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Abstract. We prove the reduction principle and study other attractivity

properties of the center and center-unstable manifolds in the vicinity of a
steady-state solution for quasilinear systems of parabolic partial differential

equations with fully nonlinear boundary conditions on bounded or exterior

domains.

1. Introduction

In his illuminating short paper [16], K. Palmer proved a fundamental lemma
saying that any given solution of an ODE can be tracked by a solution on the center
manifold as long as the given solution stays in a small ball around an equilibrium.
Magically, this simple assertion implies the existence of asymptotic phase as well
as an important Pliss Reduction Principle [17] saying that every compact invariant
set in a small ball centered at the equilibrium is a graph over an invariant set for
the reduced ODE on the center manifold. Moreover, if the latter invariant set is
(asymptotically) stable for the flow on the center manifold then the former invariant
set is (asymptotically) stable for the full flow.

The objective of this paper is to give a generalization of these ODE results for a
fairly broad class of parabolic partial differential equations. Specifically, in the cur-
rent paper we continue the work began in [12, 13], and prove Palmer’s Fundamental
Lemma, the Pliss reduction principle, the existence of asymptotic phase, and some
other properties of the center and center-unstable manifolds in the vicinity of a
steady-state solution for quasilinear systems of parabolic partial differential equa-
tions with fully nonlinear boundary conditions on bounded or exterior domains.

We consider the equations

∂tu(t) +A(u(t))u(t) = F (u(t)), on Ω, t > 0,

Bj(u(t)) = 0, on ∂Ω, t ≥ 0, j = 1, · · · ,m, (1.1)

u(0) = u0, on Ω,

on a (possibly unbounded) domain Ω in Rn with compact boundary ∂Ω, where
the solution u(t, x) takes values in CN . The main part of the differential equation
is given by a linear differential operator A(u) of order 2m (with m ∈ N) whose
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matrix–valued coefficients depend on the derivatives of u up to order 2m− 1, and
F is a general nonlinear reaction term acting on the derivatives of u up to order
2m− 1. Therefore the differential equation is quasilinear. Our analysis focusses on
the fully nonlinear boundary conditions

[Bj(u)](x) := b(x, u(x),∇u(x), · · · ,∇mju(x)) = 0, x ∈ ∂Ω, j = 1, · · · ,m,

for the partial derivatives of u up to order mj ≤ 2m − 1. We assume mild local
regularity of the coefficients and that the linearization at a given steady state u∗ is
normally elliptic and satisfies the Lopatinskii–Shapiro condition, see Hypothesis 2.1.

For illustration, we first give a simple example where N = 1 and m = 2. In the
case of the quasilinear heat equation with a nonlinear Neumann boundary condition

∂tu(t)− a(u(t))∆u(t) = f(u(t)), on Ω, t > 0,

b(∇u(t)) = 0, on ∂Ω, t ≥ 0,

u(0) = u0, on Ω,

we have to require that a, f ∈ C1(R), b ∈ C2(R) are real, and that there is a steady
state u∗ ∈ W 2

p (Ω) with a(u∗) ≥ δ > 0 and |b′(u∗) · ν| ≥ δ > 0 for the outer unit
normal ν. At the end of the introduction we discuss a more involved example.

Fully nonlinear boundary conditions appear naturally in the treatment of free
boundary problems, see e.g. [8] or [18]. The equations (1.1) are a model case for
such problems.

Our fairly general setup is explained in the next section. The local existence of
solutions and the existence and properties of invariant manifolds for (1.1) have been
studied in [12, 13], where we have also discussed related literature. The existence
(and their dimension) of these manifolds is determined by the corresponding parts
of the spectrum of the linearization −A0 of (1.1) at an equilibrium u∗, see e.g.
(2.18). To make the present paper readable independently of [12, 13], we quote
several results from these papers in the next section. In particular, Theorem 2.7
taken from [13] says that the center manifold is locally exponentially attractive
with a tracking solution if there is no unstable spectrum and the flow on the center
manifold is stable. Moreover, here and in our theorems in Section 3 we assume
that the center (or the center–unstable) manifold is finite dimensional. Versions of
Theorem 2.7 have been shown for simpler boundary conditions in more abstract
settings, see [14, §9.3] and also [4, 15, 19, 20, 21, 22]. We note that in [15] a version
of Palmer’s lemma for elliptic problems on infinite cylinders has been proved.

Let us remark that the theory of invariant manifolds (and in particular of center
manifolds) for PDEs represents a substantial extension of the corresponding theory
for ODEs (see, e.g., [5, 10, 11] for basic results and methods in this last regard).

In Section 3, we establish the analogues for (1.1) of Palmer’s lemma in Lem-
mas 3.1 and 3.4. The Pliss reduction principle is proved in Theorem 3.6 in the
setting of Theorem 2.7. Moreover, in Theorem 3.2 we show that any solution of
(1.1) on R+ that stays in a small ball centered at the equilibrium u∗ already con-
verges exponentially to a solution on the center manifold. Similarly, if the flow
is stable on the center manifold, then any solution starting near the equilibrium
either leaves a certain neighborhood or it belongs to the center–stable manifold and
converges exponentially to a solution on the center manifold, see Theorem 3.5. In
these two results, we allow for unstable spectrum in contrast to Theorem 2.7 of [13].
A stronger version of Theorem 3.5 was shown in the recent paper [19] in an abstract
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setting, but only for problems with linear boundary conditions and assuming that
the center manifold consists of equilibria only.

We conclude the introduction with a more involved example for (1.1) where
we also indicate how one can check our spectral assumptions. (This example is a
modification of Section 6 of [12].) We look at a quasilinear reaction diffusion system
for two species u1 and u2. For the unknown function u(t, x) = (u1(t, x), u2(t, x))
we consider the problem

∂tui(t, x)− div[di(u(t, x))∇ui(t, x)] = ri(u(t, x)), t > 0, x ∈ Ω, i = 1, 2,

di(u(t, x))∂νui(t, x)− qi(ui(t, x)) = b0i (x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω, (1.2)

where di ∈ C2(R2), qi ∈ C2(R), ri ∈ C1(R2), and b0i ∈ C2(∂Ω × R2 × R2n) for
i = 1, 2. We assume that there is a vector u∗ = (u∗1, u∗2) ∈ R2 such that

di(u∗) > 0, ri(u∗) = qi(u∗) = b0i (x, u∗, 0) = 0, ∂(2,3)b
0
i (x, u∗, 0) = 0

for i = 1, 2 and x ∈ ∂Ω. Thus the constant function u∗ is a steady state solution
of (1.2). Moreover, (1.2) contains conormal boundary conditions combined with
the nonlinear source terms qi(ui) and the additional fully nonlinear perturbations
b0i which vanish at the equilibrium. Let d = diag(d1, d2), r = (r1, r2), q = (q1, q2),
b0 = (b01, b

0
2). We transform (1.2) into the form (1.1) by setting

A(u)v = −d(u)∆u, b(u) = d(u)(ν · ∇u1, ν · ∇u2)− q(u)− b0(·, u,∇u),

F (u) = r(u) +
[ n∑
j=1

(d′i(u) · ∂ju) ∂jui

]
i=1,2

,

where x · y denotes the standard scalar product in R2. Since ∇u∗ = 0, we obtain
the linearization

A∗ = −d(u∗)∆− r′(u∗) and B∗ = d(u∗)∂ν − q′(u∗)

at u∗, cf. (2.10). Using Proposition 4.3 in [3] or a straightforward direct calculation,
one can check our Hypothesis 2.1. Setting di(u∗) = δi, q

′
i(u∗i) = βi, and r′(u∗) =

[rkl] for i = 1, 2, as in (2.14) we then introduce the restriction A0 = A∗| ker(B∗) by

−A0 =

(
δ1∆ + r11 r12

r21 δ2∆ + r22

)
, dom(A0) = D1 ×D2,

Di = {v ∈W 2
p (Ω) : ∂νv = βiδ

−1
i v}, i = 1, 2.

In our main results we make use of the spectrum of −A0 in X0 = Lp(Ω)2, in
particular of the trichotomy assumption (2.18). In this example one can determine
σ(−A0) in terms of the operators Ci(λ) = δi∆ + rii − λ in X0 with domain Di,
where i = 1, 2 and λ ∈ C. Since the case r21 = 0 is rather simple, we restrict
ourselves to the case r21 6= 0. Observe that −A0 has compact resolvent and its
spectrum belongs to a shifted sector of angle greater than π/2. Hence, (2.18) holds
with possible empty center or unstable parts. In Section 6 of [12] it was shown

σ(−A0) = {λ ∈ C : r12r21 ∈ σp(C1(λ)C2(λ))}.

This equation becomes much simpler if we assume in addition that D1 = D2 =:
D. For instance, this equality is true if q′1(u∗1) = q′2(u∗2) = 0. Let µn, n ∈ N0, be
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the distinct eigenvalues of the Laplacian ∆D with the domain D and set

Mn =

(
δ1µn + r11 r12

r21 δ2µn + r22

)
.

Note that the spectrum of A0 on X0 = Lp(Ω)2 does not depend on p ∈ (1,∞) since
the resolvent is compact. Moreover, ∆D is self adjoint on L2(Ω), so that µn is real,
µn → −∞, and µn+1 < µn. Then one easily obtains that

σ(−A0) =
⋃

n∈N0

σ(Mn).

In order to satisfy (2.18) with a nontrivial center part σc of σ(−A0), we thus have
to ensure that at least of the matrices Mn, n ∈ N0, has an eigenvalue on iR. One
obtains a purely imaginary eigenvalue of Mn if and only if either detMn = 0 for
some n ∈ N0, or trMn = 0 and detMn > 0 for some n ∈ N0. Finally, there is an
eigenvalue of −A0 with strictly positive real part if and only if s(M0) > 0, in which
case we have a nontrivial unstable part σu of σ(−A0).

