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ABSTRACT. We investigate the Lie and the Strang splitting for the cubic
nonlinear Schrédinger equation on the full space and on the torus in up to
three spatial dimensions. We prove that the Strang splitting converges in
L? with order 1+ 0 for initial values in H?72 with 6 € (0,1) and that the
Lie splitting converges with order one for initial values in H?.

1. INTRODUCTION

Semilinear Schrodinger equations naturally split into the free linear Schro-
dinger equation and a nonlinear ordinary differential equation. For both sub-
systems one has explicit analytical solution formulas, which allow us to solve
them very efficiently on a computer (at least on the torus). This observation
makes splitting approaches very attractive for the time integration. In this pa-
per we study the (semi-discrete) Strang and Lie splitting schemes for the cubic
nonlinear Schrédinger equation in up to three space dimensions. The first main
goal is a new fractional error estimate for initial values in appropriate fractional
Sobolev spaces. With our approach we can then establish first order convergence
of the Lie splitting for initial values in H?2.

Let d € {1,2,3}, u € {—1,1} and Q be either the full space R? or the d-
dimensional torus T¢. We consider the cubic nonlinear Schrédinger equation

Ayu(t) = iAu(t) —ip|u()?u(t), t>0,

u(0) = up € H*(Q). (1)

In the focusing case u = —1 the problem (1.1) has blow-up solutions for d > 2,
see e.g. Theorem 6.5.10 in [5|, whereas in defocusing case u = 1 the solutions
are global in time by e.g. Corollary 6.1.2 in [5]. We look at this problem as an
equation in L2(2) and thus require that the initial value belongs to H?(2), at
least. We fix a number T > 0 such that the solution exists on [0, 7.

Nonlinear Schrédinger equations arise in nonlinear optics or in the theory of
shallow water waves as amplitude equations that approximatively determine the

2000 Mathematics Subject Classification. Primary: 65J15. Secondary: 35Q55, 656M12,
65M15.
Key words and phrases. Nonlinear Schrédinger equation, Strang splitting, Lie splitting,
error analysis, stability, fractional convergence order, interpolation.
We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft
(DFG) through CRC 1173.
1



evolution of wave packets. A variant of (1.1) with a potential term (the Gross—
Pitaevskii equation) governs Bose—Einstein condensates. Further information on
the physical background can be found in [18] and [19]. Semilinear Schrédinger
equations are investigated in the monograph [5] in great detail and generality.

The cubic nonlinearity in (1.1) is the most important one for the applications,
but can also be considered as a model case. Actually, our analysis can be
extended to nonlinearities of the type ip(|u|?)u for smooth ¢ : R — R with
©(0) = 0. However, to avoid technicalities in the context of fractional Sobolev
spaces we restrict ourselves to the cubic case. To treat higher dimensions, we
would have to work in higher order Sobolev spaces to ensure Sobolev embeddings
into L*°. In the case of one or two spatial dimensions some simplifications of
the proofs are possible, which we do not discuss.

One can easily solve the nonlinear ordinary differential equation

Dpu(t) = —ip [u(t)| u(t)
by a simple formula and the linear equation
Opu(t) = iAu(t)

by means of the Fourier transform, which can numerically be approximated
efficiently on the torus. This observation is exploited in the following splitting
schemes for (1.1). In the Lie scheme the numerical solution after one time step
7 > 0 starting at ug € H?(12) is given by

O (up) = exp(—ipt |u*)u with @ := T(7)ug, (1.2)
and in the Strang splitting scheme by
U, (ug) :==T(1/2)u*™* (1.3)
with u** := exp(—ipt |u*\2)u* with  u* :=T(7/2)uy,

where T'(-) denotes the free Schrédinger group.

Second-order convergence of the Strang splitting scheme for initial values in
H*(R?) was shown by C. Lubich in [16] based on the theory of Lie derivatives
(see also [13] for linear Schrédinger equations). More precisely, there exists a
time step size 79 € (0, 7] such that for all ug € H*(RY), 7 € (0,7] and n € N
with n7 € [0, T] we have

lu(nT) — ¥ (uo)ll 2 < O

with a constant C' > 0 depending only on the norm of u in C([0,T], H*(R?))
and on 7', see Theorem 7.1 in [16]. The time step size restriction was elaborated
in Section 5 in [11], where a similar result for PDEs with Burgers’ nonlinearity
was shown. The earlier paper [3] contains a convergence result for the case d = 2
and a general globally Lipschitz nonlinearity. Our considerations take place on
a fixed time interval [0, T'] within the maximal existence interval. The long-time
behavior of numerical (splitting) schemes for a spectral semi-discretization of
nonlinear Schrodinger equations was investigated in [8] and [9], see also [6]. For
a quasilinear Schrédinger equation and solutions in H”, the paper [15] provides
error estimates in H! of the Strang splitting combined with a frequency cut-off.
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For smooth solutions a Taylor series expansion shows that the Lie and the
Strang splitting are of classical order one and two, respectively. Hence, more
regular initial data will not lead to a higher order of convergence. Higher-order
splitting methods for Schrodinger equations were investigated in [20], and in
[21] for the Gross—Pitaevskii equation.

