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Abstract. In this paper several models in virus dynamics with and without
immune response are discussed concerning asymptotic behaviour. The case
of immobile cells but diffusing viruses and T-cells is included. It is shown
that, depending on the value of the basic reproductive number R0 of the
virus, the corresponding equilibrium is globally asymptotically stable. If
R0 < 1 then the virus-free equilibrium has this property, and in case R0 > 1
there is a unique disease equilibrium which takes over this property.

1. Introduction

In their recent monograph, May and Nowak [6] considered various models
for the dynamics of a virus. They discussed equilibria of their basic model
and also in the presence of immune responses of different types, and found the
crucial number R0, the basic reproductive number of the virus. However, they
did not consider the stability and the long-time behaviour of the corresponding
dynamical system of 3 or 4 ordinary differential equations.

When working on a model for the dynamics of prions it was discovered in
Prüss, Pujo-Menjouet, Webb and Zacher [9] that the basic model of May and
Nowak, when scaled appropriately, becomes a special case of the scaled model
in [9]. In particular, the Lyapunov functions from [9] are available also for
the study of the asymptotic behaviour of the basic model of virus dynamics,
see also [2], [4]. Thus there arises the natural question whether it is possible
to generalize this approach to the case of models taking into account immune
response, cf. [6], [11]. In this paper we show that the answer is in the affirmative
for two such models.

In the first one T-cells act like predators on the prey -the infected cells- and
reproduce like predators in the Volterra-Lotka model. In this case we show
that there are two threshold values R0 and Ri. If R0 < 1 then there is no
endemic equilibrium, and all solutions converge to the virus-free steady state.
If 1 < R0 < Ri then there is a unique endemic equilibrium which is globally
asymptotically stable, the T-cells die out, and there is no effective immune
response. If R0 > Ri then there is a unique endemic equilibrium with a positive
number of T-cells which is globally asymptotically stable; it is here where the
immune response is active.
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This model has some defects, namely the equilibrium value of the number
of infected cells does only depend on the dynamics of the T-cells, not on the
dynamics of the virus. Also the immune response becomes active only for large
values of R0 which either does not seem plausible. For this reason May and
Nowak [6] formulated a second model in which the T-cells still act as predators
on the infected cells, but do not reproduce as in the Volterra-Lotka model, but
are produced in proportion to the number of infected cells. We show in this
situation that there is only one threshold value R0; for R0 < 1 the virus-free
equilibrium is globally asympotically stable and the T-cells die out. For R0 > 1
there is a unique endemic equilibrium which is globally asymptotically stable.
In this model the immunse response is always active and leads to the expected
behaviour of reducing the number of infected cells.

Both of the above virus models with immune response neglect the spatial
movements of the virus and the T-cells, whereas it is reasonable to consider the
other cells as immobile. (This matter was not discussed in [6].) Therefore we
include in these models the diffusion of the virus and the T-cells, with possibly
different diffusivities. In this way we obtain a coupled system of two reaction
diffusion equations and of two ordinary differential equations. As always in
such problems there arises the interesting question whether the ode-dynamics
or the diffusion determine the longterm behavior. We prove that in this case
the presence of diffusion does not change the picture given above, in particular
there are no spatially heterogeneous equilibria, the threshold numbers retain
their values and the spatially homogeneous equilibria keep their stability and
attractivity properties, no matter what the diffusivities are.

The plan for this paper is as follows. In sections 2 and 3 we formulate the
relevant models and state the main results. The proofs of these results are given
in sections 4 and 5. Our arguments rely on Lyapunov functions and, for the
pde model, on the theory of semilinear parabolic evolution equations.

2. Homogeneous models

May and Nowak introduced the following basic model of virus dynamics for
the number V of free viruses, the number Z of noninfected cells and the number
I of infected cells, see [6]. Noninfected cells are delivered with a constant rate
λ. Viruses are produced with rate kI, and they infect cells with rate rV Z.
The three species are removed with rates νV , mZ and µI, respectively. These
hypotheses lead to the May–Nowak system

V̇ = kI − νV, t ≥ 0,

Ż = λ−mZ − rV Z, t ≥ 0,

İ = rV Z − µI, t ≥ 0,

V (0) = V0, Z(0) = Z0, I(0) = I0,

(2.1)

with given constants λ, r, k,m, µ, ν > 0 and initial values V0, Z0, I0 ≥ 0. The
reproduction rate

R0 =
krλ

mµν
(2.2)
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is the crucial quantity governing the longterm behavior of the problem (2.1).
To describe this fact, we first note that (2.1) has exactly the equilibria

(V ,Z, I) = (0, λ/m, 0), (2.3)

(V∗, Z∗, I∗) =
(krλ−mµν

rµν
,
µν

kr
,
ν

k
V∗

)
=
(

(R0 − 1)
m

r
,
Z

R0
, (R0 − 1)

mν

rk

)
.

The first one is the disease free equilibrium which is always positive; whereas the
second one is strictly positive if and only if R0 > 1. Only in this case (V∗, Z∗, I∗)
is biologically relevant, and then it is called the endemic equilibrium. We further
observe that the mean life span of a free virus and an infected cell is 1/ν and 1/µ,
respectively. Moreover, one infected cell added to a population in the disease
free equilibrium produces infected cells at a rate of krλ/m, approximately.
Thus it produces R0 newly infected cells in the average. This means that we
can expect an outbreak of the infection if and only if R0 > 1. In fact, it
can be proved that for R0 < 1 the disease free equilibrium (V ,Z, I) is stable
and attracts each solution of (2.1) with positive initial values. If R0 > 1,
then (V ,Z, I) becomes unstable, whereas the endemic equilibrium (V∗, Z∗, I∗)
is stable and attracts each solution starting in (0, 3)3. (See e.g. [9, Thm.2.3]
and the references therein.)