Notation. We setDk = −i∂k = −i∂/∂xk and use the multi index notation. The

k–tensor of the partial derivatives of order k is denoted by ∇k, and we let ∇ku =
(u,∇u, · · · ,∇ku). For an operator A on a Banach space we write dom(A), ker(A),
ran(A), σ(A), and ρ(A) for its domain, kernel, range, spectrum, and resolvent
set, respectively. B(X,Y ) is the space of bounded linear operators between two
Banach spaces X and Y , and B(X) := B(X,X). A ball in X with the radius
r and center at u will be denoted by BX(u, r). For an open set U ⊂ Rn with
(sufficiently regular) boundary ∂U or for a Banach space U , Ck(U) are the spaces
of k–times continuously differentiable functions on U . We write BCk(U) for the
space of u ∈ Ck(U) such that u and its derivatives up to order k are bounded
and have continuous extensions to ∂U . This space is endowed with the supnorm.
For unbounded U , Ck0 (U) consists of u ∈ BCk(U) such that u and its derivatives
up to order k vanish at infinity. Similar spaces are used on ∂U . By W k

p (U) we
denote the Sobolev spaces, see e.g. [1, Def.3.1], and by W s

p (U) the Slobodetskii
spaces, see [1, Thm.7.48] or [23, Rem.4.4.1.2]. Finally, J ⊂ R is a closed interval
with nonempty interior, c is a generic constant, and ε : R+ → R+ is a generic
nondecreasing function with ε(r)→ 0 as r → 0.

2. Setting and preliminaries

In this section we recall the setting and results from [12, 13] needed in the sequel.
Let Ω ⊂ Rn be an open connected set with a compact boundary ∂Ω of class C2m

and outer unit normal ν(x), where m ∈ N is given by (2.4) below. Throughout this
paper, we fix a finite exponent p with

p > n+ 2m. (2.1)

Let E = CN with B(E) = CN×N for some fixed N ∈ N. We put

X0 = Lp(Ω;CN ), X1 = W 2m
p (Ω;CN ), X1−1/p = W 2m(1−1/p)

p (Ω;CN ),

and denote the norms of these spaces by | · |0, | · |1, and | · |1−1/p, respectively. (We
warn the reader that in [12, 13] the latter norm was denoted by | · |p.) We set

Y0 = Lp(∂Ω;CN ), Yj1 = W 2mκj
p (∂Ω;CN ), Yj,1−1/p = W 2mκj−2m/p

p (∂Ω;CN ),

Y1 = Y11 × · · · × Ym1 , Y1−1/p = Y1,1−1/p × · · · × Ym,1−1/p
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for j ∈ {1, · · · ,m}, mj ∈ {0, · · · , 2m− 1} given by (2.4), and the numbers

κj = 1− mj

2m
− 1

2mp
. (2.2)

Here the Sobolev–Slobodetskii spaces on ∂Ω are defined via local charts, see The-
orem 7.53 in [1] or Definition 3.6.1 in [23]. We observe that

X1 ↪→ X1−1/p ↪→ X0, Yj1 ↪→ Yj,1−1/p ↪→ Y0,

and also that

X1−1/p ↪→ C2m−1
0 (Ω;CN ), and Yj,1−1/p ↪→ C2m−1−mj (∂Ω;CN ) (2.3)

by (2.1), (2.2), and standard properties of Sobolev spaces, cf. [23, §4.6.1]. Our basic
equations (1.1) involve the operators given by

[A(u)v](x) =
∑
|α|=2m

aα(x, u(x),∇u(x), · · · ,∇2m−1u(x))Dαv(x), x ∈ Ω,

[F (u)](x) =f(x, u(x),∇u(x), · · · ,∇2m−1u(x))), x ∈ Ω, (2.4)

[Bj(u)](x) =bj(x, (γu)(x), (γ∇u)(x), · · · , (γ∇mju)(x)), x ∈ ∂Ω,

for j ∈ {1, · · · ,m} and functions u ∈ X1−1/p and v ∈ X1, where γ is the spatial
trace operator and the integers m ∈ N and mj ∈ {0, · · · , 2m−1} are fixed. In view
of (2.3), only continuous functions will be inserted into the nonlinearites. Thus we
will omit γ in Bj(u) and in similar expressions. We set B = (B1, · · · , Bm). We
assume throughout that the coefficients in (2.4) satisfy

(R) aα ∈ C1(E×En×· · ·×E(n2m−1);BC(Ω;B(E))) for α ∈ Nn0 with |α| = 2m,
aα(x, 0) −→ aα(∞) in B(E) as x→∞, if Ω is unbounded,

f ∈ C1(E × En × · · · × E(n2m−1);BC(Ω;E)),

bj ∈ C2m+1−mj (∂Ω× E × En × · · · × E(nmj );E) for j ∈ {1, · · · ,m}.
We will need one more degree of smoothness of the coefficients as recorded in the
following hypothesis:

(RR) aα ∈ C2(E×En×· · ·×E(n2m−1);BC(Ω;B(E))) for α ∈ Nn0 with |α| = 2m,

f ∈ C2(E × En × · · · × E(n2m−1);BC(Ω;E)),

bj ∈ C2m+2−mj (∂Ω× E × En × · · · × E(nmj );E) for j ∈ {1, · · · ,m}.
For each k ∈ N0, we fix an order of the multi indices β ∈ Nn0 with |β| = k. We order
the nk components of a k–tensor in the same way, thus using β as the label for the
component corresponding to β ∈ Nn0 with |β| = k. For a function w depending on

z ∈ E(nk), we denote by ∂βw its partial derivative with respect to β-th argument.
It is not difficult to see that

A ∈ C1(X1−1/p;B(X1, X0)) and F ∈ C1(X1−1/p;X0) (2.5)

with the locally bounded derivatives

[F ′(u)v](x) =

2m−1∑
k=0

∑
|β|=k

ik (∂βf)(x, u(x),∇u(x), · · · ,∇2m−1u(x)) Dβv(x),

[A′(u)w]v(x) = A′(u)[v, w](x)

=
∑
|α|=2m

2m−1∑
k=0

∑
|β|=k

(∂βaα)(x, u(x), · · · ,∇2m−1u(x)) [∂βv(x), Dαw(x)]
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for x ∈ Ω, u, v ∈ X1−1/p, and w ∈ X1, see formula (25) of [12] and the text before

it. (Observe that (∂βaα)(x, z) : E2 → E is bilinear.) We further have

Bj ∈ C1(X1−1/p;Yj,1−1/p) ∩ C1(X1;Yj1), j ∈ {1, · · · ,m}, (2.6)

with the locally bounded derivatives

[B′j(u)v](x) =

mj∑
k=0

∑
|β|=k

ik (∂βbj)(x, u(x),∇u(x), · · · ,∇mju(x)) Dβv(x),

where x ∈ ∂Ω and u, v ∈ X1−1/p, resp. u, v ∈ X1. The continuous differentia-
bility of Bj : X1−1/p → Yj,1−1/p was shown in Corollary 12 of [12], and Bj ∈
C1(X1;Y1,1−1/p) can be proved by the arguments used in step (4) and (5) of the
proof of Proposition 10 of [12], see in particular inequality (69) in [12]. We set
B′(u) = (B′1(u), · · · , B′m(u)).

The symbols of the principal parts of the linear differential operators are the
matrix–valued functions given by

A#(x, z, ξ) =
∑
|α|=2m

aα(x, z) ξα, Bj#(x, z, ξ) =
∑
|β|=mj

imj (∂βbj)(x, z) ξ
β

for x ∈ Ω, z ∈ E × · · · × E(n2m−1) and ξ ∈ Rn, resp. x ∈ ∂Ω, z ∈ E × · · · × E(nmj )

and ξ ∈ Rn. We further set A#(∞, ξ) =
∑
|α|=2m aα(∞) ξα if Ω is unbounded.

We introduce the normal ellipticity and the Lopatinskii–Shapiro condition for A(u0)
and B′(u0) at a function u0 ∈ X1−1/p as follows:

(E) σ(A#(x,∇2m−1u0(x), ξ)) ⊂ {λ ∈ C : Reλ > 0} =: C+ and (if Ω is un-

bounded) σ(A#(∞, ξ)) ⊂ C+, for x ∈ Ω and ξ ∈ Rn with |ξ| = 1.

(LS) Let x ∈ ∂Ω, ξ ∈ Rn, and λ ∈ C+ with ξ ⊥ ν(x) and (λ, ξ) 6= (0, 0). The
function ϕ = 0 is the only solution in C0(R+;CN ) of the ODE system

λϕ(y) +A#(x,∇2m−1u0(x), ξ + iν(x)∂y)ϕ(y) = 0, y > 0,

Bj#(x,∇mju0(x), ξ + iν(x)∂y)ϕ(0) = 0, j ∈ {1, · · · ,m}.

We refer to [3], [6], [7], and the references therein for more information concerning
these conditions. We can now state our basic hypothesis.

Hypothesis 2.1. Condition (R) holds, and (E), (LS) hold at a steady state u∗ ∈
X1 of (1.1), i.e., A(u∗)u∗ = F (u∗) on Ω, B(u∗) = 0 on ∂Ω.

For the investigation of (1.1), we need several spaces of functions on J × Ω and
J × ∂Ω, where J ⊂ R is a closed interval with a nonempty interior. The base space
and solution space of (1.1) are

E0(J) = Lp(J ;Lp(Ω;CN )) = Lp(J ;X0),

E1(J) = W 1
p (J ;Lp(Ω;CN )) ∩ Lp(J ;W 2m

p (Ω;CN )) = W 1
p (J ;X0) ∩ Lp(J ;X1),

respectively, equipped with the natural norms. We need the crucial embeddings

E1(J) ↪→ BC(J ;X1−1/p) ↪→ BC(J ;C2m−1
0 (Ω;CN )), (2.7)

see Theorem III.4.10.2 of [2] for the first and (2.3) for the second embedding. We
note that the norm of the first embedding is uniform for intervals J of length greater
than a fixed ` > 0. Observe that (2.7) implies that the trace operator γ0 at time
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t = 0 is continuous from E1(J) to X1−1/p if 0 ∈ J . The boundary data of our
linearized equations will be contained in the spaces

Fj(J) = Wκj
p (J ;Lp(∂Ω;CN )) ∩ Lp(J ;W 2mκj

p (∂Ω;CN ))

= Wκj
p (J ;Y0) ∩ Lp(J ;Yj1), j ∈ {1, · · · ,m},

endowed with their natural norms, where F(J) := F1(J)× · · · × Fm(J). We have

Fj(J) ↪→ BC(J ;Yj,1−1/p) ↪→ BC(J × ∂Ω) and γ0 ∈ B(Fj(J), Yj,1−1/p) (2.8)

if 0 ∈ J , see [7, §3].
For α, β ∈ R, we set eα(t) = eαt for t ∈ R and define the function eα,β by setting

eα,β(t) = eα(t) for t ≤ 0 and eα,β(t) = eβ(t) for t ≥ 0. Then we introduce the
weighted spaces

Ek(R±, α) = {v : eαv ∈ Ek(R±)}, F(R±, α) = {v : eαv ∈ F(R±)},
Ek(α, β) = {v : eα,βv ∈ Ek(R)}, F(α, β) = {v : eα,βv ∈ F(R)}, (2.9)

where k = 0, 1, endowed with the canonical norms ‖v‖E0(R+,α) = ‖eαv‖E0(R+) etc.
We also use the analogous norms on compact intervals J .