In our first Theorem 3.1 we reduce the level of regularity of the solutions to
H?**% with 6 € (0,1) and show an error estimate in L? of the Strang splitting
with the corresponding fractional convergence order 1 4+ #. We then use an
analogous fractional convergence result to show a first order error estimate in
L? for the Lie splitting with initial values in H?, see Theorem 3.8. Results
for the Lie splitting in the case of the cubic NLS have been known so far only
in spaces of functions on the torus with summable Fourier coefficients. See
Proposition IV.6 of [6], where the calculus of Lie derivatives was used. Moreover,
for nonlinearities of the type iA|u|Pu with p < 4/3 in [12] first order convergence
of the Lie splitting in L? was shown for initial values in H? by different methods
than ours. In this paper we focus on the time integration and do not treat the
space discretization (which was studied in e.g. [6]).

We first prove a local error bound and that the numerical solution after one
time step 7 > 0 is a Lipschitz function of the initial value. To iterate this
stability estimate, the Lipschitz constant has to be of the form e“". One then
obtains a Lipschitz bound on time intervals [0, n7] with constant e"”. Because
of the nonlinearity, ¢ depends on the (so far uncontrolled) H*-norm of the
numerical solution on [0,n7], cf. Lemmas 3.3 and 3.10. Here we take s = 2 for
the Strang splitting and s = 7/4 in the Lie case. By means of a telescoping sum,
see e.g. [10] or [16], we then deduce a global error bound in our Theorems 3.1
and 3.8. Here the error is measured in L2, but one can bound it also in H* (with
a smaller fractional convergence order). Since the solution itself is bounded in
H?, the needed a priori estimate on the numerical solution in H*® follows under
an additional step size restriction, see [11] or our Lemmas 3.5 and 3.11.

In contrast to [6] or [16], we do not use Lie derivatives and commutators to
show the local error estimate. Instead we employ an error formula which is
derived by iterating Duhamel’s formula for the solution and by replacing the
exponential function in the numerical scheme by a Taylor expansion, see [4]
for a similar procedure. We split the error formula into a quadrature error and
several remainder terms as in e.g. [4] or [7]. The main novelty of our approach is
the use of fractional convergence results. They allow us to treat initial values in
spaces larger than H* (which was taken in [16]). Moreover, for the Lie splitting
the fractional convergence in H'/4 is crucial for the necessary a priori bound
in H™/* of the numerical solution. The needed estimates involving fractional
orders are established by various interpolation arguments, e.g. when controlling
quadrature errors.

This paper is organised as follows. In Section 2 we describe the functional
analytic framework and recall a few facts about the cubic nonlinear Schrédinger
equation. The two convergence theorems and various lemms are presented in
Section 3. Section 4 is devoted to the proof of the claims in H?(Q) for the Strang
splitting, while the statements in L2(Q) for the Strang splitting are shown in
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Section 5. The proof of the convergence theorem for the Lie splitting is presented
in Section 6.

2. FUNCTIONAL ANALYTIC SETTING

Throughout this paper, I denotes the identity operator and ¢ a generic con-
stant (possibly depending on d). We work on the spatial domain Q € {R? T¢}
for d € {1,2,3}. We use the fractional Sobolev spaces

H*(Q) :={f € () | F (1L + [¢*)**F f) € L2(Q)}

for s > 0 equipped with the norms
e = [+ 1629727 7) |, = 1+ 2]

where F and F~! denote the unitary Fourier transform and its inverse, both on
R? and T¢. On the torus one actually has the norm of £2(Z%) on the right-hand
side of the above identity. We abbreviate H* := H*(Q) with H* = L?*({). Since
d < 3, we have the Sobolev embedding H® < LP for }D > % — 5 and p € (2,00),
see e.g. in Corollary 2.2 of [1]. For s > 3/2, one further has H® < L since

1flloe < el Ffll < el 1)l 1 1gs < el 1l -
We define the operators
A:H?> - L% Au:=iAu, and B:H?— L% B(u):=—iplul?.

The free Schrodinger group generated by A is designated by T'(-). We observe
that I — A : H*™? — H* is an isomorphism and that 7(-) induces a unitary
Co—group on H?® generated by iA on H*'? for all s > 0, which we also denote
by T'(-). With this notation problem (1.1) takes the form

Owu(t) = Au(t) + B(u(t))u(t), t >0,
u(0) = up € H?.
We look at the two “subproblems”
O(t) = Av(t) = iAv(t), t>0,
v(0) = vy € H?,

2’

(2.1)

and
drw(t) = Blw(t))w(t) = —ip [w(t)|*w(t), >0,
w(0) = wy € H2.

The first subproblem is uniquely solved by v(t) = T'(t)vg and the second one by
w(t) = etBWolyyy. For both systems we thus have explicit analytical solution
formulas. A fully discrete numerical approximation to the solution of the first
subproblem can effectively be computed at least for the torus using the fast
Fourier transform, see e.g. [6]. The solution of the second subproblem can
quickly be calculated by means of the solution formula. Therefore splitting
methods like (1.2) and (1.3) are very attractive for the numerical treatment of
(1.1). With the above notations the Lie splitting (1.2) reads

®,(uo) :=exp(7B(u))u with & :=T(7)ug (2.2)
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and the Strang splitting (1.3) becomes
U, (ug) :=T(1/2)u™ (2.3)
with ™ :=exp (rB(u"))u* and u* :=T(7/2)uo.

We recall the well-known fact that the space H® is an algebra if s > 3/2 and
several related properties which are crucial for our analysis.

