POLYNOMIAL STABILITY OF OPERATOR SEMIGROUPS
ANDRAS BATKAIL KLAUS-JOCHEN ENGEL, JAN PRUSS, AND ROLAND SCHNAUBELT

ABSTRACT. We investigate polynomial decay of classical solutions of linear evolution
equations. For bounded Cy—semigroups on a Banach space this property is closely re-
lated to polynomial growth estimates of the resolvent of the generator. For systems of
commuting normal operators polynomial decay is characterized in terms of the location
of the generator spectrum. The results are applied to systems of coupled wave-type
equations.

1. INTRODUCTION

The asymptotic theory of operator semigroups provides powerful tools for the investi-
gation of the (exponential) convergence to 0 of mild and classical solutions of the linear
Cauchy problem

(1.1) u'(t) + Au(t) =0, t>0, u(0) = x,

where —A generates the strongly continuous operator semigroup (7'(t));>o on a Banach
space X. In Section 2 we briefly review these results in order to provide the background
for our paper.

However, weakly damped systems of linear wave equations can exhibit a type of be-
haviour not satisfactorily covered by semigroup theory so far: Classical solutions of (1.1)
may converge to 0 polynomially, but not exponentially. Formulated in the framework of
the evolution equation (1.1), certain systems lead to decay estimates of the form

(1.2) |T(t)z|| < Ct7P|| A%z, x € D(A%), t >0,

for some constants a, 3 > 0. Such results were obtained in the recent papers [1], [2], [10],
[15]; see also the references therein. These authors used energy type estimates which are
more or less closely related to the specific problem posed on a Hilbert space. Observe
that the estimate (1.2) with v = 0 already implies exponential decay of the semigroup in
operator norm. So we can exclude this case from our analysis.

An estimate like (1.2) typically holds if the spectrum of —A is contained in open left
half plane, but approaches the imaginary axis at 4+ioo, see Section 5. One may further
expect that the rate of approach of the spectrum is related to the constants « and (5.
We recall that this situation cannot occur if the semigroup is norm continuous at some
to > 0 or consists of positive operators on a Banach lattice, see e.g. Theorems I1.4.18 and
VI.1.10 in [7].
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In Section 3 we first study general bounded Cy—semigroups on a Banach space X. Here
we (almost) characterize the decay estimate (1.2) by an analogous growth property of the
resolvent which in turn implies a geometric condition for the spectrum of —A near iR.
This result relies in particular on a complex inversion formula of the Laplace transform
applied to powers of the resolvent of —A. Unfortunately, we have to pay a price for the
generality of our setting by loosing an arbitrarily small € > 0 in the decay exponents.
Further, for more specific situations one may hope for pure spectral criteria which are
of course much easier to verify in applications. In Theorem 4.5 we in fact prove a sharp
spectral criterion for systems of commuting normal operators on a Hilbert space X.7 This
theorem follows from a corresponding characterization of polynomial decay for matrix
multiplication semigroups on LP((2, i), C™), because of the spectral theorem. The matrix
multiplier result is proved via induction on the size n of the matrices, which requires
a detailed spectral analysis. In the last section we apply Theorem 4.5 to coupled wave
equations.

2. STABILITY CONCEPTS FOR OPERATOR SEMIGROUPS

In this section we fix the notation and collect fundamental stability concepts and results
for Cy—semigroups, in order to provide the background for our investigations. The proofs
can be found in the monographs [3], [7], [11].

Let X be a Banach space. We write G € G(X, M, w) if the linear operator G with
domain D(G) generates a strongly continuous semigroup (7'(t));>o satisfying ||T'(¢)| <
Me™* for t > 0. The exponential growth bound wy(G) is the infimum of such constants
w. The resolvent operator of G is denoted by R(\, G) = (A — G)~! for A contained in the
resolvent set p(G), o(G) = C\ p(G) is the spectrum of G, and s(G) = sup{Re X : \ €
o(G)} is the spectral bound of G.

For —A € G(X, M, w), we define the fractional powers (d + A)* for & > 0 and a fixed
number d > w by the formula

@+ A)°r = [ (=N +d+ A)
2m Jr

where I' is any piecewise smooth path in the set {\ € C: ReA > w —d, A\ ¢ [0,00)}
running from coe™* to ooe’® for some 0 < ¢ < m/2, cf. [7, Section I1.5], [12, Section 2.7].
We further set (d + A)® = I. The operator (d + A)~® is injective and bounded, hence it
has a closed inverse denoted by (d + A)*. The domain X, = D((d 4+ A)*) is independent
of the choice of d > w. We endow X, with the graph norm of (d + A)*. If w € p(A) we
can take d = w in these definitions by deforming I' appropriately.

For a > 0 the fractional uniform exponential growth bound of the semigroup 7'(-)
generated by —A is defined by

wo(—A) =inf {a € R : IM > 1 such that ||T(t)(d+ A)"*| < Me™, t >0} .
It is clear that
wg(—A) < wa(—A4) < wo(—A) for 0 <a <p,

where strict inequality is possible, see [16, Section 4]. Thus, if w,(—A) < 0, then all orbits

T(-)z starting from = € X,, converge to zero with an exponential speed. In particular, if
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wi(—A) < 0, then all orbits belonging to C*(]0, +00), X) decay exponentially. We point
out that this may happen even if there are unbounded orbits, cf. [11, Example 1.2.4].

