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ABSTRACT. We prove the reduction principle and study other attractivity
properties of the center and center-unstable manifolds in the vicinity of a
steady-state solution for quasilinear systems of parabolic partial differential
equations with fully nonlinear boundary conditions on bounded or exterior
domains.

1. INTRODUCTION

In his illuminating short paper [16], K. Palmer proved a fundamental lemma
saying that any given solution of an ODE can be tracked by a solution on the center
manifold as long as the given solution stays in a small ball around an equilibrium.
Magically, this simple assertion implies the existence of asymptotic phase as well
as an important Pliss Reduction Principle [17] saying that every compact invariant
set in a small ball centered at the equilibrium is a graph over an invariant set for
the reduced ODE on the center manifold. Moreover, if the latter invariant set is
(asymptotically) stable for the flow on the center manifold then the former invariant
set is (asymptotically) stable for the full flow.

The objective of this paper is to give a generalization of these ODE results for a
fairly broad class of parabolic partial differential equations. Specifically, in the cur-
rent paper we continue the work began in [12, 13], and prove Palmer’s Fundamental
Lemma, the Pliss reduction principle, the existence of asymptotic phase, and some
other properties of the center and center-unstable manifolds in the vicinity of a
steady-state solution for quasilinear systems of parabolic partial differential equa-
tions with fully nonlinear boundary conditions on bounded or exterior domains.

We consider the equations

Opu(t) + A(u(®))u(t) = F(u(t)), onQ, t>0,
Bj(u(t))=0, onodQ, t>0, j=1,---,m, (1.1)
u(0) =up, on €,

on a (possibly unbounded) domain  in R™ with compact boundary OS2, where
the solution u(t,z) takes values in C¥. The main part of the differential equation
is given by a linear differential operator A(u) of order 2m (with m € N) whose
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matrix—valued coefficients depend on the derivatives of u up to order 2m — 1, and
F' is a general nonlinear reaction term acting on the derivatives of v up to order
2m — 1. Therefore the differential equation is quasilinear. Our analysis focusses on
the fully nonlinear boundary conditions

[Bj(w)](z) == b(x,u(z), Vu(z), -, V™u(z)) =0, z€dQ, j=1,---,m,

for the partial derivatives of u up to order m; < 2m — 1. We assume mild local
regularity of the coefficients and that the linearization at a given steady state u, is
normally elliptic and satisfies the Lopatinskii—-Shapiro condition, see Hypothesis 2.1.

For illustration, we first give a simple example where N = 1 and m = 2. In the
case of the quasilinear heat equation with a nonlinear Neumann boundary condition

Ou(t) — a(u(t))Au(t) = f(u(t)), onf, t>0,
b(Vu(t)) =0, ondf, t>0,
u(0) = up, on £,

we have to require that a, f € C*(R), b € C?(R) are real, and that there is a steady
state u. € W2(Q) with a(u,) > 6 > 0 and [/ (u.) - v| > & > 0 for the outer unit
normal v. At the end of the introduction we discuss a more involved example.

Fully nonlinear boundary conditions appear naturally in the treatment of free
boundary problems, see e.g. [8] or [18]. The equations (1.1) are a model case for
such problems.

Our fairly general setup is explained in the next section. The local existence of
solutions and the existence and properties of invariant manifolds for (1.1) have been
studied in [12, 13], where we have also discussed related literature. The existence
(and their dimension) of these manifolds is determined by the corresponding parts
of the spectrum of the linearization —Ag of (1.1) at an equilibrium wu,, see e.g.
(2.18). To make the present paper readable independently of [12, 13], we quote
several results from these papers in the next section. In particular, Theorem 2.7
taken from [13] says that the center manifold is locally exponentially attractive
with a tracking solution if there is no unstable spectrum and the flow on the center
manifold is stable. Moreover, here and in our theorems in Section 3 we assume
that the center (or the center—unstable) manifold is finite dimensional. Versions of
Theorem 2.7 have been shown for simpler boundary conditions in more abstract
settings, see [14, §9.3] and also [4, 15, 19, 20, 21, 22]. We note that in [15] a version
of Palmer’s lemma for elliptic problems on infinite cylinders has been proved.

Let us remark that the theory of invariant manifolds (and in particular of center
manifolds) for PDEs represents a substantial extension of the corresponding theory
for ODEs (see, e.g., [5, 10, 11] for basic results and methods in this last regard).

In Section 3, we establish the analogues for (1.1) of Palmer’s lemma in Lem-
mas 3.1 and 3.4. The Pliss reduction principle is proved in Theorem 3.6 in the
setting of Theorem 2.7. Moreover, in Theorem 3.2 we show that any solution of
(1.1) on Ry that stays in a small ball centered at the equilibrium u, already con-
verges exponentially to a solution on the center manifold. Similarly, if the flow
is stable on the center manifold, then any solution starting near the equilibrium
either leaves a certain neighborhood or it belongs to the center—stable manifold and
converges exponentially to a solution on the center manifold, see Theorem 3.5. In
these two results, we allow for unstable spectrum in contrast to Theorem 2.7 of [13].
A stronger version of Theorem 3.5 was shown in the recent paper [19] in an abstract
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setting, but only for problems with linear boundary conditions and assuming that
the center manifold consists of equilibria only.

We conclude the introduction with a more involved example for (1.1) where
we also indicate how one can check our spectral assumptions. (This example is a
modification of Section 6 of [12].) We look at a quasilinear reaction diffusion system
for two species u; and wuy. For the unknown function u(t,x) = (ui(t, z), us(t, z))
we consider the problem

Opui(t, ) — div[d; (u(t, z))Vu,;(t, )] = ri(u(t,z)), t>0, x€Q, i=1,2,

di(u(t,))0,u;(t, x) — q;(us(t, ) = b9 (z,u(t, z), Vu(t,z)), t>0, € dQ,

t’
u(0,z) = uo(x), z€Q, (1.2)

where d; € C?(R?), ¢; € C*(R), r;, € C1(R?), and b0 € C?(00Q x R? x R*") for
i =1,2. We assume that there is a vector u, = (.1, us2) € R? such that

di(us) >0, ri(us) = gi(u) = b(z,u,,0) =0, 2,3} (z,us,0) =0

for i = 1,2 and x € 0. Thus the constant function wu, is a steady state solution
of (1.2). Moreover, (1.2) contains conormal boundary conditions combined with
the nonlinear source terms g;(u;) and the additional fully nonlinear perturbations
b9 which vanish at the equilibrium. Let d = diag(dy,dz), 7 = (r1,72), ¢ = (q1,q2),
b0 = (b9,09). We transform (1.2) into the form (1.1) by setting

A(u)v = —d(u)Au, b(u) = d(u)(v - Vur, v - Vug) — q(u) — 02 (-, u, Vau),

Py = () + [ Do) -9ym) ]

j=1

where z - y denotes the standard scalar product in R?. Since Vu, = 0, we obtain
the linearization

A, = —d(u)A —r'(uy) and  B. = d(u.)d, — ¢ (ux)

at u., cf. (2.10). Using Proposition 4.3 in [3] or a straightforward direct calculation,
one can check our Hypothesis 2.1. Setting d;(u.) = 6;, ¢;(usw) = Bi, and 7/ (uy) =
[rri] for i = 1,2, as in (2.14) we then introduce the restriction Ay = A.|ker(B.) by

A — 1A+ 711 r12
0 721 02A + 1oo

D; = {ve W}Q): d,v=Bi5; 'v}, i=12

) s dOHl(AQ) = Dl X Dg,

In our main results we make use of the spectrum of —4y in Xy = L,(Q)?, in
particular of the trichotomy assumption (2.18). In this example one can determine
o(—Ap) in terms of the operators C;(\) = §;A + r;; — A in Xy with domain D;,
where 4 = 1,2 and A € C. Since the case 197 = 0 is rather simple, we restrict
ourselves to the case 191 # 0. Observe that —Ay has compact resolvent and its
spectrum belongs to a shifted sector of angle greater than 7/2. Hence, (2.18) holds
with possible empty center or unstable parts. In Section 6 of [12] it was shown

U(*Ao) = {)\ S C: T127921 € Up(Cl()\)CQ()\))}

This equation becomes much simpler if we assume in addition that Dy = Dy =:
D. For instance, this equality is true if ¢} (us«1) = ¢h(u«2) = 0. Let p,, n € Ny, be
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the distinct eigenvalues of the Laplacian Ap with the domain D and set

01ftn + 111 T12
M, = .
" ( 21 dofin + 122

Note that the spectrum of Ay on Xo = L,(€2)? does not depend on p € (1, 00) since
the resolvent is compact. Moreover, Ap is self adjoint on Lo(Q2), so that p, is real,
tn — —00, and fin41 < . Then one easily obtains that

o(—Ao) =] __ a(M,).