Lemma 2.1. (a) Fors € [sg,s1] € (3/2,00), the product of functions f,g €
H? also belongs to H® and satisfies
17 9llzrs < llfllgs Mgl zrs -
(b) For s € [sg,s1] C (3/2,00), t > 0, and v,w € H® with ||v| g < r and
lwl|l s <7, we have
1B() s < er?,
1B(v) = B(w)|l s < erllv—wlgs,

2
HetB(v) < eftr*

Hs —

The constants only depend on sy and s1.
Proof. (a): Let s > 3/2 and f,g € H®. From the estimate
s/2 s/2 s/2
(L+ 16772 < e((L1g = nP) % + (14 1n*)*")
and F(fg) = c¢(Ff) * (Fg) we derive that

(14 1&l*) " [F(F) (©)] = e /]R (L IEP)HAFNE = (F )] dn

s/2 s 2
(| (1) F S| 170l ) (€) + (1781 | (L1 )P F ) ©)
Young’s inequality and the Sobolev embedding thus yield
1fall s < U fllgre 1F gl pr + 1FFll gl )

< c(Ifllgs gl oo + 1 f oo llgllrs) < ellfllers gl -

(b): The first two estimates follow directly from part (a). For ¢ > 0 and v € H®
with s > 3/2 and ||v|| 4. <7 we calculate

oo
n 2\n
Z ||B W <> L,) = O
n.
n=0

Remark 2.2. In the rest of this paper we only deal with the case s € [7/4,4],
so that the constant ¢ in the previous lemma can be chosen independently of s.

H tB(v)

Additionally, for f € L? and g € H? the Sobolev embedding yields

1fallz < W fllzz gl < ellfllzz gl - (2:4)

Theorem 4.1 in [14] shows that for ug € H® with s > 2 the problem (2.1) is
locally wellposed; i.e., there exists a time T" > 0 such that there exists a unique
solution u = u(-,ug) € C([0,T], H®) of (2.1). Throughout the paper T is chosen
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in this way. (In the defocusing case p = 1 one obtains a global solution on R,
but we will not need this fact.) The solution is given by Duhamel’s formula

u(t) = T(t)up — iu/o T(t—r) (|u(7’)|2 u(r)) dr. (2.5)

Since H*® is an algebra, the function |u|*u belongs to C([0,T], H®). Hence,

u is also contained in C*([0, 7], H*~2) and solves (2.1) in H*~2 by standard
semigroup theory. Below, we use the quantities

M, := sup |u(t)|ys fors>0, Mg := sup |u(t)| gas20 for 6 €[0,1),
t€[0,T] t€[0,7]

whenever these expressions are finite. We remark that My and M depend
only on ug, s, @ and T, and that we have My < My < Mg for all 8 € (0,1)
and s € [0,2). We next state several important regularity properties of the free
Schrodinger group and the solutions to (2.1).

Lemma 2.3. Letn € (0,1) and s > 0.
(a) For f € H*" and g € H?, we have fg € H*" and

179l gzn < Il fllg2n lgll 2 -
(b) For each y € H*™" the mapping T(-)y : [0,00) — H? is n-Hélder
continuous with
1T (t1)y — T(t2)yll g < clts — t2]" |yl sz

for all t1,to > 0.
(c) Let s > 3/2. For each y € H*?" the solution u(-,y) : [0,T] — H* of
(2.1) is p-Holder continuous with

lults, y) — ulta, y)ll s < ¢(Mogoq + MIT 7 + TM§+277) |t — ta]”
= C(MS+2777T) |t1 - tz‘n

for all t1,ty € [0, 7).
The above constants ¢ do not depend on 1.

Proof. Let n € (0,1). We first recall that H**?7 is an interpolation space
between H*® and H*™2? by Theorem 5.4.1 in [2] in combination with the Fourier
transform. (See also Theorems 6.2.4 and 6.4.4 in [2] for R%.) We observe that
the involved constants can be chosen independently of 7.

(a) Let ¢ € H2 The norms of the linear operators V; : L? — L? and
Vo : H? — H? given by V;f := fg are bounded by c||g| ;2 due to (2.4) and
Lemma 2.1. Assertion (a) then follows by interpolation.

(b) Let t1,t2 > 0 with ¢t; # t2 be fixed. We look at the linear mapping
ﬁm : HS — H¥; Ttmy := T(t1)y — T(t2)y, which is bounded by 2. We also
use its restriction ftm : H5*2 — H*. For y € H®, we have %T(t)y =T(t)Ay
and hence

< sup [|T(6) Ayl gs [t1 — t2| < [t1 —ta| [|yll ot -

Ttl,t2y ‘ .
H e[ty ta)

Interpolation then yields assertion (b).
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(c) The representation (2.5), part (b) and Lemma 2.1 imply
[uts, y) — ulte, y)ll s

<170y = Tzl + [

t]
4
/
0

< clty — to|" lyll grason + M2 |ty — to| " T 4 ¢ [ty — to|" TME, 5,
for 0 <t; <ty <T. OJ

T(ts = s)[u(s) lu(s) ]| ds

(T(t2 = 1) = )T (0 = )us) [u(s)]]|ds

3. STATEMENT OF THE RESULTS

The first main result of this paper is the following fractional convergence
theorem for the Strang splitting.

Theorem 3.1. For all § € (0,1) and ug € H*T?° there exists a mazimal time
step size 19 > 0 such that for all T € (0,79] and n € N with nt € [0,T], we have
lu(nT) = O (uo)| 2 < CT'H
with a constant C' > 0 that depends only on ug and T. More precisely, C depends
only onT and My g. The number 1o = 19(Ma9, M2,0,T) is given by Lemma 3.5.

In Remark 3.12 we comment on a variant of the maximal step size which does
not depend on 0 itself. The strategy of the proof of the theorem is similar as in
[16] for the case § = 1. We first show that the local error in H? is of order 1+ 6.

