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ABSTRACT. We investigate quasilinear systems of parabolic partial differential
equations with fully nonlinear boundary conditions on bounded or exterior
domains in the setting of Sobolev—Slobodetskii spaces. We establish local
wellposedness and study the time and space regularity of the solutions. Our
main results concern the asymptotic behavior of the solutions in the vicinity of
a hyperbolic equilibrium. In particular, the local stable and unstable manifolds
are constructed.

1. INTRODUCTION

In this paper we investigate the qualitative properties of a general class of non-
linear parabolic systems by a unified approach. We consider the equations

Oru(t) + A(u(®))u(t) = F(u(t)), onQ, t>0,
Bj(u(t))=0, ondQ, t>0, j=1,---,m, (1.1)
u(0) =wug, on Q,

on a (possibly unbounded) domain Q with compact boundary 92, where the solu-
tion u(t, ) takes values in a finite dimensional space E = CV. The main part of
the differential equation is given by a linear differential operator A(u) of order 2m
(with m € N) whose matrix—valued coefficients depend on the derivatives of u up to
order 2m — 1, and F' is a general nonlinear reaction term acting on the derivatives
of u up to order 2m — 1. Therefore the differential equation is quasilinear. Our
analysis focusses on the fully nonlinear boundary conditions

[Bj(w)](z) :==b(z,u(z), Vu(z), - ,V™u(z)) =0, z€9Q, j=1,---,m,

for the partial derivatives of w up to order m; < 2m — 1. We look for a solution u
in the space Ey = Ly ([0, T]; W2™(Q; CN)) N W ([0, T]; L, (2; CY)) for a fixed finite
exponent p > n + 2m. The terms of highest order are thus contained in L, spaces.
Due to known embedding theorems, a function u € E; also belongs to the space
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C([0,T); BC*™=1(Q;CY)). Hence, the nonlinear terms in (1.1) are continuous in
(t,z) up to t = 0, and the initial condition can be understood in a classical sense.

We require only local smoothness of the coefficients (e.g., the diffusion coefficients
are C1); in particular, there are no growth restrictions. The parabolicity of (1.1) is
expressed in our main assumption saying that the linear boundary value problems
(A(v), Bi(v),---, By, (v)) are normally elliptic and satisfy the Lopatinskii-Shapiro
conditions for suitable functions v and the derivatives B’ (v). (See Section 2 for the
precise statements.) These conditions are necessary and sufficient for the regularity
properties of the linearization of (1.1), see Theorem 2.2 and (2.27), which are crucial
for our approach. In this sense, our hypotheses are optimal. We note that reaction
diffusion systems satisfy our assumptions, see [5] and also Section 6.

The initial value ug of (1.1) has to fulfill the boundary conditions B;(ug) = 0
by continuity. Moreover, our solution space E; is continuously embedded into
C([0,T]; X,) for the Slobodetskii space X, = 5m72m/p(Q;CN), and X, is the
smallest space with this property. As a result, up must belong to X, the solution
u of (1.1) is continuous in X, on [0, 7], and the norm of X, is the natural norm for
our work. So we are led to the nonlinear phase space

MZ{UO 6*va:Bl(uO):Ov"' 7Bm(u0):0}7

which is a C! manifold in Xp. This genuine nonlinear structure has to be respected
when solving (1.1) and when studying the properties of the solutions. In fact, many
of the difficulties in our analysis arise from the compatibility conditions B;(ug) = 0.

We prove local existence and uniqueness of solutions in E; for initial values
ug € M. We further show that the local semiflow on M solving (1.1) is continuously
differentiable with respect to ug and that the equation has an additional smoothing
effect in so far for ¢ > 0 the solution u(t) is Hélder continuous of order 1 — 1/p
with values in Wme(Q;(CN ), although uy € X,. These results are presented in
Theorem 4.2. However, we are mainly interested in the long term behavior of the
solutions near an equilibrium u, € W2™(Q; CV) of (1.1). To this aim, we consider
the derivative A, of the map u — A(u)u — F(u) at u, and introduce the restriction
Ap of A, to the kernel of the boundary operator B, = (Bf(ux),- -, Bj,(us)). By
[14], the operator —A, generates an analytic semigroup T'(-) on L,(Q;CV). Tt
turns out that the spectrum of Ay determines much of the asymptotic behavior of
the solutions to (1.1) near u,.. So we show the principle of linearized stability for
(1.1) in Proposition 5.1. Assuming that iR C p(A4y) (i.e., that u, is hyperbolic), in
Theorem 5.2 we then construct the local stable, respectively unstable, manifolds at
u, which are O in X, and tangent to the stable, respectively unstable, subspaces of
the linear operator —Ag. We prove that the stable, respectively unstable, manifolds
consist precisely of the solutions to (1.1) which exist and stay in a ball in X, centered
at u, for all ¢ > 0, respectively for all ¢ < 0. Moreover, these solutions converge
exponentially to u, in the norm of ng(Q; C™N) as t — oo, respectively as t — —oo.

There is a vast literature on the well-posedness of nonlinear parabolic equations
which we cannot discuss in detail here. We refer to the recent survey [7] presenting,
in particular, the available approaches to the subject. But we want to point out that
most of the existing results impose restrictions on the structure of the boundary
conditions. Many works deal with reaction diffusion systems of second order and
consider conormal boundary conditions plus lower order terms, see e.g. [23], [39].
Other authors consider quasilinear boundary conditions which can be absorbed
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into the domains of generators Ag(u), see e.g. [1], [3], [5], [8], [10], [11], [33], [37],
[40], where additional lower order terms are admitted in some papers. General
boundary conditions were studied for a single equation of second order in [9], [22],
[28, Chap.XIII], [30, §8.5.3] in the C*—setting (even for a fully nonlinear differential
equation) and in [41] in our setting.

Fully nonlinear boundary conditions appear naturally in the treatment of free
boundary problems, see e.g. [9], [19] and the survey [20], and when considering
diffusion through interfaces, see e.g. [27]. The results of the present paper do not
directly cover such problems, but we think that our methods can be generalized in
order to deal with moving boundaries and transmission problems in future work.

Our approach relies on the results from [15] on the property of mazimal reg-
ularity of type L, for linear inhomogeneous initial boundary value problems, as
stated in Theorem 2.2. (We refer to [14], [15], [28], [30] for its prehistory.) This
theorem implies that the linearization of (1.1) possesses a solution in E; if and
only if if the initial value and the inhomogeneities of the linear problem belong to
a certain space D defined (2.19). This space contains precisely the class of data
resulting from the linearization of (1.1), see (2.27). The celebrated paper [11] by
G. Da Prato and P. Grisvard initiated the approach to fully nonlinear and quasilin-
ear parabolic problems via maximal regularity in a semigroup framework. Besides
the L,—setting, there are several function spaces where one can obtain analogous
properties of maximal regularity, see e.g. [6] or [7] for a discussion. We also refer to
the monograph [30] devoted to the study and application of maximal regularity in
the Holder setting. We employ the L,-setting since the L, norm in the state space
is relatively simple and weak, and still the nonlinearities and the initial conditions
are understood in a classical sense. One also obtains weaker conditions for the
global solvability than in the C*—setting, cf. Theorem 4.2 and [5], [33]. We note
that one cannot treat fully nonlinear differential equations within the L,—setting.

Our proof of local existence and uniqueness follows the lines of [41]. But we are
not aware of any proofs for the smoothing properties shown in Theorem 4.2 for
quasilinear equations with fully nonlinear boundary conditions. (See e.g. [3], [8],
[33] for earlier results.) Holder regularity of fully nonlinear problems was studied in
[30, §8.5.3]. The principle of linearized stability was established for various classes
of nonlinear equations with special boundary conditions in e.g. [17], [21], [25], [29],
[30], [32]. Local invariant manifolds for parabolic problems are well understood in
the semilinear case, see in particular [26]. G. Da Prato and A. Lunardi constructed
local stable, center and unstable manifolds for fully nonlinear problems with linear
boundary conditions in a Holder setting, see [12] and further [25], [30], [31] for
related contributions. In [37] local center manifolds were investigated for quasilin-
ear problems with conormal boundary conditions plus lower order terms. We are
only aware of one paper, [9], dealing with invariant manifolds for fully nonlinear
boundary conditions. There the unstable manifold was constructed for a single
second order equation. In the current paper, we construct both stable and unstable
manifolds, and the proof of our Theorem 5.2 indicates that the nonlinear restriction
expressed by M enters only in the stable case explicitely. Other locally invariant,
in particular center, manifolds will be treated in another paper (in preparation).

We establish both the local regularity and the asymptotic behavior within the
same approach. We linearize the equations (1.1) at a given solution w, (which is a
steady state in the construction of the invariant manifolds), leading to the equations
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(2.27). The linear regularity result Theorem 2.2 allows to understand (2.27) as a fix
point problem in E; for the solutions of (1.1). This problem can be solved by means
of the implicit function theorem. However, in contrast to previous works one has to
take care of the compatibility conditions. Therefore we have to incorporate certain
correction terms which guarantee that the compatibility conditions are fulfilled, see
(4.5) and (5.3). In this way we prove in Theorem 4.2 our regularity results, using
also the scaling technique from [8]. In Theorem 5.2 we solve the fix point equation
in spaces of exponentially decaying function on R4 ; thus obtaining solutions of (1.1)
with the asymptotic behavior one expects for the stable and unstable manifolds.
An additional effort is needed to show that, in fact, the initial values of the resulting
decaying solutions define the local manifolds with the desired properties.

As indicated above, the spectrum of the generator Ay = A.|ker(B,) determines
much of the asymptotic behavior of solutions near the steady state u,. Observe that
Ap does not directly appear in our problem (1.1) and also not in the construction
of its solutions in Section 4. The relationship between Ay and (1.1) becomes clear
by means of an approach frequently used in boundary control theory, see e.g. [16],
[36], and also [5, §11], [24], [30, p.200], [37, §8] for related techniques. Adapting this
approach to the problem at hands, we derive in Proposition 2.6 a formula for the
solutions of the linear problem (2.18) in terms of the semigroup 7'(-) generated by
—Ap and its extrapolation, cf. [6], [18]. Although this formula does not help much
in questions of local regularity, it does allow to invoke the exponential dichotomy
of T'(+) in the study of the asymptotic behavior of the solutions to (1.1), cf. (3.1).

Our setting and the main concepts are described in Section 2, where also some
auxiliary results are proved. Based on Theorem 2.2 and Proposition 2.6, we show
the maximal regularity of the linear problem on Ry and R_ in Propositions 3.1
and 3.2, respectively. The technically most demanding result is Proposition 3.3
which establishes the continuous differentiability of the substitution (or Nemytskii)
operators appearing in our fix point problems. Here the main difficulties arise from
the (rather unpleasant) fact that the boundary data of the linear problem (2.18)
live in the anisotropic Slobodetskii spaces defined in (2.13). The main results on
local existence and regularity and on the asymptotic behavior are established in
Sections 4 and 5, respectively. In Section 6 we study a reaction diffusion system in
order to illustrate the spectral condition iR C p(Ap).

Notation. We set Dy = —idy = —i9/0x) and use the multi index notation.
The k-tensor of the partial derivatives of order k is denoted by V¥, and we let
V*u = (u,Vu, -, V*u). For an operator A on a Banach space we write dom(A),
ker(A), ran(A), o(A), and p(A) for its domain, kernel, range, spectrum, and resol-
vent set, respectively. B(X,Y) is the space of bounded linear operators between
two Banach spaces X and Y. For an open set U with boundary OU, C*(U) (resp.,
BC*(U), BUC*(U), Ck(U)) are the spaces of k-times continuously differentiable
functions v on U (such that v and its derivatives up to order k are bounded, bounded
and uniformly continuous, vanish at U and at infinity (if U is unbounded), respec-
tively), where BC*(U) is endowed with its canonical norm. For C*(U), BC*(U),
BUC*(U), we require in addition that u and its derivatives up to order k have a
continuous extension to AU. For unbounded U, we write C§(U) for the space of
u € CF(U) such that u and its derivatives up to order k vanish at infinity. By
ij(U) we designate the Sobolev spaces, see e.g. [2, Def.3.1]. A generic constant



will be denoted by ¢; by € : R — R we denote a generic nondecreasing function
with e(r) — 0 as r — 0. Finally, J C R is a closed interval.

