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Abstract. In this paper, we introduce locally Lipschitz observation systems
for nonlinear semigroups and show that they can be represented by an ‘admis-

sible’ nonlinear output operator defined on a suitable subspace. Also in the

semilinear case, this concept fits well to the Lebesgue extension known from
linear system theory. For semilinear systems, we show robustness of exact ob-

servability near equilibria under locally small Lipschitz perturbations. Finally,
we apply our results to a damped nonlinear beam equation and a semilinear

thermo-elastic system.

1. Introduction

In distributed parameter systems pointwise or boundary observations lead to
unbounded (and even non closable) output operators. To treat such situations in
a unified and efficient way, the concepts of admissible observation operators and
of observation systems have been introduced in the linear case by Salamon and
Weiss in [17] and [20]. An operator C ∈ L(D(A), Y ) is called admissible for a
C0-semigroup T = (T (t))t≥0 with generator A if the output map x 7→ C(T (·)x),
initially defined on D(A), can be extended to a continuous map Ψ from X to
L2
loc(R+, Y ). The pair (T, ψ) is then an observation system; i.e., it holds (Ψx)(·+

τ) = ΨT (τ)x for all x ∈ X and τ ≥ 0. Conversely, for any observation system (T,Ψ)
there is an admissible output operator C ∈ L(D(A), Y ) such that Ψx = CT (·)x for
every x ∈ D(A). Moreover, there exists the ‘Lebesgue extension’ CL of C satisfying
T (t)x ∈ D(CL) for a.e. t ≥ 0 and Ψx = CLT (·)x for all x ∈ X, see [20] and also
[6, 10, 17].

In this paper we extend this successful linear theory to general nonlinear lo-
cally Lipschitz semigroups S = (S(t))t≥0 (see Definition 2.3) and densely defined
nonlinear output operators C. For such semigroups S we define locally Lipschitz
observation systems Ψ and locally Lipschitz admissible observation operators in
Section 3. We further prove that such observation systems Ψ can be represented

by Ψx = C̃(S(·)x) for a (possibly nonlinear) admissible observation operator C̃, see
Theorem 3.6.

We then focus on the semilinear observation system

u̇(t) = Au(t) + F (u(t)), u(0) = x ∈ X, t ≥ 0, (1)

y(t) = C(u(t)), (2)

where A is assumed to be the generator of a linear C0-semigroup T on a Banach
space X, C is a nonlinear unbounded operator from a domain D(C) to another
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Banach space Y and F is a locally Lipschitz continuous nonlinear operator from X
into itself. Throughout we assume that F has linear growth.

It is well known, see e.g. [16, Chapter 6], that the state equation (1) has a global
unique mild solution given by u(·;x) for every x ∈ X. Moreover, by S(t)x = u(t;x)
one defines a semigroup S of locally Lipschitz continuous operators. One now looks
for sufficient conditions for the admissibility of C for S. As an important special
case, we assume that C is an admissible linear output operators for T . In this
situation one can in fact construct a nonlinear observation system (S,ΨF ) given by
(15), which is the integrated version of (1)–(2). Moreover, the system is (S,ΨF )
represented by the Lebesgue extension CL of C with respect to T , see Theorem 3.7.

In Section 4 we then define and study local exact observability of locally Lipschitz
observation systems. Again, in the case of the semilinear system (1)–(2) with a
linear admissible operator C, it is desirable to have criteria of the observability of
the system in terms of the linear system given by T and C. In fact, in Theorem 4.4
we show that near an equilibrium x0 of (1) the linear system is exactly observable
on [0, τ ] if and only if (1)–(2) is locally exactly observable on [0, τ ], provided that
the Lipschitz constant of F near x0 is sufficiently small. This property holds if
F ∈ C1(X) with F ′(x0) = 0.

Similar robustness results for admissibility and exact observability were shown
for globally Lipschitz F in the paper [3] by two of the authors. In that paper also
additional regularity properties of F or T were assumed which were needed to treat
the variation of constants formula related to (1). In the present paper we discard
these extra assumptions by using estimate (16) for the convolution f 7→ CLT ∗ f
established in [18] for admissible C. This estimate is new in this context and crucial
in the arguments. The convergence at the end of the proof of Theorem 3.7 is sharp,
and cannot be obtained by simple use of Hölder inequality alone.

