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Abstract. We investigate polynomial decay of classical solutions of linear evolution
equations. For bounded C0–semigroups on a Banach space this property is closely re-
lated to polynomial growth estimates of the resolvent of the generator. For systems of
commuting normal operators polynomial decay is characterized in terms of the location
of the generator spectrum. The results are applied to systems of coupled wave-type
equations.

1. Introduction

The asymptotic theory of operator semigroups provides powerful tools for the investi-

gation of the (exponential) convergence to 0 of mild and classical solutions of the linear

Cauchy problem

(1.1) u′(t) + Au(t) = 0, t ≥ 0, u(0) = x,

where −A generates the strongly continuous operator semigroup (T (t))t≥0 on a Banach

space X. In Section 2 we briefly review these results in order to provide the background

for our paper.

However, weakly damped systems of linear wave equations can exhibit a type of be-

haviour not satisfactorily covered by semigroup theory so far: Classical solutions of (1.1)

may converge to 0 polynomially, but not exponentially. Formulated in the framework of

the evolution equation (1.1), certain systems lead to decay estimates of the form

(1.2) ‖T (t)x‖ ≤ Ct−β‖Aαx‖, x ∈ D(Aα), t > 0,

for some constants α, β > 0. Such results were obtained in the recent papers [1], [2], [10],

[15]; see also the references therein. These authors used energy type estimates which are

more or less closely related to the specific problem posed on a Hilbert space. Observe

that the estimate (1.2) with α = 0 already implies exponential decay of the semigroup in

operator norm. So we can exclude this case from our analysis.

An estimate like (1.2) typically holds if the spectrum of −A is contained in open left

half plane, but approaches the imaginary axis at ±i∞, see Section 5. One may further

expect that the rate of approach of the spectrum is related to the constants α and β.

We recall that this situation cannot occur if the semigroup is norm continuous at some

t0 > 0 or consists of positive operators on a Banach lattice, see e.g. Theorems II.4.18 and

VI.1.10 in [7].
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In Section 3 we first study general bounded C0–semigroups on a Banach space X. Here

we (almost) characterize the decay estimate (1.2) by an analogous growth property of the

resolvent which in turn implies a geometric condition for the spectrum of −A near iR.

This result relies in particular on a complex inversion formula of the Laplace transform

applied to powers of the resolvent of −A. Unfortunately, we have to pay a price for the

generality of our setting by loosing an arbitrarily small ε > 0 in the decay exponents.

Further, for more specific situations one may hope for pure spectral criteria which are

of course much easier to verify in applications. In Theorem 4.5 we in fact prove a sharp

spectral criterion for systems of commuting normal operators on a Hilbert space X.7 This

theorem follows from a corresponding characterization of polynomial decay for matrix

multiplication semigroups on Lp((Ω, µ),Cn), because of the spectral theorem. The matrix

multiplier result is proved via induction on the size n of the matrices, which requires

a detailed spectral analysis. In the last section we apply Theorem 4.5 to coupled wave

equations.

2. Stability concepts for operator semigroups

In this section we fix the notation and collect fundamental stability concepts and results

for C0–semigroups, in order to provide the background for our investigations. The proofs

can be found in the monographs [3], [7], [11].

Let X be a Banach space. We write G ∈ G(X,M,w) if the linear operator G with

domain D(G) generates a strongly continuous semigroup (T (t))t≥0 satisfying ‖T (t)‖ ≤
Mewt for t ≥ 0. The exponential growth bound ω0(G) is the infimum of such constants

w. The resolvent operator of G is denoted by R(λ,G) = (λ−G)−1 for λ contained in the

resolvent set ρ(G), σ(G) = C \ ρ(G) is the spectrum of G, and s(G) = sup{Reλ : λ ∈
σ(G)} is the spectral bound of G.

For −A ∈ G(X,M,w), we define the fractional powers (d + A)α for α > 0 and a fixed

number d > w by the formula

(d+ A)−αx =
1

2πi

∫
Γ

(−λ)−α(λ+ d+ A)−1x dλ

where Γ is any piecewise smooth path in the set {λ ∈ C : Reλ > w − d, λ /∈ [0,∞)}
running from ∞e−iφ to ∞eiφ for some 0 < φ < π/2, cf. [7, Section II.5], [12, Section 2.7].

We further set (d + A)0 = I. The operator (d + A)−α is injective and bounded, hence it

has a closed inverse denoted by (d+A)α. The domain Xα = D((d+A)α) is independent

of the choice of d > w. We endow Xα with the graph norm of (d + A)α. If w ∈ ρ(A) we

can take d = w in these definitions by deforming Γ appropriately.

For α ≥ 0 the fractional uniform exponential growth bound of the semigroup T (·)
generated by −A is defined by

ωα(−A) = inf
{
a ∈ R : ∃M ≥ 1 such that

∥∥T (t)(d+ A)−α
∥∥ ≤Meat, t ≥ 0

}
.

It is clear that

ωβ(−A) ≤ ωα(−A) ≤ ω0(−A) for 0 ≤ α ≤ β,

where strict inequality is possible, see [16, Section 4]. Thus, if ωα(−A) < 0, then all orbits

T (·)x starting from x ∈ Xα converge to zero with an exponential speed. In particular, if
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ω1(−A) < 0, then all orbits belonging to C1([0,+∞), X) decay exponentially. We point

out that this may happen even if there are unbounded orbits, cf. [11, Example 1.2.4].

One calls the semigroup uniformly exponentially stable if ω0(−A) < 0. The semi-

group property implies that uniform exponential stability is equivalent to the fact that

limt→∞ ‖T (t)‖ = 0. However, for our later investigations it is important to stress that

the function t 7→ ‖T (t)(d+ A)−α‖ does not satisfy the semigroup law anymore. Indeed,

it Section 5 we treat examples where limt→∞ ‖T (t)(d+ A)−α‖ = 0, but ωα(−A) = 0.

For the study of these quantities one further introduces the abscissa of growth order α

of the resolvent

sα(−A) = inf

{
ρ ≥ s(−A) : sup

Reλ>ρ

‖(λ+ A)−1‖
1 + | Imλ|α

<∞
}

for α ≥ 0. To simplify our notation, we introduce the symbol Ca to denote the open

halfplane {λ ∈ C : Reλ > a} for a ∈ R, C+ := C0, and C− = {λ ∈ C : Reλ < 0}. A

result of Latushkin and Shvidkoy, [9, Lemma 3.2], says that

sα(−A) = inf
{
ρ ≥ s(−A) : sup

λ∈Cρ

∥∥(λ+ A)−1(d+ A)−α
∥∥ <∞}.