The rather simple model (2.1) describes the early stages of a virus infection
quite well, as discussed in [6, §3.4]. However, for R0 > 1 the above indicated
result says that Z(t) converges to Z∗ = Z/R0 as t→∞. For instance, one has
R0 ≈ 2−5 for HIV in the framework of the above model, see [6, p.25]. For large
t the number of noninfected cells can thus be drastically reduced compared to
the disease free equilibrium. This drawback of the basic model (2.1) is easily
explained by the fact that it does not take into account the immune response
of the infected organism.

An important role in the human immune response is played by cytotoxic
T-lymphocytes (or, T-cells) which detect and eliminate infected cells. Their
number is denoted by T . Following [6, §6], we assume that T–cells destroy
infected cells with rate sIT and that T–cells are removed with rate nT . Con-
cerning the production of T–cells, we first consider the quadratic production
rate aIT leading to the system

V̇ = kI − νV, t ≥ 0,

Ż = λ−mZ − rV Z, t ≥ 0,

İ = rV Z − µI − sIT, t ≥ 0, (2.4)

Ṫ = aIT − nT, t ≥ 0,

V (0) = V0, Z(0) = Z0, I(0) = I0, T (0) = T0,

for given constants λ, r, s, a, k,m, n, µ, ν > 0 and initial values V0, Z0, I0, T0 ≥ 0.
Note that in this model the system (T, I) behaves like a predator-prey system
with birth rate of the prey given by the infection rate rV Z.

This model reduces to (2.1) if T0 = 0. One has the equilibria

P = (0, λ/m, 0, 0) and P∗ = (V∗, Z∗, I∗, 0), (2.5)
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where V∗, Z∗, I∗ are given by (2.3) and P∗ is positive and different from P if
and only if R0 > 1. There is exactly one more equilibrium, namely

P̂ = (V̂ , Ẑ, Î, T̂ ) =
(kn
aν

,
aνλ

amν + rkn
,
n

a
,

arkλ

s(amν + rkn)
− µ

s

)
, (2.6)

which is strictly positive if and only if the second threshold condition

R0 > 1 +
knr

amν
=: Ri (2.7)

holds. The next theorem describes the stability and attractivity of the equilibria
completely in terms of the numbers R0 and Ri.

Theorem 2.1. Let (V0, Z0, I0, T0) ∈ R4
+, and let R0, Ri, P , P∗ and P̂ be given

as in (2.2), (2.7), (2.5) and (2.6), respectively. Then the system (2.4) has a
unique, positive, bounded solution for all t ≥ 0.
(a) Let R0 < 1. Then P is the unique positive equilibrium of (2.4). It is
asymptotically stable and globally attractive in R4

+.
(b) Let 1 < R0 < Ri. Then P is unstable in R4

+, and P∗ is the only other
positive equilibrium. Further, P∗ is stable and globally attractive in (0,∞)4.
(c) Let R0 > Ri. Then P and P∗ are unstable in R4

+, and P̂ is the only
other positive equilibrium. Further, P̂ is strictly positive, stable, and globally
attractive in (0,∞)4.

We observe that for R0 < Ri the immune response has no influence for large
t in so far the solution of (2.4) converges to the equilibrium given by T = 0 and
the equilibrium of the basic virus system (2.1). In this context, notice that the
threshold condition R0 < Ri is equivalent to I∗ < n/a and that the number of
T–cells decreases strictly if and only if I < n/a due to (2.4) (where T > 0, say).
Hence, in order to trigger a significant immune response the reproduction rate
must be large enough to push I over the critical value n/a. In this case it holds

V∗

V̂
=
I∗

Î
=
R0 − 1
Ri − 1

> 1 and
Z∗

Ẑ
=
Ri
R0

< 1.

Compared with the basic model (2.1), the immune response thus decreases the
number of free viruses and of infected cells and increases the number of nonin-
fected cells, roughly by the factor R0/Ri. Moreover, V̂ and Î are proportional
to 1/a and T̂ is proportional to 1/s; i.e., a more efficient immune system mini-
mizes the impact of the infection using less T–cells. A powerful immune system
with a � n can compensate the viral attack in the sense that Ẑ ≈ Z in this
case.

Nevertheless the above model has two drawbacks. First, it does not describe
immune systems reacting also on infections with a small reproduction number.
Second, the limit value Î = n/a does not depend on s nor on the parameters of
the virus model. Both shortcomings disappear if one considers a linear produc-
tion rate aI not depending on the number of T–cells. This appears plausible
since the T–cells do not reproduce themselves as in the predator-prey model,
but rather are produced and a linear production rate seems reasonable. In this
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case we have the system

V̇ = kI − νV, t ≥ 0,

Ż = λ−mZ − rV Z, t ≥ 0,

İ = rV Z − µI − sIT, t ≥ 0, (2.8)

Ṫ = aI − nT, t ≥ 0,

V (0) = V0, Z(0) = Z0, I(0) = I0, T (0) = T0,

for given constants λ, r, s, a, k,m, n, µ, ν > 0 and initial values V0, Z0, I0, T0 ≥ 0.
Notice that here the number of T–cells also increases initially if T0 = 0 and
V0 + I0 > 0, independent of the parameters. In this model we have, besides P ,
only one more positive equilibrium in the case R0 > 1, namely

P̃ = (Ṽ , Z̃, Ĩ, T̃ ) =
(
Ṽ ,

λ

m+ rṼ
,
ν

k
Ṽ ,

aν

kn
Ṽ
)
, (2.9)

where Ṽ is the strictly positive root of the quadratic equation

q(Ṽ ) := Ṽ 2 +
(m
r

+
kµn

asν

)
Ṽ − kmnµ

arsν
(R0 − 1) = 0, (2.10)

which exists due to R0 > 1. Notice that Ĩ now depends on all system parame-
ters. Moreover, the following theorem says that the long-term behavior of (2.8)
is governed by the threshold R0 = 1 alone.