Lemma 3.2. For all 0 € (0,1) and up € H**?%, we have
lu(r) = Wr(uo)l| = < Car'**
with a constant C1 > 0 depending only on T" and Mo .

This local error bound will be combined with the following stability result for
the scheme in H2.

Lemma 3.3. Let M > 0 and ug,vo € H? with ||ug|| g2 < M and ||vol g2 < M.
There exists a constant Co > 0, only depending on T and M, such that

197 (u0) = Ur(v0) | g2 < €77 [Jug — vo | g
for all T € (0,T7.

Here the precise form of the constant in the estimate is crucial since its n-
th power will enter in the proof of the main result. The next property of the
numerical approximation will also be needed in this proof.

Definition 3.4. Let T > 0, 19 € (0,T], u be a solution of (1.1) defined on
[0,T] and ¢ be a time integration scheme. For an initial value uy € H® we call
the numerical solution ¢} (ug) strongly bounded in H® if there exists a constant
C > 0, only depending on ug and T', such that for all T € (0,79], n € N with
nt €[0,T] and k € {0,...,n} we have |2 F(u(k7))| 7, < C.

Our numerical solutions are strongly bounded in H?2.
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Lemma 3.5. Let 0 € (0,1) and ug € H>T2. There exists a mazimal time step

size o > 0 given by
Tp := min My v T
TeTC2 & ’

with Cy from Lemma 3.2 and Co from Lemma 3.3, such that the following two
statements hold true.

(a) For all T € (0,70] and n € N with nt € [0,T], we have
192 (u0) — u(nr)|| 2 < O
with a constant C' > 0 depending only on T and Msyg; i.e., the Strang
splitting converges in H? with order 6.
(b) W is strongly bounded; i.e., there exists a constant C' > 0, only depending
on Ms, such that H\Iﬂ;*k(u(lw))HH2 < C for all T € (0,79] and n € N

withnT € [0,T] and k € {0,...,n}. In particular, the numerical solution
is bounded in H? (choose k =0).

The above lemmas are proved in Section 4. In the next lemma we show that
the local error in L? is of order 2 + 6, instead of order 1 + 6 as in H?.

Lemma 3.6. For all § € (0,1), ug € H**? and 1 € (0,T], we have
lu(r) = e (uo)ll 2 < Ca>**
with a constant C3 > 0 depending only on T and Mag.
Because of the nonlinearity, in L? we only obtain a weaker stability property
than in Lemma 3.3, which we call H2-conditional stability. For this reason

we have to invoke the strong boundedness in H2. It is used to apply Lady
Windermere’s fan, see [10], in the proof of Theorem 3.1.

Lemma 3.7. Let M > 0 and ug,vo € H? with ||uol| gz < M and |Jvo| g2 < M.
Then there exists a constant Cy > 0, only depending on T and M, such that
19+ (uo) = Wr(vo)ll 2 < €7 [Jug — vol| 2
for all 7 € (0,T].
The preceding two lemmas and Theorem 3.1 are shown in Section 5. The
convergence theorem for the Lie splitting is established in an analogous way,

but using strong boundedness in H7/%. Due to this choice of s, we still have the
embedding into L> and a local error estimate of order greater than one.

Theorem 3.8. For all uy € H?, there exists a mazimal time step size 19 > 0
such that for all T € (0,70] and n € N with nt € [0,T], we have

lu(nT) = @2 (uo)l[f2 < CT

with a constant C > 0 that depends only on ug and T. More precisely, C' depends
only on T and Ms. The number 19 = 79(Ms,T') is given by Lemma 3.11.

For the Lie splitting we again have local error bounds, stability estimates and
strong boundedness.
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Lemma 3.9. For all ug € H? and 7 € (0,T], we have

lu(r) = @7 (uo) | s < C57%,
lu(r) = @ (uo)| > < Cr7?

with constants Cs, C7 > 0 depending only on T and Ms.

Lemma 3.10. Let M >0 and ug,vo € H? with ||ug|| gr/a <M and ||[vo|| 72 <M.
Then there are constants Cg,Cg > 0, only depending on T and M, such that

1@+ (uo) — @7 (v0)l| /s < €97 [lug — voll o4 s
1@+ (u0) — @ (v0)ll 2 < €7 Jug — wol| .2
for all T € (0,T7.

Lemma 3.11. Let ug € H?. There exists a mazimal time step size 79 > 0,

which is given by
. My \°
T0 = mm{(TeTCGC5> ,T}

with Cys from Lemma 3.9 and Cg from Lemma 3.10, such that the following two
statements hold true.

(a) For all T € (0,70] and n € N with nt € [0,T], we have
197 (o) — u(nT)| g/ < CTH*

with a constant C' > 0 depending only onT' and Ma; i.e., the Lie splitting
converges in H'/* with order 1/8.

(b) @, is strongly bounded in H"/4; i.e., there exists a constant C > 0, only
depending on My, such that H<I>Z_k(u(k:7'))HH7/4 < C for all T € (0,7
and n € N with nt € [0,T] and k € {0,...,n}. In particular, the
numerical solution is bounded in H™/* (choose k = 0).

The proof of these lemmas and of Theorem 3.8 is given in Section 6.

Remark 3.12. Let vy € H?. One can show the assertions of Lemmas 3.9
and 3.10 also for the Strang splitting by similar arguments. Arguing as in
Lemma 3.11, one then obtains the strong boundedness of the Strang splitting in
H"/* for a maximal step size 74 In this way it is possible to extend Theorem 3.1
to the case # = 0; i.e., one derives first order convergence in L? of the Strang
scheme for ug € H?. Of course, this fact is not interesting since already the
simpler Lie splitting has this property due to Theorem 3.8. However, using the
Strang variants of Lemmas 3.9 and 3.10 one can also prove Theorem 3.1 with
up € H?>T29 and order 1+ 6, but replacing 7y by the maximal step size 74, which
does not depend on . We omit the details of the proof of these claims.

