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Abstract. We study a quasilinear wave equation on a domain arising in
nonlinear optics. We show local well-posedness for strong solutions using
Kato’s approach to quasilinear evolution equations.

1. Introduction

In this paper we show the local well-posedness of the nonlinear wave equation

∂2
t

(
u+K(u)

)
= ∆u (1.1)

for a function u : [0, T ]×Ω→ R on a bounded domain Ω ⊂ Rn for n ∈ {1, 2, 3}.
This equation is used in physics to describe transport of light in a waveguide,
including the nonlinear interaction of the electromagnetic amplitude with the
waveguides’ material. If for example E ∈ R3 is the electrical field and P (E) ∈
R3 the polarisation vector, then Maxwell equations result in the system of
equations ∂2

t (E + P (E)) = −∇×∇× E = ∆E −∇(∇ · E). There are special
solutions of the form E = (0, 0, u(x1, x2)) which are given by our equation (1.1)
with K(u) = P ((0, 0, u)) · (0, 0, 1) for Ω ⊂ R2.

For K = 0, the problem (1.1) becomes the linear wave equation. We assume
that

K ∈ C4(R) and K ′(0) > −1. (1.2)

The most important case is the Kerr model

K(z) = λz3

for a parameter λ ∈ R, see e.g. [MN04], [PNTB09].
Equation (1.1) will be supplemented by homogeneous Dirichlet boundary

conditions on ∂Ω (for simplicity) and initial conditions for u(0, · ) and ∂tu(0, · ).
In the present work we rewrite equation (1.1) by differentiating the left hand

side which leads to the quasilinear wave equation

∂2
t u = f(u)∆u+ g(u)(∂tu)2, (1.3)

where we use (1.2) and introduce the functions f, g : R→ R by

f(z) :=
1

1 +K ′(z)
and g(z) :=

−K ′′(z)
1 +K ′(z)

(1.4)
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for all z ∈ R. In the Kerr model K(z) = λz3 one obtains the expressions

f(z) =
1

1 + 3λ|z|2
and g(z) =

−6λz

1 + 3λ|z|2
. (1.5)

Observe that (1.2) yields

f, g ∈ C2([−ρ, ρ]) and f ≥ δ for some ρ, δ > 0. (1.6)

This condition is assumed throughout this paper. For the Kerr nonlinearity in
(1.5) with λ < 0 we can take any ρ ∈ (0, (3|λ|)−1/2), but the constants below

will explode as ρ approaches (3|λ|)−1/2. Observe that in the ‘defocusing’ case
K(z) = λz3 with λ > 0, the functions f and g together with their derivatives
are bounded on R, though we still have f(z)→ 0 as |z| → ∞. We will comment
on this case in Corollary 4.2.

We note that we cannot expect to obtain global strong solvability in the
‘focusing’ case λ < 0 in the Kerr model. In fact, for Neumann boundary
conditions one easily constructs a solution u(t, x) = φ(t) which does not depend
on space variables: For simplicity, take λ = −1

3 and the initial conditions

u(0) = 0 and ∂tu(0) = 1. Then the map ψ : [0, 1]→ [0, 2
3 ], ψ(s) = s− 1

3s
3, has

the inverse φ : [0, 2
3 ]→ [0, 1] with φ′(t)→∞ as t→ 2

3

−
. Setting u(t, · ) = φ(t),

we obtain u(0) = 0, ∂tu(0) = 1,

∂2
t (u(t)− 1

3u(t)3) = ∂2
t ψ(φ(t)) = 0 = ∆u(t),

and the time derivative of this solution blows up as t→ 2
3

−
.

We solve (1.3) by means of Kato’s approach to quasilinear evolution equations
for initial values (u0, v0) ∈ H3(Ω)×H2(Ω). Since f and g are only defined near
0, we also have to impose that the initial values are small in H2(Ω) ×H1(Ω),
so that the first component is small in L∞ by Sobolev’s embedding in space
dimensions n ≤ 3. One could treat larger space dimensions n in Sobolev spaces
of higher order. The case n = 1 is significantly simpler since then already H1

embeds into L∞ leading to a different, easier analytical setting, cf. Section 2.
In view of the physical motivation and for the sake of conciseness, we restrict
ourselves to the case n ∈ {2, 3}, where the results also cover n = 1 without
giving optimal results.1 We note that the smallness condition can be dropped
in the case λ > 0 in the Kerr model, see Corollary 4.2.

Our results cannot directly be deduced from Kato’s fundamental well-
posedness theorems in [Kat75] since the crucial dissipativity assumption (A1)
of this paper does not hold in the standard norm of the basic space, say,
H1(Ω)×L2(Ω). Kato has already noted in Remark 11.1 in [Kat75] that one has
to employ state dependent norms to deal with this difficulty. In [HKM77], this
approach has been used to solve quasilinear wave equations on Rn. However,
the relevant well-posedness Theorems I and II impose a smallness condition on
the initial data in a higher norm than needed by our results. We adapt the tech-
niques of [HKM77] to our situation and modify them to obtain the improved

1One can surely lower this regularity to (u0, v0) ∈ Hs+1(Ω) × Hs(Ω) for s > n
2

, but to

focus on the main difficulties we avoid fractional Sobolev spaces.
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smallness condition. Also since in [HKM77] many proofs are only sketched, we
present our our arguments in detail.

