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Abstract. We investigate quasilinear systems of parabolic partial differential
equations with fully nonlinear boundary conditions on bounded or exterior
domains in the setting of Sobolev–Slobodetskii spaces. We establish local
wellposedness and study the time and space regularity of the solutions. Our
main results concern the asymptotic behavior of the solutions in the vicinity of
a hyperbolic equilibrium. In particular, the local stable and unstable manifolds
are constructed.

1. Introduction

In this paper we investigate the qualitative properties of a general class of non-
linear parabolic systems by a unified approach. We consider the equations

∂tu(t) +A(u(t))u(t) = F (u(t)), on Ω, t > 0,

Bj(u(t)) = 0, on ∂Ω, t ≥ 0, j = 1, · · · ,m, (1.1)

u(0) = u0, on Ω,

on a (possibly unbounded) domain Ω with compact boundary ∂Ω, where the solu-
tion u(t, x) takes values in a finite dimensional space E = CN . The main part of
the differential equation is given by a linear differential operator A(u) of order 2m
(with m ∈ N) whose matrix–valued coefficients depend on the derivatives of u up to
order 2m− 1, and F is a general nonlinear reaction term acting on the derivatives
of u up to order 2m − 1. Therefore the differential equation is quasilinear. Our
analysis focusses on the fully nonlinear boundary conditions

[Bj(u)](x) := b(x, u(x),∇u(x), · · · ,∇mju(x)) = 0, x ∈ ∂Ω, j = 1, · · · ,m,
for the partial derivatives of u up to order mj ≤ 2m− 1. We look for a solution u
in the space E1 = Lp([0, T ];W 2m

p (Ω; CN ))∩W 1
p ([0, T ];Lp(Ω; CN )) for a fixed finite

exponent p > n+ 2m. The terms of highest order are thus contained in Lp spaces.
Due to known embedding theorems, a function u ∈ E1 also belongs to the space
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C([0, T ];BC2m−1(Ω; CN )). Hence, the nonlinear terms in (1.1) are continuous in
(t, x) up to t = 0, and the initial condition can be understood in a classical sense.

We require only local smoothness of the coefficients (e.g., the diffusion coefficients
are C1); in particular, there are no growth restrictions. The parabolicity of (1.1) is
expressed in our main assumption saying that the linear boundary value problems
(A(v), B′1(v), · · · , B′m(v)) are normally elliptic and satisfy the Lopatinskii-Shapiro
conditions for suitable functions v and the derivatives B′j(v). (See Section 2 for the
precise statements.) These conditions are necessary and sufficient for the regularity
properties of the linearization of (1.1), see Theorem 2.2 and (2.27), which are crucial
for our approach. In this sense, our hypotheses are optimal. We note that reaction
diffusion systems satisfy our assumptions, see [5] and also Section 6.

The initial value u0 of (1.1) has to fulfill the boundary conditions Bj(u0) = 0
by continuity. Moreover, our solution space E1 is continuously embedded into
C([0, T ];Xp) for the Slobodetskii space Xp = W

2m−2m/p
p (Ω; CN ), and Xp is the

smallest space with this property. As a result, u0 must belong to Xp, the solution
u of (1.1) is continuous in Xp on [0, T ], and the norm of Xp is the natural norm for
our work. So we are led to the nonlinear phase space

M = {u0 ∈ Xp : B1(u0) = 0, · · · , Bm(u0) = 0},

which is a C1 manifold in Xp. This genuine nonlinear structure has to be respected
when solving (1.1) and when studying the properties of the solutions. In fact, many
of the difficulties in our analysis arise from the compatibility conditions Bj(u0) = 0.

We prove local existence and uniqueness of solutions in E1 for initial values
u0 ∈M. We further show that the local semiflow onM solving (1.1) is continuously
differentiable with respect to u0 and that the equation has an additional smoothing
effect in so far for t > 0 the solution u(t) is Hölder continuous of order 1 − 1/p
with values in W 2m

p (Ω; CN ), although u0 ∈ Xp. These results are presented in
Theorem 4.2. However, we are mainly interested in the long term behavior of the
solutions near an equilibrium u∗ ∈W 2m

p (Ω; CN ) of (1.1). To this aim, we consider
the derivative A∗ of the map u 7→ A(u)u−F (u) at u∗ and introduce the restriction
A0 of A∗ to the kernel of the boundary operator B∗ = (B′1(u∗), · · · , B′m(u∗)). By
[14], the operator −A0 generates an analytic semigroup T (·) on Lp(Ω; CN ). It
turns out that the spectrum of A0 determines much of the asymptotic behavior of
the solutions to (1.1) near u∗. So we show the principle of linearized stability for
(1.1) in Proposition 5.1. Assuming that iR ⊂ ρ(A0) (i.e., that u∗ is hyperbolic), in
Theorem 5.2 we then construct the local stable, respectively unstable, manifolds at
u∗ which are C1 in Xp and tangent to the stable, respectively unstable, subspaces of
the linear operator −A0. We prove that the stable, respectively unstable, manifolds
consist precisely of the solutions to (1.1) which exist and stay in a ball inXp centered
at u∗ for all t ≥ 0, respectively for all t ≤ 0. Moreover, these solutions converge
exponentially to u∗ in the norm of W 2m

p (Ω; CN ) as t→∞, respectively as t→ −∞.
There is a vast literature on the well–posedness of nonlinear parabolic equations

which we cannot discuss in detail here. We refer to the recent survey [7] presenting,
in particular, the available approaches to the subject. But we want to point out that
most of the existing results impose restrictions on the structure of the boundary
conditions. Many works deal with reaction diffusion systems of second order and
consider conormal boundary conditions plus lower order terms, see e.g. [23], [39].
Other authors consider quasilinear boundary conditions which can be absorbed
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into the domains of generators A0(u), see e.g. [1], [3], [5], [8], [10], [11], [33], [37],
[40], where additional lower order terms are admitted in some papers. General
boundary conditions were studied for a single equation of second order in [9], [22],
[28, Chap.XIII], [30, §8.5.3] in the Cα–setting (even for a fully nonlinear differential
equation) and in [41] in our setting.

Fully nonlinear boundary conditions appear naturally in the treatment of free
boundary problems, see e.g. [9], [19] and the survey [20], and when considering
diffusion through interfaces, see e.g. [27]. The results of the present paper do not
directly cover such problems, but we think that our methods can be generalized in
order to deal with moving boundaries and transmission problems in future work.

Our approach relies on the results from [15] on the property of maximal reg-
ularity of type Lp for linear inhomogeneous initial boundary value problems, as
stated in Theorem 2.2. (We refer to [14], [15], [28], [30] for its prehistory.) This
theorem implies that the linearization of (1.1) possesses a solution in E1 if and
only if if the initial value and the inhomogeneities of the linear problem belong to
a certain space D defined (2.19). This space contains precisely the class of data
resulting from the linearization of (1.1), see (2.27). The celebrated paper [11] by
G. Da Prato and P. Grisvard initiated the approach to fully nonlinear and quasilin-
ear parabolic problems via maximal regularity in a semigroup framework. Besides
the Lp–setting, there are several function spaces where one can obtain analogous
properties of maximal regularity, see e.g. [6] or [7] for a discussion. We also refer to
the monograph [30] devoted to the study and application of maximal regularity in
the Hölder setting. We employ the Lp–setting since the Lp norm in the state space
is relatively simple and weak, and still the nonlinearities and the initial conditions
are understood in a classical sense. One also obtains weaker conditions for the
global solvability than in the Cα–setting, cf. Theorem 4.2 and [5], [33]. We note
that one cannot treat fully nonlinear differential equations within the Lp–setting.

Our proof of local existence and uniqueness follows the lines of [41]. But we are
not aware of any proofs for the smoothing properties shown in Theorem 4.2 for
quasilinear equations with fully nonlinear boundary conditions. (See e.g. [3], [8],
[33] for earlier results.) Hölder regularity of fully nonlinear problems was studied in
[30, §8.5.3]. The principle of linearized stability was established for various classes
of nonlinear equations with special boundary conditions in e.g. [17], [21], [25], [29],
[30], [32]. Local invariant manifolds for parabolic problems are well understood in
the semilinear case, see in particular [26]. G. Da Prato and A. Lunardi constructed
local stable, center and unstable manifolds for fully nonlinear problems with linear
boundary conditions in a Hölder setting, see [12] and further [25], [30], [31] for
related contributions. In [37] local center manifolds were investigated for quasilin-
ear problems with conormal boundary conditions plus lower order terms. We are
only aware of one paper, [9], dealing with invariant manifolds for fully nonlinear
boundary conditions. There the unstable manifold was constructed for a single
second order equation. In the current paper, we construct both stable and unstable
manifolds, and the proof of our Theorem 5.2 indicates that the nonlinear restriction
expressed by M enters only in the stable case explicitely. Other locally invariant,
in particular center, manifolds will be treated in another paper (in preparation).

We establish both the local regularity and the asymptotic behavior within the
same approach. We linearize the equations (1.1) at a given solution u∗ (which is a
steady state in the construction of the invariant manifolds), leading to the equations

3



(2.27). The linear regularity result Theorem 2.2 allows to understand (2.27) as a fix
point problem in E1 for the solutions of (1.1). This problem can be solved by means
of the implicit function theorem. However, in contrast to previous works one has to
take care of the compatibility conditions. Therefore we have to incorporate certain
correction terms which guarantee that the compatibility conditions are fulfilled, see
(4.5) and (5.3). In this way we prove in Theorem 4.2 our regularity results, using
also the scaling technique from [8]. In Theorem 5.2 we solve the fix point equation
in spaces of exponentially decaying function on R±; thus obtaining solutions of (1.1)
with the asymptotic behavior one expects for the stable and unstable manifolds.
An additional effort is needed to show that, in fact, the initial values of the resulting
decaying solutions define the local manifolds with the desired properties.

As indicated above, the spectrum of the generator A0 = A∗| ker(B∗) determines
much of the asymptotic behavior of solutions near the steady state u∗. Observe that
A0 does not directly appear in our problem (1.1) and also not in the construction
of its solutions in Section 4. The relationship between A0 and (1.1) becomes clear
by means of an approach frequently used in boundary control theory, see e.g. [16],
[36], and also [5, §11], [24], [30, p.200], [37, §8] for related techniques. Adapting this
approach to the problem at hands, we derive in Proposition 2.6 a formula for the
solutions of the linear problem (2.18) in terms of the semigroup T (·) generated by
−A0 and its extrapolation, cf. [6], [18]. Although this formula does not help much
in questions of local regularity, it does allow to invoke the exponential dichotomy
of T (·) in the study of the asymptotic behavior of the solutions to (1.1), cf. (3.1).

Our setting and the main concepts are described in Section 2, where also some
auxiliary results are proved. Based on Theorem 2.2 and Proposition 2.6, we show
the maximal regularity of the linear problem on R+ and R− in Propositions 3.1
and 3.2, respectively. The technically most demanding result is Proposition 3.3
which establishes the continuous differentiability of the substitution (or Nemytskii)
operators appearing in our fix point problems. Here the main difficulties arise from
the (rather unpleasant) fact that the boundary data of the linear problem (2.18)
live in the anisotropic Slobodetskii spaces defined in (2.13). The main results on
local existence and regularity and on the asymptotic behavior are established in
Sections 4 and 5, respectively. In Section 6 we study a reaction diffusion system in
order to illustrate the spectral condition iR ⊂ ρ(A0).

Notation. We set Dk = −i∂k = −i∂/∂xk and use the multi index notation.
The k–tensor of the partial derivatives of order k is denoted by ∇k, and we let
∇ku = (u,∇u, · · · ,∇ku). For an operator A on a Banach space we write dom(A),
ker(A), ran(A), σ(A), and ρ(A) for its domain, kernel, range, spectrum, and resol-
vent set, respectively. B(X,Y ) is the space of bounded linear operators between
two Banach spaces X and Y . For an open set U with boundary ∂U , Ck(U) (resp.,
BCk(U), BUCk(U), Ck

0 (U)) are the spaces of k–times continuously differentiable
functions u on U (such that u and its derivatives up to order k are bounded, bounded
and uniformly continuous, vanish at ∂U and at infinity (if U is unbounded), respec-
tively), where BCk(U) is endowed with its canonical norm. For Ck(U), BCk(U),
BUCk(U), we require in addition that u and its derivatives up to order k have a
continuous extension to ∂U . For unbounded U , we write Ck

0 (U) for the space of
u ∈ Ck(U) such that u and its derivatives up to order k vanish at infinity. By
W k

p (U) we designate the Sobolev spaces, see e.g. [2, Def.3.1]. A generic constant
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will be denoted by c; by ε : R+ → R+ we denote a generic nondecreasing function
with ε(r) → 0 as r → 0. Finally, J ⊂ R is a closed interval.

2. Setting and preliminaries

Let Ω ⊂ Rn be an open connected set with a compact boundary ∂Ω of class C2m

and outer unit normal ν(x), where m ∈ N. Note that Ω is either bounded or an
unbounded exterior domain. Throughout this paper, we fix a finite exponent p with

p > n+ 2m. (2.1)

Let E = CN with B(E) = CN×N for some fixed N ∈ N. For a CN–valued function
u(t) = u(t, x), t ≥ 0, x ∈ Ω, we investigate the quasilinear initial boundary value
problem with fully nonlinear boundary conditions given by

∂tu(t) +A(u(t))u(t) = F (u(t)), on Ω, a.e. t > 0,

Bj(u(t)) = 0, on ∂Ω, t ≥ 0, j ∈ {1, · · · ,m}, (2.2)

u(0) = u0, on Ω.

Here we use the maps

[A(u)v](x) =
∑

|α|=2m

aα(x, u(x),∇u(x), · · · ,∇2m−1u(x))Dαv(x), x ∈ Ω,

[F (u)](x) =f(x, u(x),∇u(x), · · · ,∇2m−1u(x))), x ∈ Ω, (2.3)

[Bj(u)](x) =bj(x, u(x),∇u(x), · · · ,∇mju(x)), x ∈ ∂Ω,

for functions u ∈ BC2m−1(Ω; CN ), resp. u ∈ Cmj (Ω; CN ) in the last line of (2.3),
and v ∈W 2m

p (Ω; CN ), integers mj ∈ {0, 1, · · · , 2m− 1}, and coefficients satisfying

(R) aα ∈ C1(E×En×· · ·×E(n2m−1);BC(Ω;B(E))) for α ∈ Nn
0 with |α| = 2m,

aα(x, 0) −→ aα(∞) in B(E) as x→∞, if Ω is unbounded,
f ∈ C1(E × En × · · · × E(n2m−1);BC(Ω;E)),
bj ∈ C2m+1−mj (∂Ω× E × En × · · · × E(nmj );E) for j ∈ {1, · · · ,m}.