The spectral bounds further satisfy the inequalities

s(−A) ≤ sβ(−A) ≤ sα(−A) ≤ s0(A) for 0 ≤ α ≤ β,

where strict inequalities may occur even in Hilbert spaces X, see e.g. [11, Example 1.2.4].

Every semigroup on a Banach space X satisfies

sα(−A) ≤ ωα(−A).

Again, in general strict inequality is possible, see [16, Section 4]. Gearhart’s theorem (see

[11, Theorem 2.2.4]) implies that if X is a Hilbert space, then

s0(−A) = ω0(−A).

Generalizing several previous results, Weis and Wrobel established in [16] the inequality

ωα+1(−A) ≤ sα(−A)

for α ≥ 0 and an arbitrary Banach space X. One can improve this inequality if one

takes into account the geometry of X. We say that a Banach space X has Fourier type

p ∈ [1, 2] if the Fourier transform extends from the Schwartz space S(R, X) to a bounded

operator from Lp(R, X) to Lq(R, X), where 1
p

+ 1
q

= 1. Clearly, every Banach space has

Fourier type 1. It is known that Banach spaces having Fourier type 2 are isomorphic to

Hilbert spaces and that the space Lr(µ) has Fourier type min{r, s} with 1
r

+ 1
s

= 1, see

for example the notes of [3, Section 1.8] for references on this subject. Weis and Wrobel

proved that

ωα−1+ 2
p
(−A) ≤ sα(−A)

if X has Fourier type p ∈ [1, 2]. They also showed that these inqualities cannot be

improved, in general.

So far we have considered general semigroups in a Banach space X. However, for several

important classes of semigroups it is known that s(−A) = ω0(−A); hence all the above

quantities coincide. This happens for instance in the following cases.
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a) The map t 7→ T (t) is continuous in the operator norm at some t0 > 0. This holds in

particular, if T (·) is analytic or T (t0) is a compact operator, see [7, Corollary IV.3.12].

b) The semigroup T (·) is essentially compact, i.e., ‖e−s(−A)tT (t)−K‖ < 1 for some t > 0

and K compact linear operator, see [7, Theorem V.3.7].

c) The semigroup T (·) is a bounded group, see [7, Theorem IV.3.16].

d) The generator A is a normal operator on a Hilbert space.

e) The generator A is a multiplication operator on Lp(Ω,Cn), see [6, Corollary IX.3.9]

and Section 4 below.

f) The operators T (t) are positive on X = Lp(Ω) or X = C0(Ω), see [3, Section 5.3].

However, all the above collected results deal with exponential estimates of the orbits

T (·)x for x ∈ Xα. Therefore they cannot explain polynomial estimates like (1.2), which

will be addressed in this paper. On the other hand, there has been considerable efforts to

investigate strong stability of operator semigroups, i.e., limt→∞ T (t)x = 0 for all x ∈ X,

see [3, Section 5.5]. In principle, these results can be applied to our situation, but they

do not give decay estimates. Thus this line of research does not fit to our purposes, too.

Summing up, semigroup theory has not treated estimates of the type (1.2) so far. In our

paper we want to close this gap at least partially using methods of spectral and Laplace

transform theory.

3. Polynomial stability for general semigroups

We start our investigations with the following observation which allows to normalize

estimate (1.2) if the semigroup is bounded.

Proposition 3.1. (a) Assume that −A ∈ G(X,M,w). Let γ ≥ 1. If ‖T (t)(d+ A)−α‖ ≤
Ct−β for t > 0 and some α, β > 0, then ‖T (t)(d+ A)−αγ‖ ≤ C ′(γ) t−βγ for t > 0.

(b) Assume that −A ∈ G(X,M, 0) and that A is invertible. Then the following state-

ments are equivalent with a constant α > 0.

(3.1) ‖T (t)A−α‖ ≤ C

t
, t > 0,

(3.2) ‖T (t)A−αγ‖ ≤ C ′(γ)

tγ
, t > 0, for one/all γ > 0.

Proof. (a) The assumption implies that

(3.3) ‖T (t)(d+ A)−nα‖ = ‖[T (t/n)(d+ A)−α]n‖ ≤ (Cnβ)n t−nβ

for t > 0 and n ∈ N. Given γ ≥ 1, we can write γ = n+ τ for some n ∈ N and τ ∈ [0, 1).

Combining estimate (3.3) with the moment inequality, see e.g. [7, Theorem II.5.34], we

deduce

‖T (t)(d+ A)−αγ‖ = ‖(d+ A)(1−τ)αT (t)(d+ A)−(n+1)α‖

≤ c ‖T (t)(d+ A)−nα‖1−τ ‖T (t)(d+ A)−(n+1)α‖τ

≤ C ′(γ) t−nβ(1−τ) t−(n+1)βτ = C ′(γ) t−βγ .

(b.1) Assume that (3.2) holds for some γ > 0. We temporarily set δ = αγ and obtain as

above

‖T (t)A−nδ‖ ≤ C(n) t−nγ
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for t > 0 and n ∈ N. The moment inequality now yields

‖T (t)A−nδϑ‖ = ‖Anδ(1−ϑ)T (t)A−nδ‖ ≤ c
∥∥AnδT (t)A−nδ

∥∥1−ϑ ∥∥T (t)A−nδ
∥∥ϑ

≤ cM1−ϑC(n)ϑt−nγϑ

for ϑ ∈ (0, 1) and a constant c depending on the exponents. Choosing ϑ = 1
nγ

and

n > 1/γ, we obtain inequality (3.1).

(b.2) Assume that (3.1) is satisfied and take some γ̃ > 0. Then we deduce (3.2) for γ̃,

if we replace in part (b.1) the number γ by 1 and set ϑ = γ̃
n

for some n > γ̃. �

Definition 3.2. Assume that −A ∈ G(X,M,w). We say that the semigroup (T (t))t≥0

generated by −A is polynomially stable if there exist constants α, β, C > 0 such that

(3.4)
∥∥T (t)(d+ A)−α

∥∥ ≤ C t−β, t > 0.

Note that the above definition is independent of d. If (T (t))t≥0 is bounded and 0 ∈ ρ(A)

we may normalize (3.4) to the estimate

(3.5)
∥∥T (t)A−α

∥∥ ≤ C

t
, t > 0,

due to Proposition 3.1 (with a different α, in general). We next show that polynomial

stability implies that the spectrum of A belongs to the open right halfplane and that its

resolvent satisfies a certain bound.