4. PROOF OF THE STRONG BOUNDEDNESS IN H?2

We prove Lemmas 3.2 and 3.3 and combine them to show Lemma 3.5.
9



4.1. Proof of Lemma 3.2. We start with an auxiliary lemma that we need
later to apply interpolation theory.

Lemma 4.1. Let (X,||-||) be a Banach space, T > 0 and 7 € (0,T]. We define
the linear operators

Vi:C(0,T),X) = X, Vo:CH[0,T],X) =X and V3:C%([0,T],X)— X
by B
Vif = /0 f(s)ds — 7f(r/2)
for j € {1,2,3}. These operators are bounded with
Vifl <erliflc, IIVafl <er?lIfller and  [Vafll < er®[|fllce -

The proof of this lemma transfers directly from the known scalar-valued case
to our situation.

Proof of Lemma 3.2. Let 6 > 0, ug € H>*?% and 7 > 0. By (2.5), the solution
of (2.1) at time 7 is given by

u(r) = T(1)up + / T (T — s)B(u(s))u(s) ds.
0
Plugging this formula into itself, we derive the representation

w(r) = T(r)uo + /0 "I — 8)B(u(s))T(s)uo ds
(4.1)

+ /0 T (T — s)B(u(s)) /0 T(s—o)B(u(o))u(o) dods

in H2. To show a corresponding formula for the numerical approximation, we
use the Taylor expansion

-
et =1+71x —i—/ 22 (1 — s) ds.
0
Applying this identity to u** = exp (TB(u*))u*, we infer
u =u* + 7B(u)u* + / (1 — ) B(u*)2e* By ds.
0

Since ¥, (ug) = T'(7/2)u** and w* = T(7/2)uo, see (2.3), the numerical solution
after one time step is then given by

¥, (o) = T(r)uo +rT(D BT (Dot [ (=97 (B Pe P T (G ugds,
0
This equation and (4.1) yield the expression

u(r) — < /O T(r — 8)B(u(s))T(s)uo ds — TT(;)B(u*)T(g)uO>
+ (/0 T(r — s)B(u(s)) /0 T(s — o) B(u(o))u(o) do ds



=11 + 5. (42)
1) Bound on I;: We look at the function w : [0, T] — H?;
w(s) = T(7 — s)B(u(s))T(s)uo,

and estimate

/O "w(s)ds — Tw(7/2)HH2+ Irw(r/2) = 7T(r/2) BT (7 /2)uo) | g2

=: 51+ 55. (4.3)

il <

For each y € H?>*% the maps t — T(t)y and t — u(t, y) are f-Holder continuous
on [0, T] by Lemma 2.3. Taking into account Lemma 2.1, we infer that w belongs

to C%9([0,T], H?) and
[w(s1) — w(s2)| g2 < (M3 g+ MZC(Mag, T) + M3Mog) |51 — s2”  (4.4)

for all s1, 89 € [0,T]. The Holder space C%?([0,T], H?) is the real interpolation
space (C’([O,T],H2),C'1([O,T],H2))eoo. This can be proved as in the scalar
case, see e.g. Examples 1.8 and 1.9 in [17]. An inspection of this proof shows
that the occuring constants can be chosen independently of 6 € (0,1). We can
thus interpolate in Lemma 4.1 to derive

Sy < 7MH0e(M3 g+ MFC (Mo, T) + M3 Msp) < Crat' P, (4.5)
where C1,; only depends on 7" and Mjg. To deal with Sy in (4.3), we set
F(t) = (B(u(t/2)) = B(T(t/2)u0))T(t/2)uo
for 0 <t <T. Lemmas 2.1 and 2.3 yield
1F(t0) = ft2)ll e < eM5 (| T(5)uo — T(F)uo|| o + M5 |Ju(g) — u(B)|
< eM3 [ty — to|” [|uo| gasao + M5 C(Ma g, T) [tr — to’
< Chalty — | (4.6)
for t1,t2 € [0,T], where Ci 2 only depends on T" and My . Using f(0) = 0 and
Sa = |[TT(7/2)f(7)] 2
in (4.3), we derive from (4.6) that
Sy < Cy o7, (4.7)

2) Bound on I: By means of Lemma 2.1, we estimate the two summands of
IQ by

< er? M3,
H2

< cM; exp (CTM22) 2.
2

/T T(r — s)B(u(s)) /S T(s —o)B(u(o))u(o)dods
0 0

/ ' T(7/2)B(u*)?e*B) (7 — s)u* ds
0

H

The assertion follows if we combine the above two inequalities with (4.2), (4.3),
(4.5) and (4.7). O
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4.2. Proof of Lemma 3.3. Let M > 0 and 2o, wo € H? with ||29| 2 < M and
lwoll 2 < M. We first look at the initial value problem

Dyz(t) = —ip|z(t))? 2(t), 2(0) = z.

