ERROR ANALYSIS OF THE IMPLICIT EULER SCHEME
FOR THE MAXWELL-KERR SYSTEM

ROLAND SCHNAUBELT

ABSTRACT. We establish first-order convergence of the implicit Euler
scheme for the quasilinear Maxwell equations with Kerr-type material laws.
We only impose regularity assumption which are in accordance with the
newly established wellposed theory for the PDE system. In recent literure
CFL conditions had to be imposed on full discretizations of this system
even for implicit time integration schemes. In our results on the semi-
discretization, the time step size is only restricted by the H3-norm 7o of
the initial fields, and the solutions of the scheme are bounded by c(rg). We
thus expect to obtain full discretization results without CFL condition in
future work. The estimates are shown by an intricate iterative procedure
inspired by the methods used in the wellposedness theory of the PDE.

1. INTRODUCTION

The Maxwell equations are the fundamental laws of electromagnetic theory.
In media, they contain constitutive relations which describe the response of
the material to the electromagnetic fields. In this work we focus on nonlinear
instantaneous relations for which the Maxwell equations become a quasilinear
hyperbolic system. On domains G C R? with the standard boundary conditions
of a perfect conductor, only recently a comprehensive wellposedness theory in
the Sobolev space H3(G) for the quasilinear Maxwell system has been estab-
lished in [24] and [25]. The numerical approximation of these equations is a
formidable task since they form a nonlinear, highly coupled 6 x 6-system on a
3D domain. Explicit time integration schemes suffer from severe CFL condi-
tions and require very regular solutions for a rigorous error analysis. Only very
recently, for the semi-implicit Euler and midpoint rules and the exponential
Euler method, error estimates for the full discretization were shown under an
improved CFL condition in [10], [18], and [19]. In the present paper we analyze
the implicit Euler scheme without space discretization and show first-order con-
vergence under the regularity conditions of [24] and [25]. In our main results
the time step size 7 > 0 is only restricted by the H3-norm 7 of the initial fields
and the approximations are bounded by ¢(r¢) uniformly in 7, so that we expect
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to obtain error estimates for full discretizations without a CFL-condition in
future research.
We study the quasilinear Maxwell system

O(e(E)E) =curlH —o(E)E, t>0, zeG,
O(pH) = —curl B, t>0, zeG, (1.1)
Exv=0, t>0,z¢cdq,
E(0) = Ey, H(0)= Hy, z €@,

on a bounded open set G C R? with a C°-boundary and outer unit normal v.
Here, E(t, ) € R3 and H(t,z) € R3 are the electric and magnetic fields, respec-
tively, e(z, F) € Ry = (0,00) is the permittivity, o(z, E) € R the conductivity,
w(z) € Ry the permeability. State-independent p are typically considered in
nonlinear optics, see [1], [21]. We treat the isotropic material laws

e(x,§) = enn(x) + Enl(x)¢e(’§‘2)a o(z,€) = on(x) + Unl(x)¢8(‘§|2)a

with smooth scalar coefficients satisfying e, 4 > 2n for some n € Ry and
¢e(0) = 0. Then we can find a number k > 0, see (2.4), such that e(z,&) > n if
|€] < K, where kK = 00 if £y, pe > 0. This condition yields the strict hyperbolicity
of the system. This size restriction has to be imposed on the initial field Ej.
A prototypical case for the above constitutive relations is the Kerr law with
de(s) = s, see [1], [7].

The paper [24] provides unique solutions v = (E, H) of (1.1) in the space
g3 = ﬂ?’:o CI([0, Tp], H>77(@)), depending continously on ug = (Ep, Hp) in
H3(G). The data ug have to satisfy certain compatibility conditions, see (2.6),
which are necessary for the existence of a solution in G3. The existence time
Ty > 0 can be bounded from below by a positive number depending on the
H3-norm of ug. Actually, [24] treats anisotropic material laws, which are far
more general than in (1.1) and lead to nonlinear state-dependent compatibility
conditions. These conditions become linear for our material laws, namely

tria Fg = 0, trigacurl Hy =0,  try, curl (i curl EO) =0. (1.2)

This simplification is shown in Lemma 2.1 and heavily exploits the structure of
the laws. As in [3], [10] and [19], we restrict to this case in order to focus on
the main error estimates here. Below we discuss the possibility for extensions
in future work.

The approach of [24] and [25] is based on energy methods adapted to the
Maxwell system. The standard energy estimate indicates that one has to control
Owu uniformly in z € G for solving (1.1). This corresponds to the blow-up
condition in W1 proved in [24]. In L?-based integer Sobolev spaces one thus
has to work in a regularity level as above, since H?(G) — C(G). Compared to
[24] and [25], the general theory of quasilinear symmetric hyperbolic systems
yields less precise results in Sobolev spaces of higher order (treating a much
larger class of problems though), see e.g. [9].

The recent works [4], [11] and [12] analyzed (semi-)implicit Euler, implicit
Runge-Kutta schema and exponential integrators in the class of quasilinear
hyperbolic evolution equations taken from [15] and [22], which involves weighted
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scalar products that are also used in the present paper. Analogous results were
obtained in [16] for the original class introduced by Kato in [13], see also the
earlier contribution [2]. In the framework of [15] and [22], but not in that of [13],
one can treat the Maxwell system on the full space G = R? or with (unphysical)
Dirichlet boundary conditions. Moreover, for a quasilinear 1D wave equation
with periodic boundary conditions, a trigonometric integrator was studied in
[8] and error estimates for the full discretization with a Fourier spectral method
were established. Space discretizations for the quasilinear Westervelt equation
from nonlinear acoustics were treated in [23], for instance.

However, the settings of [13], [15] and [22] do not cover the Maxwell system
with the standard boundary conditions of a perfect conductor, as in (1.1).
These conditions are excluded by a condition in Kato’s work that provides
an ismorphism allowing one to transfer energy estimates from the L?- to the
H3-level. In [24] and [25] this step is performed in a more PDE-type approach
using the structure of the Maxwell system, as explained below.

In a next step, the papers [10], [18] and [19] presented a uniform error analysis
for a large class of space discretizations combined with Runge-Kutta methods or
the semi- and fully implicit midpoint rules as time discretizations. The analysis
is performed within Kato’s framework from [15] and [22], but without assuming
the existence of the isomorphism mentioned above. Instead, the existence of
a solution to the evoluton equation in a space like G? is required, which is
guaranteed by [24] for the Maxwell system (1.1). The proofs in [10], [18] and [19]
rely on a sophisticated iterative argument using the regularity of the solution
and inverse estimates for the space discretizations. However, here one needs
a restriction of the time step size 7 > 0 compared to the space discretization
parameter h > 0, namely 7 < ch? for § > %, which improves on results for the
elastic wave equation in [20].

By the same approach, in [19] one obtains a CFL condition with g > % for
the Westervelt equation in 3D from nonlinear acoustics. In the very recent
contribution [3] this exponent was improved to 8 > 1, exploiting additional
boundedness assumptions on derivatives of the solution to the PDE, see also
[5] for related work in the linear non-autonomous case.