In order to satisfy (2.18) with a nontrivial center part o, of o(—Ap), we thus have
to ensure that at least of the matrices M,,, n € Ny, has an eigenvalue on iR. One
obtains a purely imaginary eigenvalue of M, if and only if either det M,, = 0 for
some n € Ny, or tr M,, = 0 and det M,, > 0 for some n € Ny. Finally, there is an
eigenvalue of —Aq with strictly positive real part if and only if s(My) > 0, in which
case we have a nontrivial unstable part o, of o(—A4y).

Notation. We set Dy = —id, = —id/0xy, and use the multi index notation. The
k—tensor of the partial derivatives of order k is denoted by V¥, and we let VFu =
(u, Vu, - -+, V*u). For an operator A on a Banach space we write dom(A), ker(A),
ran(A), o(A), and p(A) for its domain, kernel, range, spectrum, and resolvent
set, respectively. B(X,Y) is the space of bounded linear operators between two
Banach spaces X and Y, and B(X) := B(X,X). A ball in X with the radius
r and center at u will be denoted by Bx(u,r). For an open set U C R™ with
(sufficiently regular) boundary AU or for a Banach space U, C*(U) are the spaces
of k-times continuously differentiable functions on U. We write BC*(U) for the
space of u € C*(U) such that u and its derivatives up to order k are bounded
and have continuous extensions to OU. This space is endowed with the supnorm.
For unbounded U, C§(U) consists of u € BC*(U) such that u and its derivatives
up to order k£ vanish at infinity. Similar spaces are used on OU. By W;“(U ) we
denote the Sobolev spaces, see e.g. [1, Def.3.1], and by W;(U) the Slobodetskii
spaces, see [1, Thm.7.48] or [23, Rem.4.4.1.2]. Finally, J C R is a closed interval
with nonempty interior, c is a generic constant, and € : R,y — R, is a generic
nondecreasing function with e(r) — 0 as r — 0.

neNy

2. SETTING AND PRELIMINARIES

In this section we recall the setting and results from [12, 13] needed in the sequel.
Let 2 C R™ be an open connected set with a compact boundary 9Q of class C?™
and outer unit normal v(x), where m € N is given by (2.4) below. Throughout this
paper, we fix a finite exponent p with

p>n+2m. (2.1)
Let E = C" with B(E) = CN*¥ for some fixed N € N. We put
Xo = Ly(@CN), Xy =Wm(CN), Xyqp = WA VP(@;CN),

and denote the norms of these spaces by |- |o, |- |1, and | - |1_1p, respectively. (We
warn the reader that in [12, 13] the latter norm was denoted by | - |,.) We set

Yo = L,(0%CN),  Yji = W2 (00, CN), Y1y, = W2mm—2m/P(90; CN),
Yi=Ynx-- XY, Y1—1/p = Yl,l—l/p X X Ym,1—1/p
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for j € {1,--- ,m}, m; € {0,---,2m — 1} given by (2.4), and the numbers
m; 1
=1 2.2
i 2m  2mp (22)

Here the Sobolev—Slobodetskii spaces on 9f2 are defined via local charts, see The-
orem 7.53 in [1] or Definition 3.6.1 in [23]. We observe that

X1 =2 X1 = Xo, Y= Y11/ Yo,
and also that
Xi1yp = CFmHBCY),  and Yoy, < CPITM(00;CN) (2.3)

by (2.1), (2.2), and standard properties of Sobolev spaces, cf. [23, §4.6.1]. Our basic
equations (1.1) involve the operators given by

[A(u)v](z) = Z ao(r,u(z), Vu(z), -, V> lu(z)) D%(z), =€ Q,

|a|=2m
[F(w)(z) =f(z, u(x), Vu(z), -, V" lu(z))), z€Q, (2.4)
[Bj(w)l(z) =b;(z, (yu)(2), WVu) (@), -, (YV™u)(2)), € 09,
for j € {1,---,m} and functions v € X;_,,, and v € X1, where 7 is the spatial
trace operator and the integers m € N and m; € {0,--- ,2m — 1} are fixed. In view
of (2.3), only continuous functions will be inserted into the nonlinearites. Thus we
will omit v in B;(u) and in similar expressions. We set B = (B, -+, By;,). We

assume throughout that the coefficients in (2.4) satisfy
(R) aq € CHE X E"x---x E™*"): BC(Q; B(E))) for a € NI with |a| = 2m,
aa(2,0) — aq(c0) in as © — oo, if Q is unbounded,
0 in B(E if Q i bounded
€ X X+ X " ; Q; )
CY(E x E" EC"N. BO(Q, E
by € C?MH=mi (9O x E x E" x --- x B E) for j € {1,--- ,m}.
We will need one more degree of smoothness of the coefficients as recorded in the
following hypothesis:
(RR) aq € C2(EXE"x---x E™™™): BC(Q; B(E))) for o € N2 with |a| = 2m,
fEeCHE X E" x - x E""D: BC(Q; B)),
by € C?MH2-mi (9O x E x E™ x --- x B E) for j € {1,--- ,m}.
For each k € Ny, we fix an order of the multi indices 8 € N} with |5] = k. We order
the n*¥ components of a k-tensor in the same way, thus using 3 as the label for the
component corresponding to 5 € Nf with |3| = k. For a function w depending on

z € E(”k), we denote by dsw its partial derivative with respect to S-th argument.
It is not difficult to see that

A€ CHX 1 B(X1,X0)) and F € C(X1-1p; Xo) (2.5)

with the locally bounded derivatives

2m—1

[F'wpl@) =Y > i 0 ul@), Vulz), -, V" tu(z)) DPu(),
k=0 |B|=k

[A'(w)wlv(x) = A'(u)[v, w](x)

= 3 Y Y Gsad) (@ ulw), -V u(a) [0%0(x), DOw(x)]

|la|=2m k=0 |B|=k
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for x € Q, u,v € X;_y/,, and w € X1, see formula (25) of [12] and the text before
it. (Observe that (9ga.)(z,2) : E? — E is bilinear.) We further have

Bj € CHXy 1 Yino1p) NCHX 1Y), je{l,---,m}, (2.6)

with the locally bounded derivatives

m;
[Bj(wv)(z) = > Y i* (9pb)(x, u(x), Vulz), -, V™ u(z)) DPo(z),
k=0|8|=k
where z € 9Q and u,v € Xi_1/p, resp. u,v € X;. The continuous differentia-
bility of B; : X1_1/, — Yj1-1/, was shown in Corollary 12 of [12], and B; €
C'(X1;Y11-1/p) can be proved by the arguments used in step (4) and (5) of the
proof of Proposition 10 of [12], see in particular inequality (69) in [12]. We set
B'(u) = (Bi(u), -, By, (u)).
The symbols of the principal parts of the linear differential operators are the
matrix—valued functions given by

A#(xvzaf): Z aa(J,‘,Z)fa, Bj#(xvz7£): Z i (aﬂbj)(xaz)gﬁ

|or|=2m |Bl=m;

forzeQ, 2z Ex--- x B0 and £ € R, resp. £ € 90, z € E x --- x B
and £ € R". We further set Ay (00,§) = 32,22y, @a(00) §* if € is unbounded.
We introduce the normal ellipticity and the Lopatinskii—Shapiro condition for A(up)
and B’(ug) at a function ug € X;_1/, as follows:

(E) o(Ag(z, V" tug(z),£)) € {A € C: ReX > 0} =: Cy and (if Q is un-
bounded) o(Ag(00,&)) C Cy, for z € Q and € € R™ with [£] = 1.
(LS) Let x € 99, £ € R", and A\ € Cy with £ L v(x) and (X, &) # (0,0). The
function ¢ = 0 is the only solution in Cy(R,;CV) of the ODE system
Mp(y) + Ag (2, V2" g (@), € +iv(2)dy)e(y) =0,y >0,
Bj (xﬂzmju()(m)vf + ZV(x)ay)SD(O) = 07 .7 € {17 e am}'
We refer to [3], [6], [7], and the references therein for more information concerning
these conditions. We can now state our basic hypothesis.

Hypothesis 2.1. Condition (R) holds, and (E), (LS) hold at a steady state u. €
X1 of (1.1), d.e.,  A(un)us, = F(us) on Q, B(u,) =0 on 0.

For the investigation of (1.1), we need several spaces of functions on J x Q and
J x 09, where J C R is a closed interval with a nonempty interior. The base space
and solution space of (1.1) are

Eo(J) = Lyp(J; Lp(@ CY)) = Ly (J; Xo),
E1(J) = Wy (J; Lp(,CN)) N Ly (J; W2 (5, CN)) = W (J5 Xo) N Ly(J5 X1),
respectively, equipped with the natural norms. We need the crucial embeddings
E1(J) = BO(J; X1-17) = BC(J; G5 1 (@ CY)), (2.7)

see Theorem 111.4.10.2 of [2] for the first and (2.3) for the second embedding. We
note that the norm of the first embedding is uniform for intervals J of length greater
than a fixed ¢ > 0. Observe that (2.7) implies that the trace operator vy at time
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t = 0 is continuous from E;(J) to X;_;, if 0 € J. The boundary data of our
linearized equations will be contained in the spaces

Fi(J) = W3 (J; Lp(9, CN)) 0 Ly (J; W™ (09; CN))
=Wy (J;Yo) N Lp(J;Yj1),  je{l, - ,m},
endowed with their natural norms, where F(J) :=Fy(J) x --- x F,;,(J). We have
]F](J) — BC(J, Y}J,l/p) — BC(J X 89) and g € B(Fj(J),YVj’l,l/p) (28)
if 0 € J, see [7, §3].
For a, B € R, we set e, (t) = e for t € R and define the function e, g by setting

ea,3(t) = eq(t) for t < 0 and e, g(t) = eg(t) for t > 0. Then we introduce the
weighted spaces

Ep(Ry, o) ={v:euv € Ex(Ry)}, F(Ry,a) ={v:eqv € F(RL)},
Ei(o, 8) = {v: eqpv € Ex(R)}, Fla, ) = {v:eqpv € FR)}, (2.9)
where & = 0,1, endowed with the canonical norms [[v||g, &, ,a) = l€avllg,®,) etc.
We also use the analogous norms on compact intervals J.