We assume that Hypothesis 2.1 holds. Due to (2.5) and (2.6), we can linearize
the problem (1.1) at the steady state u∗ ∈ X1 obtaining the operators defined by

A∗ = A(u∗) +A′(u∗)u∗ − F ′(u∗) ∈ B(X1, X0),

Bj∗ = B′j(u∗) ∈ B(X1−1/p, Yj,1−1/p) ∩ B(X1, Yj1).
(2.10)

We set B∗ = (B1∗, · · · , Bm∗). We further define the nonlinear maps

G ∈ C1(X1;X0) and Hj ∈ C1(X1−1/p;Yj,1−1/p) ∩ C1(X1;Yj1)

with G(0) = Hj(0) = 0 and G′(0) = H ′j(0) = 0
(2.11)

for j ∈ {1, · · · ,m} by setting

G(v) =
(
A(u∗)v −A(u∗ + v)v

)
−
(
A(u∗ + v)u∗ −A(u∗)u∗ − [A′(u∗)u∗]v

)
+
(
F (u∗ + v)− F (u∗)− F ′(u∗)v

)
,

Hj(v) = B′j(u∗)v −Bj(u∗ + v),

for v ∈ X1, resp. v ∈ X1−1/p. Again, we put H(v) = (H1(v), · · · , Hm(v)). The
corresponding Nemytskii operators are denoted by

G(v)(t) = G(v(t)), Hj(v)(t) = Hj(v(t)), H(v)(t) = H(v(t))

for v ∈ Eloc
1 (J) (which is the space of v : J → X0 such that v ∈ E1([a, b]) for all

intervals [a, b] ⊂ J).
Theorem 14 of [12] shows that (1.1) generates a local semiflow on the solution

manifold
M = {u0 ∈ X1−1/p : B(u0) = 0}.

In particular, a function u0 is the initial value of the (unique) solution u ∈ E1([0, T ])
of (1.1) for some T > 0 if and only if u0 ∈M. Setting v = u−u∗ and v0 = u0−u∗,
we further see that u0 ∈M if and only if v0 ∈ X1−1/p and B∗v0 = H(v0) and that
u ∈ E1([0, T ]) solves (1.1) if and only if v ∈ E1([0, T ]) satisfies

∂tv(t) +A∗v(t) = G(v(t)) on Ω, a.e. t > 0,

Bj∗v(t) = Hj(v(t)) on ∂Ω, t ≥ 0, j ∈ {1, · · · ,m},
v(0) = v0, on Ω.

(2.12)
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Remark 2.2. Let Hypothesis 2.1 hold. Theorem 14(a) of [12] and (2.7) then
imply the following facts: For each given T > 0, there is a radius ρ = ρ(T ) > 0
such that for every u0 = u∗ + v0 ∈ M with |v0|1−1/p ≤ ρ there exists a unique
solution u = u∗ + v of (1.1) on [0, T ], and |w(t)|1−1/p ≤ c‖v‖E1([0,T ]) ≤ c|v0|1−1/p
for all t ∈ [0, T ] with constants c = c(T ) independent of u0 in this ball. Moreover,
Proposition 15 of [12] and the Sobolev embedding imply that

|v(t)|1 ≤ c|v0|1−1/p for all t ∈ [T0, T ], ♦

where T > T0 > 0 and the constant may depend on T0.

We now recall some results from [12] regarding the solvability of the inhomoge-
neous linear problem

∂tv(t) +A∗v(t) = g(t) on Ω, a.e. t ∈ J,
B∗v(t) = h(t) on ∂Ω, t ∈ J,
v(0) = v0, on Ω,

(2.13)

in weighted function spaces on the unbounded interval J ∈ {R+,R−,R}. We as-
sume that Hypothesis 2.1 holds. (Actually, when dealing only with (2.13) we do not
have to assume that u∗ ∈ X1 is a steady state of (1.1).) We recall from Theorem 2.1
of [7] that on a bounded interval J = [a, b] the boundary value problem obtained
by combining the first two lines of (2.13) with the initial condition v(a) = v0 has a
unique solution v ∈ E1([a, b]) if and only if g ∈ E0([a, b]), h ∈ F([a, b]), v0 ∈ X1−1/p,

and B∗v0 = h(a). A solution v ∈ Eloc
1 (J) of (2.13) on J will be denoted by

v = S(v0, g, h), where J ⊂ R is any closed interval containing 0. We stress that
this notation incorporates the compatibility condition B∗v0 = h(0) because of the
second line in (2.13) and the embeddings (2.7) and (2.8). Moreover, the solution
S(v0, g, h) is unique if J = R+, but uniqueness may fail on J = R−.

We define the operator A0 = A∗|kerB∗ with the domain

dom(A0) = {u ∈ X1 : Bj∗u = 0, j = 1, . . . ,m} . (2.14)

It is known that −A0 generates an analytic semigroup on X0 which we denote by
T (·). We need the extrapolation space X−1 of A0 defined as the completion of
X0 with respect to the norm |u0|−1 = |(µ+ A0)−1u0|0 for some fixed µ ∈ ρ(−A0).
There exists an extension A−1 of A0 to X−1 which generates the analytic semigroup
T−1(·) extending T (·) to X−1. We further employ the map

Π = (µ+A−1)N1 ∈ B(Y1, X1) (2.15)

where N1 ∈ B(Y1, X1) is the solution operator, N1 : ϕ 7→ u, of the elliptic boundary
value problem (µ + A∗)u = 0 on Ω, B∗u = ϕ on ∂Ω, see Proposition 5 of [12].
This proposition also gives a right inverse

N1−1/p ∈ B(Y1−1/p, X1−1/p) (2.16)

of B∗. Due to Proposition 6 of [12], the solution v ∈ Eloc
1 (J) of the problem (2.13)

is given by the variation of constants formula

v(t) = T (t− τ)v(τ) +

∫ t

τ

[T (t− s)g(s) + T−1(t− s)Πh(s)] ds (2.17)

for all t ≥ τ in J .
In order to treat solutions of (2.12) or (2.13) on the intervals J = R±, we

assume that the (rescaled) semigroup
{
eδtT (t)

}
t≥0 is hyperbolic for δ ∈ [δ1, δ2] for
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some segment [δ1, δ2] ⊂ R (i.e., σ(−A0+δ)∩iR = ∅). Let P be the (stable) spectral
projection for −A0 + δ corresponding to the part of σ(−A0 + δ) in the open left
halfplane, and set Q = I − P . Then T (t) is invertible on QX0 with the inverse
TQ(−t)Q, and ‖etδT (t)P‖, ‖e−tδTQ(−t)Q‖ ≤ ce−εt for t ≥ 0 and some ε > 0. If
eδT (·) is hyperbolic on X0, then eδT−1(·) is hyperbolic on X−1 with projections
P−1 and Q−1 = I − P−1 being the extensions of P and Q, respectively. Moreover,
Q−1 maps X−1 into dom(A0), and P leaves invariant X1−1/p, X1, and dom(A0).
The projections commute with the semigroup and its generator as well as with their
extrapolations. (See [12, §2] for these facts and related references.)

When needed, we assume that T (·) has an exponential trichotomy, i.e., there is
a splitting

σ(−A0) = σs ∪ σc ∪ σu with (2.18)

max Reσs < −ωs < −ωc < min Reσc ≤ 0 ≤ max Reσc < ωc < ωu < min Reσu .

(If Ω is bounded, σ(−A0) is discrete and thus (2.18) automatically holds with
σu ⊂ iR and arbitrarily small ωc = ωc.) We take numbers α ∈ [ωc, ωs] and
β ∈ [ωc, ωu] and denote by Pk the spectral projections for −A0 corresponding
to σk, k = s, c, u. We set Pcs = Ps + Pc, Pcu = Pc + Pu, and Psu = Ps + Pu.
Then the rescaled semigroups eαT (·) and e−βT (·) are hyperbolic on X0 with stable
projections Ps and Pcs, respectively. The restriction of T (t) to PkX0 yields a group
denoted by Tk(t), t ∈ R, where k = c, u, cu.

When needed, we impose the following assumption which is weaker than (2.18):
There exist positive numbers ωs, ωu, ωcu, ωcs > 0 such that at least one of the
following assertions holds:

σ(−A0) = σs ∪ σcu with max Reσs < −ωs < −ωcu < min Reσcu , (2.19)

σ(−A0) = σcs ∪ σu with max Reσcs < ωcs < ωu < min Reσu . (2.20)

We continue to use notation Pk for the spectral projections for −A0 corresponding
to the sets σk, k ∈ {s, cs, cu, u}. Using standard facts, we see that PuX0 ⊂ PcuX0 ⊂
dom(A0) and that on PcuX0 the norms in X0, X1−1/p and X1 are equivalent.

Finally, we recall the notation X0
1−1/p = {z0 ∈ X1−1/p : B∗z0 = 0} for the tangent

space at u∗ to the nonlinear phase space M = {u0 ∈ X1−1/p : B(u0) = 0} for

(1.1), and that P = I − N1−1/pB∗ projects X1−1/p onto X0
1−1/p, see (2.16) and

remarks preceding Theorem 14 in [12]. In the theorems stated below, the invariant
manifolds are graphs over the corresponding spectral subspaces of X0

1−1/p, where

it is important to note that PcuX0 ⊂ dom(A0) ⊂ X0
1−1/p.

We now recall the main result Theorem 4.2 of the paper [13] where one constructs
a local center manifold Mc and shows some of its basic properties. In particular,
Mc is a C1–manifold in X1−1/p being tangent to PcX0 at u∗. It is given by functions
u∗ + v(0) for initial values v(0) of solutions v ∈ E1(α,−β) to a modified version of
(2.12) on J = R which involves a nonlocal cutoff. This fact is not needed below,
but it is described in detail in [13].

