is chosen. This can seriously affect the efficiency of the
method; cf. [22]. On the other hand, using an implicit and unconditionally sta-
ble Runge-Kutta method for the time integration may decrease the necessary
number of time-steps, but the price to pay is a large linear system which has
to be solved in each step. Thus, the total numerical costs of such an implicit
method is often not significantly smaller than the computational work of the
Yee scheme.

A major breakthrough for the simulation of Maxwell equations posed on a
cuboid or on the whole of R? was achieved around 2000 in [17; 18; 28], where an
unconditionally stable and computationally efficient alternating direction im-
plicit (ADI) method was proposed. The main idea is, roughly speaking, to de-
compose the Maxwell operator into two parts and to propagate the associated
sub-flows in such a way that the implicitness is reduced to one-dimensional
problems. Hence, instead of the large linear systems with large bandwidth
arising in the discretization of the full 3d problem, only small linear systems
with tridiagonal matrices have to be solved in each time-step. This invention
raised a lot of interest, and a large number of follow-up papers can be found
in the literature, see, e.g., [7; 10; 9; 11] and references therein. Moreover, the
operator splitting approach was modified and extended for the construction
of new methods by composition; cf. [2; 8; 14; 15; 24; 25; 26] and Chapter 18
in [22]. Splitting and composition methods for ordinary differential equations
are discussed in Section II.4-IL.5 in [12].

Tt is well known that the method proposed in [17; 28] is formally of second
order in time and space. Most of the convergence results found in the literature
use Taylor expansion of the exact solution to prove second order error bounds.
Ultimately, this leads to bounds where the leading error term depends on the
norm of the finite difference matrices used in the spatial discretization. How-
ever, since these matrices approximate unbounded differential operators, their
norm tends to infinity when the spatial mesh width tends to zero. Hence, such
an analysis only proves that the method converges with order two in time if a
fized spatial mesh is considered. The argument does not reveal whether or not
the accuracy of the time integration is reduced when the spatial approximation
is refined.

The main goal of this paper is to prove that under suitable regularity
conditions the second-order convergence in time is indeed not affected by the
spatial discretization. To this end, we prove an error bound for the semi-
discretization in a framework of operator semigroup theory which takes into
account that all operators involving spatial derivatives are unbounded. Our
error analysis is based on an explicit formula for the global error, which was
already used in [13] in a different setting. To estimate the terms in our error
formula, we need the skew-adjointness both of the operator governing the
Maxwell equation and of the operators arising in the splitting. Here, it is
crucial to choose the correct boundary conditions for the splitted problems.
It remains one core term, which has to be treated by means of a detailed
regularity analysis given in Lemmas 3.6 and 3.7.



Convergence of an ADI splitting for Maxwell’s equations 3

In Section 2 we introduce Maxwell’s equations on R® and on a cuboid, and
we formulate the method from [28] as a Peaceman-Rachford splitting method.
The computational advantage of this approach is explained in Section 2.3.
Section 3 is devoted to the analysis of Maxwell’s equations. We describe and
investigate in detail the analytical setting and establish the necessary regular-
ity results. Based on this analytical background, we present our error analysis
of the semi-discretization on R? and on a cuboid in Section 4 (cf. Theorems 4.2
and 4.5). The convergence results are confirmed by numerical examples which
illustrate how the accuracy is affected if the regularity of the initial data or of
the coefficients is low. Finally, in the appendix we present the proofs of two
technical lemmas from Section 3.

Notation. Throughout the article, the Euclidean scalar product on R3
is denoted by z - y. We write Y — Z if a Banach space Y is continuously
embedded into a Banach space Z. The domain D(A) of a linear operator A is
endowed with the graph norm ||z|| + || Az||. The domain of a product of linear
operators is defined by

D(AB) = {z € D(B)| Bz € D(A)}

and recursively for more factors such as A™. We use real valued function spaces.
All constants that only depend on the coefficients € and u are denoted by c.

Acknowledgement. We thank the referees for useful comments which in
particular led to a simplification of the proof of Theorem 4.2.

2 The ADI splitting for Maxwell’s equations
2.1 Maxwell’s equations

We consider linear Maxwell’s equations without sources on R3

OE(t) = Lrot H(t), teR, r € R3,

OH(t) = — rot E(t), teR, r € R, (1)
diveE(t) =0, divuH(t) =0, teR, r €R3,

E(0) =E°, H(0) =H", z € R?,
and on the cuboid Q = (ay,a]) x (ay,ad) x (a3 ,ad) C R3

OE(t) = Lrot H(2), teR, z€Q,

OH(t) = —% rot E(t), teR, z€Q, (2)
diveE(t) =0, divuH(t) =0, teR, xz€Q,
E(t)xv=0, pH(t) -v=0, teR, ze€0Q,

E(0) =E°, H(0)=H", T E€Q,

with a perfectly conducting boundary. The electric field E = E(¢,x) and the
magnetic field H = H(¢,z) vary in time and space, but the spatial variable
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x will usually be omitted. The corresponding initial fields are E® € L?(2)3
and H? € L%(2)3, where 2 € {R3 Q}. We assume that the permittivity
e € L™(2) and the permeability u € L>({2) are given functions which satisfy
e(z), u(z) > 0 > 0 for a constant § > 0. In the boundary conditions of (2), v
is the outer unit normal on the boundary 9Q (defined outside the edges). The
differential operators and boundary conditions are understood in the sense
of distributions and traces, respectively. It is known that these equations are
well-posed in L?(£2)°, see, e.g., Theorem 8.5 in [16] or Section XVIL.B.4.4 in
[5]. More precisely, the Mazwell operator

0 drot
w=( Lo ®

is skew-adjoint on a certain subspace of L?(2)¢ if we include the divergence
and boundary conditions in a suitable way in this subspace and in the domain
of M, and if we equip L?(£2)% with the scalar product corresponding to the
energy of the fields. Moreover, the divergence conditions for ¢E and for pH
and the boundary condition for yH follow from the other equations in (1) or
(2) if the initial fields satisfy these conditions, see Propositions 3.1 and 3.5.

However, it is hard to find a detailed proof for these results in the present
generality. Moreover, the framework of the well-posedness results is needed for
our error analysis. We have thus included the arguments in Section 3.

