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Abstract. We study the wellposedness and pathwise regularity of semilinear
non-autonomous parabolic evolution equations with boundary and interior
noise in an L? setting. We obtain existence and uniqueness of mild and weak
solutions. The boundary noise term is reformulated as a perturbation of a
stochastic evolution equation with values in extrapolation spaces.
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1. Introduction

In this paper we investigate the wellposedness and pathwise regularity of semilin-
ear non-autonomous parabolic evolution equations with boundary noise. A model
example which fits in the class of problems we study is given by

ou
a(t,s) = A(t, s, D)u(t, s) on (0,7] x S,
B(t, s, D)u(t,s) = c(t,u(t,s))%—?(t,s) on (0,T] x 98, (1.1)
(0, s) = up(s), on S.

Here S C R? is a bounded domain with C2? boundary, A(t, -, D) = div(a(t,-)V) for
uniformly positive definite, symmetric matrices a(t, s) with the conormal boundary
operator B(t, s, D), c(t,€) is Lipschitz in £ € C, (w(t));>0 is a Brownian motion
for an filtration {F;};>¢ and with values in L"(9S) for some r > 2, and ug is an
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Fo-measurable initial value. Actually, we also allow for lower order terms, interior
noise, nonlocal nonlinearities, and more general stochastic terms, see Section 4.

As a first step one has to give a precise meaning to the formal boundary
condition in (1.1). We present two solution concepts for (1.1) in Section 4, namely
a mild and a weak one, which are shown to be equivalent. Our analysis is then based
on the mild version of (1.1), which fits into the general framework of [30] where
parabolic non-autonomous evolution equations in Banach spaces were treated.
The results in [30] rely on the stochastic integration theory in certain classes of
Banach spaces (see [8, 22, 24]). In order to use [30], the inhomogeneous boundary
term is reformulated as an additive perturbation of a stochastic evolution equation
corresponding to homogeneous boundary conditions. This perturbation maps into
a so—called extrapolation space for the realization A(t) of A(t,-, D) in LP(S) with
the boundary condition B(t, -, D)u = 0 (where p € [2,r]). Such an approach was
developed for deterministic problems by Amann in e.g. [5] and [6]. We partly use
somewhat different techniques taken from [19], see also the references therein. For
this reformulation, one further needs the solution map of a corresponding elliptic
boundary value problem with boundary data in L"(9S) which is the range space of
the Brownian motion. Here we heavily rely on the theory presented in [5], see also
the references therein. We observe that in [5] a large class of elliptic systems was
studied. Accordingly, we could in fact allow for systems in (1.1), but we decided
to restrict ourselves to the scalar case in order to simplify the presentation.

We establish in Theorem 4.3 the existence and uniqueness of a mild solution
u to (1.1). Such a solution is a process u : [0,T] x @ — LP(S) where (2, P)
is the probability space for the Brownian motion. We further show that for a.e.
fixed w € Q the path ¢t — u(t,w) is (Holder) continuous with values in suitable
interpolation spaces between LP(S) and the domain of A(t), provided that ug
belongs to a corresponding interpolation space a.s.. As a consequence, the paths
of u belong to C([0,T], L9(S)) for all ¢ < dp/(d — 1). At this point, we make use
of the additional regularity provided by the LP approach to stochastic evolution
equations.

In [21] an autonomous version of (1.1) has been studied in a Hilbert space
situation (i.e., r = p = 2) employing related techniques. However, in this paper
only regularity in the mean and no pathwise regularity has been treated. In [13,
§13.3], Da Prato and Zabczyk have also investigated boundary noise of Neumann
type. They deal with a specific situation where a(t) = I, the domain is a cube and
the noise acts on one face which allows more detailed results. See also [3], [12], [14]
and [28] for further contributions to problems with boundary noise. As explained
in Remark 4.9 we cannot treat Dirichlet type boundary conditions due to our
methods. In one space dimension Dirichlet boundary noise has been considered in
[4] in weighted LP—spaces by completely different techniques, see also [12].

In the next section, we first recall the necessary material about parabolic
deterministic evolution equations and about stochastic integration. Then we study
an abstract stochastic evolution equation related to (1.1) in Section 3. Finally,
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in the last section we treat a more general version of (1.1) and discuss various
examples concerning the stochastic terms.

2. Preliminaries

We write a Sk b if there exists a constant ¢ only depending on K such that
a < cb. The relation a ~g b expresses that a <g b and b Sk a. If it is clear
what is meant, we just write a < b for convenience. Throughout, X denotes a
Banach space, X* its dual, and B(X,Y) the space of linear bounded operators
from X into another Banach space Y. If the spaces are real, everything below
should be understood for the complexification of the objects under consideration.
The complex interpolation space for an interpolation couple (X7, X3) of order
n € (0,1) is designated by [X1, X2],,. We refer to [29] for the relevant definitions
and basic properties.

2.1. Parabolic evolution families

We briefly discuss the approach to non—autonomous parabolic evolution equations
developed by Acquistapace and Terreni, [2]. For w € R and ¢ € [0, 7], set (¢, w) =
{A e C: |arg(z —w)| < ¢}. A family (A(t), D(A())):e[o, 1) satisfies the hypothesis
(AT) if the following two conditions hold, where T' > 0 is given.

(AT1) A(t) are densely defined, closed linear operators on a Banach space X and
there are constants w € R, K > 0, and ¢ € (3, 7) such that ¥(¢,w) C o(A(t))
and

K

I <=

14+ A —w|

holds for all A € ¥(¢,w) and t € [0, T].
(AT2) There are constants L > 0 and u,v € (0, 1] such that g+ v > 1 and

[ Aw () RON, Aw () (Aw ()™ = Aw(s) "I < LIt — s|* (A + 1) 7"
holds for all A € ¥(¢,0) and s,t € [0,T], where A, (t) = A(t) — w.

