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Abstract. We establish first-order convergence of the implicit Euler
scheme for the quasilinear Maxwell equations with Kerr-type material laws.
We only impose regularity assumption which are in accordance with the
newly established wellposed theory for the PDE system. In recent literure
CFL conditions had to be imposed on full discretizations of this system
even for implicit time integration schemes. In our results on the semi-
discretization, the time step size is only restricted by the H3-norm r0 of
the initial fields, and the solutions of the scheme are bounded by c(r0). We
thus expect to obtain full discretization results without CFL condition in
future work. The estimates are shown by an intricate iterative procedure
inspired by the methods used in the wellposedness theory of the PDE.

1. Introduction

The Maxwell equations are the fundamental laws of electromagnetic theory.
In media, they contain constitutive relations which describe the response of
the material to the electromagnetic fields. In this work we focus on nonlinear
instantaneous relations for which the Maxwell equations become a quasilinear
hyperbolic system. On domains G ⊆ R3 with the standard boundary conditions
of a perfect conductor, only recently a comprehensive wellposedness theory in
the Sobolev space H3(G) for the quasilinear Maxwell system has been estab-
lished in [24] and [25]. The numerical approximation of these equations is a
formidable task since they form a nonlinear, highly coupled 6× 6-system on a
3D domain. Explicit time integration schemes suffer from severe CFL condi-
tions and require very regular solutions for a rigorous error analysis. Only very
recently, for the semi-implicit Euler and midpoint rules and the exponential
Euler method, error estimates for the full discretization were shown under an
improved CFL condition in [10], [18], and [19]. In the present paper we analyze
the implicit Euler scheme without space discretization and show first-order con-
vergence under the regularity conditions of [24] and [25]. In our main results
the time step size τ > 0 is only restricted by the H3-norm r0 of the initial fields
and the approximations are bounded by c(r0) uniformly in τ , so that we expect
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to obtain error estimates for full discretizations without a CFL-condition in
future research.

We study the quasilinear Maxwell system

∂t(ε(E)E) = curlH − σ(E)E, t ≥ 0, x ∈ G,
∂t(µH) = − curlE, t ≥ 0, x ∈ G, (1.1)

E × ν = 0, t ≥ 0, x ∈ ∂G,
E(0) = E0, H(0) = H0, x ∈ G,

on a bounded open set G ⊆ R3 with a C5-boundary and outer unit normal ν.
Here, E(t, x) ∈ R3 and H(t, x) ∈ R3 are the electric and magnetic fields, respec-
tively, ε(x,E) ∈ R+ = (0,∞) is the permittivity, σ(x,E) ∈ R the conductivity,
µ(x) ∈ R+ the permeability. State-independent µ are typically considered in
nonlinear optics, see [1], [21]. We treat the isotropic material laws

ε(x, ξ) = εlin(x) + εnl(x)φe(|ξ|2), σ(x, ξ) = σlin(x) + σnl(x)φs(|ξ|2),

with smooth scalar coefficients satisfying εlin, µ ≥ 2η for some η ∈ R+ and
φe(0) = 0. Then we can find a number κ > 0, see (2.4), such that ε(x, ξ) ≥ η if
|ξ| < κ, where κ =∞ if εnl, φe ≥ 0. This condition yields the strict hyperbolicity
of the system. This size restriction has to be imposed on the initial field E0.
A prototypical case for the above constitutive relations is the Kerr law with
φe(s) = s, see [1], [7].

The paper [24] provides unique solutions u = (E,H) of (1.1) in the space

G3 =
⋂3
j=0C

j([0, T0],H3−j(G)), depending continously on u0 = (E0, H0) in

H3(G). The data u0 have to satisfy certain compatibility conditions, see (2.6),
which are necessary for the existence of a solution in G3. The existence time
T0 > 0 can be bounded from below by a positive number depending on the
H3-norm of u0. Actually, [24] treats anisotropic material laws, which are far
more general than in (1.1) and lead to nonlinear state-dependent compatibility
conditions. These conditions become linear for our material laws, namely

trtaE0 = 0, trta curlH0 = 0, trta curl
(
1
µ curlE0

)
= 0. (1.2)

This simplification is shown in Lemma 2.1 and heavily exploits the structure of
the laws. As in [3], [10] and [19], we restrict to this case in order to focus on
the main error estimates here. Below we discuss the possibility for extensions
in future work.

The approach of [24] and [25] is based on energy methods adapted to the
Maxwell system. The standard energy estimate indicates that one has to control
∂tu uniformly in x ∈ G for solving (1.1). This corresponds to the blow-up
condition in W 1,∞ proved in [24]. In L2-based integer Sobolev spaces one thus
has to work in a regularity level as above, since H2(G) ↪→ C(G). Compared to
[24] and [25], the general theory of quasilinear symmetric hyperbolic systems
yields less precise results in Sobolev spaces of higher order (treating a much
larger class of problems though), see e.g. [9].

The recent works [4], [11] and [12] analyzed (semi-)implicit Euler, implicit
Runge–Kutta schema and exponential integrators in the class of quasilinear
hyperbolic evolution equations taken from [15] and [22], which involves weighted

2



scalar products that are also used in the present paper. Analogous results were
obtained in [16] for the original class introduced by Kato in [13], see also the
earlier contribution [2]. In the framework of [15] and [22], but not in that of [13],
one can treat the Maxwell system on the full space G = R3 or with (unphysical)
Dirichlet boundary conditions. Moreover, for a quasilinear 1D wave equation
with periodic boundary conditions, a trigonometric integrator was studied in
[8] and error estimates for the full discretization with a Fourier spectral method
were established. Space discretizations for the quasilinear Westervelt equation
from nonlinear acoustics were treated in [23], for instance.

However, the settings of [13], [15] and [22] do not cover the Maxwell system
with the standard boundary conditions of a perfect conductor, as in (1.1).
These conditions are excluded by a condition in Kato’s work that provides
an ismorphism allowing one to transfer energy estimates from the L2- to the
H3-level. In [24] and [25] this step is performed in a more PDE-type approach
using the structure of the Maxwell system, as explained below.

In a next step, the papers [10], [18] and [19] presented a uniform error analysis
for a large class of space discretizations combined with Runge–Kutta methods or
the semi- and fully implicit midpoint rules as time discretizations. The analysis
is performed within Kato’s framework from [15] and [22], but without assuming
the existence of the isomorphism mentioned above. Instead, the existence of
a solution to the evoluton equation in a space like G3 is required, which is
guaranteed by [24] for the Maxwell system (1.1). The proofs in [10], [18] and [19]
rely on a sophisticated iterative argument using the regularity of the solution
and inverse estimates for the space discretizations. However, here one needs
a restriction of the time step size τ > 0 compared to the space discretization
parameter h > 0, namely τ ≤ chβ for β > 5

4 , which improves on results for the
elastic wave equation in [20].

By the same approach, in [19] one obtains a CFL condition with β > 3
4 for

the Westervelt equation in 3D from nonlinear acoustics. In the very recent
contribution [3] this exponent was improved to β > 1

4 , exploiting additional
boundedness assumptions on derivatives of the solution to the PDE, see also
[5] for related work in the linear non-autonomous case.

As a main novelty, in this paper we use for the first time the methods of [24]
and [25] in numerical analysis. Adapting them to the time-discrete situation,
we establish a priori estimaates for linearized problems and set up fixed-point
arguments based on this estimates. As in [11], we use the implicit Euler scheme

Λ(un+1)(un+1 − un) = τMun+1 + τQ(un+1)un+1, 0 ≤ n ≤ N,
Bun+1 = 0,

(1.3)

setting Λ(u) = diag(εd(E), µ), Q(u) = diag(−σ(E), 0), and Bu = (E × ν)�∂G
for u = (E,H), as well as

M =

(
0 curl
−curl 0

)
.

Here, εd(x,E) is an (invertible) matrix given in (2.2) such that ∂t(ε(E)E) =
εd(E)∂tE. To solve the recursion (1.3), one freezes a sequence (vn) from a
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suitable fixed-point space, see (2.19), in the nonlinearities which leads to the
linearized Euler scheme

Λ(vn+1)(un+1 − un) = τMun+1 + τQ(vn+1)un+1, 0 ≤ n ≤ N,
Bun+1 = 0.

(1.4)

This recursion can be solved in the space of un ∈ H3(G) satisfying the com-
patibiltiy conditions (1.2) by means of the resolvents of the (frozen-time) oper-
ator An+1 = Λ(vn+1)

−1(M + Q(vn+1)) endowed with a suitable domain. The
necessary mapping properties of these resolvents follow from the main results
of [25] and our Lemma 2.1. This is the core step where we use the special struc-
ture of our Kerr-type laws. For more general material laws one only obtains
H1-solutions for (1.4) by means of these frozen-time resolvents, because of the
state dependent compatiblity conditions. In this general case, one would then
have to show the needed H3-regularity using the a priori estimates discussed
below and adapt regularization arguments from [25] to the time-discrete setting.

We make use of the difference quotients dτun = 1
τ (un − un−1). In the main

step of our analyis we show in Proposition 4.2 that the H3−j-norms of djτun for
j ∈ {0, 1, 2, 3} and n ∈ {0, · · · , N} are bounded by a constant c(R, T0), where R

is larger than theH3−j-norms of djτvn and τN is smaller than the existence time
T0 of the solution u to (1.1).1 This estimate is proved in Section 4 in several
steps. In Lemma 4.1 we first show a basic energy estimate in L2, proceeding
as in [11] in Kato’s framework from [15] and [22]. However, we have to include
nontrivial boundary terms Bun+1 = ϕn in view of error terms arising later. One
next splits the solution un in a part with support off the boundary ∂G and one
close to it. To the equation for the interior part, one applies third-order tupels
∂α of spatial derivatives and difference quotients. The differentiated fields ∂αun
can then estimated in L2 by means of the basic energy estimate. Here and below
various commutator terms appear which are treated as inhomogeneities in the
energy estimate, see (4.6). In this interior case, all boundary terms vanish.