Proposition 3.3. Assume that (−A) ∈ G(X,M,w) and ‖T (t)(d+A)−α‖ ≤ C/t for t > 0

and some α > 0. Then σ(−A) ⊂ C− and

(3.6) ‖(λ+ A)−1A−α−ε‖ ≤Mε

for Reλ ≥ 0 and ε > 0.

Proof. Proposition 3.1 yields

‖T (t)(d+ A)−α−ε‖ ≤ C t−1− ε
α

for ε > 0 and t > 0. Hence, the map t 7→ ‖T (t)(d + A)−α−ε‖ is integrable on R+. Recall

that the Laplace transform of T (·)x is equal to (λ + A)−1x for Reλ > w and x ∈ X.

By analytic continuation, the function Fε(λ) = (λ + A)−1(d + A)−α−ε thus possesses a

bounded holomorphic extension to C0. Observe that Fε : Cw → L(X,D(A)) can also be

extended holomorphically to C0 since AFε(λ) = (d + A)−α−ε − λFε(λ) for Reλ > w. As

a result,

(λ+ A)Fε(λ)x = (d+ A)−α−εx and Fε(λ)(λ+ A)y = (d+ A)−α−εy

for x ∈ X, y ∈ D(A), and Reλ ≥ 0. Therefore the part of λ+A in the domain of (d+A)α+ε

(endowed with the graph norm) is invertible; hence λ ∈ ρ(−A) by [7, Proposition IV.2.17].

Thus the operators (λ+A)−1(d+A)−α−ε are uniformly bounded for Reλ ≥ 0, which shows

the assertion. �

It turns out that an estimate like (3.6) is already sufficient for the polynomial stability

of a bounded semigroup, though with an arbitrarily small loss in the exponent of Aα. We

first establish a result valid for general semigroups.
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Proposition 3.4. Assume that −A ∈ G(X,M,w) and that the function λ 7→ (λ+A)−1(d+

A)−α, Reλ > w, possesses a bounded holomorphic extension to Reλ ≥ 0, for some α > 0.

Then there is a constant C(n, δ) such that

(3.7)
∥∥T (t)A−(n+1)α−1−δ∥∥ ≤ C(n, δ) t−n

for n ∈ N, δ ∈ (0, 1] , and all t > 0.

Proof. As in the proof of Proposition 3.3, we see that (λ+A)−1A−α is defined for Reλ ≥ 0

and bounded there by a constant C. We define

g(λ) = (λ+ A)−n−1A−(n+1)α−1−δ

for Reλ ≥ 0. In order to estimate g, we first observe that

(3.8)
∥∥(λ+ A)1−nA−(n−1)α

∥∥ ≤ Cn−1 , Reλ ≥ 0, n ∈ N.

Moreover,

(3.9)
∥∥λ(λ+ A)−1A−α−1

∥∥ =
∥∥(I − A(λ+ A)−1)A−α−1

∥∥ ≤ C ′, Reλ ≥ 0.

Using the moment inequality, see e.g. [7, Theorem II.5.34], one deduces from (3.8) with

n = 2 and (3.9) the estimate

(3.10)
∥∥(λ+ A)−1A−α−δ

∥∥ ≤ C ′′

|λ|δ
, Reλ ≥ 0.

Combining (3.8), (3.9), and (3.10), we arrive at the inequality

(3.11) ‖g(λ)‖ ≤ min

{
Cn
|λ|1+δ

, 1

}
for Reλ ≥ 0. We introduce the functions

fa(t) :=
tn

n!
e−atT (t)A−(n+1)α−1−δ, t ≥ 0, a ≥ 0, f(t) := f0(t).

Due to e.g. formula (3.56) in [3], the Laplace transform of fa is given by f̂a(λ) = g(λ+ a)

for Reλ > w − a. Thus the inversion formula proved in [3, Theorem 4.2.21] yields

fa(t) = lim
R→∞

1

R

∫ R

0

1

2πi

∫ ir

−ir
eλtg(λ+ a) dλ dr =

∫ +i∞

−i∞
eλtg(λ+ a) dλ,

f(t) =

∫ +i∞

−i∞
e(a+λ)tg(λ+ a) dλ =

∫ a+i∞

a−i∞
eλtg(λ) dλ,

for t ≥ 0. Due to (3.11), we can shift the path of integration to a = 0 and obtain

f(t) =

∫ +i∞

−i∞
eλtg(λ) dλ.

So (3.11) yields ‖f(t)‖ ≤ C(n, δ)′ which immediately implies (3.7). �

Note that in the above proof we made essential use of the semigroup law. Example

4.2.9 in [11] shows that, for an arbitrary unbounded semigroup, one cannot hope to obtain

the optimal decay estimate ‖T (t)A−α‖ ≤ C/t in (3.7) (with n = 1). Probably one could

slightly improve Proposition 3.4 using ideas as in [11, §4.2]. But we do not pursue these

matters since we are mostly interested in the case of bounded semigroups. Here we can

now easily establish an almost optimal result.
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Theorem 3.5. We assume that −A ∈ G(X,M, 0) and σ(A) ∩ iR = ∅. Let α > 0.

(i) If ‖(iρ + A)−1A−α‖ ≤ C for ρ ∈ R, then for all ε > 0 there is a constant C(ε) > 0

such that ‖T (t)A−α−ε‖ ≤ C(ε) t−1 for t > 0.

(ii) If ‖T (t)A−α‖ ≤ C ′ t−1 for t > 0, then for all ε > 0 there is a constant C(ε)′ > 0

such that ‖(λ+ A)−1A−α−ε‖ ≤ C(ε)′ for Reλ ≥ 0.

Proof. Notice that ‖(λ + A)−1‖ ≤ M/|Reλ| for Reλ > 0 since ‖T (t)‖ ≤ M . Thus

the resolvent equation and the assumption in (i) imply that (λ + A)−1A−α is uniformly

bounded for Reλ ≥ 0. So the first implication is a consequence of Propositions 3.4 and

3.1. The second implication follows immediately from Proposition 3.3. �

We do not know whether one can omit the epsilons, in general. Observe that the

conclusion in assertion (i) of the above theorem implies that T (t)x→ 0 as t→∞ for all

x ∈ X.

For a better understanding of the condition in the previous theorem, we recall the

following result by Latushkin and Shvidkoy, [9, Lemma 3.2].

Proposition 3.6. Assume that −A ∈ G(X,M,w) and α > 0. Let S = {λ ∈ C : a <

Reλ < b} be contained in ρ(−A), for some a < b. Then the following assertions are

equivalent.

(i) ‖(λ+ A)−1(d+ A)−α‖ ≤ C for λ ∈ S and a constant C.

(ii) ‖(λ+ A)−1‖ ≤ C ′ (1 + |λ|α) for λ ∈ S and a constant C ′.