2.2 ADI splitting scheme

The time discretization proposed in [28] is based on the idea to split the
differential operator rot into

0
rot = Cl — 02 with Cl = 83

and to define
0 1cy 0 -10,
A(;CQ 0 > and B<_i01 0 >

The operators A and B act on L?(§2)%. They are endowed with the “maximal”
domains

(Cyv, Cou) € L*(R?)5},
(CQ’U, Clu) S LQ(R3)6}

)6

Dgs(A) = {(u,v) € L*(R?
€ L3(R3)®

|
Dgs(B) = {(u,v) (R*)"]

on the full space R? and with “partial” Dirichlet boundary conditions
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Dq(A) = {(u,v) € L*(Q)° | (C1v, Cau) € L*(Q)",

up =0on I's, ug=0on Iy, ug=0on [T},
Dqo(B) = {(u,v) € L*(Q)°| (Cv, C1u) € L*(Q)°,

uleonFP,i, quoonfli,u;),:OonF;}

on Q. Often we will omit the subscript indicating the spatial domain. Here
and below I';” and Ff are the open faces of () given by z; = a; and z; = a;r,
respectively, for j = 1,2, 3. Note that the boundary conditions in Dg(A) and
Dg(B) are well defined since the corresponding partial derivatives are square
integrable. The domains of A and B are chosen such that D(A) N D(B) C
D(M) and Aw + Bw = Mw for w € D(A) N D(B) and for both 2 = R? and
2 = Q. For each of the two cases, the domain of M will be defined in the next
section. We remark that A and B do neither respect the divergence condition
nor the magnetic boundary condition of Maxwell’s equations.

For a step size 7 > 0 and w € D(B), the ADI splitting method proposed
in [28] can now be formulated as

Sew = (I = 5B) I+ 3A)(I - 54)7 (I + 5B)w. (4)

Hence, this scheme is a special case of the Peaceman-Rachford method, cf. [13].
We will show in Section 4 that A and B are skew-adjoint (cf. Lemmas 4.1 and
4.3) and thus the above inverses exist. Moreover, this implies ||( + FA)(I —
TATY = ||(I + ZB)I — ZB)™'|| = 1 in a suitable norm, and since the
approximation w, obtained after n steps is given by

Sw = (1= 3B)" PPN I+ 5A)I - 3A) 7 (I + 3B

with P, = (I +ZA)(I—3A) "I+ 3B)(I-%B)",
it follows that
[S7wl < (T = 5B) - [I( + 5 B)w].

Since the right-hand side is independent of n, the method is unconditionally
stable. This was proved in a similar way in [7] for matrices instead of operators.
Alternative proofs of the unconditional stability can be found, e.g., in [15].
Our main Theorems 4.2 and 4.5 say that
the ADI splitting scheme S™(E®, H°) converges quadratically in L?(§2)°
to the solutions of (1), resp. (2), if EY, H°, ¢ and u are sufficiently
regular.

2.3 Efficient formulation of the ADI splitting scheme on R3

As the definition (4) indicates, each time step of the ADI splitting method
involves two implicit substeps corresponding to the two inverses. In [28], the
approximations

(E",H") = S*(E°,H°) € D(B) and

(b B = (- 34) I+ 5B)ENHY € D), meN,
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were replaced by equivalent ones in such a way that the linear systems arising
from the implicit parts can be solved in a very efficient way. This idea is the
main advantage of the method over most other implicit methods.

We first derive the equivalent scheme in R3. The first half step given by
(5) can be written as

E"": =E" - ZO,H" + ZOHW S,
H'" 'z — H" — 7 CLE" + iCQE"Jr%.

We eliminate H" 2 by inserting the second equality into the first to deduce

n+st _ mn T n T n T n T nt3
E't2 =E" - ZC,H" + £C (H" — 7, C1E" + oK 2)
2 2
=E"+ Z(C; — Co)H" — ZCp 'C1E" + T Chp 1 CE™ 3.
Here one applies partial derivatives to functions in L?(R?) so that from now
on the equations for E"*z and E"*! hold in H~'(R3)3. This leads to the
equivalent scheme
2 — n+i n T 72 — n
(I — iClu 102)E T2 =E + %(01 — CQ)HTL — EOLM 101E s
H"™2 =H" - LCE" + LCE 2, (6)

Similarly, the second half step can be transformed into
l 1 1
(I - ZCou 'O E™ = E"2 4 Z(C1 — Co)H™ % — T Cop ' CLE" 2,
H'H = H""2 + LB — Lo R (7)

2 2

The implicit parts are thus reduced to the products

32u*182 0 0
Cip~'Cy = 0 Osu'd5 0 ,
0 0 opu~to
- 1H 1 (8)
3 33 0 0
Cgﬂ_lcl = 0 81,11,7181 0 R
0 0 82/1,7132

which are diagonal, such that the implicit steps are fully decoupled. Since each
of the differential operators on the diagonal acts only on one of the spatial
directions, the spatial discretization of (6) and (7) involves linear systems
which are considerably smaller than the corresponding systems in the direct
formulation (5). In Section 4.3 we extend this derivation to the case of the
cuboid @ which is more involved due to the boundary conditions. We will see
that the approximations given by (5) satisfy (6) and (7) in a weak sense.
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3 Analysis of Maxwell’s equations

In this section we show the well-posedness of the Maxwell systems (1) and (2)
and establish certain additional regularity properties. Throughout, {2 denotes
an open set in R®. We are given ¢, u € L°(£2) with e, 4 > § > 0 for a constant
§ > 0. The state space X = L?*(£2)% is endowed with the weighted scalar
product given by

((E,H)\(u,v))x:(E|u)5+(H|v)M:/QEE-udx—i—/Q,unda: (9)

which is equivalent to the standard scalar product in L?(§2)% by our assump-
tions on € and pu. We will further need the spaces

H(rot) = H(rot, 2) = {u € L*(12)*| rotu € L*(2)*},
H(div) = H(div, 2) = {u € L*(2)%| divu € L*(2)}.

Since the differential operators are defined in distributional sense, it is straight-
forward to verify that rot and div are closed in L?(£2)? if endowed with their
“maximal” domains H(rot, {2) and H(div, £2), respectively. These spaces are
thus complete if equipped with the graph norm of the respective operators.
Often we will omit the spatial domain in the notation. We point out that
u € H(rot) means that, e.g., daus — d3us belongs to L2(£2) though the partial
derivatives dousg and Osus do not need to be functions.

3.1 Well-posedness and regularity on the full space R?

We will first treat the full space setting ({2 = R?) separately since this case is
less technical and here the line of arguments is quite transparent. We first note
that the space of test functions C°(R3)3 is dense in H (rot, R?) and H (div, R?),
which can be seen by standard (scalar) cutoff functions and mollifiers. The

equations
/ rotu - pdx = / u - rot ¢ dx,
R3 R3

Y divede = —/ v-Vipdo

R3

(10)

R3

hold for test functions and hence for all u,p € H(rot,R?), v € H(div,R?),
and ¢ € H'(R3). To treat the Maxwell system, we further need the closed
subspace

Xo = {(E,H) € L*(R?)® | div(¢E) = div(uH) = 0}

of X. Recall the expression of the Maxwell operator M from (3). We endow
this operator on X and its restriction My to X with the domains

D(M) = Dgs(M) = H(rot,R?)?, D(My) = Dgs(My) = Dgs(M) N Xo.
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Here and below we usually omit the subscript indicating the spatial domain.
Actually, only the operator My is physically relevant, but sometimes also M
is useful in the analysis. We next show the well-posedness of (1).