If the system is linear and X is a reflexive Banach space (e.g. a Hilbert space),
then the concept of controllability is dual to the concept of observability. For
nonlinear systems the situation is more involved. Consequently, most publication
study exact controllability and exact observability separately. There are various
publications in the literature on the controllability of specific semilinear systems.
We refer the reader to [2, 4, 5, 11, 22] and the references therein. On the other
side, to our knowledge, there are only few results on observability of semilinear
systems with linear (or nonlinear) observation operators. In particular, Mangnusson
established in [15] a robustness result for exact observability near an equilibrium.
He allowed for a larger class of nonlinearities in (1), but considered only (nonlinear)
observation operators defined on X. In contrast, we focus on observation operators
defined only on subspaces.

The paper is organized as follows. In Section 2, we discuss background material
on locally Lipschitz semigroups and semilinear equations as well as the basic notions
and results on linear observation systems. In Section 3 and 4 we prove the above
indicated results on admissibility and observability, respectively. Finally, in Section
5, we apply our results to a damped semilinear beam equation and a semilinear
thermo-elastic system.

2. Background

In this section we introduce notations and assumptions used throughout the
paper. We further discuss known results about semilinear evolution equations and



SEMILINEAR OBSERVATION SYSTEMS 3

linear observation systems. We denote by X and Y Banach spaces (the state and
the observation space, respectively). The family T = (T (t))t≥0 of linear operators
is a C0-semigroup on X with generator (A,D(A)). We can fix constants M,ω > 0
such that

∥T (t)∥ ≤Meωt (3)

holds for all t ≥ 0. We denote by L(E,G) the space of bounded linear opera-
tors between two Banach spaces E and G and put L(E) := L(E,E). Moreover,
the (nonlinear) operator F : X −→ X is always assumed to be locally Lipschitz
continuous; that is, for each r > 0 there exists a constant L(r) ≥ 0 such that

∥F (x)− F (y)∥ ≤ L(r)∥x− y∥,
for all x, y ∈ X with ∥x∥ ≤ r and ∥y∥ ≤ r.

It is well-known (see e.g. Theorem 6.1.4 in [16]) that, under the above assump-
tions, for every x ∈ X there is a maximal t(x) ∈ (0,∞] such that the problem (1)
admits a unique mild solution u = u(·;x) ∈ C([0, t(x)), X) satisfying the integral
equation

u(t) = T (t)x+

∫ t

0

T (t− σ)F (u(σ))dσ. (4)

Moreover, if t(x) < ∞ then limt→t(x) ∥u(t)∥ = ∞. For our investigations it suffices
to consider mild solutions. The question whether they are in fact classical solutions
of (1) is discussed, e.g., in [16, Chapter 6]. In this paper we work in the situation
of global solvability assuming that

(H) ∥F (x)∥ ≤ a∥x∥+ b holds for all x ∈ X and some constants a, b ≥ 0.

Under this condition of linear growth, the formula (4) and Gronwall’s inequality
easily yield the next result.

Proposition 2.1. Let A generate a C0-semigroup T satisfying (3) and F : X → X
be locally Lipschitz such that (H) holds. Then the problem (1) has a unique global
mild solution in C([0,∞), X) for each x ∈ X. Moreover, u is exponentially bounded
in the sense that

∥u(t)∥ ≤ Mb

ω
eωt +Me(ω+aM)t∥x∥ for all t ≥ 0. (5)

Remark 2.2. If we assume that F is globally Lipschitz continuous, then it has
linear growth and thus (1) has a unique global mild solution for each x ∈ X.