In our situation, estimate (ii) allows to control the rate of approach of σ(A) to the

imaginary axis at ±i∞. Thus the following geometrical condition for σ(A) is necessary

for the polynomial stability of the semigroup.

Proposition 3.7. We assume that −A ∈ G(X,M, 0), that σ(A) ∩ iR = ∅, and that

‖(iρ+ A)−1A−α‖ ≤ C

for ρ ∈ R and constants C, α > 0. Fix δ > 0 such that [0, δ] ⊂ ρ(A). Then we have

| Imλ| ≥ C ′ (Reλ)−1/α for all λ ∈ σ(A) with Reλ ≤ δ.

Proof. As in the proof of Theorem 3.5 we see that (λ + A)−1A−α is uniformly bounded

for Reλ ≥ 0. Proposition 3.6 and the continuity of the resolvent then yield

1

Reλ
≤ 1

d(i Imλ, σ(−A))
≤ ‖(i Imλ+ A)−1‖ ≤ C1 (1 + | Imλ|α) ≤ C2 | Imλ|α

for λ ∈ σ(A) with 0 < Reλ ≤ δ and constants Ck not depending on λ. �

It is clear that in general one cannot deduce asymptotic properties from pure spectral

criteria. This can be seen if one multiplies the semigroup discussed in Paragraph 5.1

by e−t/2. Then the spectral bound of the generator is −1/2, but there are exponentially

growing orbits with initial values from the domain of the generator, see [11, Example 1.2.4].
7



4. Systems with commuting normal operators

We want to show that for systems with commuting normal operators one can get rid of

the epsilon in Theorem 3.5 and that in this case the spectral condition in Proposition 3.7

is in fact sufficient for polynomial decay. As a preparation we deal with case of a single

normal operator A.

Proposition 4.1. Let H be a Hilbert space, let A be a normal operator on H with σ(A) ⊂
C+. Then the following are equivalent for α > 0.

(i) There exists C > 0 such that ‖T (t)A−α‖ ≤ C t−1 for t ≥ 0.

(ii) There exists C ′ > 0 such that ‖(iρ+ A)−1A−α‖ ≤ C ′ for ρ ∈ R.
(iii) There exist δ, C ′′ > 0 such that | Imλ| ≥ C ′′ (Reλ)−1/α for λ ∈ σ(A) with Reλ ≤ δ.

Proof. Due to the spectral theorem for normal operators, see e.g. Theorems 13.21, 13.25,

and 13.33 in [13], we have∥∥tT (t)A−α
∥∥ = sup

λ∈σ(A)

t|λ|−αe−tReλ, t ≥ 0,(4.1) ∥∥(iρ+ A)−1A−α
∥∥ = sup

λ∈σ(A)

|λ|−α |iρ+ λ|−1, ρ ∈ R.(4.2)

Assuming that (iii) holds, we thus obtain∥∥tT (t)A−α
∥∥ ≤ max

{
sup

λ∈σ(A),Reλ≤δ
t| Imλ|−αe−tReλ , sup

λ∈σ(A),Reλ>δ

t|λ|−αe−tReλ
}

≤ max
{

sup
λ∈σ(A)

(C ′′)−α tReλ e−tReλ, eδ−1−α
}

(4.3)

≤ max{e(C ′′)−α, eδ−1−α}

for t ≥ 0, and analogously∥∥(iρ+ A)−1A−α
∥∥ ≤ max

{
sup

λ∈σ(A),Reλ≤δ
| Imλ|−α |iρ+ λ|−1 , sup

λ∈σ(A),Reλ>δ

|λ|−α |iρ+ λ|−1
}

≤ max
{

sup
λ∈σ(A),Reλ≤δ

(C ′′)−α Reλ (Reλ)−1, δ−1−α
}

= max{(C ′′)−α, δ−1−α}

for ρ ∈ R. So we have established the implications ‘(iii)⇒(i)’ and ‘(iii)⇒(ii)’. Propo-

sition 3.7 shows that (ii) implies (iii). Finally, assume that (i) is satisfied. Choosing

t = (Reλ)−1, we deduce from (4.1) the estimate

(4.4) |λ|−α (Reλ)−1 = et|λ|−αe−tReλ ≤ eC

for λ ∈ σ(A). There exists δ > 0 such that [0, δ] ⊂ ρ(A), so that |λ| ≤ c | Imλ| for

λ ∈ σ(A) with Reλ ≤ δ. Hence, assertion (iii) follows from (4.4). �

With the same arguments one can also treat multiplication operators Af = af for a

function a : Ω → C. These operators are endowed with their maximal domain D(A) =

{f ∈ X : af ∈ X} on a suitable function space X. Here we consider X = C0(Ω) and

X = Lp(Ω, ν) for 1 ≤ p < ∞, a locally compact space Ω, and a regular Borel measure ν

on Ω. Then −A is densely defined and closed in X. It generates the bounded semigroup

given by e−ta if and only if the spectrum of −A is contained in the closed left half plane.
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Moreover, σ(A) coincides with the closed (resp., essential) range of a if X = C0 (resp.,

X = Lp), see [6, §IX.1–3] or [7, §I.4]. Clearly, (4.1) and (4.2) still hold in the present

situation, and so the proof of Proposition 4.1 also yields the next result.

Proposition 4.2. Let Ω be a locally compact space and ν be a regular Borel measure on

Ω. Assume that either

(a) X = Lp(Ω, ν) for 1 ≤ p < ∞ and a : Ω → C is measurable with essential range in

C+,

or that

(b) X = C0(Ω) and a : Ω→ C is continuous with with a(Ω) ⊂ C+.

In both cases let A be the multiplication operator corresponding to a on X. Then the

following assertions are equivalent for α > 0.

(i) There exists C > 0 such that ‖T (t)A−α‖ ≤ C t−1 for t ≥ 0.

(ii) There exists C ′ > 0 such that ‖(iρ+ A)−1A−α‖ ≤ C ′ for ρ ∈ R.
(iii) There exist δ, C ′′ > 0 such that | Imλ| ≥ C ′′ (Reλ)−1/α for λ ∈ σ(A) with Reλ ≤ δ.

Our main result in this section, Theorem 4.5, will be a consequence of Theorem 4.4

dealing with matrix multipliers. To prove the latter theorem, we need the next result due

to Kreiss, [8]. In what follows, B(x, r) is the open ball in Cn with center x ∈ Cn and

radius r > 0, and Mn(C) is the set of complex n× n matrices.

Theorem 4.3 (Kreiss). For a set M⊂Mn(C) the following assertions are equivalent.

