
POLYNOMIAL INTERNAL AND EXTERNAL STABILITY OF

WELL-POSED LINEAR SYSTEMS

EL MUSTAPHA AIT BENHASSI, SAID BOULITE, LAHCEN MANIAR,
AND ROLAND SCHNAUBELT

Abstract. We introduce polynomial stabilizability and detectability of
well-posed systems in the sense that a feedback produces a polynomial stable
C0–semigroup. Using these concepts, the polynomial stability of the given
C0–semigroup governing the state equation can be characterized via polyno-
mial bounds on the transfer function. We further give sufficient conditions
for polynomial stabilizability and detectability in terms of decompositions
into a polynomial stable and an observable part. Our approach relies on
recent a characterization of polynomial stable C0–semigroups on a Hilbert
space by resolvent estimates.

1. Introduction

Weakly damped or weakly coupled linear wave type equations often have
polynomially decaying classical solutions without being exponentially stable,
see e.g. [1], [2], [3], [4], [7], [14], [15], [16], [17], [22], and the references therein.
In these contributions various methods have been used, partly based on resol-
vent estimates. Recently this spectral theory has been completed for the case
of bounded semigroups T (·) in a Hilbert space with generator A. Here one can

now characterize the ‘polynomial stability’ ‖T (t)(I −A)−1‖ ≤ ct−1/α, t ≥ 1, of
T (·) by the polynomial bound ‖R(iτ, A)‖ ≤ c|τ |α, |τ | ≥ 1, on the resolvent of
A. These results are due to Borichev and Tomilov in [6] and to Batty and Duy-
ckaerts in [5], see also [4], [14] and [16] for earlier contributions. We describe
this theory in the next section. In a polynomial stable system the spectrum of
the generator may approach the imaginary axis as Imλ → ±∞. This already
indicates that this concept is more subtle than exponential stability. For in-
stance, so far robustness results for polynomial stability are restricted to small
regularizing perturbations, see [18].

At least for bounded semigroups in a Hilbert space one has now a solid
background which can be used in other areas such as control theory. In the
context of observability this was already done in [10] (based on [4] at that
time). In this paper we start an investigation of polynomial stabilizability and
detectability.
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Stabilizability is one of the basic concepts and topics of linear systems theory.
Let the state system be governed by a generator A on the state Hilbert space X,
and let Y and U be the observation and the control Hilbert spaces, respectively.
For a moment, we simply consider bounded control and observation operators
and feedbacks. For a bounded control operator B : U −→ X we obtain the
system

x′(t) = Ax(t) +Bu(t), t ≥ 0, x(0) = x0, (1.1)

with the control u ∈ L2
loc(R+, U), the initial state x0 ∈ X and the state x(t) ∈ X

at time t ≥ 0. This system is exponentially stabilizable if one can find a
(bounded) feedback F : X −→ U such that the C0–semigroup TBF (·) solving
the closed–loop system

x′(t) = Ax(t) +BFx(t), t ≥ 0, x(0) = x0, (1.2)

is exponentially stable. Observe that A+BF generates TBF (·).
For the dual concept of exponential detectability, one starts with a generator

A and a bounded observation operator C : X −→ Y . The output of this system
is y = C(T (·)x0. One then looks for a (bounded) feedback H : Y −→ X such
that the C0–semigroup THC(·) generated by A + HC becomes exponentially
stable.

In our paper we allow for unbounded observation operators C defined on
D(A) and control operators B mapping into the larger space X−1 = D(A∗)∗,
where the domains are equipped with the respective graph norm. Here one
has to assume that the output map x0 7→ y and the input map u 7→ x(t)
are continuous. Such systems are called admissible, see the next section for
a precise definition and further information. The monograph [23] investigates
these notions in detail. In this framework one can in particular treat boundary
control and observation of partial differential equations.

In order to use the full system (A,B,C), one also has to assume the bounded-
ness of the input–output map u 7→ y. This leads to the concept of a well-posed
system, which was introduced by G. Weiss and others, see Section 2, the re-
cent survey [24], and e.g. [21], [26], [27]. In well-posed systems, the Laplace
transform of the input–output map gives the transfer function of the system,
which plays an important role in the present paper. For well-posed systems,
it becomes more difficult to determine the generators of the feedback systems,
cf. [27]. However, in our arguments we can avoid to use a precise description
of these operators. For well-posed systems exponential stabilizability and de-
tectability was discussed in many papers, see e.g. [8], [11], [12], [19], [20], [28],
and the references therein.

In this paper we will weaken the exponential stability of the feedback system
in the above concepts to polynomial stability. Here the feedback systems are
described by equations for the resolvents of the generators of given and the
feedback semigroup which are coupled via a perturbation term involving the
feedback, see Definitions 3.1 and 3.1. In the study of the resulting concepts of
polynomial stabilizability and detectability we pursue two main questions, also
treated in the above papers.