We assume that the spectrum of −A0 has the trichotomy decomposition de-
scribed in (2.18), and recall that this assumption automatically holds if the spatial
domain Ω is bounded.

Theorem 2.3. Assume that Hypothesis 2.1 and (2.18) hold. Take any α ∈ (ωc, ωs)
and β ∈ (ωc, ωu). There exists a radius ρ > 0 and maps φc ∈ C1(PcX0;PsuX1−1/p)
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and Φc ∈ C1(PcX0;E1(α,−β)) with bounded derivatives such that the following
assertions hold.

(a) We have φc(0) = 0 and φ′c(0) = 0. The local center manifold is given by

Mc :=
{
u0 = u∗ + z0 + φc(z0) : z0 ∈ PcX0

}
∩BX1−1/p

(u∗, ρ)

=
{
u0 = u∗ + v(0) : v = Φc(Pc(u0 − u∗))

}
∩BX1−1/p

(u∗, ρ). (2.21)

If u0 ∈ Mc, then the function v from (2.21) is given by v = Pcv + φc(Pcv). It
further solves the equation (2.12) (at least) for t ∈ [−3, 3], so that Mc ⊂ M. The
dimension of Mc is equal to dimPcX0.

(b) Let u0 ∈ Mc and v be given by (2.21). If the forward solution u of (1.1)
exists and stays in BXp

(u∗, ρ) on [0, t1] for some t1 > 0, then u(t) = v(t)+u∗ ∈Mc

for 0 ≤ t ≤ t1. If the function û = v + u∗ stays in BXp
(u∗, ρ) on [t0, 0] for some

t0 < 0, then û(t) ∈Mc and û solves (1.1) for t0 ≤ t ≤ 0.
(c) Assume that v(t) + u∗ ∈Mc for all t ∈ (a, b) and some a < 0 < b. The then

function y = Pcv satisfies the equations

ẏ(t) = −A0Pcy(t) + PcΠH(y(t) + φc(y(t))) + PcG(y(t) + φc(y(t))),

y(0) = Pc(u0 − u∗),
(2.22)

on PcX0 for t ∈ (a, b). Moreover, v ∈ C((a, b);X1) and

B∗φc(Pcv0) = B∗v0 = H(v0), (2.23)

Psu(A∗v0 −G(v0)) = φ′c(Pcv0)Pc(A∗v0 −G(v0)). (2.24)

(d) If u ∈ Eloc
1 (R) solves (1.1) on R with |u(t)−u∗|1−1/p < ρ for all t ∈ R, then

u(t) ∈Mc for all t ∈ R.
(e) In addition, assume that (RR) holds. Then there is a ρ0 > 0 such that the

map φc : PcX0 ∩BX1−1/p
(0, ρ0)→ PsuX1 is Lipschitz.

In addition to Theorem 2.3, one constructs a local center–stable manifold Mcs

assuming (2.20) (see Theorem 5.1 of [13]), and a local center–unstable manifold
Mcu assuming (2.19) (see Theorem 5.2 of [13]). These manifolds are of class C1 in
X1−1/p, and are tangent to PcsX

0
1−1/p, resp. to PcuX0, at u∗. They are described

in the following two theorems. Recall that P = I −N1−1/pB∗. In Theorem 2.4 the
map ϑcs takes care of the compatibility conditions.

Theorem 2.4. Assume Hypothesis 2.1 and (2.20). Take any β ∈ (ωcs, ωu). Then
there exists a radius ρ > 0 and maps

φcs ∈ C1(PcsX
0
1−1/p;PuX0), ϑcs ∈ C1(PcsX

0
1−1/p;PcsX1−1/p)

and Φcs ∈ C1(PcsX
0
1−1/p;E1(R+,−β)) having bounded derivatives such that the

following assertions hold.
(a) We have φcs(0) = ϑcs(0) = 0 and φ′cs(0) = ϑ′cs(0) = 0. The local center–

stable manifold is given by

Mcs :=
{
u0 = u∗ + z0 + ϑcs(z0) + φcs(z0) : z0 ∈ PcsX

0
1−1/p

}
∩BX1−1/p

(u∗, ρ)

=
{
u0 = u∗ + v(0) : v = Φcs(PcsP(u0 − u∗))

}
∩BX1−1/p

(u∗, ρ). (2.25)

If u0 ∈ Mcs, then the function v from (2.25) solves the equation (2.12) (at least)
for t ∈ [0, 4]. Thus, Mcs ⊂M.
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(b) Let u0 ∈Mcs and v be given by (2.25). Assume that a forward or a backward
solution u of (1.1) exists and stays in BXp

(u∗, ρ) on [0, t0] or on [−t0, 0] for some

t0 > 0. Set v(t) = u(t)− u∗ for −t0 ≤ t ≤ 0 in the second case. We then have1

u(t) = u∗ + v(t) = u∗ + PcsPv(t) + φcs(PcsPv(t)) + ϑcs(PcsPv(t)) ∈Mcs (2.26)

for 0 ≤ t ≤ t0 or −t0 ≤ t ≤ 0, respectively.
(c) It holds Mcs ∩Mu = {u∗}.

Theorem 2.5. Assume Hypothesis 2.1 and (2.19). Let α ∈ (ωcu, ωs). Then there
exists a radius ρ > 0 and maps φcu ∈ C1(PcuX0;PsX1−1/p) and Φcu ∈ C1(PcuX0;
E1(R−, α)) with bounded derivatives such that the following assertions hold.

(a) We have φcu(0)=0 and φ′cu(0)=0. The center-unstable manifold is given by

Mcu :=
{
u0 = u∗ + z0 + φcu(z0) : z0 ∈ PcuX0

}
∩BX1−1/p

(u∗, ρ)

= {u0 = u∗ + v(0) : v = Φcu(Pcu(u0 − u∗))} ∩BX1−1/p
(u∗, ρ). (2.27)

If u0 ∈ Mcu, then the function v from (2.27) solves the equation (2.12) (at least)
for t ∈ [−4, 0]. Thus, Mcu ⊂M. The dimension of Mcu is equal to dimPcuX0.

(b) Let u0 ∈ Mcu and v be given by (2.27). If the function û = u∗ + v stays in
BXp(u∗, ρ) on [t0, 0] for some t0 < 0, then û(t) = u∗+v(t) ∈Mcu and û solves (1.1)
for t0 ≤ t ≤ 0. If the forward solution u of (1.1) exists and stays in BXp

(u∗, ρ) on
[0, t1] for some t1 > 0, then u(t) ∈Mcu and we set v(t) = u(t)−u∗, for 0 ≤ t ≤ t1.
We futher have v(t) = Pcuv(t) + φcu(Pcuv(t)) for t ∈ [t0, 0], resp. t ∈ [0, t1].

(c) It holds Mcu ∩Ms = {u∗}.
(d) Assume, in addition, that (RR) holds. Then there is a ρ0 > 0 such that the

map φcu : PcuX0 ∩BX1−1/p
(0, ρ0)→ PsX1 is Lipschitz.

Moreover, the local stable and unstable manifolds Ms and Mu for (1.1) were
constructed in Theorem 4.1 of [13]. These manifolds have analogous properties
and are used to prove further properties of the center manifold summarized in the
following corollary (see Corollary 5.3 in [13]), where we assume throughout that
radii ρ > 0 in the above theorems are the same.

Corollary 2.6. Assume that Hypothesis 2.1 and (2.18) hold. We then have Mc =
Mcs ∩Mcu, Mc ∩Ms = {u∗}, and Mc ∩Mu = {u∗}.

Finally, we cite a result from [13] that describes the stability of the steady state
u∗ of (1.1) and the attractivity of Mc. As in Theorem 2.3, one assumes that
Hypothesis 2.1 and (2.18) hold. In parabolic problems, the center and center–
unstable manifolds are finite dimensional in many cases; e.g., if the spatial domain
Ω is bounded. Moreover, there are important applications where Mc consists of
equilibria only, see e.g. [9], [18], [19]. Thus it is quite possible that one can check
the stability of u∗ with respect to the semiflow on Mc generated by (1.1) without
knowing a priori that u∗ is stable with respect to the full semiflow of (1.1) on M.

Theorem 2.7 below states, see Theorem 6.1 of [13], that u∗ is stable onM under
the following conditions: s(−A0) ≤ 0, u∗ is stable on Mcu = Mc, Pcu = Pc has
finite rank, and the additional regularity assumption (RR) holds. Here s(−A0)
= sup{Reλ : λ ∈ σ(−A0)}. In fact, one has a stronger result saying that each
solution starting sufficiently close to u∗ converges exponentially to a solution on
Mc. Here one can assume that s(−A0) ≤ 0 without loss of generality since −A0

1We corrected in formula (2.26) a misprint found in [13].
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has no spectrum in the open right halfplane provided u∗ is stable and Pcu has finite
rank, due to Theorem 4.1 of [13].

Theorem 2.7. Assume that the spectrum of −A0 admits a splitting σ(−A0) =
σs ∪ σc corresponding to the spectral projections Ps and Pc such that Pc has finite
rank, σc ⊂ iR, and there is a number α with max Reσs < −α < 0.

Suppose that for each r > 0 there is a ρ > 0 such that for u0 ∈ Mc with
|Pc(u0 − u∗)|0 < ρ the solution u of (1.1) exists and u(t) ∈ Mc ∩ BX1−1/p

(u∗, r)
for all t ≥ 0. Then there is a ρ > 0 such that for every u0 = u∗ + v0 ∈ M with
|v0|1−1/p ≤ ρ the solution u = u∗ + v of (1.1) exists on R+ and there is a solution
u of (1.1) on R+ such that u(t) ∈Mc for all t ≥ 0 and

|u(t)− u(t)|1 ≤ ce−αt |Psv0 − φc(Pcv0)|1−1/p
for all t ≥ 1 and a constant c independent of u0 and t. Moreover, u∗ is stable
for (1.1), i.e.: For each r > 0 there exists a ρ′ > 0 such that for every u0 ∈
M∩BX1−1/p

(u∗, ρ
′) the solution u of (1.1) exists on R+ and u(t) ∈ BX1−1/p

(u∗, r)
for all t ≥ 0.