The part near ∂G is estimated by intricate iteration steps. Here we use ideas
from [17] which avoid the lengthy localization procedure of [25]. However, in
the time-discrete case we have to modify the arguments considerably. First,

we differentiate the recursion in tangential directions and apply djτ , leading to
commutator terms in (4.10) also at ∂G. One has to be careful when estimating
these terms in order to obtain constants that depend on the norms of vn in (1.4)
in a way fitting to the fixed-point argument. By means of the energy estimate
we then bound tangential derivatives and difference quotients of un in L2.

The normal derivatives produce error terms at the boundary which cannot be
handled in this way. One thus proceeds differently and uses the equation (1.4)
and its tangetially differentiated version (4.10) which give rather complicated
expressions of the curl and the divergence of un. These can then be used to
control the normal derivatives iteratively in quite delicate estimates. In the end
we put together the various steps in a discrete Gronwall argument.

1Throughout, we write c(α, . . . ) for a generic constant that depends on positive numbers
α, . . . non-decreasingly and is independent of other relevant quantities, in particluar of τ .
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The problem (1.3) is then solved in fixed-point argument which is inspired by
the arguments in [24]. It is crucial that one can fix a radius R for the fixed-point
space which only depends on the H3-norm r0 of u0. This is feasible due to the
precise form of the a priori estimate in Proposition 4.2. As in the existence
result for the PDE, one has to choose a possibly small existence time T ≤ T0
which only depends on r0. Analogously, the time step size τ and the solutions
are bounded by numbers depending on r0, see Theorem 5.1.

In Theorem 5.2 we then show first-order convergence of the implicit Euler
scheme (1.3) in L2 for data (E0, H0) in H3 satisfying the compatibility condi-
tions (1.2) and the hyperbolicity condition ‖E0‖L∞ < κ, see (2.4). The proof of
this result is similar those in [11], based on the estimates in our Theorem 5.1.

In the next two sections we introduce our setting and some basic tools. Sec-
tion 4 is devoted to the proof of the higher-order energy estimates. In the last
section we solve the scheme and show its convergence.

2. The Maxwell system and the Euler scheme

We assume that the coefficients of the Maxwell equations satisfy

ε(x, ξ) = εlin(x) + εnl(x)φe(|ξ|2), σ(x, ξ) = σlin(x) + σnl(x)φs(|ξ|2), (2.1)

εlin, εnl, µ, σlin, σnl ∈ C3(G,R), φe, φs ∈ C4(R≥0,R), φe(0) = 0, εlin, µ ≥ 2η,

for x ∈ G, ξ ∈ R3, and some η ∈ R+. For φe(s) = s one obtains the well-known
Kerr law ε(E)E = εlinE + εnl|E|2E. We define

εd(·, ξ) = ε(·, ξ)+2εnlφ
′
e(|ξ|2)ξξ>, σd(·, ξ) = σ(·, ξ)+2σnlφ

′
s(|ξ|2)ξξ>, (2.2)

and abbreviate ε1(x, ξ) = 2εnl(x)φ′e(|ξ|2) and σ1(x, ξ) = 2σnl(x)φ′s(|ξ|2). Ob-
serve that εd(x, ξ) is symmetric.

Because of ∂t(ε(E)E) = εd(E)∂tE, the Maxwell system (1.1) is equivalent to

εd(E)∂tE = curlH − σ(E)E − J, t ≥ 0, x ∈ G,
µ∂tH = − curlE, t ≥ 0, x ∈ G, (2.3)

E × ν = 0, t ≥ 0, x ∈ ∂G,
E(0) = E0, H(0) = H0, x ∈ G,

where we include the current density J(t, x) ∈ R3. In our main result we restrict
to the case J = 0, but in the analysis commutator terms appear that will be
treated as inhomogeneities. The differentiated version (2.3) suits better for
energy estimates,

To invert ε and εd, we fix a number κ ∈ (0,∞] such that

|ξ| < κ =⇒ ∀x ∈ G : ε(x, ξ) ≥ η, ε(x, ξ) + ε1(x, ξ)|ξ|2 ≥ η. (2.4)

If εnlφe, ε1 ≥ 0, one can simply take κ =∞. Otherwise we may choose a number
κ ∈ R+ such that

max
0≤s≤κ

‖εnl‖∞(|φe(s2)|+ 2|φ′e(s2)|s2) ≤ η.
5



For |ξ| < κ we have the inverse

εd(·, ξ)−1 =
1

ε(·, ξ)
− ε1(·, ξ)
ε(·, ξ)(ε(·, ξ) + ε1(·, ξ)|ξ|2)

ξξ> =:
1

ε(·, ξ)
−a(·, ξ)ξξ>. (2.5)

Concerning the tangential trace in the boundary condition of (2.3), we recall
that the linear map trta : ϕ 7→ (ϕ × ν)�∂G from H(curl) ∩ C(G) to C(∂G) can

be extended to a continuous operator from H(curl) to H−1/2(∂G). Its kernel is
the closure H0(curl) of the test functions in

H(curl) := {ϕ ∈ L2(G) | curlϕ ∈ L2(G)}.

Here (and often below) we write L2(G) instead of L2(G)3 or L2(G)6 etc., some-
times also omitting the spatial domain, and Hs denotes the (fractional) Sobolev
space on an open subset of Rm or its (at least Lipschitz) boundary.

Occasionally we use the rotated tangential trace Trta ϕ = ν×trta ϕ. Moreover,
the normal trace (ν ·ϕ)�∂G can be extended to continuous map trno from H(div)

onto H−1/2(∂G), where H(div) := {ϕ ∈ L2(G) | divϕ ∈ L2(G)}. We note that
the full trace is decomposed as trϕ = Trta ϕ+ (trno ϕ)ν.

We want to obtain solutions u = (E,H) = (u1, u2) of (2.3) in G3(I) for some
interval I ⊆ [0,∞) with 0 ∈ I. Here we employ the space

Gk = Gk(I) =
⋂k

j=0
Cj(I,Hk−j(G)6)

which is endowed with its canonical norm if the interval I is compact. (Through-
out, we write ξ = (ξ1, ξ2) ∈ R6 = R3×R3.) To this aim, the data (E0, H0) and
J must belong to H3(G) and H3((0, T ) × G), respectively. Moreover, we can
differentiate the boundary condition in (2.3) twice in time at t = 0 and infer
that the compatibility conditions

trtaEk = 0 for ∂kt E(0) =: Ek and k ∈ {0, 1, 2}, (2.6)

have to hold on ∂G. In general, for k ∈ {1, 2} these equations lead to nonlinear
conditions on E0 and H0, see [24], which would make the following analysis
much more difficult.

Under our hypotheses, the conditions (2.6) actually turn out to be linear. To
see this fact, by means of (2.3) we first compute

∂tE(0) = εd(E0)
−1(curlH0 − σ(E0)E0 − J0

)
,

∂2tE(0) = −εd(E0)
−1(curl( 1

µ curlE0) + J1 + σd(E0)E1

)
(2.7)

−
[
a1 + a2E0E

>
0 + a(E0)(E0E

>
1 + E1E

>
0 )
][

curlH0 − J0 − σ(E0)E0

]
,

where we set J0 = J(0) and J1 = ∂tJ(0). The scalar scalar functions ak depend
on (E0, E1) and arise from differentiating εd(E(t))−1 in time at t = 0. In the
analysis, one linearizes (2.3) to

εd(v1)∂tE = curlH − σ(v1)E − J, t ≥ 0, x ∈ G,
µ∂tH = − curlE, t ≥ 0, x ∈ G, (2.8)

E × ν = 0, t ≥ 0, x ∈ ∂G,
E(0) = E0, H(0) = H0, x ∈ G,
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by inserting a function v ∈ G3 into the nonlinear terms. The solution of (2.8)
is still denoted by u = (E,H). Setting v0 = v1(0) and v1 = ∂tv

1(0), we obtain

∂tE(0) = εd(v0)
−1(curlH0 − σ(v0)E0 − J0

)
, (2.9)

∂2tE(0) = −εd(v0)
−1(curl( 1

µ curlE0) + J1 + σ(v0)E1 + 2σnlφ
′(|v0|2)v>0 v1E0

)
− (a1(v0, v1) + a2(v0, v1)v0v

>
0 + a(v0)(v0v

>
1 + v1v

>
0 )
][

curlH0 − J0 − σ(v0)E0

]
.

We write ξ · ζ = ξ>ζ for the scalar product in Rm. We can now describe the
compatibility conditions both for the nonlinear and the linear case.

Lemma 2.1. Let (2.1) be true and v0, E0, H0 ∈ H3(G), v1, J0 ∈ H2(G) and
J1 ∈ H1(G) satisfy

trtaE0 = trta v0 = trta J0 = trta v1 = trta J1 = 0, trta curlH0 = 0,

trta curl( 1
µ curlE0) = 0.

We then obtain trtaE1 = trtaE2 = 0, where Ek = ∂kt E(0) are defind by (2.7) or
(2.9). If v0 = v1(0) and v1 = ∂tv

1(0) for some v ∈ G3([0, T ]) and analogously
for J ∈ H3((0, T )×G), then trta f = 0 implies trta f1 = 0 for f ∈ {v, J}.