Theorem 2.2. Let (V0, Z0, I0, T0) ∈ R4
+, and let R0, P and P̃ be given as

in (2.2), (2.5) and (2.9), respectively. Then the system (2.8) has a unique,
positive, bounded solution for all t ≥ 0.
(a) Let R0 < 1. Then P is the unique positive equilibrium of (2.8). It is stable
and globally attractive in R4

+.
(b) Let R0 > 1. Then P is unstable in R4

+ and P̃ is the only other positive
equilibrium. Further, P̃ is strictly positive, stable and globally attractive in
(0,∞)4.

Observe that Ṽ < V∗ because q(V∗) > 0 in (2.10). Therefore the immune
response reduces the virus load compared to the basis model (2.1) whenever
the infection breaks out. Since (4.4) and (4.5) yield I∗/Ĩ = V∗/Ṽ , the number
of infected cells is reduced by the same ratio. Moreover, the inequality Ṽ <
V∗ = m(R0 − 1)/r implies that Z̃ = λ(m + rṼ )−1 > λ(mR0)−1 = Z∗; i.e., the
number of noninfected cells is increased by the impact of the T–cells.

3. Models with diffusion

Let G ⊂ Rn be an open bounded domain with C2-boundary, n = n(x)
denotes the outer normal of G at x ∈ ∂G. In this section we reconsider the
models introduced in the previous section, including diffusion of the virus and
the T-cells with diffusion constants dV , dT > 0, while considering the cells as
immobile. At the boundary of G we prescribe Neumann boundary conditions,
which seem to be the natural ones in this context. In particular, the system
(2.4) will be the subsystem resulting from spatially constant initial values, and
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the equilibria of (2.4) will again be equilibria. For the first model this leads to
the following system of reaction diffusion equations.

∂tV (t, x) = dV ∆V (t, x) + kI(t)− νV (t, x), t > 0, x ∈ G,

Ż(t) = λ−mZ(t)− rV (t, x)Z(t), t > 0, x ∈ G,

İ(t) = rV (t, x)Z(t)− µI(t)− sI(t)T (t, x), t > 0, x ∈ G, (3.1)

∂tT (t, x) = dT∆T (t, x) + aI(t)T (t, x)− nT (t, x), t > 0, x ∈ G,
∂nV (t, x) = ∂nT (t, x) = 0, t > 0, x ∈ ∂G,
V (0, x) = V0(x), Z(0) = Z0, I(0) = I0, T (0, x) = T0(x), x ∈ G,

with given constants λ, r, s, a, k,m, n, µ, ν > 0, diffusion constants dV , dT > 0
and initial data V0, Z0, I0, T0 ≥ 0. Note that T0 ≡ 0 implies T (t) ≡ 0 for all
t > 0, hence the basic virus model with diffusing virus is a subsystem of (3.1).

In the second case we similarly have the system

∂tV (t, x) = dV ∆V (t, x) + kI(t)− νV (t, x), t > 0, x ∈ G,

Ż(t) = λ−mZ(t)− rV (t, x)Z(t), t > 0, x ∈ G,

İ(t) = rV (t, x)Z(t)− µI(t)− sI(t)T (t, x), t > 0, x ∈ G, (3.2)

∂tT (t, x) = dT∆T (t, x) + aI(t)− nT (t, x), t > 0, x ∈ G,
∂nV (t, x) = ∂nT (t, x) = 0, t > 0, x ∈ ∂G,
V (0, x) = V0(x), Z(0) = Z0, I(0) = I0, T (0, x) = T0(x), x ∈ G,

with given constants λ, r, s, a, k,m, n, µ, ν > 0, diffusion constants dV , dT > 0
and initial data V0, Z0, I0, T0 ≥ 0.

In the following, we formulate these problems as semilinear evolution equa-
tions. As general references for the theory of such problems we recommend the
books [3], [5], [7]. The phase space is taken as X = C(G)4 and the dependent
variable is P = [V,Z, I, T ]T ∈ X. Let DN denote the negative Neumann-
Laplacian in C(G), i.e.

DNv = −∆v, v ∈ D(DN ) := {v ∈ ∩p>1W
2
p (G) : ∆v ∈ C(G), ∂nv = 0 on ∂G}.

It is well-known that DN is the negative generator of a positive, compact,
bounded, and analytic C0-semigroup e−DN t in C(G). The Neumann-Laplacian
has the analogous properties in Lp(G), 1 ≤ p < ∞. (See e.g. [5, Chap.3], [10]
for the corresponding generation results.) Then we define an operator A in X
by means of

A = diag(dVDN , 0, 0, dTDN ), D(A) = D(DN )×X ×X ×D(DN ).

−A is the generator of the positive, bounded, and analytic C0-semigroup e−At =
diag(e−dV DN t, I, I, e−dTDN t) which, however, is no longer compact since the
diffusivities of Z and I are assumed to be zero. Next we define nonlinear
functions Fi by means of

F1(P ) = [kI − νV, λ−mZ − rV Z, rV Z − µI − sIT, aIT − nT ]T , (3.3)

F2(P ) = [kI − νV, λ−mZ − rV Z, rV Z − µI − sIT, aI − nT ]T ,
6



for P = [V,Z, I, T ]T ∈ X. Then we have the abstract reformulation

Ṗ +AP = Fi(P ), t > 0, P (0) = P0, (3.4)

of (3.1) for i = 1 and of (3.2) for i = 2. By the variation of parameters formula
from semigroup theory, (3.4) is equivalent to the integral equation

P (t) = e−AtP0 +
∫ t

0
e−A(t−s)Fi(P (s))ds, t > 0. (3.5)

Continuous solutions of (3.5) will be called mild solutions of (3.4), as usual.
Note that due to the polynomial structure of Fi and since we are working in
the space of continuous functions, Fi is even analytic hence of class C∞. Also
note that Fi is quasipositive with respect to the standard cone X+ := C+(G)4

in X. Therefore the theory of semilinear evolution equations implies that via
mild solutions, (3.4) generates a local semiflow in X which is also positivity
preserving, i = 1, 2. (See e.g. [3, §3.3].) We show in section 4 that these
semiflows are global in X+ and that their asymptotic behaviour is the same as
in the spatially homogeneous case discussed in section 2. More precisely, we
have the following result for (3.1).