We set B = (B1, · · · , Bm). We point out that, for a fixed u0 ∈ BC2m−1(Ω; CN ),
A(u0) is a linear differential operator of order 2m with bounded coefficients; whereas
F contains all terms involving only derivatives of order |α| < 2m. The boundary
term Bj(u0)(x) is defined in the following way: One computes ∇ku0 in Ω, then one
takes the trace γ at ∂Ω and inserts x ∈ ∂Ω, and finally one applies bj . Usually we
do not use γ explicitly in our notation, in particular if it is applied to a function
being continuous up to ∂Ω. We fix a numbering of the components of ∇k so that
a partial derivative ∂βu0(x) of order |β| = k is inserted at a fixed position called
l(β, k) into the functions aα, f , and bj . Given u0 ∈ Cmj (Ω; CN ), we further define

[B′j(u0)v](x) = (∂zbj)(x, u0(x),∇u0(x), · · · ,∇mju0(x)) · γ∇mjv(x) (2.4)

=
mj∑
k=0

(∂zk
bj)(x, u0(x),∇u0(x), · · · ,∇mju0(x)) γ∇kv(x)

=
mj∑
k=0

∑
|β|=k

ik (∂l(β,k)bj)(x, u0(x),∇u0(x), · · · ,∇mju0(x)) γDβv(x)

for x ∈ ∂Ω, v ∈ Cmj (Ω; CN ), and j ∈ {1, · · · ,m}. Here ∂z = (∂z0 , · · · , ∂zmj
)

denotes the partial derivatives with respect to the variables z = (z0, z1, · · · , zmj ) ∈
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E×En×· · ·×E(nmj ) and ∂zk
bj(x, z) ∈ B(E(nk), E) has the nk components ∂l(β,k)bj .

Observe that B′j(u0) is a linear differential operator of order mj with bounded
coefficients acting from a space of functions on Ω to a space of functions on ∂Ω. In
Corollary 3.5 we show that B′j(u0) is in fact the derivative of u 7→ Bj(u) at u = u0

in a suitable topology. We set B′(u0) = (B′1(u0), · · · , B′m(u0)).
The symbols of the principal parts of the linear differential operators are the

matrix–valued functions given by

A#(x, z, ξ) =
∑

|α|=2m

aα(x, z) ξα, Bj#(x, z, ξ) =
∑

|β|=mj

imj (∂l(β,mj)bj)(x, z) ξ
β

for x ∈ Ω, z ∈ E × · · · × E(n2m−1) and ξ ∈ Rn, resp. x ∈ ∂Ω, z ∈ E × · · · × E(nmj )

and ξ ∈ Rn. We further set A#(∞, ξ) =
∑
|α|=2m aα(∞) ξα if Ω is unbounded.

One defines the normal ellipticity and the Lopatinskii–Shapiro condition for A(u0)
and B′(u0) at a function u0 ∈ C2m−1

0 (Ω; CN ) as follows:
(E) σ(A#(x,∇2m−1u0(x), ξ)) ⊂ {λ ∈ C : Reλ > 0} =: C+ and (if Ω is un-

bounded) σ(A#(∞, ξ)) ⊂ C+, for x ∈ Ω and ξ ∈ Rn with |ξ| = 1.
(LS) Let x ∈ ∂Ω, ξ ∈ Rn, and λ ∈ C+ with ξ ⊥ ν(x) and (λ, ξ) 6= (0, 0). The

function ϕ = 0 is the only solution in C0(R+; CN ) of the ode system

λϕ(y) +A#(x,∇2m−1u0(x), ξ + iν(x)∂y)ϕ(y) = 0, y > 0, (2.5)

Bj#(x,∇mju0(x), ξ + iν(x)∂y)ϕ(0) = 0, j ∈ {1, · · · ,m}. (2.6)

We refer to [5], [14], [15], and the references therein for more information concerning
these conditions. In Section 6 we discuss a second order reaction–diffusion system
as an example. We note a perturbation result for (E) and (LS) which was shown
in Theorem 2.1 of [5] for the case m = 1. So we only sketch its proof.

Remark 2.1. Assume that (R) holds and that (E) and (LS) hold for some u0 ∈
C2m−1

0 (Ω; CN ). Take another function u1 ∈ C2m−1
0 (Ω; CN ). Then (E) is valid for u1

provided that |u0−u1|BC2m−1 is sufficiently small. We consider the equations in (LS)
for a given u ∈ C2m−1

0 (Ω; CN ) (instead of u0) and for fixed x ∈ ∂Ω, ξ ∈ Rn, λ ∈ C+

with ξ ⊥ ν(x) and (λ, ξ) 6= (0, 0). Using (E), we may rewrite the N–dimensional
differential equation (2.5) of order 2m as an autonomous first order ode of dimension
2mN with corresponding N–dimensional boundary conditions Bj(u)v(j)(0) = 0,
j ∈ {1, · · · ,m}, cf. [14, p.73]. The resulting coefficient matrix A(u) is hyperbolic
by [14, Prop.6.1]. Moreover, it can be seen as in the proof of Theorem 2.1 in [5]
that A(u) has mN eigenvalues with negative real parts. Let P (u) be the Riesz
projection from C2mN onto the stable subspace of A(u). Hence, the equation (2.5)
has a mN–dimensional solution space in C0(R+; CN ) isomorphic to P (u)C2mN .
Observe that the Lopatinskii–Shapiro condition is equivalent to the surjectivity of
the map B(u)P (u) : C2mN → CmN , where B(u) = (B1(u), · · · ,Bm(u)). As a result,
if |u0 − u1|BC2m−1 is sufficiently small, then (LS) also holds for u1. ♦

In this paper we need (E) and (LS) to obtain the maximal regularity of lineariza-
tions of (2.2), see Theorem 2.2 below. To state this result, we have to introduce
spaces of functions on Ω, ∂Ω, J × Ω, and J × ∂Ω, respectively. We first put

X0 = Lp(Ω; CN ), X1 = W 2m
p (Ω; CN ), Xp = W 2m(1−1/p)

p (Ω; CN ),

and denote the norms of these spaces by | · |0, | · |1, and | · |p, respectively. Various
equivalent norms of the Slobodetskii spaces W s

p are discussed in [2, Chap.VII], [38,
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§4.4]. We use the ‘intrinsic’ norm given by

|v|W s
p (Ω) = |v|Lp(Ω) +

∑
|α|=k

[∂αv]W σ
p (Ω) , [w]pW σ

p (Ω) =
∫∫

Ω2

|w(y)− w(x)|p

|y − x|n+σp
dx dy,

for s = k + σ with k ∈ N0 and σ ∈ (0, 1), see [2, Thm.7.48], [38, Rem.4.4.1.2].
Occasionally we use without further notice that W s

p coincides with the real inter-
polation space (Lp,W

l
p)s/l,p if l ∈ N and s ∈ (0, l) is not an integer. (In our setting

this fact can be shown as the results in [38, §4.3.1] using [2, Thm.4.26].) We note
that X1 ↪→ Xp ↪→ X0 and that

Xp ↪→ C2m−1
0 (Ω; CN ) (2.7)

by (2.1) and standard properties of Sobolev spaces, cf. [38, §4.6.1]. Let I ⊂ R be
an interval (maybe, not closed) containing more than a point. Then we introduce
the function spaces

E0(I) = Lp(I;Lp(Ω; CN )) = Lp(I;X0),

E1(I) = W 1
p (I;Lp(Ω; CN )) ∩ Lp(I;W 2m

p (Ω; CN )) = W 1
p (I;X0) ∩ Lp(I;X1),

equipped with the natural norms. Mostly, we deal with closed intervals which are
denoted by J instead of I.

We will look for solutions of (2.2) in the space E1([0, T ]). Since we want to insert
functions of the class C2m−1 into the nonlinearities, the following embedding is
crucial for our approach:

E1(I) ↪→ BUC(I;Xp) ↪→ BUC(I;C2m−1
0 (Ω; CN )), (2.8)

see [6, Thm.III.4.10.2] for the first and (2.7) for the second embedding. We denote
by c0 = c0(I) the maximum of the norms of the first embedding in (2.8) and of
E1(I) ↪→ BUC(I;C2m−1

0 (Ω; CN )). We point out that one can choose the same c0
for intervals of length greater than a fixed T0 > 0, see [6, Lem.III.4.10.1]. Moreover,
one can choose an I–independent constant c0 for functions vanishing at the left end
point of I. (If u is given on [0, T ], say, then reflect it at T and extent it by 0 to
[2T,∞). This extension operator is bounded from {u ∈ E1([0, T ]) : u(0) = 0} to
E1(R+) independently of T .)

We next discuss several mapping properties of traces in time and space. The
trace operator at time t = 0 is denoted by γ0. Lemma 3.7 of [15] shows that

γ0 ∈ B(E1([0, 1]), Xp) has a bounded right inverse. (2.9)

Recall that the spatial trace operator γ at ∂Ω induces continuous maps

γ : W s
p (Ω; CN ) →W s−1/p

p (∂Ω; CN ) (2.10)

for 1/p < s ≤ 2m if s − 1/p is not an integer, and that these maps have bounded
right inverses, see [2, Thm.7.53], [38, §4.7.1]. Here the Sobolev–Slobodetskii spaces
on ∂Ω are defined via local charts, see [2, §7.51], [38, Def.3.6.1]. We set

Y0 = Lp(∂Ω; CN ), Yj1 = W 2mκj
p (∂Ω; CN ), Yjp = W 2mκj−2m/p

p (∂Ω; CN )

for j ∈ {1, · · · ,m} and the number

κj = 1− mj

2m
− 1

2mp
. (2.11)
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Since 2mκj = 2m−mj − 1/p, (2.10) and (2.1) imply that

γ∂β ∈ B(X1, Yj1) ∩ B(Xp, Yjp), |β| ≤ mj . (2.12)

We let Y1 = Y11 × · · · × Ym1 and Yp = Y1p × · · · × Ymp. The boundary data of our
linearized equations will be contained in the spaces

Fj(J) = Wκj
p (J ;Lp(∂Ω; CN )) ∩ Lp(J ;W 2mκj

p (∂Ω; CN ))

= Wκj
p (J ;Y0) ∩ Lp(J ;Yj1), j ∈ {1, · · · ,m},

(2.13)

endowed with their natural norms, where F(J) := F1(J)×· · ·×Fm(J). If the context
is clear, we also write E0 = E0(R±), E1 = E1(R±), and F = F(R±). Moreover,

Fj(J) ↪→ BUC(J ;Yjp) ↪→ BUC(J × ∂Ω) and

γ0 ∈ B(Fj([0, 1]), Yjp) has a bounded right inverse.
(2.14)

Here the second embedding follows from Sobolev’s embedding theorem using (2.1).
For ∂Ω = Rn−1, the first embedding is a consequence of Proposition 3 in [34] applied
to (I−∆)m. Similarly, Proposition 4 in [34] gives the asserted right inverse of γ0 in
this case. The corresponding assertions for Ω with compact boundary of class C2m

can then be deduced via local change of coordinates, cf. the end of Section 3 of [15].
The norms of the embeddings in (2.14) depend on J as described after (2.8). Due
to Lemma 3.5 of [15], the spatial trace extends to a continuous operator

γ : W 1−mj/2m
p (J ;X0) ∩ Lp(J ;W 2m−mj

p (Ω; CN )) → Fj(J), (2.15)

with a bounded right inverse. Further, Lemma 3.8 of [15] yields the continuity of

∂β : E1(J) →W 1−k/2m
p (J ;X0) ∩ Lp(J ;W 2m−k

p (Ω; CN )), (2.16)

for |β| ≤ k ≤ 2m. We note that the cited results from [15] are stated for J = R+

and Ω = {x ∈ Rn : xn > 0}. From these results, the assertions (2.9), (2.15), and
(2.16) follow by local change of coordinates in x ∈ Ω and by reflection and extension
in t as indicated above.

We are now in a position to state the crucial existence and maximal regularity
theorem for the linear initial boundary value problem associated with (2.2). Fix
T > 0, J = [0, T ], and a function u∗ ∈ E1(J). Assume that (R), (E), and (LS) hold
at all u∗(t) ∈ C2m−1

0 (Ω; CN ), t ∈ J . The functions a∗α(t, x) = aα(x,∇2m−1u∗(t, x)),
|α| = 2m, belong to BC(J × Ω;B(E)) and a∗α(t, x) → aα(∞) as x → ∞ uni-
formly in t ∈ J , since u∗ ∈ C(J ;C2m−1

0 (Ω; CN )) due to (2.8). Set b∗jβ(t, x) =
ik(∂l(β,k)bj)(x,∇mju∗(t, x)) for k = |β| ≤ mj and j ∈ {1, · · · ,m}. (Recall the
definition (2.4).) As in the proof of Proposition 3.3 one verifies that b∗jβ ∈ Fj(J).
Thus the differential operators

A(t) := A(u∗(t)) ∈ B(X1, X0), t ∈ J, (2.17)

Bj∗(t) := B′j(u∗(t))) ∈ B(X1, Yj1) ∩ B(Xp, Yjp), (a.e.) t ∈ J, j ∈ {1, · · · ,m},

satisfy assumptions (E), (LS), (SD), (SB) from [15]. (The mapping properties of
Bj∗(t) follow from (2.12), b∗jβ ∈ Fj(J), [35, Thm.4.6.4.1], and (2.1). We note that
B′j(u∗(t))) ∈ B(X1, Yj1) holds if b∗jβ(t) ∈ Yj1.) So Theorem 2.1 of [15] yields the
following result (taking into account that κj > 1/p by (2.1)).

Theorem 2.2. Let u∗ ∈ E1(J) for J = [0, T ]. Assume that (R) holds and that
(E) and (LS) hold at all functions u∗(t) ∈ C2m−1

0 (Ω; CN ), t ∈ J . Define A(t) and
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Bj∗(t) by (2.17) for t ∈ J = [0, T ] and j ∈ {1, · · · ,m}. Then there is a unique
v =: S(v0, g, h) ∈ E1(J) satisfying

∂tv(t) +A(t)v(t) = g(t) on Ω, a.e. t > 0,

Bj∗(t)v(t) = hj(t) on ∂Ω, t ≥ 0, j ∈ {1, · · · ,m},
v(0) = v0, on Ω,

(2.18)

if and only if

(v0, g, h) ∈ D(J) := {(v0, g, h) ∈ Xp × E0(J)× F(J) : B∗(0)v0 = h(0)}, (2.19)

where h := (h1, · · · , hm). In this case, there is a constant c1 = c1(J) such that

‖v‖E1(J) ≤ c1 (|v0|p + ‖g‖E0(J) + ‖h‖F(J)). (2.20)

If the equivalence stated in Theorem 2.2 and estimate (2.20) hold, then we say
that the initial boundary value problem (2.18) has maximal regularity of type Lp

on J . Using extension arguments as above, one can check that c1 = c1(T0, T1) if
T ∈ [T0, T1] and 0 < T0 < T1 < ∞, and that c1 = c1(T1) if hj(0) = 0 for all
j. (The continuity of the extension operator from F(J) to F([0, T1]) can be shown
via interpolation.) We point out that Theorem 2.2 gives necessary and sufficient
conditions for the regularity of data which give rise to a solution of (2.18) in the
desired regularity class E1. This fact forces us to use the spaces Xp and F if we
want to treat (2.2) in an Lp–setting.