Proof. The last assertion follows from the continuity of the trace. For the first
one, we observe that (ξξ>ζ)× ν = (ξ · ζ) ξ × ν for ξ, ζ ∈ R3. This fact yields

(εd(v0)
−1ϕ)× ν = 1

εϕ× ν − a(v0)(v0 · ϕ) v0 × ν (2.10)

by (2.5), and hence trtaE1 = 0. Similarly, one shows that trtaE2 = 0. �

In view of the above lemma, Theorem 3.3 in [24] yields a unique, maximally
defined solution u = (E,H) ∈ G3([0, t)) of (2.3) (and (1.1)) provided that (2.1)
is true, the initial fields u0 = (E0, H0) ∈ H3(G) satisfy ‖E0‖∞ < κ and

trtaE0 = 0, trta curlH0 = 0, trta curl( 1
µ curlE0) = 0, (2.11)

and the current J ∈ H3((0, b) ×G) fulfills trta J = 0, where b > 0 is arbitrary.
Moreover, the maximal existence time t = t(u0, J) ∈ (0,∞] is larger than a pos-
itive number depending only ‖u0‖H3 , ‖J‖H3 and κ−‖E0‖∞, it is characterized
by a blow-up condition in W 1,∞(G), and solutions depend continuously on the
data. See Theorem 3.3 in [24] for precise statements. Lemma 2.1 with v1 = E
shows that the compatibility conditions (2.11) are true for all times, since we
have trta ∂tE = trta ∂tJ = 0.

We include the compatibility conditions (2.11) in the state spaces, setting
H0

cc(G) = L2(G) and

H1
cc(G) = {ϕ ∈ H1(G)6 | trta ϕ

1 = 0},
H2

cc(G) = {ϕ ∈ H2(G)6 | trta ϕ
1 = 0, trta curlϕ2 = 0}, (2.12)

H3
cc(G) = {ϕ ∈ H3(G)6 | trta ϕ

1 = 0, trta curlϕ2 = 0, trta curl( 1
µ curlϕ1) = 0}.

We also need the linearized problem (2.8) for a constant-in-time function
v1 ∈ H3(G)3. Theorem 1.1 of [25] and Lemma 2.1 then show that the solutions
of (2.8) generate a C0-semigroup on Hkcc(G)6 for k ∈ {0, 1, 2, 3}. The estimates
in Theorem 1.1 of [25] also imply that these semigroups have exponential bounds
which are unform for v1 with ‖v1‖H3 ≤ R.
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Since v1 does not depend on time here, the case k = 0 already follows from
standard semigroup theory using the generator

A =

(
−εd(v1)−1σ(v1) εd(v1)−1 curl
−µ−1 curl 0

)
, D(A) = H0(curl)×H(curl).

Observe that the off-diagonal part of A is skew-adjoint on L2(G) endowed with
the equivalent scalar product for the weight (εd(v1), µ) and that the diagonal
part is bounded on this space. By Paragraph II.2.3 of [6], the semigroups on
Hkcc(G) are generated by the restrictions of A to

D(A,Hkcc) = {ϕ ∈ Hkcc(G) |Aϕ ∈ Hkcc(G)} (2.13)

for k ∈ {1, 2, 3}, with D(A,H0
cc) = D(A). Lemma 3.1 yields the equivalence

Aϕ ∈ Hk(G) ⇐⇒ curlϕi ∈ Hk(G), i ∈ {1, 2}. (2.14)

As in Lemma 2.1 one can see that ϕ ∈ D(A,Hkcc) has to satisfy the boundary
conditions from Hk+1

cc (G) if k ≤ 2, whereas D(A,H3
cc) involves conditions de-

pending on v1 that are not needed below. Later on we denote the restrictions
of A also by A.

We want to approximate the maximal solution u ∈ G3([0, t)) of (2.3) for
initial fields u0 = (E0, H0) ∈ H3

cc(G) with ‖E0‖L∞ < κ, see (2.4), and a current
J ∈ H3((0, b) × G) with trta J = 0, where b > 0 is arbitrary. We assume that
(2.1) holds. For the approximation we use the implicit Euler scheme

Λ(un+1)(un+1 − un) = τMun+1 + τQ(un+1)un+1 + τfn, 0 ≤ n ≤ N,
Bun+1 = 0,

(2.15)

for n ∈ N0 and the time step size τ > 0, where we set

Λ(u) =

(
εd(u1) 0

0 µ

)
, M =

(
0 curl
−curl 0

)
, Q(u) =

(
−σ(u1) 0

0 0

)
,

B =
(
trta 0

)
, fn =

(
−J(nτ)

0

)
. (2.16)

In the following we deal with sequences (wn), where n0 ≤ n ≤ N or n0 ≤ n <∞
for some N ∈ N and n0 ∈ {−3,−2,−1, 0}. We fix a time T0 < t and take N
with τN ≤ T ≤ T0, where T > 0 is chosen later. Moreover, the difference
quotient and the backward shift are given by

dτwn = 1
τ (wn − wn−1) and Swn = wn−1 for n > n0.

In our analysis we will have to work with functions such as djτu0. To make
this possible, first the given sequence (fn)n≥0 is extended to f−k ∈ H3−k

cc (G) for
k ∈ {1, 2, 3}. We then iteratively define

u−k = u−k+1 − τΛ(u−k+1)
−1(Mu−k+1 +Q(u−k+1)u−k+1 + f−k)

u−3 = u0 − 3u−1 + 3u−2
(2.17)

for k ∈ {1, 2}. So we extend (2.15) backwards in two steps. In the third step
we are not able to guarantuee the invertibility of Λ(u−2). But u−3 is only
needed to determine d3

τu0, and by our choice we simply set it to 0. We state
8



the basic properties of the extended initial fields in Lemma 3.3, noting already
that u−k ∈ H3−k

cc (G) and ‖u1−1‖∞ < κ if 0 < τ ≤ τ̃0(r0).
We also record a possible extension of (fn)n≥0 to n ≥ −3 using only f0, f1

and d2
τf2 =: a, namely

f−1 := 2f0−f1+τ2d2
τf2, f−2 := 3f0−2f1+3τ2d2

τf2, f−3 := 4f0−3f1+6τ2d2
τf2.

Beyond the terms detemined by (fn)n≥0, we thus obtain the additional (iter-
ated) difference quotients

d3
τf2 = d3

τf1 = d3
τf0 = 0, d2

τf1 = d2
τf0 = a, dτf0 = −dτf2,

also given by f0, f1 and d2
τf2.

Similar as in [11], we solve the recursion (2.15) by a fixed-point argument,
freezing fields v1n+1 in the maps Λ and Q. For sequences (wn) in Hk(G)6 with
k ∈ {0, 1, 2, 3} and τ > 0, we define

z(k)n = zw,(k)n = max
0≤j≤k

‖djτwn‖2Hk−j , zn = zwn = zw,(3)n , (2.18)

for n ∈ N0 with n ≤ N . These quantities are used throughout the paper. To

compute djτwn for 0 ≤ n < j we need the vectors w−1, w−2 and w−3 which
are considered to be given. For the solutions un and for the fields vn inserted
in Λ and Q, we use the extended initial data u−1, u−2 and u−3 from (2.17).
These extra vectors do not enter in the linearized recursion (2.21). We only
use them to estimate the first and second iteration step in the same way as
the later ones, thus avoiding case distinctions. Moreover, for the estimates only
vn+1 with n ≥ 0 will be relevant, so that v−3 = u−3 is not used here.

Take R, T, τ > 0 with T ≤ T0 and N be the largest integer with τN ≤ T . In
our main results, first R will be fixed according to the norm of u0 in H3. The
time horizon T and the step size τ then have to be smaller than some numbers
depending on R. Let κ be given by (2.4), and fix κ′ with ‖E0‖L∞ < κ′ < κ.
We introduce the space

E = E(R, T, τ) =
{

(vn)−3≤n≤N
∣∣∀n ≥ 0 : vn∈H3

cc(G), zvn ≤ R2, ‖v1n‖L∞≤κ′,

v−k = u−k ∈ H3−k
cc (G) for k ∈ {0, 1, 2, 3}

}
, (2.19)

We will also use numbers r2 ≥ maxn z
v,(2)
n in the proof. One can control r by R,

T , and ‖v0‖H3 as we will see in (5.2). But in our estimates it is more convenient
to use r separately.

Given (vn)−3≤n≤N ∈ E , for n ≥ 0 we now define

Λn = Λ(vn), Qn = Q(vn), An = Λ−1n (M +Qn), (2.20)

with domain D(An,Hkcc) = {ϕ ∈ Hkcc(G) |Anϕ ∈ Hkcc(G)}, see (2.13). The
linearized version of (2.15) then reads as

Λn+1(un+1 − un) = τMun+1 + τQn+1un+1 + τfn, 0 ≤ n ≤ N,
Bun+1 = 0,

(2.21)

where u0 ∈ H3
cc(G)6 is given. Let fn ∈ H2

cc(G) for all n ∈ N0 which means
that Jn ∈ H2(G)3 and trta Jn = 0 Then also Λ−1n+1fn belongs to H2

cc(G) by

(2.10). In general, such an implication is not true for H3
cc(G) unfortunately.
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For this reason we let fn = 0 in the main results, but we keep non-zero fn in
our presentation until Section 5, since such terms appear in our analysis as error
terms (without causing troubles because of the missing boundary condition).