Theorem 3.1. Let (V0, Z0, I0, T0) ∈ X+, and let R0, Ri, P , P∗ and P̂ be given
as in (2.2), (2.7), (2.5) and (2.6), respectively. Then the system (3.1) has a
unique, positive, bounded mild solution P ∈ C(R+;X).
(a) Let R0 < 1. Then P is the unique positive equilibrium of (3.1). It is
asymptotically stable and globally attractive in X+.
(b) Let 1 < R0 < Ri. Then P is unstable in X+, and P∗ is the only other
positive equilibrium. Further, P∗ is stable and globally attractive in X+ \ ({0}×
C+(G)× {0}2).
(c) Let R0 > Ri. Then P and P∗ are unstable in X+, and P̂ is the only
other positive equilibrium. Further, P̂ is strictly positive, stable, and globally
attractive in X+ \ (C+(G)3 × {0}).
(d) Let R0 > 1. Then for the subsystem T ≡ 0, the equilibrium P is unstable,
and P∗ is stable and globally attractive in C+(G)3 \ [({0} × C+(G) × {0} ×
C+(G)) ∪ (C+(G)3 × {0})].

For the second model (3.2) our main result reads as follows.

Theorem 3.2. Let (V0, Z0, I0, T0) ∈ X+, and let R0, P and P̃ be given as
in (2.2), (2.5) and (2.9), resepctively. Then the system (3.2) has a unique,
positive, bounded mild solution P ∈ C(R+;X).
(a) Let R0 < 1. Then P is the unique positive equilibrium of (3.2). It is stable
and globally attractive in X+.
(b) Let R0 > 1. Then P is unstable in X+ and P̃ is the only other positive
equilibrium. Further, P̃ is strictly positive, stable and globally attractive in
X+ \ ({0} × C+(G)× {0} × C+(G)).

We would like to point out that these results in particular imply that in both
cases there are no spatially heterogeneous equilibria.
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4. Proofs of Theorem 2.1 and 2.2

Before proving Theorem 2.1 we rescale the system (2.4) by setting

x(t) =
r

µ
V (t/µ), y(t) =

kr

µ2
Z(t/µ), z(t) =

kr

µ2
I(t/µ), w(t) =

s

µ
T (t/µ),

x0 =
rV0

µ
, y0 =

krZ0

µ2
, z0 =

krI0
µ2

, w0 =
sT0

µ
, (4.1)

ξ =
ν

µ
, σ =

krλ

µ3
, ρ =

m

µ
, α =

aµ

kr
, β =

n

µ
.

Then (2.4) is equivalent to the problem

ẋ = z − ξx, t ≥ 0,
ẏ = σ − ρy − xy, t ≥ 0,

ż = xy − z − wz, t ≥ 0, (4.2)
ẇ = αwz − βw, t ≥ 0,

x(0) = x0, y(0) = y0, z(0) = z0, w(0) = w0,

with given initial values x0, y0, z0, w0 ≥ 0 and constants α, β, ξ, σ, ρ > 0. The
threshold condition R0 > 1 is equivalent to σ > ρξ, and R0 > Ri is equivalent
to σ − ρξ > β/α. In the new variables we have the equilibria

p = (x, y, z, w) =
(

0,
σ

ρ
, 0, 0

)
, (4.3)

p∗ = (x∗, y∗, z∗, w∗) =
(σ
ξ
− ρ, ξ, σ − ρξ, 0

)
, (4.4)

p̂ = (x̂, ŷ, ẑ, ŵ) =
( β
αξ
,

σ

ρ+ x̂
,
β

α
,
ŷ

ξ
− 1
)
, (4.5)

where p∗ is positive if σ > ρξ and p̂ is positive if σ − ρξ > β/α.

Proof of Theorem 2.1. It suffices to consider the normalized system (4.2) with
strictly positve constants and positive initial values. It is clear that this problem
possesses a unique positive solution (x, y, z, w). We set u = x/2 + y + z + w/α
und κ = min{ξ, ρ, 1/2, β} > 0. Then (4.2) yields the inequality

u̇ = σ − ξx/2− ρy − z/2− βw/α ≤ σ − κu,

so that u ≤ u(0) + σ/κ by integration. Therefore the solutions are bounded
and exist for all t ≥ 0. We recall that the equilibria of (4.2) are given by (4.3),
(4.4) and (4.5). Denoting the right hand side of (4.2) by f(x, y, z, w), we have

f ′(p) =


−ξ 0 1 0
−σ/ρ −ρ 0 0
σ/ρ 0 −1 0

0 0 0 −β

 ,

f ′(p∗) =


−ξ 0 1 0
−ξ −ρ− x∗ 0 0
ξ x∗ −1 −z∗
0 0 0 αz∗ − β

 .

(4.6)
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In Subsection 3.2 of [9] the left upper 3 × 3 sub–matrices A of f ′(p) and B
of f ′(p∗) were considered. There it was shown that the eigenvalues of A have
strictly negative real parts if σ < ρξ and that the eigenvalues of B have strictly
negative real parts if σ > ρξ. In view of (4.6) and the principle of linearized
stability, it follows that p is stable if σ < ρξ and that p∗ is stable if 0 < z∗ =
σ − ρξ < β/α, cp. (4.4). The instability assertions for these two equilibria will
be a direct consequence of the attractivity properties of p∗ and p̂ shown below.

First, let σ < ρξ. To treat p, we introduce the function

Φ0(x, y, z, w) = 1
2(y − y)2 + (2ξ − y)(x+ z + 1

αw).