Alternatively one can rewrite the wave equation as a hyperbolic system of
first order using e.g. the new state z = (∂tu, f(u)1/2∂1u, · · · , f(u)1/2∂nu), see
Section 16 in [Kat75]. In [Kat75a], Kato treated such systems for the spatial
domain Rn and by means of state dependent norms. (See also Section 12 in
[Kat75] for a special case.) Again, the initial values have to satisfy a smallness
condition in a higher norm than in our paper, cf. Theorem II of [Kat75a]. But
more importantly, the resulting first order system is still solved in H3 (or Hs

with s > 5/2, cf. Footnote 1), and hence one obtains solutions u in H4, whereas
our approach and the one of [HKM77] works for u in H3. This drawback was
already discussed on p. 62/63 of [Kat75].

Quasilinear wave equations have been studied intensively also by means of
more direct methods, but mostly for full space problems. Here we refer to
the monograph [Sog08], where more general equations have been treated in a
setting of higher regularity, see in particular Theorem 1.4.1. On the full space
Rn one can use Strichartz’ estimates to reduce the necessary regularity for
certain classes of quasilinear wave equations, see [ST05] and also [Sog08]. On
a bounded domain these estimates are not available (at least not in their full
power). Moreover, there are several results for related, but different systems on
(partly exterior) domains, see e.g. [MS10], [Nak03], [Wei86], [Yao07] and the
references therein.

In the second section we discuss the necessary prerequisites to rewrite (1.3) as
a first order problem ∂tw(t) = A(w(t))w(t) and state a simplified version of our
main result. Following Kato’s work, one then considers the non-autonomous
linear problem ∂tw(t) = A(w̃(t))w(t) for a given function w̃. Using Kato’s
paper [Kat70], we then obtain a solution w = Φ(w̃) of the linear problem. The
crucial step are stability estimates in Hk+1 ×Hk, k ∈ {0, 1, 2}, for products of
the semigroups generated by A(w̃(tj)) which are derived using state depending
norms, see Lemma 3.3. In Section 4 we then establish the local well-posedness
of the initial value problem (1.3) (and thus of (1.1)) by a fixed point argument
for the map w̃ 7→ Φ(w̃).

2. Notation, analytical setting and main result

We first list some notation and assumptions used throughout this paper.

Notation. For Banach spaces (X, | · |X) and (Y, | · |Y ), we write B(X,Y ) for
the space of bounded linear mappings from X to Y endowed with the operator
norm, where we put B(X) := B(X,X). By (A,D(A)) we denote a (possibly
unbounded) operator A together with its domain of definition D(A). The closed
ball in X with center x and radius r is designated by BX(x, r). Throughout C
stands for a generic positive constant.

Let Ω be a bounded domain in Rn, n ∈ {1, 2, 3}, with a boundary ∂Ω of class
C3. On Ω we work with the classical (real-valued) function spaces Ck(Ω) and
W k,p(Ω) for k ∈ N and p ∈ [1,∞]. Their usual norms are written as | · |Ck and
| · |Wk,p when Ω is clear from the context. The special notation Hk(Ω) is used
for the Hilbert spaces W k,2(Ω), and Hk

0 (Ω) denotes the subspace of function in
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Hk(Ω) with vanishing boundary trace. We often make use of the continuous
embeddings

H1(Ω) ↪→ Lp(Ω) and H2(Ω) ↪→ L∞(Ω) (2.1)

for p ∈ [1, 6] which result from Sobolev’s embedding theorem on Ω ⊂ Rn, n ∈
{1, 2, 3}, and provide us with the estimates |v|Lp ≤ C |v|H1 and |v|L∞ ≤ C |v|H2

for all appropriate v, where C only depends on Ω.
For functions v : [0, T ] × Ω → R depending also on the time variable,

C(0, T ;X) is the Banach space of continuous functions v : [0, T ] → X; t 7→
v(t, · ), equipped with the norm ‖v‖C(0,T ;X) := maxt∈[0,T ] |v(t)|X , where X

is (a closed subspace of) a suitable function space with respect to the spa-
tial variable and T > 0. The space Ck(0, T ;X) is defined analogously. By
Lip(0, T ;X) we denote the space of Lipschitz continuous functions with norm
‖v‖Lip(0,T ;X) := ‖v‖C(0,T ;X) + [v]Lip(0,T ;X), where

[v]Lip(0,T ;X) := sup
0<t<t′<T

|v(t)− v(t′)|X
|t− t′|

.

Analytical setting. We want to reformulate (1.3) as a first order (in time)
initial value boundary problem to investigate the well-posedness within Kato’s
theory. To this aim, we employ the Dirichlet Laplace operator ∆D in L2(Ω)
with domain D(∆D) = H2(Ω) ∩H1

0 (Ω). This selfadjoint operator gives rise to
the scale of spaces

H0 := L2(Ω), Hk := D
(
(−∆D)k/2

)
with norms given by

|ϕ|H0 = |ϕ|L2(Ω) and |ϕ|Hk
= |(−∆D)k/2|L2(Ω)

for k ∈ N, where ∆D : Hk+2 → Hk is an isometric isomorphism, cf. Section V.1.2
in [Ama95]. We write ∆D for each realization ∆D : Hk+2 → Hk of the Dirichlet
Laplace. Usually we also omit subscript D. We recall the isomorphisms

H1
∼= H1

0 (Ω), H2
∼= H2(Ω) ∩H1

0 (Ω),

H3
∼= {ϕ ∈ H3(Ω) ∩H1

0 (Ω) : ∆ϕb∂Ω = 0}.

(Here the cases k = 1 and k = 2 are well known, whereas the case k = 3 follows
from the isomorphy of ∆D : H3 → H1.)