We show that a system possesses these properties if it can be decomposed
into a polynomial stable and an observable part, see Theorem 4.6 and 4.7. In
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the exponential case, such results are often called pole-assgnment if the stable
part has a finite dimensional complement. Actually one can derive exponential
stabilizability from much weaker concepts (optimizability or the finite cost con-
dition), see [8] or [28]. So far it is not clear whether such implications hold for
the natural analogues of these concepts to the polynomial setting. Moreover, it
is known that optimizability can be characterized by decompositions as above if
the resolvent set of the generator contains a strip around iR, see [11] or [20]. In
the polynomial setting one here has to fight against the fact that the spectrum
may approach the imaginary axis at infinity. So far we only have partial results
in this context, not treated below.

The main part of our results is devoted to the relationship between polyno-
mial stability of the given semigroup and polynomial estimates on the transfer
function of the system. It is known that A generates an exponentially stable
semigroup if (and only if) the system (A,B,C) is exponential stabilizable and
detectable and its transfer function is bounded on the right halfplane, see [19]
and also [28] for an extension to the concepts of optimizability and estimatibil-
ity. (Note that the ‘only if’ implication is easily shown with 0 feedbacks.) The
boundedness of the transfer function is called external stability. In Theorem 4.3
we extend these results to our setting, thus requiring polynomial stabilizability
and detectability and that the transfer function grows at most polynomially
as | Imλ| → ∞. (The latter condition may be called polynomial external sta-
bility.) If the involved semigroups are bounded, we then obtain polynomial
stability of the order one expects, i.e., the sum of the orders in the assumption.
The proofs are based on various estimates and manipulations of formulas con-
necting resolvents, the transfer functions and their variants. We further use the
characterization of polynomial stability from [5] and [6].

If the given semigroup is not known to be bounded, then the available theory
on polynomial stability does not give the above indicated convergence order.
However, in applications one can often check the boundedness of a semigroup
by the dissipativity of its generator, possibly for an equivalent norm. Similarly
one can characterize well-posed systems with energy dissipation (so called scat-
tering passive systems), see e.g. [21]. Besides the given semigroup, here also
the transfer function is contractive which leads to an improvement of our main
result for scattering passive systems, see Corollary 4.4. In general, not much is
known on the preservation of boundedness under perturbations. In Theorem 5
of the recent paper [18] one finds a result which requires smallness of the per-
turbations as maps into spaces betweeen D(A) and X. In Proposition 4.5 we
show the boundedness in the framework of the present paper. Our approach
is based on a characterization of bounded semigroups in terms of L2–norms of
the resolvents of A and A∗ due to [9], see Proposition 2.4.

In the next section we discuss the background on polynomial stability and
well-posed systems. In Section 3 we introduce polynomial stabilizability and
detectability and establish several basic estimates. The last section contains
our main results on external polynomial stability and on sufficient criteria for
polynomial stabilizability and detectability.
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2. Polynomial stability and well-posed systems

We first discuss polynomially stable semigroups. Throughout T (·) denotes
a C0–semigroup on a Banach space X with generator A. There are numbers
$ ∈ R and M ≥ 1 such that ‖T (t)‖ ≤ Me$t for all t ≥ 0. The infimum
of these numbers $ is denoted by ω0(A). The semigroup is called bounded if
‖T (t)‖ ≤M for all t ≥ 0.

We fix some ω > ω0(A). It is well known that then the fractional powers
(ω − A)β exist for β ∈ R. They are bounded operators for β ≤ 0 and closed
ones for β > 0. The domain Xβ of (ω − A)β for β > 0 is endowed with the

norm given by ‖x‖β = ‖(ω − A)βx‖. The fractional powers satisfy the power

law and coincide with usual powers for β ∈ Z. In particular, (ω − A)−β is the
inverse of (ω −A)β for all β ∈ R. We next recall a definition from [4].

Definition 2.1. A C0-semigroup T (·) is called polynomially stable (of order
α > 0) if there is a constant α > 0 such that

‖T (t)(ω −A)−α‖ ≤ ct−1 for all t ≥ 1.

(Here and below, we write c > 0 for a generic constant.) Note that a larger
order α means a weaker convergence property. Due to Proposition 3.1 of [4], a
bounded C0–semigroup T (·) is polynomially stable of order α > 0 if and only if

‖T (t)(ω −A)−αγ‖ ≤ c(γ) t−γ , t ≥ 1, (2.1)

for all/some γ > 0. (There is also a partial result for general C0–semigroups.)
Combined with (2.1), Proposition 3 of [5] yields the following necessary con-

dition for polynomial stability of bounded C0–semigroups. Here we set

C± = {λ ∈ C
∣∣ Reλ ≷ 0} and Cr = r + C+ for r ∈ R.