Condition (Al) just means sectoriality with angle ¢ > 7/2 and uniform
constants, whereas (A2) says that the resolvents satisfy a Holder condition in
stronger norms. In fact, Acquistapace and Terreni have studied a somewhat weaker
version of (AT2) and allowed for non dense domains. Later on, we work on reflexive
Banach spaces, where sectorial operators are automatically densely defined so that
we have included the density assumption in (AT1) for simplicity. The conditions
(AT) and several variants of them have intensively been studied in the literature,
where also many examples can be found, see e.g. [1, 2, 6, 26, 31]. If (AT1) holds
and the domains D(A(t)) are constant in time, then the Holder continuity of A(-)
in B(D(A(0)), X) with exponent n implies (AT2) with 4 = n and v = 1 (see [2,
Section 7]).

[1R(A, A(?))
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Let n € (0,1), & € [0,1], and ¢ € [0,T]. Assume that (AT1) holds. The
fractional power (—A,(t))~% € B(X) is defined by

1
(=Au()™" = 5= | (w=XN)""R\ A1) dX,
2w Jr
where the contour I' = {\ : arg(A —w) = £¢} is orientated counter clockwise. The
operator (w — A(t))? is defined as the inverse of (w — A(t))~%. We will also use the
complex interpolation space

X5 =X, D(A®)]y -

Moreover, the extrapolation space X" , is the completion of X with respect to the
norm ||z x:, = [(—Au(t)~%2|. Let A_1(t) : X — X?* | be the unique continuous
extension of A(t) which is sectorial of the same type. Then (w—A_1(¢))*: X', —
X*',_,, is an isomorphism, where 0 < 6 < a + 6 < 1. If X is reflexive, then one
can identify the dual space (X' ,)* with D(A(t)*) endowed with its graph norm
and the adjoint operator A_;(¢)* with A(t)* € B(D(A(t)*), X*). We mostly write
A(t) instead of A_1(t). See e.g. [6, 19] for more details.
Under condition (AT), we consider the non-autonomous Cauchy problem

u'(t) = A(t)u(t), tels,T],

(o) = c. (2.1)

for given z € X and s € [0,7). A function u is a classical solution of (2.1) if
u € CO([s, T); X) N CY((s,T); X), u(t) € D(A(t)) for all t € (s,T], u(s) = z, and
du(t) = A(t)u(t) for all t € (s,T]. The solution operators of (2.1) give rise to
the following definition. A family of bounded operators (P(¢, s))o<s<t<r on X is
called a strongly continuous evolution family if

1. P(s,s) =1 for all s € [0,T],

2. P(t,s) = P(t,r)P(r,s) foral0 < s <r <t <T,

3. the map {(1,0) € [0,T)>: 0 <7} > (t,8) — P(t,s) is strongly continuous.

The next theorem says that the operators A(t), 0 < ¢t < T, ‘generate’ an

evolution family having parabolic regularity. It is a consequence of [1, Theorem 2.3],
see also [2, 6, 26, 31].

Theorem 2.1. If condition (AT) holds, then there exists a unique strongly continu-
ous evolution family (P(t,s))o<s<t<T such that u = P(-, s)x is the unique classical
solution of (2.1) for every x € X and s € [0,T). Moreover, (P(t,s))o<s<t<T 1S
continuous in B(X) on 0 < s <t < T and there exists a constant C > 0 such that

1Pt s)allxe < C(t— )7 |lz]lxs (2.2)

forall0<pf<a<land0<s<t<T.
We further recall from [32, Theorem 2.1] that there is a constant C' > 0 such that
1P(t,5)(w — A(s))%l < Clu — 0) (¢ — 5)~*al (2.3)
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forall0 <s<t<T,60¢c(0,u) and x € D((w — A(s))?). Clearly, (2.3) allows to
extend P(t,s) to a bounded operator P_g(t,s) : X*, — X satisfying

IPo(t,s)(w — Ay ()] < Clu—6) " (t — ) (2.4)

forall 0 < s <t <T and # € (0, ). Again, we mostly omit the index —6.

2.2. Stochastic integration

Let H be a separable Hilbert space with scalar product [-,-], X be a Banach
space, and (S,X, 1) be a measure space. A function ¢ : S — X is called strongly
measurable if it is the pointwise limit of a sequence of simple functions. Let X3
and X5 be Banach spaces. An operator-valued function ® : S — B(X7, X3) will be
called X7 -strongly measurable if the Xo-valued function @z is strongly measurable
for all z € X;.

Throughout this paper (2, F,P) is a probability space with a filtration
(Fi)i>0 and (yn)n>1 is a Gaussian sequence; i.e., a sequence of independent, stan-
dard, real-valued Gaussian random variables defined on (2, F,P). An operator
R € B(H, X) is said to be a y-radonifying operator if there exists an orthonormal
basis (hy,)n>1 of H such that > o, v, Rh, converges in L?(£%; X), see [7, 17]. In

this case we define
1

2) 1
This number does not depend on the sequence (v,)n>1 and the basis (hyp)n>1,
and defines a norm on the space y(H,X) of all y-radonifying operators from

H into X. Endowed with this norm, v(H, X) is a Banach space, and it holds
IRl < |R|(m,x)- Moreover, v(H, X) is an operator ideal in the sense that if

S) € B(H,H) and Sy € B(X, X), then R € (M, X) implies SRS, € y(H, X) and
152851 (1572, %) < I1S2lll[ Rl . S]] (2.5)

||RH'y(H,X) = (EHZ Tn Rh,
n>1

If X is a Hilbert space, then v(H,X) = C?(H,X) isometrically, where
C%(H, X) is the space of Hilbert-Schmidt operators. Also for X = LP there is
a convenient characterization of R € v(H, L?) given in [10, Theorem 2.3]. We use
a slightly different formulation taken from [23, Lemma 2.1].

Lemma 2.2. Let (S,%, u) be a o-finite measure space and let 1 < p < oco. For an
operator R € B(H, LP(S)) the following assertions are equivalent.

1. Re~(H,LP(S)).
2. There exists a function g € LP(S) such that for all h € H we have |Rh| <
hlle - g p-almost everywhere.