3. The Palmer Fundamental Lemma and Pliss Reduction Principle

Let u be a solution of (1.1), u∗ be the equilibrium, and let v = u − u∗, v0 =
u(0) − u∗. Let |v0|1−1/p ≤ ρ where ρ > 0 is sufficiently small. Throughout, we
assume condition (RR) so that φc and φcu are Lipschitz into X1, see Theorem 2.3(e)
and Theorem 2.5(d). We first establish a version of the Palmer Fundamental Lemma
in our PDE context.

Lemma 3.1. [The Fundamental Lemma] Assume that Hypothesis 2.1, condition
(RR), and (2.19) hold. Then there exist C,C ′, C ′′r,> 0 and α ∈ (0, ωs) such that
if v is a solution of (2.12) satisfying |v(t)|1−1/p ≤ r for all 0 ≤ t ≤ T with some
T > 1, then there exists a solution z of (2.12) on [0, T ] such that u∗ + z(t) ∈Mcu

for all t ∈ [0, T ], Pcuz(T ) = Pcuv(T ), and

|v(t)− z(t)|1 ≤ Ce−αt|Psv0 − φcu(Pcuv0)|1−1/p (3.1)

holds for all 1 ≤ t ≤ T . Given T0 > 1, the constants are uniform for T ≥ T0. For
every t ∈ [0, T ], we further have

|v(t)− z(t)|1−1/p ≤ C ′e−αt|Psv0 − φcu(Pcuv0)|1−1/p ≤ C ′′e−αt|v0|1−1/p. (3.2)

Here, equation (3.1) holds for t ≥ 1 (or for t ≥ a for any a > 0) because one can
control the X1-norm of the solution only for strictly positive t, see Proposition 15
of [12] and Remark 2.2 above.

Proof. Part 1. We assume that T ≥ 3. For a general T0 > 0 the proof is similar.
Let v be a solution of (2.12) on [0, T ] such that |v(t)|1−1/p ≤ r for all t ∈ [0, T ],
where a sufficiently small r > 0 is to be chosen below. Due to (2.19) there are
constants δ ∈ (ωcu, ωs) and N ≥ 1 such that ‖e−tA0PcuPcu‖B(X0) ≤ Ne−δt for all
t ≤ 0. Using Theorem 2.5, we find a radius ρcu > 0 such that the restriction
φcu : PcuX0 ∩ BX0(0, ρcu) → X1 is Lipschitz with Lipschitz constant `, such that
u∗ + ξ + φcu(ξ) ∈ Mcu for all ξ ∈ PcuX0 ∩ BX0

(0, ρcu), and such that there is a
constant c0 > 0 with |Pcuz(t)|0 ≤ c0|Pcuz(1)|0 for all 0 ≤ t ≤ 1 and any solution z
of (2.12) with u∗ + z(t) ∈Mc for t ∈ [0, 1]. We set

ε1(R) = max
x∈X1,|x|1≤R

{‖G′(x)‖B(X1,X0) , ‖H
′(x)‖B(X1,Y1)}. (3.3)
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Because of (2.11), we can fix a (small) number R > 0 such that

d := Nε1(R)(1 + ‖PcuΠ‖B(Y1,X0))(1 + `) < ωs − δ, (3.4)

(1 + c0)R ‖Pcu‖B(X1,X0) ≤ ρcu . (3.5)

To choose r > 0, we note that Remark 2.2 (with T = 1/2) implies the inequality

|v(t)|1 ≤ c|v(t− 1/2)|1−1/p ≤ cr for all t ∈ [1/2, T ].

Here and below the constants do not depend on v, T, t, R or r, and we let r be less
than the radius indicated by Remark 2.2. We can now take small r > 0 such that

|v(t)|1 ≤ R for all 1/2 ≤ t ≤ T,
r(1 + `)‖Pcu‖B(X1−1/p,X1) ≤ R/2 and r ‖Pcu‖B(X1−1/p,X0) ≤ ρcu.

(3.6)

Part 2. We define

w = Psv − φcu(Pcuv) and ϕ = v − w = Pcuv + φcu(Pcuv)

on [0, T ]. The function w belongs to PsX1−1/p and, due to the last inequality in
(3.6), the function ϕ belongs to Mcu. Note that Pcuϕ = Pcuv and that

(A∗ + µ)x = (A0 + µ)(x−N1B∗x) = (A−1 + µ)x−ΠB∗x

for every x ∈ X1, see (2.15). One proves the analogues of formulas (2.23) and (2.24)
for φcu as in the proof of Theorem 4.2 of [13] for the map φc. From these identities
we infer

B∗w = B∗v −B∗φcu(Pcuv) = H(v)−H(ϕ) =: h, (3.7)

ẇ = Ps(−A∗v +G(v))− φ′cu(Pcuv)Pcu(G(v)−A∗v)

− φ′cu(Pcuϕ)Pcu(A∗ϕ−G(ϕ)) + Ps(A∗ϕ−G(ϕ))

= −PsA∗w + Ps(G(v)−G(ϕ)) + φ′cu(Pcuv)Pcu(A∗w +G(ϕ)−G(v))

= −A−1Psw + PsΠh+ Ps(G(v)−G(ϕ))− φ′cu(Pcuv)Pcu(Πh+G(v)−G(ϕ))

=: −A−1Psw + PsΠh+ Psg. (3.8)

In the penultimate line we used that PcuA−1w = A−1Pcuw = 0. Applying the
variation of constant formula in X−1, we therefore obtain

w(t) = T (t− τ)Psw(τ) +

∫ t

τ

T−1(t− σ)Ps(g(σ) + Πh(σ)) dσ (3.9)

for 0 ≤ τ < t ≤ T . Let α ∈ [0, ωs). Remark 2.2 of the present paper and Remark
3.7 in [13] imply that

max
{
‖g‖E0([τ,t],α), ‖h‖F([τ,t],α)

}
≤ ε(r)‖w‖E1([τ,t],α). (3.10)

Arguing as in the proof of Proposition 8 of [12] (see inequality (43) there), we can
then estimate

e−ατ‖w‖E1([τ,t],α) ≤ c
(
|w(τ)|1−1/p + e−ατ‖g‖E0([τ,t],α) + e−ατ‖h‖F([τ,t],α)

)
≤ c
(
|w(τ)|1−1/p + e−ατε(r)‖w‖E1([τ,t],α)

)
.

We note that the constants do not depend on τ if 0 ≤ τ ≤ t − 1/4, say. Making
r > 0 sufficiently small and using (2.7), we arrive at

e−ατ‖w‖E1([τ,t],α) ≤ c|w(τ)|1−1/p,

|w(t)|1−1/p ≤ ce−αt‖w‖E1([τ,t],α) ≤ ce
−α(t−τ)|w(τ)|1−1/p

(3.11)
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for all 0 ≤ τ < t ≤ T . Again the constants are uniform for τ ∈ [0, t− 1/4].
Part 3. Since |Pcuv(T )|0 ≤ ρcu by (3.6), there exists the backward solution z =

Pcuz+φcu(Pcuz) of (2.12) such that u∗+z belongs toMcu and Pcuz(T ) = Pcuv(T ).
Due to Theorem 2.5, z(t) exists at least for t ∈ [T − 3, T ] and ‖z‖E1([T−3,T ]) ≤
c|Pcuz(T )|0 ≤ cr. Thus, |z(T − 3)|1−1/p ≤ cr by (2.7) and so Proposition 5 of [12]
yields |z(t)|1 ≤ cr ≤ R for all t ∈ [T − 2, T ], after decreasing r > 0 if needed. Let
t0 ∈ [1/2, T − 2] be the minimal time such that z(t) with u∗+ z onMcu exists and
the inequality |z(t)|1 ≤ R holds for all t0 ≤ t ≤ T . We set

y = Pcu(v − z). (3.12)

Denoting

g1 = G(v)−G(z) and h1 = B∗(v − z) = H(v)−H(z),

we obtain

y′ = Pcu

(
−A∗(v − z) + g1

)
= −Pcu

(
(A0 + µ)(v − z −N1h1)− µ(v − z)

)
+ Pcug1

= −A0Pcuy + Pcu(g1 + Πh1). (3.13)

This equation yields

y(t) = −
∫ T

t

e−(t−τ)A0PcuPcu(g1(τ) + Πh1(τ)) dτ,

|y(t)|0 ≤ N(1 + ‖PcuΠ‖B(Y1,X0))

∫ T

t

e−δ(t−τ)ε1(R)|v(τ)− z(τ)|1 dτ (3.14)

for all t ∈ [t0, T ]. We observe that

v − z = w + φcu(Pcuv)− φcu(Pcuz) + y (3.15)

holds on [t0, T ]. Putting d0 = d(1 + `)−1 and recalling (3.4) and (3.5), we further
estimate

eδt|y(t)|0 ≤ d
∫ T

t

eδτ |y(τ)|0 dτ + d0

∫ T

t

eδτ |w(τ)|1 dτ.

We then deduce from a Gronwall-type inequality that

eδt|y(t)|0 ≤ d0
∫ T

t

eδτ |w(τ)|1 dτ + dd0

∫ T

t

ed(τ−t)
∫ T

τ

eδσ|w(σ)|1 dσ dτ

= d0

∫ T

t

eδτ |w(τ)|1 dτ + dd0

∫ T

t

eδσ|w(σ)|1
∫ σ

t

ed(τ−t) dτ dσ

= d0

∫ T

t

ed(σ−t)eδσ|w(σ)|1 dσ.