Proposition 2.2. Let T (·) be a bounded C0-semigroup which is polynomially
stable of order α > 0. Then the spectrum σ(A) of A belongs to C− and its
resolvent is bounded by

‖R(λ,A)‖ ≤ c (1 + |λ|)α for all λ ∈ C+. (2.2)

Due to Lemma 3.2 in [13], the estimate (2.2) is true if and only if

‖R(λ,A)(ω −A)−α‖ ≤ c for all λ ∈ C+. (2.3)

If one drops the boundedness assumption, the above result still holds with an
epsilon loss in the exponent in the right hand side of (2.2) by Proposition 3.3
of [4] and (2.3). We further note that condition (2.2) implies the inclusion

{λ ∈ σ(A)
∣∣ Reλ ≥ −δ} ⊂ {λ ∈ C−

∣∣ | Imλ| ≥ c(−Reλ)−1/α}

for some c, δ > 0, see Proposition 3.7 of [4].
The next result from [6] provides the important converse of the above propo-

sition for bounded semigroups on a Hilbert space, se Theorem 2.4 of [6].

Theorem 2.3. Let T (·) be a bounded C0-semigroup on a Hilbert space X such
that σ(A) ⊂ C− and (2.2) holds for all λ ∈ iR. Then T (·) is polynomially stable
of order α > 0.
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For general Banach spaces X, in Theorem 5 in [5] this result was shown up to
a logarithmic factor in the estimate in semigroup, see also [4], [14] and [16]. The
paper [6] gives an example where this logarithmic correction actually occurs.
Without assuming its boundedness, the semigroup is still polynomially stable if
a holomorphic extension of R(λ,A)(ω −A)−α satisfies (2.3), but here one only
obtains the stability order 2α+ 1 + ε for any ε > 0, see Proposition 3.4 of [4].

The proof of Theorem 2.3 is based on the following characterization of the
boundedness of C0–semigroups on Hilbert spaces, see Theorem 2 in [9] and also
Lemma 2.1 in [6].

Proposition 2.4. Let A generate the C0–semigroup T (·) on the Hilbert space
X. The semigroup is bounded if and only if C+ ⊂ ρ(A) and

sup
r>0

r

∫
R

(
‖R(r + iτ, A)x‖2 + ‖R(r + iτ, A∗)x‖2

)
dτ ≤ c ‖x‖2

for each x ∈ X.

We now turn our attention to the concept of well-posed systems. From now
on, X, U and Y are always Hilbert spaces, A generates the C0-semigroup T (·)
on X and ω > ω0(A). Let X−1 be the completion of X with respect the
norm given by ‖x‖−1 = ‖R(ω,A)x‖. We sometimes write XA

−1 instead of X−1

to stress that this extrapolation space depends on A. The operator A has a
unique extension A−1 ∈ B(X,X−1) which generates a C0–semigroup given by
the continuous extension T−1(t) ∈ B(X−1) of T (t), t ≥ 0. We often omit the
subscript −1 here. One can define such a space for each linear operator with
non–empty resolvent set. Recall that we have set X1 = D(A).

A bounded linear (obervation) operator B : U −→ X−1 is called admissible
for A (or the system (A,B,−) is called admissible) if the integral

Φtu :=

∫ t

0
T (t− s)u(s) ds

belongs to X for all u ∈ L2(0, t;U) and some t ≥ 0. (The integral is initially
defined in X−1.) By Proposition 1.4.2 in [23], this property then holds for all
t ≥ 0 and Φt ∈ B(L2(0, t;U), X). Moreover, these operators are exponentially
bounded, see Proposition 4.4.5 in [23].

A bounded linear (control) operator C : X1 −→ Y is called admissible for A
(or the system (A,−, C) is called admissible) if the map

Ψtx := CT (·)x, x ∈ X1,

has a bounded extension in B(X,L2(0, t;Y )) for some t > 0. Propositions 4.2.3
and 4.3.3 in [23] show that this fact then holds for all t ≥ 0 and that the
extensions are exponentially bounded. We still denote the extension by Ψt.
One can extend an admissible observation operator C to the map CΛ given by

CΛx = lim
λ→∞

CλR(λ,A)x

with domain D(CΛ) = {x ∈ X
∣∣ this limit exists in Y }. For each x ∈ X we

have T (s)x ∈ D(CΛ) for a.e. s ≥ 0 and Ψtx = CΛT (·)x a.e. on [0, t] for all t > 0
by e.g. (5.6) and Proposition 5.3 in [27].
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Theorem 4.4.3 of [23] shows that an operator B ∈ B(U,X−1) is admissible
for A if and only if its adjoint B∗ ∈ B(D(A∗), U) is admissible for A∗. Here we
recall that X−1 is the dual space of D(A∗), if considered as a Banach space, see
e.g. Proposition 2.10.2 in [23].