As a main novelty, in this paper we use for the first time the methods of [24]
and [25] in numerical analysis. Adapting them to the time-discrete situation,
we establish a priori estimaates for linearized problems and set up fixed-point
arguments based on this estimates. As in [11], we use the implicit Euler scheme

A(tng1)(Uny1 — Un) = TMUp 1 + 7Q(Unt1)Uny1, 0<n<N\,

1.
Bun+1 = 07 ( 3)

setting A(u) = diag(eq(E), p), Q(u) = diag(—o(F),0), and Bu = (E X v)[sc
foru = (E, H), as well as
0 curl
M= (—curl 0 > ’

Here, eq(x, F) is an (invertible) matrix given in (2.2) such that 0;(e(E)E) =
eq(E)OE. To solve the recursion (1.3), one freezes a sequence (v,) from a
3



suitable fixed-point space, see (2.19), in the nonlinearities which leads to the
linearized Euler scheme

Avpt1) (Unt1 — up) = TMupt1 + 7Q(Vp41)Unt1, 0<n<N\,

14
Bun+1 =0. ( )

This recursion can be solved in the space of u,, € H3(G) satisfying the com-
patibiltiy conditions (1.2) by means of the resolvents of the (frozen-time) oper-
ator Api1 = A(vns1) (M + Q(vny1)) endowed with a suitable domain. The
necessary mapping properties of these resolvents follow from the main results
of [25] and our Lemma 2.1. This is the core step where we use the special struc-
ture of our Kerr-type laws. For more general material laws one only obtains
H!-solutions for (1.4) by means of these frozen-time resolvents, because of the
state dependent compatiblity conditions. In this general case, one would then
have to show the needed H3-regularity using the a priori estimates discussed
below and adapt regularization arguments from [25] to the time-discrete setting.

We make use of the difference quotients d,u, = %(un — Up—1). In the main

step of our analyis we show in Proposition 4.2 that the H*7-norms of d}u,, for
j€{0,1,2,3} and n € {0,--- , N} are bounded by a constant ¢(R, Ty), where R
is larger than the H3~J-norms of dJv,, and 7N is smaller than the existence time
Ty of the solution u to (1.1).} This estimate is proved in Section 4 in several
steps. In Lemma 4.1 we first show a basic energy estimate in L%, proceeding
as in [11] in Kato’s framework from [15] and [22]. However, we have to include
nontrivial boundary terms Bu,4+1 = ¢y, in view of error terms arising later. One
next splits the solution u, in a part with support off the boundary G and one
close to it. To the equation for the interior part, one applies third-order tupels
0“ of spatial derivatives and difference quotients. The differentiated fields 0%u,,
can then estimated in L? by means of the basic energy estimate. Here and below
various commutator terms appear which are treated as inhomogeneities in the
energy estimate, see (4.6). In this interior case, all boundary terms vanish.

The part near 0G is estimated by intricate iteration steps. Here we use ideas
from [17] which avoid the lengthy localization procedure of [25]. However, in
the time-discrete case we have to modify the arguments considerably. First,
we differentiate the recursion in tangential directions and apply dZ, leading to
commutator terms in (4.10) also at dG. One has to be careful when estimating
these terms in order to obtain constants that depend on the norms of v, in (1.4)
in a way fitting to the fixed-point argument. By means of the energy estimate
we then bound tangential derivatives and difference quotients of w,, in L?.

The normal derivatives produce error terms at the boundary which cannot be
handled in this way. One thus proceeds differently and uses the equation (1.4)
and its tangetially differentiated version (4.10) which give rather complicated
expressions of the curl and the divergence of u,. These can then be used to
control the normal derivatives iteratively in quite delicate estimates. In the end
we put together the various steps in a discrete Gronwall argument.

1Th]roughou‘c7 we write ¢(a,...) for a generic constant that depends on positive numbers
@, ... non-decreasingly and is independent of other relevant quantities, in particluar of 7.
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The problem (1.3) is then solved in fixed-point argument which is inspired by
the arguments in [24]. It is crucial that one can fix a radius R for the fixed-point
space which only depends on the H3-norm r( of ug. This is feasible due to the
precise form of the a priori estimate in Proposition 4.2. As in the existence
result for the PDE, one has to choose a possibly small existence time T' < Tj
which only depends on rg. Analogously, the time step size 7 and the solutions
are bounded by numbers depending on rq, see Theorem 5.1.

In Theorem 5.2 we then show first-order convergence of the implicit Euler
scheme (1.3) in L? for data (Eo, Hp) in H? satisfying the compatibility condi-
tions (1.2) and the hyperbolicity condition ||Ep||z~ < k, see (2.4). The proof of
this result is similar those in [11], based on the estimates in our Theorem 5.1.

In the next two sections we introduce our setting and some basic tools. Sec-
tion 4 is devoted to the proof of the higher-order energy estimates. In the last
section we solve the scheme and show its convergence.

2. THE MAXWELL SYSTEM AND THE EULER SCHEME

We assume that the coeflicients of the Maxwell equations satisfy

e(x,6) = emn(@) + en(2)e(€), o (2,8) = onn(@) + om()ds(1E[?), (2.1)
E€lins €nls M5 Olin, Onl € 03(67 R)) ¢67¢S S 04(R207R)’ ¢e(0) =0, €liny U > 277,

for x € G, ¢ € R?, and some 1 € R. For ¢.(s) = s one obtains the well-known
Kerr law e(E)E = e, E + en|E|E. We define

(&) = (-, &) +2emal(I€1)EET,  aa( &) = a(-,&)+2omel(|E[1)EET, (2.2)

and abbreviate e1(x, &) = 2en(2)d.(|¢|?) and o1(x,€) = 20m(x)¢L(|€]?). Ob-
serve that eq(x, &) is symmetric.
Because of 0,(¢(F)E) = e4(F)0: E, the Maxwell system (1.1) is equivalent to

eq(E)OE =curlH —o(E)E — J, t>0, x €G,
ot H = —curl E, t>0, zed, (2.3)
Exv=0, t>0, z € 0G,
E(0) = Ey, H(0)= Hy, z € G,
where we include the current density J(¢,2) € R3. In our main result we restrict
to the case J = 0, but in the analysis commutator terms appear that will be
treated as inhomogeneities. The differentiated version (2.3) suits better for

energy estimates,
To invert € and €4, we fix a number x € (0, co] such that

<k = VzeG: e@8>n c(@&+e(xOEP>n  (24)

If en1gpe, €1 > 0, one can simply take K = co. Otherwise we may choose a number
k € R4 such that

[Jnax lenlloo (|0e(s?)] + 216 (5%)[5%) < .
<s<k
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For |¢| < Kk we have the inverse

PSS e1(19) T_. L
S S A B e (S T 3 SR B3 17255 R O

Concerning the tangential trace in the boundary condition of (2.3), we recall
that the linear map tr, : 0 — (¢ X v)[sg from H(curl) N C(G) to C(OG) can
be extended to a continuous operator from #(curl) to H~'/2(dG). Its kernel is

the closure Ho(curl) of the test functions in
H(curl) = {¢ € L*(G) | curlp € L*(G)}.

Here (and often below) we write L?(G) instead of L2(G)3 or L?(G)° etc., some-
times also omitting the spatial domain, and H*® denotes the (fractional) Sobolev
space on an open subset of R™ or its (at least Lipschitz) boundary.

Occasionally we use the rotated tangential trace Try ¢ = v Xtres . Moreover,
the normal trace (v-¢)[ac can be extended to continuous map try, from #H(div)
onto H~/2(dG), where H(div) = {p € L*(G)| divy € L*(G)}. We note that
the full trace is decomposed as tr ¢ = Try ¢ + (trpo @)v.

We want to obtain solutions v = (E, H) = (u',u?) of (2.3) in G3(I) for some
interval I C [0,00) with 0 € I. Here we employ the space

k . .
gt =GH 1) =(,_, "L HT(G))

—a(-,)¢¢’. (2.5)

which is endowed with its canonical norm if the interval I is compact. (Through-
out, we write £ = (¢1,£2) € RS = R3 x R3.) To this aim, the data (FEy, Hy) and
J must belong to H3(G) and H3((0,T) x G), respectively. Moreover, we can
differentiate the boundary condition in (2.3) twice in time at ¢ = 0 and infer
that the compatibility conditions

trea By =0  for OFE(0) = E and k€ {0,1,2}, (2.6)

have to hold on OG. In general, for k € {1,2} these equations lead to nonlinear
conditions on Ey and Hy, see [24], which would make the following analysis
much more difficult.