2. SETTING AND PRELIMINARIES

Let Q C R™ be an open connected set with a compact boundary 992 of class C?™
and outer unit normal v(z), where m € N. Note that Q is either bounded or an
unbounded exterior domain. Throughout this paper, we fix a finite exponent p with

p>n+2m. (2.1)
Let E = CV with B(E) = CV*¥ for some fixed N € N. For a CV—valued function
u(t) = u(t,z), t > 0, x € Q, we investigate the quasilinear initial boundary value
problem with fully nonlinear boundary conditions given by
Opu(t) + A(u(t))u(t) = F(u(t)), onQ, ae. t>0,
Bj(u(t)) =0, ondQ, t>0, je{l,---,m}, (2.2)
u(0) = ug, on Q.
Here we use the maps
A@pl@) = Y aale,u(@), Va(@), -, V2 lu(2)) Dv(a), =€ D,
|a]=2m
[F(u)](x) :f(CL‘, u($)7 Vu(gc), T 7V2m_1u(x))>7 T e Q7 (23)
[B](u)](x) :bj(xv U(J?), VU(JI), T 7vmju('r))7 T € aQa
for functions u € BC?™~1(Q; CV), resp. u € C™ (Q;CV) in the last line of (2.3),
and v € Wp2m (; CY), integers m; € {0,1,---,2m — 1}, and coefficients satisfying
(R) aq € CHE X E"x---x E™*"): BC(Q; B(E))) for a € NI with |a| = 2m,
ao(z,0) — aq(00) in B(E) as x — oo, if 2 is unbounded,
feCYE X E"x - x E®" ) BO((; E)),
by € C?MH=m (9O x E x E™ x --- x EW): B for j € {1,--- ,m}.
We set B = (By,---,B,,). We point out that, for a fixed ug € BC?*"~1(Q;CV),
A(up) is a linear differential operator of order 2m with bounded coefficients; whereas
F contains all terms involving only derivatives of order |a| < 2m. The boundary
term B;(uo)(z) is defined in the following way: One computes V¥uq in Q, then one
takes the trace v at 00 and inserts z € 0f2, and finally one applies b;. Usually we
do not use « explicitly in our notation, in particular if it is applied to a function
being continuous up to 9. We fix a numbering of the components of V¥ so that

a partial derivative 9%ug(x) of order |3| = k is inserted at a fixed position called
I(B, k) into the functions aq, f, and b;. Given ug € C™i(Q; CV), we further define

[Bj (uo)v](x) = (0:b;) (2, uo(x), Vuo(x), -+, V™ u(x)) - YV v(x) (2.4)

= Z(azk bj)(xv uo (), Vuo(z), - - vvmjuo(x)) ’Vvkv(x)
k=0

=3 3 Buewbi)@ uo(@), Vuo(a), -, V™ uo(x)) yD ()
k=0 |8|=k
for x € 00, v € C™(Q;CN), and j € {1,---,m}. Here 0, = (0zy," - 10z,,)
denotes the partial derivatives with respect to the variables z = (20,21, ,2m;) €
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EXE"x---xE™") and ., b;(x, 2) € B(E(”k), E) has the n* components 8y (g x)b;.
Observe that Bj(ug) is a linear differential operator of order m; with bounded
coeflicients acting from a space of functions on €2 to a space of functions on 9€2. In
Corollary 3.5 we show that B (uo) is in fact the derivative of u +— Bj(u) at u = ug
in a suitable topology. We set B’(ug) = (Bj(ug), -+ , B}, (ug))-

The symbols of the principal parts of the linear differential operators are the
matrix—valued functions given by

.A#(J?,Z,g): Z aa(xaz)gaa Bj#(x7zvf): Z " (8l(ﬁ,mj)bj)(x7z)§ﬂ

lee|=2m |Bl=m;

forz €N, 2€Ex - x E®" ) and € € R”, resp. 1 € 90, 2 € E x -+ x B®™)
and { € R". We further set Ax(00,§) = >, Zam @a(00) € if € is unbounded.
One defines the normal ellipticity and the Lopatinskii—Shapiro condition for A(ug)
and B’(ug) at a function ug € C2™ 1 (Q; CN) as follows:
(E) o(Ag(z, V" tug(x),€)) € {A € C: ReX > 0} =: Cy and (if Q is un-
bounded) o(Ax(00,€)) C Cy, for z € Q and £ € R™ with [£] = 1.
(LS) Let » € 99, £ € R, and A € C, with ¢ L v(z) and (\,&) # (0,0). The
function ¢ = 0 is the only solution in Cy(R; CV) of the ode system

Ap(y) + Az, V2" g (z), € + iv(x)dy)p(y) =0, y >0, (2.5)
Bj#(l',meuO(’lf),g+’Ll/(£13)ay)§0(0) :Oa ] € {17 7m} (26)

We refer to [5], [14], [15], and the references therein for more information concerning
these conditions. In Section 6 we discuss a second order reaction—diffusion system
as an example. We note a perturbation result for (E) and (LS) which was shown
in Theorem 2.1 of [5] for the case m = 1. So we only sketch its proof.

Remark 2.1. Assume that (R) holds and that (E) and (LS) hold for some ug €
C3™=1(Q; CN). Take another function u; € C3™1(Q; CV). Then (E) is valid for u,
provided that |ug—uq|gcem—1 is sufficiently small. We consider the equations in (LS)
for a given u € C’gm_l(ﬁ; C") (instead of ug) and for fixed x € 9Q, £ € R*, A € C,
with £ L v(z) and (X, &) # (0,0). Using (E), we may rewrite the N-dimensional
differential equation (2.5) of order 2m as an autonomous first order ode of dimension
2mN with corresponding N-dimensional boundary conditions B;(u)v()(0) = 0,
j€{1,---,m}, cf. [14, p.73]. The resulting coefficient matrix A(u) is hyperbolic
by [14, Prop.6.1]. Moreover, it can be seen as in the proof of Theorem 2.1 in [5]
that A(u) has mN eigenvalues with negative real parts. Let P(u) be the Riesz
projection from C2™N onto the stable subspace of A(u). Hence, the equation (2.5)
has a mN-dimensional solution space in Cy(R,;C") isomorphic to P(u)C2™VN.
Observe that the Lopatinskii—Shapiro condition is equivalent to the surjectivity of
the map B(u)P(u) : C?N — C™V where B(u) = (By(u),- -+ ,B,,(u)). As aresult,
if |ug — u1|pcem-1 is sufficiently small, then (LS) also holds for u;. O

In this paper we need (E) and (LS) to obtain the maximal regularity of lineariza-
tions of (2.2), see Theorem 2.2 below. To state this result, we have to introduce
spaces of functions on Q, 99, J x Q, and J x 0f, respectively. We first put

Xo = L,,(Q;(CN)’ X, = szm(Q;CN), X, = V[/gm(pl/p)(ﬂ;(CN)7
and denote the norms of these spaces by |- |o, | - |1, and | - |, respectively. Various

equivalent norms of the Slobodetskii spaces W, are discussed in [2, Chap.VII], [38,
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§4.4]. We use the ‘intrinsic’ norm given by

[vlws@) = [v[L, @) + Z [0%]we () WU(Q // n+ [wly) = w(z)}” dx dy,
g |a|=k Y Q2 ‘y—.’lf| P

for s = k+ o with kK € Ny and o € (0,1), see [2, Thm.7.48], [38, Rem.4.4.1.2].
Occasionally we use without further notice that W, coincides with the real inter-
polation space (Ly, Wé)s/lm ifl € Nand s € (0,1) is not an integer. (In our setting

this fact can be shown as the results in [38, §4.3.1] using [2, Thm.4.26].) We note
that X; — X, — X, and that

X, — Cgm ;) (2.7)

by (2.1) and standard properties of Sobolev spaces, cf. [38, §4.6.1]. Let I C R be
an interval (maybe, not closed) containing more than a point. Then we introduce
the function spaces

Eo(I) = Lp(L; Lp(S2; c)) = Ly(I; Xo),

Ey(I) = Wy (I; Lp(,CN)) N Ly (I; W2™ (5, CN)) = W (I; Xo) N Ly (I; X1),
equipped with the natural norms. Mostly, we deal with closed intervals which are
denoted by J instead of I.

We will look for solutions of (2.2) in the space E;([0,T]). Since we want to insert

functions of the class C?™~! into the nonlinearities, the following embedding is
crucial for our approach:

E,(I) — BUC(I; X,) < BUC(I; C3"~1(Q;CN)), (2.8)

see [6, Thm.I11.4.10.2] for the first and (2.7) for the second embedding. We denote
by ¢ = ¢o(I) the maximum of the norms of the first embedding in (2.8) and of
Ei(I) = BUC(I;C3™(€;CN)). We point out that one can choose the same co
for intervals of length greater than a fixed Ty > 0, see [6, Lem.I11.4.10.1]. Moreover,
one can choose an I-independent constant ¢g for functions vanishing at the left end
point of I. (If w is given on [0, 7], say, then reflect it at T and extent it by 0 to
[2T, 00). This extension operator is bounded from {u € E{([0,T]) : u(0) = 0} to
E; (R ) independently of T.)

We next discuss several mapping properties of traces in time and space. The
trace operator at time ¢ = 0 is denoted by 7g. Lemma 3.7 of [15] shows that

Yo € B(E1([0,1]),X,) has a bounded right inverse. (2.9)
Recall that the spatial trace operator v at 02 induces continuous maps
v WE(QCN) — Wi/ (00; CN) (2.10)

for 1/p < s <2m if s — 1/p is not an integer, and that these maps have bounded
right inverses, see [2, Thm.7.53], [38, §4.7.1]. Here the Sobolev—Slobodetskii spaces
on 0N are defined via local charts, see [2, §7.51], [38, Def.3.6.1]. We set

Yo = Ly(0;,CN), Yy = Wm0 CN), Y, = Wrmsi—2m/P(9Q; CN)

for j € {1,--- ,m} and the number

Rj=1— L - —— (2.11)



Since 2mk; = 2m —m; — 1/p, (2.10) and (2.1) imply that
107 € B(X1, Y1) N B(Xp, Yjp), 8] < m;. (2.12)

Welet Y1 =Y11 X -+ X Y1 and Y, = Y7, X - -+ X Yp,;,. The boundary data of our
linearized equations will be contained in the spaces
Fj(J) = W25 (J; Ly(09: C) ) Ly (J; W2 (960; CV))
=W/ (J;Yo) N Lyp(J; Y1), je{l,---,m},
endowed with their natural norms, where F(.J) := Fy(J)x---xF,,(J). If the context
is clear, we also write Eg = Eq(Ry), E; = E1(R4), and F = F(Ry). Moreover,
F;(J) — BUC(J;Yjp) — BUC(J x 09) and
v € B(F;([0,1]),Y;,) has a bounded right inverse.

(2.13)

(2.14)

Here the second embedding follows from Sobolev’s embedding theorem using (2.1).
For 9Q = R"~1, the first embedding is a consequence of Proposition 3 in [34] applied
to (I —A)™. Similarly, Proposition 4 in [34] gives the asserted right inverse of 7 in
this case. The corresponding assertions for () with compact boundary of class C?™
can then be deduced via local change of coordinates, cf. the end of Section 3 of [15].
The norms of the embeddings in (2.14) depend on J as described after (2.8). Due
to Lemma 3.5 of [15], the spatial trace extends to a continuous operator

7 s Wy T BT Xo) 0 Ly (J; W™ (Q; €Y)) — By (), (2.15)
with a bounded right inverse. Further, Lemma 3.8 of [15] yields the continuity of
0% By (J) — W K2 (J; Xo) N Ly (J; W2 R (s CV)), (2.16)

for |5] < k < 2m. We note that the cited results from [15] are stated for J = Ry
and Q = {z € R" : z,, > 0}. From these results, the assertions (2.9), (2.15), and
(2.16) follow by local change of coordinates in z € € and by reflection and extension
in ¢ as indicated above.

We are now in a position to state the crucial existence and maximal regularity
theorem for the linear initial boundary value problem associated with (2.2). Fix
T >0,J=][0,T], and a function u, € E;(J). Assume that (R), (E), and (LS) hold
at all u,(t) € C2™~1(Q;CN), t € J. The functions a’(t, ) = aa(z, V™" ‘u.(t, 1)),
la| = 2m, belong to BO(J x Q;B(E)) and a’(t,r) — a(c0) as ¥ — 0o uni-
formly in ¢ € J, since u. € C(J;C3™ 1(Q;CV)) due to (2.8). Set big(t,x) =
P*(Oyp,k)bj) (@, V™ us(t,2)) for k = |B] < m; and j € {1,--- ,m}. (Recall the
definition (2.4).) As in the proof of Proposition 3.3 one verifies that b7; € F;(J).
Thus the differential operators

A(t) == A(u.(t)) € B(X1,Xo),  te (2.17)

Bju(t) := Bj(ux(1)) € B(X1,Yjn) N B(Xy,Yjp), (ae) t€J, je{l,--,m},

satisfy assumptions (E), (LS), ( D), (SB) from [15]. (The mapping properties of
Bj.(t) follow from (2.12), b3, € F;(J), [35 Thm.4.6.4.1], and (2.1). We note that
Bj(u«(t))) € B(X1,Y;1) holds if b;ﬁ(t) € Yj1.) So Theorem 2.1 of [15] yields the
following result (taking into account that x; > 1/p by (2.1)).