Definition 2.3. A family S = (S(t))t≥0 of locally Lipschitz operators from X into
itself is called a semigroup of locally Lipschitz operators on X if it satisfies the
following conditions:

(a) S(t+ s)x = S(t)S(s)x and S(0)x = 0 for all t, s ≥ 0 and x ∈ X.
(b) For each x ∈ X, the X-valued function S(·)x is continuous on [0,∞).
(c) For every r > 0 and t0 > 0 there exists a constant L(t0, r) > 0 such that

for all x, y ∈ X with ∥x∥, ∥y∥ ≤ r we have

∥S(t)x− S(t)y∥ ≤ L(t0, r)∥x− y∥ for all t ∈ [0, t0]. (6)

A special class of a semigroup of locally Lipschitz operators are C0-semigroups.
Let u(·;x) be the solution of (1) for a given x ∈ X, where we
assume that (H) holds. We define S(t)x := u(t;x) for all x ∈ X and t ≥

0. The operators S(t) then map X into itself and satisfy the properties stated
in Definition 2.3. In fact, the first property follows from the uniqueness of mild
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solutions. The second one is an immediate consequence of the continuity of t 7→
u(t;x). The last property can be shown using (4), (5), the local Lipschitz continuity
of F and Gronwall’s inequality. Hence, the output function in (2) is formally given
by

y(t) = C(S(t)x).

Of course, this expression only makes sense if S(t)x belongs to the domain D(C)
of C. We note that, in general, D(C) is not invariant under S(t). Such problems
already occur in the linear case. To motivate our approach, we first recall the linear
theory before proceeding with the nonlinear one.

Let T be a C0-semigroup on X with generator (A,D(A)) and let C : D(A) → Y
be a linear bounded operator, where D(A) is endowed with the graph norm of A.
(The operator C could be unbounded and even non closable in X.) We consider
the observation system

u̇(t) = Au(t), u(0) = x,
y(t) = Cu(t), t ≥ 0.

(7)

Since T (t) : D(A) → D(A) is bounded, for x ∈ D(A) the output y = Cu : R+ → Y
is well-defined and continuous. Wellposedness of (7) should mean that the map
x 7→ y is continuous from X to L2([0, t], Y ) for each t ≥ 0. Correspondingly, Weiss
introduced in [20] the concept of admissibility of C (for T ), which says that the
estimate ∫ t0

0

∥CT (t)x∥2dt ≤ γ(t0)
2∥x∥2, (8)

holds for some (hence all) t0 > 0, all x ∈ D(A) and locally bounded constants
γ(t0) > 0. Due to (8), the linear operator Ψ : D(A) → L2

loc(R+, Y ) defined by

(Ψx)(τ) = CT (τ)x, τ ≥ 0, (9)

can be extended to a continuous linear operator from X to L2
loc(R+, Y ) denoted

again by Ψ. Here and below, L2
loc(R+, Y ) is endowed with its canonical metric, i.e.,

a sequence of functions fn converge to f in L2
loc(R+, Y ) as n→ ∞ if the restrictions

fn|[0, t0] converge to f |[0, t0] in L2([0, t0], Y ) as n → ∞, for every t0 > 0. Thus, a
linear operator Φ : X → L2

loc(R+, Y ) is continuous if and only if there are constants
c(t0) such that ∥Φx∥L2([0,t0],Y ) ≤ c(t0)∥x∥ for all x ∈ X and t0 > 0. For Ψ from (9)
it further holds that

(Ψx)(·+ τ) = ΨT (τ)x on R+ for all τ ≥ 0. (10)

If a linear operator Ψ : X → L2
loc(R+, Y ) is continuous and satisfies (10), we say

that (T,Ψ) is a linear observation system on X and Y .
Therefore, for an admissible C, the system (7) possesses the (extended) obser-

vation Ψx for every x ∈ X, where Ψ : X → L2
loc(R+, Y ) is the extension of the

operator defined in (9) and (T,Ψ) is an observation system. Conversely, for any
given observation system (T,Ψ), Weiss constructed in Theorem 3.3 of [20] an ad-
missible observation operator C ∈ L(D(A), Y ) such that (9) holds. Moreover, he
defined the Lebesgue extension of C by

CLx := lim
τ↘0

C
1

τ

∫ τ

0

T (t)xdt, (11)

with domain

D(CL) := {x ∈ X : the limit in (11) exists} .
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This definition makes sense for any C ∈ L(D(A), Y ) without assuming admissibility.
It then holds D(A) ⊂ D(CL) ⊂ X, Cy = CLy for all y ∈ D(A), as well as
T (t)x ∈ D(CL) and Ψx(t) = CLT (t)x for all x ∈ X and a.e. t ≥ 0, see Section 4
in [20]. We note that in [21] another extension of C (the Yosida extension CΛ) was
introduced. However, for our purposes the Lebesgue extension is more appropriate.