Next, we only assume that (R) holds. Let u0, v ∈ BC2m−1(Ω; CN ) and w ∈ X1.
In order to linearize (2.2), we introduce the operators

[F ′(u0)v](x) =
2m−1∑
k=0

∑
|β|=k

ik (∂l(β,k)f)(x, u0(x),∇u0(x), · · · ,∇2m−1u0(x)) Dβv(x),

[A′(u0)w]v(x) = A′(u0)[v, w](x)

=
∑

|α|=2m

2m−1∑
k=0

∑
|β|=k

(∂l(β,k)aα)(x, u0(x), · · · ,∇2m−1u0(x)) [∂βv(x), Dαw(x)]

for x ∈ Ω, with a similar notation as in (2.4). Note that ∂l(β,k)aα(x, z) : E2 → E is
bilinear. For fixed u0 ∈ BC2m−1(Ω; CN ) and w ∈ X1, the maps F ′(u0) and A′(u0)w
are linear differential operators of order 2m− 1. The matrix–valued coefficients of
F ′(u0) are bounded due to (R) and u0 ∈ BC2m−1(Ω; CN ). Sobolev’s embedding
theorem and (2.1) show that Xp ↪→ W 2m−1

p (Ω; CN ). We can thus consider F ′(u0)
as a bounded operator from Xp to X0. By means of (2.7) and (R), we also obtain
that F ′ : Xp → B(Xp, X0) is continuous and that

|F ′(u0)|B(Xp,X0) ≤ c(r) for |u0|BC2m−1 ≤ r. (2.21)

Similarly, the coefficients of A′(u0) are bounded, so that [v, w] 7→ A′(u0)[v, w] is a
bilinear map from Xp ×X1 to X0 with

|A′(u0)[v, w]|0 ≤ c(|u0|BC2m−1) |v|BC2m−1 |w|1 ≤ c(|u0|BC2m−1) |v|p |w|1, (2.22)

employing again (2.7). Moreover, the map u0 7→ A′(u0) is continuous from Xp to
B(Xp,B(X1, X0)). On the other hand, using (R) and (2.7) one can easily check
that there is a nondecreasing function ε : R+ → R+ with ε(r) → 0 as r → 0 and

|F (u0 + v)− F (u0)− F ′(u0)v|0 ≤ ε(|v|p) |v|p,
|A(u0 + v)w −A(u0)w − [A′(u0)w]v|0 ≤ ε(|v|p) |v|p |w|1

(2.23)
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for v ∈ Xp and fixed u0 ∈ Xp and w ∈ X1. Here ε depends on aα, f , and |u0|BC2m−1 ,
but not on v or w. As a result, A′ and F ′ are in fact the Fréchet derivatives of the
functions

A ∈ C1(Xp;B(X1, X0)) and F ∈ C1(Xp;X0), (2.24)

respectively. We also note that A′ and F ′ are uniformly continuous on balls of Xp.
We further introduce the nondecreasing function

cu0(r) = sup
{
‖A′(u0 + v)‖B(Xp,B(X1,X0)) : |v|p ≤ r

}
.

Employing the identity [A(u0 + v) − A(u0)]w =
∫ 1

0
A′(u0 + θv)[v, w] dθ, we can

estimate
|[A(u0 + v)−A(u0)]w|0 ≤ cu0(r) |v|p |w|1 (2.25)

for u0, v ∈ Xp, w ∈ X1, and |v|p ≤ r.
We linearize (2.2) at its solution u∗ ∈ E1(J) obtaining the linear operators

A∗(t) = A(u∗(t)) +A′(u∗(t))u∗(t)− F ′(u∗(t)) ∈ B(X1, X0),

Bj∗(t) = B′j(u∗(t)) ∈ B(Xp, Yjp) ∩ B(X1, Yj1),
(2.26)

for t ∈ J , cf. (2.17). Set B∗(t) = (B1∗(t), · · · , Bm∗(t)). Suppose that (R) is
true and that (E) and (LS) hold for all u0 = u∗(t), t ∈ J . Then we can apply
Theorem 2.1 of [15] also to A∗(t) and B∗(t)), t ∈ J , since the lower order terms
A′(u∗(t))u∗(t)−F ′(u∗(t)) do not enter into (E) and (LS) of [15] and their coefficients
belong to L∞(J ×Ω;B(E)) + Lp(J ×Ω;B(E)). Thus Theorem 2.2 holds for A∗(t)
and B∗(t), t ∈ J .

For a given function u ∈ E1([0, T ]), we set v(t) = u(t)−u∗(t) and v0 = u0−u∗(0).
Since u∗ solves (2.2), the initial boundary value problem (2.2) for u is equivalent
to the problem for v given by

∂tv(t) +A∗(t)v(t) = G(t, v(t)) on Ω, a.e. t > 0,

Bj∗(t)v(t) = Hj(t, v(t)) on ∂Ω, t ≥ 0, j ∈ {1, · · · ,m},
v(0) = v0, on Ω.

(2.27)

Here we have used the nonlinear maps G and H defined by

G(t, v) =
(
A(u∗(t))v −A(u∗(t) + v)v

)
−

(
A(u∗(t) + v)u∗(t)−A(u∗(t))u∗(t)

− [A′(u∗(t))u∗(t)]v
)

+
(
F (u∗(t) + v)− F (u∗(t))− F ′(u∗(t))v

)
, (2.28)

Hj(t, v) = B′j(u∗(t))v −Bj(u∗(t) + v), j ∈ {1, · · · ,m}, (2.29)

for a given u∗ ∈ E1(J) and all t ∈ J , v ∈ X1 and v ∈ Cmj (Ω; CN ), respectively. As
usual, we set H(t, v) = (H1(t, v), · · · ,Hm(t, v)). The mapping properties of G and
H will be discussed in the next section. If u∗ does not depend on t, then we write
A∗ = A∗(t), B∗ = B∗(t), G(v) = G(t, v), and H(v) = H(t, v).

Definition 2.3. We say that a function u solves problem (2.2), (2.18) or (2.27)
on a (possibly noncompact) interval I containing 0 if u belongs to E1(J) for each
compact interval J ⊂ I and satisfies the respective problem for (a.e.) t ∈ I.

In the remainder of this section we discuss the setting for our investigations of
the asymptotic behavior of the nonlinear problem (2.2).
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Hypothesis 2.4. (a) Condition (R) holds and (E), (LS) hold at some u∗ ∈ X1.
(b) In addition, u∗ is a steady solution of (2.2), i.e.,

A(u∗)u∗ = F (u∗) on Ω, B(u∗) = 0 on ∂Ω.

Assuming Hypothesis 2.4(a), we define A0 = A∗| ker(B∗), i.e.,

A0u = A∗u, u ∈ dom(A0) = {u ∈ X1 : Bj∗u = 0, j = 1, · · · ,m}. (2.30)

The operator −A0 generates an analytic semigroup T (·) in X0 due to Theorem 8.2
of [14]. We fix a real number µ such that µ+A0 is invertible.

Proposition 2.5. (a) Assume that Hypothesis 2.4(a) holds. Take (ϕ1, · · · , ϕm) ∈
Y1. Then there is unique solution u ∈ X1 of the elliptic boundary value problem

(µ+A∗)u = 0 on Ω,

Bj∗u = ϕj on ∂Ω, j ∈ {1, · · · ,m}.
(2.31)

Setting N1(ϕ1, · · · , ϕm) := u, we further have N1 ∈ B(Y1, X1).
(b) Assume that (R) holds and that (E) and (LS) hold at some u0 ∈ Xp. Then

there exists a bounded right inverse Np : Yp → Xp of the operator B′(u0) : Xp → Yp.

Proof. We first want to show that B∗ : X1 → Y1 and B′(u0) : Xp → Yp are
surjective. First, take ϕ ∈ Y1 and a smooth scalar function χ with χ(0) = 0 and
χ(t) = 1 for t ≥ 1. Let h(t, x) = χ(t)ϕ(x), v0 = 0, and g = 0. Then there is a
solution v ∈ E1([0, 2]) of (2.18) for A(t) = A∗ and B∗(t) = B∗. Taking t ≥ 1 with
v(t) ∈ X1, we obtain B∗v(t) = ϕ due to (2.18). Second, let ϕ ∈ Yp. By (2.14),
there exists h ∈ F([1, 2]) such that h(1) = ϕ and ‖h‖F ≤ c |ϕ|p. Set h(t) = th(2− t)
for t ∈ [0, 1]. Then h ∈ F([0, 2]) and h(0) = 0. Similarly, one extends u0 to a
function u ∈ E1([0, 2]) such that u(1) = u0 and u(t) ∈ Xp satisfies (E) and (LS) for
t ∈ [0, 2] (use (2.9), Remark 2.1, and (2.8)). We consider the problem (2.18) with
A(t) = A(u(t)), B∗(t) = B′(u(t)), the above h, v0 = 0, and g = 0. Now one obtains
as in the first step a function v(1) ∈ Xp with B′(u0)v(1) = ϕ. Moreover, the map
Np : Yp → Xp given by ϕ 7→ v(1) is bounded by (2.8) and (2.20).

Finally, we recall that µ+A∗ : dom(A0) → X0 is invertible and B∗ ∈ B(X1, Y1).
So we can apply Lemma 1.2 in [24] saying that X1 is the direct sum of dom(A0)
and ker(µ+A∗) and that the restriction B∗ : ker(µ+A∗) → Y1 is an isomorphism.
Thus the inverse N1 := [B∗| ker(µ+A∗)]−1 ∈ B(Y1, X1) solves (2.31). �

We note that for smooth coefficients and N = 1 it was shown in [35, Thm.3.5.3]
that one can extend N1 to an operator in B(Yp, Xp) still solving (2.31). However,
we do not need such a result in this paper.

We can now establish a representation formula of the solution to (2.18) which is
crucial for the study of the asymptotic behavior. The next proposition goes back to
work in control theory, see e.g. [16] or [36]. For the formulation of the result we have
to introduce some more concepts. Let X−1 denote the extrapolation space for A0,
that is, the completion of X0 with respect to the norm |u0|−1 = |(µ + A0)−1u0|0,
see e.g. [6, §V.1.3], [18, §II.5]. We can extend A0 to an operator A−1 : X0 → X−1

generating an analytic semigroup T−1(·) on X−1 satisfying T−1(t)|X0 = T (t). The
semigroups T (·) and T−1(·) are similar via the isomorphism µ+A−1 : X0 → X−1.
We point out that A∗u 6= A−1u if u ∈ X1 \ dom(A0) due to (2.34) below. We
further employ the map

Π := (µ+A−1)N1 ∈ B(Y1, X−1). (2.32)
11



It can be seen that in our situation Π has better mapping properties than in (2.32),
but we will not use this fact.

Proposition 2.6. Assume that Hypothesis 2.4(a) holds and let v ∈ E1(J), g ∈
E0(J), h ∈ Lp(J ;Y1), and v0 ∈ X0 for J = [0, T ]. Consider the equations

(a)


v̇(t) +A∗v(t) = g(t),
B∗v(t) = h(t),
v(0) = v0,

(b)

{
v̇(t) +A−1v(t) = g(t) + (µ+A−1)N1h(t),
v(0) = v0.

Then v satisfies (a) for a.e. t ∈ J if and only if it satisfies (b) for a.e. t ∈ J . If the
solution exists, it is given by

v(t) = T (t)v0 +
∫ t

0

T (t− s)g(s) ds+
∫ t

0

T−1(t− s)Πh(s) ds, t ∈ J. (2.33)

Proof. Let u0 ∈ X1. Observe that B∗(u0 − N1B∗u0) = 0 by the definition of N1,
and thus u0−N1B∗u0 ∈ dom(A0). Hence, (µ+A∗)u0 = (µ+A∗)(u0−N1B∗u0) =
(µ+A0)(u0 −N1B∗u0) = (µ+A−1)(u0 −N1B∗u0), proving that

A−1u0 = A∗u0 + (µ+A−1)N1B∗u0 for all u0 ∈ X1. (2.34)

Next, assume that v is a solution of (a). Since v ∈ E1 and N1B∗v = N1h, we can
use (2.34) with u0 = v(t) to conclude that v solves (b). Conversely, assume that v
is a solution of (b). Then (µ+A−1)(v(t)−N1h(t)) = µv(t)− v̇(t)+ g(t) belongs to
X0 for a.e. t ∈ J . So we deduce v(t) − N1h(t) ∈ dom(A0), i.e., B∗(v − N1h) = 0.
This fact implies the second line in (a). To check the first line, we use (2.34) with
u0 = v(t) again. �

Hypothesis 2.7. Assume that Hypothesis 2.4(a) holds and that iR ⊆ ρ(A0), where
A0 is given by (2.30).

Under Hypothesis 2.7, the semigroup T (·) has an exponential dichotomy, i.e, there
exist the (stable) projection P ∈ B(X0) and a dichotomy exponent δ0 > 0 such that
T (t)P = PT (t), T (t) : ker(P ) → ker(P ) has an inverse denoted by TQ(−t), and

‖T (t)P‖ , ‖TQ(−t)Q‖ ≤ ce−δ0t (2.35)

for t ≥ 0, where we set Q = I − P . The projection Q maps X0 to dom(A0) ⊆ X1

because Q is the Riesz projection corresponding to the bounded part of σ(−A0)
located in the open right half plane. (See [18] or [30].) Since P = I −Q, we have

P ∈ B(X1, X1) ∩ B(dom(A0),dom(A0)) ∩ B(Xp, Xp). (2.36)

Since also iR ∈ ρ(A−1), the extrapolated semigroup T−1(·) has an exponential
dichotomy on X−1. Its dichotomy projections P−1 and Q−1 are extensions of P
and Q, respectively. Observe that Q−1 = QQ−1 ∈ B(X−1,dom(A0)).

3. The main operators

First we want to show the maximal regularity of (2.18) on the interval J = R+

if Hypothesis 2.7 holds. Given (w0, g, h) ∈ D(R+), we define

L(w0, g, h)(t) = T (t)w0 +
∫ t

0

T (t− s)Pg(s) ds−
∫ ∞

t

TQ(t− s)Qg(s) ds (3.1)

+
∫ t

0

T−1(t− s)P−1Πh(s) ds−
∫ ∞

t

TQ,−1(t− s)Q−1Πh(s) ds
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for t ≥ 0, cf. (2.19) and (2.32). Observe that TQ(t− s)Q = QTQ(t− s)Q and that
Q−1Π = Q(µ+A0)QN1 is a bounded operator from Y1 into dom(A0). Taking into
account (2.35), we see that the Q–integrals converge even in dom(A0). We thus
omit the index −1 in the last integral. Setting

v0 = w0 −
∫ ∞

0

TQ(−s)Qg(s) ds−
∫ ∞

0

TQ(−s)QΠh(s) ds, (3.2)

we obtain

L(w0, g, h)(t) = T (t)v0 +
∫ t

0

T (t− s)g(s) ds+
∫ t

0

T−1(t− s)Πh(s) ds (3.3)

for t ≥ 0. Observe that v0 ∈ Xp and B∗v0 = B∗w0 = h(0) because of ran(Q) ⊂
ker(B∗) and (2.19). Therefore, due to Proposition 2.6 and Theorem 2.2, the function
L(w0, g, h) = S(v0, g, h) solves (2.18) on R+ with A(t) = A∗, B∗(t) = B∗, and the
initial value v0. We note that w0 belongs to ran(P ) if and only if

w0 = Pv0 or, equivalently, Qv0 = −
∫ ∞

0

TQ(−s)Q
(
g(s) + Πh(s)

)
ds, (3.4)

where v0 is defined by (3.2).