Proposition 3.1. Let 2 = R? and ¢, p € L>(R®) satisfy e,u > 6 > 0 for a
constant § > 0. Then the Mazwell operators M and My are skew-adjoint on X
and Xo, and thus generate unitary Co—groups T(t) = et™ on X and Ty(t) =
etMo on X, fort € R, respectively. Therefore, for each (E°, H?) € D(My) we
have a unique solution (E,H) € C*(R; L*(R*)%) N C(R; D(My)) of (1).

Moreover, M maps D(M) into Xo. Hence, D(MJ) = D(M?)N X, and the
operators To(t) and (N — Mo)~" are the restrictions of T(t) and (A — M)~}
to Xo, for allj € N, t € R, and A € R\ {0}.

Proof. We first note that M and Mj are closed because of the closedness of
rot and div. To show the skew-symmetry of M, we take w = (E,H) and
w’' = (E/,H’) in D(M). The integration by parts formula (10) then implies

(Mw|w')x = (L rot HE'). — (i rot E[H'),

:/ rotH-E’dx—/ rotE-H' dx
R3 R3

H~rotE’d:c—/E-rotH’dx

R3 R3
- —(H|—%rotE')H — (E[2 rot H'),
= —(w|Mw')x,

and analogously for M.

By standard spectral theory, e.g., [20, Corollary to Theorem VIIL.3], the
operator M is skew-adjoint if I & M has dense range. Skew-adjointness then
implies the assertions about generation and well-posedness in view of Stone’s
theorem [20, Theorem VIIL.8]. For given (f,g) € X we have to solve the
equations

E + lrotH = f, HF irotE =g (11)

with unknowns E,H € H(rot). It can be assumed that g € H(rot) because
H (rot) is dense in L?(§2)3. Formally inserting the second equation of (11) into
the first one, we obtain the problem

¢cE + rot(ﬁrotE) =cf Frotg = h € L*(R?)3. (12)
To solve this problem, we consider the symmetric bilinear form

a(u,v) :/RS(Euw—l—irotu-rotv)dx (13)

on H(rot). Observe that a is continuous and coercive. The Lax—Milgram lemma
thus yields the existence of a field E € H(rot) such that

/(5E~v+irotE~rotv)dx:/ h-vdz
R3 R3



Convergence of an ADI splitting for Maxwell’s equations 9

holds for all v € H(rot). Since h — eE € L?(R3)3, this fact implies that
rot(; ot E) € L*(R?)? and that E satisfies (12). If we now define H € H (rot)
by the second equation in (11), we obtain a solution (E,H) € D(M) of (11),
as asserted.

Observe that divrot = 0 holds also in a distributional sense. If (f,g) in
(11) belongs to Xy, we thus infer (E,H) € D(M) N Xy = D(My). Hence,
My is skew-adjoint in Xo. We further have M D(M) C X, which in turn
yields the assertions about the powers and the resolvent. The identity Tp(t) =
T(t)|x, then follows from the resolvent approximation of the semigroups, see
Corollary IIL.5.5 in [6]. O

Our approach relies on additional regularity properties of D(M@), proved
in the following lemma. In principle this result is known, cf. Corollary I1X.1.8
in [4], but we give the short and instructive proof for completeness. We write
f e LP(R3) + LYR3) if f = f1 + fo with f; € LP(R?) and fo € LI(R3).
Lemma 3.2. Let 2 = R® and e,u € WH(R?) with e, > 6 > 0 and
0;0jp € L3(R3) + L= (R3) for ¢ € {e,u} and all i,j € {1,2,3}. Then, it holds
that D(MZ) — H?(R3)S.

Proof. Let w = (E,H) € D(Mg). Since € and p are Lipschitz and div(¢E) = 0,
the function

divE = div(e 'eE) = ¢ ' div(¢E) + Ve ! -cE = —¢'Ve - E (14)
is contained in L?(R3), and analogously for H. We compute
rot(irot E)=Vu ! xrotE+ p 'rotrot E (15)

=Vu ! xrotE + ' (—~AE + VdivE)
= AE — u?Vyu xrotE — p ' V(e Ve - E). (16)

Note that the left hand side is equal to the first component of —eM?w and
thus its norm in L?(R3)3 is bounded by ¢ || M?w| x. Moreover, || rot E||z2 <
c|Mw||lx < c(Jw||lx + |[M?w|x). Hence, AE belongs to H'(R3)3 D
VL?(R?). Standard elliptic regularity results [19, Proposition 5.9.1] now im-
ply that E € HY(R3)? and ||E|z» < c(Jw|x + ||[M?w|x). Sobolev’s em-
bedding theorem further yields E € L6(R?)? so that the term V(¢~1Ve - E)
is contained in L?(R®)3 by the assumptions on e. From (16) we then infer
that AE € L*(R?) and ||AE|: < c¢(|w]x + |[M?w|x). Again by elliptic
regularity results [19, Proposition 5.9.1] it follows that E € H?(R?®)3 and
|E| 2 < ¢ (J|w]|x+|M>?w]||x). The field H can be treated in the same way. [

3.2 Well-posedness and regularity on a Lipschitz domain
We state and prove the basic facts for a general open set 2 C R3 with a

bounded Lipschitz boundary 942 # 0 (and specialize to §2 = @ later). In this
case the set C°°(£2)3 is dense in H (rot, 2) and H(div, £2), see Theorems I1X.1.1
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and IX.1.2 in [4]. We further need to explain the boundary conditions in (2).
Let R be the restriction map to 92. Due to Theorem IX.1.2 of [4], the tan-
gential trace u + Ru x v (initially defined on C*°(§2)?) extends to a bounded
linear map from H(rot) to H~/2(9£2)3, which we still denote by u x v for
simplicity. Moreover, we have the integration by parts formula

/u~rot<pdx=/gp-rotuda:—i—(uxz/,go)@g Yu € H(rot), ¢ € H'(£2),
o) 7}

(17)
see (1.17) in Section IX.1 of [4]. Here the brackets designate the duality pair-
ing between H~'/2(902)% and H'/?(9£2)> (and also between H~'/2(9£2) and
H'/2(812)). We remark that the trace operator v maps H'(£2) onto H'/?(942)
and that we usually write ¢ instead of y¢.

Similarly, the normal trace v — Ruv - v (defined on C*°(£2)3) extends to a
bounded linear map from H(div) to H~'/2(912), denoted by v — v - v. It also
holds

/v-dex:—/z/1divudx+(u~u,1/}>ag v e H(div), v € H'(£2), (18)
I7) I7)

see Theorem IX.1.1 in [4]. We further need the closed subspace
Hy(rot) = Hy(rot, £2) = {u € H(rot,2)|uxv =0 on 02}

of H(rot, 2). By approximation, one can extend (17) to

/ u-rot pdx = / p-rotudr Vo € H(rot), u € Hy(rot). (19)
o) o)

Test functions are dense in Hy(rot) with respect to the norm in H(rot), see
Theorem IX.1.2 of [4]. The above traces of functions in H(rot) and H(div)
are only distributions, in general, and thus a bit tricky. We add two technical
remarks in this context which are needed below.