3. Locally Lipschitz observation systems

We start with our basic definitions.

Definition 3.1. A locally Lipschitz observation system on the Banach spaces X
and Y is a pair (S,Ψ), where S := (S(t))t≥0 is a semigroup of locally Lipschitz
operators on X and Ψ is (possibly nonlinear) operator from X to L2

loc([0,∞), Y )
such that for every t0, r > 0 there exists a constant k(r, t0) > 0 such that

(Ψx)(·+ τ) = ΨS(τ)x on R+,
∥Ψx−Ψy∥L2([0,t0],Y ) ≤ k(r, t0)∥x− y∥, (12)

for all τ ≥ 0 and x, y ∈ X with ∥x∥, ∥y∥ ≤ r.

Definition 3.2. Let S be a semigroup of locally Lipschitz operators on X and let
C : D(C) → Y be a (possibly nonlinear) operator with dense domain D(C) in X.
We say that C is a locally Lipschitz admissible observation operator for S if, D(C)
is S-invariant, that is, for every x ∈ D(C), it holds S(t)x ∈ D(C) for a.e. t ≥ 0,
the function C(S(·)x) : R+ → Y is strongly measurable and if for every t0 > 0 and
every r > 0 there is a constant γ(r, t0) > 0 such that∫ t0

0

∥CS(t)x− CS(t)y)∥2Y dt ≤ γ(r, t0)
2∥x− y∥2, (13)

for all x, y ∈ D(C) with ∥x∥, ∥y∥ < r.

Remark 3.3. If S is a C0-semigroup and D(A) = D(C), then D(C) is S-invariant.

Let C be locally Lipschitz admissible for S. Then the map Ψ : D(C) →
L2
loc(R+, Y ), x 7→ CS(·)x, possesses a locally Lipschitz continuous extension from

X to L2
loc(R+, Y ). In fact, let x ∈ X and t0 > 0. Since D(C) is dense, there exist

xn ∈ D(C) converging to x in X as n → ∞. Estimate (13) imply that Ψxn is a
Cauchy sequence which therefore converges to some z in the complete metric space
L2
loc(R+, Y ). If x′n ∈ D(C) converge to x in X, then Ψx′n also converges to z in

L2
loc(R+, Y ) because of (13). So we can extend Ψ to map from X to L2

loc(R+, X)
denoted by the same symbol. Let t0, r > 0 and x, y ∈ X with ∥x∥, ∥y∥ < r. There
are xn ∈ D(C) and yn ∈ D(C) converging to x and y, respectively. Using (13) we
can then estimate

∥Ψx−Ψy∥L2([0,t0],Y ) = limn→∞ ∥Ψxn −Ψyn∥L2([0,t0],Y )

≤ γ(r, t0) limn→∞ ∥xn − yn∥ = γ(r, t0)∥x− y∥.
Hence, Ψ is locally Lipschitz continuous on X. We further obtain

Ψx(τ + ·) = lim
n→∞

Ψxn(τ + ·) = lim
n→∞

ΨS(τ)xn = ΨS(τ)x

in L2
loc(R+, X). We state this result as a lemma.

Lemma 3.4. Let C be a locally Lipschitz admissible observation operator for S.
There there exists a locally Lipschitz continuous extension Ψ : X −→ L2

loc([0,∞), Y )
of the map x 7→ CS(·)x defined on D(C). Moreover, (S,Ψ) is a locally Lipschitz
observation system.
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For a given locally Lipschitz observation system we can now construct a pointwise
representation in terms of an observation operator.

Definition 3.5. For a locally Lipschitz observation system (S,Ψ) we define

C̃x = limτ↓0
1

τ

∫ τ

0
(Ψx)(t)dt, (14)

for x ∈ D(C̃) := {x ∈ X : the limit in (14) exists in Y }.