Let system (A,B,C) be a system with a generator A and admissible control
and observation operators B and C. One says that (A,B,C) is well-posed if
there are bounded linear operators Ft : L2(0, t;U) −→ L2(0, t;Y ) such that

Fτ+tu =

{
Fτu1 on [0, τ ],

Ftu2 + ΨtΦτu1 on [τ, τ + t]

for all t, τ ≥ 0 and u ∈ L2(0, τ + t;U), where u = u1 on (0, τ) and u = u2

on (τ, τ + t), see [26]. Also these (input-output) operators are exponentially
bounded by Proposition 4.1 of [26].

One can introduce versions of the maps Ψt and Ft on the time interval R+

using L2
loc spaces. We denote these extensions by Ψ and F respectively. For

x0 ∈ X and u ∈ L2
loc(R+, U) the output of the well-posed system (A,B,C) is

then given by y = Ψx0 + Fu. In [26] it was shown that the Laplace transform
ŷ of y satisfies

ŷ(λ) = C(λ−A)−1x0 +G(λ)û(λ)

for all λ ∈ Cω, where G : Cω → B(U, Y ) is a bounded analytic function. It
satisfies G′(λ) = −CR(λ,A)2B and it is thus determined by A, B and C up
to an additive constant. (See e.g. Theorem 2.7 in [21].) We call G the transfer
function of (A,B,C).

Set Z = D(A) + R(ω,A−1)BU and endow it with the norm ‖z‖Z given by
the infimum of all ‖x‖1 +‖R(ω,A−1)Bv‖ with z = x+R(ω,A−1)Bv, x ∈ D(A)
and v ∈ U . Theorem 3.4 and Corollary 3.5 of [21] then yield an extension
C ∈ L(Z,U) of C such that the transfer function is represented as

G(λ) = CR(λ,A−1)B +D, λ ∈ Cω, (2.4)

for a feedthrough operator D ∈ L(U, Y ). Hence, the operators CR(λ,A−1)B are
uniformly bounded on Cω.

This representation of G is not unique in general since D(A) need not to
be dense in Z. Under the additional assumption of regularity, one can replace
here C by CΛ (possibly for a different D), see Theorem 5.8 in [26] and also
Theorem 4.6 in [21] for refinements. We will not use regularity below.

3. Polynomial stabilizability and detectability

In this section we introduce our new concepts and establish their basic prop-
erties. We start with the main definitions.

Definition 3.1. The admissible system (A,B,−) is polynomially stabilizable
(of order α > 0) if there exists a generator ABF of a polynomially stable C0-
semigroup TBF (·) on X (of order α > 0) and an admissible observation operator
F ∈ L(D(ABF ), U) of ABF such that

R(λ,ABF ) = R(λ,A) +R(λ,A)BFR(λ,ABF ) (3.1)

for all Reλ > max{ω0(A), ω0(ABF )}.
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Definition 3.2. The admissible system (A,−, C) is polynomially detectable
(of order α > 0) if there exists a generator AHC of a polynomially stable C0-
semigroup THC(·) (of order α > 0) and an admissible control operator H ∈
L(Y,XAHC

−1 ) of AHC such that

R(λ,AHC) = R(λ,A) +R(λ, (AHC)−1)HCR(λ,A) (3.2)

for all Reλ > max{ω0(A), ω0(AHC)}.

Here F , resp. H, plays the role of a feedback. These definitions are inspired
the Definition 3.2 in [11] for the exponentially stable case. For this case, in
e.g. [28] concepts of exponential stabilizability or detectability were used which
are (at least formally) a bit stronger than those in [11], cf. Remark 3.3(b). In
our context, one could also include the boundedness of the feedback semigroup
TBF (·) or THC(·) in the above definitions since the theory of polynomial sta-
bility works much better in the bounded case, as seen in the previous section.
Instead, we make additional boundedness assumptions in some of our results.
In applications one can check the boundedness or TBF (·) or THC(·) by showing
that the generators ABF or AHC are dissipative, respectively, where one may
use their representation given in the next remark.

Remark 3.3. (a) Let (A,B,−), (ABF ,−, F ), (A,−, C) and (AHC , H,−) be
admissible. Proposition 4.11 in [12] (with β = γ = 1 and b = c = 0) then shows
that the equations (3.1) and (3.2) are equivalent to

TBF (t)x = T (t)x+

∫ t

0
T (t− s)BFΛTBF (s)x ds = T (t)x+ ΦtFΛTBF (·)x, (3.3)

THC(t)x = T (t)x+

∫ t

0
THC(t− s)HCΛT (s)x ds (3.4)

for all t ≥ 0 and x ∈ X, respectively.
(b) Applying λ − A−1 to (3.1), we see that ABF is restriction of the part

(A−1 + BF )|X of A−1 + BF in X. Similarly, multiplication of (3.2) by λ −
AHC,−1 leads to A ⊂ (AHC,−1 −HC)|X. See Proposition 6.6 in [27]. We note
that in [28] exponential stabilizability and detectability was in defined in such
way that ABF = (A−1 +BFΛ)|X and AHC = (A−1 + CHΛ)|X.