Proposition 3.1. Assume that Hypothesis 2.7 holds. Take g ∈ E0(R+), h ∈
F(R+), and w0 ∈ Xp with B∗w0 = h(0). Then L(w0, g, h) ∈ Lp(R+;X0) if and
only if w0 ∈ ran(P ), i.e. (3.4) holds. In this case, L(w0, g, h) = L(Pv0, g, h) is the
unique solution in E1(R+) of (2.18) with A(t) = A∗, B∗(t) = B∗, and the initial
value v0 given by (3.2) and, moreover,

‖L(w0, g, h)‖E1(R+) ≤ c′1 (|v0|p + ‖g‖E0(R+) + ‖h‖F(R+)). (3.5)

Proof. We write L(w0, g, h) = T (t)w0 + I1 + I2 + I3 + I4, where Ij are the inte-
grals in (3.1). Using (2.35) for T−1(t), the properties of Q and Proposition 2.5,
one deduces that ‖I2‖E1(R+) ≤ c ‖g‖E0(R+) and ‖I4‖E1(R+) ≤ c ‖h‖Lp(R+;Y1). Propo-
sition 2.6, Theorem 2.2, and (3.3) further show that

‖L(w0, g, h)‖E1([0,2]) ≤ c1 (|v0|p + ‖g‖E0([0,2]) + ‖h‖F([0,2])) .

Choose χ ∈ C∞([−1, 1]; R) with χ(−1) = 1 and χ = 0 on [−1/2, 1]. For n =
2, 3, . . . , set χn(s) = χ(s−n) for s ∈ [n−1, n+1] and hn = (1−χn)h|[n−1, n+1].
For t ∈ [n, n+ 1], we can write

I3(t) = P

∫ t

n−1

T−1(t− s)Πhn(s) ds (3.6)

+ T (t− n)T−1( 1
2 )P−1

∫ n− 1
2

n−1

T−1(n− 1
2 − s)χn(s)Πh(s) ds

+ T (t− n)T−1(1)
∫ n−1

0

T−1(n− 1− s)P−1Πh(s) ds

=: I31(t) + I32(t) + I33(t).

Due to hn(n−1) = 0, Theorem 2.2 combined with Proposition 2.6 and (2.36) yields

‖I31‖E1([n,n+1]) ≤ c ‖hn‖F([n−1,n+1]) ≤ c ‖h‖F([n−1,n+1]) .
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We can sum the p–th power of this inequality employing
∞∑

n=2

[hj ]
p

W
κj
p ([n−1,n+1];Y0)

=
∞∑

n=2

∫ n+1

n−1

∫ n+1

n−1

|hj(t)− hj(s)|pY0

|t− s|1+κjp
dt ds

≤
∞∑

n=2

∫ n+1

n−1

∫ ∞

1

|hj(t)− hj(s)|pY0

|t− s|1+κjp
dt ds ≤ 2 [hj ]

p

W
κj
p (R+;Y0)

.

Since T−1(τ) = T (τ/2)T−1(τ/2) : X−1 → dom(A0) for τ > 0, we further deduce
from (2.35) for T−1(t) that

‖I32‖E1([n,n+1]) ≤ c ‖h‖Lp([n−1,n];Y1) ,

|I33(t)|1 + |∂tI33(t)|0 ≤ c

∫ n−1

0

e−δ0(n−1−s)|h(s)|Y1 ds ≤ c

∫ t

0

e−δ0(t−s)|h(s)|Y1 ds.

These estimates imply that ‖I3‖E1([2,∞)) ≤ c ‖h‖F(R+). In a similar way one can
treat I1. Finally, t 7→ T (t)w0 belongs to Lp([2,∞);X0) if and only if w0 ∈ ran(P ).
In this case we have ‖T (·)w0‖E1([2,∞)) ≤ c |w0|0. The proposition now follows by
combining the above facts. �

We further need a modification of Proposition 3.1 for backward solutions of (2.18)
on R−. Let v0 ∈ X0, g ∈ E0(R−), and h ∈ F(R−). Assume that v ∈ E0(R−) satisfies
v(0) = v0 and

v(t) = T (t− τ)v(τ) +
∫ t

τ

T (t− s)g(s) ds+
∫ t

τ

T−1(t− s)Πh(s) ds (3.7)

for all τ < t ≤ 0. One can verify as in (3.6) that v ∈ E1(J) for each interval
J = [a, 0] ⊂ R− and that v solves (the analogue of) (2.18) on such intervals with
the initial value v(a) (using Proposition 2.6 and Theorem 2.2). We rewrite (3.7) as

v(t) = T (t− τ)
[
Pv(τ)−

∫ τ

−∞
T−1(τ − s)P−1(g(s) + Πh(s)) ds

]
(3.8)

+
∫ t

−∞
T−1(t− s)P−1(g(s) + Πh(s)) ds

+ T (t− τ)Qv(τ) +
∫ t

τ

T (t− s)Q(g(s) + Πh(s)) ds ,

using (2.35). The last line is equal to Qv(t) due to (3.7), so that we derive

Pv(t) = T (t− τ)
[
Pv(τ)−

∫ τ

−∞
T−1(τ − s)P−1 (g(s) + Πh(s)) ds

]
+

∫ t

−∞
T−1(t− s)P−1 (g(s) + Πh(s)) ds.

There is a sequence τn → −∞ such that v(τn) → 0 in X0. Letting τ = τn → −∞
in the above equation and taking t = 0, we thus obtain

Pv(t) =
∫ t

−∞
T−1(t− s)P−1

(
g(s) + Πh(s)

)
ds, (3.9)

Pv0 = Pv(0) =
∫ 0

−∞
T−1(−s)P−1

(
g(s) + Πh(s)

)
ds, (3.10)
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by means of (2.35). If we first set t = 0 in (3.8) and then replace τ by t, we deduce

Qv(0) = TQ(−t)Qv(t) +
∫ 0

t

T−1(−s)Q
(
g(s) + Πh(s)

)
ds. (3.11)

Combining (3.9) and (3.11), we see that v(t) is equal to

L−(v0, g, h)(t) := TQ(t)Qv0 +
∫ t

−∞
T (t− s)Pg(s) ds−

∫ 0

t

TQ(t− s)Qg(s) ds

+
∫ t

−∞
T−1(t− s)P−1Πh(s) ds−

∫ 0

t

TQ(t− s)QΠh(s) ds (3.12)

for t ≤ 0. Conversely, if (3.10) holds, then the function L−(v0, g, h) satisfies (3.7)
and L−(v0, g, h)(0) = v0. Therefore L−(v0, g, h) is a solution of (2.18) on R− with
the final value v0. The following result can now be proved as Proposition 3.1.

Proposition 3.2. Assume that Hypothesis 2.7 holds. Let g ∈ E0(R−), h ∈ F(R−),
and v0 ∈ X0. Consider problem (2.18) on R− with A(t) = A∗, B∗(t) = B∗, and
the final value v(0) = v0. Then there is a solution v of (2.18) on R− belonging to
Lp(R−;X0) if and only if (3.10) holds. In this case, v = L−(v0, g, h) is the unique
solution of (2.18) in E1(R−) with the final value v0 and

‖L−(v0, g, h)‖E1(R−) ≤ c′1 (|Qv0|0 + ‖g‖E0(R−) + ‖h‖F(R−)). (3.13)

We will apply the above propositions mostly in ‘rescaled’ versions since we have
to work in function spaces on J = R± with exponential weight. We set eδ(t) = eδt

for t ∈ R and δ ∈ R, and introduce the spaces

Ek(R±, δ) = {v : eδv ∈ Ek(R±)} (k = 0, 1), F(R±, δ) = {v : eδv ∈ F(R±)}

endowed with the norms

‖v‖Ek(R±,δ) = ‖eδv‖Ek(R±) (k = 0, 1), ‖v‖F(R±,δ) = ‖eδv‖F(R±).

We also use the analogous norms on compact intervals J . Mostly we deal with the
interval J = R+ and abbreviate E0(R+, δ) = E0(δ) etc. Assume that Hypothesis 2.7
and (3.4) hold, and take a solution v of (2.18) with A(t) = A∗ and B∗(t) = B∗. We
define w(t) = eδtv(t) for t ≥ 0, where |δ| < δ0 and δ0 is the exponential dichotomy
constant, cf. (2.35). From v = L(Pv0, g, h) we deduce

w = eδL(Pv0, g, h) = Lδ(Pv0, eδg, eδh), (3.14)

where Lδ is defined as L but for the generator −A0+δ. Replacing F (u) by F (u)+δu
in (R), we see that A0−δ satisfies Hypothesis 2.7. Thus we can apply Proposition 3.1
to Lδ, so that (3.14) yields

‖L(Pv0, g, h)‖E1(δ) = ‖w‖E1(R+) ≤ c2 (|v0|p + ‖g‖E0(δ) + ‖h‖F(δ)). (3.15)

We point out that c2 does not depend on δ with |δ| ≤ δ1 < δ0.
We next study the Nemytskii operators G and H induced by the maps G and

H from (2.28) and (2.29), assuming that (R) holds. For the intervals R± we take
a t–independent function u∗ ∈ X1 with B(u∗) = 0. For a compact interval J we
take a function u∗ ∈ E1(J). For v belonging to E1(R±, δ) or E1(J), respectively,
we define G(v)(t) = G(t, v(t)) and Hj(v)(t) = Hj(t, v(t)) for a.e. t ∈ J , setting
H = (H1, · · · ,Hm) as usual. We stress the restrictions on δ in the following result;
also, the choice of +δ corresponds to R+ while the choice of −δ corresponds to R−.
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Proposition 3.3. Assume that (R) holds, and let J be a compact interval.
(I) Let δ ≥ 0. Take u∗ ∈ X1 with B(u∗) = 0 for the intervals R±, or respectively

take u∗ ∈ E1(J) for the compact interval J . Then the following assertions are valid.
(a) We have G ∈ C1(E1(R±,±δ),E0(R±,±δ)), respectively G ∈ C1(E1(J),E0(J)).
Moreover, G(0) = 0, G′(0) = 0, and

G′(v)w = [F ′(u∗ + v)− F ′(u∗)]w + [A(u∗)−A(u∗ + v)]w (3.16)

+ [A′(u∗)u∗ −A′(u∗ + v)(u∗ + v)]w

for v, w ∈ E1(±δ,R±), respectively v, w ∈ E1(J).
(b) We have H ∈ C1(E1(R±,±δ),F(R±,±δ)), respectively H ∈ C1(E1(J),F(J)).
Moreover, H′(0) = 0 and

H′(v)w = [B′(u∗)−B′(u∗ + v)]w (3.17)

for v, w ∈ E1(R±,±δ), respectively v, w ∈ E1(J). Finally, H(0) = 0 if and only if
B(u∗(t)) = 0 for all t ∈ J .

(II) Take an arbitrary δ ∈ R and assume that u∗ ∈ X1 satisfies B(u∗) = 0 and
that v ∈ E1(R±, δ) with |v(t)|p ≤ r for t ∈ R±. Then there is a nondecreasing
function ε : R+ → R+ such that ε(r) → 0 as r → 0 and

‖G(v)‖E0(R±,δ) ≤ ε(r) ‖eδv‖Lp(R±;X1) ,

‖H(v)‖F(R±,δ) ≤ ε(r) ‖v‖E1(R±,δ) , (3.18)

‖eδH(v)‖Lp(R±;Y1) ≤ ε(r) ‖eδv‖Lp(R±;X1) ,

where ε can be chosen uniformly for δ in compact intervals.

Proof. (1) In the proof we restrict ourselves to the case J = R+. The other cases
can be treated in the same way. Also, the last assertion in (Ib) is an immediate
consequence of (2.29). We point out that for δ ≥ 0 we have

|w(t)|BC2m−1 ≤ c |w(t)|p ≤ c |eδtw(t)|p ≤ c ‖w‖E1(δ) , t ≥ 0, (3.19)

due to (2.7), (2.8), and δt ≥ 0. In the following we always take δ ≥ 0 unless we are
dealing with part (II).

We define G′(v) by (3.16) for v ∈ E1(δ). From (3.19), (2.21), (2.22), (2.23), and
(2.25) we deduce that G(v) ∈ E0(δ), G′(v) ∈ B(E1(δ),E0(δ)) and that the first line
of (3.18) holds. Further, G′(v) is the Fréchet derivative of G at v due to (3.19),
(2.23), (2.25), δt ≥ 0, and the formula

G(v + w)−G(v)−G′(v)w

=
(
F (u∗ + v + w)− F (u∗ + v)− F ′(u∗ + v)w

)
−

(
A(u∗ + v + w)−A(u∗ + v)

)
w

−
(
A(u∗ + v + w)(u∗ + v)−A(u∗ + v)(u∗ + v)− [A′(u∗ + v)(u∗ + v)]w

)
.