It is solved by z(t) = exp(—iput |z0*)z0. We also set w(t) = exp(—iut |wo|*)wo.
By a straightforward calculation employing also the Sobolev embedding H! <
L*, we estimate

3 5
@l < e(llz0ll = + ¢l + 2 2032 ). (43)

(If one simply applies Lemma 2.1 here, one obtains worse constants below.)
This inequality implies

2
1912(8) = Dew(t) g2 = |10l 2(2) — ol w(®)]| (4.9)
5
< c(ll=0ll g2 + lwollgz2) (1120 ]l 2 + ¢ ll20l132 + ¢ 20 372) 120 — woll 2
2
+ ¢ flwollz2 [12(8) — w(t)] =
Integrating from 0 to 7, we derive
i
12(7) = w(7)| g2 = |20 — wo +/ Bi(=(t) — w(t)) dtH
0 H?2
< |20 — wol| g2 + cMT(M + 7M? + T2 M) || 20 — wo| g2

et [ t) =~ wt)le .

The Gronwall inequality now yields

2

l2(r) = w2 < (14 M7+ (eM?)* T + (eM?)*%) |20 — woll g2 e
< ™M’ lzo — wol| g2 - (4.10)

Let ug,vg € H? with |Jug|| g2 < M and |lvo|| 2 < M. Since T'(7/2) is unitary,
(4.10) leads to

|V (uo) — \IJT(UO)HH?

(3) exp(=int | T(5)uo|*) (5 )uo = T(3) exp(=int [T(5)v0*) (5o

H?2
= Hexp(—i,m- |T(T/2)u0|2)T(T/2)uo — exp(—ipT \T(T/Q)UOIZ)T(T/Q)UQ -
< M T (r/2)uo = T(7/2)v0 12 = e llug — vl -
The result follows with Cy := c¢M?. ]

4.3. Proof of Lemma 3.5. Let 6 € (0,1). We denote by u(s,yo) the solution
0 (2.1) at time s > 0 with initial value yo € H>*?%. Let ug € H?>T?% and define

. Y 1/6
To 1= mm{(TeT02201> ,T}. (4.11)
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We prove part (b) and a stronger version of part (a) by one induction argument.
For all 7 € (0,79}, n € Ny with n7 € [0,7] and k € {0,...,n} we claim that

H\Ilﬁ_k(u(/w, ug)) — u(nT, uo)HH2 < TeT2 070 (4.12)
with C; from Lemma 3.2 and C3 from Lemma 3.3 (with M := 2M5) and that
nyﬂ(u(m, uo))HH2 < oMy =: C. (4.13)
We first note that (4.11) and (4.12) yield
H\Ilﬁfk(u(lm', ug)) — u(nT, UQ)HH2 < My

for 0 < 7 < 79, so that (4.13) will follow from (4.12).
We fix 7 € (0, 70] and establish (4.12) by induction. The case n = 0 is trivial.
Let the induction hypothesis

| @ tr, wo)) — utnr, wo)| < TeTCr? < M

hold for all £ € {0,...,n} and some n € Ny with (n+ 1)7 < T. Hence, (4.13)
is valid for all k£ € {0,...,n}. We now show (4.12) with n + 1 instead of n. For
k = n+ 1 the estimate (4.12) is clear. Let k € {0,...,n}. Estimate (4.13) for
n and Lemmas 3.3 and 3.2 imply

[ = uthr, o)) — u((n 4+ Do)

n—k

< 3w 0 4 00))) = W (a4 )|
=0 H?

= 3 ) = (I a5+ 1))
j=0 e
n—k ‘

< Z e(n=k=5)Car H\I/T(u((k: +j)7, uo)) — u(T, u((k + 7), uo)) HH2
§=0
n—k

< e(n—k—j)Cz'rClTl-l—G < T6T0201T9,
§=0

using that nT < T'. Estimate (4.12) is thus shown. O

5. PROOF OF THE CONVERGENCE THEOREM FOR THE STRANG SPLITTING

We first prove Lemma 3.6 and Lemma 3.7. Then we combine them with
Lemma 3.5 to derive Theorem 3.1.

5.1. Proof of Lemma 3.6. The proof of Lemma 3.6 is similar to the one of
Lemma 3.2, but we need a Taylor expansion of second order instead of first
order. Besides Lemma 4.1 we use here the following fact about a quadrature
formula on a two-dimensional simplex.
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Lemma 5.1. Let (X, |||) be a Banach space, T > 0 and
S, ={(z,y) eR*|0<y<z <7}
We define the linear operators
U :C(S:,X) =X and Uy:CYS;,X)—= X

by
2

Ui = [ Fa)dey) = T (F0.0)+ F(0) + (7. + £2r/3.7/3).

These operators are bounded and we have
[l <721 flle and  |U2f]| < e[| fllen -
The first estimate in the lemma, is clear. To see the second one, we write
f(z,y) = f(a,b) = —/Olf'(93+7“(a—fv),y+7"(b—y)) (a—z,b—y)dr
for (a,b) € {(0,0), (7,0), (7, 7), (27/3,7/3)}.
Proof of Lemma 3.6. Let 6 € (0,1), ug € H?>™? and 7 € (0,T]. We use the

Taylor expansion

2 2

for u** = exp(7B(u*))u* and obtain

2 T
1
¢ =T+ 12+ —a?+ / (1 — 5)223e5% ds
0

2 1 [7 .
u = u* + Bt )ut + %B(u*)zu* +3 / (1 — 8)2B(u*)?e*P )y ds. (5.1)
0

Recall that U (ug) = T(7/2)u™ with «* = T(7/2)up, see (2.3). We apply
T(7/2) to (5.1) and insert u* = T'(7/2)uq thrice, arriving at
2
U (ug) = T(1T)ug + 7T(7/2)B(u*)T(7/2)up + %T(T/Q)B(u*)2T(T/2)UQ
1 T *
+ 2/ (1 — $)*T(1/2) B(u*)3e* B )y* ds.
0