Then (4.2) and σ = ρy easily yield

Φ̇0(x, y, z, w) = −ρ(y − y)2 − x[(y − ξ)2 + ξ(ξ − y)]− β(2ξ − y)w/α.

Since x,w ≥ 0 and y = σ/ρ < ξ, we obtain that Φ0 is a Lyapunov function. If
Φ̇0(x, y, z, w) = 0, then it follows y = y, x = 0 and w = 0, so that z = 0 by the
first line of (4.2). As a result, Φ0 is a strict Lyapunov function on R4

+ and so p
attracts all solutions starting in R4

+.
Second, let z∗ = σ − ρξ ∈ (0, β/α), and consider the function

Φ∗(x, y, z, w) = x− x∗ lnx+ y − y∗ ln y + z − z∗ ln z + w/α.

Here we assume that x, y, z > 0. We deduce from (4.2) and the computations
in [9, §3.4] that

Φ̇∗(x, y, z, w) = −ρ
y

(y − y∗)2 − x∗
[ z
x

+
ξ2

y
+
ξxy

z
− 3ξ

]
−wz + wz∗ + wz − βw

α
.

As in [9, §3.4] we set a = z/x > 0, b = ξ2/y > 0, and ϕ(u, v) = u+ v + ξ3

uv − 3ξ
for u, v > 0. Then the term in brackets [· · · ] is equal to ϕ(a, b). On the other
hand, it can be seen that ϕ(ξ, ξ) = 0 is the unique strict minimum of ϕ on
(0,∞)2. Since z∗ < β/α, we arrive at

Φ̇∗(x, y, z, w) ≤ −ρ
y

(y − y∗)2 −
(β
α
− z∗

)
w ≤ 0.

So Φ∗ is a Lyapunov function for (4.2) on (0,∞)4. If Φ̇∗(x, y, z, w) = 0, then
y = y∗ and w = 0. So the differential equations (4.2) yield x = x∗ and z = z∗,
and Φ∗ is a strict Lyapunov function. Let x0, y0, z0 > 0, w0 ≥ 0, and c =
max{Φ∗(x0, y0, z0, w0),Φ∗(p∗)}. The level set N = {(x, y, z, w) ∈ (0,∞)3×R+ :
Φ∗(x, y, z, w) ≤ c} is closed and invariant since Φ∗(x, y, z, w)→∞ as one of the
components x, y, z approaches 0. Moreover, N contains exactly the equilibrium
p∗. Therefore the solution converges to p∗ as t → ∞ thanks to La Salle’s
principle.

Third, let σ − ρξ > β/α and define

Φ(x, y, z, w) =
ŷ

ξ
(x− x̂ lnx) + (y − ŷ ln y) + (z − ẑ ln z) +

1
α

(w − ŵ lnw)

for x, y, z, w > 0. Due to (4.5), it holds ẑ = ξx̂ = β/α and 1 + ŵ = ŷ/ξ. Using
these relations and (4.2), we calculate

Φ̇(x, y, z, w) =
ŷz

ξ
− ŷx− x̂ŷz

ξx
+ x̂ŷ − ρ

y
(y − ŷ)2 + x̂ŷ − xy − x̂ŷ2

y
+ ŷx

9



+ xy − z − wz − ξx̂xy

z
+ ξx̂+

βw

α
+ wz − βw

α
− ŵz +

βŵ

α

= −ρ
y

(y − ŷ)2 − x̂ŷz

ξx
+ 2x̂ŷ − x̂ŷ2

y
− ξx̂xy

z
+ ξx̂+

βŵ

α

= −ρ
y

(y − ŷ)2 − x̂
[ ŷz
ξx

+
ŷ2

y
+
ξxy

z
− 2ŷ − ξ

]
+
βŵ

α
.

We set a = z/x > 0, b = ξŷ/y > 0, and ψ(u, v) = u + v + ξ3

uv − 2ξ − ξ2/ŷ for
u, v > 0. Then we obtain [· · · ] = ψ(a, b)ŷ/ξ and ψ = ϕ + ξ(1 − ξ/ŷ) for the
positive function ϕ defined above. Hence,

Φ̇(x, y, z, w) ≤ −ρ
y

(y − ŷ)2 − x̂ŷ

ξ

ξ

ŷ
(ŷ − ξ) +

βŵ

α
= −ρ

y
(y − ŷ)2 − ξx̂ŵ +

βŵ

α

= −ρ
y

(y − ŷ)2 ≤ 0,

and Φ is a Lyapunov function on (0,∞)4. Observe that p̂ is a strict minimum
of Φ in (0,∞)4. This fact shows the stability of p̂. Assume that Φ̇(x, y, z, w) =
0. Then y = ŷ, and the second equation in (4.2) yields that x is constant.
Hence, z and w are also constant due to the first and third equation in (4.2).
Therefore Φ is a strict Lyapunov function. Let x0, y0, z0, w0 > 0 and c =
max{Φ(x0, y0, z0, w0),Φ(p̂)}. As above we see that N = {(x, y, z, w) ∈ (0,∞)4 :
Φ(x, y, z, w) ≤ c} is closed, invariant, and contains exactly the equilibrium p̂.
By La Salle’s principle, the solution converges to p∗ as t→∞. �

We scale the system (2.8) as in (4.1), but now using the constant α′ = as/(kr).
This leads to the normalized problem

ẋ = z − ξx, t ≥ 0,
ẏ = σ − ρy − xy, t ≥ 0,

ż = xy − z − wz, t ≥ 0, (4.7)

ẇ = α′z − βw, t ≥ 0,

x(0) = x0, y(0) = y0, z(0) = z0, w(0) = w0,

with given initial values x0, y0, z0, w0 ≥ 0 and constants α′, β, ξ, σ, ρ > 0. In this
case we have again the equilibrium p from (4.3). If σ > ρξ, there also exists the
positive equilibrium

p̃ = (x̃, ỹ, z̃, w̃) =
(
x̃,

σ

ρ+ x̃
, ξx̃,

α′ξx̃

β

)
, (4.8)

where x̃ is the unique positive root of the quadratic equation

x̃2 +
(
ρ+

β

α′ξ

)
x̃+

β

α′ξ2
(ρξ − σ) = 0.