Using v := ∂tu and w := (u, v)T ∈ H2 ×H1, we write (1.3) as the first order
system

d

dt
w =

(
0 I

f(u)∆D g(u)v

)
w =

(
0 I

f(u)∆D 0

)
w +

(
0 0
0 g(u)v

)
w (2.2)

with w(0) = w0 = (u(0, · ), ∂tu(0, · )). To treat (2.2), we define the spaces

Xk := Hk+1 ×Hk
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with norms given by |(u, v)|2Xk
:= |u|2Hk+1

+ |v|2Hk
for k ∈ {0, 1, 2}, and we

introduce the operators

A(w) :=

(
0 I

f(u)∆D g(u)v

)
, A0(w) :=

(
0 I

f(u)∆D 0

)
,

B(w) :=

(
0 0
0 g(u)v

) (2.3)

for w = (u, v) ∈ X1. In view of (1.6), these operators are only defined if
|u|L∞ ≤ ρ. Using Sobolev’s embedding, we fix a number r > 0 (depending only
on ρ and Ω) such that

|u|H2 ≤ r =⇒ |u|L∞ ≤ ρ, (2.4)

and restrict ourselves to u with |u|H2 ≤ r. The constants C and Ck below may
depend on r. For this number r > 0 and any R > 0 we introduce the space

E(R) :=
{

Ψ ∈ X2 : |Ψ|X1 ≤ r, |Ψ|X2 ≤ R
}
⊂ X2. (2.5)

We now state a simplified version of our main result Theorem 4.1 about

∂2
t u = f(u)∆Du+ g(u)(∂tu)2, t ∈ [0, T ],

u(0) = u0, ∂tu(0) = v0.
(2.6)

Theorem. Assume that (1.6) holds and let w0 = (u0, v0) ∈ X2 have a suffi-
ciently small norm in X1. Then there is a time T > 0 and a function u = ∂tv
and u ∈ C(0, T ;H3)∩C1(0, T ;H2)∩C2(0, T ;H1) satisfying |(u(t), ∂tu(t))|X1 ≤ r
for t ∈ [0, T ] and (2.6).

Any other solution of (2.6) in this class on a time interval [0, T ′] coincides
with u on [0,min{T, T ′})]. Moreover, the map (u0, v0) 7→ (u, ∂tu) is Lipschitz
from suitable bounded subsets of X2 to C(0, T ;H2)× C(0, T ;H1).

Finally, if f and g are given as in (1.4) for a function K fulfilling (1.2), then
the assertions also hold if we replace in (2.6) the PDE by ∂tt(u+K(u)) = ∆Du.

3. The linear non-autonomous problem

In Kato’s approach to quasilinear problems one freezes a function w̃ = (ũ, ṽ) ∈
E(R), see (2.5), in the nonlinear part of (2.2) and then solves the resulting non–
autonomous linear initial value problem

d

dt
w(t) = A(w̃(t))w(t) =

(
A0(w̃) +B(w̃)

)
w(t), t ≥ 0,

w(0) = w0.
(3.1)

For the analysis of this equation, we introduce the weighted norm

|Ψ|2X0,ũ
= |(ϕ,ψ)|2X0,ũ

:=

∫
Ω

{
|∇ϕ|2 + |ψ|2 1

f(ũ)

}
dx

for Ψ = (ϕ,ψ) ∈ X0. Note that | · |X0,ũ and | · |X0 are equivalent norms with

C−1
0 | · |X0 ≤ | · |X0,ũ ≤ C0 | · |X0 (3.2)

where C0 > 0 only depends on δ, ρ and f in (1.6). We first show that our
operators generate (quasi-)contractive semigroups with respect to these norms.
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Lemma 3.1. Let w̃ = (ũ, ṽ) ∈ E(R). Then the operators ±(A0(w̃),X1) gener-
ate a contraction semigroup on (X0, | · |X0,ũ).

Proof. Let Ψ = (ϕ,ψ) ∈ X1. Integrating by parts, we compute

〈A0(w̃)Ψ,Ψ〉X0,ũ =

〈(
ψ

f(ũ)∆Dϕ

)
,

(
ϕ
ψ

)〉
X0,ũ

=

∫
Ω

(∇ψ · ∇ϕ+ ψ∆ϕ) dx = 0.

The operator A0(w̃) is thus dissipative on (X0, |·|X0,ũ). It further has the inverse

A0(w̃)−1 =

(
0 ∆−1

D

(
1
f(ũ) ·

)
I 0

)
∈ B(X0,X1)

so that µ − A0(w̃) is invertible for small µ > 0. The result now follows from
the Theorem of Lumer–Phillips, see e.g. Theorem 1.4,3 in [Paz83]. The case
−A0(w̃) is treated in the same way. �

We can now treat the full operator A(w̃) by a perturbation argument. (Note
that B(w̃) is not dissipative, in general.)

Lemma 3.2. Let w̃ = (ũ, ṽ) ∈ E(R). Then there is a constant C1 > 0 such
that (±A(w̃)− C1R,X1) generates a contraction semigroup on (X0, | · |X0,ũ).

Proof. Let Ψ = (ϕ,ψ) ∈ X0. The embedding (2.1) then yields

|B(w̃)Ψ|X0 = |g(ũ)ṽψ|L2 ≤ |g|L∞ |ṽ|L∞ |ψ|L2 ≤ C |w̃|X2 |Ψ|X0 ≤ CR |Ψ|X0 .