One calls the semigroup uniformly exponentially stable if wo(—A) < 0. The semi-
group property implies that uniform exponential stability is equivalent to the fact that
lim; o [|7(¢)|| = 0. However, for our later investigations it is important to stress that
the function t — ||T(t)(d + A)~%|| does not satisfy the semigroup law anymore. Indeed,
it Section 5 we treat examples where lim;_., ||T'(t)(d + A)~*|| = 0, but w,(—A) = 0.

For the study of these quantities one further introduces the abscissa of growth order «
of the resolvent

. A+ A7 }
So(—A) = inf >s(—A): sup —————— < 0
(=) =int {p > s(-) + sop [0

for « > 0. To simplify our notation, we introduce the symbol C, to denote the open
halfplane {A € C: ReX > a} for a € R, C; := Cp, and C_ = {A € C: ReX < 0}. A

result of Latushkin and Shvidkoy, [9, Lemma 3.2], says that

So(—A) = inf {p > s(—A) : Sélé) [N+ A)Hd+A) < oo}.

The spectral bounds further satisfy the inequalities
s(—A) < sp(—A) < sa(—A) < s50(A) for 0 <a <p,

where strict inequalities may occur even in Hilbert spaces X, see e.g. [11, Example 1.2.4].
Every semigroup on a Banach space X satisfies

Sa(—A) < w,(—A).

Again, in general strict inequality is possible, see [16, Section 4]. Gearhart’s theorem (see
[11, Theorem 2.2.4]) implies that if X is a Hilbert space, then

80(-14) = WO(—A).
Generalizing several previous results, Weis and Wrobel established in [16] the inequality
Wat1(—A) < sa(—4)

for @« > 0 and an arbitrary Banach space X. One can improve this inequality if one
takes into account the geometry of X. We say that a Banach space X has Fourier type
p € [1,2] if the Fourier transform extends from the Schwartz space S(R, X)) to a bounded
operator from LP(R, X) to LY(R, X), where % + % = 1. Clearly, every Banach space has
Fourier type 1. It is known that Banach spaces having Fourier type 2 are isomorphic to
Hilbert spaces and that the space L"(u) has Fourier type min{r, s} with 1 + 1 =1, see
for example the notes of [3, Section 1.8] for references on this subject. Weis and Wrobel
proved that
Warr2(—A4) < sa(~A)

if X has Fourier type p € [1,2]. They also showed that these inqualities cannot be
improved, in general.

So far we have considered general semigroups in a Banach space X. However, for several
important classes of semigroups it is known that s(—A) = wo(—A); hence all the above

quantities coincide. This happens for instance in the following cases.
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a) The map ¢ — T'(t) is continuous in the operator norm at some ¢, > 0. This holds in
particular, if T'(+) is analytic or T'(ty) is a compact operator, see [7, Corollary 1V.3.12].

b) The semigroup T(+) is essentially compact, i.e., ||e*"*T(t) — K| < 1 for some t > 0
and K compact linear operator, see [7, Theorem V.3.7].

¢) The semigroup 7'(-) is a bounded group, see [7, Theorem IV.3.16].

d) The generator A is a normal operator on a Hilbert space.

e) The generator A is a multiplication operator on LP(£2,C"), see [6, Corollary IX.3.9]
and Section 4 below.

f) The operators T'(t) are positive on X = LP(Q) or X = Cy(2), see [3, Section 5.3].
However, all the above collected results deal with exponential estimates of the orbits

T(-)x for x € X,. Therefore they cannot explain polynomial estimates like (1.2), which

will be addressed in this paper. On the other hand, there has been considerable efforts to

investigate strong stability of operator semigroups, i.e., lim; ., T'(t)z = 0 for all z € X,

see [3, Section 5.5]. In principle, these results can be applied to our situation, but they

do not give decay estimates. Thus this line of research does not fit to our purposes, too.
Summing up, semigroup theory has not treated estimates of the type (1.2) so far. In our

paper we want to close this gap at least partially using methods of spectral and Laplace

transform theory.

3. POLYNOMIAL STABILITY FOR GENERAL SEMIGROUPS

We start our investigations with the following observation which allows to normalize
estimate (1.2) if the semigroup is bounded.

Proposition 3.1. (a) Assume that —A € G(X, M,w). Let v > 1. If [|T(t)(d+ A)~| <
Ct= fort >0 and some a, 3 > 0, then ||T(t)(d+ A)=|| < C'(y)t="7 fort > 0.

(b) Assume that —A € G(X, M,0) and that A is invertible. Then the following state-
ments are equivalent with a constant a > 0.

3. ITa<l << b0

(3.2) 1T (t) A~ < y, t>0, forone/ally > 0.
Proof. (a) The assumption implies that

(3.3) IT(E)(d+ A7 = [IT(t/n)(d+ A)~]"|| < (Cn?)" 77

for t > 0 and n € N. Given 7 > 1, we can write v = n + 7 for some n € N and 7 € [0,1).
Combining estimate (3.3) with the moment inequality, see e.g. [7, Theorem I1.5.34], we
deduce

IT(0)(d + A7 =+ AT (1) + A) 0]
< C||T(t)(d+A)—na||1—T||T(t)(d+A)—(n+1)a||T
< C,(’}/) t—nﬁ(l—T) t—(n—l—l)ﬁr _ Cl(,y) t_gw‘

(b.1) Assume that (3.2) holds for some 7 > 0. We temporarily set 6 = ary and obtain as
above
IT(#)A™| < C(n)t™™
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for t > 0 and n € N. The moment inequality now yields
IT@OA™ | = APCDT@W A < ¢ AT A | |T)A]"
< MO (n)t?

for ¥ € (0,1) and a constant ¢ depending on the exponents. Choosing ¥ = n% and

n > 1/7, we obtain inequality (3.1).
(b.2) Assume that (3.1) is satisfied and take some 4 > 0. Then we deduce (3.2) for 7,
if we replace in part (b.1) the number v by 1 and set ¥ = % for some n > 7. U

Definition 3.2. Assume that —A € G(X, M,w). We say that the semigroup (T'(t))i>o
generated by —A is polynomzally stable if there exist constants o, 3,C' > 0 such that

(3.4) |T(t)(d+ A~ <Cct?,  t>o.