The next representation result extends Theorem 4.5 of [20] to locally Lipschitz
observation systems.

Proposition 3.6. Let (S,Ψ) be a locally Lipschitz observation system, and let

C̃ : D(C̃) → Y be the nonlinear operator defined by (14). Then, for all x ∈ X and

t ≥ 0 we have S(t)x ∈ D(C̃) if and only if

1

τ

∫ τ

0

(Ψx)(t+ s) ds converges as τ ↘ 0.

If this is the case, then the limit equals C̃S(t)x . We thus obtain (Ψx)(t) = C̃S(t)x
for almost every t ≥ 0, namely for all Lebesgue points t ≥ 0 of Ψx.

Proof. The theorem follows from the identity

1

τ

∫ τ

0

(ΨS(t)x)(r) dr =
1

τ

∫ τ

0

(Ψx)(t+ r)dr

and the fact that this limit exists for almost every t ≥ 0 since Ψx is locally inte-
grable. This proof also works in the linear case. □

In particular, C̃ is a locally Lipschitz admissible observation operator for S .

According to Lemma 3.4, C̃ and S ( generate an observation system (S, Ψ̃). It

is easy to see that, in fact, Ψ = Ψ̃. We say that the operator C̃ represents the
observation system (S,Ψ).

Now, we consider the special case of the semilinear system (1) and (2), where we
assume in addition that C is linear. So let (T,Ψ) be a linear observation system with
observation operator C and Lebesgue extension CL and (S(t))t≥0 the semigroup of
locally Lipschitz operators solving (1) in the mild sense. Recall from Section 2 that
Ψx = CLT (·)x.

In order to describe the output of (1) and (2), we define

ΨFx = Ψx+ CLKF (S(·)x) (15)

for all x ∈ X, where Kf(t) :=
∫ t

0
T (t − s)f(s)ds for f ∈ L1

loc(R+, X) and t ≥ 0.
Observe that F (S(·)x) is locally bounded due to (H) and (5). We recall from
Proposition 2.11 in [18] (and its proof) that Kf(t) ∈ D(CL) for a.e. t ≥ 0, CLKf :
R+ → Y is strongly measurable and

∥CLKf∥L2([0,t0],Y ) ≤ c(t0)t
1
2
0 ∥f∥L2([0,t0],X) (16)

for all f ∈ L2
loc(R+, X) and t0 > 0, where c(t0) = γ(t0 + 1) and γ is as in (8).

(Hence, c : R+ → R+ is locally bounded.) We now show that (ΨF , S) is a locally
Lipschitz observation system represented by CL.
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Theorem 3.7. Let (T,Ψ) be a linear observation system with observation operator
C ∈ L(D(A), Y ), let F : X → X be locally Lipschitz, and suppose that S(·) solves
(1). Assume that (H) holds. Define ΨF as in (15). Then, (ΨF , S) is a locally
Lipschitz observation system which is represented by the Lebesgue extension CL.

Proof. Let t0 > 0 and r > 0, and take x, y ∈ X with ∥x∥, ∥y∥ ≤ r. Using the
assumptions, (16) and (6), we can estimate

∥ΨFx−ΨF y∥L2([0,t0],Y ) ≤ ∥Ψ(x− y)∥L2([0,t0],Y )

+∥CLK[F (S(·)x)− F (S(·)y)]∥L2([0,t0],X)

≤ c∥x− y∥+ c(t0)t
1
2
0 ∥F (S(·)x)− F (S(·)y)∥L2([0,t0],X)

≤ c∥x− y∥+ c(r, t0)t
1
2
0 ∥S(·)x− S(·)y∥L2([0,t0],X)

≤ c(r, t0)∥x− y∥.

Let t ≥ 0. For a.e. τ ≥ 0, the formulas (15) and (4) lead to

(ΨFx)(t+ τ) = CLT (τ)T (t)x+ CL

∫ t+τ

t
T (t+ τ − s)F (S(s)x)) ds

+CLT (τ)
∫ t

0
T (t− s)F (S(s)x)) ds

= CLT (τ)S(t)x+ CL

∫ τ

0
T (τ − s)F (S(s)S(t)x)) ds

= (ΨF (S(t)x))(τ).