By the above mentioned results from [25], we can solve (2.21) via

un+1 = (I − τAn+1)
−1(un + τΛ−1n+1fn) (2.22)

for 0 ≤ n ≤ N − 1, provided that τ ≤ τ0(R) < ω0(R)−1 for the common
growth bound of the semigroups generated by An+1 for data vn with zvn ≤ R2.
The number τ0(R) will be replaced by smaller ones later on. The restriction
τ ≤ τ0(R) is tacitly assumed below. If fn = 0, the fields un+1 and An+1un+1

belong to H3
cc(G) and curluin+1 to H3(G) for all n and i ∈ {1, 2}, see (2.14).

Otherwise they are only contained in H2
cc(G) and H2(G), respectively,

3. Auxiliary results

We first note that H2(G) and H3(G) are Banach algebras. The following
calculus results can be shown as Lemma 2.1 of [25] and Lemma 2.1 of [24].

Lemma 3.1. a) Let 3 ≥ k ≥ max{j, 2} and j ∈ {0, 1, 2, 3}. We then have the
product estimates

‖ϕψ‖Hj ≤ c‖ϕ‖Hk‖ψ‖Hj ,
where ϕ and ψ can be scalar-, vector- or matrix-valued.

b) If ϕ ∈ Hk(G) is matrix-valued with ϕ = ϕ> ≥ η > 0, then ϕ−1 ∈ Hk(G)
with norm bounded by c(‖ϕ‖Hk)‖ϕ‖Hk .

c) Let a ∈ C3(G × Rm), ϕ ∈ H3(G)m with norm less that R, and χ, ψ ∈
H2(G)m with norm less than r. We then have

‖a(ϕ)‖H3 ≤ c(R)(1 + ‖ϕ‖3H3), ‖a(ψ)− a(χ)‖H2 ≤ c(r)‖ψ − χ‖H2 .

To work with the difference quotient dτ , we will use the following observa-
tions. Let (an) and (bn) be sequences such that a product anbk is defined. We
start with discrete product formulas:

dτ (anbn) = 1
τ (anbn ∓ anbn−1 − an−1bn−1) = andτ bn + dτanbn−1

= andτ bn + dτanSbn (= dτanbn + Sandτ bn),

d2
τ (anbn) = and2

τ bn + 2dτanSdτ bn + d2
τanS

2bn, (3.1)

d3
τ (anbn) = and3

τ bn + 3dτanSd2
τ bn + 3d2

τanS
2dτ bn + d3

τanS
3bn.

We further need chain rules for dτ .

Lemma 3.2. Let (2.1) be true and take (vn), (vn) ∈ E(R) with z
v,(2)
n , z

v,(2)
n ≤ r2.

Let Bn ∈ {Λn,Λ−1n , Qn} be given by (2.20) and define Bn analogously for vn.
We then have

‖dkτBn+1‖H3−k ≤ c(r)
k∑
i=1

‖Skdiτvn+1+i‖H3−i ≤ c(r)R,

‖djτ (Bn+1 −Bn+1)‖H2−j ≤ c(r)
j∑
i=1

‖Sjdiτ (vn+1+i − vn+1+i)‖H2−i

for k ∈ {1, 2, 3}, j ∈ {1, 2}, and n ≤ N − 1.
10



Proof. Let β ∈ {ε−1d , σ}, τ > 0, and n ∈ N0. We ignore that only v1n appears in
the nonlinearities. We first compute

1
τ (Bn+1 −Bn) =

∫ 1

0
β′(δn+1(s))

1
τ (vn+1 − vn) ds, (3.2)

where δn+1(s) := vn + s(vn+1 − vn). Lemma 3.1 then implies

‖dτBn+1‖H2 ≤ c(r)‖dτvn+1‖H2 ≤ c(r)R.

Setting δn(s, s′) = δn(s) + s′(δn+1(s)− δn(s)) and using (3.2), we calculate

d2
τBn+1= 1

τ2

(
Bn+1 −Bn − (Bn −Bn−1)

)
=

1

τ2

∫ 1

0

[
β′(δn+1(s))(vn+1−vn ∓ (vn−vn−1))− β′(δn(s))(vn−vn−1)

]
ds

=

∫ 1

0
β′(δn+1(s))d

2
τvn+1 ds+

∫ 1

0

∫ 1

0
β′′(δn(s, s′))[dτvn,dτδn+1(s)] ds′ ds.

Since dτδn+1(s) = (1− s)dτvn + sdτvn+1, from Lemma 3.1 we also infer

‖d2
τBn+1‖H1 ≤ c(r)(‖d2

τvn+1‖H1 + ‖dτvn‖H2) ≤ c(r)R.

Finally, set δ̂n(s, s′, s′′) = δn−1(s, s
′) + s′′(δn(s, s′)− δn−1(s, s′)). Proceeding as

above, we write

d3
τBn+1 = 1

τ3
(Bn+1 − 2Bn +Bn−1)− 1

τ3
(Bn − 2Bn−1 +Bn−2)

=

∫ 1

0
β′(δn+1(s))d

3
τvn+1 ds+

∫ 1

0

∫ 1

0
β′′(δn(s, s′))[d2

τvn,dτδn+1(s)] ds′ ds

+

∫ 1

0

∫ 1

0
β′′(δn(s, s′))[ 1τ (dτvn − dτvn−1), dτδn+1(s)] ds′ ds

+

∫ 1

0

∫ 1

0
β′′(δn(s, s′))[dτvn−1,

1
τ (dτδn+1(s)− dτδn(s))] ds′ ds

+

∫ 1

0

∫ 1

0

∫ 1

0
β′′′(δ̂n(s, s′, s′′))[dτvn−1,dτδn(s),dτδn(s, s′)] ds′′ ds′ ds.

Observe that d2
τδn+1(s) = (1 − s)d2

τvn + sd2
τvn+1. By Sobolev’s embdding, we

conclude

‖d3
τBn+1‖H2 ≤ c(r)

(
‖d3

τvn+1‖L2 + ‖d2
τvn‖H1 + ‖dτvn−1‖H2

)
≤ c(r)R.

The second assertion is shown similarly. �

In our estimates the quantity zu0 at initial time will appear. By the next
lemma we can bound it by the H3-norm of u0, which is considered as given.

Lemma 3.3. Let (2.1) be true, u0 ∈ H3
cc(G) and f−j ∈ H3−j

cc (G) with norms
bounded by r0 and ‖u10‖∞ < κ, u−k be given by (2.17), and j ∈ {0, 1, 2, 3}. Then
there is a number τ̃0(r0) > 0 such that for 0 < τ ≤ τ̃0(r0) we have ‖u−1‖∞ < κ′

and djτuk belongs to H3−j
cc (G) with norm bounded by c(r0).
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Proof. Recall that Λ−k = Λ(u−k) and Q−k = Q(u−k) for k ∈ {0, 1, 2, 3}. The
κ-bound and the claim for j = 0 follows from (2.17), Lemma 3.1, and (2.10).
Equations (2.17) and (3.1) yield

dτu0 = Λ−10 (Mu0 +Q0u0 + f−1), dτu−1 = Λ−1−1(Mu−1 +Q−1u−1 + f−2),

d2
τu0 = dτΛ−10

(
(M +Q−1)u−1 + f−2

)
+ Λ−10

(
(Mdτu0 + dτ (Q0u0) + dτf−1

)
.

Lemma 3.1 and (3.2) then imply the asserted estimates in H3−j(G). Using
(2.10), one checks the compatibility conditions for dτu0 and dτu−1 and then for
d2
τu0. We have d3

τu0 = 0 by the definition in (2.17). �

We want to avoid the sophisticated localization arguments from [24] and [25].
To this aim, we use adapted coordinates as in [17].

For a fixed distance % > 0, on the collar Γ% = {x ∈ G | dist(x, ∂G) <
%} we can find C4-functions θ1, θ2, ν : Γ% → R3 such that the vectors
{θ1(x), θ2(x), ν(x)} form a basis of R3 for each point x ∈ Γ% and ν extends
the outer unit normal at ∂G. Hence, θ1 and θ2 span the tangential planes at
∂G. For ξ, ζ ∈ {θ1, θ2, ν}, v ∈ R3 and a ∈ R3×3, we set

∂ξ =
∑

j
ξj∂j , vξ = v · ξ, vξ = vξξ, vθ = vθ1θ1 + vθ2θ2, aξζ = ξ>aζ.

Later we will apply these operations also to R6-valued function v = (v1, v2)
setting, e.g., vξ = (v1ξ , v

2
ξ ). We state calculus formulas needed below, where it

is always assumed that the functions involved are sufficiently regular. We can
switch between the derivatives of the coefficient vξ and the component vξ up to
a zero-order term since

∂ζv
ξ = ∂ζvξξ + vξ∂ζξ.

The commutator of tangential derivatives and traces

∂θi trta v = ∂θi(v × ν) = trta ∂θiv + v × ∂θiν on ∂G

is also of lower order. Similarly, the directional derivatives commute

∂ξ∂ζv =
∑

j,k
ξj∂j(ζk∂kv) = ∂ζ∂ξv +

∑
j,k
ξj∂jζk ∂kv − ζk∂kξj ∂jv

up to a first-order operator with bounded coefficients.
The gradient of a scalar function ϕ is expanded as

∇ϕ =
∑

ξ
ξ · ∇ϕ ξ =

∑
ξ
ξ∂ξϕ,

so that ∂j =
∑

ξ ξj∂ξ for j ∈ {1, 2, 3}. Recall that curl = J1∂1 + J2∂2 + J3∂3 for
the matrices

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

0 −1 0
1 0 0
0 0 0


We thus obtain

curl =
∑

j
Jj∂j =

∑
j,ξ

Jjξj∂ξ =:
∑

ξ
J(ξ)∂ξ.