Moreover, in this situation we have

| Rlly(a,zr(s)) Sp llgllze(s)- (2.6)
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A Banach space X is said to have type 2 if there exists a constant C' > 0 such
that for all finite subsets {z1,...,2n} of X we have
1

N o 1 N 1
(B X rman][)" < (X tont?)”
n=1 n=1

Hilbert spaces and LP-spaces with p € [2,00) have type 2. We refer to [17] for
details. We will also need UMD Banach spaces. The definition of a UMD space
will be omitted, but we recall that every UMD space is reflexive. We refer to [11] for
an overview on the subject. Important examples of UMD spaces are the reflexive
scale of LP, Sobolev, Bessel-potential and Besov spaces.

A detailed stochastic integration theory for operator-valued processes ® :
[0,T] x @ — B(H, X), where X is a UMD space, has been developed in [22]. The
full generality of this theory is not needed here, since we can work with UMD
spaces X of type 2 which allow for a somewhat simpler theory. Instead of of being
a UMD space with type 2, one can also assume that X is a space of martingale
type 2 (cf. [8, 24]).

A family Wy = (Wg(t))ier, of bounded linear operators from H to L*((2)
is called an H -cylindrical Brownian motion if

(i) {Wutj)he :j=1,...,J; k=1,...,K} is a Gaussian vector for all choices
of t; > 0 and hy, € H7 and {Wg(t)h : t > 0} is a standard scalar Brownian
motion with respect to the filtration (F;);>o for each h € H;

(ii) E(Wgu(s)g- W (t)h) = (s At)[g, h|g for all s,t € Ry and g,h € H.

Now let X be a UMD Banach space with type 2. For an H-strongly measur-
able and adapted @ : [0, T|xQ — ~(H, X ) which belongs to L?((0,T)xQ;v(H, X))
one can define the stochastic integral fOT ®(s)dWg(s) as a limit of integrals of
adapted step processes, and there is a constant C' not depending on ® such that

2
EH/ s) AW ( )H < C?|®|122(0,7) x 2y (1, %))

cf. [8], [22], and the references therein. By a localization argument one may extend
the class of integrable processes to all H-strongly measurable and adapted & :
[0,7] x Q — v(H, X) which are contained in L?(0,T;~(H, X)) a.s.. Below we use
in particular the next result (see [8] and [22, Corollary 3.10]).

Proposition 2.3. Let X be a UMD space with type 2 and Wy be a H-cylindrical
Brownian motion. Let ® : [0,T] x Q@ — ~(H,X) be H-strongly measurable and
adapted. If ® € L?(0,T;v(H, X)) a.s., then ® is stochastically integrable with
respect to Wy and for all p € (1,00) it holds

1E sup H/ 5) AW (s H ) Sxop @l Le(@sr2 (0,151, %)) -
te[0,T]
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In the setting of Proposition 2.3 we also have, for z* € X*,

</OT B(s) AW (s), ") = /OT B(s) 2 dWn(s) as., 2.7)
cf. [22, Theorem 5.9].

3. The abstract stochastic evolution equation

Let H; and Hs be separable Hilbert spaces, and let X and Y be Banach spaces.
On X we consider the stochastic evolution equation

dU(t) = (AQ)U(t) + F(t,U(t)) + Ac(t)G(t,U(t))) dt
+ B(t,U(1) dWh, () + Ac(t)C(t, U (t) dWr, (¢), t € [0,T], (SE)

Here (A(t))efo,r) is a family of closed operators on X satisfying (AT). The pro-
cesses Wy, and Wy, are independent cylindrical Brownian motions with respect
to (Ft)iefo, ). The initial value is a strongly Fo-measurable mapping ug : 2 — X.
We assume that the mappings Ag(t) : Y* — X', and Ac(t) : V' — X', are
linear and bounded, where the numbers 04, 0¢ € [0, 1] are specified below. In Sec-
tion 4, the operators Ag(t) and Ac(t) are used to treat inhomogeneous boundary
conditions. Concerning A(t), we make the following hypothesis.

(H1) Assume that (A(t))¢ejo,r) and (A(t)*)iejo,r) satisfy (AT) and that there exists

an 7o € (0,1] and a family of Banach spaces (X;;),¢; such that

0,m0]

X

n0<—>)?m<—>)~(n2<—>)?0:X for all ng >m > n2 >0,

and each Xn is a UMD space with type 2. Moreover, it holds
[X, D(A(t))], — X,, for all 7 € [0,n0],

where the embeddings are bounded uniformly in ¢ € [0, T].
Assumption (H1) has been employed in [30] to deduce space time regularity results
for equations of the form (SE), where spaces such as X, have been used to get
rid of the time dependence of interpolation spaces; see also [20, (H2)]. We have
included an assumption on (A(%)*):c[o,r] for the treatment of variational solutions.
This could be done in a more general way as well, but for us the above setting

suffices. Assumption (H1) can be verified in many applications, see e.g. Section 4.
Let a € [0,79). The nonlinear terms F, G, B and C' in (SE) map as follows:

F:0,T]|xQx X, — X, G{):Qx X, — Y,

B(t): Qx X, —~v(H,Xt)), C@):Qx X, — ~(Ha, Y?),
for each t € [0,T], where Y* are Banach spaces. We put G(t)(w,z) = G(t,w, ),
B(t)(w,z) = B(t,w,z) and C(t)(w,z) = C(t,w,x) for (t,w,x) € [0,T] x Q@ x X.
Assuming (H1) and a € [0,79), we state our main hypotheses on F, G, B and C.
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(H2) For all z € X,, the map (t,w) — F(t,w,z) is strongly measurable and
adapted. The function F' has linear growth and is Lipschitz continuous in
space uniformly in [0,7] x Q; that is, there are constants Ly and Cp such
that for all t € [0,7], w € Q and 2,y € X, we have

1F(t,w,z) = F(t,w,y)|x < Lrlz—yllx,,
[1F(tw,2)|[x < Cr(l+[|l2l/%,)-
(H3) Forall z € X,, the map (t,w) — (— Ay () "¢ Ag(t)G(t,w, z) € X is strongly
measurable and adapted. The function (—A,,) "% AgG has linear growth and

is Lipschitz continuous in space uniformly in [0, T xQ; i.e., there are constants
L¢ and Cg such that for all ¢t € [0,T], w € Q and z,y € X, we have

(4w (®) " Ac(t)(G(t,w,z) = G(t,w,y)|x < Lellz —yl g,
(4w (1) Ac(t)G(t,w,2)|x < Ca(l + |zl g, ).