(c) The system (A,B,−) is polynomially stabilizable of order α > 0 (with
feedback F ) if and only if (A∗,−, B∗) is polynomially detectable of order α > 0
(with feedback H = F ∗). Moreover, the semigroups of the feedback systems
are dual to each other.

(d) Let L be a closed operator with ∅ 6= Λ ⊂ ρ(L) and Ω ⊃ Λ be connected. If
R(·, L) has a holomorphic extension Rλ to Ω, then Ω ⊂ ρ(L) and Rλ = R(λ, L)
for every λ ∈ Ω.

Proof of (d). We have I = (λ−L)R(λ, L) and x = R(λ, L)(λ−L)x for x ∈ D(L)
and λ ∈ Λ. The uniqueness of holomorphic extensions yields I = (λ− L−1)Rλ
and x = Rλ(λ− L)x for λ ∈ Ω and x ∈ D(L), and thus the assertion. �

In a sequence of lemmas we relate the growth properties of several operators
arising in (3.1) or (3.2). We use the spectral bound s(L) = sup{λ

∣∣λ ∈ σ(L)}
for a closed operator L.
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Lemma 3.4. Let C ∈ B(X1, Y ) and B ∈ B(U,X−1) be admissible observation
and control operators for A, respectively and let

‖R(r + iτ, A)‖ ≤ c |τ |α (3.5)

for some r > s(A) and α > 0 and all |τ | ≥ 1. We then obtain the estimates

‖CR(r + iτ, A)‖ ≤ c |τ |α and ‖R(r + iτ, A)B‖ ≤ c |τ |α

for all |τ | ≥ 1. Moreover, if (A,B,C) is also well-posed, we have

‖CR(r + iτ, A)B‖ ≤ c |τ |α

for all |τ | ≥ 1. Here the constants are uniform for r in bounded intervals.

Proof. Let λ = r + iτ and µ = ω + iτ for τ ∈ R and some ω > max{0, ω0(A)}.
The resolvent equation yields

CR(λ,A) = CR(µ,A) + (ω − r)CR(µ,A)R(λ,A). (3.6)

Let x ∈ D(A). Since the resolvent is the Laplace transform of T (·), from the
admissibility of C and exponential bound of T (·) we deduce

‖CR(µ,A)x‖2 ≤
[ ∫ ∞

0
e−

ω
2
te−

ω
2
t ‖CT (t)x‖ dt

]2
≤ c
∫ ∞

0
e−ωt ‖CT (t)x‖2 dt (3.7)

≤ c
∞∑
n=0

e−ωn ‖CT (·)T (n)x‖2L2(0,1;Y ) ≤ c
∞∑
n=0

e−ωn‖T (n)x‖2 ≤ c ‖x‖2.

By density, the formulas (3.5), (3.6) and (3.7) imply

‖CR(λ,A)‖ ≤ c+ c |τ |α ≤ c |τ |α

for |τ | ≥ 1. The second asserted inequality then follows by duality because B∗

is an admissible observation operator for A∗ and ‖R(λ,A)B‖ = ‖B∗R(λ,A∗)‖.
For the final claim, we start from the equation

CR(λ,A)B = CR(µ,A)B + (ω − r)CR(µ,A)R(λ,A)B

for λ = r + iτ , µ = ω + iτ , τ ∈ R and some ω > max{0, ω0(A)}. As noted
in the previous section, CR(µ,A)B : U → Y is uniformly bounded. The third
assertion now is a consequence of the two previous ones. �

In the next lemma we deduce resolvent estimates for A from those for ABF .

Lemma 3.5. Let B ∈ L(U,X−1) be an admissible control operator for A.
Assume that there exist a generator ABF of a C0-semigroup TBF (·) on X and
an admissible observation operator F ∈ L(D(ABF ), U) of ABF such that (3.1)
holds. Assume that

‖R(λ,ABF )‖ ≤ c (1 + |λ|α)

for r < Reλ ≤ r + δ and some r ≥ s(ABF ), δ > 0, α ≥ 0. Suppose that
R(λ,A)B has a holomorphic extension RBλ to Cr satisfying

‖RBλ ‖ ≤ c (1 + |λ|β)

for r < Reλ ≤ r + δ and some β ≥ 0. Then R(·, A) can be extended to a
neighborhood of Cr, and we obtain

‖R(λ,A)‖ ≤ c (1 + |λ|α+β) (3.8)
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for r ≤ Reλ ≤ r + δ. Moreover, (3.1) holds on Cr. If r = 0, then T (·) is
polynomially stable with order 2(α+ β) + 1 + η for any η > 0.