We assume that Hypothesis 2.1 holds. Due to (2.5) and (2.6), we can linearize
the problem (1.1) at the steady state u, € X; obtaining the operators defined by

A, = Auy) + A (us)us — F'(us) € B(X1, Xo),

, (2.10)
Bj* = B](U*) S B(Xl—l/p7 Y—j,l—l/p) n B(Xl, ijl)
We set B, = (Bi«, "+ , Bm«). We further define the nonlinear maps
G e Cl(Xl;Xo) and Hj (S Cl(lel/p;}/j,lfl/p) N Cl(Xl;}/jl) (2 11)

with G(0) = H;(0) =0 and G'(0) = H;(0) =0
for j € {1,---,m} by setting
G(v) = (A(us)v — A(us +0)v) — (A(uy + v)us — A(u)u, — [A'(us)uJv)
+ (F(us 4+ v) = F(uy) — F'(u,)v),
H;(v) = Bj(us)v — Bj(ux +v),
for v € Xy, resp. v € X1_y/,. Again, we put H(v) = (Hi(v),---, Hpn(v)). The
corresponding Nemytskii operators are denoted by
Gv)(t) = G(o(t),  H;(0)@) = Hj(v(t)),  H(v)(t) = H(v(?))
for v € E¢(J) (which is the space of v : J — X such that v € E;([a,b]) for all
intervals [a, b] C J).
Theorem 14 of [12] shows that (1.1) generates a local semiflow on the solution
manifold
M= {’LLO S Xl—l/p : B(UO) = 0}
In particular, a function uy is the initial value of the (unique) solution u € E4 ([0, T7)
of (1.1) for some T > 0 if and only if ug € M. Setting v = u — u, and vo = ug — U,
we further see that ug € M if and only if vo € X;_;/, and B.vg = H(vg) and that
u € E1([0,T7) solves (1.1) if and only if v € E1([0,T]) satisfies
Ov(t) + Awv(t) = G(v(t)) on ), ae. t>0,
Bj,v(t) = H;(v(t)) ondQ, t>0, je{l,---,m}, (2.12)
v(0) = v, on .
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Remark 2.2. Let Hypothesis 2.1 hold. Theorem 14(a) of [12] and (2.7) then
imply the following facts: For each given T' > 0, there is a radius p = p(T) > 0
such that for every ug = u. +vo € M with |vgl1_1/, < p there exists a unique
solution u = u, + v of (1.1) on [0,77], and |w(t)|i—1/p < c|lv[lg,(o,17) < clvoli-1/p
for all t € [0,T] with constants ¢ = ¢(7T") independent of ug in this ball. Moreover,
Proposition 15 of [12] and the Sobolev embedding imply that

[v(t)]1 < clvoli—1yp for all ¢ e [Ty, T7, O
where T' > Ty > 0 and the constant may depend on Tj.

We now recall some results from [12] regarding the solvability of the inhomoge-
neous linear problem

O(t) + Aw(t) = g(t) on (), ae. tel,
B.v(t) = h(t) on 0, teJ, (2.13)
v(0) = v, on €,

in weighted function spaces on the unbounded interval J € {R;,R_,R}. We as-
sume that Hypothesis 2.1 holds. (Actually, when dealing only with (2.13) we do not
have to assume that u. € X is a steady state of (1.1).) We recall from Theorem 2.1
of [7] that on a bounded interval J = [a,b] the boundary value problem obtained
by combining the first two lines of (2.13) with the initial condition v(a) = vo has a
unique solution v € Eq([a, b]) if and only if g € Eo([a, b]), h € F([a,b]), vo € X1_1p,
and B,vg = h(a). A solution v € EP¢(J) of (2.13) on J will be denoted by
v = S(vo,g,h), where J C R is any closed interval containing 0. We stress that
this notation incorporates the compatibility condition B,vy = h(0) because of the
second line in (2.13) and the embeddings (2.7) and (2.8). Moreover, the solution
S(vo, g, h) is unique if J = Ry, but uniqueness may fail on J =R_.
We define the operator Ay = Ay|ker B, With the domain

dom(Ap) ={ue X1 :Bju=0,j=1,...,m}. (2.14)

It is known that — Ay generates an analytic semigroup on X, which we denote by
T(-). We need the extrapolation space X_; of Ag defined as the completion of
Xo with respect to the norm |ug|_1 = |(u + Ag) " tug|o for some fixed p € p(—Ap).
There exists an extension A_; of Ay to X_; which generates the analytic semigroup
T_1(-) extending T'(-) to X_;. We further employ the map

II = (H+A_1)N1 GB(}G,Xl) (215)

where N7 € B(Y1, X1) is the solution operator, N7 : ¢ — u, of the elliptic boundary
value problem (u+ As)u = 0 on Q, B.u = ¢ on 9, see Proposition 5 of [12].
This proposition also gives a right inverse

Ni—1yp € BYi—1/p, Xi-1/p) (2.16)
of B,. Due to Proposition 6 of [12], the solution v € E°(.J) of the problem (2.13)
is given by the variation of constants formula

v(t) =Tt —71)v(r) + / [T(t—s)g(s) + T-1(t — s)ITh(s)] ds (2.17)

forallt > 7in J.
In order to treat solutions of (2.12) or (2.13) on the intervals J = Ry, we
assume that the (rescaled) semigroup {e‘;tT(t)}DO is hyperbolic for § € [01, d2] for
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some segment [0, 2] C R (i.e., o(—Ag+3d)NiR = (). Let P be the (stable) spectral
projection for —Ag + § corresponding to the part of o(—Ag + J) in the open left
halfplane, and set Q@ = I — P. Then T'(¢) is invertible on QX with the inverse
To(—H)Q, and [T (#)P||, |le ¥ To(—t)Q|| < ce™ for t > 0 and some € > 0. If
esT(+) is hyperbolic on Xy, then esT_;(-) is hyperbolic on X_; with projections
P_; and Q_1 = I — P_; being the extensions of P and @, respectively. Moreover,
Q-1 maps X_; into dom(Ap), and P leaves invariant X;_y/,, X1, and dom(A4y).
The projections commute with the semigroup and its generator as well as with their
extrapolations. (See [12, §2] for these facts and related references.)

When needed, we assume that T'(-) has an exponential trichotomy, i.e., there is
a splitting

o(—Ap) =osUo.Uay, with (2.18)

maxReo; < —ws < —w, <minReo, <0 <maxReo. < W, < w, <minReo, .

(If ©2 is bounded, o(—Ap) is discrete and thus (2.18) automatically holds with
o, C R and arbitrarily small w, = @..) We take numbers a € [w,,ws] and
B € [We,w,] and denote by Py the spectral projections for —Ag corresponding
to o, k = s,c,u. Weset Py = P+ P., P.y = P. + P,, and P,, = P, + P,.
Then the rescaled semigroups e,T'(-) and e_gT(-) are hyperbolic on X, with stable
projections Ps and P, respectively. The restriction of T'(t) to Py Xg yields a group
denoted by Ty(t), t € R, where k = ¢, u, cu.

When needed, we impose the following assumption which is weaker than (2.18):
There exist positive numbers wg, Wy, Wey, wes > 0 such that at least one of the
following assertions holds:

o(—Ap) =0sUo0, with maxReos < —ws < —we, < minReog,, (2.19)
o(—Ay) =0,sUoy,  with maxReoes < wes < wy < minReoy, . (2.20)

We continue to use notation Py for the spectral projections for — Ay corresponding
to the sets o, k € {s, cs, cu, u}. Using standard facts, we see that P, Xo C Py Xo C
dom(Ap) and that on P.,Xo the norms in Xy, X;_q,, and X; are equivalent.
Finally, we recall the notation X?fl/p = {20 € X1_1/p : Bxzo = 0} for the tangent
space at u, to the nonlinear phase space M = {ug € Xy_y1/, : B(ug) = 0} for
(1.1), and that P = I — Nj_y/,B. projects X;_y,, onto X?_l/p, see (2.16) and
remarks preceding Theorem 14 in [12]. In the theorems stated below, the invariant
manifolds are graphs over the corresponding spectral subspaces of X?_l I’ where

it is important to note that P., Xy C dom(A4y) C X?ﬁl/p.