Subtracting this identity from (4.1), we derive the error formula

u(t) — W (up)

— ( /OTT(T— s)B(u(s))T(s)uods —TT(T/Q)B(M*)T(T/z)uO> (5.2)
+ (/0 T(r - s)B(u(s))/O T(s — 0)B(u(o))u(o) do ds

14



1) Bound on Iy: For I in (5.2), we employ again the function w : [0,T] — H*;
w(s) =T (1 — s)B(u(s))T(s)uo,

and estimate
TAPE H [ 6 - 9B TG o ds - rutr/2
0 L2

+lrw(r/2) = 7T (7/2) B(u*)T(7/2)uol| 12 -

The first summand on the right-hand side will by controlled by interpolation.
First observe that

w'(s) = —Aw(s) — 2ipT (t—s) Re(u(s)Au(s))T(s)ug + T(t—s)B(u(s))T(s)Aug.
Estimates (4.4) and (2.4) and Lemmas 2.1 and 2.3 imply that

(5.3)

Hw’(sl) — w/(SQ)HL2 <C31|s1— 32\6 and Hw’(sl)HL2 <C3; (5.4)

for s1,s2 € [0,T] where Cs; only depends on T" and Msg. So, w belongs to
C19([0,T],L?) which is the interpolation space (C*([0,T],L?), C([0, T],Lz))e o
cf. again Examples 1.8 and 1.9 in [17]. Lemma 4.1 and interpolation then yield

‘ /OT T(r — s)B(u(s))T(s)ugds — Tw(r/2)

To treat the second summand in (5.3), as before we look at the function

f:[0,T] — L? given by
F(#) = (B(u(t/2)) = B(T(t/2)u0)) T (t/2)uo.

We want to check that f belongs to C1?([0,T], L?). Observe that

2f'(t) = —z’,u(Re(ﬂ(t/Q)Au(t/Q)) - Re(W(T(t/z)Auo)))T(t/z)uo

+ (B(u(t/2)) — B(T(t/2)u0))T(t/2) Aug.

As above we deduce that

[/ (t1) = f/(t2)]] o < eMEC(Mag,T) |t — to]” + M3 |t1 — ta|” uo|| yro-20

< C32lt1 — to]’

< er?ey . (5.5)
L2

for all t1,t2 € [0,T] with a constant C32 only depending on 7" and My g. Since
f(0) =0 and f/(0) = 0, it follows

Il = | [ 076 - o) as
We then conclude
ITw(7/2) = 7T(7/2) Bw")T(r/2)uoll 2 = |7T(7/2) f(7)]| 2 < Ca27*. (5.6)

The expressions (5.3), (5.5) and (5.6) yield || 1|l 2 < C372? with a constant

53 that only depends on 1" and My 4.
2) Bound on Is: We now tackle the summand I in (5.2). We define

v(s,0) :=T(1 — 8)B(u(s))T (s — o) B(u(o))u(o)
15

L2



for (s,0) € [0,T] x [0, T] and split
2]l <Q+R (5.7)

with the abbreviations

Q:= /OT /05 T(r — s)B(u(s))T(s — o)B(u(o))u(c)do ds
72
— g(v(O, 0) +v(r,0) + v(r,7) + 0(27'/3,7'/3)) ,
L2
72
R:= ‘ g(v(0,0) +o(7,0) +v(7,7) + v(27‘/3,7‘/3))

7_2
— ?T(T/2)B(u*)2T(7'/2)u0

L2

For all (s1,01), (s2,02) € S, Lemmas 2.1 and 2.3 imply

0
o1, 01) = v(s2,02) | 2 < o MEMoC(My,T) + M3 ‘( 51— 82 )’

01— 02
0
81 — 82
01 — 02

where (41 only depends on T" and Mj ¢. Interpolating in Lemma 5.1, we infer

Q <m0y (5.8)

< Cy

To estimate R, we introduce the function g : [0,T] — L? by
g(t) = = T(t)B(uo)*uo + B(u(t))T(t) B(uo)uo
+ Bu(t)u(t) + T(t/3)B(u(2t/3))T(t/3) B(u(t/3))u(t/3)
— 4T(t/2)B(T(t/2)uo)*T(t/2)uq.
For all ¢1,ts € [0, T], we derive from Lemmas 2.1 and 2.3 that
lg(t1) = g(t2)ll 2 < (M3 [tr — ta|” + M3C (M2, T) [tr — t2|°).

Since ¢g(0) =0 and R =

%QQ(T)HLZ, this inequality leads to

. < Cypr*t? (5.9)
L

with Cy 2 only depending on T" and My g. From (5.7), (5.8) and (5.9) we conclude

I112]l 2 < cCua7®t0 + Cuor?t? = Cyr?to

where 6’4 only depends on T" and My g.
3) Bound on I3: The summand I3 of (5.2) can directly be controlled using

Lemma 2.1 so that I3 is bounded by 557'2“’ for a constant C'5 that only depends
on T and M. OJ
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5.2. Proof of Lemma 3.7. Let ug, vy € H? with |Jug g2 < M and |lvg| g2 <
M. For zy,wy € H?, we look at the solutions of the initial value problems

Op2(t) = —iplz(D)* (1), 2(0) = 2,
dw(t) = —ip |w®) P w(t), w(0) = w.
As in (4.9) one shows the estimate
19¢2(2) — dew() ]l 2 < e(llz0ll g2 + llwoll =) (I120ll 2 + |20 72
+ 12|20/ 372) 120 — woll 2 + ¢ Jwol| 72 [|2(t) = w(®)] 2