Remark 3.3. Traces like pH - v = 0 as in (2) are defined for the product
pH € H(div). The product could be misleading here, as we do not claim that
w or H have a trace without further assumptions. However, if u € W1 (£2),
H € L*(2)3 and div(uH) = 0, then we derive H € H(div) as in (14) so
that the trace v - H exists in H'/2(082). To determine the trace, we take
o € HY () and set ¢ := p~to € HY(Q2). Formula (18) yields

(H- v 0)on = (Hevibon = [ (o divEL+ V() - H) do
Q
:/ (¢ div(pH) + Vi - pH) dz = (1H - v,9) o0
o)
For € WH*°(0), the boundary condition pyH - v = 0 is thus equivalent to
H: v = 0. In a similar way, for H € H*(2)3 and p € W>(£2) one shows

that the trace of uH is the product of the traces of u and H, where all traces
are functions.
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Remark 3.4. One can restrict the traces in H(rot) and H(div) to relatively
open subsets Iy of 012. To this aim, let Iy, Iy C OS2 be disjoint and relatively
open with Ty U Iy = 082 such that Oy and OI') have surface measure 0 in
092. Let H}. (£2)* be the subspace of functions o € H'(2)3 whose traces van-
ish on Iy (as an element of L*(02)*). The restriction ¢|r, of a functional
¢ € H2(812)3 to Iy is defined as the restriction of ¢ to H} (2)%. We also
note that if ¢\, has a continuous extension to L2(I)3, then this extension is
uniquely determined since YHF}, (£2)* is dense in L*(Iy)* (and a subspace of
Hz(I})3), see Remarks 13.6.13 and 13.6.14 in [23].

For the investigation of (2), we use the state spaces X = L?(£2)% and
Xo = {(E,H) € L*(2)°| div(¢E) = div(uH) = 0, pH -v = 0 on 092}

with the scalar product given by (9). The subspace X is closed in X due
to the closedness of div and the continuity of the normal trace. The Mazwell
operator is now defined by

M = (;Orot ig)t) . D(M) = Dq(M) = Hy(rot, 2) x H(rot, 2) (20)

in X. In view of (2), we mainly work with the restriction My of M to the
domain

D(My) = Dg(My) = Do (M) N Xo.

We see in the next result that M maps D(M) into X, and will thus consider
My as an operator in Xj.

Proposition 3.5. Let 2 C R3 be open with a bounded Lipschitz boundary
002 # 0 and let e,u € L (£2) satisfy e, ;0 > 6 > 0 for a constant § > 0. Then
the Mazxwell operators M and My are skew-adjoint on X and Xy, and thus
generate unitary Co—groups T(t) = ™ on X and Ty(t) = Mo on X, for
t € R, respectively. Therefore, for each (E°, H®) € D(My) we have a unique
solution (E,H) € C'(R; Xo) N C(R; D(My)) of (2).

Moreover, M maps D(M) into Xo. Hence, D(M]) = D(M’)N X, and the
operators To(t) and (M — Mo)~" are the restrictions of T(t) and (\ — M)~!
to Xo, for allj e N, t € R, and A € R\ {0}.

Proof. We first show that M maps D(M) into Xy. In fact, the divergence
conditions follow from divrot = 0. Moreover, rot E thus possesses a normal
trace if (E,H) € D(M). Let ¢ € H?(£2). The equations (18) and (17) then
yield

<y-rotE,ap>agz—/ <pdivrotde+<1/~rotE,<p>aQ:/rotE-Vgpdx
Q Q

/ E -rotVode — (E x v, Vp)so =0,
Q
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since rot V. = 0 and E € Hy(rot). By approximation, we deduce that (v -
rot B, p)ap = 0 for all p € H'(£2), and hence v - p- 1ot E = v - 1ot E = 0 as
asserted.

The operators M and My are closed in X and X, respectively, because of
the closedness of X and rot in X and the continuity of the tangential trace.

As in the proof of Proposition 3.1, one derives the skew-symmetry of M
and My now using (19). To show the range condition, one again employs the
symmetric form a(-,-) from (13) (with £2 instead of R?®) which is defined on
Hy(rot, £2) this time. The remaining assertions then follow as in the proof of
Proposition 3.1. O

We now come back to the special case Q = (ay ,a;]) x (a5 ,a3 ) x (az ,ad).
To transfer Lemma 3.2 to the present setting, we have to work much harder
because of the boundary conditions. We need an auxiliary result ensuring H?
regularity of the Laplacian on @ with mixed boundary conditions. It is surely
known to experts, but since we could not detect a proof in the literature we
present it in the appendix.

We employ the isometric isomorphisms

and their analogues for ds and 03 which follow easily from the corresponding
isomorphisms with H'! replaced by L?. As a result, a function in D; has traces
to I';F that belong to L?((ag ,a3) x (ag,ay)). The space HA(Q) is defined as
in Remark 3.4.

Lemma 3.6. Let I' be a union of some of the sixz open faces of Q, I'' be the
union of the remaining open faces. Let f € L?(Q). Then there is a unique
function v € H1-(Q) such that

/vcpder/ Vv-Vgodx:/ fodx for all ¢ € HR(Q). (21)
Q Q Q

Morever, the function v belongs to D := {v € H*(Q)NHX(Q)|d,v =0 on I}
and v—Av = f. Finally, the H?>~norm and the graph norm of A are equivalent
on D.

The following results about regularity and boundary traces for (E,H) €
D(Mg) are crucial for our error analysis. As in Lemma 3.2 we need some
smoothness of the coefficients. The regularity of the fields seem also to follow
if one applies Theorem 4.8 of [3] to €E and pH (cf. Paragraph 4.4.2 in [3]).
However, the results in [3] are obtained in a framework of an elaborate study
of singularities of time harmonic Maxwell equations in general polyhedral do-
mains. In our opinion it is very useful to include a rather short, direct proof
for the non-singular situation of a cuboid, which is given in the appendix.
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Lemma 3.7. Let e, € WH®(Q) with e, > 6 > 0 and 8;0;¢ € L3(Q) for
o € {e,u} and for all i,5 € {1,2,3}. It then holds D(MZ) — H?(Q)% and
(E,H) € D(M2) has the traces

onIf: Ey=FE3=0, 0yE=03Ey=0,F3=03E3=0,

only: Ei=FE3=0, O0E =03E =0F3=0;E3=0,

only: By=Ey=0, 0B =00E =0Ey=0FE,=0,

on I'F: Hy =0, 0,H, =0d3H, =0,

on Iy Hy=0, O1Hy=0;H,=0,

on Iy Hy=0, 0H;=0H;=0.