We now recall the main result Theorem 4.2 of the paper [13] where one constructs
a local center manifold M. and shows some of its basic properties. In particular,
M_ is a C*-manifold in X1_1/p being tangent to P. Xg at u.. It is given by functions
Uy + v(0) for initial values v(0) of solutions v € E(«, —3) to a modified version of
(2.12) on J = R which involves a nonlocal cutoff. This fact is not needed below,
but it is described in detail in [13].

We assume that the spectrum of —Ay has the trichotomy decomposition de-
scribed in (2.18), and recall that this assumption automatically holds if the spatial
domain 2 is bounded.

Theorem 2.3. Assume that Hypothesis 2.1 and (2.18) hold. Take any a € (w,,ws)
and B € (We,wy). There exists a radius p > 0 and maps ¢. € C1(P.Xo; PeuX1_1/p)
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and ®. € CY(P.Xo;E1(a, —f3)) with bounded derivatives such that the following
assertions hold.
(a) We have ¢.(0) =0 and ¢.(0) = 0. The local center manifold is given by

M, = {UO = Usx + 20 + QSC(ZO) t20 € PCXO} N Bxl,l/p(u*;l’)
= {uo = us +v(0) : v = Pe(Pe(uo — us)) } N Bx,_,,, (s, p). (2.21)

If ug € M., then the function v from (2.21) is given by v = Pov + ¢(Pev). It
further solves the equation (2.12) (at least) for t € [=3,3], so that M. C M. The
dimension of M. is equal to dim P.Xj.

(b) Let ug € M. and v be given by (2.21). If the forward solution u of (1.1)
exists and stays in Bx, (u«, p) on [0,t1] for some t; > 0, then u(t) = v(t) +u. € M.
for 0 <t < ty. If the function @ = v + u, stays in Bx,(u,p) on [to,0] for some
to < 0, then G(t) € M. and 4 solves (1.1) fortg <t <0.

(c) Assume that v(t) + u. € M. for allt € (a,b) and some a < 0 < b. The then
function y = P.v satisfies the equations

y(t) = —AoFPey(t) + PITH (y(t) + ¢e(y(t))) + PG (y(t) + de(y(t))),

(0) = Peluo — u.), 22

on P.Xy fort € (a,b). Moreover, v € C((a,b); X1) and
B.¢.(P.vg) = Byvg = H(vg), (2.23)
Pau(Asvg — G(vg)) = ¢L(Pevo) Pe(Avg — G(vp))- (2.24)

(d) If u € EP°(R) solves (1.1) on R with |[u(t) —u.|1_1/, < p for allt € R, then
u(t) € M. for allt € R.

(e) In addition, assume that (RR) holds. Then there is a pg > 0 such that the
map ¢. : PeXo N Bx,_,,, (0, p0) — PsuX1 is Lipschitz.

In addition to Theorem 2.3, one constructs a local center—stable manifold Mg
assuming (2.20) (see Theorem 5.1 of [13]), and a local center—unstable manifold
My assuming (2.19) (see Theorem 5.2 of [13]). These manifolds are of class C! in
Xi_1/p, and are tangent to PCSX?_l/p, resp. to Py Xo, at u,. They are described
in the following two theorems. Recall that P = I —N;_;,B,. In Theorem 2.4 the
map Y. takes care of the compatibility conditions.

Theorem 2.4. Assume Hypothesis 2.1 and (2.20). Take any B € (wes,wy). Then
there exists a radius p > 0 and maps

(bcs S Cl(Pch?,l/p; PuX0)7 ﬁcs € Cl(Pchf,l/p; Pchl—l/p)

and ®., € Cl(PCSngl/p;EﬂR% —0B)) having bounded derivatives such that the
following assertions hold.

(a) We have ¢.s(0) = ¥.5(0) = 0 and ¢,,(0) = 9,,(0) = 0. The local center—
stable manifold is given by

Mes == {UO =Ux + 20+ ﬁcs(zo) + ¢CS(ZO) 120 € PCSX?_l/p} N Blel/p (U*,P)

= {uo = us +v(0) : v = Pes(PesP(uo — us)) } N Bx,_, , (s, p). (2.25)

If ug € Mg, then the function v from (2.25) solves the equation (2.12) (at least)
fort €10,4]. Thus, M C M.
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(b) Let ug € Mg and v be given by (2.25). Assume that a forward or a backward
solution u of (1.1) ewists and stays in Bx,(u«,p) on [0,to] or on [—tg,0] for some
to > 0. Set v(t) = u(t) — us for —tg <t <0 in the second case. We then have'

u(t) =ty +0(t) = Uy + PesP(t) 4 Ges(PesP(t)) + Ves(PesPo(t)) € Mes (2.26)

for 0 <t <ty or —ty <t <0, respectively.
(¢) It holds Mcs N My = {u,}.

Theorem 2.5. Assume Hypothesis 2.1 and (2.19). Let a € (wew,ws). Then there
exists a radius p > 0 and maps ¢ey € C(PeyXo; P X1_1/p) and @, € CY( Py Xo;
Ei(R_, ) with bounded derivatives such that the following assertions hold.

(a) We have ¢, (0)=0 and ¢,,(0)=0. The center-unstable manifold is given by

Mcu = {u() = Usx + 20 + ¢cu(ZO) 120 € PcuX(]} N BXl,l/p(u*vp)
= {ug = us + v(0) : v = Py (Peu(up — us))} N Bx,_,, (Usy p). (2.27)

If ug € My, then the function v from (2.27) solves the equation (2.12) (at least)
fort € [—4,0]. Thus, M, C M. The dimension of My is equal to dim P, Xj.

(b) Let ug € My and v be given by (2.27). If the function 4 = u, + v stays in
Bx, (ux, p) on [to,0] for somety < 0, then u(t) = u,+v(t) € Mcy and @ solves (1.1)
for to <t <0. If the forward solution u of (1.1) exists and stays in Bx,(ux,p) on
[0,t1] for some t; > 0, then u(t) € My and we set v(t) = u(t) — us, for 0 <t < .
We futher have v(t) = Peyv(t) + ¢eu(Peuv(t)) for t € [to, 0], resp. t € [0,t1].

(c) It holds Mcy N Mg = {u.}.

(d) Assume, in addition, that (RR) holds. Then there is a pg > 0 such that the
map ¢ey : PeuXo N Bx,_,, (0, po) = PsX; is Lipschitz.

Moreover, the local stable and unstable manifolds My and M, for (1.1) were
constructed in Theorem 4.1 of [13]. These manifolds have analogous properties
and are used to prove further properties of the center manifold summarized in the
following corollary (see Corollary 5.3 in [13]), where we assume throughout that
radii p > 0 in the above theorems are the same.

Corollary 2.6. Assume that Hypothesis 2.1 and (2.18) hold. We then have M. =
Mes N Moy, McN Mg = {u,}, and M. N M, = {u}.

Finally, we cite a result from [13] that describes the stability of the steady state
u, of (1.1) and the attractivity of M.. As in Theorem 2.3, one assumes that
Hypothesis 2.1 and (2.18) hold. In parabolic problems, the center and center—
unstable manifolds are finite dimensional in many cases; e.g., if the spatial domain
Q is bounded. Moreover, there are important applications where M, consists of
equilibria only, see e.g. [9], [18], [19]. Thus it is quite possible that one can check
the stability of w, with respect to the semiflow on M. generated by (1.1) without
knowing a priori that u, is stable with respect to the full semiflow of (1.1) on M.

Theorem 2.7 below states, see Theorem 6.1 of [13], that u, is stable on M under
the following conditions: s(—Ag) < 0, u, is stable on M¢, = M., P,y = P, has
finite rank, and the additional regularity assumption (RR) holds. Here s(—Ay)
= sup{Re\ : A € g(—Ap)}. In fact, one has a stronger result saying that each
solution starting sufficiently close to u, converges exponentially to a solution on
M.. Here one can assume that s(—Ag) < 0 without loss of generality since —A

IWe corrected in formula (2.26) a misprint found in [13].



12 R. JOHNSON, Y. LATUSHKIN, AND R. SCHNAUBELT

has no spectrum in the open right halfplane provided u, is stable and P, has finite
rank, due to Theorem 4.1 of [13].

Theorem 2.7. Assume that the spectrum of —Ag admits a splitting o(—Ag) =
os Ua. corresponding to the spectral projections Ps and P, such that P, has finite
rank, o. C iR, and there is a number o with maxReos, < —a < 0.

Suppose that for each r > 0 there is a p > 0 such that for ug € M. with
|Pe(uo — us)lo < p the solution u of (1.1) exists and u(t) € M. N Bx,_,,,(us,7)
for allt > 0. Then there is a p > 0 such that for every ug = u. + vy € M with
[voli—1/p < P the solution w = u, +v of (1.1) exists on Ry and there is a solution
u of (1.1) on Ry such that u(t) € M. for allt >0 and

lu(t) —u(t)|1 < ce™ ™ |Psvo — dpe(Pevo)li-1/p
for all t > 1 and a constant c independent of ug and t. Moreover, u, is stable
for (1.1), i.e.: For each v > 0 there exists a p' > 0 such that for every ug €
MNBx,_, ,,(us, p') the solution u of (1.1) exists on Ry and u(t) € Bx,_, , (us,7)
for allt > 0.