Since the kernel of J(ν) is spanned by ν, we can write J(ν)v = J(ν)vθ, and the
restriction of J(ν) to span{θ1, θ2} has an inverse R(ν).
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We now provide the tools needed for the apriori estimates in the next section.
We first isolate the normal derivative of the tangential components of v in the
equation curl v = f . From the expansion

curl v = J(ν)(∂νv)θ + J(θ1)∂θ1v + J(θ2)∂θ2v,

we derive

∂νv
θ =

∑
i
(∂νθi vθi + θi∂νθi · v) + R(ν)

(
f −

∑
i
J(θi)∂θiv

)
(3.3)

where the first sum only contains zero-order terms.
In order to recover the normal derivative of the normal component of v, we

resort to the divergence operator. The divergence of a vector field v can be
expressed as

div v =
∑

j
∂j
∑

ξ
vξξj =

∑
ξ

(
∂ξvξ + div(ξ)vξ

)
.

Letting ϕ = div(av) for a matrix-valued function a, we derive

div(av) =
∑

ξ,ζ
∂ξ(ξ

>aζvζ) +
∑

ξ
div(ξ) ξ>av

=
∑

ξ,ζ
(aξζ∂ξvζ + ∂ξaξζvζ) +

∑
ξ

div(ξ) ξ>av,

aνν∂νvν = ϕ−
∑

(ξ,ζ) 6=(ν,ν)

aξζ∂ξvζ −
∑

ξ,ζ
∂ξaξζvζ −

∑
ξ

div(ξ) ξ>av. (3.4)

where the sums in the last line contain the tangential derivatives and the normal
derivatives of tangential components of v plus zero-order terms.

4. The core a priori estimates

In this section we estimate fields un ∈ H3
cc(G), see (2.12), solving the lin-

earized implicit Euler scheme (2.21) for given (vn) in E(R, T, τ) and data
u0 ∈ H3

cc(G) and f−k ∈ H3−k
cc (G) with norms bounded by r0, ‖E0‖L∞ < κ,

u−k be given by (2.17), and fn ∈ H2
cc(G) ∩ H3(G), where k ∈ {1, 2, 3} and

n ≥ 0. Here we let R > 0, 0 < T ≤ T0, and 0 < τ ≤ max{τ0(R), τ̃0(r0)}, see
(2.19), Lemma 3.3, and the comments after (2.16) and (2.22). We further fix a

number r2 ≥ maxn≥−1 z
v,(2)
n . Let N be the largest integer with Nτ ≤ T . Recall

that in the homogeneous case fn = 0 such un exist and are given by (2.22).
We proceed in several steps to control the quantity zn = zun from (2.18).

First, we establish the basic energy inequality on the L2-level also allowing for
inhomogeneities at the boundary, as it is needed to deal with error terms later
on. For higher-order estimates we use differentiated versions of (2.21). In a
second step, we treat the part of un localized off the boundary by means of
the energy estimate. This step is easier since these functions vanish near the
boundary. Third, the part of un near the boundary is handled by a intricate
recursive argument using the adapted derivatives from the previous section.
Tangential derivatives and difference quotients in time can be bounded via the
energy estimate and a careful analysis of the error terms. The normal erivatives
are recovered from the (differentiated) equation and formulas (3.3) and (3.4).
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4.1. The basic energy inequality. We consider the linear problem

Λn+1(un+1 − un) = τMun+1 + τQn+1un+1 + τfn, n ∈ N0,

Bun+1 = ϕn,
(4.1)

where M and B are given by (2.16). Compared to (2.21), we allow for non-zero
boundary data and weaken the assumptions on the cofficients and data, namely

u0 ∈ H(curl)2, fn ∈ L2(G)6, ϕn ∈ H
1
2
ta(∂G),

Λn, Qn ∈ L∞(G,R6×6), Λn = Λ>n ≥ η,
(4.2)

for n ∈ N0 and some η ∈ R+, where we set

Hsta(∂G) = {ϕ ∈ Hs(∂G)3 |ϕ · ν = 0}, s ≥ 0.

We employ weights in the spatial variables to use the formal symmetry of M .
In the context of quasilinear problems, such weights have been used in contin-
uous time at least since [14], see also [11] in the time-discrete case. Moreover,
we introduce decaying weights in (discrete) time for notational convenience.
(The latter play a smaller role than in continuous time, compare e.g. [25].) For
n ∈ N0, γ = ecτ ≥ 1 and v ∈ L2(G), let

‖v‖2n,γ = (γ−nΛnv|γ−nv) =

∫
G
γ−2nΛnv · v dx, ‖v‖n := ‖v‖n,1.

For n ≤ N and γ in compact intervals these norms are uniformly equivalent to
the usual L2-norm. We also define

zv,(k)n,γ = z(k)n,γ = max
0≤j≤k

γ−2n‖djτvn‖2Hk−j , zvn,γ = zv,(3)n,γ ,

cf. (2.18). In the following, z
(k)
n,γ and z

(k)
n refer to the solutions un.

We state our basic energy estimate.

Lemma 4.1. Assume that (4.2) holds and that ‖Qn‖∞, ‖Λn‖∞ ≤ r′ and
‖dτΛn+1‖∞ ≤ R′ for all n ∈ N0 and some R′, r′ ≥ 0. Let un ∈ H(curl)2

solve (4.1). Take 0 < τ ≤ τ ′0(r
′) := 1

2η(2r′ + 1)−1. Set C = η−1(R′ + 4r′ + 2)

and γ = eτC/2. We then obtain

‖un+1‖2n+1 ≤ eC(n+1)τ‖u0‖20 + τ

n∑
k=0

eC(n+1−k)τ (‖fk‖2L2 + 2〈ϕk,Trta u
2
k+1〉),

‖un+1‖2n+1,γ ≤ ‖u0‖20 + τ

n∑
k=0

(
‖fk‖2L2,γ + cγ‖ϕk‖H 1

2 ,γ
‖Trta u

2
k+1‖H− 1

2 ,γ

)
,

where the brackets denote the duality H
1
2
ta(∂G)×H−

1
2

ta (∂G).

Proof. Multiplying (4.1) by un+1 and integrating in x, we compute

‖un+1‖2n+1 = (Λn+1un+1|un+1)

= (Λ
1
2
n+1un|Λ

1
2
n+1un+1) + τ(Mun+1|un+1) + τ(Qn+1un+1|un+1) + τ(fn|un+1)

≤ 1
2((Λn+1 ∓ Λn)un|un) + 1

2(Λn+1un+1|un+1) + τ〈ϕn,Trta u
2
n+1〉

+ τ(Qn+1un+1|un+1) + τ(fn|un+1),

14



by means of the Cauchy–Schwarz inequality and the integration by parts for-
mula for curl. We absorb the second summand on the right-hand side and
employ the bounds on the coefficients, obtaining

‖un+1‖2n+1 ≤
τR′

η
‖un‖2n + ‖un‖2n +

2τr′

η
‖un+1‖2n+1 +

τ

η
‖un+1‖2n+1

+ τ‖fn‖2L2 + 2τ〈ϕn,Trta u
2
n+1〉.

We now choose 0 < τ ≤ τ ′0(r
′) := 1

2η(2r′ + 1)−1 to absorb the terms with un+1

by the left-hand side. Using (1− s)−1 ≤ e2s for 0 < s ≤ 1/2, it follows

‖un+1‖2n+1 ≤ eη
−1(4r′+2)τ

(
eτR

′/η‖un‖2n + τ‖fn‖2L2 + 2τ〈ϕn,Trta u
2
n+1〉

)
. (4.3)

Let C = η−1(R′ + 4r′ + 2). An iteration of (4.3) yields

‖un+1‖2n+1 ≤ eC(n+1)τ‖u0‖20 + τ

n∑
k=0

eC(n+1−k)τ (‖fk‖2L2 + 2〈ϕk,Trta u
2
k+1〉),

which is the first asertion. The second one follows immediately. �

We replace τ0(R) and τ̃0(r0) by

τ1(R) := min{τ0(R), τ̃0(r0), τ
′
0(r
′), 1}, (4.4)

see the comments after (2.22) and Lemma 3.3. Note that 1 ≤ γ ≤ c(R) which
will be used below often without further notice.

4.2. The interior estimate. Let again (2.1) be true and un ∈ H3
cc(G) solve

(2.21) for (vn) ∈ E(R, T, τ) as at the beginning of this section. We fix a function
χ ∈ C4(G) with support in Γ% such that 0 ≤ χ ≤ 1 and χ = 1 on Γ%/2. We set

χ̃ = 1 − χ ∈ C4
c (G). For any scalar map ϑ ∈ C4(G,R), we obtain the discrete

linearized problem

Λn+1(ϑun+1 − ϑun) = τM(ϑun+1) + τQn+1(ϑun+1) + τ
[−∇ϑ×u2n+1

∇ϑ×u1n+1

]
+ τϑfn,

B(ϑun+1) = ϑϕn, 0 ≤ n ≤ N, (4.5)

for solutions un of (4.1). The coefficients are again given by (2.20) for a sequence
(vn)0≤n≤N from E = E(R, T, τ) defined in (2.19). The solutions are computed
in (2.22) if ϕn = 0 and τ is less or equal τ1(R) from (4.4).