4 Error analysis

For the analysis of the splitting scheme (4), we define the operators

: )! /0T<T — s} M To(s)wds (22)

Aj(T)’w = 7'3(]7—1

for j € N, 7 > 0 and w € Xo; cf. [13]. It can be checked that ||4;(7)]x, <
1/(4") < 1. Setting Ag(7) = To(7), one easily shows that

TMoAji1(T)w = Aj(T)w — %w

for all w € D(My), 7 > 0 and j € Ny. In particular,
Ag=T+7MoAy =1+ 1Mo+ 7> MiAs =1+ 7Mo+ 37> Mg +7° M5 A3 (23)
on D(Mg), with A; := A;(7).

4.1 Splitting for Maxwell’s equations on R3

The Peaceman—Rachford scheme (4) involves resolvents and Cayley transforms
of TA and 7B. For the stability of the scheme, these operators should be
contractive which requires the dissipativity of A and B. Actually, we can prove
even their skew-adjointness without assuming extra regularity for £ and u. We
point out that A and B act on X and not on Xj.

Lemma 4.1. Let e, € L®(R3) with e,0 > § > 0. Then A and B are skew-
adjoint in X, and hence the operators (I — tA)~, (I —7B)~%, (I + TA)(I —
7A)™Y and (I + 7B)(I — 7B)~! are contractive in X for each T > 0.

Proof. We only consider A since the proof for B is analogous. We will show
that A is skew-symmetric and that I £+ A has dense range. Clearly, A is closed.
The skew-adjointness of A then follows, which implies the other properties.
Let (u,v), (¢,9) € D(A). Integrating by parts, we deduce

(A(u, v)|(p, ¥))x = (7' Crolp)e + (17" Coult)),, (24)



14 Marlis Hochbruck et al.

= / ((321/3 p1 + O3v1 o + O1v2 3) + (O3uz YW1 + Or1uz Yo + Doy %))dx
R3
= - / (v3 Daip1 + V1 D342 + V2 D193 + Uz O3h1 + ug O11hy + uy ats) da
R3
—— [ (eu- 1wt v LCap) do = (w0 Al ).
R-?)

To check the range condition, we take (p,1) € X such that 0s1)3, 0391 and
D112 belong to L?(Q)3. We then look for (E,H) € D(A) such that (E,H) +
A(E,H) = (¢, ). Reordering the lines, we write these equations as

Ey+10,Hs = ¢y, H3ii32E1=¢3,
Ey + L 0sHy = oo, Hy %+ - 03B = 4,
Es+10,Hy = 3, Hy + %81E3 = 2.

Formally, we insert the equations in the second column in the corresponding
ones in the first column and multiply by €, arriving at

eFy — 82(% D E1) =1 F Oaths = f1 € L*(Q),
eBy — O3 03F2) = epa F Oathr =: fo € L*(Q),
eEs; — 81(% O1E3) = ep3 F O1pe =: f3 € L*(Q).
We now start to solve these equations. To this aim, we introduce the operator
D; = 3]% 0; with domain
D(D;) = {u € L*(R*)* | 9;u, Dju € L*(R*)*}

with j = 1,2,3. Using Lax-Milgram, one obtains functions Ej;) € D(D;)
such that B ) — Dry)Er) = fk(j)7 with k(1) = 3, k(2) = 1 and k(3) = 2.
We then define

Hy = F5 0By n, Hy =F 0By +vs,  Hy=F; 051 + s
Hence, (E, H) belongs to D(A) and satisfies (E,H) £ A(E,H) = (¢,v¢). O

We now state our convergence result for the full space. We point out that
the convergence estimate is of second order and that it is proportional to a
‘third order norm’ (the graph norm of M) of the initial value, cf. Section 4.4.

Theorem 4.2. Let e, € WH®(R?) with e,y > 6 > 0 and 9;0;¢,0;0;u €
L3(R3) + L>®(R3) for all i,j € {1,2,3}. Then there is a constant ¢ > 0 such
that the splitting operator S, defined in (4) satisfies

17w = To(nm)wl e < ctenar? (w2 + [ Mgw]z2)

for allw=(E,H) € D(M?®)N Xq = D(M3), n € N, 7 > 0 and teng >0 with
nt S tend-



Convergence of an ADI splitting for Maxwell’s equations 15

Proof. Our proof is based on a formula for the difference S? — Ty(7n) which
was established in the proof of Theorem 3.2 of [13] for the case that A, B
and My act on the same spaces. We fix 7 > 0 and w € D(M3) N X,. Then
MEA;(T)w belongs to D(My—*) € D(AB) N D(A) for k = 0,1 and j € Ny
by Lemma 3.2 and the definition (22) of A;(7). We set Ry = (I — ZA)~! and
Rp = (I — ZB)7!. Recall that Aw + Bw = Myw. Using the formulas (23) for

2
Ao(7) = To(7), we compute

Srw —To(T)w = RpRa z

(I+3A)(I + 3B) — (I - 3A)(I - 5 B)To()|w
= RpRa|l+IMo+ T AB — (I — 3 My + T AB) Ao(7) |w

= RpRa [T = Ao(r) + 3M(I + Ao(r)) + T AB(I = Ag(r))|w

= RpRa|—7My — M2 — 73M3A3(r) + 5 Mo(2 + 7 My
+ r2ME Aa(7)) = T ABMy /i (7) |
— PRyRA [(34(7) — Az(1))ME — TABMoAy(1)]w.

A telescoping sum then leads to

n—1
Srw = Ty(nm)w =Y SPI71(S, = Ty(r)) To (jr)w (25)
j=0

n—1
=S S - 5B) T (1 - §A) M b Aa(r) - As(n)ITo(G7) M
j=0

3 n—1 )
—Tz D SrITHI = 3B) NI = FA)TTAB(I = Mo) T (1) To(j)w’
j=0

with w' = (I — My)*?Mow. Lemmas 3.2 and 4.1 and the contractivity of 4;(7)
and Tp(t) now imply the assertion. O

4.2 Splitting for Maxwell’s equations on the cuboid @

We first note that the boundary conditions in Dg(A) and Dg(B) are well de-
fined in view of the discussion before Lemma 3.6. Moreover, the traces appear-
ing in the definition of Dg(A) and Dg(B) are continuous from the respective
domain into the L? space on the relevant face due to this discussion. As a
result, A and B are closed in X. Again we can show their skew—adjointness.

Lemma 4.3. Let e, € L™®(Q) with e,u > § > 0. Then A and B are skew-
adjoint in X, and hence the operators (I — tA)™Y, (I —7B)~Y, (I + TA)(I —
7A)"Y and (I + 7B)(I — 7B)~! are contractive in X for each T > 0.
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Proof. The proof is almost identical to that of Lemma 4.1. One can repeat
the calculations in (24) on the spatial domain @ since all boundary terms in
the integration by parts vanish thanks to the boundary conditions in Dg(A).
Hence, A is skew-symmetric. In the proof of the range condition we only have
to change the domain of D; into

D(D;) = {u € L*(Q)* | 9ju, Dju € L*(Q)*, u=0on I;"}.
One then finishes the proof as in Lemma 4.1 O

Since both AB and My are of second order, one may expect that AB(I —
Mp)~? is bounded. This crucial fact directly follows from Lemma 3.7 which
gives the needed H? regularity and boundary conditions for w € D(M§g).