3. THE PALMER FUNDAMENTAL LEMMA AND PLISS REDUCTION PRINCIPLE

Let u be a solution of (1.1), u, be the equilibrium, and let v = u — uy, v9 =
u(0) — ux. Let |voli—1/p < p where p > 0 is sufficiently small. Throughout, we
assume condition (RR) so that ¢. and ¢, are Lipschitz into X, see Theorem 2.3(e)
and Theorem 2.5(d). We first establish a version of the Palmer Fundamental Lemma
in our PDE context.

Lemma 3.1. [The Fundamental Lemma] Assume that Hypothesis 2.1, condition
(RR), and (2.19) hold. Then there exist C,C',C"r,> 0 and a € (0,ws) such that
if v is a solution of (2.12) satisfying |v(t)|1—1/p < 1 for all 0 <t < T with some

T > 1, then there exists a solution z of (2.12) on [0,T] such that u. + z(t) € Mey
for allt € [0,T), Peuz(T) = Peyv(T), and

|U(t) - Z(t)|1 < CYe_wt‘-PSUO - ¢cu(Pcu’UO>‘1—1/p (31)

holds for all 1 <t <T. Given Ty > 1, the constants are uniform for T > Ty. For
every t € [0,T), we further have

|U(t) — Z(t)‘l—l/p S Cleiat|PSUO — ¢cu(Pcqu)|1—1/p S O/,67Qt|’l)0|1_1/p. (32)

Here, equation (3.1) holds for ¢ > 1 (or for ¢t > a for any a > 0) because one can
control the Xi-norm of the solution only for strictly positive ¢, see Proposition 15
of [12] and Remark 2.2 above.

Proof. Part 1. We assume that 7" > 3. For a general T, > 0 the proof is similar.
Let v be a solution of (2.12) on [0,77] such that |v(t)[,_1/, < r for all ¢ € [0,T],
where a sufficiently small » > 0 is to be chosen below. Due to (2.19) there are
constants 0 € (wey,ws) and N > 1 such that [le=*oFea Py [|5x,) < Ne™ for all
t < 0. Using Theorem 2.5, we find a radius pe, > 0 such that the restriction
bew + PeuXo N Bx, (0, pew) — X7 is Lipschitz with Lipschitz constant ¢, such that
Us + €+ Geu(§) € My for all € € PoyXo N Bx, (0, pew), and such that there is a
constant ¢g > 0 with |Peyz(t)|o < ¢o|Peuz(1)o for all 0 < ¢ < 1 and any solution z
of (2.12) with u, + z(t) € M, for t € [0,1]. We set

e1(R) = zexrfla;‘iSR{HG/(x)||B(X1,Xo) H (@)118(x0,v1) ) (3.3)
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Because of (2.11), we can fix a (small) number R > 0 such that
4= Nea(R)(L+ | Pealllv, i (1L + ) < 0, =, (3.4
(1+co)R ||Pcu||B(X1,X0) < Peu - (3.5)
To choose r > 0, we note that Remark 2.2 (with 7' = 1/2) implies the inequality
lo(t)1 < cv(t —1/2)|1_1yp <er forall te[1/2,T].

Here and below the constants do not depend on v, T, ¢, R or r, and we let r be less
than the radius indicated by Remark 2.2. We can now take small r > 0 such that

[v()1 <R forall 1/2<t<T,
r(l+ g)HPcu”B(Xl,l/,,,Xl) <R/2 and r ||PcuHB(X1,1/p,X0) < Peu-
Part 2. We define
W= Ps0 — ¢y (Peyv) and @ =v—w = Py + ¢y (Peuv)

(3.6)

on [0,7]. The function w belongs to PsX;_1/, and, due to the last inequality in
(3.6), the function ¢ belongs to M.,. Note that P. ¢ = P.,v and that

(A 4+ p)x = (Ao + p)(x — N1Biz) = (A1 + p)z — 1B

for every x € X1, see (2.15). One proves the analogues of formulas (2.23) and (2.24)
for ¢y as in the proof of Theorem 4.2 of [13] for the map ¢.. From these identities
we infer

Bow = Byv — Bugeu(Powt) = H(v) — H(g) = h, (3.7)
W = Py(—=Aw + G(v)) = ey (Peuv) Peu(G(v) — Asv)
= Geu(Peup) Peu(Asp — G(9)) + Po(Avp — G(9))
— P+ PG(0) — G(9)) + 0l (Peut) Peu (At + Glp) — Glv)
— A Pav+ RITh 4 P(G(0) — G(9)) — 8, (Peut) Peu(TTh + G(0) — G(9))
=: —A_1Pw+ PJIIh + Pyg. (3.8)
In the penultimate line we used that P.,A_qw = A_1P.,w = 0. Applying the

variation of constant formula in X_ 1, we therefore obtain
t

w(t) =Tt — 7)Psw(r) + / T_1(t — 0)Ps(g(o) + ITh(0)) do (3.9)

for 0 <7<t <T. Let @ € [0,ws). Remark 2.2 of the present paper and Remark
3.7 in [13] imply that

max { gz, ir.c00 1Plera.e b < )l (r0- (3.10)
Arguing as in the proof of Proposition 8 of [12] (see inequality (43) there), we can
then estimate
e T |lwllg, (r.g.0) < e(w(T)li-1/p + €T lgllzo(r0.0) + €T IBllE(r0.0))
< cfw(m)hioryp + e () [wllg, (r.1).0))-

We note that the constants do not depend on 7 if 0 < 7 < t — 1/4, say. Making
r > 0 sufficiently small and using (2.7), we arrive at

e Mwlle, (r.,0) < clw(T)i-1/p, (3.11)

[w(t)|1-1/p < ce” “wllg, (r4,0) < ce™ D Nw(T)]121p
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for all 0 < 7 <t < T. Again the constants are uniform for 7 € [0,¢ — 1/4].

Part 3. Since |Peyv(T)|o < peu by (3.6), there exists the backward solution z =
Pewz+ ¢en(Peyz) of (2.12) such that u, + z belongs to M, and Peyz(T) = Peyv(T).
Due to Theorem 2.5, z(t) exists at least for ¢t € [T' — 3,T] and |||, (r—3,17) <
c|Pewz(T)|o < cer. Thus, [2(T — 3)[1-1/, < cr by (2.7) and so Proposition 5 of [12]
yields |z(t)}1 < er < R for all ¢ € [T — 2,71, after decreasing r > 0 if needed. Let
to € [1/2,T — 2] be the minimal time such that z(t) with u. + z on M., exists and
the inequality |z(¢)|1 < R holds for all tg < ¢ <T. We set

Y = Peu(v — 2). (3.12)
Denoting
g1 =G(v)—G(z) and hy; =B.(v—2z)=H(Ww)— H(z),
we obtain
Y = Peu( = Au(v—2) +g1)

= —Peu((Ao + ) (v — 2 = N1hy) — p(v = 2)) + Peugn

= —AoPeuy + Peu(g1 + ITha). (3.13)
This equation yields

T
y(t) = — / e~ (=D A0 p (g (1) + TThy (1)) dr,
t

T
ly®)|o < N(1+ [[PeuIlll5(v;,x0)) / e Ne (R)|u(r) — 2(7)| dr (3.14)
t

for all ¢t € [tg,T]. We observe that
v—2=wW4+ eu(Peu?) — eu(Penz) +y (3.15)

holds on [tg, T]. Putting dg = d(1 + ¢)~! and recalling (3.4) and (3.5), we further
estimate

T T
Lyt < d/ eéT|y(T)\odr+do/ e [w(7)|1 dr-
t t

We then deduce from a Gronwall-type inequality that

T T T
ety ()o gdo/ e5T|w(T)|1dT+ddo/ ed“*t)/ e |w(o)|1 do dr
t t T

T T o
=dy / e lw(T)|y dr + ddg / 7w (o) / e dr do
t t t

T
=dy / e w ()|, do.
t

Since we have chosen d and § as in (3.4), we can take a € (d + §,ws). So, Holder’s
inequality and (3.11) imply