So we have shown that (ΨF , S) is a locally Lipschitz observation system. For the
second assertion, let x ∈ X and t ∈ (0, 1]. Equation (15) yields

1

t

∫ t

0

(ΨFx)(s) ds =
1

t

∫ t

0

(Ψx)(s) ds+
1

t

∫ t

0

CLKF (S(·)x)(s) ds.

The second integral on the right hand side is denoted by J(t). From Hölder’s
inequality and estimate (16) we deduce that

∥J(t)∥ ≤ t−
1
2 ∥CLKF (S(·)x)∥L2([0,t],Y ) ≤ c ∥F (S(·)x)∥L2([0,t],X) −→ 0

as t → 0. We then conclude that D(C̃) = D(CL) and C̃x = CLx, where C̃
represents ΨF . □

4. Exact observability

Again we start with our basic definitions in the linear and the nonlinear case.

Definition 4.1. Let C ∈ L(D(A), Y ) be an admissible observation operator for
the linear C0-semigroup T with generator A. The system (7) is called exactly
observable in time τ > 0 if there is a constant κ > 0 such that

∥CT (·)x∥L2([0, τ ],Y ) ≥ κ∥x∥ for all x ∈ D(A). (17)

Definition 4.2. Let C : D(C) → Y be an locally Lipschitz admissible observation
operator for the semigroup S of locally Lipschitz operators solving (1). The system
(1) and (2) is called locally exact observable in time τ > 0 at x0 ∈ D(C) (or on
B(x0, r0)) if there are numbers r0, κ > 0 such that

∥CS(·)x− CS(·)y∥L2([0,τ ],Y ) ≥ κ∥x− y∥ (18)

for all x, y ∈ D(C) with ∥x0 − x∥ ≤ r0 and ∥x0 − y∥ ≤ r0.

Remark 4.3. One can see that the linear system (7) is exactly observable if and
only if is locally exact observable at some x0, see the proof of Theorem 4.4 below.
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We now establish a robustness result for exact observability in the semilinear
case. Observe that x0 is fixed point for the semilinear problem (1), i.e., S(t)x0 = x0
holds for all≥ 0, if and only if x0 ∈ D(A0) and Ax0 = −F (x0). In particular, x0 = 0
is a fixed point for (1) if and only if F (0) = 0.

Theorem 4.4. Let C ∈ L(D(A), Y ) be an admissible linear observation operator
for the C0-semigroup T with generator A. Let F : X → X be locally Lipschitz
and let S be the nonlinear semigroup solving (1). Assume that (H) holds. Let
x0 ∈ D(A) satisfy Ax0 = −F (x0) and denote by L0(r) the Lipschitz constant of
F on the ball B(x0, r) in X. Then there are constants L1, L2 > 0 such that the
following assertions hold.

(a) If the linear system (7) is exactly observable in time τ > 0 and if there is
an r̃ > 0 with L0(r̃) < L1, then the nonlinear system (1) and (2) is locally
exact observable in time τ at x0.

(b) If the nonlinear system (1) and (2) is locally exact observable in time τ > 0
on the ball B(x0, r0) and there is an r̃ ∈ (0, r0) with L0(r̃) < L2, then the
linear system (7) is exactly observable in time τ .

Proof. We first establish certain Lipschitz estimates for S near x0. Fix an R > 0
and take any r ∈ (0, R). Let ρ ∈ (0, r), x, y ∈ B(x0, ρ), and t ∈ [0, τ ]. Let t1 > 0
be the supremum of t ∈ [0, τ ] such that ∥S(s)x − x0∥ < r for all s ∈ [0, t]. The
formula (4) and estimate (3) then imply the inequality

∥S(t)x−x0∥ = ∥S(t)x−S(t)x0∥ ≤Meωτ∥x−x0∥+Meωτ

∫ t

0

L0(r)∥S(s)x−x0∥ ds

for all 0 ≤ t < t1. From Gronwall’s inequality it follows that

∥S(t)x− x0∥ ≤Meωτ exp(MeωτL0(r)τ)ρ

for all 0 ≤ t < t1. Choosing a sufficiently small ρ = ρ(r) > 0 we thus obtain
∥S(t1)x−x0∥ < r so that t1 = τ and S(t)x ∈ B(x0, r) for all t ∈ [0, τ ]. Using again
(4), we can now deduce the Lipschitz estimate

∥S(t)x− S(t)y∥ ≤Meωτ exp(MeωτL0(r)τ)∥x− y∥ =: k(R)∥x− y∥
if ∥x− x0∥, ∥y − x0∥ ≤ ρ(r) < r and t ∈ [0, τ ].