Theorem 2.2. Let u, € E1(J) for J = [0,T]. Assume that (R) holds and that
(E) and (LS) hold at all functions u.(t) € C2™ 1(Q;CN), t € J. Define A(t) and
8



Bj.(t) by (2.17) for t € J = [0,T] and j € {1,---,m}. Then there is a unique

v =: S(vg, g, h) € E1(J) satisfying
ou(t) + A(t)v(t) = g(t) on Q, a.e t>0,
B (t)v(t) = h;(t)  on0Q, t>0, je{l,---,m}, (2.18)
v(0) = v, on ,

if and only if
(vo,g,h) € D(J) :={(vo,9,h) € X, x Eo(J) x F(J) : B.(0)vg = h(0)}, (2.19)
where h:= (hy,- -+ ,hm). In this case, there is a constant ¢; = c¢1(J) such that

[vlley ) < 1 ([volp + llglleocr) + [1Pllecs))- (2.20)
If the equivalence stated in Theorem 2.2 and estimate (2.20) hold, then we say
that the initial boundary value problem (2.18) has mazimal regularity of type L,
on J. Using extension arguments as above, one can check that ¢; = ¢1(Tp,T1) if
T € [Ty, T1]) and 0 < Ty < Ty < oo, and that ¢; = ¢1(T7) if h;(0) = 0 for all
j. (The continuity of the extension operator from F(J) to F(]0,71]) can be shown
via interpolation.) We point out that Theorem 2.2 gives necessary and sufficient
conditions for the regularity of data which give rise to a solution of (2.18) in the
desired regularity class ;. This fact forces us to use the spaces X, and F if we
want to treat (2.2) in an L,-setting.
Next, we only assume that (R) holds. Let ug,v € BC?™~1((;CN) and w € X;.
In order to linearize (2.2), we introduce the operators
2m—1

Fwo)el(@) = > S i (Bugai )@, uo(x), Vuo(x), -+, V2" ug(x)) DPv(a),
k=0 |B|=k
A (u Yo () = A'(ug)[v, w](z)

Yo Y Gupwaa) @ @), VI () [070(x), Dw(x))
laj=2m k=0 |B|=k

for z € Q, with a similar notation as in (2.4). Note that 85 ) aa (2, 2) : E* — E is
bilinear. For fixed uy € BC?™~1(Q; CY) and w € X1, the maps F’(ug) and A’ (ug)w
are linear differential operators of order 2m — 1. The matrix—valued coefficients of
F'(ug) are bounded due to (R) and ug € BC?*™~1(Q;CY). Sobolev’s embedding
theorem and (2.1) show that X, — W2™~1(Q;C"). We can thus consider F”'(uq)
as a bounded operator from X, to Xy. By means of (2.7) and (R), we also obtain
that F' : X, — B(Xp, Xo) is continuous and that

|F" (uo)|B(x,,x0) < () for |ug|ggam-1 <. (2.21)
Similarly, the coefficients of A’(ug) are bounded, so that [v, w] — A’(ug)[v,w] is a
bilinear map from X, x X; to X with
| A" (uo)[v, w]lo < e(luo|pozm—1) [vlpoam—1 [wly < c(Juo pozm—) [0lp [w]1,  (2.22)
employing again (2.7). Moreover, the map ug — A’(up) is continuous from X, to
B(X,,B(X1,X0)). On the other hand, using (R) and (2.7) one can easily check
that there is a nondecreasing function € : R — R with e(r) — 0 as r — 0 and
| F'(uo + v) = F(uo) — F'(uo)vlo < e([vlp) vl

[A(uo +v)w — Auo)w — [A"(uo)wlvlo < e(lvlp) [vlp w]y
9

(2.23)



for v € X, and fixed ug € X, and w € X;. Here € depends on a,, f, and |ug|pozm-1,
but not on v or w. As a result, A’ and F’ are in fact the Fréchet derivatives of the
functions

A€ CH(X,;B(X1,Xo)) and F € CY(X,;Xo), (2.24)

respectively. We also note that A" and F’ are uniformly continuous on balls of X,.
We further introduce the nondecreasing function

CuO(T) = sup {HAI(UO + U)||B(Xp,B(X1,X0)) R |U|p < 7’}.

Employing the identity [A(ug + v) — A(ug)]w = fol A'(ug + 6v)[v,w] df, we can
estimate

[[A(uo +v) = A(uo)lwlo < cuy (r) [v]p [w]a (2.25)
for up,v € Xp, w € Xy, and |v|, <7
We linearize (2.2) at its solution u, € Eq(J) obtaining the linear operators
Au(t) = Al (1) + A" (ua (8) Jua (t) — F'(ua () € B(X1, Xo),

Bj«(t) = Bj(u«(t)) € B(X,,Yjp) N B(X1,Yj1),

(2.26)

for t € J, cf. (2.17). Set B.(t) = (Bi«(t), - ,Bm«(t)). Suppose that (R) is
true and that (E) and (LS) hold for all ug = u.(t), t € J. Then we can apply
Theorem 2.1 of [15] also to A.(t) and B.(t)), t € J, since the lower order terms
A’ (14 (1)) us (t) — F' (ux(t)) do not enter into (E) and (LS) of [15] and their coefficients
belong to Lo (J x Q; B(E)) + L,(J x Q; B(E)). Thus Theorem 2.2 holds for A, (t)
and B, (t), t € J.

For a given function u € E;([0,T7]), we set v(t) = u(t) —u.(¢) and vg = ug—u.(0).
Since u, solves (2.2), the initial boundary value problem (2.2) for u is equivalent
to the problem for v given by

Opu(t) + A (t)v(t) = G(t,v(t)) on Q, ae. t>0,
Bi(tp(t) = Hy(t,o(t)  on0Q, >0, je{l- m}, (2.27)
v(0) = v, on .
Here we have used the nonlinear maps G and H defined by
G(t,v) = (A(us(t))v — A(us(t) + v)v) — (A(ue(t) + v)ua(t) — Alue(t))u(t)

= [A(u(t))us ()]v) + (F(us(t) +v) = Flus(t)) = F'(us(t))v), (2.28)
Hj(t,v) = Bj(u.«(t))v — Bj(u.(t) +v), je€{l,---,m}, (2.29)
for a given u, € Ey(J) and all t € J, v € X; and v € C™3 (Q; CY), respectively. As
usual, we set H(t,v) = (Hy(t,v), -, Hyn(t,v)). The mapping properties of G and

H will be discussed in the next section. If u, does not depend on t, then we write
A, = A.(t), B. = B.(t), G(v) = G(t,v), and H(v) = H(t,v).

Definition 2.3. We say that a function w solves problem (2.2), (2.18) or (2.27)
on a (possibly noncompact) interval I containing 0 if u belongs to E;(J) for each
compact interval J C I and satisfies the respective problem for (a.e.) ¢t € I.

In the remainder of this section we discuss the setting for our investigations of
the asymptotic behavior of the nonlinear problem (2.2).
10



Hypothesis 2.4. (a) Condition (R) holds and (E), (LS) hold at some u, € X;.
(b) In addition, w, is a steady solution of (2.2), i.e.,

A(us)us = F(uy) on £, B(ux) =0 on 0.
Assuming Hypothesis 2.4(a), we define Ay = A,|ker(B,), i.e.,

Aju = Ay, uw e dom(Ag) ={ueX;:Bju=0,j=1,---,m}.  (2.30)
The operator —A( generates an analytic semigroup 7'(-) in Xy due to Theorem 8.2
of [14]. We fix a real number p such that p + A is invertible.

Proposition 2.5. (a) Assume that Hypothesis 2.4(a) holds. Take (01, -+ ,om) €
Y1. Then there is unique solution uw € X1 of the elliptic boundary value problem
(p+A)u=0 on €,
Bj.u = ¢; on 09, je{l,---,m}.
Setting N1(1,+ , ©m) := u, we further have N7 € B(Y7, X1).

(b) Assume that (R) holds and that (E) and (LS) hold at some uy € X,,. Then
there exists a bounded right inverse N, : Y, — X,, of the operator B'(ug) : X, — Y.

(2.31)

Proof. We first want to show that B, : X1 — Y7 and B'(u) : X, — Y, are
surjective. First, take ¢ € Y7 and a smooth scalar function y with x(0) = 0 and
x(t) =1 for t > 1. Let h(t,x) = x(t)p(z), vo = 0, and g = 0. Then there is a
solution v € Eq([0,2]) of (2.18) for A(t) = A, and B, (t) = B,. Taking t > 1 with
v(t) € X7, we obtain B,v(t) = ¢ due to (2.18). Second, let ¢ € Y,. By (2.14),
there exists h € F([1,2]) such that h(1) = ¢ and ||h||r < c|p|p. Set h(t) = th(2—t)
for t € [0,1]. Then h € F(]0,2]) and h(0) = 0. Similarly, one extends uy to a
function u € Eq ([0, 2]) such that u(1) = ug and u(t) € X,, satisfies (E) and (LS) for
t €[0,2] (use (2.9), Remark 2.1, and (2.8)). We consider the problem (2.18) with
A(t) = A(u(t)), Bi(t) = B’(u(t)), the above h, vy = 0, and g = 0. Now one obtains
as in the first step a function v(1) € X, with B'(ug)v(1) = ¢. Moreover, the map
N, : Y, — X, given by ¢ — v(1) is bounded by (2.8) and (2.20).

Finally, we recall that u+ A, : dom(Ag) — Xo is invertible and B, € B(Xy,Y7).
So we can apply Lemma 1.2 in [24] saying that X; is the direct sum of dom(Ay)
and ker(p + A, ) and that the restriction By : ker(u + A,) — Y7 is an isomorphism.
Thus the inverse N7 := [B.|ker(u + A,)]~! € B(Y1, X1) solves (2.31). O

We note that for smooth coefficients and N = 1 it was shown in [35, Thm.3.5.3]
that one can extend N; to an operator in B(Y,, X,) still solving (2.31). However,
we do not need such a result in this paper.

We can now establish a representation formula of the solution to (2.18) which is
crucial for the study of the asymptotic behavior. The next proposition goes back to
work in control theory, see e.g. [16] or [36]. For the formulation of the result we have
to introduce some more concepts. Let X_1 denote the extrapolation space for Ay,
that is, the completion of Xy with respect to the norm |ug|_; = |[(u + Ao) tuolo,
see e.g. [6, §V.1.3], [18, §I1.5]. We can extend Ag to an operator A_; : Xo — X _1
generating an analytic semigroup T—1(-) on X_; satisfying T (¢)|Xo = T'(t). The
semigroups T'(-) and T_1(-) are similar via the isomorphism p+ A_; : Xog — X_;.
We point out that A,u # A_ju if u € X; \ dom(A4p) due to (2.34) below. We
further employ the map

II:= (u + A—l)Nl S B(Yl,X_l). (232)
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It can be seen that in our situation IT has better mapping properties than in (2.32),
but we will not use this fact.

Proposition 2.6. Assume that Hypothesis 2.4(a) holds and let v € E1(J), g €
Eo(J), h € L,(J; Y1), and vo € Xo for J =[0,T]. Consider the equations

8(t) + A_yo(t) = g(t) + (u+ A_ )AL (D),

(a) § B.u(t) = h(t), v(0) = vo.

v(0) = v,

Then v satisfies (a) for a.e. t € J if and only if it satisfies (b) for a.e. t € J. If the
solution exists, it is given by

o(t) + Awo(t) = g(t),
(b) {

t t
v(t) = T(t)vy + / T(t—s)g(s)ds + / T_1(t — s)ITh(s)ds, te€J. (2.33)
0 0
Proof. Let ug € X;1. Observe that B,(ug — N1 Byug) = 0 by the definition of N7,
and thus ug — M1 B.ug € dom(Ap). Hence, (u+ Ax)uo = (u+ As)(uo — N1Byug) =
(1 + Ao)(uo — N1Biug) = (p+ A—1)(uo — N1B.ug), proving that
A_qug = Asug + ([1, + A_l)NlB*Uo for all wug € X;. (234)

Next, assume that v is a solution of (a). Since v € Ey and NjB.v = Njh, we can
use (2.34) with ug = v(¢) to conclude that v solves (b). Conversely, assume that v
is a solution of (b). Then (u+ A_1)(v(t) — N1h(t)) = pv(t) — o(t) + g(t) belongs to
X for a.e. t € J. So we deduce v(t) — N1h(t) € dom(Ay), i.e., B.(v —Nih) = 0.
This fact implies the second line in (a). To check the first line, we use (2.34) with
ug = v(t) again. O
Hypothesis 2.7. Assume that Hypothesis 2.4(a) holds and that iR C p(A4y), where
Ay is given by (2.30).