Under our hypotheses, the conditions (2.6) actually turn out to be linear. To
see this fact, by means of (2.3) we first compute

O E(0) = eq(Ep) ™" (curl Hy — o (Eo)Ey — Jo),
07 E(0) = —ea(Bo) ™" (curl(;; curl Ey) + Ji + 0a(Eo) En) (2.7)
— [a1 + a2 EoEy + a(Eo)(EoE{ + ErEy )| [curl Hy — Jo — o(Eo)Eo],
where we set Jop = J(0) and J; = 0;J(0). The scalar scalar functions aj depend

on (Ey, 1) and arise from differentiating eq(E(¢))~! in time at ¢t = 0. In the
analysis, one linearizes (2.3) to

eq(v)OE = curl H — o(v!)E — J, t>0, z €@,
woH = —curl B, t>0, x €Gq, (2.8)
Exv=0, t>0, z € 0G,
E(0) = By, H(0)=Hy, xz€G,
6



by inserting a function v € G2 into the nonlinear terms. The solution of (2.8)
is still denoted by u = (E, H). Setting vy = v!(0) and v; = 9;v!(0), we obtain

OHE(0) = e4(vo) ™ (curl Hy — o (vo) Eo — Jo), (2.9)

D2E(0) = —eq(vo)* (curl(% curl Ey) + Ji + o(vo) B1 + 20m¢ (Jvo]*)vg v1Ey)

— (a1 (v, v1) + az(vo, v1)vovy + a(vo)(vov] + Ul’t)(;r)] [curl Hy — Jo — o(vo) Eo) -
We write & - ¢ = ¢T¢ for the scalar product in R™. We can now describe the
compatibility conditions both for the nonlinear and the linear case.

Lemma 2.1. Let (2.1) be true and vo, Eg, Hy € H3(G), v1,Jo € H*(G) and
J1 € HY(G) satisfy

tria Fo = tria vg = tria Jo = tria v1 = trea J1 = 0, try, curl Hg = 0,
triq curl(% curl Ep) = 0.

We then obtain try, E1 = try B2 = 0, where E, = OFE(0) are defind by (2.7) or
(2.9). If vo = v1(0) and v1 = 9w (0) for some v € G3([0,T]) and analogously
for J € H3((0,T) x G), then try, f = 0 implies trea f1 = 0 for f € {v, J}.

Proof. The last assertion follows from the continuity of the trace. For the first
one, we observe that (£€7¢) x v = (£-¢) & x v for &,¢ € R3. This fact yields

(eq(vo) o) x v = Lo x v —a(ve)(vg - @) vo X v (2.10)

by (2.5), and hence tr, Fq = 0. Similarly, one shows that tr, Fo = 0. ]

In view of the above lemma, Theorem 3.3 in [24] yields a unique, maximally
defined solution v = (E, H) € G3([0,7)) of (2.3) (and (1.1)) provided that (2.1)
is true, the initial fields ug = (Eo, Ho) € H3(G) satisfy || Ep|lco < & and

tria Fop =0, trypacurl Hg =0,  try, Curl(i curl Ey) =0, (2.11)

and the current J € H3((0,b) x G) fulfills tryy J = 0, where b > 0 is arbitrary.
Moreover, the maximal existence time t = t(ug, J) € (0, o0] is larger than a pos-
itive number depending only ||ug||ys, ||/]|43 and & — || Ebl|co, it is characterized
by a blow-up condition in W1*°(G), and solutions depend continuously on the
data. See Theorem 3.3 in [24] for precise statements. Lemma 2.1 with v! = E
shows that the compatibility conditions (2.11) are true for all times, since we
have tria 8tE =ty 8t<] =0.
We include the compatibility conditions (2.11) in the state spaces, setting
HO.(G) = L*(G) and
HL(G) = {p € H'(G) | trag’ = 0},
H2(G) = {p € HA(G)®] trea ' =0, tre, curl p* = 0}, (2.12)
H2(G) = {p € H3(@Q)®] tria ' =0, trea curlp? =0, tri, Curl(i curl p!) = 0}.
We also need the linearized problem (2.8) for a constant-in-time function
vt € H3(G)3. Theorem 1.1 of [25] and Lemma 2.1 then show that the solutions
of (2.8) generate a Co-semigroup on HX (G) for k € {0,1,2,3}. The estimates
in Theorem 1.1 of [25] also imply that these semigroups have exponential bounds

which are unform for v with |[v|jys < R.
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Since v! does not depend on time here, the case k = 0 already follows from
standard semigroup theory using the generator

~ (—ea(H) o (vh) eq(vh) Tt curl B
A= < el 0 , D(A) = Ho(curl) x H(curl).
Observe that the off-diagonal part of A is skew-adjoint on L?(G) endowed with
the equivalent scalar product for the weight (eq(v!), ) and that the diagonal

part is bounded on this space. By Paragraph I1.2.3 of [6], the semigroups on
HE (G) are generated by the restrictions of A to

D(4, Heo) = {p € H&(G) [ Ap € HE(G)} (2.13)
for k € {1,2,3}, with D(A, H%.) = D(A). Lemma 3.1 yields the equivalence
Ap € HF(G) = curly’ € HF(@), i e {1,2}. (2.14)

As in Lemma 2.1 one can see that ¢ € D(A,HE.) has to satisfy the boundary
conditions from HEFY(G) if k < 2, whereas D(A,H2.) involves conditions de-
pending on v! that are not needed below. Later on we denote the restrictions
of A also by A.

We want to approximate the maximal solution u € G3([0,%)) of (2.3) for
initial fields ug = (Eo, Ho) € H2.(G) with || Eol|z~ < &, see (2.4), and a current
J € H3((0,b) x G) with try, J = 0, where b > 0 is arbitrary. We assume that
(2.1) holds. For the approximation we use the implicit Euler scheme

Atn11)(Unt1 = Un) = TMupy1 + 7Q(Unt1)Uuny1 +7fn, 0<n <N,

2.15
Bun+1 = 07 ( )

for n € Ny and the time step size 7 > 0, where we set

o= (46 0). - (2 ). - (0 8)
B=(trm 0), fo= (“](()”T)) : (2.16)

In the following we deal with sequences (w,, ), where ng <n < N orng < n < oo
for some N € N and ng € {-3,-2,—1,0}. We fix a time Ty < t and take N
with 7N < T < Tj, where T" > 0 is chosen later. Moreover, the difference
quotient and the backward shift are given by

d,w, = %(wn —wp—1) and Sw, =w,—1 for n > ng.

In our analysis we will have to work with functions such as dZug. To make
this possible, first the given sequence (f,,)n>0 is extended to f_, € H37*(G) for
k€ {1,2,3}. We then iteratively define

Ug = U — TA(U 1) T (Mu_ggr + Q(uegeg1 )u—gr1 + fog)

(2.17)
U—_3 = Uy — 3u_1 + 3u_2

for k € {1,2}. So we extend (2.15) backwards in two steps. In the third step

we are not able to guarantuee the invertibility of A(u_3). But u_s3 is only

needed to determine d2ug, and by our choice we simply set it to 0. We state
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the basic properties of the extended initial fields in Lemma 3.3, noting already
that u_;, € H2-F(G) and [Jul ]| < K if 0 < 7 < Fo(r0).

We also record a possible extension of (f)n>0 to n > —3 using only fo, fi
and d2 f, =: a, namely

for=2fo—fi+T?d2 fo,  foo=3fo—2f1+37°d2 fo,  fo3:=4fo—3f1+67d2 fo.

Beyond the terms detemined by (fy)n>0, we thus obtain the additional (iter-
ated) difference quotients

dfp=di=df=0, dh=dfo=a dfo=—dfo,
also given by fo, f1 and d2 fs.