Proof of Theorem 2.2. Again, we only have to consider the rescaled system (4.7)
with strictly positive constants and positive initial values. Clearly, there is a
unique positive solution (x, y, z, w). We set u = x/3 + y + z + w/(3α′) and

10



κ = min{ξ, ρ, 1/3, β} > 0. Then (4.7) yields the estimate

u̇ = σ − ξ

3
x− ρy − 1

3
z − wz − β

3α′
w ≤ σ − κu,

so that u ≤ u(0) + σ/κ by integration. As result, the solution is bounded and
exists for all times. The (in-)stability of the equilibrium p can be shown as in
Theorem 2.1. Let σ < ρξ. Using now the function

Φ0(x, y, z, w) = 1
2(y − y)2 + (2ξ − y)(x+ z + 1

2α′w
2),

we prove the global attractivity of p as in Theorem 2.1.
Let σ > ρξ and consider the equilibrium p̃ from (4.8). To establish its attrac-

tivity, we introduce the function

Φ(x, y, z, w) =
ỹ

ξ
(x− x̃ lnx) + (y − ỹ ln y) + (z − z̃ ln z) +

1
2α′

(w − w̃)2

for x, y, z > 0 and w ≥ 0. It holds z̃ = ξx̃ = βw̃/α′ and 1 + w̃ = ỹ/ξ due to
(4.8) and the third equation in (4.7). Taking into account these relations and
(4.7), we compute

Φ̇(x, y, z, w) =
ỹz

ξ
− ỹx− x̃ỹz

ξx
+ x̃ỹ − ρ

y
(y − ỹ)2 + x̃ỹ − xy − x̃ỹ2

y
+ ỹx

+ xy − z − wz − ξx̃xy

z
+ ξx̃+ ξx̃w + wz − w̃z − βw

α′
(w − w̃)

= −ρ
y

(y − ỹ)2 − x̃ỹz

ξx
+ 2x̃ỹ − x̃ỹ2

y
− ξx̃xy

z
+ξx̃(1+w̃)− β

α′
(w−w̃)2

= −ρ
y

(y − ỹ)2 − β

α′
(w − w̃)2 − x̃ỹ

ξ

[ z
x

+
ξỹ

y
+
ξ2xy

ỹz
− 3ξ

]
.

Setting a = z/x > 0 and b = ξỹ/y > 0, we obtain [· · · ] = a+b+ ξ3

ab−3ξ = ϕ(a, b),
where ϕ is positive by the proof of Theorem 2.1. So we have shown that

Φ̇(x, y, z, w) ≤ −ρ
y

(y − ỹ)2 − β

α′
(w − w̃)2,

and that Φ is a Lyapunov function on (0,∞)3×R+. Since p̃ > 0 is a strict local
minimum of Φ, we derive that p̃ is stable. Let Φ̇(x, y, z, w) = 0. It follows that
y = ỹ and w = w̃. Because of (4.7), also x and z are constant. Thus Φ is a
strict Lyapunov function. As in the proof of Theorem 2.1, we can now establish
the asserted global attractivity of p̃. �

5. Proofs of Theorem 3.1 and 3.2

Proof. We begin with the proof of Theorem 3.2. We perform the scaling as in
Section 4 and obtain for p = [u, y, z, w]T ∈ X the problem

ṗ+Ap = F2(p), t > 0, p(0) = p0, (5.1)

where F2 denotes the right hand side of (4.7), with x replaced by u, and here

A = diag(δuDN , 0, 0, δwDN ), D(A) = D(DN )×X ×X ×D(DN ),
11



with δi = di/µ. As mentioned above, there is a unique mild solution of (5.1)
which exists on a maximal time interval [0, tmax), and it is in X+ if the initial
value is so.

(i) Regularity
Since e−At is an analytic C0-semigroup and F2 is of class C1 we obtain
p ∈ Cγ((0, tmax);X) ∩ C((0, tmax);D(Aγ)), for each γ ∈ (0, 1). The equations
for y and z then imply immediately y, z ∈ C1([0, tmax);C(G)). On the other
hand, parabolic regularity theory yields further u,w ∈ C1((0, tmax);C(G)) and
∆u,∆w ∈ C((0, tmax);C(G)), see e.g. [5, Thm.4.3.4]. Thus for t > 0 we have
classical solutions.

(ii) Uniform Bounds
To obtain global existence we have to prove boundedness of p(t) on its interval
of existence. For this we proceed as follows. Assume p0 ∈ X+. Then adding
the equations for y and z we obtain

∂t(y + z) = σ − ρy − z − wz ≤ σ − ρ0(y + z),

where ρ0 = min{ρ, 1} since p ∈ X+. This implies

0 ≤ (y + z)(t) ≤ e−ρ0t(y0 + z0) + (1− e−ρ0t)σ/ρ0,

which shows that y and z are uniformly bounded. Next we look at the equation
for u, it reads

u̇+ δuDNu+ ξu = z, u(0) = u0.

Obviously, boundedness of e−δuDN t and of z in C(G) and ξ > 0 yield uniform
boundedness of u as well. The same argument applies also to w, here we
use β > 0. Hence we may conclude that p(t) is bounded in X, with bound
depending only on the parameters and the L∞-norms of the initial values. This
implies global existence and boundedness of p(t) on R+ in X+, due to e.g. [5,
Prop.7.1.8].