We now assume that the system (7) is exactly observable in time τ > 0 with
constant κ > 0. Formula (15) yields

CLT (t)(x− y) = CLS(t)x− CLS(t)y − CL

∫ t

0

T (t− σ)[F (S(σ)x)− F (S(σ)y)] dσ.

Using (16) and the above estimates, we then deduce that

∥CL T (·)x− CLT (·)y∥L2([0,τ ],Y )

≤ ∥CLS(·)x− CLS(·)y∥L2([0,τ ],Y ) + c(τ) ∥F (S(·)x)− F (S(·)y)∥L2([0,τ ],X)

≤ ∥CLS(·)x− CLS(·)y∥L2([0,τ ],Y ) + c(τ)L0(r) ∥S(·)x− S(·)y∥L2([0,τ ],X)

≤ ∥CLS(·)x− CLS(·)y∥L2([0,τ ],Y ) + L0(r)c1(τ)k(R)∥x− y∥X
for x, y ∈ B(x0, ρ(r)) and t ∈ [0, τ ]. Thus, if L0(r̃)c1(τ)k(R) ≤ κ/2 for some

r̃ > 0, the observability of C and T yields

∥CL S(·)x− CLS(·)y∥L2([0,τ ],Y )

≥ ∥CLT (·)x− CLT (·)y∥L2([0,τ ],Y ) − c1(τ)k(R)L0(r̃)∥x− y∥ ≥ κ
2 ∥x− y∥
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for all x, y ∈ X with ∥x− x0∥, ∥y − x0∥ ≤ ρ(r̃).
To prove part (b) we proceed in the same way, but we require in addition that

0 < ρ < r0 and take y = x0. We thus obtain

∥CLT (·)(x− x0)∥L2([0,τ ],Y ) ≥ κ
2 ∥x− x0∥

for all x in a ball around x0. By linearity, this estimate implies the exact observ-
ability of the linear system (7). □

5. Applications

In this section we give examples for the main theorems of this paper.

Example 5.1. Let Ω ⊂ RN be a bounded domain with boundary ∂Ω ∈ C4 and let
Γ be an open subset of ∂Ω. Consider the damped nonlinear plate equation

utt +∆2u− 2β∆ut − f
(∫

Ω
|∇u|2dx

)
∆u = 0, x ∈ Ω, t > 0,

u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,
∆u(t, x) = 0, x ∈ ∂Ω, t ≥ 0,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω

(19)

with β > 0 and the output function

y(t) = ut|Γ. (20)

Equation (19) arise in the mathematical study of structural damped nonlinear vi-
brations of a string or a beam and was considered in [7, 19] and references therein.
Let H = L2(Ω) and Aϕ = ∆2ϕ with D(A) = H4(Ω) : u = ∆u = 0 on ∂Ω}. It is
known that A is a self adjoint, positive, boundedly invertible operator and that

H 1
2
:= D(A

1
2 ) = H2(Ω) ∩H1

0 (Ω).

Let H− 1
2
be the dual space of H 1

2
for the pivot space H.