T
Ol <do [ Do)y do
t
doe—at
< m\lwllm([t,m,a) < clw(t)1-1/p (3.16)
o)
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for all t € [tg,T], where the constant ¢ is uniform for ¢ < T — 1/4, say. If t €
[T —1/4,T], we can estimate in (3.16) the E; norm on [¢,T] by that on [t —1/4,T]
and obtain
ly®)lo < clw(t —1/4)1-1/p (3.17)
with a uniform constant. In view of (3.12), we have z = Pey(v — ¥) + Peu(Peu(v —
y)) Thus, ‘Pcu(v - y)|0 = ‘Pcuz|0 < ||PcuHB(X1,XU)R < Peu due (35) Using
[v(to)|1—1/p < 7y (3.6), (3.16), and (3.11) with 7 = 0, we then deduce
12(to)1 < (L4 O)|Peu(v —y)li < (L+ || Peullsix, ). x0) [0(E0) |11/ + cly(to)]o
< R/24 clw(to)li—1/p < R/2+clvoli—1/p < R/2+cr <R,

provided r > 0 is small enough. It follows that o = 1/2. Since u. + 2(1/2) € Mqy
we can extend u, + z on M,y to the time interval [0, 7] due to Theorem 2.5(a).
The estimates (3.16), (3.17) and (3.11) now imply that the inequalities

| Peu(v(t) = 2(t))]o = ly(t)lo < ce™*w(0)]1-1/p = ce™ | Povo — deu(Peuvo)ls 1,
[Ps(v(t) = 2(8)[1-1/p = [w(t) + ¢eu(Peuv(t)) = Peu(Peuz(t))l1-1/p
< ‘w(t)hfl/p + C‘y(t>|0 < Ce_at|Ps’UO - (bcu(Pcu'UO)'lfl/p

hold on [1/2,T]. These relations and Theorem A.1 of [13] yield (3.1).
Part 4. To establish (3.2), it remains to show that

[o(t) = 2(t)[1-1/p < c|Psvo — ¢eu(Peuvo)|i-1/p for all t € [0, 1]. (3.18)

We first note that (3.15) also holds on [0, 7] and that |Peyz(t)]o < pey for 0 <t <1
due to (3.5) and the text before this inequality. Let g and h be given by (3.8) and
(3.7). Theorem 2.1 of [7] gives a ¢ € E;([0,1]) such that

O (t) + Ap(t) = g(t) on Q, ae. t>0,
B,(t) = h(t) on 09, t>0,
»(0) = w(0), on .

Using also (3.10) with a = 0, we further obtain
[Plle, 0.1 < e(lw(0) -1 +lI9llEq o1 + 1 2lle(o.1) < clw(0)]i—1 +e(r)l|wlle, (0.1))-
In view of (2.17) and (3.9), we have w = P, and thus

lwlle, 0.1 < ell®lle, oy < elw(0)li—x +e(r)l|lwlle, qo.1,

wlle, (0.17) < clw(0)1-1/p = ¢|Psvo + ¢eu(Peuvo) lps (3.19)
possibly after decreasing r > 0. Equation (3.15) and (2.7) now yield

w(t) = 2(O)]1—1/p < c(lw®)i—1/p + [¥()lo) < cl[wlg, (o,17) + [¥(E)]o)
< C(|Ps'UO + ¢cu(PcuU0)|1—l/p + |y(t)|0) (3'20)

for all t € [0,1]. To control y(t), we use again (3.13). As in the proof of Proposi-
tion 10 of [12] (letting there v = 0 in steps (1), (4) and (5)), one can show that

9111z (t,11) + NP llLee,1:v0) < ellv = 2l Le(eayx0)

where the constant does not depend on ¢ € [0, 1]. Combined with (3.15), (3.19) and
(3.1), these facts yield

1
y(t) = e_(t_l)A‘]P““y(l) — / e_(t_T)AOPC“PCU(gl(T) + Ihy (7)) dr,
t



16 R. JOHNSON, Y. LATUSHKIN, AND R. SCHNAUBELT

ly(@)lo < c(ly(M)o + v = 2l e (e1:x1)) < cllyDo + wllpe(e,:x0) + 1Ylleo(e11)
S C(‘PS'UO + Qscu(Pcqu)‘l—l/p + ||y||]E0([t,1]))

where we could employ that ¢, is Lipschitz with values in X; since |P.yv|o and
| Pewz|o are less than p., on [0, 1]. It follows

1
) < elPat + G (Pl _y 4 ¢ [ ly(Dlgdr
t

for all ¢ € [0, 1], so that |y(¢)]} < c\PSvoJrchu(Pcuvo)Vl”_l/p by Gronwall’s inequality.
In view of (3.20), we have established (3.18). O

Our first theorem says that the center manifold attracts solutions which stay in
small ball around u, for all £ > 0 and that there exists a tracking solution u, + Z

on M..

Theorem 3.2. [Asymptotic Phase] Assume that Hypothesis 2.1, condition (RR),
(2.18), and dim P,y X < oo hold. Then there exists constants r,c > 0 and a €
(0,ws) such that : If a solution v of (2.12) exists and satisfies |v(t)|1_1/p < 1 for
all t > 0, then there is a solution Z of (2.12) such that u. +Z(t) € M. and

lv(t) —Z(t)]1 < ce”*|Pyvg — Geu(Peuv0)|1-1/p forall t>1, (3.21)
[o(t) = Z(t)]1—1/p < ce” | Py — beu(Peuvo)|1-1/p for all t>0. (3.22)
If we replace here (2.18) by (2.19), then u. +Z(t) only belongs to M, for allt > 0.

Proof. We choose r > 0 so small that Lemma 3.1 can be applied to v. Lemma 3.1
gives solutions z, with u, + z, on Mg, tracking v on [0,n] for every n € N with
n > 2. Lemma 3.1 also yields

| Peuzn(0)]o < [Peuv(0)|o + [Peu(2(0) — v(0))]o < er

for all n € N. Hence, there exists a subsequence n; — oo so that Peuzn; (0)—>c¢Ce
P., Xy as j — oo. Let Z be the solution of (2.12) on [—2,2] such that P.,Z(0) = ¢
and u.+Z(t) € Mg, for t € [—2,2], decreasing r > 0 if needed to apply Theorem 2.5
and Remark 2.2. We also have [Z(t)|1—1/, < c[Z(0)[o < [Clo < cir for all ¢ €
[0,2] and some constant ¢; > 0. Let b denote the supremum of ¢; > 1 such that
Z(t) exists on [0,¢1] and stays in the ball El,l/p((), (I1+c1+ C")r), where C” is
given by Lemma 3.1. We thus have b > 2. If we take a sufficiently small » > 0,
Theorem 2.5(b) shows that u, + Z(t) € My for t € [0,b).

As in Theorem 4.2 of [13] one can prove that the functions P.,z, and P.,Zz
satisfy an ordinary differential equation analogous to (2.22). Since the initial data
Peuzn, (0) converge to Peyz(0), we thus obtain Peyzy, (t) — PeuZ(t) in Xg as j — oo
for t € [0,b) and hence

Zn; (t) = Pcuznj (t) + d)cu(Pcuan (t)> — E(t)

in X; < X;_1/p, using also the Lipschitz property of ¢., stated in Theorem 2.5(d)
and decreasing r > 0 if necessary. Lemma 3.1 now implies that

1Z(t)[1-1/p < limﬁsup |20, (£) = v(t)[1—1/p + [0(E)[1-1/p (3.23)
J oo
< C"e_o‘t\voh,l/p +r < (C"+1)r < (C"+1+cp)r

for all t € [0,b). As a result, b = oo and Z exists for all ¢ > 0 and stays in
Bi_1/p(0,(C” 4+ 14 ¢1)r). If r > 0 is chosen small enough, then Lemma 3.3 below
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shows that u. + Z(t) € Mg for all ¢ > 0. Hence, u, + Z is contained in M, by
Corollary 2.6 since u, + Z(t) € My for all ¢ > 0. (If only (2.19) holds, then we
cannot apply Lemma 3.3, and we just obtain u, + Z(t) € M,,.) The convergence
properties follow from Lemma 3.1 as in (3.23). O

Lemma 3.3. Assume that Hypothesis 2.1 and (2.20) hold. If u, +vg € Mcs, then
Vo = PCSUO + (bcs(Pcs PUO); (324)

where P = I—Nl_l/pB*, Moreover, there exists a’p > 0 such that if v is a solution
of (2.12) on Ry staying in B(us,p), then u, + v(t) € Mcs for all t > 0.

Proof. Theorem 2.4(b) shows that
vo = Pes P vy + ﬁcs(Pcs PUO) + ¢cs(Pcs7DUO)

if ux +v9 € Mes. Then Pegvg = Pes P ug + Pes(Pes P o), and the first assertion
follows. In the framework of Theorem 2.4, the second assertion can be shown as
Theorem 2.3(d) (see the proof of Theorem 4.2(e) in [13]). O

Given a solution u, + v near u,, in Lemma 3.1 we have constructed a tracking
solution on My, for finite time intervals. In the next lemma, we construct such a
solution on the center manifold in the case of trichotomy if also u, 4+ v(0) € M.s.

Lemma 3.4. Assume that Hypothesis 2.1, condition (RR), and (2.18) hold. Then
there exist C,r > 0 such that: If there is a solution v of (2.12) with u. + v on
Mg staying in By_1/,(0,7) on [0,T] for some T > 1, then there is a solution z of
(2.12) on [0,T] such that u. + z(t) € M. for allt € [0,T], Peuz(T) = Peyv(T), and

lo(t) — z(t)|]1 < C’e_at|PSv0 — ¢eu(Peuvo)1-1/p forall t>1,
[o(t) = 2(t)[1-1/p < Ce | Pyvy — Geu(Peuv0)l1-1/p for all t>0,
Given Ty > 1, the constants are uniform for T > Tj.