In view of (3.2), we now obtain a constant C1 > 0 such that B(w̃) on (X0, |·|X0,ũ)
is bounded by C1R. Using this bound and Lemma 3.1, we can apply the
bounded perturbation theorem (see e.g. Theorem 3.1.1 in [Paz83]) which implies
the assertion. �

To solve (3.1), we need time depending functions w̃(t) ∈ E(R), cf. (2.5). We
thus introduce the space

E(T,R,L) :=
{

Ψ ∈ C
(
0, T ;E(R)

)
: [Ψ]Lip(0,T ;X1) ≤ L

}
(3.3)

for any R ≥ 1, L > 0 and T > 0. The crucial concept in Kato’s theory is
the stability of the family of generators (A(w̃(t)))t∈[0,T ], as defined in the next

lemma. We write (eτA)τ≥0 for the C0-semigroup generated by A on a Banach
space X. Recall that the part A| of A in a continuously embedded Banach
space Y ↪→ X is defined by D(A|) = {y ∈ D(A) ∩ Y : Ay ∈ Y } and A|y = Ay.

Lemma 3.3. Let w̃ ∈ E(T,R,L). Then the parts of ±A(w̃(t)), t ∈ [0, T ], in
X1 and X2 generate C0-semigroups. Moreover, the family

(
± A(w̃(t)

)
t∈[0,T ]

is

stable in Xk with constants M = C4eC2LT and β = C3R
3, i.e.,∥∥∥e±τnA(w̃(tn)) · · · e±τ1A(w̃(t1))

∥∥∥
B(Xk)

≤ C4eC2LT eC3R3(τ1+···+τn)

for k ∈ {1, 2}, some constants Ci > 0, any decomposition 0 ≤ t1 ≤ · · · ≤ tn ≤ T
and all τj ≥ 0, where n ∈ N and j = 1, . . . , n.
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Proof. We show stability in X0 and X2 and then conclude the claimed stability
on X1 by interpolation of the function spaces. We restrict ourselves to the case
of A(w̃(t)) since −A(w̃(t)) is dealt with in the same way. Take w̃ = (ũ, ṽ) ∈
E(T,R,L).

1) To treat X0, let t, s ∈ [0, T ] and Ψ = (ϕ,ψ) ∈ X0. We first compare the
norms with weights ũ(t) and ũ(s). Employing (1.6), we estimate

|Ψ|2X0,ũ(t) =

∫
Ω
|∇ϕ|2 dx+

∫
Ω
|ψ|2 f(ũ(s))− f(ũ(t))

f(ũ(s))f(ũ(t))
dx+

∫
Ω
|ψ|2 1

f(ũ(s))
dx

≤ |Ψ|2X0,ũ(s) +
|f ′|L∞(Br)

δ
|ũ(t)− ũ(s)|L∞(Ω)

∫
Ω
|ψ2| 1

f(ũ(s))
dx

≤
(
1 + C ′2L|t− s|

)
|Ψ|2X0,ũ(s) ≤ eC

′
2L|t−s||Ψ|2X0,ũ(s) (3.4)

for a constant C ′2 ≥ 0. Set C2 = C ′2/2, and also

Πn := eτnA(w̃(tn))eτn−1A(w̃(tn−1)) · · · eτ1A(w̃(t1)).

To control these products, we use that eτA(w̃(t)) is bounded by eτC1R in | · |X0,ũ(t)

(see Lemma 3.2) and the above inequality (3.4). It follows

|ΠnΨ|X0,ũ(tn) = |eτnA(w̃(tn))Πn−1Ψ|X0,ũ(tn) ≤ eτnC1R |Πn−1Ψ|X0,ũ(tn)

≤ eτnC1ReC2L(tn−tn−1)|Πn−1Ψ|X0,ũ(tn−1)

≤ · · · ≤ e(τn+···+τ1)C1ReC2L(tn−t1)|Ψ|X0,ũ(t1).

The norm equivalence (3.2) then yields

|Πn|B(X0) ≤ C2
0e(τn+···+τ1)C1ReC2L(tn−t1),

i.e., the asserted estimate on X0 even with constants M = C2
0e
C2L(tn−t1) and

β = C1R. (A similar argument can be found in Proposition 3.4 in [Kat70].)
2) Next, we show stability on X2. For this purpose we define the isometric

isomorphism

S :=

(
∆D 0
0 ∆D

)
: X2 → X0,

and consider, suppressing in the following the variable t, and the subscript D,

SA(w̃)S−1 = A(w̃) +

(
0 0

∆
(
f(ũ) ·

)
− f(ũ)∆ ∆

(
g(ũ)ṽ∆−1 ·

)
− g(ũ)ṽ

)
.

For convenience, we write for the rest of the proof w̃ = w = (u, v) ∈ X2. Ob-
serve that the multiplication by f(u) or g(u)v preserves the Dirichlet boundary
condition. We set

F21(w) = ∆
(
f(u) ·

)
− f(u)∆, F22(w) = ∆

(
g(u)v∆−1 ·

)
− g(u)v,

where F2(w) = (F21(w), F22(w)) is considered as an operator from X0 to L2(Ω)
acting as F2(w)Ψ = (F21(w)ϕ, F22(w)ψ). We claim that F2(w) is uniformly
bounded for w = (u, v) ∈ X2 with |w|X2 ≤ R, where we let R ≥ 1.

To show the claim, we let Ψ = (ϕ,ψ) ∈ X0. The first component reads

F21(w)ϕ = f ′′(u)|∇u|2ϕ+ 2f ′(u)∇u · ∇ϕ+ f ′(u)∆uϕ,
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while we obtain for the second component

F22(w)ψ =
(
g′(u)∆u v + g′′(u)|∇u|2v + 2g′(u)∇u · ∇v + g(u)∆v

)
∆−1ψ

+ 2
(
g(u)∇v + g′(u)v∇u

)
· ∇∆−1ψ.