(i) There exists a constant K1 ≥ 1 such that∥∥etM∥∥ ≤ K1

for all t ≥ 1 and M ∈M.

(ii) There exist constants K2 ≥ 1 and K3 ≥ 0 satisfying the following property. For

every M ∈M there exists an invertible matrix JM ∈Mn(C) with∥∥J−1
M

∥∥+ ‖JM‖ ≤ K2

such that

J−1
M MJM =


λM1 bM12 . . . bM1n

0 λM2
. . .

...
...

. . . . . . bMn−1n

0 . . . 0 λMn

 ,

where

ReλMn ≤ ReλMn−1 ≤ . . . ≤ ReλM1 ≤ 0

and the upper diagonal entries bMkl satisfy the estimate

|bMkl | ≤ K3 |ReλMk | for all 1 ≤ k < l ≤ n.

Here K2 and K3 only depend on n and K1; and K1 only depends on K2, K3, and n.

Let us now consider matrix multipliers (Af)(ω) = a(ω)f(ω) on X = Lp((Ω, ν),Cn) for

1 ≤ p < ∞ and matrices a(ω) ∈ Mn(C) being measurable in ω. As in the scalar–valued
9



case n = 1, we take D(A) = {f ∈ X : a(·)f(·) ∈ X}. If ρ(A) 6= ∅, then the spectrum of

A is given by the essential union of σ(a(ω)), i.e.,

σ(A) = ess–
⋃
ω∈Ω

σ(a(ω)) := {λ ∈ C : ∀ ε > 0 ν{ω ∈ Ω : σ(a(ω)) ∩B(λ, ε)} > 0}.

In fact, one can find a function ã differing from a only on a set of measure 0 such that

σ(A) =
⋃
ω∈Ω

σ(ã(ω)).

Moreover, −A generates a bounded C0–semigroup (T (t))t≥0 on X if and only if

ess supω |e−ta(ω)| ≤ M for all t ≥ 0, and then T (t)f = e−ta(·)f(·). These results can

be found in [6, §IX.1-3.].

Theorem 4.4. Let X = Lp((Ω, ν),Cn) for 1 ≤ p < ∞, n ∈ N, Ω be a locally compact

space, ν be a regular Borel measure on Ω, and a(ω) ∈ Mn(C) be measurable in ω ∈ Ω.

Assume that ess supω |e−ta(ω)| ≤M for all t ≥ 0 and that σ(A)∩ iR = ∅ for the associated

multiplication operator. Then the following statements are equivalent for α > 0.

(i) There exists C > 0 such that ‖T (t)A−α‖ ≤ C t−1 for t ≥ 0.

(ii) There exists C ′ > 0 such that ‖(iρ+ A)−1A−α‖ ≤ C ′ for ρ ∈ R.
(iii) There exist δ, C ′′ > 0 such that | Imλ| ≥ C ′′ (Reλ)−1/α for λ ∈ σ(A) with Reλ ≤ δ.

Proof. (a) The implication ‘(ii)⇒(iii)’ was proved in Proposition 3.7.

(b) We suppose that (iii) holds. Redefining a(ω) on a set of measure 0 we may assume

that e−ta(ω) and a(ω)−1 are uniformly bounded and that σ(a(ω)) belongs to C+ and

satisfies (iii) for all ω ∈ Ω. Observe that we only have to show that

(A) |te−taa−α| ≤ C for t ≥ 0 and all matrices a ∈ Mn(C) satisfying |e−ta| ≤ M ,

|a−1| ≤M ′, σ(−a) ⊂ C− and | Imλ| ≥ C ′′ (Reλ)−1/α for λ ∈ σ(a) with Reλ ≤ δ,

where the constant C only depends on the strictly positive constants n, M , M ′,

C ′′, δ, α.

Assertion (A) is proved by induction over the dimension n. The case n = 1 was settled

in Proposition 4.2. Let n ∈ N be given and suppose that (A) has been verified for all

dimensions m ∈ {1, · · · , n}. Let a ∈ Mn+1(C) satisfy the assumptions in (A). In view of

Theorem 4.3, we can assume that

− a =


λ1 b12 . . . b1n+1

0 λ2
. . .

...
...

. . . . . . bnn+1

0 . . . 0 λn+1

 ,(4.5)

Reλn+1 ≤ Reλn ≤ . . . ≤ Reλ1 < 0, |bkl| ≤ K |Reλk|,

for 1 ≤ k < l ≤ n + 1, and a constant K ≥ 1 only depending on n and M . We assume

that the constant δ > 0 in (A) is less than 2(C ′′)
α

1+α and that 2 | Imλ1| ≥ |Reλ1| if

|Reλ1| ≤ δ/2, replacing the given δ by a smaller one if necessary.

(b.1) If s(−a) < −δ/2, then ‖e−ta‖ ≤ ce−δt/4 with a constant only depending on n, δ,

K, and M . Hence, (A) holds in this case.
10



(b.2) We now consider the case s(−a) ≥ −δ/2. We set

r0 =
|Reλ1|
4n+ 2

.

Then there is a radius r ∈ {r0, 2r0, · · · , (2n + 1)r0} such that d(λk,Γ) ≥ r0 for Γ :=

∂B(λ1, r) and k ∈ {1, · · · , n+ 1}. Notice that r ≤ |Reλ1|/2. The representation (4.5) of

−a and an induction argument show that the components rkl of (µ+ a)−1, µ ∈ Γ, can be

estimated by

|rkl| ≤
cn

|µ− λk|
max

k+1≤j≤l

|Reλl|
|µ− λl|

|Reλl−1|
|µ− λl−1|

· · · |Reλj|
|µ− λj|

for 1 ≤ k < l ≤ n + 1 and a constant only depending on the data in (A), whereas

rkk = (µ− λk)−1 and rkl = 0 for k > l. Since |µ− λk| ≥ r0 = (4n+ 2)−1 |Reλ1|, we have

`(Γ) sup
µ∈Γ
|(µ+ a)−1| ≤ c′n sup

µ∈Γ
max

j=1,··· ,n+1

{
1,
|Reλj|n

|µ− λj|n

}
,

where `(Γ) is the length of the curve. Let µ ∈ Γ and j ∈ {1, · · · , n}. If |Reλj| ≥ 2|Reλ1|,
then

|Reλj|
|µ− λj|

≤ |Reλj|
|Reλj| − |Reµ|

≤ |Reλj|
|Reλj| − 3

2
|Reλ1|

≤ 4 .

If |Reλj| ≤ 2|Reλ1|, then

|Reλj|
|µ− λj|

≤ 2 |Reλ1|
r0

= 8n+ 4.