The continuity of v 7→ G′(v) follows from (3.19), (2.22), (2.24), and (2.25).
(2) We give the proof of the assertions concerning Hj for a fixed j ∈ {1, · · · ,m}

which will mostly be suppressed from the notation. We fix v ∈ E1(δ) and take
w ∈ E1(δ) with ‖w‖E1(δ) ≤ r0 for a fixed, but arbitrary r0 > 0. In the following,
the constants will depend on v and r0, but not on w. Define H′ by (3.17). One
can verify that H(v) ∈ F(δ) and H′(v) ∈ B(E1(δ),F(δ)) by similar, but simpler
arguments as used below. In view of (2.4) and (2.29), we can write

−[H(t, v(t) + w(t))−H(t, v(t))− [H′(v)w](t)](x)

= [B(u∗ + v(t) + w(t))−B(u∗(t) + v(t))−B′(u∗ + v(t))w(t)](x)
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= b(x,∇[u∗(x) + v(t, x) + w(t, x)])− b(x,∇[u∗(x) + v(t, x)])

− (∂zb)(x,∇[u∗(x) + v(t, x)]) · ∇w(t, x)

=: h(x,∇[u∗(x) + v(t, x)],∇w(t, x)) (3.20)

where we set ∇ := ∇mj = (∇0,∇1, · · · ,∇mj ) and ∂z is the partial derivative of
b with respect to the corresponding arguments in E × En × · · · × E(nmj ). (Recall
that we have suppressed the trace operator in front of all ∇ terms.) We set ξ =
∇[u∗(x) + v(t, x)] and η = ∇w(t, x) for fixed x ∈ ∂Ω and t ≥ 0. Then we obtain

h(x, ξ, η) = b(x, ξ + η)− b(x, ξ)− (∂zb)(x, ξ) · η, (3.21)

∂ξh(t, ξ, η) = (∂zb)(x, ξ + η)− (∂zb)(x, ξ)− (∂zzb)(x, ξ) · η, (3.22)

∂ηh(t, ξ, η) = (∂zb)(x, ξ + η)− (∂zb)(x, ξ). (3.23)

Assertion (R) and estimate (3.19) yield

|h(x, ξ, η)|, |∂ξh(x, ξ, η)| ≤ ε(|η|) |η|, |∂ηh(t, ξ, η)| ≤ c |η|, (3.24)

where c and ε(r) do not depend on x and are uniform for ξ, η in bounded sets.
Using again (3.19) and δt ≥ 0, we derive

eδt |H(v(t) + w(t))−H(v(t))− [H′(v)w](t)|Y0 ≤ ε(|w(t)|BC2m−1) |eδtw(t)|BC2m−1 ,

‖eδ [H(v + w)−H(v)−H′(v)w]‖Lp(R+;Y0) ≤ c ε(‖w‖E1(δ)) ‖eδw‖Lp(R+;X1) . (3.25)

The corresponding inequality for part (II) is shown similarly.
(3) We now consider the estimate involving Wκ

p (R+;Y0) for κ = κj , cf. (2.11)
and (2.13). We fix x ∈ ∂Ω and omit it in the notation. Then we can compute

h(∇(u∗ + v(t)),∇w(t))− h(∇(u∗ + v(s)),∇w(s)) (3.26)

=
∫ 1

0

(∂ξh)
(
∇(u∗ + v(s)) + θ[∇(u∗ + v(t))−∇(u∗ + v(s))],∇w(t)

)
dθ

· ∇[u∗ + v(t)− (u∗ + v(s))]

+
∫ 1

0

(∂ηh)
(
∇(u∗ + v(s)),∇w(s) + θ∇(w(t)− w(s))

)
dθ · ∇(w(t)− w(s))

for t, s ≥ 0. Set ϕ(t) = h(∇(u∗ + v(t)),∇w(t)) and ψ(t) = ∇[u∗ + v(t)]. Then
(3.19), (3.26), and (3.24) yield

|ϕ(t)− ϕ(s)|Y0 ≤ ε(|w(t)|BC2m−1) |w(t)|BC2m−1 |ψ(t)− ψ(s)|Y0

+ c |w(t)|BC2m−1 |∇(w(t)− w(s))|Y0 (3.27)

for t, s ≥ 0. In view of (2.15) and (2.16), the map γ ∂β : E1(R+) → Wκ
p (R+;Y0)

is continuous for |β| ≤ mj . Combining this mapping property with (3.19), (3.27),
Lemma 3.4 below, (3.25) and δt ≥ 0, we derive

[eδ (H(v + w)−H(v)−H′(v)w)]W κ
p (R+;Y0) (3.28)

≤ c ε(‖w‖E1(δ)) ‖w‖E1(δ) + c ε(‖w‖BC(R+;Xp)) ‖w‖BC(R+;Xp) ‖eδ∇v‖W κ
p (R+;Y0)

+ c ‖w‖BC(R+;Xp) ‖eδ∇w‖W κ
p (R+;Y0)

≤ c ε(‖w‖E1(δ)) ‖w‖E1(δ) ,

possibly changing ε. The corresponding estimate for (II) is shown in the same way.
(4) For the study of the space regularity we may restrict ourselves to the case Ω =

{x ∈ Rn : xn > 0} and functions with support in the unit ball in Rn. The general
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case is then deduced via local change of coordinates, see e.g. [2, §7.51]. We first
consider the case of highest order mj = 2m−1, where Fj = Lp(R+;W 1−1/p(∂Ω))∩
Wκ

p (R+;Lp(∂Ω)). Since b ∈ C2 by (R), equation (3.21) yields

∂xh(x, ξ, η) = (∂xb)(x, ξ + η)− (∂xb)(x, ξ)− (∂z∂xb)(x, ξ) · η, (3.29)

|∂xh(x, ξ, η)| ≤ ε(|η|) |η|, (3.30)

with c and ε having the same properties as in (3.24). We fix t ≥ 0 and suppress it
from our notation for a moment. Then we calculate

h(y,∇(u∗(y) + v(y)),∇w(y))− h(x,∇(u∗(x) + v(x)),∇w(x)) (3.31)

=
∫ 1

0

(∂xh)
(
x+ θ(y − x),∇(u∗(y) + v(y)),∇w(y)

)
dθ · (y − x)

+
∫ 1

0

(∂ξh)
(
x,∇(u∗(x) + v(x)) + θ[∇(u∗(y) + v(y))−∇(u∗(x) + v(x))],∇w(y)

)
dθ

· ∇[u∗(y) + v(y)− u∗(x)− v(x)]

+
∫ 1

0

(∂ηh)
(
x,∇(u∗(x) + v(x)),∇w(x) + θ∇(w(y)− w(x))

)
dθ · ∇(w(y)− w(x))

for x, y ∈ ∂Ω. Set ϕ(t, x) = h(x,∇(u∗(x) + v(t, x)),∇w(t, x)) and ψ(t, x) =
∇[u∗(x) + v(t, x)]. Employing only (3.24) and (3.30), we deduce from (3.31) that

|ϕ(t, y)− ϕ(t, x)| ≤ ε(|w(t)|BC2m−1) |w(t)|BC2m−1

(
|y − x|+ |ψ(t, y)− ψ(t, x)|

)
+ c |w(t)|BC2m−1 |∇(w(t, y)− w(t, x))| (3.32)

for x, y ∈ ∂Ω. Let K be the unit ball in Rn−1. Estimate (3.32) leads to
∞∫
0

epδt[ϕ(t)]p
W

1−1/p
p (∂Ω)

dt =

∞∫
0

∫∫
K2

epδt |ϕ(t, y)− ϕ(t, x)|p

|y − x|n−2+p
dx dy dt

≤ cε(‖w‖BC(R;BC2m−1))p

∞∫
0

|eδtw(t)|p1
∫∫
K2

|y − x|p + |∇u∗(y)−∇u∗(x)|p

|y − x|n−2+p
dx dy dt

+ cε(‖w‖BC(R;BC2m−1))p ‖w‖p
BC(R;C2m−1)

∞∫
0

epδt

∫∫
K2

|∇v(t, y)−∇v(t, x)|p

|y − x|n−2+p
dx dy dt

+ c ‖w‖p
BC(R;BC2m−1)

∞∫
0

∫∫
K2

epδt |∇w(t, y)−∇w(t, x)|p

|y − x|n−2+p
dx dy dt

≤ c ε(‖w‖E1(δ))
p ‖w‖p

E1(δ)
(1 + ‖eδv‖p

Lp(R+;X1)
) + c ‖w‖p

E1(δ)
‖eδw‖p

Lp(R+;X1)

due to (3.19), Sobolev’s embedding theorem, (2.1), (2.10) and the fact that δt ≥ 0.
Therefore, changing ε if needed, we arrive at

‖eδ [H(v + w)−H(v)−H′(v)w]‖Lp(R+;Y1) ≤ c ε(‖w‖E1(δ)) ‖w‖E1(δ) . (3.33)

The corresponding estimate for the last line in (3.18) is shown in the same way.
(5) Next, we consider the space regularity case for general mj ∈ {0, · · · , 2m−1}.

Define ϕ(x) = ϕ(x, ξ(x), η(x)) = h(x,∇mj [u∗(x)+v(t, x)],∇mjw(t, x)) with h from
(3.20) and a fixed t ≥ 0. Take a multiindex β with |β| = 2m − 1 − mj . We
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want to verify that the function ∂βϕ(x) is a function of the form h̃(x, ξ̃, η̃), where
ξ̃ = ∇2m−1[u∗(x)+v(t, x)] and η̃ = ∇2m−1w(t, x), and that h̃ satisfies the analogues
of (3.24) and (3.30). If this is the case, we can check as in step (4) that (3.33) and
the last line in (3.18) also hold for lower order boundary terms. To this aim we
claim that ∂γϕ(x) with |γ| = l ∈ {0, 1, · · · , 2m−mj − 1} is a linear combination of
functions of the following type

[ψ(x, ξ(x) + η(x))− ψ(x, ξ(x))− ∂2ψ(x, ξ(x)) · η(x)]P (ξ(x)),

[ψ(x, ξ(x) + η(x))− ψ(x, ξ(x))]P (ξ(x))Q1(η(x)), (3.34)

ψ(x, ξ(x) + η(x))P (ξ(x))Q2(η(x)),

for (differing) functions ψ ∈ C2m+1−mj−l(∂Ω×E×· · ·×E(nmj );E) and products P
and Qk of partial derivatives ∂aξ(x) and ∂bη(x) having order |a|, |b| ≤ l+mj . The
products Q1, resp. Q2, contain at least 1, resp. 2, factors ∂bη(x). This assertion is
easily checked via induction over l using (R). For l = 2m− 1−mj we thus obtain
functions ψ ∈ C2 and products P , Qk with factors ∂α

x (u∗(x)+v(t, x)) and ∂α
xw(t, x)

having order |α| ≤ 2m − 1. We compute the derivatives with respect to x, ξ̃, η̃ of
the functions in (3.34) as we did in (3.22), (3.23), and (3.29). Taking into account
(3.19) and (R), we can then derive (3.24) and (3.30) for h̃(x, ξ̃, η̃).

(6) Using similar arguments, one can check the continuity of the map v 7→ H′(v)
from E1(δ) to B(E1(δ),F(δ)). �

Lemma 3.4. If Z is a Banach space, α ∈ (0, 1), and δ ∈ R, then

[eδf ]W α
p (R+;Z) ≤ c ‖eδf‖Lp(R+:Z) + c

[ ∫∫
|t−s|≤1

eδtp |f(t)− f(s)|pZ
|t− s|1+αp

ds dt
] 1

p

≤ c ‖eδf‖W α
p (R+;Z) .

Proof. Let ϕ(τ) = τ−1−αp for |τ | ≥ 1 and ϕ(τ) = 0 for |τ | ≤ 1. Using Minkowski’s
and Young’s inequalities, we calculate

[eδf ]W α
p (R+;Z)

≤
[ ∫∫

|t−s|≥1

|eδtf(t)− eδsf(s)|pZ
|t− s|1+αp

ds dt
] 1

p

+
[ ∫∫

|t−s|≤1

|eδtf(t)− eδsf(s)|pZ
|t− s|1+αp

ds dt
] 1

p

≤ c ‖ϕ ∗ eδ|f |Z‖Lp(R+) +
[ ∫∫

|t−s|≤1

eδtp |f(t)− f(s)|pZ
|t− s|1+αp

ds dt
] 1

p

+
[ ∫∫

|t−s|≤1

epδs|f(s)|p
|eδ(t−s) − 1|pZ
|t− s|1+αp

dt ds
] 1

p

≤ c ‖eδf‖Lp(R+;Z) + c
[ ∫∫

|t−s|≤1

eδtp |f(t)− f(s)|pZ
|t− s|1+αp

ds dt
] 1

p

.

The second estimate is shown in a similar way. �

Corollary 3.5. Assume that (R) holds. Then u0 7→ B(u0) belongs to C1(Xp;Yp)
with the derivative B′(u0) given by (2.4).

Proof. Let R denote a bounded right inverse of γ0 ∈ B(E1([0, 1]), Xp), see (2.9).
Define H with u∗ = 0. Then Φ := γ0HR ∈ C1(Xp;Yp) and Φ′(u0) = B′(0)u0 −
B′(u0) by Proposition 3.3 and (2.14). Since B′(0) ∈ B(Xp, Yp) by (2.17), the
assertion follows. �
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4. Local well–posedness and regularity

We start with the basic existence and uniqueness result for (2.2). For a single
second order equation the next proposition (and its proof) is a special case of
Theorem 6.1.2 in [41].

Proposition 4.1. Assume that condition (R) holds and that (E) and (LS) hold at
a function u0 ∈ Xp satisfying B(u0) = 0. Then there is a number T = T (u0) > 0
such that the problem (2.2) has a unique solution u ∈ E1([0, T ]) ↪→ C([0, T ];Xp).

Proof. By (2.9) there exists a function u∗ ∈ E1(R+) with u∗(0) = u0. (We do
not require that u∗ solves (2.2).) Remark 2.1 combined with (2.8) gives a number
T0 > 0 such that conditions (E) and (LS) for A(u∗(t)) and B′(u∗(t))) hold at the
function u∗(t) for each t ∈ [0, T0]. Temporarily we define H(t, v) by (2.29) replacing
u∗ in this equation by zero. Then we can write B′(u∗)v − B(v) = H(v)−H′(u∗)v
for v ∈ E1([0, T0]) and the resulting Nemytskii operator. Therefore Proposition 3.3
yields that

B′(u∗)v −B(v) ∈ F([0, T0]) for v ∈ E1([0, T0]). (4.1)
Taking into account (2.8), (2.24), (4.1) and B(u0) = 0, Theorem 2.2 provides us
with a solution w ∈ E1([0, T0]) of the linear problem

∂tw(t) +A(u∗(t))w(t) = F (u∗(t)) on Ω, a.e. t > 0,

B′(u∗(t))w(t) = B′(u∗(t))u∗(t)−B(u∗(t)) on ∂Ω, t ≥ 0,

w(0) = u0, on Ω.
(4.2)

We define the space

Σ(T, ρ) = {v ∈ E1([0, T ]) : v(0) = u0, ‖v − w‖E1([0,T ]) ≤ ρ}
for ρ > 0 and T ∈ (0, T0]. The set Σ(T, ρ) is closed in E1([0, T ]). For a given
u ∈ Σ(ρ, T ), we consider the linear problem

∂tv(t) +A(u∗(t))v(t) = F (u(t)) + [A(u∗(t))−A(u(t))]u(t) on Ω, a.e. t > 0,

B′(u∗(t))v(t) = B′(u∗(t))u(t)−B(u(t)) on ∂Ω, t ≥ 0, (4.3)

v(0) = u0, on Ω.

Again, there is a solution v ∈ E1([0, T ]) of (4.3) thanks to Theorem 2.2, (2.8),
(2.24), (4.1), and B(u0) = 0. We define the map S : Σ(T, ρ) → E1([0, T ]) by setting
S(u) := v. Notice that u ∈ Σ(T, ρ) solves (2.2) if and only if u = S(u).

We want to show that S is a strict contraction on Σ(T, ρ) if T > 0 and ρ > 0 are
small enough. By (4.2) and (4.3), the function z = S(u)− w ∈ E1([0, T ]) satisfies

∂tz(t) +A(u∗(t))z(t) = F (u(t))− F (u∗(t)) + [A(u∗(t))−A(u(t))]u(t) =: g(t),

B′(u∗(t))z(t) = B′(u∗(t))(u(t)− u∗(t))− (B(u(t))−B(u∗(t))) =: h(t),

z(0) = 0.