Note that the above definition is independent of d. If (T(t));>¢ is bounded and 0 € p(A)
we may normalize (3.4) to the estimate

(3.5) I A]| < % L0,

due to Proposition 3.1 (with a different «, in general). We next show that polynomial
stability implies that the spectrum of A belongs to the open right halfplane and that its
resolvent satisfies a certain bound.

Proposition 3.3. Assume that (—A) € G(X, M,w) and ||T(t)(d+A)~*|| < C/t fort >0
and some a > 0. Then o(—A) C C_ and

(3.6) [N+ A)TTA™| < M.
for ReA >0 and ¢ > 0.

Proof. Proposition 3.1 yields
IT@)(d+A)F <Ot 'a

for ¢ > 0 and t > 0. Hence, the map ¢ — ||T(¢)(d + A)~*"¢|| is integrable on R, . Recall
that the Laplace transform of T'(-)z is equal to (A + A)™'x for ReA > w and » € X.
By analytic continuation, the function F.(\) = (A + A)~}(d + A)~*¢ thus possesses a
bounded holomorphic extension to Cy. Observe that F. : C,, — £(X, D(A)) can also be
extended holomorphically to Cq since AF.(\) = (d 4+ A)~*7¢ — AF.()) for Re A > w. As
a result,

A+ AENz=(d+A) %z and FEO\)(\+ Ay = (d+ )=y

forz € X,y € D(A), and Re A > 0. Therefore the part of A4+ A in the domain of (d+A)***
(endowed with the graph norm) is invertible; hence A € p(—A) by [7, Proposition IV.2.17].
Thus the operators (A+A)~!(d+A)~*¢ are uniformly bounded for Re A > 0, which shows
the assertion. 0

It turns out that an estimate like (3.6) is already sufficient for the polynomial stability
of a bounded semigroup, though with an arbitrarily small loss in the exponent of A%*. We

first establish a result valid for general semigroups.
5



Proposition 3.4. Assume that —A € G(X, M, w) and that the function X — (A+A)~(d+
A)~®, Re A > w, possesses a bounded holomorphic extension to Re X > 0, for some a > 0.
Then there is a constant C(n,d) such that

(3.7) | T () A= e=1=0) < C(n, 8) ¢~
forneN, 6 €(0,1] , and all t > 0.

Proof. As in the proof of Proposition 3.3, we see that (A\+A) A~ is defined for Re A > 0
and bounded there by a constant C. We define

9N) = (A4 A) At
for Re A > 0. In order to estimate g, we first observe that
(3.8) A+ A A tDe < cmt ReA>0, neN.
Moreover,
(3.9) [AA+A) AT = |- AN+ A)HA™H[ <, Rex>0.

Using the moment inequality, see e.g. [7, Theorem I1.5.34], one deduces from (3.8) with
n =2 and (3.9) the estimate

(3.10) (A +A)~tA™|| < |§|‘5’ Re > 0.

Combining (3.8), (3.9), and (3.10), we arrive at the inequality

(3.11) lg M) < min{vfﬁ,l}

for Re A > 0. We introduce the functions
tn
fot) := = e T(H)ATVTI04> 0,020, f(t) = folt).
n!

Due to e.g. formula (3.56) in [3], the Laplace transform of f, is given by f,(A) = g(A +a)
for Re A > w — a. Thus the inversion formula proved in [3, Theorem 4.2.21] yields

+i00

falt _1%520}_3/ 27”/ g\ +a) d/\dr—/' eMg(\ + a) d),

—100

+ioc0 a+i00
flt) = / NG (N + a) dh = / eMg(\) dA,

for t > 0. Due to (3.11), we can shift the path of integration to a = 0 and obtain

+i00

£(t) = / Mg(A) dA.

So (3.11) yields || f(¢)|| < C(n,d)" which immediately implies (3.7). O

Note that in the above proof we made essential use of the semigroup law. Example
4.2.9 in [11] shows that, for an arbitrary unbounded semigroup, one cannot hope to obtain
the optimal decay estimate ||T'(t)A~%|| < C/t in (3.7) (with n = 1). Probably one could
slightly improve Proposition 3.4 using ideas as in [11, §4.2]. But we do not pursue these
matters since we are mostly interested in the case of bounded semigroups. Here we can

now easily establish an almost optimal result.
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Theorem 3.5. We assume that —A € G(X, M,0) and o(A) NiR = 0. Let a > 0.

(i) If ||(ip + A)"LA=2|| < C for p € R, then for all € > 0 there is a constant C(g) > 0
such that || T(t)A=*7¢|| < C(e)t~! fort > 0.

(i) If ||T(t)A~|| < C"t7! for t > 0, then for all e > 0 there is a constant C(e) > 0
such that ||(A + A)7*A72~¢|| < C(e) for Re X > 0.

Proof. Notice that [[(A + A)7!] < M/|Re)| for ReA > 0 since |T(t)|] < M. Thus
the resolvent equation and the assumption in (i) imply that (A + A)"' A~ is uniformly
bounded for Re A > 0. So the first implication is a consequence of Propositions 3.4 and
3.1. The second implication follows immediately from Proposition 3.3. 0

We do not know whether one can omit the epsilons, in general. Observe that the
conclusion in assertion (i) of the above theorem implies that T'(t)z — 0 as t — oo for all
reX.