Putting these observations together, we arrive at

(4.6)

∣∣∣∣ 1

2πi

∫
Γ

f(µ) (µ+ a)−1 dµ

∣∣∣∣ ≤ C(n) sup
µ∈Γ
|f(µ)|

for every bounded measurable function f defined on a neighbourhood of Γ. Again the

constant only depends on the data in (A).

If we take f being equal to 1 on a neighbourhood of B(λ1, r), then estimate (4.6) implies

that the spectral projection P for −a corresponding to B(λ1, r) is bounded uniformly with

respect to the data in (A). Let m = dimPCn+1 and l = n + 1 −m. Since P commutes

with a, the matrices aP and a(I − P ) satisfy our assumptions with uniform constants. If

P 6= I, then m, l ∈ {1, · · · , n}, and we can apply our induction hypothesis to deduce that

(A) holds in this case.

(b.3) It remains to consider the case P = I. Then all eigenvalues λk of −a belong to

the set B(λ1, r). So (4.6) yields

(4.7) |te−taa−α| =
∣∣∣∣ 1

2πi

∫
Γ

tetµ(−µ)−α (µ+ a)−1 dµ

∣∣∣∣ ≤ C(n) sup
µ∈Γ

tetReµ |µ|−α .

11



Using r ≤ 1
2
|Reλ1| ≤ | Imλ1|, the spectral assumption in (A), and |Reλ1| ≤ δ/2 ≤

(C ′′)
α

1+α , we further estimate

| Imµ| |Reµ|1/α ≥ (| Imλ1| − 1
2
|Reλ1|) 2−1/α|Reλ1|1/α

≥ (C ′′ |Reλ1|−1/α − 1
2
|Reλ1|) 2−1/α|Reλ1|1/α

= 2−1/αC ′′ − 2−1−1/α |Reλ1|(α+1)/α

≥ 2−1−1/αC ′′

for µ ∈ Γ. In view of (4.7) and the estimates in (4.3), this inquality shows that (A) holds

also in this case. So we conclude that (A) is verified for the dimension n+ 1, and thus in

fact for all dimensions.

(c) We want to prove ‘(i) ⇒ (ii)’. As in (b), it suffices to show this implication for

all matrices a ∈ Mn(C) satisfying the assumptions with uniform constants and having

uniformly bounded inverses, provided we obtain (ii) with a uniform constant C ′. Moreover,

we can again suppose that a is given as in (4.5). Then

te−taa−αe1 =
1

2πi

∫
Γ

tetµ(−µ)−α(µ+ a)−1e1 dµ

=
1

2πi

∫
Γ

tetµ(−µ)−α((µ− λ1)−1, 0, · · · , 0)T dµ,

for e1 = (1, 0, · · · , 0)T and a suitable path Γ around σ(−a). So (i) implies that∣∣∣tetλ1(−λ1)−α
∣∣∣ =

∣∣∣ 1

2πi

∫
Γ

tetµ(−µ)−α(µ− λ1)−1 dµ
∣∣∣ ≤ C

for all t ≥ 0. Taking t = −(Reλ1)−1, we see that |Reλ1|−1 ≤ eC|λ1|α. Using that a

is uniformly bounded, we thus derive (iii) for λ1 and a sufficiently small δ > 0 with a

constant C̃ ′′ only depending on the data. Now we can argue as in part (b) and verify that

(ii) holds. �

We can now easily deduce the main result of this section from the above theorem.

Let H be a Hilbert space and Akl (k, l = 1, · · · , n) be normal operators on H whose

spectral resolutions mutually commute. In Section X.3 of [14] it shown that there are

measurable function fkl : R → C and a selfadjoint bounded operator B on H such that

Akl = fkl(B). Due to the spectral theorem in the version of [5, Corollary X.5.3] (and

the proof given there), there is a locally compact space Ω, a regular Borel measure ν on

Ω, a multiplication operator M on L2(Ω, ν), and a unitary operator U : H → L2(Ω, ν)

such that UBU−1 = M . Thus UAklU
−1 is also a multiplication operator on L2(Ω, ν)

corresponding to a measurable function akl : Ω → C. We next consider the matrix

operator A = [Akl] initially defined on

D0 =

(
n⋂
k=1

D(Ak1)

)
× · · · ×

(
n⋂
k=1

D(Akn)

)
⊂ Hn.

Using the transformation U = diag(U, · · · , U) : Hn → L2(Ω,Cn), one sees that A pos-

sesses a closure (denoted by the same symbol) such that UAU−1 is equal to the matrix

multiplicator Af = a(·)f on L2(Ω,Cn), where a(ω) = [akl(ω)], see [6, Proposition IX.6.2].
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Therefore, −A generates a bounded C0–semigroup (T (t))t≥0 if and only if ‖e−ta‖∞ ≤ c

for t ≥ 0 and then T (t) = Ue−taU−1. Moreover,

σ(A) = ess–
⋃
ω∈Ω

σ(a(ω)).

Now, Theorem 4.4 immediately implies the following result.

Theorem 4.5. Let H be a Hilbert space and Akl (k, l = 1, · · · , n) be normal operators on

H whose spectral resolutions mutually commute. Define A in H = Hn as above. Assume

that −A generates a bounded C0–semigroup (T (t))t≥0 and that σ(A) ∩ iR = ∅. Then the

following statements are equivalent for α > 0.

(i) There exists C > 0 such that ‖T (t)A−α‖ ≤ Ct−1 for t ≥ 0.

(ii) There exists C ′ > 0 such that ‖(iρ+A)−1A−α‖ ≤ C ′ for ρ ∈ R.
(iii) There exist δ, C ′′ > 0 such that | Imλ| ≥ C ′′ (Reλ)−1/α for λ ∈ σ(A) with Reλ ≤ δ.

5. Applications

5.1. The semigroup of Zabczyk. The semigroup presented here is a slight modification

of the famous example due to J. Zabczyk, cf. [11, Example 1.2.4], [7, Counterexample

IV.3.4] or [3, Example 5.1.10]. Consider the Hilbert space X =
⊕

n∈N Cn. For the n× n
matrix

An :=


0 1 0 0
...

. . . . . . 0
...

. . . 1

0 . . . . . . 0

 ,

we define the operator −A :=
⊕

n∈N(An + in − 1) with maximal domain D(A). As

calculated in the references given above, this operator generates the bounded strongly

continuous semigroup

(5.1) T (t) =
⊕
n∈N

(
e−teinteAnt

)
,

and s(−A) = −1. To estimate the resolvent of A, we use the inequality

|R(λ,An + in− 1)| ≤ 1

|λ+ 1− in| − 1
.