Observe that h(0) = 0 and h = H(u − u∗) − H(0), where H is defined via (2.29)
with u∗ from the present proof. Using (2.20), (2.21), (2.25), Proposition 3.3, (2.8)
and u ∈ Σ(ρ, T ), we estimate

‖S(u)− w‖E1([0,T ]) ≤ c1 (‖g‖E0([0,T ]) + ‖h‖F([0,T ]))

≤ c ‖u− u∗‖Lp([0,T ];Xp) + c ‖u− u∗‖C([0,T ];Xp) ‖u‖Lp([0,T ];X1)

+ c ε(‖u− u∗‖E1([0,T ])) ‖u− u∗‖E1([0,T ])
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≤ c T
1
p (ρ+ ‖w − u∗‖C([0,T ];Xp)) + c (ρ+ ‖w − u∗‖C([0,T ];Xp)) (ρ+ ‖w‖Lp([0,T ];X1))

+ c ε(ρ+ ‖w − u∗‖E1([0,T ])) (ρ+ ‖w − u∗‖E1([0,T ])).

Observe that the constants in the estimate above do not depend on T ∈ (0, T0]
because of h(0) = 0 and u(0) − w(0) = 0. Since w and u∗ are fixed with w(0) −
u∗(0) = 0, we may choose sufficiently small ρ1 ∈ (0, ρ0] and T1 ∈ (0, T0] such that
‖S(u)−w‖E1([0,T ]) ≤ ρ if T ∈ (0, T1] and ρ ∈ (0, ρ1]. Consequently, S leaves Σ(T, ρ)
invariant for T ∈ (0, T1] and ρ ∈ (0, ρ1]. Next, take u, u ∈ Σ(T, ρ) and set v = S(u)
and v = S(u). In view of (4.3), the function z = v − v ∈ E1([0, T ]) fulfills

∂tz(t) +A(u∗(t))z(t) = F (u(t))− F (u(t)) + [A(u∗(t))−A(u(t))](u(t)− u(t))

− [A(u(t))−A(u(t))]u(t),

B′(u∗(t))z(t) = B′(u∗(t))(u(t)− u(t))− (B(u(t))−B(u(t))),

z(0) = 0.

Due to H′(0) = 0, the right hand side of the second identity is equal to

−[H(u− u∗)−H(u− u∗)−H′(u− u∗)(u− u)] + (H′(0)−H′(u− u∗))(u− u),

where H is defined with via (2.29). Now we can proceed as above and deduce that
S has the Lipschitz constant 1/2 on Σ(T, ρ) if we decrease T and ρ once more. As
a result, we have obtained a local solution u of (2.2) on [0, T ].

Assume there is a different solution û of (2.2) on [0, T ]. Then there are numbers
t0, tn ∈ [0, T ) such that tn ↘ t0 as n → ∞, u(t) = û(t) for t ∈ [0, t0], and
u(tn) 6= û(tn). We may apply the above argument with some T ′, ρ′ > 0, the initial
time t0, and the initial value u(t0) =: u1 ∈ Xp satisfying B(u1) = 0. This leads to
a contradiction establishing the uniqueness assertion. �

We now introduce in a standard way the maximal existence interval for the
solution with initial value u0. Under the assumptions of Proposition 4.1, let t+(u0)
be the supremum of those T > 0 such that (2.2) has a solution u ∈ E1([0, T ]).
Proposition 4.1 implies that t+(u0) > 0. This solution is unique provided that (E)
and (LS) hold at the function u(t) for each t ∈ [0, t+(u0)).

Next, we establish our main well–posedness result. It says that (2.2) generates a
local semiflow on the nonlinear phase space

M = {u0 ∈ Xp : B(u0) = 0}, (4.4)

which is a C1 manifold inXp due to Corollary 3.5. Moreover, the equation possesses
a smoothing effect because of the quasilinear structure. We write tu for the function
v(t) = tu(t). For a given u0 ∈ Xp, we set

X0
p = {z0 ∈ Xp : B′(u0)z0 = 0}.

If u0 ∈ M, then X0
p is the tangent space of M at u0. Finally, if u0 ∈ Xp satisfies

(E) and (LS), then we define a projection P : Xp → X0
p by Pv0 = (I−NpB

′(u0))v0,
using the right inverse Np ∈ B(Yp, Xp) of B′(u0) obtained in Proposition 2.5(b).

Theorem 4.2. Assume that condition (R) holds and that (E) and (LS) hold at a
function u0 ∈ Xp satisfying B(u0) = 0. Let u = u(·;u0) denote the unique solution
of (2.2), and let (E) and (LS) hold at the function u(t;u0) for each t ∈ [0, t+(u0)).
Let T ∈ (0, t+(u0)) and J = [0, T ]. Then the following assertions are true.

(a) There is an open ball Bρ(u0) in Xp such that there exists a solution w ∈ E1(J)
of (2.2) for each initial value w0 ∈ Bρ(u0) satisfying B(w0) = 0. Moreover, there is

21



an open ball W 0 in X0
p centered at 0 and a map Φ ∈ C1(W 0; E1(J)) with uniformly

bounded derivative and Φ(0) = 0 such that w = u+Φ(P(w0−u0)) for w0 ∈ Bρ(u0)
with B(w0) = 0.

(b) We have tu ∈ W 1
p (J ;X1) ∩ W 2

p (J ;X0), and thus u ∈ C1((0, T ];Xp) ∩
C2−1/p((0, T ];X0) ∩ C1−1/p((0, T ];X1).

(c) Assume in addition that (E) and (LS) hold for all u1 ∈ Xp with B(u1) = 0.
If the number t+(u0) is finite, then ‖u‖E1([0,t+(u0))) = ∞ and u(t) does not converge
in Xp as t→ t+(u0).

Proof. (a) For the solution u = u(t;u0) of (2.2) with the given initial value u0 we
define A∗(t), B∗(t), G(t), and H(t) for t ∈ J as in formulas (2.26), (2.28), and (2.29)
but replacing in these formulas u∗(t) by u(t;u0). Then w ∈ E1(J) solves (2.2) with
the initial value w(0) = w0 ∈ Xp satisfying B(w0) = 0 if and only if v = w−u solves
(2.27) with the initial value v0 = w0 − u0 ∈ Xp satisfying B∗(0)v0 = H(0, v(0)).
We recall that S : D(J) → E1(J) is the solution operator of (2.18) with A∗(t) and
B∗(t) on J given by Theorem 2.2. We introduce the map

L : X0
p × E1(J) → E1(J); L(z0, v) = v − S(z0 +Npγ0H(v),G(v),H(v)). (4.5)

Observe that γ0 ∈ B(F(J), Yp) by (2.14) and that H(0) = B(u) = 0. We further
have B∗(0)(z0 +Npγ0H(v)) = H(0, v(0)), i.e.,

Γ : X0
p × E0(J)× F(J) −→ D(J); Γ(z0, g, h) = (z0 +Npγ0h, g, h)

is a bounded linear map, cf. (2.19). Theorem 2.2 and Proposition 3.3 thus imply
that L(0, 0) = 0, L ∈ C1(X0

p × E1(J); E1(J)), and ∂2L(0, 0) = I. Therefore the
implicit function theorem, see e.g. [13, Cor.15.1], gives a ballBr0(0) inX0

p and a map
Φ ∈ C1(Br0(0); E1(J)) such that Φ(0) = 0 and L(z0,Φ(z0)) = 0 for z0 ∈ Br0(0).
This equation, Theorem 2.2, and Proposition 3.3 further yield

Φ′(z0) = S
(
I +Npγ0H′(Φ(z0))Φ′(z0),G′(Φ(z0))Φ′(z0),H′(Φ(z0))Φ′(z0)

)
,

‖Φ′(z0)‖ ≤ c+ c (‖G′(Φ(z0))‖+ ‖H′(Φ(z0))‖) ‖Φ′(z0)‖

(with the respective operator norms). Decreasing the radius r0 > 0, we can make
the factor in front of ‖Φ′(z0)‖ on the right hand side smaller than 1/2. So Φ′(z0)
is uniformly bounded for z0 in this smaller ball.

If we start with a given function w0 ∈ Xp satisfying B(w0) = 0, then we set
v0 = w0 − u0 ∈ Xp and z0 = v0 − NpH(0, v0) = v0 − NpB

′(u0)v0 = Pv0. Hence,
z0 ∈ X0

p and |z0|p ≤ c |v0|p. So we can fix a number ρ > 0 such that |w0 − u0|p < ρ
implies |z0|p < r0. Then v = Φ(z0) ∈ E1(J) solves (2.27) with the initial value v0,
i.e., w = v + u solves (2.2) with the initial value w0.

(b) Take numbers T > 0 and ε ∈ (0, 1) such that u is a solution of (2.2) on [0, T ′]
with T ′ = (1 + ε)T . Let J = [0, T ], λ ∈ (1 − ε, 1 + ε), and uλ(t) = u(λt). Then
v = uλ is the unique solution of the problem

∂tv(t) + λA(v(t))v(t) = λF (v(t)), on Ω, a.e. t > 0,

B(v(t)) = 0, on ∂Ω, t ≥ 0, (4.6)

v(0) = u0, on Ω,

on [0, λ−1T ′]. We define A∗(t) and B∗(t) as in part (a), and we temporarily set
G(λ, t, v) = −λA(v)v+A∗(t)v+λF (v) and H(t, v) = B∗(t)v−B(v). Then (4.6) is
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equivalent to

∂tv(t) +A∗(t)v(t) = G(λ, t, v(t)), on Ω, a.e. t > 0,

B∗(t)v(t) = H(t, v(t)), on ∂Ω, t ≥ 0, (4.7)

v(0) = u0, on Ω.

Let G(λ, ·) and H be the Nemytskii operators for G(λ, ·) and H. As in Proposi-
tion 3.3, we see that G ∈ C1((1 − ε, 1 + ε) × E1(J); E0(J)) with ∂2G(1, u) = 0.
Proposition 3.3 implies that H ∈ C1(E1(J); F(J)) with H′(u) = 0, cf. (4.1). The
function z0 = u0−NpH(0, u0) belongs to X0

p . Fixing this z0, we introduce the map

L0 : (1− ε, 1+ ε)×E1(J) → E1(J); L0(λ, v) = v−S(z0 +Npγ0H(v),G(λ, v),H(v)),

where S is the solution operator of (2.18) for the operators A∗(t) and B∗(t). Since
u solves (2.2), we have L0(1, u) = 0. As in part (a), we see that L0 is a C1-map
and ∂2L0(1, u) = I. The implicit function theorem thus yields an ε′ ∈ (0, ε), a ball
Bρ0(u) in E1(J), and a map Ψ ∈ C1((1− ε′, 1 + ε′); E1(J)) such that Ψ(1) = u and
Ψ(λ) solves (4.7) with u0 replaced by u0(λ) := [Ψ(λ)](0). We further have

u0(λ) = z0 +NpH(0, u0(λ)) = u0 +Np

(
H(0, u0(λ))−H(0, u0)

)
,

u0(λ)− u0 = −Np

(
B(u0(λ))−B(u0)−B′(u0)(u0(λ)− u0)

)
.

Therefore Proposition 2.5, Corollary 3.5 and (2.8) yield

|u0(λ)−u0|p ≤ cε(|u0(λ)−u0|p) |u0(λ)−u0|p ≤ cε(c ‖Ψ(λ)−Ψ(1)‖E1) |u0(λ)−u0|p
for constants c and a function ε with ε(r) → 0 as r → 0 which do not depend on λ.
Decreasing ε′ > 0, we deduce that u0(λ) = u0, and thus Ψ(λ) solves (4.6) provided
|λ− 1| is sufficiently small. So uλ = Ψ(λ) by the uniqueness of (4.6).

As a result, uλ = Ψ(λ) ∈ E1(J) is continuously differentiable in λ with derivative
( d

dλuλ)(t) = tu̇(λt). Taking λ = 1, we deduce that t∂tu ∈ E1(J). Consequently,
∂t(tu) = t∂tu+ u ∈ E1(J) ↪→ C(J ;Xp), and hence tu ∈ W 2

p (J ;X0) ∩W 1
p (J ;X1) ∩

C1(J ;Xp). Assertion (b) now follows from Sobolev’s embedding theorem.
(c) Suppose that t+(u0) < ∞ and u ∈ E1([0, t+(u0))). Embedding (2.8) shows

that u(t) converges in Xp to some u1 as t→ t+(u0), and so B(u1) = 0 follows from
(R). Proposition 4.1 yields a solution ū of (2.2) on [t+(u0), t+(u0) + T0] with the
initial value u1 and some T0 > 0. Thus we obtain a solution w ∈ E1([0, t+(u0)+T0])
of (2.2) by setting w(t) = u(t) for 0 ≤ t < t+(u0) and w(t) = ū(t) for t+(u0) ≤ t ≤
t+(u0) + T0. This fact contradicts the definition of t+(u0). �

In the next section we need the following quantitative version of Theorem 4.2(b).

Proposition 4.3. Let Hypothesis 2.4 hold. Take T > 0 and ρ > 0 from Theo-
rem 4.2(a) for u∗ (instead of u0). Let u = u(·;u0) solve (2.2) on J = [0, T ] for the
initial value u0 ∈ Bρ(u∗) with B(u0) = 0. Then there exists ρ̂ ∈ (0, ρ] such that

‖t(u− u∗)‖W 1
p (J;X1) + ‖t(u− u∗)‖W 2

p (J;X0) ≤ c |u0 − u∗|p
if also |u0 − u∗|p < ρ̂, with a uniform constant for such u0.

Proof. Under the conditions of the current proposition, Theorem 4.2(a) yields ‖u−
u∗‖E1(J) ≤ cρ. We define A∗, B∗, G, H, and S by (2.26), (2.28), (2.29), and
Theorem 2.2 for the given steady state u∗. We further set v(t) = u(t) − u∗ and
v0 = u0 − u∗. Then the function vλ(t) = v(λt), t ∈ J , is the unique solution of

∂tw(t) +A∗w(t) = λG(w(t)) + (1− λ)A∗w(t) =: G(λ,w(t)), on Ω, t > 0,
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B∗w(t) = H(w(t)), on ∂Ω, t > 0, (4.8)

w(0) = v0 , on Ω,

where we take λ ∈ (1− ε, 1 + ε) and ε ∈ (0, 1) such that (1 + ε)T < t+(u0). Let Np

be the right inverse of B∗ = B′(u∗) ∈ B(Xp, Yp). We now proceed as in the proof
of Theorem 4.2(b) using the operator

L0(λ,w) = w − S(z0 +Npγ0H(w),G(λ,w),H(w))

for λ ∈ (1 − ε, 1 + ε), w ∈ E1(J), and z0 = v0 − NpH(v0). As above, we see that
L0 ∈ C1((1− ε, 1 + ε)× E1(J); E1(J)),

L0(1, v) = 0, and ∂2L0(1, v) = I − S(Npγ0H′(v),G′(v),H′(v)).