Set v = ut and Z(t) =

(
u(t)
v(t)

)
. We can then rewrite the problem (19)–

(20) as the abstract first order ordinary differential equation in the Hilbert space
X = H 1

2
×H {

d

dt
Z(t) = AZ(t) + F (Z(t)), Z(0) = Z0,

y(t) = CZ(t).
(21)

Here the linear operator

A : D(A) ⊂ H 1
2
×H → H 1

2
×H,

is given by

A =

(
0 I

−A −D

)
, D(A) = D(A)×D(A

1
2 ),

where the damping operator D : H 1
2
→ H defined by D = 2βA

1
2 is bounded and

positive. Furthermore, we set

C = (0, C) and Cϕ = ϕ|Γ for ϕ ∈ H 1
2

and define F : H 1
2
×H → H 1

2
×H by

F

((
u
v

))
=

(
0

f
(∫

Ω
|∇u|2dx

)
∆u

)
.
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For z ∈ H 1
2
, we have

⟨Dz, z⟩H− 1
2
×H 1

2

= ⟨2βA 1
2 z, z⟩H = 2β∥z∥H1

0 (Ω) ≥
2β

c
∥z∥L2(Γ),

for some c > 0 by the trace theorem (see e.g. Theorem 2.5.4 in [14]). Hence, the
assumptions (A1)-(A3) of [9, Proposition 4.1] are satisfied, and thus the observation
operator C is infinite-time admissible for the semigroup generated by A.

Assuming f : [0,∞) → R locally Lipschitz and bounded, the mapping F is locally
Lipschitz continuous on H 1

2
× H and of linear growth. Theorem 3.7 now implies

that the Lebesgue extension of C with respect to the semigroup generated by A is an
admissible observation operator for the problem (19)-(20).

Example 5.2. Let Ω be a bounded open subset of RN with boundary ∂Ω ∈ C4. We
consider the following semilinear thermo-elastic system{

wtt +∆2w + α∆θ = f
(∫

Ω
|∇w|2dx

)
∆w, x ∈ Ω, t > 0,

θt −∆θ + σθ − α∆wt = 0, x ∈ Ω, t > 0,
(22)

with the boundary and initial conditions{
θ(t, x) = w(t, x) =

∂w

∂ν
(t, x) = 0, x ∈ ∂Ω, t ≥ 0

w(0, x) = w0(x), wt(0, x) = w1(x), θ(0, x) = θ1(x), x ∈ Ω
(23)

and the output function

y(t, x) = −∇θ(t, x), t ≥ 0, x ∈ Ω. (24)

Here, the coupling parameter α is positive and the constant σ is non negative.
Controllability of corresponding linear system of (22)–(23) with various boundary
conditions and controls are well studied, see [1, 8, 12].

We define the linear operators A0 = ∆2 and AD = −∆ on L2(Ω) → L2(Ω) with
the domains

D(A0) = H4(Ω) ∩H2
0 (Ω) and D(AD) = H2(Ω) ∩H1

0 (Ω).

It is well known that A0 and AD are self adjoint positive operators and that

D(A0
1
2 ) = H2

0 (Ω) and D(A
1
2

D) = H1
0 (Ω).

We introduce the Hilbert space H := D(A0
1
2 ) × L2(Ω) × L2(Ω), equipped with its

natural inner product. Set v = wt and

z(t) =

 w(t)
v(t)
θ(t)

 , z0 =

 w0

v0
θ0

 .

The system (22)-(23) can be rewritten as an abstract semilinear evolution equation
in H of the form

zt = Az + F (z), z(0) = z0 ∈ H,
with the output function

y(t) = Cz(t),

where A is the linear operator defined by

A =

 0 I 0
−A0 0 αAD

0 −αAD −AD − σI


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with domain D(A) = D(A0) × D(A0
1
2 ) × D(AD), and the observation operator

C : D(A) → Y = 0 × 0 × (L2(Ω))N , C = (0, 0,−∇). Further F : H → H is the
nonlinear operator given by

F

 w
v
θ

 =

 0
f
(∫

Ω
|∇w|2dx

)
∆w

0

 .

In Proposition 2.1 of [1], it was shown that A generates a C0 semigroup of contrac-
tions on the Hilbert space H. Proposition 2.7 of [1] also implies that C is admissible
with respect to A. Finally, in Section 3 of [2] the pair (A,C) was proved exactly
observable. If we assume that f : [0,+∞) → R is bounded and locally Lipschitz
continuous, then F is locally Lipschitz on H and satisfies assumption (H). More-
over, F (0) = 0. Using Theorem 4.4 we deduce that the problem (22)–(24) is locally
exactly observable at w0 = θ0 = 0.
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