Similar as in [11], we solve the recursion (2.15) by a fixed-point argument,
freezing fields v}, ; in the maps A and Q. For sequences (wy) in H*(G)% with
k€ {0,1,2,3} and 7 > 0, we define

2 = 2™ = max [djwnle, a = 2=, (2.18)
for n € Ng with n < N. These quantities are used throughout the paper. To
compute dtw, for 0 < n < j we need the vectors w_1, w_o and w_3 which
are considered to be given. For the solutions u, and for the fields v,, inserted
in A and @, we use the extended initial data u_;, u_9 and u_3 from (2.17).
These extra vectors do not enter in the linearized recursion (2.21). We only
use them to estimate the first and second iteration step in the same way as
the later ones, thus avoiding case distinctions. Moreover, for the estimates only
Up41 with n > 0 will be relevant, so that v_3 = u_3 is not used here.

Take R,T,7 > 0 with T' < T and N be the largest integer with 7NV < 7. In
our main results, first R will be fixed according to the norm of ug in H3. The
time horizon T' and the step size 7 then have to be smaller than some numbers
depending on R. Let s be given by (2.4), and fix &’ with |Ey||p~ < ' < k.
We introduce the space

E=ERT,7)={(vn)-3<nen | Y1 > 0: v, EHL(G), 2}, < R?, |jug|lp~ <K,
v_p = u_ € H37H(G) for k € {0,1,2,3}}, (2.19)

We will also use numbers 72 > max,, zf{’@) in the proof. One can control r by R,
T, and |lvg||53 as we will see in (5.2). But in our estimates it is more convenient
to use r separately.

Given (vn)_3<n<n € &, for n > 0 we now define

Ap = A(Un)a Qn = Q(Un)v Ap = Aﬁl(M + Qn), (2‘20)
with domain D(A,,HE) = {¢ € HE(G)| Anp € HE(G)}, see (2.13). The
linearized version of (2.15) then reads as

An+1(un+1 - Un) = TMupy1 + TQn1Ung1 + 7 f, 0<n<N,

2.21
Bun—‘rl =0, ( )

where ug € HZ,(G)® is given. Let f, € H2(G) for all n € Ny which means

that J, € H2(G)? and trea J, = 0 Then also A}, f, belongs to HZ.(G) by

(2.10). In general, such an implication is not true for HZ.(G) unfortunately.
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For this reason we let f, = 0 in the main results, but we keep non-zero f, in

our presentation until Section 5, since such terms appear in our analysis as error

terms (without causing troubles because of the missing boundary condition).
By the above mentioned results from [25], we can solve (2.21) via

Upt1 = (I = TApi1) Hun + TA L f) (2.22)

for 0 < n < N — 1, provided that 7 < 79(R) < wo(R)™! for the common
growth bound of the semigroups generated by A, for data v, with 2% < R2.
The number 79(R) will be replaced by smaller ones later on. The restriction
7 < 19(R) is tacitly assumed below. If f, = 0, the fields wu,+1 and A, 41un41
belong to H3.(G) and curlul, ; to H3(G) for all n and i € {1,2}, see (2.14).
Otherwise they are only contained in H2,(G) and H?(G), respectively,

3. AUXILIARY RESULTS

We first note that H2(G) and H3(G) are Banach algebras. The following
calculus results can be shown as Lemma 2.1 of [25] and Lemma 2.1 of [24].

Lemma 3.1. a) Let 3 > k > max{j,2} and j € {0,1,2,3}. We then have the
product estimates
lethllzs < cll@llpnll¥lla,

where @ and Y can be scalar-, vector- or matriz-valued.

b) If ¢ € H*(G) is matriz-valued with ¢ = ' > n > 0, then =+ € HF(G)
with norm bounded by c(||¢|lyx)|le| 2k -

¢) Let a € C3(G x R™), p € H3(G)™ with norm less that R, and x,v €
H2(G)™ with norm less than v. We then have

la(@)llze < c(R)YA+llellze), o) = al)lle < c()[$ = Xl

To work with the difference quotient d,, we will use the following observa-
tions. Let (ay) and (b,) be sequences such that a product a,by is defined. We
start with discrete product formulas:

dr(anby) = %(anbn Fapnbp—1 — an—1bp—1) = apd; by + dranby_1
= apd;b, + d;a,Sb, (= drapb, + Sapd;by,),
d?(anbn) = and?b, + 2d,a,Sd, b, + d2a,S%b,, (3.1)
A3 (anby) = and3b, + 3d,a,Sd2b, + 3d2a,,S%d b, + d2a, S0y,
We further need chain rules for d.

Lemma 3.2. Let (2.1) be true and take (vy), (0n) € E(R) with 20303 <2
Let By, € {An, AY,Qn} be given by (2.20) and define B,, analogously for v,,.
We then have
k
12 B[l < e(r) > 1S*dbvnspillgga—s < e(r)R,
i=1
. PR— j . .
|47 (Bnt1 — Br1) |9z < e(r) Z 157 A% (Un414i — Ont14i) Iz
i=1
forke{1,2,3}, j€{1,2}, andn < N — 1.
10



Proof. Let B € {551, o}, 7> 0, and n € Ng. We ignore that only v} appears in
the nonlinearities. We first compute

1( n+l — / 5 n1(s (Un+1 —vy)ds, (3.2)

where §,,4+1(s) == v, + s(vp+1 — vp). Lemma 3.1 then implies

A Busalle < e(r)lldstmsn e < c(r)R
Setting 8,,(s,5") = 0n(s) + 8" (0n11(8) — dn(s)) and using (3.2), we calculate
d2Bpi1= % (Bps1 — By — (By — Bn-1))

1
= 1/ [5,(5n+1( ))(UnJrl_Un :F( —Un— 1)) B/(dn(s))(vn_vn—l)] ds

/ B'(6p11(5))d2v, 11 ds +// B" (5, ) drvn, drdni1(s)] ds’ ds.
Since dr0p+1(s) = (1 — s)d;vp, + sd;vp41, from Lemma 3.1 we also infer
147 Bn i1l < e(r)(d7vnsallz + lldrvnll32) < e(r)R.

Finally, set 0, (s, ', s") = 0p_1(5,5') + 8" (6p(s, ') — 6n_1(s,s")). Proceeding as
above, we write

d Bn+1 Bn+1 QB +Bn 1) 2Bn 1+Bn 2)

/ B (6p+1(5))d2vp41 ds +// 8" (6n V[A2vy,, drbnpr(s)] ds’ ds
// B (0n [+ (drvp — drvn-1),drdp41(s)] ds’ ds
// B (0n )drvn—1, +(drdnr1(s) — drn(s))] ds’ ds

* /0 /0 /0 B"(Bn (5,8, 5")[drvn-1,dr0n(s), drdn(s, 8] ds” ds' ds.

Observe that d26,41(s) = (1 — s)d2v,, + sd2v, 1. By Sobolev’s embdding, we
conclude

142 Brstllne < e(r) (| d2vns1llze + ld2vnllan + ldrvn-1lla2) < e(r)R.

The second assertion is shown similarly. O

In our estimates the quantity zj at initial time will appear. By the next
lemma we can bound it by the H3-norm of ug, which is considered as given.

Lemma 3.3. Let (2.1) be true, ug € H3,(G) and f—; € Hoo(G) with norms
bounded by ro and ||u}||co < K, u_ be given by (2.17), and j € {0,1,2,3}. Then
there is a number To(rg) > 0 such that for 0 <1 < 7p(rg) we have Hu oo < K

and duy, belongs to Hew? (G) with norm bounded by c(ro).
11



Proof. Recall that A_; = A(u_g) and Q_ = Q(u_g) for k € {0,1,2,3}. The
k-bound and the claim for j = 0 follows from (2.17), Lemma 3.1, and (2.10).
Equations (2.17) and (3.1) yield

drug = Ayt (Mug + Qoug + f-1), dru_y = A" (Mu_y + Q_1u_1 + f_2),
Qug = d- Ay (M +Q-1)u—1 + f-2) + Ay (Mdrug + dr(Qouo) + dr f-1).