(H4) Let 0p € [0,p) satisfy a + 6 < %. For all = € X,, the map (t,w) —
(—Au(t)"?B(t,w,x) € v(Hy, X) is strongly measurable and adapted. The
function (—A,,) "% B has linear growth and is Lipschitz continuous in space
uniformly in [0, 7] x €; that is, there are constants L and Cp such that for

allt € [0,T],w € Q and z,y € X, we have
H (_Aw(t))_eB (B(t, w, :L') - B(tv w, y))”’y(H1,X) < LB”‘r - y”fﬁﬂ
I(=Aw ()~ B(t,w,2) |y, x) < Cp(L+ 2] %,)-
(H5) Let 6 € [0, p) satisfy a + ¢ < 3. For all z € X, the mapping (t,w) —
(—Au(t) % Ac(t)C(t,w, ) € y(Hz, X) is strongly measurable and adapted.
The function (—A,) % AcC has linear growth and is Lipschitz continuous

in space uniformly in [0, 7] x €; that is, there are constants Lg and Cg such
that for all t € [0,T], w €  and z,y € X, we have

I(=Au ()~ Ac(t)(C(t,w, 2) = O(t,w, )y, x) < Lellz =yl 5.,
(= Aw() ' Ac(t)C(t w, @) |y (mr.x) < Co(1+ [l 5,)-
We introduce our first solution concept.

Definition 3.1. Assume that (H1)—(H5) hold for some 0g,0p,0c > 0 and a €
[0,m0). Let r € (2,00) satisfy min{l — 9@,% - 93,% —0c} > % We call an X,-
valued process (U(t))epo,r] a mild solution of (SE) if

(i) U:[0,T] x Q — X, is strongly measurable and adapted, and we have U €

L"(0,T;X,) almost surely,
(if) for allt € [0,T], we have

U(t)=P(t,0)ug+PxF(-,U)(£)+P+AcG(-, U)(t)+Por1 B(-, U)(t)+PosAcC(-, U)(t)

i X almost surely.
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Here we have used the abbreviations
t t
Prot) = / Pt 5)p(s)ds,  Pog (t) = / P(t, 5)B(s) Wi, (s), k= 1,2,
0 0

whenever the integrals are well-defined. Under our hypotheses both P x F'(-,U)(t)
and Px AgG(-,U)(t) are in fact well-defined in X. Indeed, for the first one this is
clear from (H2). For the second one we may write

P(t,5)Ac(5)G(s,U(s)) = P(t, 5)(=Au(5))" (—Au(s))*“Aa(5)G(s,U(s))
It then follows from (2.4), Holder’s inequality, and (H3) that

/0 |IP(t, s)Ac(s)G(s,U(s))||x ds

t
5/0 (t = 8)7%[(=Auw(5) " Ac(s)G(s,U(s))|| x ds
S 1+ ||UHLT(()’T;)~(G)3

using that 1 — 6 > L. Similarly one can show that P o1 B(-,U)(t) and P oy
AcC(-,U)(t) are well-defined in X, taking into account Proposition 2.3: Estimate
(2.4), Holder’s inequality and (H4) imply that

t
/0 1P(t, 5)B(s, U(S)IE i, ) ds

5/0 (t = )72 |(=Aw(s) """ B(s,U ()51, .x) ds

5 1+ ||UH2T(O,T;)}Q)

since % —0p > % In the same way it can be proved that the integral with respect
to Wi, is well-defined.

We also recall the definition of a variational solution from [30]. To that pur-
pose, for t € [0,T], we set

Iy ={p e C'([0,t]; X*) : (s) € D(A(s)*) for all s € [0,1]

and [s — A(s)*¢(s)] € C([0,1]; X*)}. 3.1)

Definition 3.2. Assume that (H1)-(H5) hold with a € [0,10). An X,-valued process
(U(t))tejo,r) 18 called a variational solution of (SE) if

(i) U belongs to L*(0,T; )?a) a.s. and U is strongly measurable and adapted,
(ii) for allt € [0,T] and all ¢ € Ty, almost surely we have

(U), (1)) = (uo,(0)) = /O [(U(s), ¢'(5)) + (U(s), A(s)"(s)) (3-2)
+ (F(s5,U(5)),9(5)) + (Aa(s)G(s,U(s)), p(s))] ds

+/O B(s,U(s))"¢(s) AW, ()
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+/0 (Ao (s)C(s,U(5)) ¢ (s) AW, (s)-
The integrand B(s,U(s))*p(s) in (3.2) should be read as

(—Aw(s) 772 B(s,U(5)))* (—Au(5)") "7 o(s).
It follows from (H4) that the function s +— ((—A,(s))"%2B(s,U(s)))* is X*-
strongly measurable. Moreover, the map
s = (= Au(8)) "2 p(s) = (= Auw(s)") T2 (= Au(s)")e(s)

belongs to C([0,¢]; X*) by the Holder continuity of s + (—A,(s))"1T%2 (cf. [26,
(2.10) and (2.11)]) and the assumption on ¢. Using (H4), we thus obtain that the
integrand is contained in L?(0,T; Hy) a.s.. As a result, the first stochastic integral
in (3.2) is well-defined. The other integrands have to be interpreted similarly.

The next result shows that both solution concepts are equivalent in our set-
ting. It follows from Proposition 5.4 and Remark 5.3 in [30] in the same way as
Theorem 3.4 below. (Remark 5.3 can be used since X is reflexive as a UMD space.)