For a better understanding of the condition in the previous theorem, we recall the
following result by Latushkin and Shvidkoy, [9, Lemma 3.2].

Proposition 3.6. Assume that —A € G(X,M,w) and a« > 0. Let S ={A € C:a <
Re\ < b} be contained in p(—A), for some a < b. Then the following assertions are
equivalent.

(i) A+ A)H(d+ A~ < C for \€ S and a constant C.
(ii) [N+ A)7Y < C"(1+|N*) for X € S and a constant C’.

In our situation, estimate (ii) allows to control the rate of approach of o(A) to the
imaginary axis at +ico. Thus the following geometrical condition for o(A) is necessary
for the polynomial stability of the semigroup.

Proposition 3.7. We assume that —A € G(X, M,0), that c(A) NiR = 0, and that
Iip+ A A™| < C
for p € R and constants C,ac > 0. Fiz 6 > 0 such that [0,0] C p(A). Then we have
|Im A\| > C’ (Re \)~ 1/ for all X € o(A) with ReX < 6.

Proof. As in the proof of Theorem 3.5 we see that (A + A)"'A™% is uniformly bounded
for Re A > 0. Proposition 3.6 and the continuity of the resolvent then yield

1 1
<
ReX = d(iIm A\, o(—A))

<N GImA+ A7 < C (14 [ Tm A]®) < Cy | Tm A|®

for A € 0(A) with 0 < Re A < § and constants C, not depending on . O

It is clear that in general one cannot deduce asymptotic properties from pure spectral
criteria. This can be seen if one multiplies the semigroup discussed in Paragraph 5.1
by eft/2

growing orbits with initial values from the domain of the generator, see [11, Example 1.2.4].
7
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4. SYSTEMS WITH COMMUTING NORMAL OPERATORS

We want to show that for systems with commuting normal operators one can get rid of
the epsilon in Theorem 3.5 and that in this case the spectral condition in Proposition 3.7
is in fact sufficient for polynomial decay. As a preparation we deal with case of a single
normal operator A.

Proposition 4.1. Let H be a Hilbert space, let A be a normal operator on H with o(A) C
C.. Then the following are equivalent for o > 0.

(i) There exists C > 0 such that ||[T(t)A~*|| < Ct' fort > 0.
(ii) There exists C' > 0 such that ||(ip+ A)7*A™@|| < C" for p € R.
(iii) There exist §,C" > 0 such that |Im \| > C" (ReA\)~Y® for A € o(A) with Re A < 4.

Proof. Due to the spectral theorem for normal operators, see e.g. Theorems 13.21, 13.25,
and 13.33 in [13], we have

(4.1) |tT(t)A~|| = sup tIA|"Ye I ReA, t>0,
A€o (A)

(4.2) |(ip+ A)TTA™|| = sup |A|7*|ip+ A7, peR.
A€o (A)

Assuming that (iii) holds, we thus obtain
HtT(t)A’aH < max{ sup  t|Im A% RN sup t])\|*“e*tRe’\}

A€o (A),ReA<é A€o (A),Re A>5
(4.3) < max{ sup (C’")_atRe)\e_tRe’\,65_1_0‘}
A€o (A)

< max{e(C")"* ed 17}
for ¢ > 0, and analogously

||(z'p~|—A)_lA_“H§maX{ sup  |ImA|™Jip+ A1, sup ])\]‘“\z’er)\\_l}
A€o (A),Re A<d A€o (A),Re A\>d

< max{ sup  (C")"* Re A (ReA)™!, 5_1_0‘}
A€o (A),ReA<d
_ maX{(O//)—a75—1—a}
for p € R. So we have established the implications ‘(iii)=-(i)” and ‘(iii)=-(ii)’. Propo-
sition 3.7 shows that (ii) implies (iii). Finally, assume that (i) is satisfied. Choosing
t = (Re\)™!, we deduce from (4.1) the estimate

(4.4) IN™ (Re M) ™! = et|\| "% ' ReA < eC
for A € o(A). There exists § > 0 such that [0,d] C p(A), so that |A| < ¢|ImA| for
A € 0(A) with Re A < 4. Hence, assertion (iii) follows from (4.4). O

With the same arguments one can also treat multiplication operators Af = af for a
function a : @ — C. These operators are endowed with their maximal domain D(A) =
{f € X :af € X} on a suitable function space X. Here we consider X = Cj(2) and
X = LP(Q,v) for 1 < p < o0, a locally compact space €2, and a regular Borel measure v
on ). Then —A is densely defined and closed in X. It generates the bounded semigroup

given by e~ if and only if the spectrum of —A is contained in the closed left half plane.
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Moreover, o(A) coincides with the closed (resp., essential) range of a if X = Cy (resp.,
X = LP), see [6, §IX.1-3] or [7, §1.4]. Clearly, (4.1) and (4.2) still hold in the present
situation, and so the proof of Proposition 4.1 also yields the next result.

Proposition 4.2. Let Q) be a locally compact space and v be a reqular Borel measure on
Q. Assume that either

(a) X = LP(Q,v) for 1 < p < oo and a : Q@ — C is measurable with essential range in
Cy,

or that

(b) X = Cy(Q) and a: Q — C is continuous with with a(Q) C C,.

In both cases let A be the multiplication operator corresponding to a on X. Then the

following assertions are equivalent for o > 0.