Under Hypothesis 2.7, the semigroup T'(-) has an exponential dichotomy, i.e, there
exist the (stable) projection P € B(Xp) and a dichotomy exponent dp > 0 such that
T(t)P = PT(t), T(t) : ker(P) — ker(P) has an inverse denoted by To(—t), and

IT@ P 1 To(-)Q| < ce™* (2.35)

for ¢ > 0, where we set Q = I — P. The projection @) maps Xy to dom(A4y) C X;
because @ is the Riesz projection corresponding to the bounded part of o(—Ap)
located in the open right half plane. (See [18] or [30].) Since P = I — @, we have

P € B(X1,X1) N B(dom(Ay),dom(Ap)) N B(X,, Xp). (2.36)
Since also iR € p(A_1), the extrapolated semigroup 7_;(-) has an exponential
dichotomy on X_;. Its dichotomy projections P_; and (Q_; are extensions of P
and @, respectively. Observe that Q_1 = QQ_1 € B(X_1,dom(Ayp)).
3. THE MAIN OPERATORS

First we want to show the maximal regularity of (2.18) on the interval J = R,
if Hypothesis 2.7 holds. Given (wyq, g, h) € D(R4), we define

L(wo,g,h)(t)zT(t)wo+/O T(t—s)Pg(s)ds—/tOOTQ(t—s)Qg(s)ds (3.1)
—|—/O T_1(t — s)P_11Th(s) ds — /too To,—1(t —s)Q_111h(s) ds
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for ¢t > 0, cf. (2.19) and (2.32). Observe that To(t — s)Q = QT (t — s)@ and that
Q111 = Q(pu+ Ag)QN; is a bounded operator from Y; into dom(Ay). Taking into
account (2.35), we see that the Q)—integrals converge even in dom(Ag). We thus
omit the index —1 in the last integral. Setting

Vo = Wo — /000 To(—s)Qg(s) ds — /000 To(—s)QIIh(s) ds, (3.2)

we obtain
L(wo, g,h)(t) = T(t)vo + /0 T(t—s)g(s)ds + /0 T_1(t — s)IIh(s) ds (3.3)

for t > 0. Observe that vo € X, and B,vg = B,wg = h(0) because of ran(Q) C
ker(B,) and (2.19). Therefore, due to Proposition 2.6 and Theorem 2.2, the function
L(wo, g,h) = S(vo, g, h) solves (2.18) on Ry with A(t) = A., B.(t) = B., and the
initial value vg. We note that wg belongs to ran(P) if and only if

wo = Pvg or, equivalently, Qug = —/ TQ(—S)Q(g(s) + Hh(s))ds7 (3.4)
0

where vy is defined by (3.2).

Proposition 3.1. Assume that Hypothesis 2.7 holds. Take g € Eq(Ry), h €
F(Ry), and wy € X, with B,wy = h(0). Then L(wo,g,h) € Ly(Ry; Xo) if and
only if wo € ran(P), i.e. (3.4) holds. In this case, L(wo, g, h) = L(Puvo, g, h) is the
unique solution in E1(Ry) of (2.18) with A(t) = A., B.(t) = B., and the initial
value vg given by (3.2) and, moreover,

(w0, g, )|, sy < €1 ([volp + 9 llEo ey + PllEGR))- (3.5)

Proof. We write L(wg, g, h) = T(t)wo + I1 + Is + Is + I4, where I; are the inte-
grals in (3.1). Using (2.35) for T_1(t), the properties of @) and Proposition 2.5,
one deduces that [|Iz|g, &, ) < cllglle,r,) and | I4]lg, &, ) < cllhllL, ®,;v;)- Propo-
sition 2.6, Theorem 2.2, and (3.3) further show that

| L(wo, g, P)||g, (f0,21) < €1 ([volp + [|gllEq(r0,21) + [1RllF(10,2))) -

Choose x € C*([-1,1];R) with x(—1) = 1 and x = 0 on [-1/2,1]. For n =
2,3,...,8et xn(s) = x(s—n) for s € [n—1,n+1] and h,, = (1 — xn)h|[n—1,n+1].
For ¢t € [n,n + 1], we can write

Is(t) = P/t T 1 (t — $)Thy(s) ds (3.6)

n—1

Tt — )Ty (5) Py / Ty (n— L = 5)xn(s)TIA(s) ds

n—1
n—1
+T(t—n)T_1(1)/ T_1(n—1—s)P_111h(s) ds
0
=t I31(t) + I32(t) + I33(t).
Due to h,(n—1) = 0, Theorem 2.2 combined with Proposition 2.6 and (2.36) yields

11311, (n,nt1)) < cllPnllem-1n+1)) < cllPllE(n-1,n+1)) -
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We can sum the p—th power of this inequality employing

oo

. n+1 n+1 |h ()Yod i
Z[ ]WJ([n 1,n+1];Yp) Z/n / W t

n=2
" 1hi(8) = hs )y, dtds < 2[h;
= 2/n / |t—s|1+”p [ ]W I (R1;3Y0)

Since T_1(7) = T(7/2)T-1(7/2) : X_1 — dom(Ap) for 7 > 0, we further deduce
from (2.35) for T_;(t) that

||I32HE1([TL,H+1]) <c ||hHLT’([n—1,n];Y1) ’
n—1 t
mwm+@mwb9J'f““”%@MMS{/’Wﬂ%@mw
0 0

These estimates imply that ||I3]|g, (j2,00)) < ¢ ||hllrr,). In a similar way one can
treat I. Finally, ¢ — T'(t)wo belongs to L,([2, 00); Xo) if and only if wy € ran(P).
In this case we have ||T(-)wollg, (j2,00)) < ¢|wolo. The proposition now follows by
combining the above facts. O

We further need a modification of Proposition 3.1 for backward solutions of (2.18)
onR_. Let vg € Xp, g € Eg(R_), and h € F(R_). Assume that v € Eq(R_) satisfies
v(0) = vg and

v(t) =Tt —7)v(r) + / T(t— s)g(s)ds + / T_1(t — s)ITh(s) ds (3.7)

for all 7 < ¢t < 0. One can verify as in (3.6) that v € E;(J) for each interval
J = [a,0] C R_ and that v solves (the analogue of) (2.18) on such intervals with
the initial value v(a) (using Proposition 2.6 and Theorem 2.2). We rewrite (3.7) as

T

o(t) = Tt — ) [Po(r) - / T_i(7— ) Poi(g(s) + TIh(s)) ds|  (3.8)

— 00

+ /t T_1(t —s) P_1(g(s) + ITh(s)) ds

—0Q0

+T(t—71)Qu(r) + / T(t—s)Q(g(s) +h(s))ds,

using (2.35). The last line is equal to Qu(t) due to (3.7), so that we derive

T

Po(t)=T({t—T) [PU(T) — / T_1(1 — s)P_1 (g(s) + IIh(s)) ds}

+[_T4&—@R4@®+HM@M&

There is a sequence 7, — —oo such that v(7,) — 0 in X. Letting 7 = 7,, = —o0
in the above equation and taking ¢ = 0, we thus obtain

Pu(t) = /t T \(t— )Py (g(s) + Hh(s)) ds, (3.9)
—
Puy = Po(0) = /_ T,l(—s)P,l(g(s) + Hh(s)) ds, (3.10)
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by means of (2.35). If we first set ¢ = 0 in (3.8) and then replace 7 by ¢, we deduce

Qu(0) :TQ(—t)Qv(t)—F/t T,l(—s)Q(g(s)Jth(s)) ds. (3.11)

Combining (3.9) and (3.11), we see that v(¢) is equal to
¢

0
L™ (vo, 9, h)(t) := T (t)Quo + / T(t —s)Pg(s)ds — /t To(t —5)Qg(s) ds

— 00

t 0
+ / T_1(t — s)P_1I1h(s) ds — / To(t — s)QIIA(s)ds (3.12)
oo t
for t < 0. Conversely, if (3.10) holds, then the function L~ (vo, g, h) satisfies (3.7)
and L™ (vg, g, h)(0) = vg. Therefore L™ (vg, g, h) is a solution of (2.18) on R_ with
the final value vy. The following result can now be proved as Proposition 3.1.

Proposition 3.2. Assume that Hypothesis 2.7 holds. Let g € Eo(R_), h € F(R_),
and vg € Xo. Consider problem (2.18) on R_ with A(t) = A., B.(t) = B., and
the final value v(0) = vg. Then there is a solution v of (2.18) on R_ belonging to
L,(R_; Xy) if and only if (3.10) holds. In this case, v = L~ (vo, g, h) is the unique
solution of (2.18) in Ey(R_) with the final value vy and

1L (vo, 9, P) ey o) < €1 (IQuolo + llglles ) + [1Bllrr_))- (3.13)

We will apply the above propositions mostly in ‘rescaled’ versions since we have
to work in function spaces on J = R with exponential weight. We set es(t) = €%
for t € R and 6 € R, and introduce the spaces

Er(Ri,0) ={v:esv € Ex(Ry)} (k=0,1), F(Ry,6) ={v:esv € F(Ry)}
endowed with the norms

vl Ry .5) = llesvl|E,@my) (B =0,1), lvllpr.,5) = llesvlrey)-

We also use the analogous norms on compact intervals J. Mostly we deal with the
interval J = R, and abbreviate Eg(R4,0) = Eg(d) etc. Assume that Hypothesis 2.7
and (3.4) hold, and take a solution v of (2.18) with A(¢) = A, and B.(t) = B,. We
define w(t) = e’*v(t) for t > 0, where |§] < &y and &y is the exponential dichotomy
constant, cf. (2.35). From v = L(Puvo, g, h) we deduce

w = esL(Puo, g,h) = Ls(Puvyg, es9, esh), (3.14)

where Lj is defined as L but for the generator —Ag+4d. Replacing F(u) by F(u)+du
in (R), we see that Ag—4 satisfies Hypothesis 2.7. Thus we can apply Proposition 3.1
to Ls, so that (3.14) yields

[L(Pvo, g; 1)l 5) = lwlle, s < 2 (Jvolp + [l9llzos) + 1alles))- (3.15)

We point out that ¢y does not depend on ¢ with |§] < §; < do.

We next study the Nemytskii operators G and H induced by the maps G and
H from (2.28) and (2.29), assuming that (R) holds. For the intervals Ry we take
a t—independent function uw, € X; with B(us) = 0. For a compact interval J we
take a function u, € E;(J). For v belonging to E; (R4, ) or Eq(J), respectively,
we define G(v)(t) = G(t,v(t)) and H;(v)(t) = H;(t,v(t)) for a.e. t € J, setting
H = (Hy,---,H,,) as usual. We stress the restrictions on § in the following result;
also, the choice of +§ corresponds to R, while the choice of —¢§ corresponds to R_.
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Proposition 3.3. Assume that (R) holds, and let J be a compact interval.

(I) Let 6 > 0. Take u, € X1 with B(u,) =0 for the intervals Ry, or respectively
take uy, € E1(J) for the compact interval J. Then the following assertions are valid.
(a) We have G € CH(E1(Ry, £6),Eq(Ry, £5)), respectively G € CH(Eq(J),Eo(J)).
Moreover, G(0) =0, G'(0) =0, and

G (v)w = [F'(us +v) — F'(u)]w + [A(us) — A(us + v)|w (3.16)
+ [A (us )us — A" (us + ) (us + v)w
for v,w € Eq(£6,Ry), respectively v,w € Eq(J).
(b) We have H € CY(E;(Ry, +9), F(Ry, £6)), respectively H € CH(Ey(J),F(J)).
Moreover, H'(0) = 0 and
H' (v)w = [B'(ux) — B’ (us + v)|w (3.17)
for v,w € Eq(Ry, £0), respectively v,w € Eq(J). Finally, H(0) = 0 if and only if
B(u«(t)) =0 for all t € J.
(II) Take an arbitrary 6 € R and assume that u, € X1 satisfies B(u.) = 0 and

that v € Eq(Ry,d) with |v(t)|, < r fort € Ry. Then there is a nondecreasing
function € : Ry — Ry such that e(r) — 0 asr — 0 and

IG(W) g0 .5) < €(7) llesvllL, ®a:xy) »
IH(0)[p@®y,s) < () [1V]lE, R 5 5 (3.18)
lesH(v) ||z, ®ysvy) < e(r) llesvlln, @y ix,)

where € can be chosen uniformly for § in compact intervals.

Proof. (1) In the proof we restrict ourselves to the case J = R;. The other cases
can be treated in the same way. Also, the last assertion in (Ib) is an immediate
consequence of (2.29). We point out that for § > 0 we have

w(t)|pezm-1 < clw(t)l, < cle®w(t)ly < cllwlle,@, 20, (3.19)
due to (2.7), (2.8), and §t > 0. In the following we always take ¢ > 0 unless we are
dealing with part (IT).

We define G'(v) by (3.16) for v € E;(d). From (3.19), (2.21), (2.22), (2.23), and
(2.25) we deduce that G(v) € E¢(d), G'(v) € B(E1(d),Eo(d)) and that the first line
of (3.18) holds. Further, G’'(v) is the Fréchet derivative of G at v due to (3.19),
(2.23), (2.25), 6t > 0, and the formula

Glv+w) —G) — G (v)w
= (F(us +v+w) — Fu, +v) — F'(uy + v)w) — (A(us + v+ w) — A(u, +0))w
— (A(us + v+ w)(us +v) — A(us + v) (us + v) — [A (us + v) (us + v)]w).
The continuity of v — G'(v) follows from (3.19), (2.22), (2.24), and (2.25).