All the appearing nonlinear functions of u belong to L∞(Ω) and are bounded
by a constant C depending on r, f and g, due to (1.6) and (2.4). Using Hölder’s
inequality and Sobolev’s embedding (2.1), we then deduce

|F21(w)φ|L2 ≤ C
(∣∣ |∇u|2ϕ∣∣

L2 +
∣∣ |∇u| |∇ϕ| ∣∣

L2 +
∣∣∆uϕ∣∣

L2

)
≤ C

(
|∇u|2L6 |ϕ|L6 + |∇u|L∞ |∇ϕ|L2 + |∆u|L3 |ϕ|L6

)
≤ CR2 |ϕ|H1

since we have |u|H3 ≤ R ≤ R2. To control F22(w)ψ, we follow the same pattern
and estimate

|F22(w)ψ|L2 ≤ C
(
|∆u|L6 |v|L6 + |∇u|2L6 |v|L∞ + |∇u|L6 |∇v|L6

)
|∆−1ψ|L6

+ C |∆v|L2 |∆−1ψ|L∞ + C
(
|∇v|L3 + |v|L∞ |∇u|L3

)
|∇∆−1ψ|L6

≤ CR3 |∇∆−1ψ|H1 ≤ CR3 |ψ|L2 ,

using |u|H3 + |v|H2 ≤ CR and the regularisation properties of ∆−1 stated in
Section 2. Setting F (w)Ψ := (0, F2(w)Ψ), we thus arrive at

|F (w)Ψ|X0 = |F2(w)Ψ|L2(Ω) ≤ CR3 |Ψ|X0

for w ∈ X2. In view of (3.2), the operator F (w(t)) is bounded by C3R
3 on

(X0, | · |X0,u(t)) for a constant C3 ≥ C1 (showing again the variable t).
Lemma 3.2 and the bounded perturbation theorem (see e.g. Theorem 3.1.1

in [Paz83]) thus imply that SA(w(t))S−1 generates a semigroup (Tt(τ))τ≥0 on

(X0, | · |X0,u(t)) which is bounded by eC3R3τ for all τ ≥ 0 and t ∈ [0, T ]. Propo-
sition 2.4 of [Kat70] (or Theorem 4.5.8 in [Paz83]) then yields that Tt(τ) is

equal to SeτA(w(t))S−1 and that the part of A(w(t)) in X2 generates a C0-

semigroup on X2, which is the restriction of eτA(w(t)) to X2 and hence denoted
by the same symbol. We now introduce equivalent norms on X2 given by
|Ψ|X2,u(t) = |SΨ|X0,u(t). Estimate (3.4) and the just stated results yield

|Ψ|X2,u(t) = |SΨ|X0,u(t) ≤ eC2L|t−s||SΨ|X0,u(s) = eC2L|t−s||Ψ|X2,u(s),

|eτA(w(t))Ψ|X2,u(t) = |SeτA(w(t))S−1SΨ|X0,u(t) ≤ eC3R3τ |Ψ|X2,u(t) (3.5)

for Ψ ∈ X2, τ ≥ 0 and t, s ∈ [0, T ]. Exactly as in step 1), we then deduce that(
A(w(t))

)
t∈[0,T ]

is stable on X2 with constants M = C2
0eC2LT and β = C3R

3.

The stability on X1 then follows by interpolation, see e.g. Theorem V.1.5.4 in
[Ama95]. �

As the last major ingredient for the linear well-posedness result, we establish
the Lipschitz continuity of the map w 7→ A(w).
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Lemma 3.4. There is a constant C5 > 0 such that

|A(w)−A(w)|B(X2,X1) ≤ C5 |w − w|X1 and |A(w)|B(X2,X1) ≤ C5

for all w,w ∈ E(R).

Proof. Let w = (u, v) and w = (u, v) belong to X1 and take Ψ = (ϕ,ψ) ∈ X2.
From (2.3) we deduce

|(A(w)−A(w))Ψ|X1 ≤ |(f(u)− f(u))∆ϕ|H1 + |(g(u)v − g(u)v)ψ|H1 (3.6)

=
∣∣∇[(f(u)− f(u))∆ϕ]

∣∣
L2 +

∣∣∇[(g(u)v − g(u)v)ψ]
∣∣
L2 .

(Recall that we have chosen the norm |∇ · |L2 on H1.) The first term in the
last line can be written in the form

∇
(
(f(u)− f(u))∆ϕ

)
=
(
f ′(u)∇u− f ′(u)∇u

)
∆ϕ+

(
f(u)− f(u)

)
∇(∆ϕ)

=
(
(f ′(u)− f ′(u))∇u+ f ′(u)∇(u− u)

)
∆ϕ+

(
f(u)− f(u)

)
∇(∆ϕ).

We estimate this term as in the proof of Lemma 3.3 and thus derive∣∣∇((f(u)− f(u))∆ϕ
)∣∣
L2

≤ C
(
|u− u|L∞ |∇u∆ϕ|L2 + |∇(u− u)∆ϕ|L2 + |u− u|L∞ |∇(∆ϕ)|L2

)
≤ C

(
|u− u|L∞ |∇u|L3 |∆ϕ|L6 + |∇(u− u)|L3 |∆ϕ|L6 + |u− u|L∞ |ϕ|H3

)
≤ C

(
1 + |u|H2

)
|u− u|H2 |ϕ|H3 .

This shows the required bound for the first summand in (3.6) since |u|H2 ≤ r.
For the second summand we obtain

∇
(
(g(u)v − g(u)v)ψ

)
= ∇

(
g(u)v − g(ū)v

)
ψ +

(
g(u)v − g(u)v

)
∇ψ.

