LOCAL WELL-POSEDNESS OF A QUASILINEAR WAVE
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ABSTRACT. We study a quasilinear wave equation on a domain arising in
nonlinear optics. We show local well-posedness for strong solutions using
Kato’s approach to quasilinear evolution equations.

1. INTRODUCTION

In this paper we show the local well-posedness of the nonlinear wave equation
O (u+ K(u)) = Au (1.1)

for a function u : [0,7] x Q@ — R on a bounded domain 2 C R" for n € {1,2, 3}.
This equation is used in physics to describe transport of light in a waveguide,
including the nonlinear interaction of the electromagnetic amplitude with the
waveguides’ material. If for example E € R? is the electrical field and P(E) €
R3 the polarisation vector, then Maxwell equations result in the system of
equations 02(E + P(E)) = -V x V x E = AE — V(V - E). There are special
solutions of the form £ = (0,0, u(z1,x2)) which are given by our equation (1.1)
with K (u) = P((0,0,u)) - (0,0,1) for Q C R2.
For K = 0, the problem (1.1) becomes the linear wave equation. We assume
that
KeC*R) and K'(0)> —1. (1.2)
The most important case is the Kerr model
K(z) = A28

for a parameter A € R, see e.g. [MNO4], [PNTBO09].
Equation (1.1) will be supplemented by homogeneous Dirichlet boundary
conditions on 952 (for simplicity) and initial conditions for u(0, - ) and d;u(0, -).
In the present work we rewrite equation (1.1) by differentiating the left hand
side which leads to the quasilinear wave equation

OPu = f(u)Au + g(u)(du)?, (1.3)
where we use (1.2) and introduce the functions f,g: R — R by
1 —K"(2)
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for all z € R. In the Kerr model K(z) = Az one obtains the expressions

1 —6Az
Observe that (1.2) yields
frg€C¥[-p,p]) and f>6 for some p,d > 0. (1.6)

This condition is assumed throughout this paper. For the Kerr nonlinearity in
(1.5) with A < 0 we can take any p € (0, (3|A])~/2), but the constants below
will explode as p approaches (3|\])~'/2. Observe that in the ‘defocusing’ case
K(z) = Az® with A > 0, the functions f and g together with their derivatives
are bounded on R, though we still have f(z) — 0 as |z| = co. We will comment
on this case in Corollary 4.2.

We note that we cannot expect to obtain global strong solvability in the
‘focusing’ case A < 0 in the Kerr model. In fact, for Neumann boundary
conditions one easily constructs a solution u(t, z) = ¢(t) which does not depend

on space variables: For simplicity, take A = —% and the initial conditions
u(0) = 0 and dyu(0) = 1. Then the map ¢ : [0,1] — [0, %], P(s) =s— %33, has

the inverse ¢ : [0, 2] — [0, 1] with ¢/(t) — oo as t — 2. Setting u(t, -) = ¢(t),
we obtain u(0) = 0, dyu(0) =1,

07 (u(t) — 5u(t)’) = 07 e(6(1) = 0 = Au(?),

and the time derivative of this solution blows up as t — g_.

We solve (1.3) by means of Kato’s approach to quasilinear evolution equations
for initial values (ug,vg) € H3(2) x H%(Q). Since f and g are only defined near
0, we also have to impose that the initial values are small in H2(Q2) x H(Q),
so that the first component is small in L by Sobolev’s embedding in space
dimensions n < 3. One could treat larger space dimensions n in Sobolev spaces
of higher order. The case n = 1 is significantly simpler since then already H'
embeds into L*° leading to a different, easier analytical setting, cf. Section 2.
In view of the physical motivation and for the sake of conciseness, we restrict
ourselves to the case n € {2,3}, where the results also cover n = 1 without
giving optimal results.! We note that the smallness condition can be dropped
in the case A > 0 in the Kerr model, see Corollary 4.2.

Our results cannot directly be deduced from Kato’s fundamental well-
posedness theorems in [Kat75] since the crucial dissipativity assumption (A1)
of this paper does not hold in the standard norm of the basic space, say,
H1(Q) x L?(2). Kato has already noted in Remark 11.1 in [Kat75] that one has
to employ state dependent norms to deal with this difficulty. In [HKMT77], this
approach has been used to solve quasilinear wave equations on R"™. However,
the relevant well-posedness Theorems I and IT impose a smallness condition on
the initial data in a higher norm than needed by our results. We adapt the tech-
niques of [HKM77] to our situation and modify them to obtain the improved

1One can surely lower this regularity to (uo,vo) € H*T'(Q) x H*(Q) for s > 3, but to
focus on the main difficulties we avoid fractional Sobolev spaces.
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smallness condition. Also since in [HKMT77] many proofs are only sketched, we
present our our arguments in detail.