Proposition 4.4. Let e,y € Wh>(Q) with e, > § > 0 and 9;0;¢ € L*(Q)
forp € {e,n} and alli,j € {1,2,3}. Then D(MZ) = D(M*)NXo — H?*(Q)®N
D(AB) N D(A) and AB(I — Mo)~2: Xg — X is bounded.

Using the above proposition and D(A) N D(B) C D(M), one can now
establish our main convergence result on Q exactly as for R3.

Theorem 4.5. Let e, € Wh(Q) with e, > § > 0 and 0;0j¢,0;0;u €
L3(Q) for all i,5 € {1,2,3}. Then there is a constant ¢ > 0 such that the
splitting operator S, defined in (4) satisfies

17w — To(nT)wl| 2 < ctenar([[wl e + [|Mgw] 12

for all w= (E,H) € D(M3) N Xo=D(M3), n€N, 7>0 and teng > 0 with
NnT <tend-

4.3 Equivalence of the efficient reformulation of the method on the cuboid @

In order to extend the efficient scheme from Section 2.3 to the case with
boundary conditions, we use weak formulations of (6) and (7). We introduce
the relevant test function spaces

Y) = {u € L*(Q)? | O3uq, O1ua, Dous € L*(Q);

u1=00n[§t7 Uy =0 onf’li,ug,:O onFQi},
Yy = {u € L*(Q)? | Oyuy, O3us, Dyus € L*(Q)3;

u; =0 onFQi, Uy =0 OHF§t7U3:0 onfli}.

Observe that for (u,a) € D(A), (v,?) € D(B) and ¢ € Y}, we have u € Y5,
v €Y and Cjp € L?(Q)3. Integration by parts shows that

/C’gu-wdxz—/u-Clwdx, /C’lvadzz—/v-C’ggodx (26)
Q Q Q Q

for all u € Yz, v € Y7 and ¢,v € L?(Q)3 with C11), Cop € L*(Q)3. In the next
result, we use the weak versions of the differential operators in (8).
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Proposition 4.6. Let e, € WH°(Q) with e,pn > 6 > 0 and 9;0je,0;0;p €
L3(Q) for all i, € {1,2,3}, and let (E°,H°) € D(M3) N Xo. We consider
the approzimations given by (5). Then, (u,v) = (E"T2 H""2) is the unique
solution in D(A) of the decoupled system

2
(ulp)e + 77 (5 Coul £ Cap)e = (E"|9)e — 5 (H"[2Cap)e — 5 (;;C2H"|¢0),,
+ T ROECp).  VeeYs, (D)
v=H" — iC’lE” + iC’gu (28)
Moreover, (u,v) = (E"™1 H"*1) is the unique solution in D(B) of the decou-
pled system
2 nt s s T nti
(ul)e+ T (LCrul 2C19). = (B2 |y)+ S (H" 2 |1 C19) .+ S (LC1HM 2 ]y),,
+ o (LOE™HLIC). Ve, (29)
n 1 T n l T
v=H""2 + TGE" 2 — TCu. (30)
Proof. We focus on the first halfstep (27) since the second one can be treated
in the same way. Let (p,1) € D(A), i.e., p € Y5 and C12p € L?(Q)3. First, a
standard application of Lax—Milgram gives a solution u € Y3 of (27) for each

(E",H") € D(B). We then define v € L?(Q)3 by (28). Taking the e-scalar
product of (28) with 5-Cap and adding it to the equation for u, we deduce

(u“ﬁ)a + % (UEC%P)E = (E"|p): — % (iC2Hn|‘P)w
which yields
(ulp)e + 5 (v];C2), = (B"|p)e — T (CoH"|p).. (31)
We further take the p—scalar product of (28) with 1 and obtain
(vlY) = 5 (Coulp) = (H"[9), — § (;C1E"[9),,
W) + § (ultC19)e = (H ) — 5 (C1E"[9) ., (32)
where we use (26). The sum of (31) and (32) can be written as
((w, 0)[(I + TA) (@, 0) x = (I + FB)E", H")|(¢,¢))

for all (¢, 1) € D(A). On the other hand, (5) and Lemma 4.3 imply that
(B2 H )|+ 5A) (9, ¢)) = (I + §B)(E", H")[(¢,9))

holds for all (¢, 1) € D(A). The difference (E"*2 — u, H"*2 —v) € X thus

belongs to the kernel of (I + $A)* = (I — $A) which is trivial. Consequently,

(E”+%7H”+%) € D(A) satisfies (27). O
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4.4 Numerical examples

In order to illustrate Theorem 4.5 we apply the numerical method (6)—(7) to
two model problems. In both cases, we consider Maxwell’s equations (2) on
the unit cube (0,1) x (0,1) x (0,1). For the spatial discretization the classical
Yee grid (cf. [27] or Section 3.6 in [22]) with mesh width h = 1/m is used
(m € N). Hence, numerical approximations

E?(Z"‘%Ja k)~ E; (tn, h]h k:h),
E3(i,j+ 3,k) ~ Eg (tn,i hkh),
E3(i,j, k+ 3) = Es (tn,ih ]h + 2)h),
H'(i,j + 5.k +5) = Hy (tn, i h(k—i— ),
Hy(i+ 5,5,k + 3 )sz(tn h]h (k:+§)h),
Hi(i+ 5,7+ 5, k) ~ Hs (t, (i + Lyh, k)

are computed on six different staggered grids, and all partial derivatives are
approximated by central finite differences, for example

HY (i+ 3,5+ 5.k) —HY (i+ 3,5 — 5.k)
h

Hy (i+%,5,k+3)—HY (i+3,5,k—3)
h

9o (tn, (i + 3)h, jh, kh) =

03Ho (tn, (’L + %)h,jh, k‘h) ~

and so on. Note that 93Hs and doHj are not approximated on the same grid
as Hy and Hj, respectively, but on the same grid as E;. This makes sense
because (1) or (2) imply that

8tE1 = 8_1(82H3 — 63H2).

The other field components Eo, E3, Hy, Hy, and Hj3 are treated similarly. The
boundary conditions are implemented in a straightforward way: we simply let

E3(i,j+ 5, k) = E5(i,j,k+3) =0 for i € {0,m},
EY(i+%,5,k) = E3(i,j,k+3) =0 for j € {0,m},
Ef(i+5,5.k) = E3(i,j+ 5,k) =0 for k € {0,m}
and
H'(i,j+ 3. k+3)=0 for i € {0,m},
Hy(i+ 3,5,k+3)=0 for j € {0,m},
Hy(i+ 3,5+ 3.k) =0 for k € {0,m}.