(iii) Compactness
Since e−δiDN t is bounded and analytic, the uniform boundedness of z(t) in X

as well as ξ, β > 0 imply that u(t) and w(t) are uniformly bounded in D(D1/2
N )

for t ≥ 1. Therefore, the orbits γ(u) := u(R+) ⊂ X+ and γ(w) := w(R+) ⊂ X+

are relatively compact, and so the limit sets

ω(v) = {v∞ ∈ X : v(tn)→ v∞ for some sequence tn →∞}

for v = u and v = w are nonempty, compact and connected, see [3, §4.3]. By
the theorem of Arzela-Ascoli this implies that the sets γ(u) and γ(w) are equi-
continuous on G. We want to show that the orbits of y and z are relatively
compact, as well. Since we already have boundedness in C(G) we need to show
equi-continuity, employing again the Arzela-Ascoli theorem. For this purpose
we subtract the equations for y at two different points x and x̄ to the result

∂t[y(t, x)− y(t, x̄)] + (ρ+ u(t, x))[y(t, x)− y(t, x̄)] = −y(t, x̄)[u(t, x)− u(t, x̄)].
12



Since u(t, x) ≥ 0 and 0 ≤ y(t, x̄) ≤ C <∞, this implies

|y(t, x)− y(t, x̄)| ≤ e−ρt|y0(x)− y0(x̄)|+ C

∫ t

0
e−ρ(t−s)|u(s, x)− u(s, x̄)|ds,

which easily implies equi-continuity of γ(y). Similarly, we have

∂t[z(t, x)− z(t, x̄)] + (1 + w(t, x))[z(t, x)− z(t, x̄)]

=− z(t, x̄)[w(t, x)− w(t, x̄)] + [(uy)(t, x)− (uy)(t, x̄)],

which also yields equi-continuity of γ(z) since w(t, x) ≥ 0, p is bounded and
γ(u), γ(y) and γ(w) are already known to be equi-continuous. Therefore ω(y)
and ω(z) are also nonempty, compact and connected, hence ω(p) ⊂ X+ has
these properties as well.

(iv) Strong Positivity
Another important property of the semiflow is its strong positivity. Since σ > 0,
we have y(t, x) > 0 for all t > 0, x ∈ G, even if y0 ≡ 0; in fact we have the
explicit lower bound

y(t, x) ≥ e−(ρ+C)ty0(x) + (1− e−(ρ+C)t)σ/(ρ+ C), t > 0, x ∈ G,
where C = supt>0,x∈G u(t, x). Next we know u(t, x) ≥ 0 for all t ≥ 0 and x ∈ G.
Then the strong maximum principle and Hopf’s lemma (cf. [8, §3.3]) imply that
in case u(t0, x0) = 0 for some t0 > 0, x0 ∈ G we have u0 ≡ 0 as well as z ≡ 0 on
(0, t0)×G which implies z0 ≡ 0 by continuity. Thus u(t, x) > 0 for all t > 0 and
x ∈ G unless u0 ≡ z0 ≡ 0. If the latter is not the case then (uy)(t, x) > 0, hence
also z(t, x) > 0 for all t > 0, x ∈ G, which finally yields w(t, x) > 0 for all such
t and x. This shows strong positivity of the solutions. As a consequence, there
are two possibilities: either u0 ≡ z0 ≡ 0, then u(t) ≡ z(t) ≡ 0 for all t > 0 and
y(t)→ ȳ := σ/ρ and w(t)→ 0 in C(G) exponentially as t→∞, or u0 + z0 6= 0
and this implies p(t) ∈ intX+ for all t > 0. In particular this shows that intX+

is a positive invariant set for the semiflow, and that we may restrict attention
to initial values in intX+.

(v) The Case R0 < 1
Suppose R0 < 1. We define a functional Φ0(p) by means of

Φ0(p) =
∫
G

[
1
2

(y − ȳ)2 + (2ξ − ȳ)(u+ z +
1

2α′
w2]dx.

This functional is well-defined and of class C1 on X. A simple computation
yields the derivative of Φ0 along a solution.

∂tΦ0(p(t)) = −δw
α′

(2ξ − ȳ)
∫
G
|∇w|2dx− β

α′

∫
G
w2dx

− ρ
∫
G

(y − ȳ)2dx−
∫
G
u[(y − ξ)2 + ξ2(1−R0)]dx ≤ 0, (5.2)

since R0 = σ/ξρ < 1 by assumption. Thus Φ0 is a Lyapunov functional for
(5.1), and it is even a strict Lyapunov functional since ∂tΦ0(p) = 0 implies
w ≡ 0, y ≡ ȳ and u ≡ 0 hence also z ≡ 0 by the equations. Therefore the limit
set ω(p) equals {p̄}, i.e. the solutions all converge to p̄. (See [3, §4.3].)
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Stability of p̄ in X+ can be seen as follows. Suppose that |p0 − p̄|X ≤ δ ≤ 1.
Then the Lyapunov functional Φ0 implies

|y(t)− ȳ|2 + |u(t)|1 + |z(t)|1 + |w(t)|2 ≤ Cδ t > 0,

with some constant C which only depends on G and on ξ, α′ and R0. Since the
solutions are uniformly bounded we may conclude

|p(t)− p̄|p ≤ C1δ
1/p, t > 0,

with some uniform constant C1 and p ∈ (1,∞). Now we use the equation for u
and Sobolev embedding (choose p > n) to obtain

|u(t)|∞ ≤ |e−δuDN t−ξtu0|∞ + c|e−δuDN t−ξt ∗ z|W 1
p (G) ≤ δ + c sup

t>0
|z(t)|p ≤ cδ1/p.