Take λ = iρ ∈ iR and denote by N ∈ N the natural number such that |ρ−N | is minimal.

Then we obtain

‖(iρ+ A)−1‖2 ≤ |R(iρ, AN + iN − 1)|2 +
∑
n 6=N

1

(|iρ+ 1− in| − 1)2

≤ |R(iρ, AN + iN − 1)|2 + C

13



for a suitable constant C independent of ρ. Since

R(iρ, AN + iN − 1) =


1
λ

1
λ2

1
λ3 . . . 1

λN

0 1
λ

1
λ2 . . . 1

λN−1

0 0 1
λ

. . . 1
λN−2

...
. . . . . . . . .

...

0 . . . . . . . . . 1
λ


with λ = i(ρ−N)+1, the operator norm of this matrix becomes maximal if ρ = N . Thus

we arrive at

‖(iρ+ A)−1‖2 ≤ ‖(iN + A)−1‖2 = N2 + C ≤ C ′ |ρ|2

Theorem 3.5 thus yields that the semigroup (5.1) satisfies∥∥T (t)A−1−ε∥∥ ≤ Cε
t

for all ε > 0.

5.2. Weakly coupled wave equations. If one couples a conservative with a damped

wave equation, it is a priori not clear whether and in which way the resulting system is

damped again. As a model problem for such phenomena we study the equations

∂ttu(t, x)−∆u(t, x) + b∂tu(t, x) + γu(t, x)− κv(t, x) = 0, t ≥ 0, x ∈ Ω,

∂ttv(t, x)−∆v(t, x) + γv(t, x)− κu(t, x) = 0, t ≥ 0, x ∈ Ω,

u(t, x) = 0, v(t, x) = 0, t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈ Ω,

(5.2)

on a bounded domain Ω ⊂ RN with boundary ∂Ω of class C2 and for constants b, κ > 0

and γ ≥ κ, see [2, Example 6.1]. We reformulate this partial differential equation as the

second order evolution equation

ü(t) + Au(t) + bu̇(t)− κv(t) = 0, t ≥ 0,

v̈(t) + Av(t)− κu(t) = 0, t ≥ 0,

u(0) = u0, u̇(0) = u1, v(0) = v0, v̇(0) = v1,

(5.3)

on H = L2(Ω) for the operator A = −∆ + γ, with domain D(A) = H2(Ω) ∩ H1
0 (Ω).

(Observe that our notation differs from that of the previous sections.) In what follows we

will only use that A = A∗ ≥ ω > κ > 0 and b > 0. As in [2], we rewrite (5.3) as a first

order system on X = D(A1/2) × H × D(A1/2) × H (endowed with the canonical scalar

product) employing the operator matrix

A =


0 −1 0 0

A b −κ 0

0 0 0 −1

−κ 0 A 0


with domain D(A) = D(A)×D(A1/2)×D(A)×D(A1/2). (For (5.2) we have D(A1/2) =

H1
0 (Ω), of course.) One can check that D(An) = D(An) × D(An/2) × D(An) × D(An/2)

(see [2, Lemma 3.1]). Using the bounded perturbation theorem and a suitable equivalent
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‘energy norm’ on X , it is shown in [2, §3] that −A generates a bounded C0–semigroup

(T (t))t≥0 on X . Moreover, the solution w ∈ C1(R+, X) ∩ C(R+, D(A)) of

(5.4) ẇ(t) +Aw(t) = 0, t ≥ 0, w(0) = w0,

with w0 = (u0, u1, v0, v1) ∈ D(A) gives the solutions u, v ∈ C2(R+, H) ∩ C(R+, D(A))

of (5.3) via w(t) = (u(t), u̇(t), v(t), v̇(t)). Then u and v also solve the equations (5.2) in

L2(Ω) w.r.t. the space variables, where the boundary conditions are understood in the

sense of traces.

We can further transform the first order problem (5.4) to the setting of Theorem 4.5

by means of the isomorphism J : X → H4, Jx = (A1/2x1, x2, A
1/2x3, x4). We will

show below that the spectrum of A is contained in the open right half plane and that

| Imλ| ≥ c |Reλ|−1/2 for λ ∈ σ(−A) with real part close to 0. Thus Theorem 4.5 and

Proposition 3.1 imply that ‖T (t)A−1‖ ≤ ct−1/2. Proposition 3.1 yields better decay for

more regular initial data. These facts were already shown in [2, Example 6.1] by other

methods. However, our spectral analysis shows that the decay exponent is optimal, and

it explains why precisely this type of damping occurs.

To compute the spectrum of σ(−A) we have to solve the resolvent equation (λ+A)x = y

with x ∈ D(A), for a given y ∈ X . This equation means that

λx1 − x2 = y1

Ax1 + (λ+ b)x2 − κx3 = y2

λx3 − x4 = y3

−κx1 + Ax3 + λx4 = y4 .

The above system is equivalent to

x2 = λx1 − y1

x4 = λx3 − y3

(λ2 + bλ+ A)x1 = κx3 + (λ+ b)y1 + y2

p(λ,A)x3 = κ(λ+ b)y1 + κy2 + (A+ λ(λ+ b)) (λy3 + y4) ,

(5.5)

where we temporarily assume that y3, y4 ∈ D(A) and use the polynomial

p(λ, a) = (a+ (λ+ b)λ) (a+ λ2)− κ2 = λ4 + bλ3 + 2aλ2 + abλ+ a2 − κ2.

Because of A = A∗ ≥ ω, the operator λ2 + bλ + A is invertible whenever Reλ ≥ −δ for

some δ > 0 depending on b and ω. Since |p(λ, a)| → ∞ as a → ∞, the operator p(λ,A)

is invertible if and only if p(λ, a) 6= 0 for all a ∈ σ(A). In this case also a2 |p(λ, a)|−1

is bounded for a ≥ 0, so that p(λ,A)−1 : H → D(A2) is continuous. As a consequence,

the equations (5.5) give the unique solution x ∈ D(A) of (λ +A)x = y, for each y ∈ X ,

provided that p(λ, a) 6= 0 and λ2 +bλ+a 6= 0 for all a ∈ σ(A). On the other hand, assume

that λ ∈ ρ(−A). For a given η ∈ H we define y = (0, η/κ, 0, 0) ∈ X and x = (λ+A)−1y.