Proposition 3.3. Assume that (H1)—(H5) hold for some 0g,0p5,0c > 0 and a €
[0,m0). Let r € (2,00) satisfy max{0c,0p} < 5 —+ and 6 < 1 — L. Let U :
[0,T] x Q — X, be a strongly measurable and adapted process such that U belongs
to L™(0,T; X,) a.s.. Then U is a mild solution of (SE) if and only if U is a

variational solution of (SE).
We can now state the main existence and regularity result for (SE).

Theorem 3.4. Assume that (H1)—~(H5) hold for some ¢, 0p,0c > 0 and a € [0,10).
Let ug : Q — X0 be strongly Fo measurable. Then the following assertions hold.

(1) There is a unique mild solution U of (SE) with paths in C([0,T]; X,) a.s..
(2) For every §, A > 0 with

(5+a+)\<min{1—9@,% —93,% —0c,m0}
there exists a version of U such that U — P(-,0)uq in C*([0,T); Xs4a) a.s..
(3) If 5, A > 0 are as in (2) and if ug € Xgtrs4+x a.S., then U has a version with

paths in CM([0,T); X514) a.5..

Proof. Assertions (1) and (2) can be reduced to the case
dU(t) = (AU () + F(t,U()) + B, U()) dWg (1), ¢ € [0,T],

taking F =F+AcG and B = (B,AcC) and H = Hy x Hs. The theorem now
follows from [30, Theorem 6.3]. In view of (2), for assertion (3) we only have to
show that P(-,0)ug has the required regularity, which is proved in [30, Lemma
2.3]. We note that, in order to apply the above results from [30] here, one has to

replace in [30] the real interpolation spaces of type (7,2) by complex interpolation
spaces of exponent 7. This can be done using the arguments given in [30]. (]
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4. Boundary noise

Let S C R? be a bounded domain with C%-boundary and outer unit normal vector
of n(s). On S we consider the stochastic equation with boundary noise

O 1,5) = Alt, 5, Dyu(t, ) + (1,5, ult, ) (4.1)
+b(t,s,u(t,s))%(t,s), se s, te(0,T],

B(t,s, D)u(t,s) = G(t,u(t,-))(s) + C(t,u(t,-))(s )aﬁt (t,s), se€0S, te(0,T],
u(0, 8) = up(s), ses.

Here wjy are Brownian motions as specified below, and we use the differential
operators

d d
Alt,s, D) Z aw (t, s) )—|—a0(t,s), B(t,s,D) = Z a;;(t, s)n;(s)D;.
g=1 ij=1

For simplicity we only consider the case of a scalar equation, but systems could
be treated in the same way, cf. e.g. [5, 16].

(A1) We assume that the coefficients of A and B are real and satisfy
aij € C*([0,T);C(S)), ai;(t,-) € C*(S), Dya;; € C([0,T] x S),
ag € C*([0,T], L(8)) N C([0, T]; C(S))
for a constant p € (%, 1] and all 4,5,k = 1,...,d and ¢ € [0,T]. Further, let
(ai;) be symmetric and assume that there is a x > 0 such that

d
> aijlt, )68 > KlEP forall s€S, te0,T], &R (4.2)
i,j=1

In the following we reformulate the problem (4.1) as (SE) thereby giving (4.1)
a precise sense. Set X = LP(S) for some p € (1,00). Let a € [0, 2] satisfy a—% # 1.
We introduce the space

o {feH>r(S): Bt,.D)f=0}, a-5>1,
HB(t)(S) - a.p _1
H*?(S), a—5 <l
where H*P(S) denotes the usual Bessel-potential space (see [29]). We also set
)?n = H*?(9) for all n > 0.
We further define A(t) : D(A(¢)) — X by A(t)z = A(t,-, D)z and
D(A(t)) = {x € H*?(S) : B(t,-, D)x = 0} = Hgl, (5).

Lemma 4.1. Let X = LP(S) and p € (1,00). Assume that (Al) is satisfied. The
following assertions hold.
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(1) The operators A(t), t € [0,T], satisfy (AT) and the graph norms of A(t) are
uniformly equivalent with || - || 2.0 (s). In particular, (A(t))iepo,r] generates a
unique strongly continuous evolution family (P(t, s))o<s<i<T on X.

(2) We have X} = H;?;’)’(S) for all 8 € (0,1) with 20 —% # 1, as well as

X, = )~(,7 = H?"P(S) for all n € [0,5 + %), in the sense of isomorphic
Banach spaces. The norms of these isomorphisms are bounded uniformly for
tel0,T].

(3) Let p € [2,00). Then condition (H1) holds with ng = 1/2.

Proof. (1): See [1] and [31]. Note that A(¢)* on L¥'(S) = X* is given by A*(t)p =
A(t, -, D)p with D(A(t)*) = szsﬁ)(s)v and thus also (A(t)*)o<i<7 satisfies (AT).
(2): Let 0 € (0,1) and p € (1, 00) satisfy 20 — L # 1. Then Theorem 5.2 and

P
Remark 5.3(c) in [5] show that

X§ = [LP(S), D(A®)]o = [LP(S), Hgl (S)lo = Ha b (S) (4.3)
isomorphically, see also [27, Theorem 4.1] and [29, Theorem 1.15.3]. Inspecting the
proofs given in [27] one sees that the isomorphisms in (4.3) are bounded uniformly

in ¢ € [0,7]. Similarly, if 20 — 2 < 1, then X§ = Hy " (S) = H*?(S) = X,.
(3): This is clear from (1), (2) and the definitions. Note that the spaces )Z'f]
are UMD spaces with type 2 because they are isomorphic to closed subspaces of
LP-spaces with p € [2, 00). O

Remark 4.2. Let the constant w > 0 be given by (AT). In problem (4.1) we replace
A and f by A—w and f 4 w, respectively, without changing the notation. This
modification does not affect the assumptions (A1) and (A2), and from now we can
thus take w = 0 in (AT).

Next, we apply Theorem 9.2 and Remark 9.3(e) of [5] in order to construct
the operators Ac(t) and Ap(¢). In [5] it is assumed that 95 € C'*°. However, the
results from [5] used below remain valid under our assumption that 9S € C?, due
to Remark 7.3 of [5] combined with Theorem 2.3 of [15].