Proof. By the assumption, (3.1) and Remark 3.3, the resolvent R(·, A) has the
extension

R(λ,A) = R(λ,ABF )−RBλ FR(λ,ABF )

to λ ∈ Cr. Lemma 3.4 and the assumption then imply that

‖R(λ,A)‖ ≤ c (1 + |λ|α+β)

for r < Reλ ≤ r+δ. A standard power series argument allows us to extend this
inequality to λ ∈ Cr and to deduce that a neighborhood of Cr belongs to ρ(A).
The uniqueness of the holomorphic extension now yields that RBλ = R(λ,A)B

on Cr and that (3.1) holds on Cr. The last assertion then follows from estimate
(3.8) and Propositions 3.4 and 3.6 in [4]. �

The next result is proved as the above lemma.

Lemma 3.6. Let the operators A, C and H satisfy the assumptions of Defini-
tion 3.2 except for the polynomial stability of THC(·). Assume that

‖R(λ,AHC)‖ ≤ c (1 + |λ|α)

for r < Reλ ≤ r + δ and some r ≥ s(AHC), δ > 0 and α ≥ 0. Let CR(λ,A)
have a holomorphic extension RCλ to Cr. Suppose that

‖RCλ ‖ ≤ c (1 + |λ|β)

for r < Reλ ≤ r + δ and some β > 0. Then ρ(A) contains a neighborhood of
Cr, the equality (3.2) holds on Cr, and we obtain

‖R(λ,A)‖ ≤ c (1 + |λ|α+β)

for r ≤ Reλ ≤ r + δ. If r = 0, then T (·) is polynomially stable with order
2(α+ β) + 1 + η for any η > 0.

To apply Proposition 2.4, we will need a variant of the above estimates.

Lemma 3.7. Let A generate a bounded C0–semigroup and C be an admissible
observation operator for A. Then

sup
r>0

r

∫
R
‖CR(r + iτ, A)x‖2 dτ ≤ c ‖x‖2

for all r > 0 and x ∈ X.

Proof. Take r > 0 and x ∈ D(A). Since A − r generates the exponentially
stable semigroup (e−rtT (t))t≥0, Plancherel’s theorem and the assumption yield

‖CR(r + i·, A)x‖2L2(R+,Y ) = ‖Ce−r·T (·)x‖2L2(R+,Y )

=
∑
n≥0

∫ 1

0
e−2rne−2rs‖CT (s)T (n)x‖2 ds.

≤ c
∑
n≥0

e−2rn‖T (n)x‖2 ≤ c ‖x‖2

1− e−2r
≤ c

r
‖x‖2.

The assertion follows by density. �
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4. Main results

We show that external polynomial stability in the frequency domain, i.e., a
polynomial estimate on the transfer function, imply polynomial stability of the
state system. We begin with a result involving only the control operator B.

Proposition 4.1. Let (A,B,−) be admissible and polynomially stabilizable of
order α > 0. Assume that R(λ,A)B has a holomorphic extension to C+ which
is bounded by c (1 + |λ|β) for 0 < Reλ ≤ δ and some β ≥ 0, δ > 0. The
following assertions hold.

a) The resolvent R(·, A) can be extended to a neighborhood of C+ and

‖R(λ,A)‖ ≤ cε (1 + |λ|α+β+ε) (4.1)

for 0 ≤ Reλ ≤ δ and every ε > 0. If TBF (·) is bounded, we can choose ε = 0.
b) The semigroup T (·) is polynomially stable. If T (·) is also bounded, then it

is polynomially stable of order α+ β + ε. If in addition TBF (·) is bounded, we
can take ε = 0.

Proof. a) Propositions 3.3 and 3.6 in [4] imply that σ(ABF ) ⊂ C− and

‖R(λ,ABF )‖ ≤ cε(1 + |λ|α+ε)

holds for Reλ ≥ 0 and every ε > 0. Using Lemma 3.5, we infer σ(A) ⊂ C− and
(4.1). If TBF (·) is bounded, we can use Proposition 2.2 instead of the results
from [4] and obtain the above estimates with ε = 0.

b) Proposition 3.4 of [4] and (4.1) imply the polynomial stability of T (·).
If also T (·) is bounded, it is polynomially stable of order α + β + ε due to
Theorem 2.3 and (4.1). �

By duality, the above proposition implies the next one for the observation
system (A,−, C).