From this fact we conclude as in (4.10) that
. 2 . 2 C4T
exp(—inr [20%)20 — exp(=in fwo o | , < e 20 —wol

for a constant Cy that only depends on T', ||2o]| 2 and ||wo|| 2. As in the proof
of Lemma 3.3 we then arrive at

197 (u0) — Ur(v0) 2 < €7 [|ug — woll 2 - O

5.3. Proof of Theorem 3.1. Let 6 > 0 and ug € H**?. Take 7 € (0, 7] with
79 from Lemma 3.5 and n € N with nr € [0,T]. We have

n—1
u(nt) = U2(ug) = Y r(u((n - k)7)) = U5 (u((n — k — 1)r)).
k=0

In view of Lemma 3.5, the expressions U (u((n—1—1)7)) with ! € {0,...,n—1}
are bounded in H? by a constant C that only depends on M,. Iteratively,

Lemma 3.7 with M := C can thus be applied to all summands appearing in the
second line of the following calculation. Together with Lemma 3.6 we derive

|u(nT) — W (uo)ll 2
1

S
|

(]

|- (94 (uln — Rym)) — @ (W (b~ 1)7)|

k=0 L
n—1

< Zekc‘”Hu(T,u((n — k- 1)7')) — U, (u((n — k- 1)7')) HL2
k=0
n—1

< ekC47’037_2+9 < T6T0403T1+6,
k=0

where we use again nT < T. (]

6. PROOF OF THE CONVERGENCE THEOREM FOR THE LIE SPLITING

We first prove the Lemmas 3.9 and 3.10. Using them, we then establish
Lemma 3.11 and Theorem 3.8.
17



6.1. Proof of Lemma 3.9. We again start with a lemma needed for an inter-
polation argument. The very simple proof is omitted.

Lemma 6.1. Let T > 0 and 7 € (0,T]. We define the Banach space Z =
c([0,T),L?) nC([0,T), H?) with norm

111z == Iflerqo,my,L2) + 1 le ooy,
and the linear operators

Vi:Z—H?> and Vo:Z—L* by ij:/ f(s)ds — 7£(0).
0

These operators are bounded and we have
Vifllge <270 fll;  and  |[Vafllp < 72 fll5-
Proof of Lemma 3.9. Let ug € H? and 7 > 0. By (2.5), the solution of (2.1) at

time 7 is given by

u(r) = T(T)ug + /OT T(1 — s)B(u(s))u(s) ds.

Applying the Taylor expansion
-
et =141+ / (1 — s)z?e™ ds
0

to @, (ug) = exp(TB(w))u with & = T'(7)u, see (2.2), we determine the numer-
ical solution after one time step as

D, (ug) = T(T)up + 7B(W)U + /0 T(T — 5)B(1)%e* Py ds. (6.1)
The difference of (2.5) and (6.1) is
u(r) — - (up) = </0T T(1 — s)B(u(s))u(s)ds — TB(E)&)

—/ (t — s)B(1)%e*B@u ds (6.2)
0
=1 + Is.
1) Bound on I;: To estimate I, we again look at the function w : [0, 7] — H?;
w(s) :=T(1 = 5)B(u(s))u(s),

and write

I = ( /O " T(r — 8)B(u(s))u(s) ds — Tw(0)> + (Tw(()) - TB(a)a) (6.3)
=: 51 + 5.

Asin (5.4) we see that w belongs C'*([0, 7], L?)NC(]0,T], H?) and that its norm
in this space is bounded by a constant C~'171 only depending on Ms. Lemma 6.1
then yields
1912 < Cra7®  and  ||Si]|p2 < 2C14T,
so that
HSl HH7/4 < 601717'9/8
18



by interpolation. For Sy we note that w(0) = T'(r)B(uo)uo and
T(7)B(uo)uo — B(T(r)ug)T()uo = (T(T)B(ug)uo - B(uo)uo) (6.4)
+ (Bluo)(uo — T(7)uo)
+ ((B(uo) = BT(r)uo)) T(7)uo ).

To treat the first term on the right-hand side, we define f; : [0,7] — H? by
fi(t) :=T(t)B(up)uo — B(up)up. Since f1(0) =0, Lemma 2.3 yields

11 (P) | rsa < e luol| 3 75,
T
3
T /0 173 2 ds < elluolde .

For the other two terms in (6.4) one obtains analogous estimates. So we can
bound

12| prr/a < Cro7™® and  |[|Sa| 2 < Cior?
H L

with a constant C; 2 only depending on Ms. In view of (6.3) we obtain
[l rss < Ci7%8 and |12 < Cir?

where C; only depends on M.
2) Bound on Iy: Lemma 2.1 allows to estimate the second term in (6.2) by

[ 12l /e < cheCTM§T7/ST9/8 < CyrY/8,
[L2][ 2 < CA7\4§QE’CT]\/[227'2 < Cor?
with a constant 52 only depending on T and Ma. 0

Proof of Lemma 3.10, Lemma 3.11 and Theorem 3.8. One shows Lemma 3.10
in the same way as Lemmas 3.3 and 3.7, using instead of (4.8) only Lemma 2.1
to estimate z(¢) in H7/*. Based on Lemmas 3.9 and 3.10, one proves Lemma 3.11
as Lemma 3.5 with § = 1/8 and My ,4 instead of Mj. Finally Lemmas 3.9, 3.10
and 3.11 imply Theorem 3.8 as in the proof of Theorem 3.1. U
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