Lemma 3.1 and (3.2) then imply the asserted estimates in H377(G). Using
(2.10), one checks the compatibility conditions for d;ug and d;u_; and then for
d2ugy. We have d2ug = 0 by the definition in (2.17). O

We want to avoid the sophisticated localization arguments from [24] and [25].
To this aim, we use adapted coordinates as in [17].

For a fixed distance ¢ > 0, on the collar T, = {z € G| dist(z,0G) <
o} we can find C*functions 6y,6s,v : r, — R3 such that the vectors
{61(z),02(x),v(z)} form a basis of R? for each point # € I', and v extends
the outer unit normal at OG. Hence, 1 and 6 span the tangential planes at
OG. For &,¢ € {601,02,v}, v € R3 and a € R3*3, we set

O = Zj £0j, ve=v"-&, vt = vk, v = v, 01 + Vo, 02, agc = fTaC.

Later we will apply these operations also to R6-valued function v = (v',v?)
setting, e.g., v¢ = (vg,vg). We state calculus formulas needed below, where it
is always assumed that the functions involved are sufficiently regular. We can
switch between the derivatives of the coefficient v¢ and the component v¢ up to
a zero-order term since
842}5 = Ocvel +ve0c€.
The commutator of tangential derivatives and traces
Op, tria v = Op, (v X V) = tres Og,v + v X Op,v on O0G

is also of lower order. Similarly, the directional derivatives commute
85841) = Zng fjaj(ckakv) = 646511 + Zj,k fjajck 8kv - Ckakfj (9]‘1)

up to a first-order operator with bounded coefficients.
The gradient of a scalar function ¢ is expanded as

Vo= & VpE=) Ok,
so that 0; = Zg €;0¢ for j € {1,2,3}. Recall that curl = J;101 + J202 + J303 for
the matrices
0 0 O
Ji=10 0 —1], Jo=
01 0 -1

-1

0 1 0 0
00|, J3=|1 0 o0
00 0 0 0

We thus obtain

curl = Zj J;0; = Zj,f J;€;0: =: ZE J(€) 0.

Since the kernel of J(v) is spanned by v, we can write J(v)v = J(v)v?, and the
restriction of J(v) to span{6f;, 02} has an inverse R(v).
12



We now provide the tools needed for the apriori estimates in the next section.
We first isolate the normal derivative of the tangential components of v in the
equation curlv = f. From the expansion

curlv = J(v)(0,v)? + J(01)0p,v + J(62)0p,v,

we derive
0 =" (Oubivg, + 00,0, v) + RW)(F =3 I(0:)90)  (3.3)

where the first sum only contains zero-order terms.
In order to recover the normal derivative of the normal component of v, we
resort to the divergence operator. The divergence of a vector field v can be

expressed as
dive = Zj 9; Zg vekj = Zg (O¢ve + div(€)ve).

Letting ¢ = div(av) for a matrix-valued function a, we derive

div(av) = Z£ ¢ acve) Z div(€) €T av
= Z&C(agcagvc + 8§a54v4 —|— Z{ div(f) fTaU,

Ay, Oy, = @ — Z agcOgve — Z&C Ogagcve — Zg div(¢) ¢Tav. (3.4)
(€0)#Www)

where the sums in the last line contain the tangential derivatives and the normal
derivatives of tangential components of v plus zero-order terms.

4. THE CORE A PRIORI ESTIMATES

In this section we estimate fields u, € HZ.(G), see (2.12), solving the lin-
earized implicit Euler scheme (2.21) for given (v,) in E(R,T,7) and data
up € H2.(G) and f_j € H37¥(G) with norms bounded by 7o, ||Eollz~ < &,
u_j be given by (2.17), and f, € H2.(G) N H3(G), where k € {1,2,3} and
n > 0. Here we let R > 0,0 < T < Tp, and 0 < 7 < max{7(R), To(ro)}, see
(2.19), Lemma 3.3, and the comments after (2.16) and (2.22). We further fix a

number 72 > maxp>_1 zf{’@). Let N be the largest integer with N7 < T'. Recall
that in the homogeneous case f,, = 0 such u,, exist and are given by (2.22).
We proceed in several steps to control the quantity z, = z¥ from (2.18).
First, we establish the basic energy inequality on the L?-level also allowing for
inhomogeneities at the boundary, as it is needed to deal with error terms later
on. For higher-order estimates we use differentiated versions of (2.21). In a
second step, we treat the part of u, localized off the boundary by means of
the energy estimate. This step is easier since these functions vanish near the
boundary. Third, the part of u, near the boundary is handled by a intricate
recursive argument using the adapted derivatives from the previous section.
Tangential derivatives and difference quotients in time can be bounded via the
energy estimate and a careful analysis of the error terms. The normal erivatives
are recovered from the (differentiated) equation and formulas (3.3) and (3.4).
13



4.1. The basic energy inequality. We consider the linear problem
An+1(un+1 - un) = TMun—‘rl + TQn+1un+1 + Tfnv n < N07

(4.1)

Bupi1 = pn,

where M and B are given by (2.16). Compared to (2.21), we allow for non-zero
boundary data and weaken the assumptions on the cofficients and data, namely

w € Hiewrl)?, o€ 2GS, on € HE(DQ),
An,@Qn € L®(G,R5*G) A, =A) >1

for n € Ny and some n € R, where we set
Hi (0G) = {¢ € H3(0G)? |- v = 0}, s> 0.

We employ weights in the spatial variables to use the formal symmetry of M.
In the context of quasilinear problems, such weights have been used in contin-
uous time at least since [14], see also [11] in the time-discrete case. Moreover,
we introduce decaying weights in (discrete) time for notational convenience.
(The latter play a smaller role than in continuous time, compare e.g. [25].) For
n€Np,v=¢e">1and v € L*(G), let

Joll2., = (7" Anoly ™) = /G 2 A vde, ol = ol

For n < N and « in compact intervals these norms are uniformly equivalent to
the usual L?-norm. We also define

(4.2)

)

v ZU,(S)

Zvj(k) = Z(k) = ma§k7_2n”dlvn”’2ﬂk*j? “ny ny

ny Y T <5

cf. (2.18). In the following, zgk% and z\) refer to the solutions uy.
We state our basic energy estimate.

Lemma 4.1. Assume that (4.2) holds and that [|Qnllec, |[Anllee < 7' and
ld;Ansillee < R for all n € Ny and some R',r' > 0. Let u, € H(curl)?
solve (4.1). Take 0 < 7 < 74(r') = n(2r' + 1)~ . Set C = n Y (R + 4" + 2)
and v = e™C/2. We then obtain
n
1 lasr < O lugllg + 7Y~ e“THIT( fillF2 + 2( ok, Tria uiga)),
k=0
n
funalBery < ol +7 3 (UfeliZer + erlionly 1Tl ).
k=0
1 _1
where the brackets denote the duality HZ, (0G) x H,,? (0G).
Proof. Multiplying (4.1) by u,+1 and integrating in z, we compute

l|n41 H721+1 = (Ang1Uns1|tnt1)

1 1
= (A7'2L+1un|A72L+1uTL+1) + T(Mupy1|unst) + 7(Qni1tnti|tuns1) + 7(fnltng1)
< %((AnJrl + An)un|un) + %(An+1un+1|un+1) + 7-<90na Trig ui+1>

+ T(Qn1tni1|tuny1) + 7(faltng1),
14



by means of the Cauchy—Schwarz inequality and the integration by parts for-
mula for curl. We absorb the second summand on the right-hand side and
employ the bounds on the coefficients, obtaining

TR 277! T
[tns]2 4y < TH“nHi + lunlly + T||Un+1||721+1 + 5||Un+1|\3l+1

+ Tan”%Q + 27’<90n, TI‘ta U?H_l).