Since we have chosen d and δ as in (3.4), we can take α ∈ (d+ δ, ωs). So, Hölder’s
inequality and (3.11) imply

|y(t)|0 ≤ d0
∫ T

t

e(d+δ)(σ−t)|w(σ)|1 dσ

≤ d0e
−αt

(d+ δ − α)
1
p′
‖w‖E1([t,T ],α) ≤ c|w(t)|1−1/p (3.16)
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for all t ∈ [t0, T ], where the constant c is uniform for t ≤ T − 1/4, say. If t ∈
[T − 1/4, T ], we can estimate in (3.16) the E1 norm on [t, T ] by that on [t− 1/4, T ]
and obtain

|y(t)|0 ≤ c|w(t− 1/4)|1−1/p (3.17)

with a uniform constant. In view of (3.12), we have z = Pcu(v − y) + φcu(Pcu(v −
y)). Thus, |Pcu(v − y)|0 = |Pcuz|0 ≤ ‖Pcu‖B(X1,X0)R ≤ ρcu due (3.5). Using
|v(t0)|1−1/p ≤ r, (3.6), (3.16), and (3.11) with τ = 0, we then deduce

|z(t0)|1 ≤ (1 + `)|Pcu(v − y)|1 ≤ (1 + `)‖Pcu‖B(X1−1/p,X1) |v(t0)|1−1/p + c|y(t0)|0
≤ R/2 + c|w(t0)|1−1/p ≤ R/2 + c|v0|1−1/p ≤ R/2 + cr < R,

provided r > 0 is small enough. It follows that t0 = 1/2. Since u∗ + z(1/2) ∈Mcu

we can extend u∗ + z on Mcu to the time interval [0, T ] due to Theorem 2.5(a).
The estimates (3.16), (3.17) and (3.11) now imply that the inequalities

|Pcu(v(t)− z(t))|0 = |y(t)|0 ≤ ce−αt|w(0)|1−1/p = ce−αt|Psv0 − φcu(Pcuv0)|1− 1
p
,

|Ps(v(t)− z(t))|1−1/p = |w(t) + φcu(Pcuv(t))− φcu(Pcuz(t))|1−1/p
≤ |w(t)|1−1/p + c|y(t)|0 ≤ ce−αt|Psv0 − φcu(Pcuv0)|1−1/p

hold on [1/2, T ]. These relations and Theorem A.1 of [13] yield (3.1).
Part 4. To establish (3.2), it remains to show that

|v(t)− z(t)|1−1/p ≤ c|Psv0 − φcu(Pcuv0)|1−1/p for all t ∈ [0, 1]. (3.18)

We first note that (3.15) also holds on [0, T ] and that |Pcuz(t)|0 ≤ ρcu for 0 ≤ t ≤ 1
due to (3.5) and the text before this inequality. Let g and h be given by (3.8) and
(3.7). Theorem 2.1 of [7] gives a ψ ∈ E1([0, 1]) such that

∂tψ(t) +A∗ψ(t) = g(t) on Ω, a.e. t > 0,

B∗ψ(t) = h(t) on ∂Ω, t ≥ 0,

ψ(0) = w(0), on Ω.

Using also (3.10) with α = 0, we further obtain

‖ψ‖E1([0,1]) ≤ c(|w(0)|1− 1
p

+‖g‖E0([0,1]) +‖h‖F([0,1])) ≤ c|w(0)|1− 1
p

+ε(r)‖w‖E1([0,1]).

In view of (2.17) and (3.9), we have w = Psψ and thus

‖w‖E1([0,1]) ≤ c‖ψ‖E1([0,1]) ≤ c|w(0)|1− 1
p

+ ε(r)‖w‖E1([0,1]),

‖w‖E1([0,1]) ≤ c|w(0)|1−1/p = c|Psv0 + φcu(Pcuv0)|p, (3.19)

possibly after decreasing r > 0. Equation (3.15) and (2.7) now yield

|v(t)− z(t)|1−1/p ≤ c(|w(t)|1−1/p + |y(t)|0) ≤ c(‖w‖E1([0,1]) + |y(t)|0)

≤ c(|Psv0 + φcu(Pcuv0)|1−1/p + |y(t)|0) (3.20)

for all t ∈ [0, 1]. To control y(t), we use again (3.13). As in the proof of Proposi-
tion 10 of [12] (letting there v = 0 in steps (1), (4) and (5)), one can show that

‖g1‖E0([t,1]) + ‖h1‖Lp([t,1];Y1) ≤ c‖v − z‖Lp([t,1];X1)

where the constant does not depend on t ∈ [0, 1]. Combined with (3.15), (3.19) and
(3.1), these facts yield

y(t) = e−(t−1)A0Pcuy(1)−
∫ 1

t

e−(t−τ)A0PcuPcu(g1(τ) + Πh1(τ)) dτ,
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|y(t)|0 ≤ c(|y(1)|0 + ‖v − z‖Lp([t,1];X1)) ≤ c(|y(1)|0 + ‖w‖Lp([t,1];X1) + ‖y‖E0([t,1]))

≤ c(|Psv0 + φcu(Pcuv0)|1−1/p + ‖y‖E0([t,1]))

where we could employ that φcu is Lipschitz with values in X1 since |Pcuv|0 and
|Pcuz|0 are less than ρcu on [0, 1]. It follows

|y(t)|p0 ≤ c|Psv0 + φcu(Pcuv0)|p1−1/p + c

∫ 1

t

|y(τ)|p0 dτ

for all t ∈ [0, 1], so that |y(t)|p0 ≤ c|Psv0+φcu(Pcuv0)|p1−1/p by Gronwall’s inequality.

In view of (3.20), we have established (3.18). �

Our first theorem says that the center manifold attracts solutions which stay in
small ball around u∗ for all t ≥ 0 and that there exists a tracking solution u∗ + z
on Mc.

Theorem 3.2. [Asymptotic Phase] Assume that Hypothesis 2.1, condition (RR),
(2.18), and dimPcuX0 < ∞ hold. Then there exists constants r, c > 0 and α ∈
(0, ωs) such that : If a solution v of (2.12) exists and satisfies |v(t)|1−1/p ≤ r for
all t ≥ 0, then there is a solution z of (2.12) such that u∗ + z(t) ∈Mc and

|v(t)− z(t)|1 ≤ ce−αt|Psv0 − φcu(Pcuv0)|1−1/p for all t ≥ 1, (3.21)

|v(t)− z(t)|1−1/p ≤ ce−αt|Psv0 − φcu(Pcuv0)|1−1/p for all t ≥ 0. (3.22)

If we replace here (2.18) by (2.19), then u∗+z(t) only belongs to Mcu for all t ≥ 0.

Proof. We choose r > 0 so small that Lemma 3.1 can be applied to v. Lemma 3.1
gives solutions zn with u∗ + zn on Mcu tracking v on [0, n] for every n ∈ N with
n ≥ 2. Lemma 3.1 also yields

|Pcuzn(0)|0 ≤ |Pcuv(0)|0 + |Pcu(zn(0)− v(0))|0 ≤ cr
for all n ∈ N. Hence, there exists a subsequence nj →∞ so that Pcuznj

(0)→ ζ ∈
PcuX0 as j →∞. Let z be the solution of (2.12) on [−2, 2] such that Pcuz(0) = ζ
and u∗+z(t) ∈Mcu for t ∈ [−2, 2], decreasing r > 0 if needed to apply Theorem 2.5
and Remark 2.2. We also have |z(t)|1−1/p ≤ c|z(0)|0 ≤ |ζ|0 ≤ c1r for all t ∈
[0, 2] and some constant c1 > 0. Let b denote the supremum of t1 > 1 such that
z(t) exists on [0, t1] and stays in the ball B1−1/p(0, (1 + c1 + C ′′)r), where C ′′ is
given by Lemma 3.1. We thus have b ≥ 2. If we take a sufficiently small r > 0,
Theorem 2.5(b) shows that u∗ + z(t) ∈Mcu for t ∈ [0, b).

As in Theorem 4.2 of [13] one can prove that the functions Pcuzn and Pcuz
satisfy an ordinary differential equation analogous to (2.22). Since the initial data
Pcuznj

(0) converge to Pcuz(0), we thus obtain Pcuznj
(t)→ Pcuz(t) in X0 as j →∞

for t ∈ [0, b) and hence

znj (t) = Pcuznj (t) + φcu(Pcuznj (t))→ z(t)

in X1 ↪→ X1−1/p, using also the Lipschitz property of φcu stated in Theorem 2.5(d)
and decreasing r > 0 if necessary. Lemma 3.1 now implies that

|z(t)|1−1/p ≤ lim sup
j→∞

|znj (t)− v(t)|1−1/p + |v(t)|1−1/p (3.23)

≤ C ′′e−αt|v0|1−1/p + r ≤ (C ′′ + 1)r < (C ′′ + 1 + c1)r.

for all t ∈ [0, b). As a result, b = ∞ and z exists for all t ≥ 0 and stays in
B1−1/p(0, (C

′′ + 1 + c1)r). If r > 0 is chosen small enough, then Lemma 3.3 below
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shows that u∗ + z(t) ∈ Mcs for all t ≥ 0. Hence, u∗ + z is contained in Mc by
Corollary 2.6 since u∗ + z(t) ∈ Mcu for all t ≥ 0. (If only (2.19) holds, then we
cannot apply Lemma 3.3, and we just obtain u∗ + z(t) ∈ Mcu.) The convergence
properties follow from Lemma 3.1 as in (3.23). �

Lemma 3.3. Assume that Hypothesis 2.1 and (2.20) hold. If u∗ + v0 ∈Mcs, then

v0 = Pcsv0 + φcs(Pcs P v0), (3.24)

where P = I−N1−1/pB∗. Moreover, there exists a ρ > 0 such that if v is a solution
of (2.12) on R+ staying in B(u∗, ρ), then u∗ + v(t) ∈Mcs for all t ≥ 0.

Proof. Theorem 2.4(b) shows that

v0 = Pcs P v0 + ϑcs(Pcs P v0) + φcs(Pcs P v0)

if u∗ + v0 ∈ Mcs. Then Pcsv0 = Pcs P v0 + ϑcs(Pcs P v0), and the first assertion
follows. In the framework of Theorem 2.4, the second assertion can be shown as
Theorem 2.3(d) (see the proof of Theorem 4.2(e) in [13]). �

Given a solution u∗ + v near u∗, in Lemma 3.1 we have constructed a tracking
solution on Mcu for finite time intervals. In the next lemma, we construct such a
solution on the center manifold in the case of trichotomy if also u∗ + v(0) ∈Mcs.

Lemma 3.4. Assume that Hypothesis 2.1, condition (RR), and (2.18) hold. Then
there exist C, r > 0 such that: If there is a solution v of (2.12) with u∗ + v on
Mcs staying in B1−1/p(0, r) on [0, T ] for some T > 1, then there is a solution z of
(2.12) on [0, T ] such that u∗+ z(t) ∈Mc for all t ∈ [0, T ], Pcuz(T ) = Pcuv(T ), and

|v(t)− z(t)|1 ≤ Ce−αt|Psv0 − φcu(Pcuv0)|1−1/p for all t ≥ 1,

|v(t)− z(t)|1−1/p ≤ Ce−αt|Psv0 − φcu(Pcuv0)|1−1/p for all t ≥ 0,

Given T0 > 1, the constants are uniform for T ≥ T0.