The gradient in the first term is expanded as

∇
(
g(u)v − g(u)v

)
= g′(u)∇u v − g′(u)∇u v + g(u)∇v − g(u)∇v
= (g′(u)− g′(u))∇u v + g′(u)(∇u v −∇u v)

+ (g(u)− g(u))∇v + g(u)∇(v − v)

= (g′(u)− g′(u))∇u v + g′(u)∇(u− u)v + g′(u)∇u (v − v)

+ (g(u)− g(u))∇v + g(u)∇(v − v).

As before, we estimate∣∣∇(g(u)v − g(u)v
)
ψ
∣∣
L2

≤ C
(
|u− u|L∞ |∇u vψ|L2 + |∇(u− u)vψ|L2 + |∇u (v − v)ψ|L2

+ |u− u|L∞ |∇v ψ|L2 + |∇(v − v)ψ|L2

)
≤ C

(
|u− u|L∞ |∇u|L6 |v|L6 |ψ|L6 + |∇(u− u)|L6 |v|L6 |ψ|L6

+ |∇u|L6 |v − v|L6 |ψ|L6 + |u− u|L∞ |∇v|L2 |ψ|L∞ + |∇(v − v)|L2 |ψ|L∞
)

≤ C(1 + |u|2H2 + |v|2H1)|w − w|X1 |ψ|H2 .
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For the remaining term we write

g(u)v − g(u)v = (g(u)− g(u))v + g(u)(v − v),

and conclude correspondingly∣∣(g(u)v − g(u)v)∇ψ
∣∣
L2 ≤ |(g(u)− g(u))v∇ψ|L2 + |g(u)(v − v)∇ψ|L2

≤ C
(
|u− u|L∞ |v|L3 |∇ψ|L6 + |v − v|L3 |∇ψ|L6

)
≤ C

(
1 + |v|H1

)
|w − w|X1 |ψ|H2 .

Using also |v|H1 ≤ r, we obtain the first claim. The second inequality follows
immediately by setting w := 0. �

Corollary 3.5. Let w̃ ∈ E(T,R,L). Then A(w̃(t)) ∈ B(X2,X1) for all t ∈ [0, T ]
and the map t 7→ A(w̃(t)) is Lipschitz-continuous with

[A(w̃)]Lip(0,T ;B(X2,X1)) ≤ C5L.

Proof. We use Lemma 3.4 with w = w̃(t) and w = w̃(s), yielding the bound

|A(w̃(t))−A(w̃(s))|B(X2,X1) ≤ C5|w̃(t)− w̃(s)|X1 ≤ C5L |t− s|. �

For w̃ ∈ E(T,R,L), we have thus established the properties:

(1) A(w̃(t)) generates a C0-semigroup on X1 for all t ∈ [0, T ].
(2)

(
A(w̃(t))

)
t∈[0,T ]

is X1-stable.

(3) The parts of A(w̃(t)) in X2 generate a C0-semigroup for each t and(
A(w̃(t))

)
t∈[0,T ]

is X2-stable.

(4) A(w̃(t)) ∈ B(X2,X1) for each t and the map t 7→ A(w̃(t)) is norm-
continuous in B(X2,X1).

(5) X2 is a Hilbert space. There are equivalent Hilbert norms | · |t on X2

such that A(w̃(t))−C3R
3 is contractive for | · |t and |Ψ|t ≤ eC2L|t−s||Ψ|s

for all t, s ∈ [0, T ] and Ψ ∈ X2.
(6) The analogous assertions hold for the family (−A(w̃(T − t)))t∈[0,T ].

(The second part of property (5) follows from (3.5).) Combined with the results
in [Kat70], these facts yield the well-posedness of (3.1), as recorded in the next
proposition. We call a family U(t, s), 0 ≤ s ≤ t ≤ T , of bounded linear
operators on a Banach space X an evolution family if it is strongly continuous
in (t, s), U(s, s) = I and U(t, s) = U(t, r)U(r, s) for all 0 ≤ s ≤ r ≤ t ≤ T .

Proposition 3.6. Let w̃, w ∈ E(T,R,L) and assume that (1.6) holds. Then
there is a unique evolution family Uw̃(t, s) for 0 ≤ s ≤ t ≤ T in B(X1), where

(a) Uw̃(t, s)X2 ⊂ X2, Uw̃(t, s) is strongly continuous on X2 in (t, s) and

‖Uw̃(t, s)‖B(Xk) ≤ C4 exp
(
(C2L+ C3R

3)(t− s)
)
, k = 1, 2;

(b) the derivatives

∂tUw̃(t, s)w0 = A(w̃(t))Uw̃(t, s)w0,

∂sUw̃(t, s)w0 = −Uw̃(t, s)A(w̃(s))w0

exist in X1 and are continuous in (t, s);
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(c) we have in X1

Uw̃(t, s)w0 − w0 =

∫ t

s
A(w̃(τ))Uw̃(τ, s)w0 dτ,

Uw̃(t, s)w0 − Uw(t, s)w0 =

∫ t

s
Uw̃(t, τ)

(
A(w(τ))−A(w̃(τ))

)
Uw(τ, s)w0 dτ

for all 0 ≤ s ≤ t ≤ T and w0 ∈ X2.