We now choose 0 < 7 < 74(r) == $n(2r' + 1)~ to absorb the terms with w1
by the left-hand side. Using (1 —s)™! < e?® for 0 < s < 1/2, it follows

-1 / /
ltns e < € D (@ M |2+ 7 32 + 27 (om, Treatid) ) (4:3)

Let C = n~Y(R' + 4r' 4+ 2). An iteration of (4.3) yields

n
ln1lnsr < eI uglg + 7Y eCTTIT( fillFe + 2( ok, Tria uiya)),
k=0

which is the first asertion. The second one follows immediately. g

We replace 19(R) and 7o(rg) by
71(R) = min{ro(R), To(ro), 70(r"), 1}, (4.4)

see the comments after (2.22) and Lemma 3.3. Note that 1 < v < ¢(R) which
will be used below often without further notice.

4.2. The interior estimate. Let again (2.1) be true and u, € HZ.(G) solve
(2.21) for (vy,) € E(R, T, T) as at the beginning of this section. We fix a function
x € C*(G) with support in I', such that 0 < y <1 and x =1 on Ly/2. We set
X =1—x € C4G). For any scalar map 9 € C*(G,R), we obtain the discrete
linearized problem

2
—Vixug

At (P = Pun) = TM (Pt 1) + 7Qui (Punsn) +7| 0 70 | 470,
B(Wupy1) = O, 0<n<N, (4.5)

for solutions u,, of (4.1). The coefficients are again given by (2.20) for a sequence
(vn)o<n<n from & = E(R, T, 7) defined in (2.19). The solutions are computed
in (2.22) if ¢, = 0 and 7 is less or equal 71 (R) from (4.4).

We now use (4.5) for i, = Yun, setting also fp, = X.f, and

= Org?é{g ||d]%ﬂn||3-[3*jv Zny = 02152{3 7_Qnderﬂan-ﬁ”*j

for v = y(R) > 1 from Lemma 4.1. Let o € N} be a multi-index with 0 < [ :=
|a] < 3 whose component ag refers to the difference quotient d, and the others
to the spatial derivatives d;. We calculate

Ay 1 (0% g1 — 0%Tp) = TM Oy 1 + TQuni10%ns1 + 70 fro + Ty (4.6)
B, =0, 0<n<N,
15



where we set

] @ (—0°Vx x 9% Fu?
fn,oz = Z < ) < BT < oa—pf 1”—1—1
0<B8<a,Bo=0 p 0 VA x 9 Hnt1
— Z <g> (85An+1 3a_5550d7ﬂn+1 - aBQn-H 8C¥_BSIBOan+1) :
0<B<a

Here we have used formulas (3.1) and recall that v_j = u_y are given by (2.17)
for k € {1,2,3}. Since (v,) € £, Lemmas 3.1 and 3.2 yield

3
s l ~(1
1 Fall?e < ey +e(R)S 29, (4.7)
=0

We sum over o and use Lemmas 3.3 and 4.1, obtaining
(1 . (1l ! (1
zq(l)ﬂﬁ <c(ro)zo + T Z (C(R)Zl(cj-l,’y + C(R)Zl(cj-l;y + cz,j;g)). (4.8)
k=0

The above estimate will be used later on, but we also note an immediate con-
sequence. For 7 < C(R)/2, Gronwall’s inequality implies

~(l nr - l (1
ZT(L)+1,’Y <e? (c(ro)zo +7 Z (c(R)z,(ﬂlm + czg,g))) (4.9)
k=0

4.3. The tangential estimate near the boundary. We turn to the func-
tions i, = xu, and f, = xf, supported in I',. The multi-index o € Né with
I = |a| < 3 now refers to d,, 9p,, Op, and 9, from Section 3. Here, we write d*
instead of 9% and df, if ag = 0. Let o/ = (a1, a2, a3). As in (4.6) we obtain
A1 (A% g1 — d%) = TM %41 + TQni1d%n g1 + 7d fr + T fra, (4.10)
Bd%Up 1 = [d% trealiy, 1 = Pna,  0<n <N,

where we set

P o N e} —dBVX X do‘_ﬁufb_x_1
fn,oz = [d ;M]Un—i—l + O<ﬁ<zﬂ , <,B> < d'BVX % da_ﬂu;,]:tJrl (411)
<p<La,fo=

- Z (a) (dﬂAn-‘rl daiﬁsﬁodrﬂn—i—l - d'BQn-H daiﬂsﬁofbn_u) .
0<B<La

The two commutators [, -] have order |o@/| — 1 at the boundary and |o/| in the
domain, respectively, and they are 0 if ' = 0. As in (4.7), we thus deduce

l
A l ~(1
1 faalZe < ez +6ac(R) Y 20, (4.12)
7=0

- 2 (D)
S < ¢l HunHHH\aq((;) < arZply,s
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where we use also the standard trace estimate and set 6, = 0 if ¢« = 0 and
0q = 1 otherwise. Lemmas 3.3 and 4.1 then imply

l (1
g ||d°‘un+1||n+1ﬂ < c(ro)2o+T7 g +C(R)z,gllv+cz,{,(y)]. (4.13)
la|<l k=0
a3=0

4.4. Normal derivatives near the boundary. We now let 0 < = |a| < 2.
Before we can tackle the estimates for the normal derivatives, we collect a few
formulas describing curl and divergence of Gy 1.

1) First, equation (4.10) yields

MdG 41 = Ap1d®driings — Qui1d®tng1 — A% fr = fra- (4.14)
From formula (3.3) we then deduce
ay(daan+1)9 = R(V) [An+1dad7an+1 - Qn—i—ldaan—&—l - dafn - .}En a] (415)
—Z 0;)0p,d%tin 11 — 0,0:(A%p41)g; — 030,,0idTins1],

where we set

R(v) 0 J(0;) 0 . div. 0

R() = [ 0 —R(V)]’ T:) = [ 0 —J(Gi)}’ biv = [ 0 div]'

We stress that there is no factor 7 on the right so that one cannot simply use
Gronwall’s inequality. In fact, most of the summands on the right-hand side of
(4.15) will be treated by means of previous steps in an iterative argument. Here
terms proportional to 2y appear. In the fixed-point argument of Theorem 5.1 it
will be crucial that we do not have contributions of the form ¢(R)Z. In addition,
when estimating the error terms fma from (4.11), summands containing 27(3_1
appear if one wants to avoid a prefactor ¢(R). To simplify the iteration, we
refine the estimate so that we can absorb these contributions of highest order.

Let 6 > 0. For f = a and [ = |o| = 1, Holder’s und Sobolev’s inequality and
interpolation yield

147 A S driig]| 2 < e(r)l|dog SPdrtik]| 2 < er)||dvg] o [|S™dra |l s
< e(r)||SPdri], y < 550200 o(5,7)5% 50 (4.16)
Let | = |a| = 2. For || = 1 we obtain a term of the form A} dvjS%0dd,d, and
for 8 = « one has
A d%up S d dy, + A dvgpdog S d, iy,
where A} = (0,A)(vg), A} = (02A)(vk), and we use a somewhat informal

notation. In both cases the squared L?-norm can be bounded by 55502,?“) +

c(9, r)Sﬁoég) as above. We thus deduce

00 (A% 42)" 72 < c(r)(HdtadaﬁnHH%a + A% |72 + [14° Fall72)
(I+1) l
+ 0o Z 02 e, m)El ) really.  (47)
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2) For the normal component of the normal derivative, we use the divergence
of the fields. From (4.10) we infer

DiV(An+1daﬂn+1) (4.18)
= Div(And®ay) + 7 Div (dr Ap1d®tn + Qui1d%ing1) + 7 Div(d® o + fra)

= Div(Agd®dg) + 7Y [ Div(drApr1d®in + Qur1d®tusr) + Div(d® fie + fra)]-
k=0

Set A, = diag(eq(v}),w, 1) > 1. Equations (4.18) and (3.4) then yield
Oy (d%tip41) (4.19)

) [Div(AOdaao) + 7Y [ Div(dr Apg1d®g + Qpr1d® ) + Divd®
k=0

+DIV fral = D (Ans1)ecOe(A%ni1)e — > Oe(Ang1)ec(dns1)c
(&.Q#w,v) £¢

= > div(©€ (Anprd i)'

The three last terms will be treated by previous steps in the iteration ar-
gument. The first of these summands contains tangential derivatives and the
tangential component of the normal derivative. The penultimate term is of
lower order, but one has to be careful not to produce a pre-factor ¢(R) in the
calculations. As in (4.16), we thus compute

10 (A 1)ec (A1)l 2 < 62540 + e(6,m)20) .