We now use (4.5) for ũn := χ̃un, setting also f̃n = χ̃fn and

z̃n = max
0≤j≤3

‖djτ ũn‖2H3−j , z̃n,γ = max
0≤j≤3

γ−2n‖djτ ũn‖2H3−j

for γ = γ(R) ≥ 1 from Lemma 4.1. Let α ∈ N4
0 be a multi-index with 0 < l :=

|α| ≤ 3 whose component α0 refers to the difference quotient dτ and the others
to the spatial derivatives ∂j . We calculate

Λn+1(∂
αũn+1 − ∂αũn) = τM∂αũn+1 + τQn+1∂

αũn+1 + τ∂αf̃n + τ f̃n,α, (4.6)

Bũn+1 = 0, 0 ≤ n ≤ N,
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where we set

f̃n,α =
∑

0≤β≤α,β0=0

(
α

β

)(
−∂β∇χ̃× ∂α−βu2n+1

∂β∇χ̃× ∂α−βu1n+1

)

−
∑

0<β≤α

(
α

β

)(
∂βΛn+1 ∂

α−βSβ0dτ ũn+1 − ∂βQn+1 ∂
α−βSβ0 ũn+1

)
.

Here we have used formulas (3.1) and recall that v−k = u−k are given by (2.17)
for k ∈ {1, 2, 3}. Since (vn) ∈ E , Lemmas 3.1 and 3.2 yield

‖f̃n,α‖2L2 ≤ cz(l)n+1 + c(R)
3∑
j=0

z̃
(l)
n+1−j . (4.7)

We sum over α and use Lemmas 3.3 and 4.1, obtaining

z̃
(l)
n+1,γ ≤ c(r0)z0 + τ

n∑
k=0

(
c(R)z̃

(l)
k+1,γ + c(R)z

(l)
k+1,γ + cz

f,(l)
k,γ

)
. (4.8)

The above estimate will be used later on, but we also note an immediate con-
sequence. For τ ≤ C(R)/2, Gronwall’s inequality implies

z̃
(l)
n+1,γ ≤ e2nτ

(
c(r0)z0 + τ

n∑
k=0

(
c(R)z

(l)
k+1,γ + cz

f,(l)
k,γ

))
. (4.9)

4.3. The tangential estimate near the boundary. We turn to the func-
tions ûn := χun and f̂n := χfn supported in Γ%. The multi-index α ∈ N4

0 with
l = |α| ≤ 3 now refers to dτ , ∂θ1 , ∂θ2 and ∂ν from Section 3. Here, we write dα

instead of ∂α and dαta if α3 = 0. Let α′ = (α1, α2, α3). As in (4.6) we obtain

Λn+1(d
αûn+1 − dαûn) = τMdαûn+1 + τQn+1d

αûn+1 + τdαf̂n + τ f̂n,α, (4.10)

Bdαũn+1 = [dα, trta]û
1
n+1 =: ϕn,α, 0 ≤ n ≤ N,

where we set

f̂n,α = [dα,M ]ûn+1 +
∑

0≤β≤α,β0=0

(
α

β

)(
−dβ∇χ× dα−βu2n+1

dβ∇χ× dα−βu1n+1

)
(4.11)

−
∑

0<β≤α

(
α

β

)(
dβΛn+1 dα−βSβ0dτ ûn+1 − dβQn+1 dα−βSβ0 ûn+1

)
.

The two commutators [·, ·] have order |α′| − 1 at the boundary and |α′| in the
domain, respectively, and they are 0 if α′ = 0. As in (4.7), we thus deduce

‖f̂n,α‖2L2 ≤ cz(l)n+1 + δαc(R)

l∑
j=0

ẑ
(l)
n+1−j , (4.12)

‖ϕn,α‖2
H

1
2 (∂G)

≤ cδα′‖tr ûn+1‖2
H|α′|−

1
2 (∂G)

≤ cδα′‖ûn+1‖2H|α′|(G)
≤ cδα′ ẑ

(l)
n+1,
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where we use also the standard trace estimate and set δa = 0 if a = 0 and
δa = 1 otherwise. Lemmas 3.3 and 4.1 then imply∑
|α|≤l
α3=0

‖dαûn+1‖2n+1,γ ≤ c(r0)ẑ0+τ

n∑
k=0

[
c(R)ẑ

(l)
k+1,γ+c(R)z

(l)
k+1,γ+cz

f,(l)
k,γ

]
. (4.13)

4.4. Normal derivatives near the boundary. We now let 0 ≤ l = |α| ≤ 2.
Before we can tackle the estimates for the normal derivatives, we collect a few
formulas describing curl and divergence of ûn+1.

1) First, equation (4.10) yields

Mdαûn+1 = Λn+1d
αdτ ûn+1 −Qn+1d

αûn+1 − dαf̂n − f̂n,α. (4.14)

From formula (3.3) we then deduce

∂ν(dαûn+1)
θ = R(ν)

[
Λn+1d

αdτ ûn+1 −Qn+1d
αûn+1 − dαf̂n − f̂n,α

]
(4.15)

−
∑

i

[
R(ν)J (θi)∂θid

αûn+1 − ∂νθi(dαûn+1)θi − θi∂νθi ·d
αûn+1

]
,

where we set

R(ν) =

[
R(ν) 0

0 −R(ν)

]
, J (θi) =

[
J(θi) 0

0 −J(θi)

]
, Div =

[
div 0
0 div

]
.

We stress that there is no factor τ on the right so that one cannot simply use
Gronwall’s inequality. In fact, most of the summands on the right-hand side of
(4.15) will be treated by means of previous steps in an iterative argument. Here
terms proportional to ẑ0 appear. In the fixed-point argument of Theorem 5.1 it
will be crucial that we do not have contributions of the form c(R)ẑ0. In addition,

when estimating the error terms f̂n,α from (4.11), summands containing ẑ
(l)
n+1

appear if one wants to avoid a prefactor c(R). To simplify the iteration, we
refine the estimate so that we can absorb these contributions of highest order.

Let δ > 0. For β = α and l = |α| = 1, Hölder’s und Sobolev’s inequality and
interpolation yield

‖dβΛk S
β0dτ ûk‖L2 ≤ c(r)‖dvk Sβ0dτ ûk‖L2 ≤ c(r)‖dvk‖L6 ‖Sβ0dτ ûk‖L3

≤ c(r)‖Sβ0dτ ûk‖H 1
2
≤ δSβ0 ẑ(l+1)

k + c(δ, r)Sβ0 ẑ
(l)
k . (4.16)

Let l = |α| = 2. For |β| = 1 we obtain a term of the form Λ′kdvkS
β0ddτ ûk, and

for β = α one has

Λ′kd
2vkS

β0dτ ûk + Λ′′kdvkdvkS
β0dτ ûk,

where Λ′k = (∂vΛ)(vk), Λ′′k = (∂2vΛ)(vk), and we use a somewhat informal

notation. In both cases the squared L2-norm can be bounded by δSβ0 ẑ
(l+1)
k +

c(δ, r)Sβ0 ẑ
(l)
k as above. We thus deduce

‖∂ν(dαûn+1)
θ‖2L2 ≤ c(r)

(
‖dtad

αûn+1‖2L2 + ‖dαûn+1‖2L2 + ‖dαf̂n‖2L2

)
+ δα

l∑
j=0

(δẑ
(l+1)
n+1−j + c(δ, r)ẑ

(l)
n+1−j) + cz

(l)
n+1. (4.17)
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2) For the normal component of the normal derivative, we use the divergence
of the fields. From (4.10) we infer

Div(Λn+1d
αûn+1) (4.18)

= Div(Λndαûn) + τ Div
(
dτΛn+1d

αûn +Qn+1d
αûn+1

)
+ τ Div(dαf̂n + f̂n,α)

= Div(Λ0d
αû0) + τ

n∑
k=0

[
Div(dτΛk+1d

αûk +Qk+1d
αûk+1) + Div(dαf̂k + f̂k,α)

]
.

Set λn = diag(εd(v1n)νν , µ) ≥ η. Equations (4.18) and (3.4) then yield

∂ν(dαûn+1)ν (4.19)

= λ−1n+1

[
Div(Λ0d

αû0) + τ
n∑
k=0

[
Div(dτΛk+1d

αûk +Qk+1d
αûk+1) + Div dαf̂k

+ Div f̂k,α
]
−

∑
(ξ,ζ) 6=(ν,ν)

(Λn+1)ξζ∂ξ(d
αûn+1)ζ −

∑
ξ,ζ

∂ξ(Λn+1)ξζ(d
αûn+1)ζ

−
∑
ξ,i

div(ξ)ξ>(Λn+1d
αûn+1)

i
]
.

The three last terms will be treated by previous steps in the iteration ar-
gument. The first of these summands contains tangential derivatives and the
tangential component of the normal derivative. The penultimate term is of
lower order, but one has to be careful not to produce a pre-factor c(R) in the
calculations. As in (4.16), we thus compute

‖∂ξ(Λn+1)ξζ(d
αûn+1)ζ‖L2 ≤ δẑ(l+1)

n+1 + c(δ, r)ẑ
(l)
n+1.