Proof. We first note that (c) follows from (b) by integration. Let w̃ belong to
E(T,R,L). Properties (1)–(4) are the hypotheses of Theorem 4.1 in [Kat70] (or
of Theorem 5.3.1 in [Paz83]). This result shows the existence and uniqueness
of an evolution family Uw̃(t, s) on X1 satisfying the asserted estimate on X1

and the second differential equation in (b). Theorems 5.1 and 5.2 and equation
(5.2) of [Kat70] require only two more assumptions which are somewhat weaker
than (5). Among other points, they say that (for each w0 ∈ X2 and t ∈ [0, T ])

• Uw̃(t, s) leaves invariant X2 with the bound in (a),
• the map [0, t0]→ X2; s 7→ Uw̃(t0, s)w0, is continuous,
• and Uw̃(t, s)w0 → w0 in X2 as (t, s)→ (t0, t0), with 0 ≤ s ≤ t ≤ T .

Using also property (6), we can further apply Theorem 7.7.13 of [Fat83] (or
Remark 5.3 of [Kat70]), which yields the first equation in (b) and the continuity
of t 7→ V (t) := A(w̃(t))Uw̃(t, s)w0 in X1, for w0 ∈ X2, s ∈ [0, T ] and t ∈ [s, T ].

To check the remaining continuity assertions, we first note that the domain
of the part of A(w̃(t)) in X1 is equal to X2 and that its graph norm is equivalent
to that of X2 uniformly in t ∈ [0, T ]. Indeed, let (u, v) ∈ X1 satisfy

A(w̃(t))(u, v) = (v, f(ũ(t))∆Du+ g(ũ(t))ṽ(t)v) = (ϕ,ψ) ∈ X1.

Since w̃ ∈ E(T,R,L), we derive v ∈ H2, ∆Du = f(ũ(t))−1(ψ− g(ũ(t))ṽ(t)v) =:
h(t) ∈ H1 and that |h(t)|H1 is uniformly bounded. Hence, u = ∆−1

D h(t) belongs
to H3 and its norm in H3 is bounded independently of t ∈ [0, T ].

For a fixed λ > C3R
3, the resolvent (λ−A(w̃(t)))−1 thus belongs to B(X1,X2)

and is uniformly bounded in this space for t ∈ [0, T ]. This fact and (4) yield that
the resolvent is continuous as a map from [0, T ] to B(X1,X2). So the continuity
of V seen above implies that t 7→ Uw̃(t, s)w0 is continuous in X2.

We now proceed as indicated in Remark 5.4 of [Kat70]. Let 0 ≤ s0 < t0 ≤ T
and (tn, sn)→ (t0, s0) for 0 ≤ sn ≤ tn ≤ T . Fix τ ∈ (s0, t0). For large n we have
tn > τ > sn and so Uw̃(tn, sn)w0 = Uw̃(tn, τ)Uw̃(τ, sn)w0 tends to Uw̃(t0, s0)w0

in X2 by the established strong continuity of Uw̃(t, s) in t and in s separately.
We have thus shown the strong continuity of (t, s) 7→ Uw̃(t, s) in X2. Combined
with (4), it implies the remaining parts of (b). �

4. The nonlinear problem

Having solved the linear nonautonomous problem, we proceed with the main
result of this paper, we can now solve the nonlinear problem by a fixed point
method. Recall the definition of r > 0 in (2.4) and that we treat space dimen-
sions n ≤ 3. The constant C4 is taken from Lemma 3.3.
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Theorem 4.1. Let (1.6) be true and w0 = (u0, v0) ∈ X2 satisfy |w0|X1 ≤ ηr/C4

for some η ∈ (0, 1). Then there is a time T = T (η, r, |w0|X2) > 0 and a function
w ∈ C1(0, T ;X1) ∩ C(0, T ;X2) with |w(t)|X1 ≤ r for t ∈ [0, T ] that solves

d

dt
w(t) = A(w(t))w(t), t ∈ [0, T ], w(0) = w0. (4.1)

If we set w(t) = (u(t), v(t)), then u = ∂tv and u ∈ C(0, T ;H3)∩C1(0, T ;H2)∩
C2(0, T ;H1) satisfies |(u(t), ∂tu(t))|X1 ≤ r and

∂2
t u = f(u)∆Du+ g(u)(∂tu)2, t ∈ [0, T ],

u(0) = u0, ∂tu(0) = v0.
(4.2)

Any other solution of (4.2) in this class on a time interval [0, T ′] coincides with
u on [0,min{T, T ′})]. Moreover, the map

BX1(0, ηrC4
) ∩BX2(0;R)→ C(0, T ;H2)× C(0, T ;H1); (u0, v0) 7→ (u, ∂tu),

is Lipschitz for every R > 0, where T = T (η, r,R).
Finally, if f and g are given as in (1.4) for a function K fulfilling (1.2), then

the assertions also hold if we replace in (4.2) the PDE by ∂tt(u+K(u)) = ∆Du.

Proof. 1) We construct a solution of (4.1) by means of the contraction principle.
Let w0 ∈ X2 with |w0|X1 ≤ ηr/C4 for some η ∈ (0, 1). We fix numbers R =
2C4|w0|X2 and L = RC5 for the constants C4 and C5 from Lemmas 3.3 and 3.4,
respectively. We further fix a sufficiently small final time T > 0 such that

e(C2L+C3R3)T ≤ min{2, 1/η} and T ≤ 1

2C4L
. (4.3)

For these parameters we define the set ET := E(T,R,L) as in (3.3) and endow
it with the metric

d
(
w,w

)
:= ‖w − w‖C(0,T ;X1) .