(i) There exists C > 0 such that ||[T(t)A=*|| < Ct™' fort > 0.
(ii) There exists C' > 0 such that ||(ip+ A)PA™@|| < C" for p € R.
(iii) There exist §,C" > 0 such that |Im X| > C" (ReA\)~Y® for A € o(A) with Re XA < 4.

Our main result in this section, Theorem 4.5, will be a consequence of Theorem 4.4
dealing with matrix multipliers. To prove the latter theorem, we need the next result due
to Kreiss, [8]. In what follows, B(x,r) is the open ball in C" with center z € C" and
radius 7 > 0, and M,,(C) is the set of complex n x n matrices.

Theorem 4.3 (Kreiss). For a set M C M, (C) the following assertions are equivalent.
(i) There exists a constant Ky > 1 such that
]| < K

forallt>1 and M € M.
(i) There exist constants Ky > 1 and K3 > 0 satisfying the following property. For
every M € M there exists an invertible matriz Jy € M, (C) with

|3 ]+ 10| < Ko

such that
NTopM g
)\M
JJ\QIMJM: 0 2
: B bﬁ{ln
0 ... 0 M
where

Re A <ReAM, <...<ReA’ <0
and the upper diagonal entries b satisfy the estimate
b < Kz |Re N | foralll <k <1<n.

Here Ky and K3 only depend on n and Ki; and Ky only depends on Ky, K3, and n.

Let us now consider matrix multipliers (Af)(w) = a(w)f(w) on X = LP((Q2,v),C") for

1 < p < oo and matrices a(w) € M, (C) being measurable in w. As in the scalar—valued
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case n = 1, we take D(A) = {f € X : a(-)f(-) € X}. If p(A) # 0, then the spectrum of

A is given by the essential union of o(a(w)), i.e.,

o(A) = ess— U ola(w))={AeC:Ve >0 v{we Q:o(a(w)) NB(\e)} > 0}.

weN

In fact, one can find a function a differing from a only on a set of measure 0 such that

o(A) = [ o(a(w))
we
Moreover, —A generates a bounded Cp—semigroup (7(t))i>0 on X if and only if
esssup,, [e @] < M for all + > 0, and then T(t)f = e *)f(.). These results can
be found in [6, §1X.1-3.].

Theorem 4.4. Let X = LP((Q,v),C") for 1 < p < oo, n € N, Q be a locally compact
space, v be a regular Borel measure on ), and a(w) € M, (C) be measurable in w € .
Assume that esssup,, |e 1@ < M for allt > 0 and that o(A)NiR = O for the associated
multiplication operator. Then the following statements are equivalent for a > 0.

(i) There exists C > 0 such that ||[T(t)A~*|| < Ct~' fort > 0.
(ii) There exists C' > 0 such that ||(ip+ A)"*A™@|| < C" for p e R.
(iii) There exist §,C" > 0 such that |Im \| > C" (ReA)~Y® for A € o(A) with Re A < 4.

Proof. (a) The implication ‘(ii)=-(iii)” was proved in Proposition 3.7.
(b) We suppose that (iii) holds. Redefining a(w) on a set of measure 0 we may assume

that e " and a(w)~' are uniformly bounded and that o(a(w)) belongs to C, and
satisfies (iii) for all w € Q. Observe that we only have to show that
(A) [te7™a= < C for t > 0 and all matrices a € M,(C) satisfying |e7*| < M,
la='| < M', o0(—a) € C_and |[ImA| > C” (ReX)™"/* for A € o(a) with Re X < 4,
where the constant C' only depends on the strictly positive constants n, M, M’,
c” 6, a.
Assertion (A) is proved by induction over the dimension n. The case n = 1 was settled
in Proposition 4.2. Let n € N be given and suppose that (A) has been verified for all

dimensions m € {1,--- ,n}. Let a € M, 1(C) satisfy the assumptions in (A). In view of
Theorem 4.3, we can assume that
Atobiz oo b
Ay o
(4.5) —a= 9 ? :
: e bnn+1
0 ... 0 Aus

ReX,11 <Re), <...<Re) <0, |bri| < K |Re A,

for 1 <k <l <n+1, and a constant K > 1 only depending on n and M. We assume
that the constant § > 0 in (A) is less than 2(C")¥e and that 2|Im ;| > |Re )| if
| Re \| < §/2, replacing the given d by a smaller one if necessary.

(b.1) If s(—a) < —4/2, then |le™*®|| < ce~%"/* with a constant only depending on n, d,

K, and M. Hence, (A) holds in this case.
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(b.2) We now consider the case s(—a) > —0/2. We set

- |Re)\1|
 dn+2°

To

Then there is a radius r € {rg,2rg, -+, (2n + 1)ro} such that d(\;, ') > ro for T' :=
OB(A1,r) and k € {1,--- ,n+ 1}. Notice that r < |Re A;|/2. The representation (4.5) of
—a and an induction argument show that the components ry; of (u+a)™!, p € T, can be
estimated by

Cn |Re | |ReA_1] | Re |

Tl < max
Il < AT BB A =l =)

for 1 <k <l < n+1 and a constant only depending on the data in (A), whereas
ree = (u— A\g) 7' and ry = 0 for k£ > [. Since | — A\p| > 19 = (4n +2)7! | Re \{|, we have

_ | Re \;|™
() sup|(u+a)t| <, sup max {1,—j ,
(r) pner I a pel =1, n+1 = A"

where ((T") is the length of the curve. Let p € T'and j € {1,--- ,n}. If |[Re \j| > 2| Re Aq],
then

| Re A < | Re Ay < |Re§\j| <

=] 7 [ReAj| = [Rep| = [ReAj| — 5 [Re |

If |Re A\j| < 2|Re Ay], then

\Re)\j| < 2|Re)\1\

< = 8n + 4.
‘M_)‘j‘ To

Putting these observations together, we arrive at

(4.6)

ﬁ/rf(u) (j1+a) " dp| < C(n)sup |f(u)

pel

for every bounded measurable function f defined on a neighbourhood of I'. Again the
constant only depends on the data in (A).