Proof. We assume that T ≥ 3. For a general T0 > 0 the proof is similar. Formula
(3.24) says that v = Pcsv + φcs(Pcs P v). We set w = Psv − φcu(Pcuv). Since
|Pcv(T )|1−1/p ≤ cr, for sufficiently small r > 0 Theorem 2.5 gives a solution z
of (2.12) on [T − 3, T ] such that Pcz(T ) = Pcv(T ) and u∗ + z belongs to Mc.
Moreover, |z(T )|1 ≤ c|Pcz(T )|0 ≤ cr. Here and below the constants do not depend
on v, T, t, r and the number R > 0 introduced later. We have Mc = Mcs ∩Mcu

due to Corollary 2.6, and thus

z = Pcz + φc(Pcz) = Pcsz + φcs(Pcs P z) = Pcuz + φcu(Pcuz).

As a result, Psz = φcu(Pcuz) and Puz = φcs(Pcs P z). Hence,

v − z = w + φcu(Pcuv)− φcu(Pcuz) + Pc(v − z) (3.25)

+ φcs(Pcs P v)− φcs(Pcs P z).
We set y = Pc(v− z). Given a small R > 0 to be determined later, let t0 ∈ [1/2, T )
be the minimal time such that the solution z(t) of (2.12) with u∗+ z onMc exists
and the inequality |z(t)|1 ≤ R holds for all t0 ≤ t ≤ T . As in part 3 of the proof of
Lemma 3.1, we obtain that 1/2 ≤ t0 ≤ T − 2 exists if r > 0 is chosen small enough.
We further note that Remark 2.2 shows that |v(t)|1 ≤ c|v(t− 1/2)|1−1/p ≤ cr ≤ R
where we decrease r > 0 if needed.

Theorems 2.4 and 2.5 imply that the maps φcs : PcsX
0
1−1/p → PuX0 and φcu :

PcuX0 → PsX1−1/p are Lipschitz with a constant ε(R) on balls of radius R in the
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respective domain spaces. Moreover, φcu : PcuX0 → PsX1 is Lipschitz on this ball
due to (RR) and Theorem 2.5(d) (after possibly decreasing R). We thus deduce

|v(t)− z(t)|1−1/p ≤ |w(t)|1−1/p + ε(cR)|Pcu(v(t)− z(t))|0
+ cε(cR)|Pcs P(v(t)− z(t))|1−1/p + c|y(t)|0

from (3.25) and X1 ↪→ X1−1/p ↪→ X0. Decreasing R > 0 if needed, we obtain

|v(t)− z(t)|1−1/p ≤ c(|w(t)|1−1/p + |y(t)|0) (3.26)

for t0 ≤ t ≤ T . Proceeding similarly, inequality (3.26) then leads to

|v(t)− z(t)|1 ≤ |w(t)|1 + c|Pcu(v(t)− z(t))|0 + c|Pcs P(v(t)− z(t))|1−1/p + c|y(t)|0
≤ |w(t)|1 + c(|w(t)|1−1/p + |y(t)|0) ≤ c(|w(t)|1 + |y(t)|0), (3.27)

for all t0 ≤ t ≤ T .
Let δ ∈ (ωc, ωs). As in the proof of (3.13) and (3.14) in Lemma 3.1, we infer

y′(t) = Pc

(
−A∗(v(t)− z(t)) +G(v(t))−G(z(t))

)
= −A0Pcy(t) + Pc

(
Π(H(v(t))−H(z(t))) +G(v(t))−G(z(t))

)
,

y(t) = −
∫ T

t

e−(t−τ)A0PcPc

(
Π(H(v(τ))−H(z(τ))) +G(v(τ))−G(z(τ))

)
dτ,

|y(t)|0 ≤ cε1(R)

∫ T

t

e−δ(t−τ)|v(τ)− z(τ)|1 dτ.

Inequality (3.27) then implies

eδt|y(t)|0 ≤ cε1(R)

∫ T

t

eδτ |y(τ)|0 dτ + cε(R)

∫ T

t

eδt|w(τ)|1 dτ.

Arguing as in the proof of (3.16) in Lemma 3.1 (with d = d0 = cε(R) being small),
we conclude that

|y(t)|0 ≤ d
∫ T

t

e(d+δ)(σ−t)|w(σ)|1 dσ.

We now fix a sufficiently small R > 0 such that d+ δ < ωs, where d = cε(R). Let
α ∈ (d+ δ, ωs). If we take a sufficiently small r > 0, we can apply estimates (3.11)
and (3.19) from Lemma 3.1. Using first Hölder’s inequality, we thus derive

|y(t)|0 ≤ ce−αt‖w‖E1([t,T ],α) ≤ c|w(t)|1−1/p (3.28)

for all t0 ≤ t ≤ T − 1/4. As in (3.17), we also obtain

|y(t)|0 ≤ c|w(t− 1/4)|1−1/p (3.29)

for all t ∈ [T − 1/4, T ]. Observe that

z = Pcz + φc(Pcz) = Pc(v − y) + φc(Pc(v − y)). (3.30)

Remark 2.2 further yields

|v(t)|1 ≤ c|v(t− 1/2)|1−1/p ≤ cr ≤ R/2 (3.31)

for all t ∈ [t0, T ] and a sufficiently small r > 0. Using (3.30), (3.31) and (3.28), we
infer

|z(t0)|1 ≤ c
(
|v(t0)|1 + |y(t0)|0

)
≤ R/2 + c|w(t0)|1−1/p .
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Since |w(t0)|1−1/p ≤ c|v(t0)|1−1/p, we finally conclude that |z(t0)|1 ≤ R/2+cr < R,
decreasing r > 0 again, if needed. Thus, t0 = 1/2. Now the estimates (3.26), (3.28),
(3.29) and (3.11) imply

|v(t)− z(t)|1−1/p ≤ c
(
|w(t)|1−1/p + |y(t)|0

)
≤ ce−αt|w(0)|1−1/p = ce−αt|Psv0 − φcu(Pcuv0)|1−1/p

for all t ∈ [1/2, T ]. We can extend this estimate to t ∈ [0, T ] as in part 4) of the
proof of Lemma 3.1. Finally, decreasing r > 0 if necessary, one can use the estimate
(A.2) in [13] applied to u∗ + v and u∗ + z, obtaining the inequality

|v(t)− z(t)|1 ≤ c|v(t− 1/2)− z(t− 1/2)|1−1/p
and completing the proof. �

Our second theorem extends the stability Theorem 2.7 to the case of unsta-
ble spectrum. It says that the center manifold locally attracts the center–stable
manifold with a tracking solution if the flow on Mc is stable.

Theorem 3.5. Assume that Hypothesis 2.1, condition (RR), dimPcX0 <∞, and
the trichotomy condition (2.18) hold. Suppose that u∗ is stable for the flow on Mc.
Then there exist sufficiently small r > 0 and ρ > 0 such that for each solution v of
(2.12) with |v0|1−1/p ≤ ρ either

(a) there exists t > 0 such that |v(t)|1−1/p > r, or
(b) u∗ + v0 ∈Mcs.

Moreover, in case (b) the solution v of (2.12) with u∗ + v(t) ∈ Mcs exists for all
t ≥ 0, satisfies |v(t)|1−1/p ≤ r for all t ≥ 0, and there exists a solution z of (2.12)
on R+ with u∗ + z on Mc such that

|v(t)− z(t)|1 ≤ Ce−αt|Psv0 − φcu(Pcuv0)|1−1/p for all t ≥ 1, (3.32)

|v(t)− z(t)|1−1/p ≤ Ce−αt|Psv0 − φcu(Pcuv0)|1−1/p for all t ≥ 0. (3.33)

Proof. Let r > 0 be the radius determined in Lemma 3.4. We choose a small
ρ ∈ (0, r) to be fixed later. Let v0 with u∗+v0 ∈Mcs satisfy |v0|1−1/p ≤ ρ. Denote
by T the supremum of all t > 0 such that v(t) exists and satisfies |v(τ)|1−1/p < r for
all 0 ≤ τ ≤ t and |v(T )|1−1/p = r. Remark 2.2 implies that T > 1 for sufficiently
small ρ > 0. By Lemma 3.4, there exists a solution zT of (2.12) on [0, T ] such that
PczT (T ) = Pcv(T ), u∗ + zT (t) ∈Mc for 0 ≤ t ≤ T , and

|zT (t)− v(t)|1 ≤ ce−αt|Psv0 − φcu(Pcuv0)|1−1/p, t ∈ [1, T ],

|zT (t)− v(t)|1−1/p ≤ ce−αt|Psv0 − φcu(Pcuv0)|1−1/p ≤ cρ, t ∈ [0, T ].
(3.34)

Here and below, c does not depend on T and ρ. Using this estimate and Remark 2.2,
it follows that

|zT (0)|1−1/p ≤ |zT (0)− v(0)|1−1/p + |v(0)|1−1/p ≤ cρ+ cρ = cρ. (3.35)

Since u∗ is stable for the flow on Mc, we can choose ρ so small that

|zT (T )|1−1/p = distX1−1/p
(u∗ + zT (T ), u∗) ≤ r/2.

We then obtain

|v(T )|1−1/p ≤ |v(T )− zT (T )|1−1/p + |zT (T )|1−1/p ≤ cρ+ r/2 < r

provided ρ > 0 is sufficiently small. This strict inequality is a contradiction if T is
finite, and hence T =∞. As a consequence, (3.35) holds for all T > 1. Since PcX0
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is finite dimensional, there thus exists a sequence of Tn → ∞ such that PszTn(0)
converge as n → ∞ to some ζ ∈ PcX0 with |ζ|0 ≤ cρ. Using Theorem 2.3(a), we
find a solution z of (2.12) on some time interval [0, t0) such that Pcz(0) = ζ and
u∗ + z belongs to Mc. Since |z(0)|1−1/p ≤ c|ζ|0 ≤ cρ, the stability of u∗ on Mc

implies that z(t) exists and |z(t)|1−1/p ≤ r for all t ≥ 0, if ρ > 0 is sufficiently small.
As in the proof of Theorem 3.2 we then deduce that zTn

(t) converges to z(t) in X1

as n→∞. Thus, the required estimate (3.32) follows from (3.34). �

In our last theorem, we extend the stability Theorem 2.7 from the set K = {u∗}
to larger invariant sets K.