Possibly after decreasing ρ > 0, and thus ‖v‖E1 , Theorem 2.2 and Proposition 3.3
imply that ∂2L0(1, v) is invertible in E1(J). So the implicit function theorem
provides us with a map Ψ ∈ C1((1 − ε̂, 1 + ε̂); E1(J)) such that Ψ(1) = v and
L0(λ,Ψ(λ)) = 0 for |1 − λ| ≤ ε̂ and some ε̂ ∈ (0, 1). We set v0(λ) = [Ψ(λ)](0). As
in the proof of Theorem 4.2(b) we then obtain

v0(λ)− v0 = −Np

(
B(v0(λ) + u∗)−B(v0 + u∗)−B′(v0 + u∗)(v0(λ)− v0)

)
+Np

(
B′(u∗)−B′(v0 + u∗)

)
(v0(λ)− v0),

and we conclude that v0(λ) = v0, and hence Ψ(λ) = vλ, if ε̂ > 0 and ρ > 0 are
small enough. Again it follows that t∂tv = Ψ′(1) ∈ E1(J). We further compute

Ψ′(1) = −[∂2L0(1, v)]−1∂1L0(1, v) = [∂2L0(1, v)]−1S(0, G(v)−A∗v, 0).

Taking into account ∂t(tv) = v + t∂tv = v + Ψ′(1) and v = u− u∗, we arrive at

‖∂t(t(u− u∗))‖E1(J) ≤ c ‖u− u∗‖E1(J) ≤ c |u0 − u∗|p .

where we also used Theorem 2.2, Proposition 3.3, and Theorem 4.2(a). �

5. The hyperbolic saddle

In this section we will construct the stable and unstable manifolds for (2.2), which
are C1-submanifolds of the phase spaceM defined in (4.4). Let u∗ ∈ X1 be a steady
state solution of (2.2) satisfying Hypothesis 2.4. Throughout this section, the maps
G and H from (2.28) and (2.29) and the corresponding Nemytskii operators G and
H are defined for the given u∗. We start with a simpler special case, proving
the principle of linearized stability. Let s(−A0) denote the spectral bound of the
generator −A0 of the semigroup T (·) on X0 introduced in (2.30).

Proposition 5.1. Assume that Hypothesis 2.4 holds and that s(−A0) < −δ < 0.
Then there exists a constant ρ > 0 such that for all u0 ∈ Xp with |u0−u∗|p ≤ ρ and
B(u0) = 0 the solution u of (2.2) exists for all t ≥ 0 and satisfies |u(t)−u∗|1 ≤ ce−δt

for t ≥ 1 and a constant not depending on t and u0.

Proof. Let ρ > 0, v0 ∈ Xp, |v0|p ≤ ρ, and B∗v0 = H(v0). We set

Σ(ρ) =
{
v ∈ E1(δ) : v(0) = v0, ‖v‖E1(δ) ≤ 2c2ρ

}
,

where c2 the constant from (3.15) with P = I. We define L(v) = L(v(0),G(v),H(v))
for v ∈ Σ(ρ), where L is given by (3.1) with Q = 0 (and thus w0 = v0 in (3.2)). Note
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that Lv(0) = v0, H(v(0)) = H(v0) = B∗v(0), and |v(t)|p ≤ c0‖v‖E1 ≤ 2c0c2ρ =: r.
Choosing ρ (and thus r) sufficiently small, we deduce from (3.15) and (3.18) that

‖Lv‖E1(δ) ≤ c2 (|v0|p + ‖G(v)‖E0(δ) + ‖H(v)‖F(δ))

≤ c2ρ+ 2c2 ε(r)‖v‖E1(δ) ≤ 2c2ρ.

Take v, w ∈ Σ(ρ). Since H(v(0))−H(w(0)) = 0 = v(0)−w(0), the estimate (3.15)
and Proposition 3.3 imply that

‖Lv − Lw‖E1(δ) ≤ c2 (‖G(v)−G(w)‖E0(δ) + ‖H(v)−H(w)‖F(δ))

≤ 2c2η(ρ) ‖v − w‖E1(δ),

where η(ρ) is the supremum of ‖G′(v)‖ and ‖H′(v)‖ over v ∈ Σ(ρ). Since η(ρ) → 0
as ρ → 0 by Proposition 3.3, we can decrease ρ > 0 once more to establish that L
is a strict contraction on Σ(ρ). So we obtain a fix point v = Lv ∈ Σ(ρ), and thus a
solution u = v + u∗ of (2.2) on R+ with

eδt|u(t)− u∗|p ≤ ‖eδv‖BC(R+;Xp) ≤ c0‖v‖E1(δ) ≤ 2c0c2ρ

for t ≥ 0 using again (2.8). Proposition 4.3 further yields |u(t + 1) − u∗|1 ≤
c |u(t)− u∗|p for t ≥ 0 if we decrease ρ to obtain r < ρ̂. �

We now come to the main result of our paper, assuming that iR ⊂ ρ(A0). We
recall the notation X0

p = {z0 ∈ Xp : B∗z0 = 0} and denote by Br(u0) and Bρ(u)
open balls in Xp and E1(δ), respectively. Recall thatM = {u0 ∈ Xp : B(u0) = 0} is
the solution manifold of (2.2). Observe that the dimension of the unstable manifold
constructed below is equal to dim ran(Q).

Theorem 5.2. Assume that Hypotheses 2.4 and 2.7 hold with the dichotomy con-
stant δ0 > 0. Fix δ ∈ (0, δ0), and let P and Q denote the stable and unstable
projections on X0 for the semigroup T (·). Then there exist constants r ≥ ρ > 0
and manifolds Ms and Mu located in M∩ Bρ(u∗) which are C1 in Xp and tan-
gential to the affine subspaces u∗ + PX0

p and u∗ +QX0, respectively, such that for
all u0 ∈M satisfying |u0 − u∗|p < ρ the following assertions hold.

(i) If u0 ∈Ms, then the solution u(t;u0) of (2.2) exists and |u(t;u0)−u∗|p ≤ r
for all t ≥ 0. Moreover, |u(t;u0)− u∗|1 ≤ c |u0 − u∗|p e−δt for all t ≥ 1.

(ii) If u0 /∈Ms, then |u(t;u0)− u∗|p > r for some t > 0.
(iii) If u0 ∈ Mu, then a backward solution u(t;u0) of (2.2) exists for all t ≤ 0,

and it is the only backward solution staying in Br(u∗) for all t ≤ 0. Also,
|u(t;u0)− u∗|p ≤ r and |u(t;u0)− u∗|1 ≤ c |u0 − u∗|0 eδt for all t ≤ 0.

(iv) If u0 /∈ Mu, then any backward solution u(t;u0) of (2.2) either ceases to
exist or leaves the ball Br(u∗) at some t < 0.

(The constants c do not depend on t or u0.) As a result, Ms (resp., Mu) is uniquely
given as the set of the initial values u0 ∈ M ∩ Bρ(u∗) of global forward (resp.,
backward) solutions u(·;u0) with |u(t;u0) − u∗|p ≤ r for all t ≥ 0 (resp., t ≤ 0).
Thus Ms and Mu are invariant for (2.2) relative to Bρ(u∗) in the following sense:
Let u0 ∈ Ms (resp., u0 ∈ Mu), and let u(·;u0) be a solution of (2.2) on [0, t] if
t > 0 or on [t, 0] if t < 0 staying in Bρ(u∗) (where u(·;u0) has to be the solution
from (iii) if u0 ∈Mu and t < 0). Then u(t;u0) belongs to Ms (resp., Mu).

Proof. Construction of the stable manifold Ms. Observe that (2.8) yields

|v(t)|p ≤ eδt|v(t)|p ≤ c0 ‖v‖E1(δ), t ≥ 0, (5.1)
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since δt ≥ 0. Recall that PXp ⊂ Xp by (2.36). Moreover, due to P = I − Q and
ran(Q) ⊂ dom(A0), we have PX0

p ⊂ X0
p and thus PX0

p = ran(P ) ∩Xp ∩ ker(B∗).
Let Np be the right inverse of B∗ = B′(u∗) ∈ B(Xp, Yp) obtained in Proposition 2.5.
Then the operator Γ(z0, g, h) = (z0 +PNpγ0h, g, h) maps PX0

p ×E0(δ)× F(δ) into
the space DP (δ) = {(v0, g, h) ∈ PXp × E0(δ)× F(δ) : B∗v0 = h(0)} by (2.14) and

B∗PNp = (B∗ −B∗Q)Np = I on Yp . (5.2)

Note that DP (δ) is a closed subspace of Xp × E0(δ) × F(δ) thanks to (2.17) and
(2.14). Proposition 3.1 and (3.15) say that the linear operator L defined in (3.1) is
bounded from DP (δ) to E1(δ). We now introduce the Lyapunov-Perron map

Ls : PX0
p×E1(δ) → E1(δ); Ls(z0, v) = v−L(z0+PNpγ0H(v),G(v),H(v)). (5.3)

Since δ > 0, we may apply Proposition 3.3 to deduce that Ls ∈ C1(PX0
p ×

E1(δ); E1(δ)) and that Ls(0, 0) = 0 and ∂2Ls(0, 0) = I − LΓ(0,G′(0),H′(0)) = I
hold. So the implicit function theorem, see e.g. [13, Cor.15.1], yields numbers
r0, ρ0 > 0 and a C1-map Φs from PX0

p ∩ Bρ0(0) ⊂ Xp to Br0(0) ⊂ E1(δ) such
that Φs(0) = 0 and Ls(z0,Φs(z0)) = 0 for each z0 ∈ PX0

p ∩ Bρ0(0) and, moreover,
v = Φs(z0) is the only solution of the equation Ls(z0, v) = 0 satisfying z0 ∈ Bρ0(0)
and v ∈ Br0(0). Due to Proposition 3.1 and (3.2), the function v = Φs(z0) solves
problem (2.27) with the initial value

v0 := v(0) = z0 + PNpH(v(0))−
∫ ∞

0

TQ(−s)Q
(
G(v(s)) + ΠH(v(s))

)
ds, (5.4)

where v(0) ∈ Xp and B∗v(0) = H(v(0)) by (5.2). Therefore the function u(t;u0) :=
v(t) + u∗ solves (2.2) on R+ with the initial value u0 = v0 + u∗ ∈M.

In view of decomposition (5.4), we define the map φs : PX0
p ∩ Bρ0(0) → ran(Q)

by the formula

φs(z0) = −
∫ ∞

0

TQ(−s)Q
(
G(Φs(z0)(s)) + ΠH(Φs(z0)(s))

)
ds, (5.5)

and the map ϑs : PX0
p ∩Bρ0(0) → PXp by the formula

ϑs(z0) = PNpγ0H(Φs(z0)). (5.6)

So we can introduce the stable manifold

Ms =
{
u∗ + z0 + ϑs(z0) + φs(z0) : z0 ∈ PX0

p , |z0|p < ρ
}
,

where ρ ∈ (0, ρ0] is fixed later. We have already checked that Ms ⊂ M. The
map Φs is C1 from PX0

p to E1(δ) so that Proposition 3.3 and the properties of
the linear operators in (5.5) and (5.6) show that the maps φs and ϑs are C1 from
PX0

P to dom(A0) and PXp ⊂ Xp, respectively. The identities φs(0) = ϑs(0) = 0
and φ′s(0) = ϑ′s(0) = 0 follow from Φs(0) = 0, G(0) = 0, G′(0) = 0, H(0) = 0, and
H′(0) = 0. As a result, Ms is a C1 manifold in Xp being tangent to PXp

0 at u∗.
Proof of assertion (i). Let u0 ∈ Ms, v0 = u0 − u∗ = z0 + ϑs(z0) + φs(z0), and

v = Φs(z0). As noted above, u(t;u0) = v(t)+u∗ solves (2.2) on R+ with the initial
value u0. Estimate (5.1) further yields |u(t;u0) − u∗|p ≤ c0‖v‖E1(δ) e

−δt for t ≥ 0.
Observe that z0 = P (v0 −NpH(v0)) = P (v0 −NpB∗v0) and thus |z0|p ≤ c |v0|p by
(2.36), Proposition 2.5, and (2.17). From Φs(0) = 0 we infer that

‖v‖E1(δ) ≤ ‖Φs(z0)− Φ′s(0)z0‖E1(δ) + ‖Φ′s(0)z0‖E1(δ) ≤ c |z0|p ≤ c′ |v0|p . (5.7)
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If |v0|p < ρ1, then the above inequalities yield

|u(t;u0)− u∗|p ≤ c0c
′ |u0 − u∗|p e−δt ≤ c0c

′ρ1 =: r1
for t ≥ 0. As in Proposition 5.1 one deduces the exponential estimate in X1, where
one may choose a small ρ1 so that one can apply Proposition 4.3

Proof of assertion (ii). Take an initial value u0 ∈ M with the corresponding
solution u = u(·;u0) of (2.2), and assume that

|u0 − u∗|p < ρ and |u(t;u0)− u∗|p ≤ r for t ≥ 0 (5.8)

and some numbers ρ ∈ (0, ρ1] and r ∈ (0, r1]. We want to find sufficiently small ρ3 ∈
(0, ρ1] and r3 ∈ (0, r1] such that (5.8) with ρ = ρ3 and r = r3 implies that u0 ∈Ms.
We let v(t) = u(t;u0)−u∗ for t ∈ R+ so that v solves (2.27) for the initial value v0 =
u0−u∗ satisfying B∗v0 = H(v0). Let us assume for a moment that Claim 5.3 below
is true. Then Propositions 3.1 and 3.3 yield v = L(Pv0,G(v),H(v)) if ρ ∈ (0, ρ2]
and r ∈ (0, r2]. We further set z0 = P (v0 − NpH(v0)) = P (v0 − NpB∗v0) . Then
z0 ∈ PX0

p and |z0|p ≤ cρ by Proposition 2.5, (2.17), (2.36), and (5.2). Decreasing ρ
if necessary, we thus obtain |z0|p < ρ0 and hence there is a zero w = Φ(z0) ∈ E1(δ)
of Ls, i.e., w = L(z0 + PNpH(w(0)),G(w),H(w)) and w(0) + u∗ ∈ Ms. Possibly
after choosing a smaller ρ > 0, we also have ‖w‖E1(R+) ≤ r due to (5.7). Moreover,
B∗(Pv0 − z0 − PNpH(w(0))) = H(v(0))−H(w(0)) by (5.2). Propositions 3.1 and
3.3 and formulas (3.2) and (2.14) now imply that

‖v − w‖E1 ≤ c
(
|P (v(0)− w(0)) +Q(v(0)− w(0))|p + ‖G(v)−G(w)‖E0

+ ‖H(v)−H(w)‖F
)

≤ c
(
|H(v(0))−H(w(0))|Yp

+ ‖G(v)−G(w)‖E0 + ‖H(v)−H(w)‖F
)

≤ cη(r) ‖v − w‖E1 ,

where η(r) is the supremum of ‖G′(φ)‖ in B(E1,E0) and ‖H′(φ)‖ in B(E1,F) over
φ with ‖φ‖E1(R+) ≤ r. Decreasing r > 0 once more in (5.8), we see that v = w
and so u∗ + v0 = u∗ + w(0) ∈ Ms. Thus we have obtained the desired numbers
ρ3 ∈ (0, ρ1] and r3 ∈ (0, r1] .