We pass to squares when estimating (4.19). Concerning the sum, we note that(
τ

n∑
k=0

ak

)2
≤ nτ2

n∑
k=0

a2k ≤ τT
n∑
k=0

a2k

by Hölder’s inequality and nτ ≤ Nτ ≤ T . Combined with (4.12) and Lem-
mas 3.1 and 3.3, formulas (4.19) and (4.17) then lead to

‖∂νdαûn+1‖2L2 ≤ c(r0)ẑ(l+1)
0 + τT

n∑
k=0

(
c(R)(ẑ

(l+1)
k + ẑ

(l)
k+1) + δαc(R)

l∑
j=0

ẑ
(l+1)
k+1−j

+ c(ẑ
f,(l+1)
k + z

(l+1)
k+1 )

)
+ c(r)

(
‖dtad

αûn+1‖2L2 + ‖dαûn+1‖2L2

+ ‖dαf̂n‖2L2 + z
(l)
n+1

)
+ δα

l∑
j=0

(δẑ
(l+1)
n+1−j + c(δ, r)ẑ

(l)
n+1−j)

+ δẑ
(l+1)
n+1 + c(δ, r)ẑ

(l)
n+1. (4.20)

We can multiply this inequality by γ−2n−2 with γ = γ(R) ≥ 1 from Lemma 4.1

to obtain the weigthed quantities ẑ
(l)
n+1,γ etc.
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4.5. Conclusion of the higher-order estimates. We note that z
(l)
n,γ ≤

c(z̃
(l)
n,γ + ẑ

(l)
n,γ) ≤ cz(l)n,γ , which will be used without further notice.

1) We start with the first-order term z
(1)
n,γ which is a bit easier since some

commutators do not appear. Lemma 4.1, estimates (4.8) and (4.13) with |α| =
1, and inequality (4.20) with α = 0 imply

z
(1)
n+1,γ ≤ c(r)z0 + τ(1 + T )

n∑
k=0

(
c(R)z

(1)
k+1,γ + c(r)z

f,(1)
k,γ

)
+ c(r)zf,(0)n,γ

+ c(r)δz
(1)
n+1 + c(δ, r)z

(0)
n+1,

z
(1)
n+1,γ ≤ c(r)z0 + τ(1 + T )

n∑
k=0

(
c(R)z

(1)
k+1,γ + c(r)z

f,(1)
k,γ

)
+ c(r)zf,(0)n,γ , (4.21)

where we have chosen a small δ > 0 to obtain in the last line. Recalling T ≤ T0
and decreasing τ1(R) > 0 if needed, by means of Gronwall’s inequality we infer

z(1)n ≤ γ2ne2nτ
(
c(r)z0 + c(r)z

f,(0)
n−1,γ + τ(1 + T0)

n∑
k=0

γ−2kc(r)z
f,(1)
k−1

)
. (4.22)

2) Employing the previous step instead of Lemma 4.1, we now deal with z
(2)
n,γ .

We first bound dtaûn+1 in H1 and dτdtaûn+1 in L2. To this aim, we let α3 = 0
and use (4.13) with |α| = 2, (4.20) with |α| = 1, as well as (4.21), obtaining

‖dtaûn+1‖2H1,γ + ‖dτdtaûn+1‖2L2,γ (4.23)

≤ c(r)(z0 + zf,(1)n,γ ) + τ(1 + T )
n∑
k=0

(
c(R)(ẑ

(2)
k+1,γ + z

(2)
k+1,γ) + c(r)z

f,(2)
k,γ

)
+ c(r)

1∑
j=0

(δẑ
(2)
n+1−j,γ + cδ ẑ

(1)
n+1−j,γ).

We absorb the term with δ below. We still have to bound ∂2ν ûn+1 in L2. This
is done via (4.20) with α = e4. Combined with (4.23), we derive

ẑ2n+1,γ ≤ c(r)(z0 + zf,(1)n,γ ) + τ(1 + T )
n∑
k=0

(
c(R)(ẑ

(2)
k+1,γ + z

(2)
k+1,γ) + c(r)z

f,(2)
k,γ

)
+ c(r)

1∑
j=0

(δẑ
(2)
n+1−j,γ + cδ ẑ

(1)
n+1−j,γ).

To absorb also the term ẑ
(2)
n,γ in the last line, we define

Ẑ(l)
n,γ = max

0≤m≤n
ẑ(l)m,γ , Ẑn,γ = Ẑ(3)

n,γ , Ẑ(l)
n = Z

(l)
n,1,

and analogously for zn, zfn etc.. We obtain

Ẑ
(2)
n+1,γ ≤ c(r)(z0 + Zf,(1)n,γ ) + τ(1 + T )

n∑
k=0

(
c(R)(ẑ

(2)
k+1,γ + z

(2)
k+1,γ) + c(r)z

f,(2)
k,γ

)
+ c(r)δẐ

(2)
n+1,γ + c(δ, r)Z

(1)
n+1,γ).
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We can now absorb the penultimate summand taking a small δ = δ(r) > 0.
The last term is then dominated by the first line due to (4.21). Also using

ẑ
(2)
n+1,γ ≤ Ẑ

(2)
n+1,γ , we derive

ẑ
(2)
n+1,γ ≤ c(r)(z0 + Zf,(1)n,γ ) + τ(1 + T )

n∑
k=0

(
c(R)(ẑ

(2)
k+1,γ + z

(2)
k+1,γ) + c(r)z

f,(2)
k,γ

)
Together with (4.8), it follows

z
(2)
n+1,γ ≤ c(r)(z0 + Zf,(1)n,γ ) + τ(1 + T )

n∑
k=0

(
c(R)z

(2)
k+1,γ + c(r)z

f,(2)
k,γ

)
. (4.24)

Possibly decreasing τ1(R) in (4.4), we further deduce

z(2)n ≤ γ2ne2nτ
(
c(r)z0 + c(r)Z

f,(1)
n−1,γ + τ(1 + T0)

n∑
k=0

γ−2kc(r)z
f,(2)
k−1

)
. (4.25)

3) We finally tackle z
(3)
n,γ . Here we first employ (4.13) with |α| = 3, and then

apply (4.20) with |α| = 2 iteratively for α3 = 0, 1, 2, also invoking (4.24). In
this way, (4.13), (4.20), and (4.24) first yield

‖d2
taûn+1‖2H1,γ + ‖dτd2

taûn+1‖2L2,γ (4.26)

≤ c(r)(z0 + Zf,(2)n,γ ) + τ(1 + T )
n∑
k=0

(
c(R)(ẑ

(3)
k+1,γ + z

(3)
k+1,γ) + c(r)z

f,(3)
k,γ

)
+ c(r)

2∑
j=0

(δẑ
(3)
n+1−j,γ + cδ ẑ

(2)
n+1−j,γ)

with α3 = 0 in (4.20). Combining (4.20) for α3 = 1 with (4.26) and (4.24),
we next see that one can add ‖∂2νdtaûn+1‖2L2 to the left-hand side of (4.26). In

the same way the missing term ∂3ν ûn+1 is estimated in L2, arriving at the final
bound near ∂G:

ẑ
(3)
n+1,γ ≤ c(r)(z0 + Zf,(2)n,γ ) + τ(1 + T )

n∑
k=0

(
c(R)(ẑ

(3)
k+1,γ + z

(3)
k+1,γ) + c(r)z

f,(3)
k,γ

)
+ c(r)

2∑
j=0

(δẑ
(3)
n+1−j,γ + cδ ẑ

(2)
n+1−j,γ). (4.27)

Fixing a number δ = δ(r) > 0, the first term in the last line can be absorbed
by the left. By (4.24) the last summand in the inequality (4.27) is bounded by
its first line. It follows

ẑ
(3)
n+1,γ ≤ c(r)(z0 + Zf,(2)n,γ ) + τ(1 + T )

n∑
k=0

(
c(R)(ẑ

(3)
k+1,γ + z

(3)
k+1,γ) + c(r)z

f,(3)
k,γ

)
.

Together with the interior estimate (4.8), we conclude

z
(3)
n+1,γ ≤ c(r)(z0 + Zf,(2)n,γ ) + τ(1 + T )

n∑
k=0

(
c(R)z

(3)
k+1,γ + c(r)z

f,(3)
k,γ

)
. (4.28)
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We now fix our maximal time step size as

0 < τ ≤ τ2(R) := min{τ1(R), (2(1 + T0)c(R))−1} (4.29)

see the line before (4.25). We recall the notation γ = eC(R)τ in Lemma 4.1,
the definition (2.19), and the comments after (2.16) and (2.22). The discrete
Gronwall inequality and (4.28), now easily yield the core a priori estimate.

Proposition 4.2. Let (2.1) be true and un ∈ H3
cc(G) solve the linearized im-

plicit Euler scheme (2.21) for given u0 ∈ H3
cc(G) with ‖u10‖L∞ < κ and (vn) in

E(R, T, τ), where R > 0, 0 < T ≤ T0 and 0 < τ ≤ τ2(R). Let N be the largest

integer with Nτ ≤ T and r2 ≥ maxn≥1 z
v,(2)
n . For n ∈ {0, . . . , N} we then have

zn ≤ e2(C(R)+1)nτ
(
c(r)z0 + c(r)Z

f,(2)
n−1 + τc(r)(1 + T0)

n−1∑
k=0

e−2C(R)kzfk

)
. (4.30)

5. Construction of the scheme and error analysis

In the next result we construct a time discretized approximation of a solution
u = (E,H) ∈ G3([0, T0]) of (2.3) with the material laws (2.1) and J = 0. We use
the Euler scheme (2.15) with operators defined in (2.16), where we let fn = 0.
There is a maximal bound τ2(r0) on the time step size, but it only depends on
the norm ‖u0‖H3 ≤ r0 of the initial value. The additional condition ‖E0‖L∞ < κ
ensuring invertibility of εd(E0), disappears (i.e., κ = ∞) if the coefficents in
(2.1) and (2.2) have a good sign, see (2.4). We also show that the solution is
bounded in H3 by a constant R only depending on r0. In this sense the scheme
is (unconditionally) stable.