Alternatively one can rewrite the wave equation as a hyperbolic system of
first order using e.g. the new state z = (dyu, f(u)/201u, - -, f(u)/20,u), see
Section 16 in [Kat75]. In [Kat75a], Kato treated such systems for the spatial
domain R™ and by means of state dependent norms. (See also Section 12 in
[Kat75] for a special case.) Again, the initial values have to satisfy a smallness
condition in a higher norm than in our paper, cf. Theorem II of [Kat75a]. But
more importantly, the resulting first order system is still solved in H3 (or H*
with s > 5/2, cf. Footnote 1), and hence one obtains solutions u in H*, whereas
our approach and the one of [HKM77] works for v in H3. This drawback was
already discussed on p. 62/63 of [Kat75].

Quasilinear wave equations have been studied intensively also by means of
more direct methods, but mostly for full space problems. Here we refer to
the monograph [Sog08], where more general equations have been treated in a
setting of higher regularity, see in particular Theorem 1.4.1. On the full space
R™ one can use Strichartz’ estimates to reduce the necessary regularity for
certain classes of quasilinear wave equations, see [ST05] and also [Sog08]. On
a bounded domain these estimates are not available (at least not in their full
power). Moreover, there are several results for related, but different systems on
(partly exterior) domains, see e.g. [MS10], [Nak03], [Wei86], [Yao07] and the
references therein.

In the second section we discuss the necessary prerequisites to rewrite (1.3) as
a first order problem dyw(t) = A(w(t))w(t) and state a simplified version of our
main result. Following Kato’s work, one then considers the non-autonomous
linear problem d;w(t) = A(w(t))w(t) for a given function w. Using Kato’s
paper [Kat70], we then obtain a solution w = ®(w) of the linear problem. The
crucial step are stability estimates in H**1 x H* k € {0, 1,2}, for products of
the semigroups generated by A(w(t;)) which are derived using state depending
norms, see Lemma 3.3. In Section 4 we then establish the local well-posedness
of the initial value problem (1.3) (and thus of (1.1)) by a fixed point argument
for the map w — ®(w).

2. NOTATION, ANALYTICAL SETTING AND MAIN RESULT
We first list some notation and assumptions used throughout this paper.

Notation. For Banach spaces (X, | - |x) and (Y, | - |y), we write B(X,Y) for
the space of bounded linear mappings from X to Y endowed with the operator
norm, where we put B(X) := B(X,X). By (A4,D(A)) we denote a (possibly
unbounded) operator A together with its domain of definition D(A). The closed
ball in X with center z and radius r is designated by By (z,r). Throughout C
stands for a generic positive constant.

Let 2 be a bounded domain in R, n € {1, 2,3}, with a boundary 92 of class
C3. On Q we work with the classical (real-valued) function spaces C*(Q) and
WkP(Q) for k € N and p € [1,00]. Their usual norms are written as | - |o» and
| - lwre when Q is clear from the context. The special notation H*(§) is used
for the Hilbert spaces W*2(€2), and HF(2) denotes the subspace of function in
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H*(Q) with vanishing boundary trace. We often make use of the continuous
embeddings

HY Q)= LP(Q)  and  H* Q) — L™(Q) (2.1)

for p € [1,6] which result from Sobolev’s embedding theorem on Q C R", n €
{1, 2,3}, and provide us with the estimates |v|rr < C |v|gy1 and |v|pee < C'|v| g2
for all appropriate v, where C only depends on 2.

For functions v : [0,7] x @ — R depending also on the time variable,
C(0,T;X) is the Banach space of continuous functions v : [0,7] — X;t —
v(t, -), equipped with the norm [[v]lc(o7.x) = maxep ) [v(t)[x, Where X
is (a closed subspace of) a suitable function space with respect to the spa-
tial variable and T' > 0. The space C*(0,T;X) is defined analogously. By
Lip(0,7T; X)) we denote the space of Lipschitz continuous functions with norm

”UHLip(O,T;X) = HU”C(O,T;X) + [U]Lip(O,T;X)7 where
t) — vt

oz = sup 1D ZvE)lx
0<t<t'<T [t — |

Analytical setting. We want to reformulate (1.3) as a first order (in time)
initial value boundary problem to investigate the well-posedness within Kato’s
theory. To this aim, we employ the Dirichlet Laplace operator Ap in L?()
with domain D(Ap) = H?(2) N H}(2). This selfadjoint operator gives rise to
the scale of spaces