Let ¢ € [0,T]. In view of our main Theorem 4.3 we consider only p > 2 and
ae(1l,1+ %) though some of the results stated below can be generalized to other
exponents. Let

Y = WP (S) := Worlm/re(9s)
be the Slobodeckii space of negative order on the boundary which is defined via
duality e.g. in (5.16) of [5]. Let y € Y. Theorem 9.2 and Remark 9.3(e) of [5] give
a unique weak solution x € H*?(S) of the elliptic problem

A(t,, D)z =0 on S,
B(t,-, D)z =y on J5S.

(Weak solutions are defined by means of test functions v € H2 *? (), see [5,
(9.4)].) We set N(t)y := x. Formula (9.15) of [5] implies that the ‘Neumann
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map’ N(t) belongs B(OW*?(S), H*?(S)) and that the map N(-) : [0,T] —
BOW*P(S), H*P(S)) is continuous.
Concerning the other terms in the first line of (4.1) and the noise terms, we
make the following hypotheses.
(A2) The functions f,b:[0,7] X 2 x S x R — R are jointly measurable, adapted
to (Fi)i>0, and Lipschitz functions and of linear growth in the third variable,
uniformly in the other variables.

(A3) For k = 1,2, the process wy can be written in the form i, Wy, , where i; €
~v(Hz, L"(S)) for some r € [1,00) and iz € y(Hz, L*(0S)) for some s € [1,00),
and Wy, and Wy, are independent Hj—cylindrical Brownian motions with
respect to (F;)i>o0-

Supposing that (A2) holds, we define F : [0,7] x & x X — X by setting

F(t,w,z)(s) = f(t,w,s,z(s)). Then F satisfies (H2). We further define the func-

tion B(t,w,z)h on S for (t,w,z) € [0,T] x @ x X and h € H; by means of

B(t,w,z)h =b(t,w,-,x(-))i1h (4.4)
In Examples 4.7 and 4.8 we give conditions on w; and fp such that (—A)~%2 B
maps [0,T] x  x X into y(H;y, X) and (H4) holds.
Assumption (A3) has to be interpreted in the sense that

wi(t,s) = _(ixhf)(s)Wa, (R,  tEeRy,s€S8, k=12,

n>1

where (h%),>1 is an orthonormal basis for Hy, and the sum converges in L"(S)
if £ =1 and in L*(9S) if kK = 2. We note that then (wg(¢,-));>0 is a Brownian
motion with values in L"(S) and L?(05S), respectively. Conversely, if (wg(t,-))i>0,
k = 1,2, are independent Brownian motions with values in L"(S) and L*(95),
then we can always construct iy, and Wy, as above, cf. Example 4.6 below.

We recall that HP(S) = Xt% for t € [0,7T] and o € (1,1 + %) by
Lemma 4.1(2). Moreover, the operator A(t) has bounded imaginary powers in
X (uniformly in ¢ € [0,7T]), see e.g. Example 4.7.3(d) and Section 4.7 in [6]. It
then follows that

HoP(S) = X4 = D((—A(1)%) (45)
with uniformly equivalent norms for ¢ € [0, T}, see e.g. [29, Theorem 1.15.3]. There-
fore, the extrapolated operator A_;(t) maps H*?(S) into X%qa and hence

A(t) = A(t) = Ac(t) == A1 ()N (t) € B(Y, X5 )
with uniformly bounded norms for ¢ € [0,7]. Let § € [1 — §,1]. As above, we
further obtain X& ;o = Ho=2+20p(8) < X, so that
(—A@0)°A(t) € B(Y, H*~*F200(S)) (4.6)

with uniformly bounded norms for ¢ € [0, 7.
In order to relate the boundary noise term in (4.1) with (SE), we set

(C(t,w, )h)(s) = C(t,w, x)(s)(izh)(s)
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for h € Hy. We aim at the mapping property C(t,w,z) : Hy — Y = OW™P(S)
since it will enable us to verify the hypothesis (H5). In fact, if C(t,w,x) € B(H2,Y)
then (—A(t))"9A(t)C(t,w,r) maps Hy continuously into H*~?+20P(S) — X if
6 € [1 - §,1]. In Examples 4.4 and 4.6 we give conditions on C and iy implying
(H5) for C. The deterministic boundary term G can be treated in a similar way.
We want to present a variational formulation of (4.1), starting with an infor-
mal discussion. Let ¢ € T'y, where I'y is given by (3.1). Then ¢(r) € D(A(r)*) =

Wé(l;/) (S). Formally, multiplying (4.1) by ¢, integrating over [0,t] X S, integrating
by parts and interchanging the order of integration, we obtain that, almost surely,

[ lut.s)o(0)(s) ~ unl0)e@) ) ds = [ [ ulro)ir, . Dol + & (] (5) dsdr
S 0JS
—|—/0/Sf(r,s,u(ns))w(r)(s)dsdr (4.7)
—1—/5/0 b(r, s, u(r, s))e(r)(s) dwy(r,s) ds + T1.

In the boundary term T} the part with V(r) disappears since ¢(r) € D(A(r)*),
and the other term is given by

T = /as /Ot B(r,-, D)u(r, )tr(p(r)) drdo
:/65 /Ot G(r,u(r,-))tr(@(r))drda—i—/as /Ot G, u(r, ) te(o(r))dws(r, ) do

where tr denotes the trace operator on Wé’(’; /) (9).

We now start from the equation (4.7) and rewrite it using (2.7) and the
notation introduced above. Setting u(t,s) =: U(t)(s), equality (4.7) becomes

(U(t),¢(t)) = (uo,9(0)) = /0 (U(r), (Alr, D)p(r) + ¢ (r)) dr + Ty (4.8)

+ / (F(rU(r), o(r) dr + / B(r,U(r)*o(r) Wi, (r),

and the boundary term yields

T =/ <G(T7U(T)),tr(<ﬂ(7“))>d7“+/ C(r,U(r))"tr(p(r)) AW, (r).
0 0

Here the brackets denote the duality pairing on LP(S) and LP(9S5), respectively.