Proposition 4.2. Let (A,−, C) be admissible and polynomially detectable of
order α > 0. Assume that CR(·, A) has a holomorphic extension to C+ which
is bounded by c (1 + |λ|β) for 0 < Reλ ≤ δ and some β ≥ 0. The following
assertions hold.

a) The resolvent R(·, A) can be extended to a neighborhood of C+ and estimate
(4.1) holds for every ε > 0. If THC(·) is bounded, we can take ε = 0.

b) The semigroup T (·) is polynomially stable. If T (·) is also bounded, then it
is polynomially stable of order α+ β + ε. If in addition THC(·) is bounded, we
can take ε = 0.

We now can state our main result which uses the full system (A,B,C) and
the transfer function G.

Theorem 4.3. Let (A,B,C) be a well-posed system which is polynomially sta-
bilizable of order α > 0 and polynomially detectable of order β > 0. Assume
that G has an holomorphic extension to C+ which is bounded by c (1 + |λ|γ) for
0 < Reλ ≤ δ and some γ ≥ 0 and δ > 0. The following assertions hold.

a) The extension C of C is an admissible observation operator for ABF ,
σ(A) ⊂ C−, and

‖R(λ,A)‖ ≤ cε(1 + |λ|α+β+γ+ε)
10



for 0 < Reλ ≤ δ and all ε > 0. If TBF (·) is bounded, we can take ε = 0.
b) The semigroup T (·) is polynomially stable. If T (·) is bounded, then it is

polynomially stable of order α+β+ γ+ ε. If in addition TBF (·) is bounded, we
can take ε = 0.

Proof. a) Due to (3.1) and (2.4), we have D(ABF ) ⊂ Z and

CR(λ,ABF ) = CR(λ,A) + CR(λ,A)BFR(λ,ABF ),

CR(λ,ABF ) = CR(λ,A) +G(λ)FR(λ,ABF )−DFR(λ,ABF ) (4.2)

for Reλ > max{ω0(A), ω0(ABF )}. Taking the inverse Laplace transform of this
equation, we define

ΨBFx := L−1(CR(·, ABF )x) = Ψx+ FFTBF (·)x−DFTBF (·)x (4.3)

for x ∈ D(ABF ). By assumption, ΨBF : X −→ L2
loc(R+, Y ) is continuous. For

τ ≥ 0 and x ∈ D(ABF ), the properties of a wellposed system and (3.3) yield

ΨBFx(·+ τ) = ΨT (τ)x+ FFTBF (·)TBF (τ)x+ ΨΦτFTBF (·)x
−DFTBF (·)TBF (τ)x

= ΨTBF (τ)x+ FFTBF (·)TBF (τ)x−DFTBF (·)TBF (τ)x

= ΨBFTBF (τ)x.

As a result, (ΨBF , TBF ) is an observation system in the sense of [25] or Sec-
tion 4.3 in [23]. The proof of Theorem 3.3 of [25] and (4.3) thus show that

ΨBFx = C̃TBF (·)x for x ∈ D(ABF ) and the admissible control operator

C̃ ∈ L(D(ABF ), Y ) for ABF given by

C̃x = Ψ̂BF (λ)(λ−ABF )x = CR(λ,ABF )(λ−ABF )x = Cx for x ∈ D(ABF );

i.e., ΨBFx = CTBF (·)x for x ∈ D(ABF ). Proposition 3.4 of [4] and Lemma 3.4
then yield

‖CR(λ,ABF )‖ ≤ c (1 + |λ|α+ε) and ‖FR(λ,ABF )‖ ≤ c (1 + |λ|α+ε)

for Reλ ≥ 0 and any ε > 0. If TBF (·) is bounded, we can use Proposition 2.2
instead of the results in [4] and derive these estimates with ε = 0. By means
of (4.2) and the bound on G, we can now extend CR(·, A) (using the same
symbol) to C+ and obtain

‖CR(λ,A)‖ ≤ c (1 + |λ|α+γ+ε)

for 0 < Reλ ≤ δ. Proposition 4.2 then gives

‖R(λ,A)‖ ≤ cε(1 + |λ|α+β+γ+ε)

for 0 < Reλ ≤ δ and all ε > 0, where we can take ε = 0 if TBF (·) is bounded.
b) Proposition 3.4 of [4] and part a) imply the polynomial stability of T (·).

If T (·) is bounded, it is polynomially stable of order α + β + γ + ε due to
Theorem 2.3 and part a), where we can take ε = 0 if TBF (·) is bounded. �
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In the above results one obtains the expected stability order of T (·) only if
this semigroup is bounded. This property automatically holds in the important
case of a scattering passive system (A,B,C); i.e., if we have

‖y‖2L2(0,t;Y ) + ‖x(t)‖2 ≤ ‖u‖2L2(0,t;U) + ‖x0‖2

for all u ∈ L2(0, t;U), x0 ∈ X and t ≥ 0, where x(t) = T (t)x0 + Φtu is the
state and y = Ψx0 + Fu is the output of (A,B,C). This class of systems has
been characterized and studied in e.g. [21]. In this case T (t) and G(λ) are
contractions for t ≥ 0 and λ ∈ C+ by Proposition 7.2 and Theorem 7.4 of [21].