Claim 5.3. There are ρ2 ∈ (0, ρ1] and r2 ∈ (0, r1] such that each solution u of
(2.2) satisfying (5.8) for some ρ ∈ (0, ρ2] and r ∈ (0, r2] already belongs to E1(R+).

Proof of the claim. We take σ ∈ (0, δ] and T ≥ 1, and we set J = [0, T ]. The
constants below do not depend on σ and T , unless explicitly stated. The function
v = u− u∗ solves (2.27), and thus

Pv = T (·)Pv0 + T (·)P ∗G(v) + T−1(·)P ∗ΠH(v)

due to (2.33). Employing B∗v0 = H(v(0)) and (2.36), we can argue as in the proof
of Proposition 3.1 in order to estimate

‖Pv‖E1(J,−σ) ≤ c
(
|Pv0|p + ‖G(v)‖E0(J,−σ) + ‖H(v)‖F(J,−σ)

)
. (5.9)

Using the extension v(t) = 0 for t ≥ 2T and v(t) = (2−t/T )v(2T−t) for T ≤ t ≤ 2T ,
one obtains the estimates from (3.18) also on J with the weight e−σ and a function
ε not depending on T ≥ 1. We then deduce from (5.9), (5.8), (2.36), (3.18) that

‖Pv‖E1(J,−σ) ≤ cρ+ cε(r) ‖v‖E1(J,−σ) ≤ cρ+ cε(r)
(
‖Pv‖E1(J,−σ) + ‖Qv‖E1(J,−σ)

)
.

Since ε(r) → 0 as r → 0, we can take a small r to infer

‖Pv‖E1(J,−σ) ≤ cρ+ cε(r) ‖Qv‖E1(J,−σ). (5.10)
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We recall that Q maps X0 in dom(A0) ⊂ X1 and thus |Qv(t)|1 ≤ cr by (5.8), so
that e−σQv ∈ Lp(R+;X1). Proposition 2.6 further implies that

e−σQv̇ = e−σQ(−A−1v + ΠH(v)) + e−σQG(v)

= −A0Qe−σv + (µ+A0)QN1e−σH(v) +Qe−σG(v). (5.11)

By means of A0Q ∈ B(X0), |v(t)|p ≤ r, Proposition 2.5 and (3.18), we estimate

‖Qv̇‖E0(J,−σ) ≤ c
(
‖e−σv‖E0(J) + ‖e−σH(v)‖Lp(J;Y1) + ‖e−σG(v)‖E0(J)

)
≤ c(σ)r + cε(r) ‖e−σv‖Lp(J;X1)

≤ c(σ)r + cε(r) ‖e−σPv‖Lp(J;X1) . (5.12)

Inserting this inequality into (5.10) and choosing a small r > 0 (not depending on
J and σ), we arrive at the inequality ‖Pv‖E1(J,−σ) ≤ cρ + c(σ)r. Hence, Pv ∈
E1(R+,−σ) and, by (5.12), Qv̇ ∈ E0(R+,−σ). As a result, v ∈ E1(R+,−σ) if
r ≤ r′2, for a number r′2 ∈ (0, r0] independent of σ. Now (5.10) yields

‖Pv‖E1(R+,−σ) ≤ cρ+ cε(r) ‖Qv‖E1(R+,−σ). (5.13)

Observe that the shifted operator −A0 − σ satisfies Hypothesis 2.7. Thus we can
transform (2.33) into (3.1) with w0 = Pv0 from (3.2) (where g = G(v) and h =
H(v)), and hence

Qv(t) = −
∫ ∞

t

TQ(t− s)Q
(
G(v(s)) + ΠH(v(s))

)
ds,

thanks to (2.35), (5.8), and (3.18). This formula combined with (2.35), (3.18) and
(5.13) leads to the estimates

‖Qv‖E1(−σ) ≤ c ‖Qv‖E0(−σ) + ‖Qv̇‖E0(−σ) (5.14)

≤ c
(
‖Qv‖E0(−σ) + ‖G(v)‖E0(−σ) + ‖e−σH(v)‖Lp(R+;Y1)

)
≤ c

(
‖G(v)‖E0(−σ) + ‖e−σH(v)‖Lp(R+;Y1)

)
≤ cε(r) ‖e−σQv‖Lp(R+;X1) + cε(r) ‖e−σPv‖Lp(R+;X1)

≤ cρ+ cε(r) ‖Qv‖E1(−σ) .

Taking a small r > 0 independent of σ ∈ (0, δ], we see that supσ ‖Qv‖E1(−σ) is
finite. Fatou’s lemma then yields Qv ∈ E1(R+), and so Pv ∈ E1(R+) by (5.13). ♦

Construction of the unstable manifold Mu. The arguments for the unstable part
are similar and somewhat simpler, so that we can omit some details. This time we
employ the Lyapunov Perron map

Lu : ran(Q)× E1(R−,−δ) → E1(R−,−δ); Lu(z0, v) = v − L−(z0,G(v),H(v)),

cf. (3.12). Propositions 3.2 and 3.3 then imply that Lu is a C1 map, Lu(0, 0) = 0,
and ∂2Lu(0, 0) = I. Hence, by the implicit function theorem, there exist balls
Bρ′0

(0) ∩ ran(Q) and Br′0
(0) ⊆ E1(R−,−δ) and a C1 map Φu : Bρ′0

(0) → Br′0
(0)

such that v = Φu(z0) is the unique solution of the equation Lu(z0, v) = 0 for z0 and
v in these balls. Thus u = Φu(z0) + u∗ is the unique function in Br′0

(u∗) solving
(2.2) on R− with the final value u0 = v0 + u∗, see Proposition 3.2. We further
define the map φu : ran(Q) ∩Bρ′0

(0) → PXp by φu(z0) = γ0Φu(z0)− z0; that is,

φu(z0) =
∫ 0

−∞
T−1(−s)P−1

(
G(Φu(z0)(s)) + ΠH(Φu(z0)(s))

)
ds.
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Therefore v(0) = Φu(z0)(0) = z0 + φu(z0), φu is C1 due to (2.8), φu(0) = 0, and
φ′u(0) = 0. We now introduce the unstable manifold

Mu = {u∗ + z0 + φu(z0) : z0 ∈ ran(Q), |z0|p < ρ}

for ρ ∈ (0, ρ′0] to be fixed later. Clearly, Mu is a C1 manifold in Xp tangential to
u∗ + ran(Q).

Proof of assertion (iii). Let u0 ∈ Mu, z0 = Q(u0 − u∗), and v = Φu(z0). Then
u(t;u0) = v(t) + u∗ solves (2.2) on R− with the final value u0. As in part (i), we
can deduce that |u(t;u0) − u∗|p ≤ c |u0 − u∗|0 eδt for t ≤ 0, using (2.8), (5.7), and
Q ∈ B(X0, X1). Proposition 4.3 further yields |u(t;u0)−u∗|1 ≤ c |u(t−1;u0)−u∗|p
for t ≤ 0 (possibly after decreasing ρ). This fact implies assertion (iii) for all
numbers ρ ∈ (0, ρ4] and r ∈ (0, r4] and some ρ4 ∈ (0, ρ3] and r4 ∈ (0, r3].

Proof of assertion (iv). Let u be a backward solution of (2.2) on R− with
|u(t)− u∗|p ≤ r for t ≤ 0 and |u0 − u∗|p < ρ. As in part (ii) we have to show that
v = u− u∗ ∈ E1(R−) provided that r, ρ > 0 are small enough. We take 0 < σ ≤ δ
and T ≤ −2 and set J = [T + 1, 0]. In what follows, the constants do not depend
on σ and T unless otherwise stated. The formula (2.33) yields

Pv(t) = T (t− T )Pv(T ) +
∫ t

T

T (t− s)PG(v(s)) ds+
∫ t

T

T−1(t− s)P−1ΠH(v(s)) ds

for T ≤ t ≤ 0. Arguing as in (3.6) and using (3.18), we estimate

‖Pv‖E1(J,σ) ≤ c
(
r + ‖G(v)‖E0(J,σ) + ‖H(v)‖F(J,σ)

)
≤ cr + cε(r) ‖Pv‖E1(J,σ) + cε(r) ‖Qv‖E1(J,σ) ,

‖Pv‖E1(J,σ) ≤ cr + cε(r) ‖Qv‖E1(J,σ) , (5.15)

taking a small r independent of J and σ. We further have |Qv(t)|1 ≤ cr for t ≤ 0,
and so eσQv ∈ Lp(R−;X1). As in (5.11) and (5.12), one obtains

‖eσQv̇‖Lp(J;X0) ≤ c(σ)r + cε(r) ‖eσPv‖Lp(J;X1) .

So we conclude that v ∈ E1(R−, σ) if 0 < r ≤ r5 where 0 < r5 ≤ r4 is sufficiently
small and does not depend on σ. Thus we can transform (2.33) into the form (3.12)
with Pv0 from (3.10), and so

Qv(t) = TQ(t)Qv0 −
∫ 0

t

TQ(t− s)Q
(
G(v(s)) + ΠH(v(s))

)
ds,

thanks to (2.35), |v(t)|p ≤ r, and (3.18). We argue as in (5.14) in order to deduce

‖Qv‖E1(R−,σ) ≤ cρ+ cr + cε(r)‖Qv‖E1(R−,σ) .

Taking a small σ–independent r6 ∈ (0, r5], we obtain a σ–independent bound on
‖Qv‖E1(R−,σ). So Fatou’s lemma yields Qv ∈ E1(R−), and (5.15) implies Pv ∈
E1(R+). The theorem follows fixing sufficiently small ρ ∈ (0, ρ4] and r ∈ (0, r6]. �

6. A reaction diffusion system

In this section we study a quasilinear reaction diffusion system for two species u1

and u2 on a bounded domain Ω ⊂ Rn with C2 boundary ∂Ω and outer unit normal
ν. The validity of (E) and (LS) was established in [5] for large classes of reaction
diffusion systems of second order. Here we concentrate on a simple situation where
we can give more explicit criteria for the hyperbolicity condition iR ⊂ ρ(A0) from
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Hypothesis 2.7. For the unknown function u(t, x) = (u1(t, x), u2(t, x)) ∈ R2 we
consider the problem

∂tui(t, x)− div[di(u(t, x))∇ui(t, x)] = ri(u(t, x)), t > 0, x ∈ Ω, i = 1, 2,

di(u(t, x))∂νui(t, x)− qi(ui(t, x)) = b0i (x, u(t, x),∇u(t, x)), t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω, (6.1)

where di ∈ C2(R2; R), qi ∈ C2(R; R), ri ∈ C1(R2; R), and b0i ∈ C2(∂Ω×R2×R2n; R)
for i = 1, 2. We work with real valued functions in this section, considering the
complexification if necessary (in particular when applying the results of the previous
sections). We assume that there is a vector u∗ = (u∗1, u∗2) ∈ R2 such that

di(u∗) > 0, ri(u∗) = qi(u∗) = b0i (x, u∗, 0) = 0, ∂(2,3)b
0
i (x, u∗, 0) = 0

for i = 1, 2 and x ∈ ∂Ω. Thus the constant function u∗ is a steady state solution
of (6.1). Moreover, (6.1) contains conormal boundary conditions combined with
the nonlinear source terms qi(ui) and the additional fully nonlinear perturbations
b0i which vanish at the equilibrium. Let d = diag(d1, d2), r = (r1, r2), q = (q1, q2),
b0 = (b01, b

0
2). Then we can transform (6.1) into the form (2.2) by setting

A(u)v = −d(u)∆u, b(u) = d(u)(ν · ∇u1, ν · ∇u2)− q(u)− b0(·, u,∇u),

F (u) = r(u) +
[ n∑

j=1

(d′i(u) · ∂ju) ∂jui

]
i=1,2

,

where x · y denotes the standard scalar product in R2. Since ∇u∗ = 0, we obtain

A∗ = −d(u∗)∆− r′(u∗) and B∗ = d(u∗)∂ν − q′(u∗),

cf. (2.26). It is clear that (R) holds. Moreover A(u∗) and B∗ = B′(u∗) satisfy
(E) and (LS) due to [5, Prop.4.3] (or a straightforward direct calculation). Setting
di(u∗) = δi, q′i(u∗i) = βi, and r′(u∗) = [rkl] for i = 1, 2, the operator A0 =
A∗| ker(B∗) in X0 is given by

−A0 =
(
δ1∆ + r11 r12

r21 δ2∆ + r22

)
, dom(A0) = D1 ×D2,

Di = {v ∈W 2
p (Ω) : ∂νv = βiδ

−1
i v}, i = 1, 2.

We now want to study the spectrum of A0 in terms of the operators Ci(λ) =
δi∆ + rii − λ in X0 with domain Di, where i = 1, 2 and λ ∈ C. Since the case
r21 = 0 is rather simple we restrict ourselves to the case r21 6= 0. Observe that A0

has compact resolvent. Suppose that λ is an eigenvalue of −A0 with eigenvector
(v1, v2) ∈ dom(A0). Then we have v2 6= 0, C2(λ)v2 = −r21v1 ∈ D1, and

r21C1(λ)v1 + r21r12v2 = 0, r21C1(λ)v1 + C1(λ)C2(λ)v2 = 0.

As a result, C1(λ)C2(λ)v2 = r12r21v2. Conversely, let v2 ∈ dom(C1(λ)C2(λ)) =
{v ∈ D2 : C2(λ)v ∈ D1} be an eigenvector of C1(λ)C2(λ) with the eigenvalue
r12r21, for some λ. Then we set v1 = −r−1

21 C2(λ)v2 ∈ D1, obtaining an eigenvector
(v1, v2) of −A0 for the eigenvalue λ. So we have shown that

σ(−A0) = {λ ∈ C : r12r21 ∈ σp(C1(λ)C2(λ))}.

This equation becomes much simpler if we assume in addition that D1 = D2 =: D.
For instance, this equality is true if q′1(u∗1) = q′2(u∗2) = 0. Let µn, n ∈ N0, be the
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distinct eigenvalues of the Laplacian ∆D with the domain D and set

Mn =
(
δ1µn + r11 r12

r21 δ2µn + r22

)
.

Note that the spectrum of A0 on X0 = Lp(Ω)2 does not depend on p ∈ (1,∞) since
the resolvent is compact. Moreover, ∆D is self adjoint on L2(Ω), so that µn is real,
µn → −∞, and µn+1 < µn. Then one easily obtains that

σ(−A0) =
⋃

n∈N0
σ(Mn).

In order to satisfy Hypothesis 2.7, we thus have to ensure that none of the matrices
Mn, n ∈ N0, has an eigenvalue on iR. One obtains a purely imaginary eigenvalue of
Mn if and only if either detMn = 0 for some n ∈ N0, or trMn = 0 and detMn > 0
for some n ∈ N0. Moreover, there is an eigenvalue of −A0 with strictly positive
real part if and only if s(M0) > 0.
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