(2) We give the proof of the assertions concerning Hj for a fixed j € {1,---,m}
which will mostly be suppressed from the notation. We fix v € E;(d) and take
w € E1(0) with ||w|[g, sy < 7o for a fixed, but arbitrary 7o > 0. In the following,
the constants will depend on v and rg, but not on w. Define H' by (3.17). One
can verify that H(v) € F($) and H'(v) € B(E(d),F(d)) by similar, but simpler
arguments as used below. In view of (2.4) and (2.29), we can write

—[H{(t, 0(t) + w(t)) — H(t,v(t)) — [H(v)w](t)](x)

= [B(ux +0(t) + w(t)) — B(uw(t) + v(t)) = B (us + v(t))w(t)](x)



= b(x, V[us(x) + v(t, z) + w(t, z)]) — b(z, V]u.(x) + v(t, z)])
= (0:b)(z, Y[u.(z) + v(t, z)]) - Yw(t, x)
=: h(z, V]u(x) + v(t, x)], Vw(t, z)) (3.20)
where we set V := V" = (VY V1 ... V™) and 9, is the partial derivative of
b with respect to the corresponding arguments in E x E™ x --- x B0, (Recall

that we have suppressed the trace operator in front of all V terms.) We set £ =
Vius(x) +v(t,z)] and n = Vw(t, x) for fixed € 9N and ¢ > 0. Then we obtain

h(%fﬂ?) = b(l‘,f + 77) - b(]},f) - (8zb)(x,§) -1, (321)
3§h(t,£,77) = (sz)(x,f + 77) - (azb)(l',f) - (azzb)(xag) -1, (322)
Oh(t,&;n) = (9:b)(x, € + 1) — (9:0)(,§). (3.23)
Assertion (R) and estimate (3.19) yield
(2, & )], |0ch(x, &m) < e(Inl) Inl, — [0xh(t, &) < clnl, (3.24)

where ¢ and () do not depend on z and are uniform for £,7 in bounded sets.
Using again (3.19) and §t > 0, we derive

e |H (v(t) +w(t) — H(v(t) — [ (0)w](t)ly, < e(lw(t)|pezm-1) [ w(t) pezm-1
lles [H(v + w) — H(v) — H (v)w]llz, @, x0) < celllwlle,) lleswlo,@ix) - (3:25)

The corresponding inequality for part (II) is shown similarly.
(3) We now consider the estimate involving W}*(Ry;Yp) for k = x;, cf. (2.11)
and (2.13). We fix € 002 and omit it in the notation. Then we can compute

h(¥ (ux + (1)), Yw(t)) = h(V(ux +v(s)), Yw(s)) (3.26)

1
= /0 (Oeh) (Y (s +v(s)) + 01V (us +v(t)) = V(us +0(s))], Vuo(t) ) df
- V] 4+ 0(t) = (ux + v(s))]

1
+ /0 (0h) (¥ (us + v(s)), Vw(s) + 0V (w(t) — w(s)))do - V(w(t) —w(s))

for t,s > 0. Set p(t) = h(V(ux +v(t)), Vw(t)) and ¢(t) = V]u. + v(t)]. Then
(3.19), (3.26), and (3.24) yield
lo(t) = @(s)ly, < elfw(B)lpeom—1) [w(t)[poam—r [P(E) = P(s)ly,
+elw(®) ] pean—s [Z(w(t) — w(s)ly, (3.27)
for t,s > 0. In view of (2.15) and (2.16), the map v0° : E1(Ry) — WS (R4;Y))

is continuous for |3| < m;. Combining this mapping property with (3.19), (3.27),
Lemma 3.4 below, (3.25) and dt > 0, we derive

[es (H(v + w) — H(v) — H (v)w)]ws o) (3.28)
< ce(llwlle @) lwleaw + cellwllsow,x)) lwlsem,x,) llesXvllwg @ v
+cllwllso®,:x,) H€52w||W;(R+;YO)
< ce(l|wllg, ) lwllg, 5) »

possibly changing €. The corresponding estimate for (II) is shown in the same way.

(4) For the study of the space regularity we may restrict ourselves to the case @ =

{z € R" : x,, > 0} and functions with support in the unit ball in R™. The general
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case is then deduced via local change of coordinates, see e.g. [2, §7.51]. We first
consider the case of highest order m; = 2m — 1, where F; = L,(R; W=/?(9Q)) N
WS (Ry; LP(99)). Since b € C? by (R), equation (3.21) yields

8xh(x’§7’r]) = (&cb)(z,f + 77) - (axb)(xvf) - (azaxb)(x,ﬁ) e (329)
|0 h(z, & m)| < e(|nl) |0l (3.30)

with ¢ and ¢ having the same properties as in (3.24). We fix ¢t > 0 and suppress it
from our notation for a moment. Then we calculate

h(y, ¥(us(y) + v(y)), Yw(y)) — h(z, V(u.(z) + (), Vw(z)) (3.31)

- / (Duh) (2 + 6(y — 2), T (ua () + v(y)), Yeo(y))d8 - (y — )

1
+ /0 (Oeh) (2, ¥ (us(2) + v(2)) + [V (us(y) + v(y)) — Y(us(2) +v(2))], Yw(y))do
- V]ua(y) +o(y) — ua(z) — v(2)]

1
+ / (Oh) (2, ¥ (us(2) + v(@)), Yw(z) + 0¥ (w(y) — w()))dd - V(w(y) — w(z))

0

for z,y € 00 Set p(t,z) = h(z, V(ui(z) + v(t,z)), Vw(t,z)) and ¢(t,z) =
V[u.(z) + v(t, z)]. Employing only (3.24) and (3.30), we deduce from (3.31) that

p(t.9) — ()| < e(lw(®)]pean-s) ) meen-s (ly - al + [0(t.y) ~ v(t.2)))
+ clw(®) ez [V(w(t, y) — w(t, )| (3.32)
for z,y € 9. Let K be the unit ball in R"~!. Estimate (3.32) leads to

oo

pot pdt |()0 t y (p(t,$)|
/e [‘P(t)] 1 1/p(aﬂ)dt /// T dz dy dt
0

|y—x|p—|—|Vu*( ) — Vu.(2)[P
< ce(|lwll pem;peem—1)) /|e‘5tw |p/ T da dy dt

Yo(t,y) — Vo(t,z
+ ce(||w| em; pozm-1))” HwHBc(Rczm 1)/ pgt//' \y (¢ 2)l” dx dydt

—x|” 2+p

IVw(t,y) — Vw(t, x)|P
TR )/// pot ey dedy

< ce(lwle, ) ||w|\E1(5)<1 T llesvlls, gy o) + el o lleswll? g, x

due to (3.19), Sobolev’s embedding theorem, (2.1), (2.10) and the fact that 6t > 0.
Therefore, changing ¢ if needed, we arrive at

lles [F(v + w) = H(v) — H' (v)w]l|, @ 1) < ce(lwlle, @) lwlle,s) - (3-33)
The corresponding estimate for the last line in (3.18) is shown in the same way.
(5) Next, we consider the space regularity case for general m; € {0,--- ,2m —1}.

Define ¢(z) = ¢(x,&(x),n(x)) = h(x, V" [u(x) +o(t, z)], V" w(t, z)) with h from
(3.20) and a fixed t > 0. Take a multiindex 8 with |5] = 2m — 1 — m;. We
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want to verify that the function 8°p(z) is a function of the form h(z, &, 7j), where
€ = V¥ u,(z)+v(t, )] and 7 = V> Lw(t, z), and that h satisfies the analogues
of (3.24) and (3.30). If this is the case, we can check as in step (4) that (3.33) and
the last line in (3.18) also hold for lower order boundary terms. To this aim we
claim that 07¢(z) with |y| =1 € {0,1,--- ,2m —m; — 1} is a linear combination of
functions of the following type

V(@ 8(x) +n(x)) — ¥(x,£(x) = Oatp(x, §(x)) - n(x)] P(E(x)),
P(,&(x) +n(x)) — ¢z, £(x))] P(E() Qu(n(x)), (3.34)
U(x, §(x) +n(x)) P(E(x)) Q2(n(2)),

for (differing) functions ¢p € C?" 1=~ x Ex - --x E™"?); E) and products P
and Qy, of partial derivatives 9?¢(z) and 8°n(z) having order |al, [b| < I +m;. The
products @1, resp. Q2, contain at least 1, resp. 2, factors d°n(z). This assertion is
easily checked via induction over [ using (R). For [ = 2m — 1 —m, we thus obtain
functions ¢ € C? and products P, Qj with factors 02 (u,(z)+v(t,z)) and 0%w(t, x)
having order |a| < 2m — 1. We compute the derivatives with respect to x, é, 7 of
the functions in (3.34) as we did in (3.22), (3.23), and (3.29). Taking into account
(3.19) and (R), we can then derive (3.24) and (3.30) for h(z, £, 7).

(6) Using similar arguments, one can check the continuity of the map v — H'(v)
from Eq(9) to B(E1(5),F(9)). O

Lemma 3.4. If Z is a Banach space, a € (0,1), and § € R, then

lesflwery;z) < cllesfllL, @y :z) + ¢ // m’Md dt} v

li—s|<1 |t — s|tter

< cllesfllwe®,z) -

Proof. Let p(1) = 7717 for |7] > 1 and ¢(7) = 0 for |7| < 1. Using Minkowski’s
and Young’s inequalities, we calculate

[eaf We(Ry;Z

<[] st — ot wal o[ [[ IO g
t—s|>1 t*S‘HO‘p [t—s|<1 t*5|1+ap

< ooto L) = F(s)l v
<clex*eslflzllL, @y + //It S|<1 [ s irar ds dt}

5 |6 (=) — % b
eP*?|f(s)|P dtds
//|t s|<1 )l |t — s|ttep }

1
5tp|f f(s)lz ]5
s clesflimn +e[ [, s

The second estimate is shown in a similar way. (Il

Corollary 3.5. Assume that (R) holds. Then ug — B(ug) belongs to C*(X,;Y,)
with the derivative B'(ug) given by (2.4).

Proof. Let R denote a bounded right inverse of vo € B(E1([0,1]),X,), see (2.9).

Define H with u, = 0. Then ® := v HR € C'(X,;Y,) and ®'(ug) = B'(0)up —
B’(ug) by Proposition 3.3 and (2.14). Since B’(0) € B(X,,Y,) by (2.17), the
assertion follows. O
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4. LOCAL WELL—POSEDNESS AND REGULARITY

We start with the basic existence and uniqueness result for (2.2). For a single
second order equation the next proposition (and its proof) is a special case of
Theorem 6.1.2 in [41].

Proposition 4.1. Assume that condition (R) holds and that (E) and (LS) hold at
a function ug € X, satisfying B(ug) = 0. Then there is a number T = T(ug) > 0
such that the problem (2.2) has a unique solution u € E1([0,T]) — C([0,T7; X}).

Proof. By (2.9) there exists a function u, € Eq(Ry) with u.(0) = up. (We do
not require that u, solves (2.2).) Remark 2.1 combined with (2.8) gives a number
To > 0 such that conditions (E) and (LS) for A(u.(t)) and B’(u4(t))) hold at the
function u,(t) for each t € [0,Tp]. Temporarily we define H (¢, v) by (2.29) replacing
uy in this equation by zero. Then we can write B'(u.)v — B(v) = H(v) — H'(uy)v
for v € E1([0,Tp]) and the resulting Nemytskii operator. Therefore Proposition 3.3
yields that
B'(us)v — B(v) € F([0,Tp]) for v € Eq([0,Ty)). (4.1)
Taking into account (2.8), (2.24), (4.1) and B(ug) = 0, Theorem 2.2 provides us
with a solution w € E4 ([0, Tp]) of the linear problem
Orw(t) + A(ux(t))w(t) = Flux(t)) on , ae. t>0,
B'(u () w(t) = B'(ua(t))us(t) = B(uu(t)) ~ ondQ, 20, (4.2)
w(0) = uog, on €.
We define the space
X(T, p) = {v € Eo([0,T]) : v(0) = wo, [[v = wlle, o) < P}
for p > 0 and T € (0,7p]. The set X(T,p) is closed in E;([0,T]). For a given
u € X(p, T), we consider the linear problem
Opv(t) + A(us(t))v(t) = F(u(t)) + [A(ux(t)) — A(u(t))]u(t) on , ae. t>0,
B (uy(t))v(t) = B’ (us(t))u(t) — B(u(t)) on 09, t >0, (4.3)
v(0) = wy, on €.
Again, there is a solution v € E;([0,T]) of (4.3) thanks to Theorem 2.2, (2.8),
(2.24), (4.1), and B(ug) = 0. We define the map S : (T, p) — E1([0,T]) by setting
S(u) := v. Notice that u € X(T, p) solves (2.2) if and only if u = S(u).
We want to show that S is a strict contraction on (T, p) if T > 0 and p > 0 are
small enough. By (4.2) and (4.3), the function z = S(u) —w € E1(]0,T]) satisfies