If we take f being equal to 1 on a neighbourhood of B(\y,7), then estimate (4.6) implies
that the spectral projection P for —a corresponding to B(Ay, r) is bounded uniformly with
respect to the data in (A). Let m = dim PC"™! and [ = n + 1 — m. Since P commutes
with a, the matrices aP and a(I — P) satisfy our assumptions with uniform constants. If
P # 1, then m,l € {1,--- ,n}, and we can apply our induction hypothesis to deduce that
(A) holds in this case.

(b.3) It remains to consider the case P = I. Then all eigenvalues \; of —a belong to
the set B(A1,7). So (4.6) yields

(4.7) [te " a™%| =

1
L / et (=) (1 + @)~ dp| < C(n) supte! R |
2T Jr pel

11



Using 7 < |ReA;| < |Im )], the spectral assumption in (A), and |Re ;| < §/2 <
(C")T+a, we further estimate
| Tm p1] | Re )Y/ > (| Tm Ay | — TIRe X ) 27V Re Ay |V
Z (O” | Re)\1|_1/a - % | Re /\1|> 2—1/a| Re A1|1/a
— 271/aC// . 27171/01 ‘ Re )\ll(a+1)/a
> 27171/010//
for p € I'. In view of (4.7) and the estimates in (4.3), this inquality shows that (A) holds

also in this case. So we conclude that (A) is verified for the dimension n + 1, and thus in
fact for all dimensions.

(c) We want to prove ‘(i) = (ii)’. As in (b), it suffices to show this implication for
all matrices a € M, (C) satisfying the assumptions with uniform constants and having
uniformly bounded inverses, provided we obtain (ii) with a uniform constant C’. Moreover,
we can again suppose that a is given as in (4.5). Then

1
te % = — [ te"™(—p)"*(u+a) s du
2w Jr
1
= — [ te™(—p)"*((u— M) 0,---,0)7d
i . e ( :u) ((PJ 1) ) ) ) Hs

for e; = (1,0,---,0)7 and a suitable path T around o(—a). So (i) implies that
1
— | = [ te (=)= 2) | <
‘%i/r e (—p) (= A1) du| <C

for all ¢ > 0. Taking t = —(ReA;)™!, we see that |ReA;|™" < eC|\|*. Using that a
is uniformly bounded, we thus derive (iii) for A; and a sufficiently small § > 0 with a

constant C” only depending on the data. Now we can argue as in part (b) and verify that
(ii) holds. O

tet’\l (—/\1>7O‘

We can now easily deduce the main result of this section from the above theorem.
Let H be a Hilbert space and Ay (k,l = 1,---,n) be normal operators on H whose
spectral resolutions mutually commute. In Section X.3 of [14] it shown that there are
measurable function fi; : R — C and a selfadjoint bounded operator B on H such that
A = fu(B). Due to the spectral theorem in the version of [5, Corollary X.5.3] (and
the proof given there), there is a locally compact space €2, a regular Borel measure v on
Q, a multiplication operator M on L?(Q,v), and a unitary operator U : H — L?(Q,v)
such that UBU™! = M. Thus UA,U™! is also a multiplication operator on L?(Q,v)
corresponding to a measurable function ay : 2 — C. We next consider the matrix
operator A = [Ay] initially defined on

Dy = (ﬁ D(Ak1)> X e X <ﬁ D(A;m)> C H".

Using the transformation U = diag(U,--- ,U) : H* — L*(Q,C"), one sees that A pos-
sesses a closure (denoted by the same symbol) such that U AU~ is equal to the matrix

multiplicator Af = a(-)f on L*(Q, C"), where a(w) = [ay(w)], see [6, Proposition 1X.6.2].
12



Therefore, —A generates a bounded Cy—semigroup (7 (t));>o if and only if |[e™"|| < ¢
for t > 0 and then 7 () = Ue "“U~'. Moreover,

o(A) = ess— U o(a(w)).

Now, Theorem 4.4 immediately implies the following result.

Theorem 4.5. Let H be a Hilbert space and Ay, (k,l =1,--- n) be normal operators on
H whose spectral resolutions mutually commute. Define A in H = H™ as above. Assume
that —A generates a bounded Co—semigroup (7 (t))i>o and that o(A) NiR = (. Then the
following statements are equivalent for o > 0.

(i) There exists C' > 0 such that |7 (¢)A | < Ct™' fort > 0.
(ii) There exists C' > 0 such that |(ip + A)"'A™*| < C" for p e R.
(iii) There exist §,C" > 0 such that |ITm \| > C" (Re \)™V* for A € o(A) with Re A < 4.