We pass to squares when estimating (4.19). Concerning the sum, we note that
n 2 n n
(TZak) < nTQZai < TTZ(I%
k=0 k=0 k=0
by Holder’s inequality and nt < N7 < T. Combined with (4.12) and Lem-
mas 3.1 and 3.3, formulas (4.19) and (4.17) then lead to

n l
N NER! I+1 l
10, d% 41|72 < c(ro)z(()+ 4T g (c( (+ )42 k+1 ) + dac(R E ,grll ;
k=0 j=0

eG4 20 + o) (ldiad® a3 + 1402,

o l
1A% full2e + 21) + da Z 62Ut e(s,)2, )
7=0

+6250 4 e(s,7)28 . (4.20)

We can multiply this inequality by '7_2”_2 with v = (R) > 1 from Lemma 4.1

@

n+1y
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4.5. Conclusion of the higher-order estimates. We note that zf(bl)w <
c(z,(L)7 + z( ) y) < czg)v, which will be used without further notice.

1) We start with the first-order term zﬁ% which is a bit easier since some
commutators do not appear. Lemma 4.1, estimates (4.8) and (4.13) with |a| =
1, and inequality (4.20) with o = 0 imply

n
1 1 1

27(1421,7 <c(r)zo+7(1+T) Z (C(R)z,iJZL7 + e(r )zgg )) + c(r)z{::(vo)

k=0

te(r)dzy +ed.r)z
n
1 1 (1

iy S ez + T+ T) Y (R, +er)l) + e, (a.21)

k=0
where we have chosen a small § > 0 to obtain in the last line. Recalling T' < Ty
and decreasing 71(R) > 0 if needed, by means of Gronwall’s inequality we infer

2D < A2ne2nT (c( )20 + c(r)z;, 1@ ) L+ 71+ Tp) Z’y c( r)z,ffll)). (4.22)
k=0
2) Employing the previous step instead of Lemma 4.1, we now deal with z( )

We first bound diaty,41 in H! and d +dalinyr in L?. To this aim, we let a3 = 0
and use (4.13) with |a| = 2, (4.20) with |a| = 1, as well as (4.21), obtaining

HdtaﬂnJrlug-(l,'y + ||d7dtaan+1||%2;y (4.23)
~(2 2 ,(2
< e(r)(zo + D) + 7L+ T) Y ((RYEL) . + 2201 ) + ()=
k=0

1
2 (1
(1) E Q iwzl i +C§Z7(1+)17j,fy)'
=0

We absorb the term with & below. We still have to bound 024,41 in L?. This
is done via (4.20) with a = e4. Combined with (4.23), we derive

2y Selr)zo+ D) + 70+ T) Y (e(R)ED, + 200 ) + ) P)
k=0
: (1)
Z n+1 g T CEn 1)
3=0

To absorb also the term 737(1% in the last line, we define

2 2 5 !
Z7(Ll,)'y - OI<n'r3§n ZﬁrlL)w Iy = Z( ) 20 =27y,

and analogously for z,, 25 etc.. We obtain

ZAQLV <c(r)(z0+ Z0D) T+ T) Y (C(R)(%gm + Z;(i)m) + C(T)Zl}cc:f))
k=0
+ ()23, +e0,1) 28, ).
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We can now absorb the penultimate summand taking a small § = §(r) > 0.
The last term is then dominated by the first line due to (4.21). Also using

Afﬁzlﬁ < 27(1421 ~» We derive
1 <)oo+ ZED) + 714 T Y (el + o) + )< )
k=
Together with (4.8), it follows 0
27(32177 < c(r)(zo0 + Z{:Z(vl)) +7(14+171) En: (C(R)z,(i)L7 + e(r )Z;{EYZ)) (4.24)
k=
Possibly decreasing 71 (R) in (4.4), we furt}fer deduce

22 < A2ne2nT (c(r)zo + c(r )Z,{ (1)7 + 7(1+ Tp) Z ’y_%c(r)z,fg)). (4.25)
k=0
3) We finally tackle zs’% Here we first employ (4.13) with |a| = 3, and then
apply (4.20) with |o| = 2 iteratively for az = 0, 1,2, also invoking (4.24). In
this way, (4.13), (4.20), and (4.24) first yield

2yt 1150 + [ drdEydin |72 (4.26)

Sc(r)(zoJng( )+ T(1+1T) Z 2123?21'?—’_2157:217)—"_6( )zgg?)))
k=0

2
5(2)
Z n+1 gy T C6Fnt1g)
7=0
with ag = 0 in (4.20). Combining (4.20) for a3 = 1 with (4.26) and (4.24),
we next see that one can add [|02datyn41]|32 to the left-hand side of (4.26). In

the same way the missing term 93,1 is estimated in L?, arriving at the final
bound near 0G:

n

20 ez + ZEP) + 11+ ) (e(R)(ED) L, + 20 ) + e(r)2Y)
k=0

2
(2
Z n+1 —in T c5z7(7#21—j,7)' (4.27)
7=0
Fixing a number § = §(r) > 0, the first term in the last line can be absorbed
by the left. By (4.24) the last summand in the inequality (4.27) is bounded by

its first line. It follows
n

(3 ~(3 3 (3
20, < e+ ZED) + 71+ 1) Y (e(R)ED,, +20,) + e(r) ).
k=0
Together with the interior estimate (4.8), we conclude
3 _ 3 (3
A <)o+ ZED) 11+ )Y @R, + e, (4.28)

k=0
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We now fix our maximal time step size as
0 <7 < m(R) == min{r(R), (2(1 + Tp)e(R)) '} (4.29)

see the line before (4.25). We recall the notation v = e“)7 in Lemma 4.1,
the definition (2.19), and the comments after (2.16) and (2.22). The discrete
Gronwall inequality and (4.28), now easily yield the core a priori estimate.

Proposition 4.2. Let (2.1) be true and u, € H2.(G) solve the linearized im-
plicit Euler scheme (2.21) for given ug € H2,(G) with ||ud| L~ < k and (vy,) in
E(R,T,T), where R>0,0<T < Ty and 0 < 7 < 79(R). Let N be the largest

integer with N7 < T and r* > max,>1 zﬁ’@). Forn € {0,...,N} we then have

n—1
2n < ACE) )T (c(r)za + C(T)Zf:le) + 7¢(r)(1 + Tp) Z e_QC(R)kz};). (4.30)
k=0

5. CONSTRUCTION OF THE SCHEME AND ERROR ANALYSIS

In the next result we construct a time discretized approximation of a solution
u=(E,H) € G3([0,Tp]) of (2.3) with the material laws (2.1) and J = 0. We use
the Euler scheme (2.15) with operators defined in (2.16), where we let f,, = 0.
There is a maximal bound 72(r¢) on the time step size, but it only depends on
the norm ||ug|lzs < ro of the initial value. The additional condition || Ey||r~ < K
ensuring invertibility of eq(Ey), disappears (i.e., kK = 00) if the coefficents in
(2.1) and (2.2) have a good sign, see (2.4). We also show that the solution is
bounded in H? by a constant R only depending on 7. In this sense the scheme
is (unconditionally) stable.