O z(t) + Aus (1)) 2(t) = F(u(t)) — F(ux(t)) + [A(us(t)) — A(u(t))]u(t) =: g(t),
B'(us(t))2(t) = B'(u.(t)) (u(t) — ua(t)) — (B(u(t)) — Bu(t))) =: h(t),
z(0) = 0.
Observe that h(0) = 0 and h = H(u — us) — H(0), where H is defined via (2.29)

with w, from the present proof. Using (2.20), (2.21), (2.25), Proposition 3.3, (2.8)
and u € ¥(p,T), we estimate

1S (u) —wllg, 0,77 < e1 (lglleoqo.) + I1Plleo,77))
< cllu — sz, o1y, + cllu = udlleqo,rix,) lullL, (o.rx)

+ ce(llu — ullg, (o)) v — wallg, (f0,177)
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1

< T (p+ |lw—ullcorx,)) +¢(p+ lw—ullcqor:x,)) (0 + lwllz,o,77:x1))

+eelp+ llw —uell,o.rp) (0 + llw = uellg, (0.17))-

Observe that the constants in the estimate above do not depend on T' € (0, Tp]
because of h(0) = 0 and u(0) — w(0) = 0. Since w and u, are fixed with w(0) —
u4(0) = 0, we may choose sufficiently small p; € (0, pg] and Ty € (0,Tp] such that
S (u) —wllg, (jo,r)) < pif T € (0,T1] and p € (0, p1]. Consequently, S leaves X (T, p)
invariant for 7' € (0,71] and p € (0, p1]. Next, take u,w € X(T, p) and set v = S(u)
and 7 = S(u). In view of (4.3), the function z = v — v € E1([0,T)) fulfills

Dpz(t) + Alus (1)) 2(t) = F(u(t)) — F(u(t)) + [A(u.(t)) — Au(t))](u(t) —u(t))
— [A(u(t)) — A(u(t))]u(t),
B (u(t))2(t) = B'(us (1)) (u(t) — a(t)) — (B(u(t)) — B(u(t))),
z(0) = 0.
Due to H'(0) = 0, the right hand side of the second identity is equal to
—[H@ — us) — H(u — ue) — H'(u — w) (@ — w)] + (H'(0) — H'(u — u.)) (@ — ),

where H is defined with via (2.29). Now we can proceed as above and deduce that
S has the Lipschitz constant 1/2 on X(T), p) if we decrease T' and p once more. As
a result, we have obtained a local solution u of (2.2) on [0, T].

Assume there is a different solution @ of (2.2) on [0,T]. Then there are numbers
to,tn € [0,T) such that t, \, to as n — oo, u(t) = u(t) for t € [0,%o], and
u(ty) # u(t,). We may apply the above argument with some T, p’ > 0, the initial
time ty, and the initial value u(tg) =: u1 € X, satisfying B(uq) = 0. This leads to
a contradiction establishing the uniqueness assertion. O

We now introduce in a standard way the maximal existence interval for the
solution with initial value ug. Under the assumptions of Proposition 4.1, let ¢ ¥ (ug)
be the supremum of those 7' > 0 such that (2.2) has a solution u € E1([0,T]).
Proposition 4.1 implies that ¢*(ug) > 0. This solution is unique provided that (E)
and (LS) hold at the function u(t) for each ¢ € [0, ¢ (ug)).

Next, we establish our main well-posedness result. It says that (2.2) generates a
local semiflow on the nonlinear phase space

M= {uo S Xp : B(U;o) = O}, (44)

which is a C! manifold in X, due to Corollary 3.5. Moreover, the equation possesses
a smoothing effect because of the quasilinear structure. We write tu for the function
v(t) = tu(t). For a given ug € X,,, we set

Xg = {ZO S Xp : B/(UO)ZO = O}

If ug € M, then Xg is the tangent space of M at ug. Finally, if ug € X, satisfies
(E) and (LS), then we define a projection P : X, — X9 by Pvg = (I =N, B’ (ug))vo,
using the right inverse N, € B(Y}, X)) of B’(uo) obtained in Proposition 2.5(b).

Theorem 4.2. Assume that condition (R) holds and that (E) and (LS) hold at a
function ug € X, satisfying B(ug) = 0. Let u = u(-;ug) denote the unique solution
of (2.2), and let (E) and (LS) hold at the function u(t;ug) for each t € [0,tT (ug)).
Let T € (0,t"(ug)) and J = [0,T]. Then the following assertions are true.
(a) There is an open ball B,(ug) in X, such that there exists a solution w € Eq(J)
of (2.2) for each initial value wy € B,(uo) satisfying B(wg) = 0. Moreover, there is
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an open ball WO in X)) centered at 0 and a map ® € C' (WO E1(J)) with uniformly
bounded derivative and ®(0) = 0 such that w = u+ ®(P(wo — o)) for wo € B, (uo)
with B(wp) = 0.

(b) We have tu € W) (J;X1) N W2(J;Xo), and thus u € C'((0,T];X,) N
C2=1P((0,T]; Xo) N C=17P((0,T1; X1).

(¢) Assume in addition that (E) and (LS) hold for all uy € X, with B(u1) = 0.
If the number t* (ug) is finite, then ||ullg, (jo,1+(uo))) = 00 and u(t) does not converge
in X, as t — t* (up).

Proof. (a) For the solution u = u(t;ug) of (2.2) with the given initial value ug we
define A, (t), B.(t), G(t), and H(t) for t € J as in formulas (2.26), (2.28), and (2.29)
but replacing in these formulas w.(t) by u(t; up). Then w € Eq(J) solves (2.2) with
the initial value w(0) = wy € X, satisfying B(wy) = 0 if and only if v = w—wu solves
(2.27) with the initial value vy = wo — up € X,, satisfying B.(0)vy = H(0,v(0)).
We recall that S : D(J) — E;(J) is the solution operator of (2.18) with A, (¢) and
B,(t) on J given by Theorem 2.2. We introduce the map

L:X)xEi(J) = E1(J); L(z0,v) = v —S(20 + NpyH(v),G(v),H(v)). (4.5)

Observe that vo € B(F(J),Y,) by (2.14) and that H(0) = B(u) = 0. We further
have B, (0)(zo + NpvoH(v)) = H(0,v(0)), i.e.,

I': XD xEo(J) x F(J) — D(J); T(20,9,h) = (20 + Npyoh, g, h)

is a bounded linear map, cf. (2.19). Theorem 2.2 and Proposition 3.3 thus imply
that £(0,0) = 0, £ € CY(X) x E1(J); E1(J)), and 8,£(0,0) = I. Therefore the
implicit function theorem, see e.g. [13, Cor.15.1], gives a ball B, (0) in X} and a map
® € CY(B,,(0);E1(J)) such that ®(0) = 0 and L(z, ®(20)) = 0 for 29 € B,,(0).
This equation, Theorem 2.2, and Proposition 3.3 further yield

'(29) = S(I + Np Yo' (®(20)) @' (20), G’(q’(ZO))‘P'(ZO)vH/(q’(zo))q"(%)),
|9 (20)]] < ¢+ c([|G'(®(20))]l + [H'(@(20))11) |2 (20) I

(with the respective operator norms). Decreasing the radius ro > 0, we can make
the factor in front of ||®’(zp)|| on the right hand side smaller than 1/2. So ®’(z)
is uniformly bounded for zy in this smaller ball.

If we start with a given function wy € X, satisfying B(wg) = 0, then we set
vo = wo — ug € X, and zg = vg — NpH(0,v9) = vg — Np,B’(ug)vg = Pvg. Hence,
z0 € Xp and |20|, < ¢lvolp. So we can fix a number p > 0 such that [wo — ugl, < p
implies |zp|p, < 79. Then v = ®(z) € E;(J) solves (2.27) with the initial value vy,
ie., w = v+ u solves (2.2) with the initial value wy.

(b) Take numbers T' > 0 and € € (0,1) such that u is a solution of (2.2) on [0,71"]
with 77 = (14+€)T. Let J =1[0,T], A € (1 —¢,1+¢€), and uy(t) = u(At). Then
v = u) is the unique solution of the problem

Ov(t) + AA(v(t))v(t) = AF(v(t)), on Q, ae. t>0,
B(v(t)) =0, on 99, t>0, (4.6)
v(0) = o, on €,
on [0, \71T"]. We define A.(t) and B.(t) as in part (a), and we temporarily set

G\ t,v) = =AA(w)v+ A (t)v + AF(v) and H(t,v) = B.(t)v — B(v). Then (4.6) is
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equivalent to
O(t) + Ac(t)v(t) = G\, t,v(t)), on ), ae. t>0,
B.(t)v(t) = H(t,v(t)), on 092, t>0, (4.7
v(0) = wo, on Q.
Let G(), ) and H be the Nemytskii operators for G(),-) and H. As in Proposi-
tion 3.3, we see that G € CY((1 — €,1 + €) x E1(J); Eo(J)) with 92G(1,u) = 0.
Proposition 3.3 implies that H € CY(E,(J);F(J)) with H'(u) = 0, cf. (4.1). The
function zy = uo —N,H (0, u0) belongs to Xg. Fixing this zp, we introduce the map
Lo:(1—e14+€) xEi(J) = E1(J); Lo(A,v) =v—S(20+NpyH(v), G(A,v), H(v)),
where S is the solution operator of (2.18) for the operators A, (¢) and B, (t). Since
u solves (2.2), we have Lo(1,u) = 0. As in part (a), we see that Lq is a C'-map
and 92Ly(1,u) = I. The implicit function theorem thus yields an ¢’ € (0, €), a ball
B,,(u) in Eq(J), and a map ¥ € C1((1 —¢€,1+¢);E1(J)) such that ¥(1) = u and
U()) solves (4.7) with ug replaced by ug(A) := [¥(A)](0). We further have
up(N) = 20 + NpH (0, ug (X)) = uo + Ny (H(0,ug(X)) — H(0,up)),
ug(A) = uo = =Ny (B(uo(A)) = Bluo) — B'(uo)(uo(A) — uo))-

Therefore Proposition 2.5, Corollary 3.5 and (2.8) yield
|uo(X) = uolp < ce(fuo(A) —uolp) [uo(A) —uolp < ce(c|[W(A) = U(1)[e,) [uo(A) —uoly
for constants ¢ and a function & with () — 0 as » — 0 which do not depend on .
Decreasing € > 0, we deduce that ug(A\) = ug, and thus U(\) solves (4.6) provided
|A — 1] is sufficiently small. So uy = ¥(\) by the uniqueness of (4.6).

As aresult, uy = ¥(A\) € Ey(J) is continuously differentiable in A with derivative
(d%uk)(t) = tu(At). Taking A = 1, we deduce that t0,u € E;(J). Consequently,
Oy (tu) = tou + u € Ey(J) — C(J; X,), and hence tu € W2(J; Xo) "W, (J; X1) N
C*(J; X,). Assertion (b) now follows from Sobolev’s embedding theorem.

(c) Suppose that t1(ug) < oo and u € Eq([0,¢T (up))). Embedding (2.8) shows
that u(t) converges in X, to some uq as t — t* (ug), and so B(u;) = 0 follows from
(R). Proposition 4.1 yields a solution @ of (2.2) on [tT(ug),t" (ug) + To] with the
initial value u; and some Ty > 0. Thus we obtain a solution w € Eq ([0, ¢ " (ug)+To])
of (2.2) by setting w(t) = u(t) for 0 <t < tT(up) and w(t) = u(t) for tT(ug) <t <
t*(ug) + Tp. This fact contradicts the definition of ¢+ (ug). O

In the next section we need the following quantitative version of Theorem 4.2(b).