We claim that for all z € Wé’éz;(S ) it holds

tr(z) = A(t)'z = (—A_1(t)N(¢))"z.

Indeed, let a € (1,1+1), x € Wi () = D(A*(t)) and y € Y = OW*P(S). Then
we have N(t)y € H*P(S) and a(t)Vz - n = 0 on 0S. Observe that A(t)* maps
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D(A(t)*) into Y*. Integrating by parts and using formula (9.4) of [5], we obtain
(v, M) 2)y = (A@)y, 1)xe, = —(N(t)y, A(t)"z)x

/N a(£)V2) + ao(t)] ds
=0+ /S[(a(t)VN(t)y) -V +ao(t)(N(H)y)z]ds = (y, tr(x))y

which proves the claim. Therefore, 77 becomes

7= [[(AOGEUC). el dr+ [ AOCEUE) o) W (7).
0 0

Combining this expression with (4.8) we arrive at the definition of a variational
solution to the stochastic evolution equation (4.1), as introduced in Definition
3.2. The above calculations thus motivate the following definitions. We say u is a
variational (resp. mild) solution to (4.1) if U(t)(s) = u(t, s) is a variational (resp.
mild) solution to (SE) with the above definitions of A(t), F, Ag, G, B, A¢, C and
W, . We can now state out main result.

Theorem 4.3. Let p € [2, o), X = LP(S), o € (1,1 + %), 0p € [0,1), 6c €
(1-%2,1) and 6 € (1—2,1). Assume that (A1)~(A3) and (H3)~(H5) hold, where
C,G,B,Ac and Ag are deﬁned above. Let ug : Q0 — X be strongly Fo-measurable.

Then the following assertions are true.

(1) There exists a unique variational and mild solution u of (4.1) with paths in
C([0,T); X) a.s

(2) For every 6, A > 0 with § + A < min{l — 0g, 3 — 05,5 — Oc} there exists a
version of u such that u — P(-,0)uq in C*([0,T]; X5) a.s..

(3) If 6, A > 0 are as in (2) and if ug € Xsir a.s., then u has a version with
paths in CM([0,T); X5).

Notethatweneedf 90<777< . Thus, 1f77032ﬁ,170Gz

2—11) and the other assumptions in Theorem 4 3 hold, then we can take A\, > 0

with 0 + A < ﬁ and deduce that u — P(-,0)ug belongs to C*([0,T]; X5) a.s..

If we also have uy € H%’p(S), then we obtain a solution w of (4.1) with paths
in C([0,T]; H?>P(S)) for all § < ﬁ. In this case Sobolev’s embedding (see [29,
Theorem 4.6.1]) implies that

>
T}, L9(S)) forall { ?Sa-1 D=2
wec@Tirs) oran { 5ET 022

Proof of Theorem 4.3. The existence and uniqueness of a mild solution with the
asserted regularity follows from Theorem 3.4 and the above observations. The
equivalence with the variational solution is a consequence of Proposition 3.3. O
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We now discuss several examples under which (H4) and (H5) hold. The hy-
pothesis (H3) can be treated in the same way. We start with some observations
concerning Gaussian random variables ¢ with values in a Banach space Z, see e.g.
[7], [9] and the references therein. The covariance @ € B(Z*,Z) of £ is given by
Qz* = E((§, z*)¢) for x* € Z*. One introduces an inner product [-, -] on the range
of @ by setting

for z*,y* € Z*, and we define |Qz*||%, = [Qz*,Qx*]. The reproducing kernel
Hilbert space H of £ is the completion of QZ* with respect to || - ||g. Then the
identity on QZ* can be extended to a continuous embedding i : H — FE, and
it holds @ = #*. On the other hand, the random variables wy(t,-) in (A3) are
Gaussian with covariance @ = tixi), for all ¢ > 0 and k£ =1, 2.

Ezample 4.4. Let (A3) hold with Hy = L?(9S). Assume that covariance operator
Q2 € B(L?(8S)) of wy is compact. Then there exist numbers (\,),>1 in Ry and
an orthonormal system (e, ),>1 in L?(9S) such that

Q? = Z )\nen X ep
n>1

Assume that

Z Anllenll, < oo.

n>1
We observe that the operator is is given by io = Zn21 VAnen ® e, and belongs to
B(L?(8S), L>°(8S)). Let p € [2,00). Assume that C : [0, 7] x Q x LP(S) — L?(dS)
is strongly measurable and adapted, as well as Lipschitz and of linear growth in

the third variable uniformly in [0, 7] x €. Then (H5) holds for C' = Ciy with a = 0
and every fc € (1 — %, 1), where o € (1,1 + %)

Proof. Lemma 2.2 implies that io € vy(Ha, LP(9S)). Fix t € [0,T], w € Q and
x,y € X = LP(S). Denote K = ||iz| (,, = (0s))- The embedding LP(9S) — Y =
OWP(S) and (2.5) yield

”C(t’wa :C) - C(t’wvy)H'y(Hz,Y) Spya ”C(tvwvx) - C(taway)‘l’y(Hz,Lp(t?S))' (4'10)
Furthermore, for h € Hy and s € S we have
|((C(taw7$) - C(t7w7y))h)(s)| = |é(t,w,$)($) - é(t7wa y)(8)| |12h’(s)|
< K[C(t,w,z)(s) — C(t,w,y)(s)| 1Al - (4.11)
Lemma 2.2 and the assumptions of the example then imply that
1C(t,w, @) — C(t,w, )|l (ra,10(05)) Sp KNIC(tw,2) — C(t,w,y)|| e (as)
< KLgllz = ylzes)-

Using (4.6), we can now deduce the first part of (H5). The second part is shown
in a similar way. O
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Remark 4.5. Note that in Example 4.4 the noise could be a bit more irregular since
in (4.10) one can still regain some integrability by choosing o and 8¢ appropriately.