Proof. We assume that T' > 3. For a general Ty > 0 the proof is similar. Formula
(3.24) says that v = Pev + ¢es(Pes Pv). We set w = Psv — ¢ey(Peyv). Since
|Pev(T)|1-1/p < cr, for sufficiently small » > 0 Theorem 2.5 gives a solution z
of (2.12) on [T — 3,T] such that P.z(T) = P.v(T) and u, + z belongs to M..
Moreover, |z(T)|1 < ¢|P:.z(T)|o < cr. Here and below the constants do not depend
on v,T,t,7 and the number R > 0 introduced later. We have M, = M N My
due to Corollary 2.6, and thus

z = PCZ + ¢C(PCZ) = PCSZ + ¢CS(PCSPZ) = Pcuz + ¢cu(PcuZ)~

As a result, Psz = ey (Peuz) and Pyz = ¢es(Pes P 2). Hence,

V=2 =W+ Pey(Pen¥) — Per(Peuz) + Pe(v — 2) (3.25)

+ ¢cs(PcsPU) - ¢cs(Pcs PZ)

We set y = P.(v—z). Given a small R > 0 to be determined later, let ty € [1/2,T)
be the minimal time such that the solution z(t) of (2.12) with u, + z on M, exists
and the inequality |2(t)]1 < R holds for all tg <t <T. As in part 3 of the proof of
Lemma 3.1, we obtain that 1/2 <ty < T — 2 exists if r > 0 is chosen small enough.
We further note that Remark 2.2 shows that |v(t)[y < clv(t —1/2)|1_1/p <er < R

where we decrease r > 0 if needed.

Theorems 2.4 and 2.5 imply that the maps ¢.s : PCSXf_l/p — P, Xy and ¢y :

PeywXo — PsXy_1/, are Lipschitz with a constant £(R) on balls of radius R in the
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respective domain spaces. Moreover, ¢, : PeuXo — Ps X is Lipschitz on this ball
due to (RR) and Theorem 2.5(d) (after possibly decreasing R). We thus deduce

[v(t) = 2()[1-1/p < [w(t)[1-1/p + (eR)[Peu(v(t) — 2(¢))o
+ ce(cR)|Pes P(v(t) — 2(t)|1-1/p + cly(t)lo
from (3.25) and X; — X;y_;/, = Xo. Decreasing R > 0 if needed, we obtain
[o(t) — 2(O)[1-1/p < c(|w®)|1-1/p + [Y(t)]o) (3.26)
for tg <t <T. Proceeding similarly, inequality (3.26) then leads to
[w(t) = 2(t)[1 < [w(t)l1 + c[Pea(v(t) = 2(t))|o + c|Pes P(0(t) = 2())[1-1/p + cly(t)]o
< Jw@®)) + c|wt)1-1/p + [y(@)]o) < c(lw(@)]r + [y(t)lo), (3.27)

forall tg <t <T.
Let § € (w,,ws). As in the proof of (3.13) and (3.14) in Lemma 3.1, we infer

Y () = Pe( = Au(v(t) — 2() + G(u(t)) — G(2(1))
= —AoPey(t) + Pe(IL(H (v(t)) — H(2(2))) + G(v(t) — G(2(1))),
T
y(t) = —/ e~ ("D AP (T(H (v(7)) — H(2(7))) + G(v(7)) = G(a(7))) dr,

T
(Ol < ce1(R) / ey (r) — 2(r)]1 dr.

Inequality (3.27) then implies
T

SHy(t)lo < cer(R) / e |y(r)|o dr + ce(R) / Sty d.

Arguing as in the proof of (3.16) in Lemma 3.1 (with d = dy = ce(R) being small),
we conclude that

T
Ol <d [ O o) do
t

We now fix a sufficiently small R > 0 such that d 4+ ¢ < ws, where d = ce(R). Let
a € (d+ 6, ws). If we take a sufficiently small » > 0, we can apply estimates (3.11)
and (3.19) from Lemma 3.1. Using first Holder’s inequality, we thus derive

ly(®)lo < ce™ Jwllg, (1t,17,0) < clw(t)li-1/ (3.28)
forall to <t <T —1/4. Asin (3.17), we also obtain
ly()lo < clw(t —1/4)[1-1/p (3.29)
for all t € [T —1/4,T]. Observe that
z=Pez+ ¢c(Pez) = Pe(v—y) + de(Pe(v —y)). (3.30)
Remark 2.2 further yields
lo(t)]1 < clv(t —1/2)|1-1/p < er < R/2 (3.31)

for all ¢ € [tg, T] and a sufficiently small » > 0. Using (3.30), (3.31) and (3.28), we
infer

12(to) |1 < c(|v(to) | + y(to)]o) < R/2+ clw(to)li—1/p -
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Since |w(to)|1—1/p < clv(to)|1—1/p, we finally conclude that |2(to)|1 < R/2+cr < R,
decreasing r > 0 again, if needed. Thus, to = 1/2. Now the estimates (3.26), (3.28),
(3.29) and (3.11) imply
[o(t) = 2(t)[1-1/p < c(Jw(®)l1-1/p + y(t) o)
< Ce_at|w(0)|l—1/p = Ce_at|PsU0 - (bcu(Pcu/UO)h—l/p
for all t € [1/2,T]. We can extend this estimate to t € [0,7] as in part 4) of the
proof of Lemma 3.1. Finally, decreasing r > 0 if necessary, one can use the estimate
(A.2) in [13] applied to u, + v and u, + 2, obtaining the inequality
lv(t) = 2(t)[1 < clo(t —1/2) = 2(t = 1/2)[1-1/p

and completing the proof. O

Our second theorem extends the stability Theorem 2.7 to the case of unsta-

ble spectrum. It says that the center manifold locally attracts the center—stable
manifold with a tracking solution if the flow on M, is stable.

Theorem 3.5. Assume that Hypothesis 2.1, condition (RR), dim P, Xy < oo, and
the trichotomy condition (2.18) hold. Suppose that u, is stable for the flow on M..
Then there exist sufficiently small v > 0 and p > 0 such that for each solution v of
(2.12) with |vg|1—1/p < p either
(a) there ewists t > 0 such that |v(t)|1—1/p, >, or
(b) ux +vg € Mes.
Moreover, in case (b) the solution v of (2.12) with u, + v(t) € Mes exists for all
t >0, satisfies [v(t)|1—1/p <1 for all t >0, and there exists a solution Z of (2.12)
on Ry with u, +Z on M. such that
lo(t) — z(t)]1 < Ce™ | Py — Geu(Peuv0)1-1/p forall t>1, (3.32)
[o(t) — 2(t)1—1/p < Ce | Py — Geu(Peuv0)l1-1/p for all t>0. (3.33)
Proof. Let r > 0 be the radius determined in Lemma 3.4. We choose a small
p € (0,7) to be fixed later. Let vy with u. +vo € Mg satisfy |vg|i—1/, < p. Denote
by T the supremum of all £ > 0 such that v(t) exists and satisfies |v(7)|1_1/, < r for
all0 <7 <tand |[v(T)|i-1/p = r. Remark 2.2 implies that 7" > 1 for sufficiently
small p > 0. By Lemma 3.4, there exists a solution zr of (2.12) on [0, T] such that
Pezp(T) = Pou(T), uy + 27(t) € M for 0 <t < T, and
|ZT(t) - 'U(t)|1 < Ceiat|PsU0 - ¢cu(PcuUO)|l—1/pa te [I,T],
|ZT(t) - 'l)(t)|1_1/p < Ceiat|Ps'UO - ¢CU(PCUUO)|1—1/I) < cp, te [OaT]
Here and below, ¢ does not depend on 7" and p. Using this estimate and Remark 2.2,
it follows that
22 (O)1-1/p < 122(0) ~ (O _1/p + WOh1/p S cotep=cp.  (3:35)
Since u, is stable for the flow on M., we can choose p so small that
|20 (T)|1-1/p = distxlfl/p(u* + 20(T),us) <1/2.
We then obtain
[o(T)1=1/p < 0(T) = 20 (T)|1=1/p + l20(T)1—1/p Scp+1/2 <7

provided p > 0 is sufficiently small. This strict inequality is a contradiction if T is
finite, and hence T' = co. As a consequence, (3.35) holds for all T' > 1. Since P. Xy

(3.34)
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is finite dimensional, there thus exists a sequence of T;,, — oo such that Pszr, (0)
converge as n — 0o to some ¢ € P. Xy with |¢|o < ¢p. Using Theorem 2.3(a), we
find a solution Z of (2.12) on some time interval [0,¢o) such that P.zZ(0) = ¢ and
uy + Z belongs to M.. Since |Z(0)|1-1/, < ¢[(lo < cp, the stability of u, on M.
implies that Z(t) exists and |Z(t)|,_1/, < 7 forallt > 0, if p > 0 is sufficiently small.
As in the proof of Theorem 3.2 we then deduce that zr, (t) converges to Z(¢) in X3
as n — 0o. Thus, the required estimate (3.32) follows from (3.34). O

In our last theorem, we extend the stability Theorem 2.7 from the set K = {u.}
to larger invariant sets K.