Theorem 3.6. [Reduction Principle] Assume the conditions of Theorem 2.7. There
exists small numbers ρ, ρ0 > 0 such that if K ⊂ BX1−1/p

(u∗, ρ) is a backward and

forward globally invariant set for (1.1), then the following assertions hold:
(a) K ⊂Mc and there exists a set K0 ⊂ BPcX0(0, ρ0) such that

K =
{
u∗ + w0 + φc(w0) : w0 ∈ K0} (3.36)

and K0 is forward and backward invariant with respect to the flow induced by the
ODE (2.22).

(b) If K0 is stable, resp. asymptotically stable, for the flow induced by the ODE
(2.22), then K is stable, resp. asymptotically stable, for the flow of (1.1).

Proof. Let r > 0 be the radius determined in Lemma 3.1 and Theorem 3.2. Take
ρ > 0 smaller than the radius described in Theorem 2.3 such that

ρ < r/2 and ρ0 := ρ‖Pc‖B(X1−1/p,X0) < r/2 (3.37)

hold. Let K ⊂ BX1−1/p
(u∗, ρ) be a backward and forward globally invariant set for

(1.1); that is, for each u∗ + v0 ∈ K the solution v of (2.12) with v(0) = v0 exists
for all t ∈ R and u∗ + v(t) ∈ K for all t ∈ R.

(a) The inclusion K ⊂Mc follows from Theorem 2.3(d) by our choice of ρ since
K is invariant. We define K0 =

{
Pc(u0 − u∗) : u0 ∈ K

}
. Then K0 ⊂ BPcX0(0, ρ0).

For y0 ∈ K0, the function v0 = y0 +φc(y0) satisfies u0 = u∗+ v0 ∈ K. The solution
v of (2.12) with the initial datum v(0) = v0 thus exists for all t ∈ R and satisfies
u∗ + v(t) ∈ K ⊂ BX1−1/p

(u∗, ρ). By Theorem 2.3 (c), the function y = Pcv solves

the ODE (2.22) for all t ∈ R and thus K0 is invariant for the flow induced by (2.22).
(b) First, we claim that the following assertions hold provided the numbers

r0, r > 0 are chosen small enough:

if distPcX0(y,K0) ≤ r0 then |y|1−1/p ≤ r, (3.38)

if distX1−1/p
(u∗ + v,K) ≤ r then |v|1−1/p ≤ r, (3.39)

if distX1−1/p
(u∗ + v,K) ≤ r then

|Psv − φc(Pcv)|1−1/p ≤ cdistX1−1/p
(u∗ + v,K). (3.40)

To show (3.38), we recall that K0 ⊂ BPcX0
(0, ρ0) with ρ0 = ρ‖Pc‖B(X1−1/p,X0).

Thus, choosing w0 ∈ K0 appropriately and using (3.37), we have

|y|1−1/p ≤ |y − w0|1−1/p + |w0|1−1/p
≤ 2 distX1−1/p

(y,K0) + ρ‖Pc‖B(X1−1/p,X0)

≤ 2r0 + ρ‖Pc‖B(X1−1/p,X0) ≤ r/2 + r/2 = r,
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provided r0 > 0 is small enough. The proof of (3.39) is analogous. To show (3.40),
let us pick a w ∈ K such that

|u∗ + v − w|1−1/p ≤ 2 distX1−1/p
(u∗ + v,K).

We note that w = u∗+w0 +φc(w0) for some w0 ∈ K0 due to (3.36) and recall that
w0 ∈ BPcX0

(0, ρ0) and v ∈ BX1−1/p
(0, r) by (3.39). Using the Lipschitz property of

φc on small balls stated in Theorem 2.3, we then obtain

|Psv − φc(Pcv)|1−1/p ≤ |Psv − φc(w0)|1−1/p + |φc(w0)− φc(Pcv)|1−1/p
≤ |Psv − Ps(w − u∗)|1−1/p + c|Pc(w − u∗)− Pcv|1−1/p
≤ c|u∗ + v − w|1−1/p ≤ cdistX1−1/p

(u∗ + v,K).

Next, let us assume that K0 is stable, that is, that for each r0 > 0 there is
a ρ0 > 0 such that if distPcX0

(y(0),K0) ≤ ρ0 then distPcX0
(y(t),K0) ≤ r0 for

all t ≥ 0 for the solution y in PcX0 of the ODE (2.22). Here we choose r0 > 0
such that (3.38) holds, but possibly r0 will be further decreased below. To prove
that K is stable, let r > 0 be given where we may assume that r < r and that
r is so small that (3.39) and (3.40) hold. We have have to find ρ > 0 such that
if distX1−1/p

(u∗ + v0,K) ≤ ρ then the solution v of (2.12) with the initial data

v(0) = v0 exists for all t ≥ 0 and satisfies distX1−1/p
(u∗ + v(t),K) ≤ r for all t ≥ 0.

Let us fix a ρ < r to be determined later.
Since distX1−1/p

(u∗+ v0,K) ≤ ρ < r, either the solution v(t) of (2.12) is defined

for all t ≥ 0 and satisfies distX1−1/p
(u∗ + v(t),K) < r for all t ≥ 0, or there is a

number T such that distX1−1/p
(u∗+ v(t),K) < r for all 0 ≤ t < T with equality for

t = T . (We can again assume that T is larger than 1 due to Remark 2.2.) Suppose
that the second option holds. By (3.39), we have |v(t)|1−1/p ≤ r for all 0 ≤ t ≤ T .
Lemma 3.1 thus yields a solution z of (2.12) on [0, T ] with u∗ + z(t) ∈ Mc. (We
recall that Mc = Mcu due to the setting assumed in the theorem.) Moreover, z
satisfies Pcz(T ) = Pcv(T ) and the estimate

|v(t)− z(t)|1−1/p ≤ ce−αt|Psv0 − φc(Pcv0)|1−1/p (3.41)

for all 0 ≤ t ≤ T .
We pause to remark the inequality

distPcX0
(Pcv(0),K0) ≤ cdistX1−1/p

(u∗ + v(0),K), (3.42)

proved as follows: Pick a w0 ∈ K0 such that w = u∗ + w0 + φc(w0) ∈ K satisfies
the inequality |u∗ + v(0)−w|1−1/p ≤ 2 distX1−1/p

(u∗ + v(0),K). We then establish

the claim (3.42) by computing

distPcX0(Pcv(0),K0) ≤ |Pcv(0)− w0|PcX0 = |Pc(v(0)− w0 − φc(w0))|PcX0

≤ ‖Pc‖B(X1−1/p,X0)|v(0)− w0 − φc(w0)|1−1/p
= ‖Pc‖B(X1−1/p,X0)|u∗ + v(0)− w|1−1/p ≤ cdistX1−1/p

(u∗ + v(0),K).

Using (3.41), (3.42), and (3.40) with v replaced by v0, we obtain

distPcX0
(Pcz(0),K0) ≤ |Pcz(0)− Pcv(0)|0 + distPcX0

(Pcv(0),K0)

≤ c|Psv0 − φc(Pcv0)|1−1/p + cdistX1−1/p
(u∗ + v(0),K)

≤ cdistX1−1/p
(u∗ + v0,K) ≤ cρ. (3.43)
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By Theorem 2.3(c), y(t) = Pcz(t) satisfies the ODE (2.22). If ρ > 0 is chosen
sufficiently small, then (3.43) yields

distPcX0
(y(0),K0) ≤ cρ ≤ ρ0,

where ρ0 > 0 was chosen above depending on r0. Since K0 is stable, it follows that

distPcX0
(y(t),K0) ≤ r0 for all 0 ≤ t ≤ T (3.44)

(and thus |y(t)|1−1/p ≤ r by (3.38)). Using u∗ + z(t) ∈ Mc and (3.36), and also
the Lipschitz property of φc, we estimate

distX1−1/p
(u∗ + z(t),K)

= inf
w0∈K0

∣∣(u∗ + Pcz(t) + φc(Pcz(t))
)
−
(
u∗ + w0 + φc(w0)

)∣∣
1−1/p

≤ inf
w0∈K0

(
c|Pcz(t)− w0|0 + c|Pcz(t)− w0|0

)
≤ cdistPcX0

(Pcz(t),K0) (3.45)

for all 0 ≤ t ≤ T . By means of (3.45), (3.41), (3.40), and (3.44), we deduce

distX1−1/p
(u∗ + v(t),K) ≤ distX1−1/p

(u∗ + z(t),K) + |v(t)− z(t)|1−1/p
≤ cdistPcX0(Pcz(t),K0) + ce−αt|Psv0 − φc(Pcv0)|1−1/p

)
(3.46)

≤ cdistPcX0(y(t),K0) + cdistX1−1/p
(u∗ + v0,K)

≤ cr0 + cρ < r/2 + r/2 = r

for all 0 ≤ t ≤ T , provided that r0 > 0 and ρ > 0 are sufficiently small. This
strict inequality is a contradiction that proves T =∞. In particular, the inequality
distX1−1/p

(u∗ + v(t),K) < r holds for all t ≥ 0 and thus K is stable.
To prove the asymptotic stability ofK assuming thatK0 is asymptotically stable,

we apply Theorem 3.2 to the solution v(t) that has been just constructed for all
t ≥ 0. That is, we take the solution z with u∗+ z(t) ∈Mc that tracks the solution
v as described in (3.22). Replacing z by z in (3.43) and (3.46), we obtain

distPcX0
(Pcz(0),K0) ≤ cdistX1−1/p

(u∗ + v0,K), (3.47)

distX1−1/p
(u∗ + v(t),K) ≤ cdistPcX0

(Pcz(t),K0) (3.48)

+ ce−αt|Psv0 − φc(Pcv0)|1−1/p
)
,

for all t ≥ 0. Set y(t) = Pcz(t). Due to the asymptotic stability of K0 and (3.47),
if distX1−1/p

(u∗ + v0,K) is sufficiently small, then one has distPcX0
(y(t),K0) → 0

as t→∞. Finally, due to (3.48), we conclude that distX1−1/p
(u∗ + v(t),K)→ 0 as

t→∞. �
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