5. APPLICATIONS

5.1. The semigroup of Zabczyk. The semigroup presented here is a slight modification
of the famous example due to J. Zabczyk, cf. [11, Example 1.2.4], [7, Counterexample
IV.3.4] or [3, Example 5.1.10]. Consider the Hilbert space X = @, .y C". For the n x n
matrix

o= O O

we define the operator —A := @, (A, + in — 1) with maximal domain D(A). As
calculated in the references given above, this operator generates the bounded strongly
continuous semigroup

(5.1) T(t) = @P (e'e™e™)

and s(—A) = —1. To estimate the resolvent of A, we use the inequality

< 1» .
T A+1—in|-1

|R(\, A, +in — 1))

Take A = ip € iR and denote by N € N the natural number such that |p — N| is minimal.
Then we obtain

1
lip+ 1 —in| —1)2

IGip + A)|* < [R(ip, Ay +iN = 1) + > (
n#N

< |R(ip, Ay +iN — 1)|* + C
13



for a suitable constant C' independent of p. Since

11 1 1

XA A3 AN

0 1 4 S

by )\2 )\Nfl

R(ip, Ay +iN —-1)=10 0 3 =z
1
0 X

with A = i(p— N)+ 1, the operator norm of this matrix becomes maximal if p = N. Thus
we arrive at

IGip+ AP < GN +A)7HP =N+ C < CJpl?
Theorem 3.5 thus yields that the semigroup (5.1) satisfies

—1—¢ %
[ra=) <©

for all e > 0.

5.2. Weakly coupled wave equations. If one couples a conservative with a damped
wave equation, it is a priori not clear whether and in which way the resulting system is
damped again. As a model problem for such phenomena we study the equations

Opu(t,x) — Au(t, ) + boyu(t, ) + yu(t, ) — kv(t,x) =0, t>0, x€Q,
Onv(t, z) — Av(t,z) + yu(t,x) — ku(t,z) = 0, t>0, v e,

u(t,z) =0, o(t,x) =0, t>0, z €0,

u(0,z) = up(x), Ou(0,x) =ui(z), v(0,2) = vo(x), Ow(0,z) =vi(x), x€Q,

(5.2)

on a bounded domain 2 C RY with boundary 092 of class C? and for constants b, x > 0
and v > &, see [2, Example 6.1]. We reformulate this partial differential equation as the
second order evolution equation

i(t) + Au(t) + bu(t) — ko(t) = 0, t>0,
(5.3) U(t) + Av(t) — ku(t) =0, t>0,

u(0) = ug, w(0) =wuy, v(0)=wg, 0(0) =y,
on H = L*(Q) for the operator A = —A + v, with domain D(A) = H*(Q) N H}(Q).
(Observe that our notation differs from that of the previous sections.) In what follows we
will only use that A = A* > w >k > 0 and b > 0. As in [2], we rewrite (5.3) as a first

order system on X = D(AY?) x H x D(AY?) x H (endowed with the canonical scalar
product) employing the operator matrix

0o -1 0 0
A b —x 0
A= 0 0 0 -1
- 0 A 0

with domain D(A) = D(A) x D(AY?) x D(A) x D(A'Y?). (For (5.2) we have D(A'?) =
H}(Q), of course.) One can check that D(A") = D(A") x D(A™?) x D(A") x D(A"?)

(see [2, Lemma 3.1]). Using the bounded perturbation theorem and a suitable equivalent
14



‘energy norm’ on X, it is shown in [2, §3] that —.A generates a bounded Cy—semigroup
(7(t))¢>0 on X. Moreover, the solution w € C*'(Ry, X) N C(Ry, D(A)) of

(5.4) w(t) + Aw(t) =0, t>0, w(0) = wy,

with wy = (ug, u1,ve,v1) € D(A) gives the solutions u,v € C?*(R, H) N C(R;, D(A))
of (5.3) via w(t) = (u(t),u(t),v(t),v(t)). Then u and v also solve the equations (5.2) in
L*(Q)) w.r.t. the space variables, where the boundary conditions are understood in the
sense of traces.

We can further transform the first order problem (5.4) to the setting of Theorem 4.5
by means of the isomorphism J : X — H* Jr = (AY?x, 1y, AY%25,24). We will
show below that the spectrum of A is contained in the open right half plane and that
|[Im \| > ¢|Re |72 for A € o(—.A) with real part close to 0. Thus Theorem 4.5 and
Proposition 3.1 imply that |7 (t)A~!|| < ct~'/2. Proposition 3.1 yields better decay for
more regular initial data. These facts were already shown in [2, Example 6.1] by other
methods. However, our spectral analysis shows that the decay exponent is optimal, and
it explains why precisely this type of damping occurs.

To compute the spectrum of o(—.4) we have to solve the resolvent equation (A+A)x =y
with € D(A), for a given y € X. This equation means that

ATy — T3 =¥
Az + (A +b)xy — kxg = 1o
ATy — T4 = Y3
—KT1 + Ars + Ay =Yy .
The above system is equivalent to
Ty = AT1 — Y1
Ty = AT3 — Y3
(A2 4 DX+ Az = kas + (A +b)yy + 11
PN A)zs = k(A +b)yr + ky2 + (A + AA+0)) (Ays + va),

(5.5)

where we temporarily assume that ys,ys € D(A) and use the polynomial
p(Na) = (a+ A+b)A) (a+ A — k2 = X+ DA + 2a)0% 4 ab) + a® — K2

Because of A = A* > w, the operator A2 + b\ + A is invertible whenever Re A\ > —¢ for
some ¢ > 0 depending on b and w. Since |p(A,a)] — 0o as a — oo, the operator p(\, A)
is invertible if and only if p(A,a) # 0 for all @ € o(A). In this case also a? [p(\,a)|™!
is bounded for a > 0, so that p(\, A)™* : H — D(A?) is continuous. As a consequence,
the equations (5.5) give the unique solution z € D(A) of (A + A)x = y, for each y € X,
provided that p(\, a) # 0 and A2 +bA+a # 0 for all @ € o(A). On the other hand, assume
that A € p(—.A). For a given n € H we define y = (0,1/x,0,0) € X and x = (A +.A) " y.
Then (5.5) implies that p(\, A)xs = n and that x3 € D(A) is the unique solution of this
equation. Summing up,

o(—A)NC_s={ e C_s:p(A\a)=0 for someac d(A)}.
15



= 0. Since —A generates a bounded
semigroup, we only have to consider the case Re A < 0. First let A = i7 € iR for some
a>w>#k>0. If p(it,a) = 0, then

So let us solve the ‘characteristic equation’ p(\, a)

0 = Imp(it,a) = b7 + abr.
Hence, 7 = 0 or 72 = a. But in both cases
Rep(it,a) = 7* —2ar* + a* — k* # 0.