Corollary 4.4. Let (A,B,C) be a scattering passive system which is polyno-
mially stabilizable of order α > 0 and polynomially detectable of order β > 0.
Then T (·) is polynomially stable of order α+β+ ε for each ε > 0. We can take
ε = 0 if TBF (·) is bounded.

Proposition 2.4 yields another suffcient condition for the boundedness of T (·)
in the framework of the first two propositions of this section.

Proposition 4.5. Assume that the assumptions of both Propositions 4.1 and
4.2 hold for some α > 0 and for β = 0. Let TBF (·) and THC(·) be bounded.
Then T (·) is bounded, and hence polynomially stable of order α > 0.

Proof. Definitions 3.1 and 3.2 yield

R(r + iτ, A)x = R(r + iτ, ABF )x−R(r + iτ, A)BFR(r + iτ, ABF )x, (4.4)

R(r+iτ, A∗)x = R(r + iτ, A∗HC)x−R(r + iτ, A∗)C∗H∗R(r+iτ, A∗HC)x (4.5)

for all r > max{ω0(A), 0}, τ ∈ R and x ∈ X. We can extend these equations to
r > 0 using the bounded extensions of R(λ,A)B and R(λ,A∗)C∗ = (CR(λ,A))∗

which are provided by our assumption. Since TBF (·) and THC(·) are bounded,
Lemma 3.7 implies that the terms on the right hand sides belong to L2(R, X) as

functions in τ , with norms bounded by cr−1/2‖x‖. Employing Proposition 2.4,
we then deduce the boundedness of T (·) from (4.4) and (4.5). The final assertion
now follows from Proposition 4.1. �

We finally present sufficient conditions for polynomial stabilizability and for
polynomial detectability by means of a decomposition in to a polynomial stable
and an observable part. An admissible system (A,B,−) is called null control-
lable in finite time if for each initial value x0 ∈ X there is a time τ > 0 and a
control u ∈ L2(0, τ ;U) such that x(τ) = T (τ)x0 + Φτu = 0. We further note
that one can extend an operator S to X−1 if it commutes with T (t) for all t ≥ 0
since then SR(ω,A) = R(ω,A)S.

Theorem 4.6. Let (A,B,−) be admissible and let P 2 = P ∈ B(X) satisfy
T (t)P = T (t)P for all t ≥ 0. Set Xs = PX, Xu = (I − P )X, Ts(t) = T (t)P ,
Au = (I − P )A and Bu = (I − P )B. Assume that

(i) the C0–semigroup Ts(·) is polynomially stable of order α > 0 on Xs and
(ii) the system (Au, Bu,−) is null controllable in finite time on Xu.

Then the system (A,B,−) is polynomially stabililizable of order α > 0.

12



Proof. First observe that Tu(·) is the C0–semigroup on Xu generated by Au and
that Bu is admissible for Au. Due to (ii), for each x0 ∈ Xu there is a time τ > 0
and a control u ∈ L2(0, τ ;U) such that xu(τ) = Tu(τ)x0 + (I − P )Φτu = 0.
Extending xu and u by 0 to (τ,∞), we see that the system (Au, Bu,−) is
optimizable in the sense of Definition 3.1 in [28]. Propositions 3.3 and 3.4
of [28] (or Theorem 2.2 of [8]) then give an operator Fu which satisfies the
conditions of Definition 3.1 where TBuFu(·) is even exponentially stable, i.e.,
ω0(ABuFu) < 0. We thus have

R(λ,ABuFu) = R(λ,Au) +R(λ,Au)BuFuR(λ,ABuFu) (4.6)

for all Reλ > max(ω0(A), ω0(ABuFu)). We now set

F =

(
0

Fu

)
and ABF :=

(
As 0
0 ABuFu

)
.

It is then straightforward to check that these operators fulfill the conditions of
Definition3.1. �

The next result follows by duality from Theorem 4.6.

Theorem 4.7. Let (A,−, C) be admissible and let P 2 = P ∈ B(X) satisfy
T (t)P = T (t)P for all t ≥ 0. Set Xs = PX, Xu = (I − P )X, Ts(t) = T (t)P ,
Au = (I − P )A and Cu = C(I − P ). Assume that

(i) the C0–semigroup Ts(·) is polynomially stable of order α > 0 on Xs and
(ii) the system (A∗u, C

∗
u,−) is null controllable in finite time on Xu.

Then the system (A,−, C) is polynomially detectable of order α > 0.

Remark 4.8. The results of Theorem 4.6 and 4.7 also hold if we replace the
condition (ii) by (ii)′: The system (Au, Bu,−) (resp., (A∗u, C

∗
u,−)) is polyno-

mially stabilizable of order α.
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