This way we see that u(t) stays small in C(G). The same argument can be
applied to show smallnes of |w(t)|∞. Next we write

∂t(y − ȳ) = −ρ(y − ȳ)− uy,
hence

|y(t)− ȳ|∞ ≤ e−ρt|y0 − ȳ|∞ +M

∫ t

0
e−ρ(t−s)|u(s)|∞ds ≤ δ +M sup

t>0
|u(t)|∞/ρ,

where M = supt>0 |y(t)|∞. This estimate shows that |y(t)− ȳ|∞ stays small as
well. For z we can use the same argument. In conclusion, for given ε > 0 we
find δ > 0 such that |p(t)− p̄|X ≤ ε for t > 0 whenever p0 ∈ X+, |p0− p̄|X ≤ δ.
Thus p̄ is stable in X+.

(vi) The Case R0 > 1
Now assume R0 > 1. This time we restrict attention to D := intX+ which is
positive invariant by (iv). The Lyapunov functional is in this case

Φ(p) =
∫
G

[
ỹ

ξ
φ(u, ũ) + φ(y, ỹ) + φ(z, z̃) +

1
2α′

(w − w̃)2]dx,

where φ(u, ũ) = u − ũ − ũ log(u/ũ). Note that φ(·, ũ) is convex and has the
strict minimum 0 at u = ũ, and we have the lower bound

φ(u, ũ) ≥ ũ

2u2
∞

(u− ũ)2, 0 < u < u∞.

Φ is well-defined and of class C1 on D, and the derivative along solutions
becomes

∂tΦ(p(t)) = − ỹδuũ
ξ

∫
G

|∇u|2

u2
dx− δw

α′

∫
G
|∇w|2dx− β

α′

∫
G

(w − w̃)2dx

−
∫
G

ρ

y
(y − ỹ)2dx− ũỹ

∫
G

[
z

ξu
+
ỹ

y
+
ξuy

ỹz
− 3]dx ≤ 0, (5.3)

cp. the proof of Theorem 2.2. Hence Φ is a Lyapunov functional on D, and it is
even strict. Next we show that for an initial value p0 ∈ D we have ω(p0) ⊂ D.
In fact, let p∞ ∈ ω(p0); choose a sequence tn → ∞ such that p(tn) → p∞.
Fatou’s lemma yields

Φ(p∞) ≤ lim inf
n→∞

Φ(p(tn)) ≤ Φ(p0) <∞,
14



and this implies u∞ > 0 a.e. But then we must have p∞ ∈ D since p∞ lies
on a complete orbit. Since Φ is a strict Lyapunov functional on D, we have
ω(p0) = {p̃}, i.e. p̃ is globally attractive in D. Since all solutions with p0 ∈ X+

and u0 + z0 6= 0 immediately enter D we see that p̃ attracts all solutions with
such initial values.

Stability of p̃ is obtained as in (v) since Φ(p) ≥ c|p− p̃|22 with some constant
c > 0 depending only on the parameters and |p0|X .

Finally, instability of p̄ follows from the attractivity properties of p̃. �

The proof of Theorem 3.1 essentially follows the same lines except for some
minor differences which we are going to comment.

(i) The subsystem T ≡ 0, i.e. the model without immune response is treated
exactly as in the proof of Theorem 3.2 which yields assertion (d) of Theorem
3.1. Therefore we may assume w0 ∈ C+(G), w0 6= 0.

(ii) The first modification concerns the uniform bounds. We obtain uniform
bounds on u, y and z as in the proof of Theorem 3.2, however, due to the
nonlinear term αwz in the equation for w we have to use a different argument
for w. Integrating the equations for y, z and w w.r.t. x we obtain

∂t

∫
G

[y+z+w/α]dx =
∫
G

[σ−ρy−z−βw/α]dx ≤ σ|G|−ρ0

∫
G

[y+z+w/α]dx,

with ρ0 := min{ρ, 1, β} > 0. This implies in particular |w(t)|1 ≤ M for
t > 0, with some constant M > 0. This and the uniform bound on z yield
zw ∈ L∞(R+;L1(G)). Denote by D1

N the Neumann Laplacian on L1(G). Then
the real interpolation space (L1(G), D(D1

N ))θ,1 is embedded into W 2θ
1 (G)) for

θ ∈ (1/2, 1). This fact is shown in [1] for the Dirichlet Laplacian, and the
proof given there extends to our case in view of the estimates for the corre-
sponding semigroup given in [10, Thm.5.7]. The equation for w then implies
w ∈ L∞(R+;W 2−ε

1 (G)) by [5, §2.2.1], for ε ∈ (0, 2). Hence the Sobolev embed-
ding

w ∈ L∞(R+;W 2−ε
1 (G)) ↪→ L∞(R+;Lp1(G))

with 1
p1

= 1− 2−ε
n yields zw ∈ L∞(R+;Lp1(G)), so that w ∈ L∞(R+;W 2−ε

p1 (G)).
(We may assume that n ≥ 2.) Sobolev’s embedding then implies w ∈
L∞(R+;Lp2(G)), with 1

p2
= 1

p1
− 2−ε

n . Iterating this argument, after finitely
many, say k, steps we have pk > n and then after one more iteration step we
may conclude w ∈ L∞(R+;C(G)).

(iii) For strict positivity we have to assume here p0 ∈ X+ and w0 6= 0, u0 +z0 6=
0. Employing the Lyapunov functional

Φ(p) =
∫
G

[
ŷ

ξ
φ(u, û) + φ(y, ŷ) + φ(z, ẑ) +

1
α
φ(w, ŵ)]dx

we obtain assertion (c) as in (vi) of the proof of Theorem 3.2.
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(iv) For the proof of assertion (b) we use the Lyapunov functional

Φ∗(p) =
∫
G

[φ(u, u∗) + φ(y, y∗) + φ(z, z∗) +
w

α
]dx,

and for assertion (a)

Φ0(p) =
∫
G

[
1
2

(y − ȳ)2 + (2ξ − ȳ)(u+ z +
1
α
w]dx.

One easily computes that these are strict Lyapunov functionals for (5.1) with
i = 1, and then we may again argue as in the proof of Theorem 3.2.
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