Proposition 4.3. Let Hypothesis 2.4 hold. Take T > 0 and p > 0 from Theo-
rem 4.2(a) for u. (instead of ug). Let u = u(-;ug) solve (2.2) on J = [0,T)] for the
initial value ug € B,(uy) with B(ug) = 0. Then there exists p € (0, p] such that
It =)l o) + 1 = ) w2050y < eto =

if also |ug — us|p < P, with a uniform constant for such ug.
Proof. Under the conditions of the current proposition, Theorem 4.2(a) yields ||Ju—
Usllg, 5y < cp. We define A,, Bi, G, H, and S by (2.26), (2.28), (2.29), and
Theorem 2.2 for the given steady state u.. We further set v(t) = u(t) — u. and
vo = Ug — Ux. Then the function vy (t) = v(At), ¢ € J, is the unique solution of

Ow(t) + Asw(t) = AG(w(t)) + (1 = N Aw(t) = G\ w(t)), on, t>0,
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B,w(t) = H(w(t)), on 0Q, t >0, (4.8)
w(0) =vy, on
where we take A € (1 —¢,1+¢€) and € € (0,1) such that (14 ¢)T < t*(ug). Let N,
be the right inverse of B, = B'(u.) € B(X,,Y,). We now proceed as in the proof
of Theorem 4.2(b) using the operator
L:O()‘v w) =w-— S(ZO + Np’YOH(w)v G()‘v U)), H(w))

for A€ (1—¢€,14¢€), we Ei(J), and z9 = vg — N,H(vg). As above, we see that
Lo € CH((1—¢1+¢) x Ei(J);Ei(J)),

Lo(1,v) =0, and 82Lo(1,v) =1 — SNpyH' (v), G (v),H (v)).
Possibly after decreasing p > 0, and thus ||v||g,, Theorem 2.2 and Proposition 3.3
imply that 02L0(1,v) is invertible in E;(J). So the implicit function theorem
provides us with a map ¥ € C!((1 — é,1 + ¢);E;(J)) such that ¥(1) = v and
Lo(A, T(A)) =0 for |1 — A| < € and some € € (0,1). We set vg(A\) = [T(N)](0). As
in the proof of Theorem 4.2(b) we then obtain

vo(A) — vg = =N (B(vo(X) + us) — B(vg + ui) — B'(vo + w) (vo(A) — vp))
+Np (B’ (us) = B (vo + u.)) (vo(A) — vo),
and we conclude that vo(A\) = vp, and hence U(A) = vy, if € > 0 and p > 0 are
small enough. Again it follows that t9;v = ¥'(1) € E1(J). We further compute
V(1) = —[02Lo(1,v)] 101 Lo(1,v) = [02L0(1,v)] 1 5(0, G(v) — Asv,0).
Taking into account 9;(tv) = v 4+ tdw = v+ ¥'(1) and v = u — u,, we arrive at
190t — ), () < = el < o — el

where we also used Theorem 2.2, Proposition 3.3, and Theorem 4.2(a). g

5. THE HYPERBOLIC SADDLE

In this section we will construct the stable and unstable manifolds for (2.2), which
are C''-submanifolds of the phase space M defined in (4.4). Let u, € X; be a steady
state solution of (2.2) satisfying Hypothesis 2.4. Throughout this section, the maps
G and H from (2.28) and (2.29) and the corresponding Nemytskii operators G and
H are defined for the given u,. We start with a simpler special case, proving
the principle of linearized stability. Let s(—Ap) denote the spectral bound of the
generator —Ag of the semigroup T'(-) on Xy introduced in (2.30).

Proposition 5.1. Assume that Hypothesis 2.4 holds and that s(—Ag) < —d < 0.
Then there exists a constant p > 0 such that for all ug € X, with |ug —u.|p, < p and
B(ug) = 0 the solution u of (2.2) exists for allt > 0 and satisfies |u(t)—u.|; < ce™®
fort > 1 and a constant not depending on t and ug.

Proof. Let p > 0, v € X, |vo|p < p, and Byvg = H(vg). We set
3(p) = {v € E1(0) : v(0) = vo, [[v]lg,(s) < 2¢2p}

where cg the constant from (3.15) with P = I. We define £(v) = L(v(0), G(v), H(v))
for v € ¥(p), where L is given by (3.1) with @ = 0 (and thus wy = v in (3.2)). Note
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that Lv(0) = vg, H(v(0)) = H(vo) = B,v(0), and |v(t)|, < col|v||r, < 2cc2p =: 7.
Choosing p (and thus r) sufficiently small, we deduce from (3.15) and (3.18) that

[1£0]|g, ) < c2 ([volp + [|G(v) gy 5) + [H(v)[r(s))
< cop+2c2e(r)||v]g, (5) < 2¢2p.

Take v, w € X(p). Since H(v(0)) — H(w(0)) =0 = v(0) — w(0), the estimate (3.15)
and Proposition 3.3 imply that

20 = Lz, ) < ez (1G@) = G(w)llgy(o) + IE() — Hw) s(s)
< 2¢2n(p) v = wllg, (5),

where 7(p) is the supremum of ||G’(v)|| and ||H'(v)|| over v € ¥(p). Since n(p) — 0
as p — 0 by Proposition 3.3, we can decrease p > 0 once more to establish that £
is a strict contraction on X(p). So we obtain a fix point v = Lv € X(p), and thus a
solution 4 = v + u, of (2.2) on Ry with

e lu(t) — uslp < llesvllpomyix,) < collvllz, s < 2coczp

for ¢ > 0 using again (2.8). Proposition 4.3 further yields |u(t + 1) — u.l;s <
clu(t) — ulp for t > 0 if we decrease p to obtain r < p. O

We now come to the main result of our paper, assuming that iR C p(A4y). We
recall the notation X = {z € X}, : B,zo = 0} and denote by B, (uo) and B,(u)
open balls in X, and E4 (), respectively. Recall that M = {ug € X, : B(up) = 0} is
the solution manifold of (2.2). Observe that the dimension of the unstable manifold
constructed below is equal to dimran(Q).

Theorem 5.2. Assume that Hypotheses 2.4 and 2.7 hold with the dichotomy con-
stant 69 > 0. Fixz § € (0,dp), and let P and @ denote the stable and unstable
projections on Xo for the semigroup T(-). Then there exist constants r > p > 0
and manifolds Mg and M, located in M N B,(u,) which are C' in X, and tan-
gential to the affine subspaces u, + PXE and uyx + QXo, respectively, such that for
all ug € M satisfying |ug — u«lp < p the following assertions hold.

(1) Ifuo € Mg, then the solution u(t;uo) of (2.2) exists and |u(t; ug) —u«lp <7

for all t > 0. Moreover, |u(t;ug) — us|1 < c|ug — uslp e for all t > 1.

(ii) If up ¢ Ms, then |u(t; ug) — us|p > 1 for some t > 0.

(iil) If uwo € My, then a backward solution u(t;ug) of (2.2) ewxists for allt <0,
and it is the only backward solution staying in B, (u) for all t < 0. Also,
[u(t;ug) — ]y < v and |u(t;ug) — w1 < clug — uilo € for all t < 0.

(iv) If ugp ¢ My, then any backward solution u(t;ug) of (2.2) either ceases to
exist or leaves the ball B, (u.) at some t < 0.

(The constants ¢ do not depend ont orug.) As a result, My (resp., M, ) is uniquely
giwen as the set of the initial values ug € M N By(uy) of global forward (resp.,
backward) solutions u(-;ug) with |u(t;ug) — uxlp < 1 for allt > 0 (resp., t < 0).
Thus Mg and M, are invariant for (2.2) relative to B,(uy) in the following sense:
Let ug € My (resp., up € My), and let u(-;up) be a solution of (2.2) on [0,t] if
t >0 oron [t0] ift <O staying in B,(u.) (where u(-;ug) has to be the solution
from (i) if up € My and t < 0). Then u(t;ug) belongs to My (resp., My ).

Proof. Construction of the stable manifold M. Observe that (2.8) yields

o)l < o)y < collvlle, ), 20, (5.1)
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since 6t > 0. Recall that PX, C X, by (2.36). Moreover, due to P = I — (@ and
ran(Q) C dom(Ag), we have PX) C X)) and thus PX) = ran(P) N X, N ker(B,).
Let NV, be the right inverse of B, = B’(u.) € B(X,,Y}) obtained in Proposition 2.5.
Then the operator I'(z0, g, k) = (20 + PNpyoh, g, h) maps PX) x Eo(d) x F(0) into
the space Dp(d) = {(vo,g,h) € PX, X Eg(6) x F(d) : Byvg = h(0)} by (2.14) and

B.PN, = (B, —B.Q)N,=I on Y,. (5.2)

Note that Dp(d) is a closed subspace of X, x E¢(d) x F(d) thanks to (2.17) and
(2.14). Proposition 3.1 and (3.15) say that the linear operator L defined in (3.1) is
bounded from Dp(§) to Eq(§). We now introduce the Lyapunov-Perron map

Lo: PXOXE((8) = Ei(8);  La(20,v) = v—L(20+ PNpyoH(v), G(v), H(v)). (5.3)

Since § > 0, we may apply Proposition 3.3 to deduce that Ly € Cl(PXg X
E1(6); E1(0)) and that £4(0,0) = 0 and 92L4(0,0) = I — LT'(0,G'(0),H'(0)) = I
hold. So the implicit function theorem, see e.g. [13, Cor.15.1], yields numbers
ro,po > 0 and a C'-map &, from PX) N B,,(0) C X, to B,,(0) C E1(d) such
that ®5(0) = 0 and Ls(z0, Ps(20)) = 0 for each zy € PXz(v) N B, (0) and, moreover,
v = Py(20) is the only solution of the equation Ls(zo,v) = 0 satisfying zg € B, (0)
and v € B,,(0). Due to Proposition 3.1 and (3.2), the function v = ®4(zg) solves
problem (2.27) with the initial value

oo
v = 0(0) = 20 + PN, H(u(0)) — / To(~9)Q(G(o() + ILH(u(s)) ) ds, ~ (5.4)
0
where v(0) € X, and B,v(0) = H(v(0)) by (5.2). Therefore the function u(t; ug) :=
v(t) + uy solves (2.2) on Ry with the initial value ug = vy + u. € M.
In view of decomposition (5.4), we define the map ¢ : PX) N B, (0) — ran(Q)
by the formula

o) = [ To(-9Q(GO0)(5) + TH@. (o) o)) s, (55)

and the map 9 : PX0 N B, (0) — PX,, by the formula
Us(20) = PNpyoH(Ps(20)). (5.6)
So we can introduce the stable manifold
M = {u. + 20 + Vs(20) + ¢s(20) : 20 € PX,), |20lp < p},

where p € (0, po] is fixed later. We have already checked that My C M. The
map ®, is C' from PXS to E1(4) so that Proposition 3.3 and the properties of
the linear operators in (5.5) and (5.6) show that the maps ¢5 and ¥, are C* from
PXY to dom(Ap) and PX, C X,, respectively. The identities ¢(0) = J5(0) =0
and ¢ (0) = 9,(0) = 0 follow from ®,(0) = 0, G(0) = 0, G'(0) = 0, H(0) = 0, and
H'(0) = 0. As a result, M, is a C* manifold in X,, being tangent to PX[ at u..

Proof of assertion (i). Let ug € Mg, vg = up — ux = 20 + ¥s(20) + ¢s(20), and
v = Pg(29). As noted above, u(t;ug) = v(t) + u. solves (2.2) on Ry with the initial
value ug. Estimate (5.1) further yields |u(t;ug) — u.lp < col|v|g, (s e for t > 0.
Observe that zo = P(vg — Np,H (vg)) = P(vo — NpBiwp) and thus |z, < ¢|vgl, by
(2.36), Proposition 2.5, and (2.17). From ®4(0) = 0 we infer that

[v]lg, (5) < [[®s(20) — P5(0)20]lg, (5) + 19%(0) 20, (6) < €20lp < ¢ volp. (5.7)
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If |vg|p < p1, then the above inequalities yield
[u(t; up) — uxlp < coc |ug — ulp e < codpr =211

for t > 0. As in Proposition 5.1 one deduces the exponential estimate in X, where
one may choose a small p; so that one can apply Proposition 4.3

Proof of assertion (ii). Take an initial value uy € M with the corresponding
solution u = wu(-;ug) of (2.2), and assume that

[up —uslp < p  and  |u(t;jug) —uslp <r for t>0 (5.8)
and some numbers p € (0, p1] and r € (0,71]. We want to find sufficiently small p3 €
(0, p1] and r3 € (0,71] such that (5.8) with p = p3 and r = r3 implies that ug € M.
We let v(t) = u(t; ug) —us for t € Ry so that v solves (2.27) for the initial value vy =
o — uy satisfying B.vg = H(vg). Let us assume for a moment that Claim 5.3 below
is true. Then Propositions 3.1 and 3.3 yield v = L(Pvg, G(v), H(v)) if p € (0, p2]
and r € (0,72]. We further set zg = P(vg — NpH (vg)) = P(vg — NpByup) . Then
z0 € PXJ) and |z, < c¢p by Proposition 2.5, (2.17), (2.36), and (5.2). Decreasing p
if necessary, we thus obtain |zg|, < po and hence there is a zero w = ®(zg) € E1(9)
of Ly, i.e., w = L(zg + PN,H(w(0)), G(w), H(w)) and w(0) + u, € Ms. Possibly
after choosing a smaller p > 0, we also have |[wl|g, . ) < r due to (5.7). Moreover,
B, (Pvg — z9 — PN,H(w(0))) = H(v(0)) — H(w(0)) by (5.2). Propositions 3.1 and
3.3 and formulas (3.2) and (2.14) now imply that

lv —wle, < c(|P(v(0) —w(0)) + Q(v(0) — w(0))], + |G(v) — G(w)l|e,
+ () ~ Hw)lx)

< c([H(©(0)) — H(w(0))ly, + [G(v) — G(w)|g, + [H(v) — H(w)|x)

< en(r) v —wllg, ,
where 7(r) is the supremum of ||G'(¢)|| in B(E1,Eo) and ||H'(¢)|| in B(E;,F) over
¢ with ||¢||g,®,) < r. Decreasing r > 0 once more in (5.8), we see that v = w
and S0 ux + vy = ux + w(0) € M. Thus we have obtained the desired numbers
p3 € (0,p1] and r3 € (0,71] .
Claim 5.3. There are ps € (0,p1] and 2 € (0,71] such that each solution u of
(2.2) satisfying (5.8) for some p € (0, p2] and r € (0, r3] already belongs to Eq (R.).