This choice fits to the boundary conditions in (2), see Lemma 3.7.
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Ezxample 1: Impact of the regularity of the initial data on the accuracy

In the first example we let e = 1 and p = 1. It can be verified by straightfor-
ward calculations that each of the functions

sin(kmxe) sin(Arxs) cos(v k2 + A27t)
0
1 0
U (t7 93) = 0 )
—ﬁ sin(kmwws) cos(Amxs) sin(v k2 + A27t)
iz Cos(kmaa) sin(Aras) sin(v k2 + A2mt)
0
sin(kmxy) sin(Arxs) cos(V k2 + \27t)
0
ﬁ sin(kmz1) cos(Arzs) sin(vk2 + \27t) |
0
— e cos(kmry) sin(Arxs) sin(vk2 + A27t)
0
0
5 sin(kmz) sin(Arzs) cos(v k2 + A27t)
U (t,2) = —ﬁ sin(kmwy) cos(Amaa) sin(vk2 + A27t) |

T cos(kmay) sin(Amxs) sin(vk2 + A27t)
0

ui)\ (t7 .7;)

with (k,A) € Z2 \ {(0,0)} solves Maxwell’s equations (2) including bound-
ary and divergence conditions. More general solutions can be constructed by
superposition

Kmax Amax

Z Z nkunk t 3?) +anz\un)\(t Jf) +a’l’i)\uﬁ)\<t Z‘)) (33)
k=0 A=0

with coefficients a’, € R and af, = 0 for ¢ € {1,2,3}. The initial conditions
are obtained by simply evaluating (33) for ¢t = 0.

Numerical approximations were computed on the time-interval [0,5] with
different values of 7 and h. For each combination, the spatial error at a fixed
time is measured by the discrete counterpart of the norm || - ||z2, and for the
global error we consider the maximum L2-error over all time steps. In the first
example, we let

a%l =7 a%l = 277 a?l = 377 n)\ = 0 for all (’%7/\) 7é (17 1) (34)
with a constant 4 chosen in such a way that ||u(0,-)||z = 1. The result is
shown in the left picture of Figure 1. For 7 > 5-279 ~ 0.0098, the global error
is dominated by the error of the time discretization. In perfect agreement with
Theorem 4.5, we observe second-order convergence in time independently of
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Fig. 1 Global error of the full discretization with step size 7 = 5-27F in
time (k = 4,5,...,12) and spatial mesh width h = 1/100,1/125,1/150.
The dashed line shows the function 7 — 100-72 for the sake of comparison.
For the coefficients in the exact solution (33) we have chosen (34) in the
left panel and (35) in the right panel. In both cases, v was chosen in such
a way that ||u(0,-)||;2 = 1.

the mesh width, i.e. independently of the norms of the discretization matrices.
For 7 < 5-279 the error of the space discretization starts to dominate the
total error. As expected smaller values of h yield higher accuracy.

According to Theorem 4.5, the error of the ADI method depends on the
smoothness of the initial data. In order to illustrate this, the same numerical
experiment is repeated with

a%l =7 (1%1 = 277 ai’l = 377 (35)
a’é4 =37, a’§5 =27, agS =7

and af;/\ = 0 for all other coefficients, where 7 is again chosen in such a way
that ||u(0,-)]|r2z = 1. In this example, the solution oscillates rapidly in space
due to the terms corresponding to al,, a3s, and a3s;. The right picture in
Figure 1 shows that the error does not explode, but that the convergence only
starts for much smaller step sizes than before. The reason is that the term
| Mgwl|/zz with w = u(0,-) in Theorem 4.5 is now much larger due to the
lower regularity of the initial data. The error plot also indicates that the step
size where convergence starts (1 < 5277 ~ 0.039) does not depend on the
mesh width h. The reason is that the term || M3w| 2 is independent of h.
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g(x)

-----
-
-
-

-_-—-a=5
— a =100

0.8 0.9 1

Fig. 2 Function g(x;) defined in (37).

Example 2: Impact of the regularity of the coefficients on the accuracy

In the second model problem we test how the accuracy is affected by the
smoothness of the coefficient functions € and p. We let

e(z) = p(x) = 2+ g(w1)g(w2)g(x3), (36)

g(x;) = %arctan (a(z; — 0.5)), i€{1,2,3}, (37)

and either a = 5 or & = 100. The function g is depicted in Figure 2. For « = 5
both e(z) and p(z) are so smooth that the convergence order two in time is
not affected, which can be seen in Figure 3. For o = 100, the function g(z;)
rapidly changes its value from —1 to 1 when x; ~ 0.5, and Figure 3 shows
that in this case the low regularity of € and p spoils the order of convergence
as expected. In this case, convergence of order two could only be observed for
considerably smaller step sizes 7 and a much smaller mesh width A. Since no
explicit formula for the exact solution is available for our choice of £(x) and
(), the error of the time discretization was estimated by means of a reference
solution which was computed with 7 = 5-27' and h = 0.01. For both values
of o, we have used the initial data

with u defined in (33) and parameters

al, =ad? =a}, =1, aly =0 for all (k,)\) # (1,1).
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Fig. 3 Global error of the time discretization for non-constant coefficients
(36), (37) with @ = 5 (dots) and « = 100 (circles). Approximations were
computed on the interval [0, 5] with step size 7 = 5-27F (k = 4,5,...,10)
and spatial mesh width h = 1/100. The dashed line shows the function
7 — 10 - 72 for the sake of comparison.

5 Appendix
We now present two proofs of Lemmas 3.6 and 3.7 we omitted in Section 3.

Proof of Lemma 3.6. Lax-Milgram provides us with a unique v € HA(Q) sat-
isfying (21). To show the asserted regularity of v, we consider the operators
A; = 78? on L?(Q) whose domain consists of those w € L?(Q) such that
8J2-w € L*(Q), w =0 on Fj"’ oron I, if Fj+ C I'orif I C I', respectively,
and O;w = 0 on Fj+ or on I'7 if '™ C I'" or if I';’ C I, respectively. Here
and below we have j = 1,2,3. For u € D(A4;) and v € Dy, an integration by
parts shows

/Q(uv + Ajuv)de = /Q(uv + 0judjv)dx =: a(u,v),

where a is a symmetric, continuous and coercive bilinear form. It is routine to
check that A; is the self adjoint operator induced by a. It is clear that A; is

1 _1
positive. In particular, D; is the domain of AJ? and hence ajAj 2 is bounded

on L?(Q).

To see that the resolvents of A; and A; commute, we observe that the
resolvent of, say, A; is given by (A + A1) f)(x,y,2) = (Ri(N) f(,y, 2))(z)
for A > 0, for almost every (z,y,z) € @ and the resolvent R;(\) of the
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negative second derivative on L?(a; ,a;") with the boundary conditions of A;.
Analogous facts hold for Ay and As. If f is the product of fy € L?(a;,,a; ) for
k=1,2,3, then (Al + A;)) V(AT + A;)" f = (AT + A;)"Y(\] + A;) "1 f. Since
the span of such functions is dense in L?(Q), the resolvents commute.