Then (C(0, T ;X1), d) is a complete normed space, and the subset of w ∈
C(0, T ;X1) with |w(t)|X1 ≤ r for all t ∈ [0, T ] and [w]Lip(0,T ;X1) ≤ L is closed
in (C(0, T ;X1), d). The reflexivity of X2 yields that every ball in X2 is weakly
closed. Thus, if a sequence {Ψk}k ⊂ E(R) converges in X1 to some Ψ, then
Ψ ∈ E(R). As a result, (ET , d) is complete. For w ∈ ET we define

Φw0(w)(t) := Uw(t, 0)w0,

where Uw is given by Proposition 3.6. We look for a fixed point of Φw0 on ET
To show that Φw0 maps ET into itself, we first note that Proposition 3.6 and

(4.3) yield

|Φw0(w)(t)|Xk
≤ C4e(C2L+C3R3)T |w0|Xk

≤

{
r for k = 1,

R for k = 2,
(4.4)

for all t ∈ [0, T ]. For the Lipschitz bound for t 7→ Φw0(w)(t), we estimate∣∣Uw(t, 0)w0 − Uw(t′, 0)w0

∣∣
X1
≤
∫ t

t′
|A(w(s))Uw(s, 0)w0|X1 ds

≤ sup
s∈[0,T ]

{
|A(w(s))|B(X2,X1)|Uw(s, 0)w0|X2

}
|t− t′|
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≤ C5C4e(C2L+C3R3)T |w0|X2 |t− t′| ≤ L |t− t′|,

for 0 < t′ < t < T , using Proposition 3.6, Lemma 3.4 and (4.3). Hence,
[Φw0(w)]Lip(0,T ;X1) ≤ L and Φw0(w) ∈ ET .

To prove that Φw0 is a strict contraction in (C(0, T ;X1), we take w̃, w ∈ ET .
Proposition 3.6 Lemma 3.4 and (4.3) yield as above that

|Uw̃(t, 0)w0 − Uw(t, 0)w0|X1

≤
∫ t

0

∣∣Uw̃(t, s)
(
A(w̃(s))−A(w(s))

)
Uw(s, 0)w0

∣∣
X1

ds

≤ T sup
s∈[0,T ]

{
|Uw̃(t, s)|B(X1)|A(w̃(s))−A(w(s))|B(X2,X1)|Uw(s, 0)|B(X2)

}
|w0|X2

≤ TC2
4e(C2L+C3R3)TC5 ‖w̃ − w‖C(0,T ;X1) |w0|X2

≤ C4LT ‖w̃ − w‖C(0,T ;X1) ≤
1

2
‖w̃ − w‖C(0,T ;X1) , t ∈ [0, T ].

The contraction principle now gives a (unique) function w ∈ ET satisfying
w = Uw( · , 0)w0, or, d

dtw(t) = A(w(t))w(t) for t ∈ (0, T ) and w(0) = w0, due
Proposition 3.6.

2) Let there be a solution w ∈ C1(0, T ′;X1) ∩ C(0, T ′;X2) of (4.1) with
w(0) = w0 and |w(t)|X1 ≤ r for all t ∈ [0, T ′] and some T ′ > 0. Proposition 3.6
and (4.1) now yield

w(t)− w(t) =

∫ t

0
∂s
(
Uw(t, s)w(s)

)
ds =

∫ t

0
Uw(t, s)

(
A(w(s))−A(w(s))

)
w(s)ds

for all t ∈ [0,min{T, T ′}]. Proposition 3.6 and Lemma 3.4 lead to

|w(t)− w(t)|X1 ≤ C5MeβT ‖w‖C(0,T ′;X2)

∫ t

0
|w(s)− w(s)|X1 ds

for some M,β > 0 so that w = w on [0,min{T, T ′}] by Gronwall’s inequality.
3) We show the continuous dependence of w on the initial data. Let w0, w0 ∈

BX1(0, ηr/C4) ∩ BX2(0, R) where η ∈ (0, 1) and R > 0. The first part of the
proof provides fixed points w( · , w0) = w = Φw0w and w( · , w0) = w = Φw0w
in ET which solve (4.1). (Note that we can take the same T in view of (4.3).)
The strict contractivity and Proposition 3.6 then imply∣∣w(t, w0)− w(t, w0)

∣∣
X1

=
∣∣Uw(t, 0)w0 − Uw(t, 0)w0

∣∣
X1

≤
∣∣Φw0(w)(t)− Φw0(w)(t)

∣∣
X1

+
∣∣Uw(t, 0)(w0 − w0)

∣∣
X1

≤ 1

2

∣∣w(t, w0)− w(t, w0)
∣∣
X1

+MeβT
∣∣w0 − w0

∣∣
X1

for some M,β > 0. This gives∣∣w(t, w0)− w(t, w0)
∣∣
X1
≤ 2MeβT

∣∣w0 − w0

∣∣
X1

for t ∈ [0, T ], as asserted.
4) Finally, we transfer the results to the second order problems. If w = (u, v)

solves (4.1), then v = ∂tu and it easily follows that u belongs to C(0, T ;H3) ∩
C1(0, T ;H2) ∩ C2(0, T ;H1) and satisfies (4.2). Conversely, if u belongs to this
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space and satisfies |(u(t), ∂tu(t)|X1 ≤ r and (4.2) on [0, T ], then w = (u, ∂tu)
is contained C1(0, T ;X1) ∩ C(0, T ;X2) and solves (4.1). This equivalence then
implies the remaining assertions concerning (4.2). In a similar way, we derive
the last part of the theorem. �

An inspection of the proofs yields that for f, g ∈ C2(R) ∩ W 2,∞(R) with
f > 0, the smallness condition in X1 can be dropped. (Observe that we still
bound the norms in X2 by R.) In view of (1.4) we thus obtain our final result.

Corollary 4.2. In the setting of Theorem 4.1 we consider the Kerr nonlinearity
k(z) = λz3 for some λ > 0. Then we can drop in the theorem all restrictions
involving r.
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