Theorem 5.1. Let (2.1) be true, ug = (Eo, ho) € H3(G) satisfy ||Eollr~ < &
and (2.11). Fiz ro > ||uo|ly3. Then there is a number R = R(rg) > 0, a time
horizon T3(R) > 0 and a maximal step size T2(R) > 0, see (5.1), (5.3) and
(4.29), such that for 0 <7 < (R), TN <T and 0 <n < N we have a unique
solution (up)o<n<n n E(R,T,7) of (2.15). The solution satisfies the bound

(4.30) with z,{ =0= Zg’@) uniformly in .

Proof. The solution is constructed by a fixed-point argument on the space £ =
E(R,T,T) given by (2.19), 0 < T < Tp and 0 < 7 < 7(R) with »(R) from
(4.29). Let N be the largest integer with 7N < 7. Below these numbers are
chosen depending on rg.

We have zy < ¢o(r9) by Lemma 3.3. Set 5 = co(r0) + 1 and take

R? := 2¢*(rg)colro), (5.1)
with ¢*(r) and C*(r) being the maxima of the constants ¢(r) and C(R), re-
spctively, in (4.25) and (4.30). We equip £ with the the metric induced by

max z(z) namel
n<n y

= j - L
d(v,7) = max max |ldz(vn = n)llpz-s

(Recall that v_j, = u_g for k € {0,1,2,3} with u_j from (2.17).) It is then
straightforward to check that £ is complete.
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Take v = (vy)o<n<n € €. We then obtain

Up =00+ T Z d, v (5.2)
k=1

for 1 <n < N, and thus |Jv,|y2 < ro+N7R < ro+TR. Applying d, it follows
|[dFvn|lyg3—s < co(ro) + TR for j € {0,1}. Taking T < T1(R) := min{Tp, 5}, we
infer max,>1 2 <2 (co(ro) +1)% = (r3)?. We define ®(v) = ®,,(v) by

[@up (V)]ns1 = [ [T = 7Aks1) Tug = (T = 7An0) - (T = 7A1) Mg

k=0
for n < N — 1, which is well-defined because of 0 < 7 < m»(R) < 1/wo(R), see
(2.22) and the text following it. The sequence (u,.1) = ®(v) in H3.(G) solves
the linearized recursion (2.21) for v. To simplify notation we write
Moy = [[(7—7450)7"
j=k

Let T < Ty(R) := min{T}(R),In(2)(2C*(R) + 2)~'}. Estimate (4.30) then

shows that
Zni1 < exp (2(C(R) + 1)T)c(7“)co(r0) < R

The restriction ||ul|r < &' then follows as in (5.2), replacing T»(R) by
T3(R) = min{T3(R), (k' — | Eollz)(csR)~'}, where cg is the norm of the
embedding H?(G) < C(G). Hence, ® maps & into itself.
_ To show the strict contractivity of ®, we let ¥ € £ and set w = ®(v) — ®(v),
A, = A(v,,) etc.. We compute

n
1 1 _ 1 = 1=
Wnp1 =7 Y Mg [(Apty = M) M + Ayl Qugr — Ay Q| T oo
k=0

The term ¢ = [- - - ]Ik ouo belongs to H2,(G) by Lemmas 2.1 and 3.1. Observe
that ¢, = II,, xpo solves (2.21) for v, with f,, = 0, starting time k& and initial
value ¢y We can thus apply (4.25) to ¢, and (4.30) to Il oug. Using also
Lemmas 3.1 and 3.2, we deduce
d(@(v) — ®(v)) < (n+ 1)7c(R) exp ((C*(R) + 1)T)co(ro)d(v, )
< 2T¢i(R)d(v,v) < 3d(v,)

if we let

0 < T < T3(R) == min{T4(R), (4c1(R))"*}. (5.3)
As a result, we have unique fixed point u € E(R, T, 7) of u = ®(u), which then
solves (2.15) with f, = 0. O

We can now proceed as in [11] to show convergence of the scheme. Let
(2.1) be true and ug = (Eo, ho) € H2.(G) fulfill || Ey|| L=~ < k. Then we have the
solution u € G3([0, Tp]) of (1.1) (or (2.3) with J = 0) satisfying lullgs(jo,m)) < R.
Moreover, Theorem 5.1 provides the unique solution u, € H2.(G), 0 <n < N,
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of (2.15) with f,, = 0 subject to z, < R? and ||u}||oc < &', where N7 < T < Tp.
We set t,, = nT and

Ap = A(u}hb), Qn = Q(u}z% Ap = AT_Ll(M + Qn)?
An = A(ul(tn))7 Qn = Q(ul(tn))7 An = Agl(M + Qn),

tn+1
i = ultn),  en = tn — i, Ony1 = / Ot (1 — 1) dt.
tn

for n < N, cf. (2.16). We analyze the error e,. Note that

U(tns1) = u(tn) + 7OU(tns1) + Opt1 = U + TAn+1un+1 + 0pa1-

Substracting this equation from (2.15), i.e., up4+1 = Up + TAn41Unt1, We obtain
the error equation
€ntl = €en + T(An—l—lun—l-l - An—l—l@n—i-l) - 6n+1
=ep +TAn1€n41 + T(AnJrl - An+1)ﬁn+1 — Ont1- (54)
We can now show our main convergence result, bounding the L?-error in first
order by an energy-type estimate.

Theorem 5.2. Let (2.1) be true, ug = (Eg, ho) € H3.(G) satisfy || Eol|r~ < k,
and let u € G3([0,Tp]) solve (1.1). Fiz R > llullgs o,y and ro > |luollys, and
define R = R(rg) > 0, T5(R) > 0 and 72(R) by (5.1), (5.3) and (4.29). Let
0<T <T3(R),0<7<7m(R), TN <T, and (un)o<n<n be the solution of the
Euler scheme (2.15) with f, = 0. For 0 <n < N we then obtain

_ T
llun — u(n7)|’%2(c) < C(T)enTc(R)TQ/O H(?fu(t)H%z(@ dt,

2)

where R = max{R, R}, r? > max,>0 zn"~ and R? > max, >0 Z%’(S), see (2.18).

Proof. Set |ullg2o)) = 7 and T = max{r,7}, We integrate (5.4) against
Aypt1en41 Obtaining
1 1

1 1 1 1
(ApientrlAiienin) = (AgpienlAi i enin) + T((MA+Qni1)entilenta) (5:5)
+ T((An—H _An+1)an+1 ’An+1en+1) - (571—1-1 ’An—l—len—s—l)-
Observe that HAflil—A;}rl |22 < ¢(r)||ens1 |2 and analogously for Qi1 —Qpy1.
Using (the proof of) Lemma 3.1 of [11], one shows

1 1
1Az 1 = Adllzee < e(r)ljun = untallze < 7e(r)[[Antrtnillze < 7e(R).
1 1
We now subtract (Ajen|A;, ent1) from (5.5) and use the above observations

and the skew-adjointness of M on H..(G). It follows
1 1 1
(A ren+1 = Aden| A yens1) < Te(R)llenllrzlentallze + me(r)llensa |72
+7e(7) |41l oo llenal|72
+1e(r) (177 g1l 72 + llensall72)

< re(R)(lleall7z + lentallz2) + e(r)l| £ 0n1]72-
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Because of the Cauchy—Schwartz inequality and eg = 0, the left-hand side is
bounded from below by

1 n—1

n—1 1 1 1
ST (A7 enin = Mer|AZenin) =D (lenpalfir — SllewsllE oy — 2lexll?)
k=0

k=0

= llenllz-

Together we have show

n—1
lenll72 < 7> (@R)llexsalle + c(r) 120511 l72)
k=0

For 0 < 7 < (2¢(R))~!, the discrete Gronwall inequality now yields

[1]
2]

[9]
(10]
(11]

(12]

(13]

(14]

(15]

(16]

_ n—l 77 nr
lenll72 < e(r)e" ™07y || 261a][72 < C(T)G”TC(R)TQ/O 107 u(®)||72 dt. O
k=0
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