Ho:= L*(Q),  Hi:=D((~Ap)*?)
with norms given by

o = lel2y  and ol =1(=Ap)*?|12q)

for k € N, where Ap : Hy1o — Hy is an isometric isomorphism, cf. Section V.1.2
in [Ama95]. We write Ap for each realization Ap : Hyo — Hy of the Dirichlet
Laplace. Usually we also omit subscript D. We recall the isomorphisms

Hi = Ho(Q),  Ha= H(Q)N Ho (),

Hs = {p € H*(Q)NHy(Q) : Ap|,y, =0}
(Here the cases k = 1 and k = 2 are well known, whereas the case k = 3 follows
from the isomorphy of Ap : Hz — H;.)

Using v := dyu and w := (u,v)? € Ha x H1, we write (1.3) as the first order
system

%w - <f(U())AD g(i)v> v <f(u())AD é) o (8 9(2)U> v (22

with w(0) = wp = (u(0, -), du(0, -)). To treat (2.2), we define the spaces

X = Hp1 X Hy
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with norms given by |(u, v)|%(k = |u|3_[chrl + |v|3_tk for £ € {0,1,2}, and we
introduce the operators

Alw)= <f(u())AD g<£>u>’ Aolw)= <f<u(>)AD é>

Blw) = (8 g<3>v>

for w = (u,v) € X;. In view of (1.6), these operators are only defined if
|u|pe < p. Using Sobolev’s embedding, we fix a number r > 0 (depending only
on p and Q) such that

(2.3)

lulp, <r = |u|p= < p, (2.4)

and restrict ourselves to u with |u|g, < r. The constants C' and Cj below may
depend on r. For this number » > 0 and any R > 0 we introduce the space

ER):={¥YeXy: [V|y <r, [¥|x, <R} C Xo. (2.5)
We now state a simplified version of our main result Theorem 4.1 about
O*u = f(u)Apu + g(u)(du)?, te€0,T],

u(0) = uo, 9ru(0) = vo. (2.6)

Theorem. Assume that (1.6) holds and let wo = (up,vo) € Xa have a suffi-
ciently small norm in Xy. Then there is a time T > 0 and a function u = O
andu € C(0,T;H3)NCLH(0, T; Ha)NC?(0,T; H1) satisfying |(u(t), dpu(t))|x, <7
fort €[0,T] and (2.6).

Any other solution of (2.6) in this class on a time interval [0,T'] coincides
with w on [0, min{T,T'})]. Moreover, the map (uo,vo) — (u,Opu) is Lipschitz
from suitable bounded subsets of Xo to C(0,T;Hs) x C(0,T;H1).

Finally, if f and g are given as in (1.4) for a function K fulfilling (1.2), then
the assertions also hold if we replace in (2.6) the PDE by Oy (u+ K (u)) = Apu.

3. THE LINEAR NON-AUTONOMOUS PROBLEM

In Kato’s approach to quasilinear problems one freezes a function w = (u,v) €
E(R), see (2.5), in the nonlinear part of (2.2) and then solves the resulting non—
autonomous linear initial value problem

Sanlt) = A@(O) (1) = (A(@) + B@)u(n), 120,

(3.1)
w(0) = w.
For the analysis of this equation, we introduce the weighted norm
1
2 _ 2 . 2 2
¥z = e 0= | {196 + o g} da
for U = (p,9) € Ap. Note that |- |y, 7 and | - |x, are equivalent norms with
Co'l a0 <1+ |0 < Col - (32)

where Cyp > 0 only depends on 4, p and f in (1.6). We first show that our
operators generate (quasi-)contractive semigroups with respect to these norms.
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Lemma 3.1. Let w = (u,v) € E(R). Then the operators £(Ag(w), X1) gener-
ate a contraction semigroup on (Xo, | - |xym)-

Proof. Let ¥ = (¢,1) € Xj. Integrating by parts, we compute

(Ao ()T, Ty, 7 = <<f(ﬂ)wAD90> : <ZZ> >Xw7 = /Q(w Vg + 1 Ap)dz = 0.

The operator Ag(w) is thus dissipative on (X, |-|x, %) It further has the inverse

Ag(w)™! = (? Ap' <0f%ﬂ))> € B(&Xp, X1)

so that p — Ag(w) is invertible for small g > 0. The result now follows from
the Theorem of Lumer—Phillips, see e.g. Theorem 1.4,3 in [Paz83]. The case
—Ap(w) is treated in the same way. O

We can now treat the full operator A(w) by a perturbation argument. (Note
that B(w) is not dissipative, in general.)