Then (5.5) implies that p(λ,A)x3 = η and that x3 ∈ D(A) is the unique solution of this

equation. Summing up,

σ(−A) ∩ C−δ = {λ ∈ C−δ : p(λ, a) = 0 for some a ∈ σ(A)}.
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So let us solve the ‘characteristic equation’ p(λ, a) = 0. Since −A generates a bounded

semigroup, we only have to consider the case Reλ ≤ 0. First let λ = iτ ∈ iR for some

a ≥ ω > κ > 0. If p(iτ, a) = 0, then

0 = Im p(iτ, a) = −bτ 3 + abτ.

Hence, τ = 0 or τ 2 = a. But in both cases

Re p(iτ, a) = τ 4 − 2aτ 2 + a2 − κ2 6= 0.

Therefore the spectrum of −A is contained in the open left half plane. If there are

λ ∈ σ(−A) with Reλ → 0, then we have | Imλ| → ∞ and thus a → ∞. So we can

restrict ourselves to a ≥ a0 for a large a0 > 0, and Reλ ∈ (−δ, 0). We set ε = a−1/2 and

z = ελ. Then p(λ, a) = 0 is equivalent to the equation

(5.6) κ2ε4 = (1 + z2 + bεz)(1 + z2).

Note that for ε = 0 (5.6) has the two double solutions i and −i. Due to the Theorems

A.4.1 and A.5.4 in [4], we know that for sufficiently small ε > 0 there are four distinct

solutions z = z(ε) of (5.6) given by a series in
√
ε. Inserting these series into (5.6) and

comparing coefficients, we first deduce that the series is in fact a power series. Moreover,

we obtain the expansions

z1,2(ε) = ±i− κ2ε3

2b
+O(ε4) and z3,4(ε) = ±i− bε

2
+O(ε2)

of the solutions of (5.6). This leads to the solutions

λ1,2 = λ1,2(a) = ±i
√
a− κ2

2b
1
a

+O(a−3/2), λ3,4 = λ3,4(a) = ±i
√
a− b

2
+O(a−1/2)

of p(λ, a) = 0, for each sufficiently large a ∈ σ(A). As a result, close to imaginary axis

there are only the spectral values

±i
√
a− κ2

2b
1
a

+O(a−3/2), for large a ∈ σ(A);

i.e., | Imλ| ≥ c |Reλ|−1/2 for λ ∈ σ(−A) with small |Reλ|. As observed above, this fact

shows that ‖T (t)A−1‖ ≤ ct−1/2 and that this decay exponent is optimal. Thus we have

shown that

‖∇u(t)‖2
2 + ‖u̇(t)‖2

2 + ‖∇v(t)‖2
2 + ‖v̇(t)‖2

2 ≤ c t−1 (‖u0‖2
H2 + ‖u1‖2

H1 + ‖v0‖2
H2 + ‖v1‖2

H1)

for all classical solutions of (5.2).

Further observe the first term on the right hand side of (5.6) represents the damped

equation and the second one the undamped equation, whereas the left hand side gives the

coupling. The spectral values for the full system thus result from a perturbation of those

of the two separated systems. The interesting part λ1,2 of the spectrum is shifted to the

left from iR to the hyperbolas ±i
√
a− κ2

2b
1
a

(asymptotically for a→∞).

5.3. A weakly coupled wave and plate equation. In the same setting as above we

study the Petrowsky-wave system

(5.7)

{
∂ttu(t, x) + ∆2u(t, x) + b∂tu(t, x)− κv(t, x) = 0, (t, x) ∈ R+ × Ω,

∂ttv(t, x)−∆v(t, x)− κu(t, x) = 0, (t, x) ∈ R+ × Ω,
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for b, κ > 0 together with the initial conditions of (5.2) and the boundary conditions

v(·, t) = u(·, t) = ∆u(·, t) = 0 on ∂Ω for all t > 0,

see [2, Example 6.4]. Since the arguments used below are similar to those in the previous

example, we only sketch them. Again we work with the Hilbert space H = L2(Ω) and

the Dirichlet–Laplacian A = −∆D on H. We assume that κ < ω3/2, where ω is the lower

bound of A (i.e, the Poincaré constant on Ω).

The weakly coupled wave and plate equation can also be written as an abstract Cauchy

problem in the product space X = D(A)×H ×D(A
1
2 )×H using the operator

A =


0 −1 0 0

A2 b −κ 0

0 0 0 −1

−κ 0 A 0


with domain D(A) = D(A2)×D(A)×D(A)×D(A

1
2 ). This operator generates a bounded

semigroup on X and is unitary equivalent to a matrix consisting of commuting normal

operators in the space H4. Hence we can apply Theorem 4.5.

Using analogous arguments as in the previous example, we obtain

σ(−A) ∩ C−δ = {λ ∈ C−δ : p(λ, a) = 0 for some a ∈ σ(A)} ,

for small δ > 0, where

p(λ, a) = (a2 + bλ+ λ2)(a+ λ2)− κ2.

Setting ε = a−1 and z = λε, the equation p(λ, a) = 0 is equivalent to

(5.8) (1 + z2 + bεz)(ε+ z2) = κ2ε4.

For ε = 0, there are two single roots +i and −i and the double root 0. For small ε > 0,

we thus obtain two roots z1,2(ε) of (5.8) given by series in
√
ε and two roots z3,4(ε) given

by a power series, see [4, Sections A.4, A.5]. Inserting the series into (5.8) and comparing

coefficients, we deduce

z1,2(ε) = ±i
√
ε
(

1− κ2

2
ε3 − κ2

2
ε4
)
− bκ2

2
ε5 +O(ε

11
2 ), z3,4(ε) = ±i− b

2
ε+O(ε2);

which yields

λ1,2(a) = ±i
√
a
(

1− κ
2

2
a−3− κ

2

2
a−4
)

+
bκ2

2
a−4 +O(a−

9
2 ), λ3,4(a) = ±ia− b

2
+O(a−1)

for large a ≥ 0. This means that

| Imλ| ≥ C |Reλ|−1/8

for λ ∈ σ(−A) with small Reλ, so that Theorem 4.5 implies ‖T (t)A−1‖ ≤ ct−1/8; i.e.

‖D2u(t)‖2
2 + ‖u̇(t)‖2

2 + ‖∇v(t)‖2
2 + ‖v̇(t)‖2

2 ≤ c t−1/4 (‖u0‖2
H4 + ‖u1‖2

H2 + ‖v0‖2
H2 + ‖v1‖2

H1)

for all classical solutions of (5.7).

We note that in [2] only polynomial decay for initial data in D(A4) was established (be-

sides data in the test function space), without describing D(A4) and its norm explicitely.
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[12] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer–Verlag, 1983.

[13] W. Rudin, Functional Analysis, Tata McGraw–Hill, 1974.
[14] B. Sz.–Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Springer–

Verlag, Corrected Reprint, 1967.
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