Proof of the claim. We take o € (0,d] and T > 1, and we set J = [0,T]. The
constants below do not depend on ¢ and 7', unless explicitly stated. The function
v = u — uy solves (2.27), and thus

Pv=T()Pvo+T()P +xG(v) + T_1(-) P * TTH(v)

due to (2.33). Employing B,vg = H(v(0)) and (2.36), we can argue as in the proof
of Proposition 3.1 in order to estimate

1Pvlle, (5.-0) < € (IPvolp + G (W)llg(5.-0) + [H®)llE—0))- (5.9)
Using the extension v(t) = 0 for t > 2T and v(t) = (2—¢t/T)v(2T—t) for T < ¢t < 2T,
one obtains the estimates from (3.18) also on J with the weight e_, and a function
¢ not depending on T" > 1. We then deduce from (5.9), (5.8), (2.36), (3.18) that
1PvllE, (7o) < cp+ce(r) [vlle, (-0 < cp+ ce(r) ([1PVIlE (g—0) + 1QVE, (,-0))-
Since (r) — 0 as r — 0, we can take a small r to infer

| Pvllg, (1,—0) < cp+ce(r) [|QUllg, (7,—o)- (5.10)
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We recall that Q maps X in dom(Ag) C X; and thus |Qu(t)|; < er by (5.8), so
that e_,Qu € L,(Ry; X1). Proposition 2.6 further implies that
QU =e_,Q(—A_1v + ITH(w)) + e_,QG(v)
= —ApQe_ov + (L + Ag)QNre_H(v) + Qe_,G(v). (5.11)
By means of AoQ € B(Xo), |v(t)|, <, Proposition 2.5 and (3.18), we estimate

1QUlis (1) < € (le—ovllig(r) + lle— (V) 1, (7v2) + le—a G (V) I ()

< clo)r +ce(r) le—ovllz,(r:x1)

<c(o)r+ce(r) lle—o PvllL,(1:xy) - (5.12)
Inserting this inequality into (5.10) and choosing a small r > 0 (not depending on
J and o), we arrive at the inequality ||Pvl|g,(j,—s) < cp + c(o)r. Hence, Pv €
Ei(Ry,—0) and, by (5.12), Qv € Eo(Ry,—0). As a result, v € E{(Ry, —o) if
r < rh, for a number 4 € (0, o] independent of o. Now (5.10) yields

[1Pvlley Ry ,—0) < cp+ ce(r) |Qulle, Ry ,—0)- (5.13)

Observe that the shifted operator —Ay — o satisfies Hypothesis 2.7. Thus we can
transform (2.33) into (3.1) with wy = Puvg from (3.2) (where ¢ = G(v) and h =
H(v)), and hence

Qo) =~ [ Tot - Q(G(u(s) + THE(u() ds,

thanks to (2.35), (5.8), and (3.18). This formula combined with (2.35), (3.18) and
(5.13) leads to the estimates

1QullE, (~0) < € |QV[|zg(~o) + |Q0]|zo(~0) (5.14)
< ¢ (IQullo(-0) + IG(®)lko(=0) + le—oH(V)l|z, &1 v2))
< c(IG)llgo (o) + lle—oHW) I, 21 v2))
< c2(r) le—oQull L, @s:x0) + (1) lle—a Poll 1, i)
< cp+ce(r) [ Qulle, (—o) -
Taking a small r > 0 independent of o € (0,6], we see that sup, ||Qu|g, (o) is
finite. Fatou’s lemma then yields Qv € E; (R4 ), and so Pv € E1(Ry4) by (5.13). ¢
Construction of the unstable manifold M. The arguments for the unstable part

are similar and somewhat simpler, so that we can omit some details. This time we
employ the Lyapunov Perron map

Ly:ran(Q) X E1(R_, —6) = E1(R_, —=§); Lu(20,v) = v — L™ (20, G(v), H(v)),

cf. (3.12). Propositions 3.2 and 3.3 then imply that £, is a C' map, £,(0,0) = 0,
and 02L£,(0,0) = I. Hence, by the implicit function theorem, there exist balls
By (0) Nran(Q) and B, (0) € Ei(R_, —§) and a C' map ®, : By (0) — B, (0)
such that v = ®,,(zp) is the unique solution of the equation £, (2, v) = 0 for zp and
v in these balls. Thus u = ®y(20) + u. is the unique function in B, (u.) solving
(2.2) on R_ with the final value ug = vo + ux, see Proposition 3.2. We further
define the map ¢, : ran(Q) N By, (0) — PX, by ¢u(20) = 70Pu(20) — 20; that is,

bulen) = [ Toa(=9)Ps (G (a0)(5) + H (@4 a0)(5)) .

— 00
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Therefore v(0) = ®,(20)(0) = 20 + Pu(20), ¢u is C due to (2.8), ¢,(0) = 0, and
@ (0) = 0. We now introduce the unstable manifold

M = {us + 20 + ¢u(20) : 20 € ran(Q), |20l < p}

for p € (0, py] to be fixed later. Clearly, M, is a C! manifold in X,, tangential to
Uy + ran(Q@).

Proof of assertion (iii). Let up € My, 20 = Q(uo — u+), and v = ®,(zp). Then
u(t;ug) = v(t) + uy solves (2.2) on R_ with the final value ug. As in part (i), we
can deduce that |u(t;up) — us|, < clug — uo €t for t < 0, using (2.8), (5.7), and
Q € B(Xo, X1). Proposition 4.3 further yields |u(t; ug) —u«|1 < c|u(t —1;u0) — uxlp
for t < 0 (possibly after decreasing p). This fact implies assertion (iii) for all
numbers p € (0, p4] and r € (0,74] and some py € (0, p3] and r4 € (0, r3].

Proof of assertion (iv). Let u be a backward solution of (2.2) on R_ with
|u(t) — us|p <7 for t <0 and |ug — ui|p < p. As in part (i7) we have to show that
v =1u—u, € Eq(R_) provided that 7, p > 0 are small enough. We take 0 < o < 4
and T' < —2 and set J = [T + 1,0]. In what follows, the constants do not depend
on ¢ and T unless otherwise stated. The formula (2.33) yields

t t

T(t—s)PG(v(s))ds+ / T_1(t—s)P_1I1H (v(s)) ds

Pu(t) =Tt —T)Pv(T) +/

T
for T <t <0. Arguing as in (3.6) and using (3.18), we estimate

1PVl (g0) < e(r + 1G() I (1,0) + IH) 5 (s0))
< er+ce(r) [|1Pollg, (g,0) + c2(r) [ Qulle, (s,0)
1PVl (5.0) < e+ ce(r) |Ql[g, (10 » (5.15)
taking a small r independent of J and o. We further have |Qu(t)]1 < ¢r for t <0,
and so e,Qu € L,(R_; X1). Asin (5.11) and (5.12), one obtains
leo Q0| L, (7:x0) < c(@)r + ce(r) ea PollL,(5:x,) -

So we conclude that v € E1(R_,0) if 0 < r < r5 where 0 < r5 < ry is sufficiently
small and does not depend on o. Thus we can transform (2.33) into the form (3.12)
with Pvg from (3.10), and so

0
Quit) = To(OQu ~ | To(t - 9)Q(G(x(s) + H(u(s) ds,
t
thanks to (2.35), |v(t)|, <, and (3.18). We argue as in (5.14) in order to deduce
1Qullz, (&_,0) < cp+cr + ce(r)|Qulle, r_,0) -

Taking a small o—independent g € (0,r5], we obtain a o—independent bound on
|Qullg,(r_,0)- So Fatou’s lemma yields Qu € E;(R_), and (5.15) implies Pv €
E;(R4). The theorem follows fixing sufficiently small p € (0, p4] and r € (0,rg]. O

6. A REACTION DIFFUSION SYSTEM

In this section we study a quasilinear reaction diffusion system for two species u
and us on a bounded domain 2 C R™ with C? boundary 92 and outer unit normal
v. The validity of (E) and (LS) was established in [5] for large classes of reaction
diffusion systems of second order. Here we concentrate on a simple situation where
we can give more explicit criteria for the hyperbolicity condition iR C p(Ag) from
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Hypothesis 2.7. For the unknown function u(t,z) = (ui(t,x),us2(t,x)) € R? we
consider the problem

Opu;(t, ) — div]d; (u(t, z))Vu,(t, )]

ri(u(t,x)), t>0,xz€Q,i=12,
di(u(t, 2))0,u;(t, x) — qi(ui(t,z)) = b (z,u(t,z), Vu(t,x)), t>0, z€ N,
u(0,z) = uo(x), = €Q, (6.1)
where d; € C*(R%R), ¢; € C%(R;R), r; € CH(R%*R), and b9 € C?(0QxR?*xR*™; R)
for i = 1,2. We work with real valued functions in this section, considering the

complexification if necessary (in particular when applying the results of the previous
sections). We assume that there is a vector w, = (uy1, Us2) € R? such that

di(uy) >0, 7i(uy) = gi(us) = b(z,u,,0) =0, 02,32 (z, us,0) =0

for i = 1,2 and = € 9Q2. Thus the constant function u, is a steady state solution
of (6.1). Moreover, (6.1) contains conormal boundary conditions combined with
the nonlinear source terms ¢;(u;) and the additional fully nonlinear perturbations
b9 which vanish at the equilibrium. Let d = diag(d1,dz), 7 = (r1,72), ¢ = (q1,¢2),
b0 = (19,89). Then we can transform (6.1) into the form (2.2) by setting

A(u)v = —d(u)Au, b(u) = d(u)(v - Vur, v - Vug) — q(u) — °(-,u, Vau),

Flu) =r(u) + | Y (diw) - u) dys| .

=1,

j=1
where z - y denotes the standard scalar product in R?. Since Vu, = 0, we obtain
A, = —d(u)A —r'(u,) and By = d(u.)d, — ¢ (u.),

cf. (2.26). It is clear that (R) holds. Moreover A(u.) and B, = B’(u.) satisfy
(E) and (LS) due to [5, Prop.4.3] (or a straightforward direct calculation). Setting
di(us) = 0i, ¢i(uw) = Biy and 7' (uy) = [ri] for i = 1,2, the operator Ay =
Ayl ker(B,) in Xy is given by

A — 1A+ r12
0 721 02A +1ao

D ={v e W(Q): 0,0 = Bi5; v}, i=1,2.

> s dOHl(Ao) = Dl X DQ,

We now want to study the spectrum of Aj in terms of the operators C;(\) =
0;A + ry; — X\ in Xy with domain D;, where ¢ = 1,2 and A € C. Since the case
ro1 = 0 is rather simple we restrict ourselves to the case 721 # 0. Observe that Ag
has compact resolvent. Suppose that A is an eigenvalue of —A( with eigenvector
(v1,v2) € dom(Ag). Then we have vy # 0, Co(A)vy = —r91v1 € Dy, and

r21C1(A)v1 + 12171202 = 0, ro1C1(A)v1 + C1(A)Ca(AN)ve = 0.

As a result, C1(\)Ca(A)ve = r12r91v3. Conversely, let vo € dom(C1(N)Ca(N)) =
{v € Dy : C2(N)v € D1} be an eigenvector of C1(A)C2(A) with the eigenvalue
T12T21, for some A. Then we set v; = —7’2_1102 (M)vg € Dy, obtaining an eigenvector
(v1,v2) of —Ag for the eigenvalue A. So we have shown that

J(*Ao) = {)\ S C: T12721 € Up(01()\)02(>\))}

This equation becomes much simpler if we assume in addition that D; = Dy =: D.
For instance, this equality is true if ¢} (u«1) = ¢5(ux2) = 0. Let u,, n € Ny, be the
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distinct eigenvalues of the Laplacian Ap with the domain D and set

M. — O1pen + 711 r12
" ro1 Ooptn +122) "

Note that the spectrum of Ag on Xy = L,(€2)? does not depend on p € (1, 00) since
the resolvent is compact. Moreover, Ap is self adjoint on Lo (2), so that p, is real,
tn — —00, and pin41 < fn. Then one easily obtains that

o(—Ao) =] __ a(M,).

In order to satisfy Hypothesis 2.7, we thus have to ensure that none of the matrices
M,,, n € Ny, has an eigenvalue on iR. One obtains a purely imaginary eigenvalue of
M, if and only if either det M,, = 0 for some n € Ny, or tr M,, = 0 and det M,, > 0
for some n € Ny. Moreover, there is an eigenvalue of —Ag with strictly positive
real part if and only if s(Mp) > 0.

n€eNg
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