Lemma 3.2. Let w = (u,v) € E(R). Then there is a constant C1 > 0 such
that (£A(w) — C1R, X1) generates a contraction semigroup on (Xo, |- |x,a)-

Proof. Let ¥ = (p,9) € Xy. The embedding (2.1) then yields
|B(w)¥]x, = [g(w)oh]r2 < |glree[v]ree [lr2 < Clwla, |¥la, < CR|Vx,.

In view of (3.2), we now obtain a constant C > 0 such that B(w) on (X, |-|x, )
is bounded by CyR. Using this bound and Lemma 3.1, we can apply the
bounded perturbation theorem (see e.g. Theorem 3.1.1 in [Paz83]) which implies
the assertion. O

To solve (3.1), we need time depending functions w(t) € E(R), cf. (2.5). We
thus introduce the space

E(T,R,L):={¥ € C(0,T; E(R)) : [V ipo12) < L} (3.3)

for any R > 1, L > 0 and T' > 0. The crucial concept in Kato’s theory is
the stability of the family of generators (A(w(t)))icpo,7], as defined in the next
lemma. We write (eTA)Tzo for the C%-semigroup generated by A on a Banach
space X. Recall that the part A of A in a continuously embedded Banach

space Y — X is defined by D(A)) = {y € D(A)NY : Ay € Y} and Ay = Ay.

Lemma 3.3. Let w € E(T,R,L). Then the parts of £A(w(t)), t€[0,T], in
X1 and Xy generate CO-semigroups. Moreover, the family (:t A(@(t))te[o 7 is
stable in &}, with constants M = C1e?LT and 8 = C3R3, i.e.,

HeiTnA(@(tn)) ... et A(@(t) H < C4e02LTeCSR3(T1+---+Tn)
B(X%)

for k € {1,2}, some constants C; > 0, any decomposition 0 < t; < --- <t, <T
and all 7; > 0, wheren € N and j =1,...,n.
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Proof. We show stability in Ay and A5 and then conclude the claimed stability
on X by interpolation of the function spaces. We restrict ourselves to the case
of A(w(t)) since —A(w(t)) is dealt with in the same way. Take w = (u,v) €
E(T,R,L).

1) To treat Xy, let ¢t,s € [0,7] and ¥ = (p,v) € Xy. We first compare the
norms with weights u(¢) and u(s). Employing (1.6), we estimate

L7 / Vo2 ds + / Wf W” o+ / it

| f' oo
< |95 a0 + T' u(t) — u(s)| L= (0 / |47

< (14 CoLlt = s) |93, 2oy < N0 2 (3.4)
for a constant C% > 0. Set Cy = /2, and also
II,, := e™A@(n) -1 A@(tn-1)) . . grA(@(01))

TA(w(t) T7C1R

To control these products, we use that e ) is bounded by e in |-| Xo,(t)

(see Lemma 3.2) and the above inequality (3.4). It follows

|Hn\II‘XO,ﬂ(tn) = ’eTnA(ﬁ(tn))Hn—l\II|XO,ﬁ(tn) < 1R ‘Hn—l\II|Xo,ﬁ(tn)

nC1R_CoL(ty—t,—
SeT ! [§] 2 ( l)|Hn—1lIl’X0,ﬁ(tn,1)

) S e(Tn+...+Tl)ClReCQL(tn—tl) ‘\I/‘Xo,

>~ ﬂ(tl) .
The norm equivalence (3.2) then yields

2 (Tn+-- C1R_ CoL(tn—t
‘Hn‘B(XO) SCOG(T ++71)C1R O L( 1)7

i.c., the asserted estimate on Xy even with constants M = C2eC2L{tn=t) and
B = CiR. (A similar argument can be found in Proposition 3.4 in [Kat70].)
2) Next, we show stability on X5. For this purpose we define the isometric

isomorphism
__(Ap 0.
S = < 0 AD) . XQ ? XO?

and consider, suppressing in the following the variable t, and the subscript D,

~ ~ 0 0
SA(w)S™'=A —i—( ~ ~ SO ~~>.
W5 =AW ag@ ) - @A Alg@pa ) - g@p
For convenience, we write for the rest of the proof w = w = (u,v) € Xs. Ob-

serve that the multiplication by f(u) or g(u)v preserves the Dirichlet boundary
condition. We set

For(w) = A(f(u) - ) = f@)A,  Fp(w) = A(g(w)pA™ - ) — g(u)v,

where Fy(w) = (Fo1(w), Faa(w)) is considered as an operator from Xy to L?()
acting as Fa(w)¥ = (Fa1(w)p, Faa(w)y). We claim that Fa(w) is uniformly
bounded for w = (u,v) € Xy with |w|y, < R, where we let R > 1.