Ezample 4.6. Let g € (p, 0] and s € [p, c0) satisty % = %Jr % We assume that wq

is an L*(9S)—valued Brownian motion. Let Hy be the reproducing kernel Hilbert
space of the Gaussian random variable ws(1) = wa(1, ) with covariance @ and iy
be the embedding of Hy into L*(9S). Then we have iy € v(Hz, L*(0S)) (cf. [7],
[9] and the references therein for details). It is easy to check that t~'/2ws(t) also
has the covariance @ for ¢ > 0. Due to Proposition 2.6.1 in [18] we thus obtain

1 wa(t) = Y (7 Pws(t), 27,) Qal,
n>1
in X a.s. for every orthonormal basis (Qz}),>1 of Hy. Therefore

wa(t) =Y (wa(t), z})Qu,

n>1

converges in X a.s.. We now define W, (t) : QL (9S) — L2(Q) by setting
Wi, ()Qa™ =Y (wa(t), 27,)(Quy,, a7) = (wa(t), 27)

n>1

for each z* € L¥(8S) and ¢ > 0. Then we deduce |W, (£)Qz*|2 = (Qz*,z*) =
[Qxz*||3;, from (4.9), and thus Wy, extends to a bounded operator from Hy into
L2(Q). Tt is easy to check that Wy, is the required cylindrical Brownian motion
with wy = i9Wh,; i.e., (A3) holds for k = 2. Assume that C': [0,7] x Q x X :—
L1(9S) is strongly measurable and adapted, as well as Lipschitz and of linear
growth in the third variable uniformly in [0, 7] x Q. Then (H5) holds for C' = C'is,

where we take a =0, 0c € (1—%,%) and o € (1,1 + %)

Proof. Fix t € [0,T], w € Q and z,y €X = LP(S). We argue as in the previ-
ous example, but in (4.11) we consider C'(t,w,z) — C(t,w,y) as an multiplication
operator from L*(9S) to LP(0S). Using Holder’s inequality and (2.5), we thus
obtain

||C’(t,w,x) - C(taw?y)‘l’y(Hz,Y) 5(),(1 HC’(t,w,x) - O(t7w5 y)||~/(H2,LP(aS))
<|[Ct,w,z) — C(t,w,y)llLaas) li2lly(r1,, 15 (05))
< Lallz = ylloeos)lli2lly (b, 20 (59)) -

The first part of (H5) now follows in view of (4.6). The second part can be proved
in the same way. O

We now come to condition (H4).

Ezample 4.7. Assume that (A1)—(A3) hold with r € (d, o). Then (H4) is satisfied
for all 0p € (£, 1).
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Proof. Let % = % + 1 and 0p € (£, 1). As in Example 5.5 of [25] one can show

LY(S) — X' (4.12)

93’
where the embedding is uniformly bounded for ¢ € [0,T]. Fix t € [0,T], w € Q and
xz,y € X = LP(S). Arguing as in the previous example, by means of (4.12), (4.4),
Holder’s inequality, (A2) and (2.5) we can estimate
I(=A®) =2 (B(t,w, ) = B(t,w,y))ll(m1,,x)

Sos.prn || B(t,w,x) — B(t,w, y)|ly(m,,Le(5)))

< bt w, ) = b(t, w, y) | Les) i1y (o, Lm(5)

< Lyllz = ylle(s)lially o s))-

This proves the first part of (H4). The second part is obtained in a similar way. 0O

Finally, we consider the white noise situation in the case d = 1.

Ezample 4.8. Let d = 1 and p > 2 and assume that (A1)-(A3) hold with ¢; = I.
Then (H4) is satisfied for all p € (2% +1,1).

2
LP(S). Observe that (—A(t))~?2 can be extended to L7(S) where it coincides with
the fractional power of the corresponding realization Ay(t) of A(¢,-, D) on Li(S)
with the boundary condition B(t,-, D)v = 0. We further obtain

D((=Aq(1))"7) = (LU(S), H*1(8))o .00 < [LI(S), H*U(S)]y = H*"(S).

Proof. Let%:%+%and036(2ip+i,1),Fixte[QTLwGQandx,yGX:

for ¥ € (ﬁ + ,05) with uniform embedding constants, see Sections 1.10.3 and
1.15.2 of [29] and (4.3). Sobolev’s embedding then yields that D((—A4,(t))%2) —

C(S). Using also Holder’s inequality, we thus obtain

[(—A®)2(B(t,w, z) — B(t,w,9))W)](5)| Ko p|(B(t,w, x) — B(t,w, )bl Las)
< bt w, ) = b(t,w, Y)| e s) 1Pl L2(s)
< Lo[lz — yllzes)llhllz2(s)

for all s € S. Now we can apply Lemma 2.2 to obtain that

[(—A() "% (B(t,w, z) — B(t,w,y))|l4(t,,x) Som.pm Lollz — Yl o(s)-

The other condition (H4) can be verified in the same way. O

In the next remark we explain why one cannot consider Dirichlet boundary
conditions with the above methods. This problem was not stated clearly in [21]. In
the one dimensional case with S = R, a version of (4.1) with Dirichlet boundary
conditions has been treated in [4] using completely other methods and working on
a weighted LP space on R,.
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Remark 4.9. Since we are looking for a solution in X = L”(S), we have to require
that o — 24260 > 0, see (4.6). The restriction ¢ < 3 in Theorem 3.4 then leads
tol—-5 <fc < %, so that & > 1. On the other hand, in the case of Dirichlet
boundary conditions one has OW*P(S) = WopP (0S) and the Neumann map
N(t) has to be replaced by the Dirichlet map D(t) € B(OW*P(S), W*P(S)),
where D(t)y := x € W*P(S) is the solution of the elliptic problem

A(t,-,D)x =0 on S,
T=1y on 05

for a given y € 9W*P(S). To achieve that Ac(t) := —A_1(t)D(t) maps into X" ,_,
we need that H*?(S) = Hg&f) (S), and hence ozf% < 0 in the Dirichlet case; which
contradicts a« > 1land p>1.
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