Therefore the spectrum of —A is contained in the open left half plane. If there are
A € o(—A) with ReA — 0, then we have |Im | — oo and thus a — oco. So we can
restrict ourselves to a > ag for a large ag > 0, and Re A € (—6,0). We set ¢ = a~ /2
z = e Then p(A,a) = 0 is equivalent to the equation

and

(5.6) ket = (1 + 2% + bez) (1 + 22).

Note that for ¢ = 0 (5.6) has the two double solutions i and —i. Due to the Theorems
A.4.1 and A.5.4 in [4], we know that for sufficiently small ¢ > 0 there are four distinct
solutions z = z(e) of (5.6) given by a series in y/z. Inserting these series into (5.6) and
comparing coefficients, we first deduce that the series is in fact a power series. Moreover,
we obtain the expansions

283

21’2(8) = 47 — Ii2b

+0(e") and z34(e) = i — %+ 0O(?)

of the solutions of (5.6). This leads to the solutions

Mz =Aa(a) = £iva— 5 1+ 0@ ), My =Asala) = £iva—§ +0(?)
of p(A,a) = 0, for each sufficiently large a € o(A). As a result, close to imaginary axis
there are only the spectral values

2

+iv/a — £ % +O(a™%?), for large a € o(A);

ie., |[ImA| > c¢|ReA|~Y2 for A € o(—.A) with small | Re \|. As observed above, this fact
shows that ||7(#)A7!|| < c¢t~'/2 and that this decay exponent is optimal. Thus we have
shown that

IVu(®)l5 + @)l + IV + o115 < et (luollze + l[uallfn + llvollFe + lloall7n)

for all classical solutions of (5.2).

Further observe the first term on the right hand side of (5.6) represents the damped
equation and the second one the undamped equation, whereas the left hand side gives the
coupling. The spectral values for the full system thus result from a perturbation of those
of the two separated systems. The interesting part A; o of the spectrum is shifted to the
left from iR to the hyperbolas +i\/a — ’;—Z é (asymptotically for a — o0).

5.3. A weakly coupled wave and plate equation. In the same setting as above we
study the Petrowsky-wave system

(5.7) {attu(t,m) + A?u(t, ) + boyu(t,z) — kv(t,z) = 0, (t,x) e Ry x Q,

Onv(t,z) — Av(t, ) — ku(t,x) =0, (t,x) e Ry x Q,
16



for b, k > 0 together with the initial conditions of (5.2) and the boundary conditions
v(,t) =u(,t) = Au(-,t) =0 on 99 for all t > 0,

see [2, Example 6.4]. Since the arguments used below are similar to those in the previous
example, we only sketch them. Again we work with the Hilbert space H = L*(f2) and
the Dirichlet-Laplacian A = —Ap on H. We assume that x < w®?, where w is the lower
bound of A (i.e, the Poincaré constant on (2).

The weakly coupled wave and plate equation can also be written as an abstract Cauchy
problem in the product space X = D(A) x H x D(Az) x H using the operator

0o -1 0 O
A2 b —k 0
A= 0 0 0 -1
-k 0 A 0

with domain D(A) = D(A2%) x D(A) x D(A) x D(Az). This operator generates a bounded
semigroup on X and is unitary equivalent to a matrix consisting of commuting normal
operators in the space H*. Hence we can apply Theorem 4.5.

Using analogous arguments as in the previous example, we obtain

o(—A)NC_s={NeC_s : p(\,a) =0 for some a € o(A)},
for small 0 > 0, where

p(\,a) = (a® + bA + A*)(a + \?) — K%

1

Setting ¢ = a~' and z = Ae, the equation p(\,a) = 0 is equivalent to

(5.8) (1+ 2% + bez)(e + 2%) = ket

For ¢ = 0, there are two single roots +i and —¢ and the double root 0. For small ¢ > 0,
we thus obtain two roots 21 2(€) of (5.8) given by series in v/ and two roots z34(¢) given
by a power series, see [4, Sections A.4, A.5]. Inserting the series into (5.8) and comparing
coefficients, we deduce

2 2 b 2 11 b
z12(e) = :I:i\/E<1 - % g3 — % 84) — %85 + O(e2), z34(e) = +i — 3¢ + O(&?);
which yields
2 2 b 2 b
Aala) = iwa(1 - % (f?’—% a*4) +§ 40 ), M) = Hia— 5+ 0

for large a > 0. This means that

|Im | > C'|Re A|7Y/8
for A € o(—.A) with small Re A, so that Theorem 4.5 implies || 7 (¢)A7|| < ct~V/%; i.e.
ID%u(t)3 + [[2@)]13 + IVo@)l5 + 1015 < et ([Juol|Fra + luillFz + [lvoll 3z + lor]F)

for all classical solutions of (5.7).
We note that in [2] only polynomial decay for initial data in D(A?*) was established (be-

sides data in the test function space), without describing D(.A*) and its norm explicitely.
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