Theorem 3.6. [Reduction Principle] Assume the conditions of Theorem 2.7. There
exists small numbers p, po > 0 such that if K C Bx,_,,, (ux, p) is a backward and
forward globally invariant set for (1.1), then the following assertions hold:

(a) K C M. and there exists a set Ko C Bp,x,(0,po) such that

K = {u* + wo + de(wo) : wy € Ko} (3.36)

and Koy is forward and backward invariant with respect to the flow induced by the
ODE (2.22).

(b) If Ky is stable, resp. asymptotically stable, for the flow induced by the ODE
(2.22), then K is stable, resp. asymptotically stable, for the flow of (1.1).

Proof. Let r > 0 be the radius determined in Lemma 3.1 and Theorem 3.2. Take
p > 0 smaller than the radius described in Theorem 2.3 such that

p<r/2 and po:=p||Pllx,_,,,.x) <T/2 (3.37)

hold. Let K C Bx,_, , (us, p) be a backward and forward globally invariant set for
(1.1); that is, for each u, + vy € K the solution v of (2.12) with v(0) = vy exists
for all t € R and u, +v(t) € K for all t € R.

(a) The inclusion K C M, follows from Theorem 2.3(d) by our choice of p since
K is invariant. We define Ky = {Pc(uo —Uy) : ug € K}. Then Ky C Bp,x,(0, po)-
For yo € Ky, the function vg = yo + ¢.(yo) satisfies ug = u, +vg € K. The solution
v of (2.12) with the initial datum v(0) = vy thus exists for all ¢ € R and satisfies
u. +v(t) € K C Bx,_,,,(us,p). By Theorem 2.3 (c), the function y = P.v solves
the ODE (2.22) for all t € R and thus K is invariant for the flow induced by (2.22).

(b) First, we claim that the following assertions hold provided the numbers
To,T > 0 are chosen small enough:

if distp,x,(y, Ko) <To then |y|i_1/p <, (3.38)
if disty, ,,, (u«+v,K) <7 then |v[y_1/, <, (3.39)
if distx, ,,, (ux +v,K) <7 then

|Psv — ¢e(Pev)|1-1/p < cdistx, , (ux +v,K). (3.40)
To show (3.38), we recall that Ko C Bp,x,(0,p0) With po = p[|Fells(x,_,,,.x0)-
Thus, choosing wy € Kq appropriately and using (3.37), we have
[Yli—1/p < |y — woli—1/p + |wol1-1/p
< 2distx,_,,, (¥, Ko) + pllPellBx, 1 /00 x0)
< 2o + pl|Pellsx, o pxo) ST/24T/2=T,
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provided 7o > 0 is small enough. The proof of (3.39) is analogous. To show (3.40),
let us pick a w € K such that

[us +v —wly_1/p < 2distx, _, ,, (us + v, K).

We note that w = u, + wg + ¢.(wp) for some wy € Ky due to (3.36) and recall that
wo € Bp,x,(0,p0) and v € By, ,, (0,7) by (3.39). Using the Lipschitz property of
¢. on small balls stated in Theorem 2.3, we then obtain

|Psv - ¢C(PCU)|1—1/p < |Psv - ¢c(w0)|171/p + |¢C(w0) - ¢C(PCU)|1,1/,)
< |Paw = Pa(w — )1 jp + €l Pelw — 1) — Pethi_1yp
<clus +v—wli_qyy < cdistxlfl/p(u* + v, K).

Next, let us assume that K is stable, that is, that for each 79 > 0 there is
a Py > 0 such that if distp, x,(y(0), Ko) < p, then distp x,(y(t), Ko) < 7o for
all ¢ > 0 for the solution y in P.X, of the ODE (2.22). Here we choose 79 > 0
such that (3.38) holds, but possibly 7y will be further decreased below. To prove
that K is stable, let 7 > 0 be given where we may assume that 7 < r and that
7 is so small that (3.39) and (3.40) hold. We have have to find 5 > 0 such that
if disty,_,,, (u« + vo, K) < p then the solution v of (2.12) with the initial data
v(0) = vg exists for all ¢ > 0 and satisfies distx, _, (v« +v(t), K) <7 for all ¢ > 0.
Let us fix a p < T to be determined later.

Since distx,_,,, (ux +vo, K) < p <T, either the solution v(t) of (2.12) is defined
for all t > 0 and satisfies distx, ,,, (u.« +v(t), K) <7 for all £ > 0, or there is a
number 7" such that distx, ,,, (u.« +v(t), K) <7 for all 0 <t < T with equality for
t =T. (We can again assume that T is larger than 1 due to Remark 2.2.) Suppose
that the second option holds. By (3.39), we have |v(t)|;—1/p, < r forall 0 <t <T.
Lemma 3.1 thus yields a solution z of (2.12) on [0,T] with u, + 2(t) € M.. (We
recall that M, = M., due to the setting assumed in the theorem.) Moreover, z
satisfies P.z(T) = P.v(T) and the estimate

|U(t) - Z(t)|171/p < Ce_at‘PsUO - ¢c(PcUO)‘171/p (3.41)
forall 0 <t <T.
We pause to remark the inequality

dist p, x, (Pcv(0), Ko) < cdistx,_,,, (ux +v(0), K), (3.42)

proved as follows: Pick a wy € Ky such that w = u, + wo + ¢.(wo) € K satisfies
the inequality |u. +v(0) —w|y_1/p, < 2distx,_,,, (u« +v(0), K). We then establish
the claim (3.42) by computing
dist, x, (Pev(0), Ko) < |Pev(0) = wlpoxy = |Pe(0(0) — w0 — bu(wo)
S NPllB(x, 1y x0) [0(0) — wo — @e(wo)|1-1/p
= ||PC||B(X171/p7X0)|u* +v(0) —wli—1/p < cdistXl_l/p(u* +v(0), K).

P. X,

Using (3.41), (3.42), and (3.40) with v replaced by vy, we obtain
diStPCXO (PCZ(O), Ko) < |PCZ(0) — PCU(O)lo + diStpCXO (PCU(O), Ko)
S C‘IDSUO - Q/)C(PCUO)‘l—l/p + CdiStXl,l/p (u* + U(0)7 K)
<edistx,_, , (ux + vo, K) < cp. (3.43)
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By Theorem 2.3(c), y(t) = P.z(t) satisfies the ODE (2.22). If p > 0 is chosen
sufficiently small, then (3.43) yields

distp, x, (¥(0), Ko) < ¢p < Py,
where p, > 0 was chosen above depending on 7. Since K| is stable, it follows that
diStPCXO(y(t), Ko) <79 forall0<¢t<T (344)

(and thus |y(t)|1-1/p < 7 by (3.38)). Using u. + z(t) € M, and (3.36), and also
the Lipschitz property of ¢., we estimate

distx,_,,, (ux + 2(t), K)

= ot [(ue + Pez(t) + Ge(Fez())) = (ue +wo + de(wo)) |,y ,

< inf  (c|Poz(t) — wolo + ¢| Pez(t) — wolo)
woE Ko
S CdiStpCXO (Pcz(t),Ko) (345)

for all 0 <t < T. By means of (3.45), (3.41), (3.40), and (3.44), we deduce
diStX171/p (u* + ’U(t)7 K) < diStX171/p(u* + Z(t)v K) + |U(t) - Z(t)|1—1/17
< cdistp, x, (Pez(t), Ko) + ce~*|Psvg — ¢e(Pevo)|1-1/p) (3.46)
< cdistp, x, (y(t), Ko) + cdistx, _, ,, (ue + vo, K)
< CFo+p<T/24TF/2=T

for all 0 < ¢t < T, provided that 7o > 0 and p > 0 are sufficiently small. This
strict inequality is a contradiction that proves T' = oco. In particular, the inequality
disty,_,,, (u« +v(t), K) <7 holds for all t > 0 and thus K is stable.

To prove the asymptotic stability of K assuming that K is asymptotically stable,
we apply Theorem 3.2 to the solution v(¢) that has been just constructed for all
t > 0. That is, we take the solution Z with u, +Z(t) € M, that tracks the solution
v as described in (3.22). Replacing z by Z in (3.43) and (3.46), we obtain

distp, x, (Pc2(0), Ko) < cdistx, ,,, (us + vo, K), (3.47)
distx,_,,, (ux +v(t), K) < cdistp,x, (FPeZ(t), Ko) (3.48)
+ Ceiat|F)s’UO - ¢C(P0v0)|1—1/p))

for all t > 0. Set 7(t) = P.Z(t). Due to the asymptotic stability of Ky and (3.47),
if distx,_, ,, (us + vo, K) is sufficiently small, then one has distp, x, (¥(t), Ko) — 0
as t — co. Finally, due to (3.48), we conclude that disty, ,  (u. +v(t), K) — 0 as
t — oo. ]
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