As explained in Sections III.4, VII.2 and X.1 of [21], we thus have a joint
functional calculus with respect to Ay, Ay and A3 for Borel measurable func-
tions ¢ : R — R. The operator ¢(A, A2, A3) is bounded if ¢ is bounded, and
fOI‘ h()\) = 1+>\1 +>\2+)\3 we have h(Al, AQ, Ag) = I+A1 +A2 +A3 = I+A
on the domain D(A) := D(A;) N D(A3) N D(A3). Set p = 1/h. Then
p(A1, A2, As) is bounded and it is the inverse of I + A, so that A is closed.

Using the bounded functions h; ;(A) = )\i% )\]%p()\), we see that the operator

hij(Ar, Az, As) = AZ A7 (I + A)~" is bounded for all i,j € {1,2,3}. This
means that D(A) — H?(Q) implying D(A) = D and the equivalence of graph
norm of A and the H%2-norm on D. It is then clear that v = (I + A)~!f is the
required weak solution. O

Proof of Lemma 5.7. 1) Throughout, let (E,H) € D(MZ). It is known that a
map u € H(rot) N H(div) belongs to H*(Q)? if u x v = 0 or u-v = 0 holds on
Q. Moreover, the H' norm of u is then dominated by ||u|/z2 + || divul/z2 +
[[rotu| L2, see, e.g., Theorem 2.17 in [1]. Note that the equations (14) and
(16) still hold on Q. In particular div E and div H belong to L?*(Q)3. We thus
have E;H € HY(Q)? and |[(E,H)||z: < c(||(E,H)|x + || Mo(E,H)||x). The
asserted zero—order traces for E and H now are a direct consequence of the
boundary conditions E x v =0 and H - v = 0, respectively.

Since E,H € H'(Q)? — L%(Q)® and M?(E,H) € X, equation (16) and
the assumptions on ¢ and p imply that AE;, AH; € L*(Q). A standard lo-
calization argument then yields E;, H; € HY (Q)* for j = 1,2,3. In addi-
tion, the X-—norm of (AE, AH) is bounded by that of MZ(E,H) and (E, H).
We next establish the properties of the traces of E and H needed to derive
E,H € H?(Q)3 from Lemma 3.6.

2) We first consider E;. We will actually show that e E; belongs to H?(Q)
by applying Lemma 3.6 to eF;. Because of

1 0 0 0
OuEr = - Oki(eEr) — %E O — %E OLEr — %5 Ey, (38)

it will then follow that E; € H?(Q) employing F; € H'(Q) and the assumed
regularity of . At the present stage, from (38), AE; € L?(Q) and E; €
H2 (Q)® we can already infer that f := (I — A)(eEy) € L*(Q) and ¢E; €
HZ (Q). Part 1) shows that eEy = 0 on the faces I' ;= Iy UT,F Uy UTY .
Fix a function ¢ € H'(Q) with 0y%, 03¢ € H'(Q) and having support in
[ay,af] x [ag +n,a5 —n] x [a3 +n,as —n] for some small = (1)) > 0. A
given p € H-(Q) can be approximated in H*(Q) by such 1 employing cutoff
and mollification in the (z2,23) directions. For each sufficiently small x > 0,
we set

an(al_—kls:,af—ﬂ) X (az_—i-n,a;—/i) X (ag_—&—lc,a;r—ﬁs).
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We take x € (0,7(¢)) and denote by I'f(k) the open faces of @, containing
points of the form (a5 = &, x2, x3). Integrating by parts and using div(¢E) = 0
as well as 0;(eFE;) € HL .(Q) for j =1,2,3, we conclude that

/ V(eEy) - Vi dz —|—/ eE1Ydr = lim / (EElw +V(eEy) - Vw) dx
Q Q =0JQ.

k—0

= lim [/QK(IA)(5E1)1/1dx+/8QH1/JV(5E1).yda}
— [ pvdetlin [ woeE) denm)
Q "0 ()

:/wadx$ lim (02(eEs) + 05(eE3)) d(z2, x3)

#0JrE ()

= / fudx £ lim (5E2321P + €E3831/1) d(zq,x3)
Q

k—0 Fli (x)

_ /Q o da. (39)

We have used that ¢ vanishes near I" for the penultimate equation and that
eE;,0;0 € HY(Q)? and €E; = 0 on Fli for 7 = 2,3 in the last identity, see
part 1). By approximation, equation (39) then holds for all 1 € H}(Q), and
hence Lemma 3.6 yields e £y € H?(Q) so that By € H?(Q) as explained above.
In the same way, one sees that E, E3 € H%(Q). Moreover, || E}|| g2 is bounded
by ¢(||Ej|lL2 + |AE;||12) due to Lemma 3.6 and hence by ¢ (||(E,H)||x +
| MZ(E,H)||x) in view of step 1).

We denote by ~; the trace operator to Fii, where 7, j, k € {1,2,3}. Since
E, € H?(Q), one can approximate Ej in H?(Q) by v, € C?(Q). Clearly,
7:i0;vn, = 057V, and thus v;0;E, = 0;7v;Ey. As a result, the asserted first
order boundary conditions of E follow from the already established O-order
boundary conditions of E.

3) Next, we consider H; and set g := (I — A)H; € L*(Q). Here we have
less Dirichlet boundary conditions, namely H; = 0 on I’ ji for j = 1,2,3. To
deal with the Neumann conditions, we first note that

rot(e "' rot H) € L*(Q)?, e 'rotHx v =0o0n 0Q,
div(e ' rot H) = Ve~ ! .ot H € L*(Q).

Hence, e~ !rot H belongs to H'(Q)? which yields rotH € H(Q)3. It also
follows that rot H x v = 0 on 90Q. In particular, the first component of rot H
vanishes on Iy U T5E.

We set I' = I'7 UT}" and define the faces Fj:t(lﬁl) of @, in the jth direction
for j = 2,3, cf. step 2). We take functions ¢ € H*(Q) with 9,9 € H*(Q) and
having support in [a] +n,af — 7] % [a5,ad] x a3 ,a]] for some n > 0. We
choose € (0,7) so that ¢ vanishes around I' (k). As above, we deduce

/VHI-dex—l—/ Hypde = lim/ (Hip + VH, - V) do
Q Q ®=0Jq,
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nm[ v (I —AH dz+ [ v -VH do
0 Lo, 0Qx

/w(IfA)Hldqulim [Yv-VH — (rotH x v) - (1,0,0)] do
Q k—0 9Q.

:/g¢dx+lim Yv-0Hdo
Q ~k—0 90,

:/ngdz:ﬁ: lim [/ 1/)81H2d0+/ 1/)31H3d0]
Q R0 L () T (s)

:/gzbd:z::yilim [/ Hgalwda+/ H351¢da]
Q R0 LI (w) T (x)

= /ng/) dz.

The remaining assertions now follow as in step 2). O
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