Theorem 5.1. Let (2.1) be true, u0 = (E0, h0) ∈ H3(G) satisfy ‖E0‖L∞ < κ
and (2.11). Fix r0 ≥ ‖u0‖H3 . Then there is a number R = R(r0) > 0, a time
horizon T3(R) > 0 and a maximal step size τ2(R) > 0, see (5.1), (5.3) and
(4.29), such that for 0 < τ ≤ τ2(R), τN ≤ T and 0 ≤ n ≤ N we have a unique
solution (un)0≤n≤N in E(R, T, τ) of (2.15). The solution satisfies the bound

(4.30) with zfk = 0 = Z
f,(2)
k uniformly in τ .

Proof. The solution is constructed by a fixed-point argument on the space E =
E(R, T, τ) given by (2.19), 0 < T ≤ T0 and 0 < τ ≤ τ2(R) with τ2(R) from
(4.29). Let N be the largest integer with τN ≤ T . Below these numbers are
chosen depending on r0.

We have z0 ≤ c0(r0) by Lemma 3.3. Set r∗0 = c0(r0) + 1 and take

R2 := 2c∗(r∗0)c0(r0), (5.1)

with c∗(r) and C∗(r) being the maxima of the constants c(r) and C(R), re-
spctively, in (4.25) and (4.30). We equip E with the the metric induced by

maxn z
(2)
n , namely

d(v, v) = max
0≤n≤N

max
0≤j≤2

‖djτ (vn − vn)‖H2−j .

(Recall that v−k = u−k for k ∈ {0, 1, 2, 3} with u−k from (2.17).) It is then
straightforward to check that E is complete.
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Take v = (vn)0≤n≤N ∈ E . We then obtain

vn = v0 + τ
n∑
k=1

dτvk (5.2)

for 1 ≤ n ≤ N , and thus ‖vn‖H2 ≤ r0+NτR ≤ r0+TR. Applying dτ , it follows

‖djτvn‖H3−j ≤ c0(r0) + TR for j ∈ {0, 1}. Taking T ≤ T1(R) := min{T0, 1
R}, we

infer maxn≥1 z
v,(2)
n ≤ r2 := (c0(r0) + 1)2 = (r∗0)2. We define Φ(v) = Φu0(v) by

[Φu0(v)]n+1 :=
n∏
k=0

(I − τAk+1)
−1u0 = (I − τAn+1)

−1 · . . . · (I − τA1)
−1u0

for n ≤ N − 1, which is well-defined because of 0 < τ ≤ τ2(R) < 1/ω0(R), see
(2.22) and the text following it. The sequence (un+1) = Φ(v) in H3

cc(G) solves
the linearized recursion (2.21) for v. To simplify notation we write

Πn,k =

n∏
j=k

(I − τAj+1)
−1.

Let T ≤ T2(R) := min{T1(R), ln(2)(2C∗(R) + 2)−1}. Estimate (4.30) then
shows that

zn+1 ≤ exp
(
2(C(R) + 1)T

)
c(r)c0(r0) ≤ R2.

The restriction ‖u1n‖L∞ ≤ κ′ then follows as in (5.2), replacing T2(R) by
T ′2(R) := min{T2(R), (κ′ − ‖E0‖L∞)(cSR)−1}, where cS is the norm of the
embedding H2(G) ↪→ C(G). Hence, Φ maps E into itself.

To show the strict contractivity of Φ, we let v ∈ E and set w = Φ(v)−Φ(v),
Λn = Λ(vn) etc.. We compute

wn+1 = τ
n∑
k=0

Πn,k

[
(Λ−1k+1 − Λ

−1
k+1)M + Λ−1k+1Qk+1 − Λ

−1
k+1Qk+1

]
Πk,0u0

The term ϕ0 = [· · · ]Πk,0u0 belongs to H2
cc(G) by Lemmas 2.1 and 3.1. Observe

that ϕn = Πn,kϕ0 solves (2.21) for vn with fn = 0, starting time k and initial

value ϕ0 We can thus apply (4.25) to ϕn and (4.30) to Πk,0u0. Using also
Lemmas 3.1 and 3.2, we deduce

d(Φ(v)− Φ(v)) ≤ (n+ 1)τc(R) exp
(
(C∗(R) + 1)T

)
c0(r0)d(v, v)

≤ 2Tc1(R)d(v, v) ≤ 1
2d(v, v)

if we let

0 < T ≤ T3(R) := min{T ′2(R), (4c1(R))−1}. (5.3)

As a result, we have unique fixed point u ∈ E(R, T, τ) of u = Φ(u), which then
solves (2.15) with fn = 0. �

We can now proceed as in [11] to show convergence of the scheme. Let
(2.1) be true and u0 = (E0, h0) ∈ H3

cc(G) fulfill ‖E0‖L∞ < κ. Then we have the

solution u ∈ G3([0, T0]) of (1.1) (or (2.3) with J = 0) satisfying ‖u‖G3([0,T0]) ≤ R̂.

Moreover, Theorem 5.1 provides the unique solution un ∈ H3
cc(G), 0 ≤ n ≤ N ,
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of (2.15) with fn = 0 subject to zn ≤ R2 and ‖u1n‖∞ ≤ κ′, where Nτ ≤ T ≤ T0.
We set tn = nτ and

Λn = Λ(u1n), Qn = Q(u1n), An = Λ−1n (M +Qn),

Λ̂n = Λ(u1(tn)), Q̂n = Q(u1(tn)), Ân = Λ̂−1n (M + Q̂n),

ûn = u(tn), en = un − ûn, δn+1 =

∫ tn+1

tn

∂2t u(t)(tn − t) dt.

for n ≤ N , cf. (2.16). We analyze the error en. Note that

u(tn+1) = u(tn) + τ∂tu(tn+1) + δn+1 = ûn + τÂn+1un+1 + δn+1.

Substracting this equation from (2.15), i.e., un+1 = un+ τAn+1un+1, we obtain
the error equation

en+1 = en + τ(An+1un+1 − Ân+1ûn+1)− δn+1

= en + τAn+1en+1 + τ(An+1 − Ân+1)ûn+1 − δn+1. (5.4)

We can now show our main convergence result, bounding the L2-error in first
order by an energy-type estimate.

Theorem 5.2. Let (2.1) be true, u0 = (E0, h0) ∈ H3
cc(G) satisfy ‖E0‖L∞ < κ,

and let u ∈ G3([0, T0]) solve (1.1). Fix R̂ ≥ ‖u‖G3([0,T0]) and r0 ≥ ‖u0‖H3, and
define R = R(r0) > 0, T3(R) > 0 and τ2(R) by (5.1), (5.3) and (4.29). Let
0 < T ≤ T3(R), 0 < τ ≤ τ2(R), τN ≤ T , and (un)0≤n≤N be the solution of the
Euler scheme (2.15) with fn = 0. For 0 ≤ n ≤ N we then obtain

‖un − u(nτ)‖2L2(G) ≤ c(r)e
nτc(R)τ2

∫ T

0
‖∂2t u(t)‖2L2(G) dt,

where R := max{R, R̂}, r2 ≥ maxn≥0 z
u,(2)
n and R2 ≥ maxn≥0 z

u,(3)
n , see (2.18).

Proof. Set ‖u‖G2([0,T0]) = r̂ and r = max{r, r̂}, We integrate (5.4) against
Λn+1en+1 obtaining

(Λ
1
2
n+1en+1|Λ

1
2
n+1en+1) = (Λ

1
2
n+1en|Λ

1
2
n+1en+1) + τ((M+Qn+1)en+1|en+1) (5.5)

+ τ((An+1−Ân+1)ûn+1|Λn+1en+1)− (δn+1|Λn+1en+1).

Observe that ‖Λ−1n+1−Λ̂−1n+1‖L2 ≤ c(r)‖en+1‖L2 and analogously forQn+1−Q̂n+1.
Using (the proof of) Lemma 3.1 of [11], one shows

‖Λ
1
2
n+1 − Λ

1
2
n‖L∞ ≤ c(r)‖un − un+1‖L∞ ≤ τc(r)‖An+1un+1‖H2 ≤ τc(R).

We now subtract (Λ
1
2
nen|Λ

1
2
n+1en+1) from (5.5) and use the above observations

and the skew-adjointness of M on H1
cc(G). It follows(

Λ
1
2
n+1en+1 − Λ

1
2
nen
∣∣Λ 1

2
n+1en+1

)
≤ τc(R)‖en‖L2‖en+1‖L2 + τc(r)‖en+1‖2L2

+ τc(r)‖ûn+1‖W 1,∞‖en+1‖2L2

+ τc(r)(‖τ−1δn+1‖2L2 + ‖en+1‖2L2)

≤ τc(R)(‖en‖2L2 + ‖en+1‖2L2) + τc(r)‖ 1τ δn+1‖2L2 .
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Because of the Cauchy–Schwartz inequality and e0 = 0, the left-hand side is
bounded from below by

n−1∑
k=0

(
Λ

1
2
k+1ek+1 − Λ

1
2
k ek
∣∣Λ 1

2
k+1ek+1

)
≥

n−1∑
k=0

(
‖ek+1‖2k+1 − 1

2‖ek+1‖2k+1 − 1
2‖ek‖

2
k

)
= ‖en‖2n.

Together we have show

‖en‖2L2 ≤ τ
n−1∑
k=0

(
c(R)‖ek+1‖2L2 + c(r)‖ 1τ δk+1‖2L2

)
For 0 < τ ≤ (2c(R))−1, the discrete Gronwall inequality now yields

‖en‖2L2 ≤ c(r)enτc(R)τ

n−1∑
k=0

‖ 1τ δk+1‖2L2 ≤ c(r)enτc(R)τ2
∫ nτ

0
‖∂2t u(t)‖2L2 dt. �
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