To show the claim, we let ¥ = (¢, 1) € Xy. The first component reads

Fy(w)p = [" ()| Vo +2f"(u)Vu - Vo + f'(u)Aup,
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while we obtain for the second component
Foo(w)) = (g’(u)Auv +¢" (w)|Vul*v + 2¢'(u)Vu - Vv + g(u)Av)A‘lw
+2(g(u) Vv + ¢ (u)vVu) - VA~ .
All the appearing nonlinear functions of u belong to L*°(€2) and are bounded

by a constant C' depending on r, f and g, due to (1.6) and (2.4). Using Hélder’s
inequality and Sobolev’s embedding (2.1), we then deduce

Bor ()62 < C(|IVulP] o + | [Vl 196 | o + [Aug] )

< C(IVubslplzs + [Vul i |Vl z + | Aul sl 1o )
< CR*|plm

since we have |u|gs < R < R%. To control Fys(w)i, we follow the same pattern
and estimate

[Faa(w)lz2 < C(|18ulps[v]s + VulFalolze + [Vulrs|Fols ) A7 po
+ C |AU|L2|A_1w|L<X> + C(‘VU|L3 + |U‘LOO|VU|L3)|VA_1¢|L6
< CRYIVA™ | < CRP |9,

using |u|gs + |v|g2 < CR and the regularisation properties of A~1 stated in
Section 2. Setting F(w)V := (0, F»(w)V), we thus arrive at

|F(w) |2, = [Fo(w)¥]2(0) < CR [V,

for w € Xy. In view of (3.2), the operator F(w(t)) is bounded by C3R? on
(X0, |+ | xp,u(t)) for a constant C3 > C1 (showing again the variable t).

Lemma 3.2 and the bounded perturbation theorem (see e.g. Theorem 3.1.1
in [Paz83]) thus imply that SA(w(t))S~! generates a semigroup (7(7)),>0 on
(Xo, | - |y u(z)) Which is bounded by ¢“®°7 for all 7 > 0 and t € [0,T]. Propo-
sition 2.4 of [Kat70] (or Theorem 4.5.8 in [Paz83]) then yields that Ti(7) is
equal to Se™A@®)S=1 and that the part of A(w(t)) in X generates a C°-
semigroup on X», which is the restriction of e™4(@®) to X, and hence denoted
by the same symbol. We now introduce equivalent norms on X given by
W]y u(t) =[SV xp,u()- Estimate (3.4) and the just stated results yield

U] ) = 1Sy < €TINS g ) = €P2H5 W 4, ),
TA(W TA(W — 3T
AN ey = ST SIS oy < ePFTW (3.5)

for U € Xy, 7 > 0 and ¢,s € [0,T]. Exactly as in step 1), we then deduce that
(A(w(t)))te[o 7 is stable on X, with constants M = C2e“2LT and 8 = C3R.

The stability on X} then follows by interpolation, see e.g. Theorem V.1.5.4 in
[Ama95]. O

As the last major ingredient for the linear well-posedness result, we establish
the Lipschitz continuity of the map w — A(w).
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Lemma 3.4. There is a constant Cs > 0 such that
[A(w) — A(W)|pay,2) < Cs lw—wla,  and  [A(w)|p(a,,2) < Cs
for allw,w € E(R).

Proof. Let w = (u,v) and w = (u,v) belong to X} and take ¥ = (p,9) € As.
From (2.3) we deduce

|(A(w) = A@))¥|a, < [(f(w) = F(@)Apl + [(g(w)v — g(@v)dlpn (3.6)
= |VI[(f(w) = f@)A¢)| » + [V(g(w)v — g(@)D)Y]| -

(Recall that we have chosen the norm |V - |z2 on H!.) The first term in the
last line can be written in the form

V((F(u) — F@)Ag) = (f/(W)Vu - f(@)Va) Ap + (f(u) - (7)) V(Ap)
= ((f"(w) = f/(@)Vu+ f/(@)V(u—1)Ap + (f(u) — f(@)) V(Agp).
We estimate this term as in the proof of Lemma 3.3 and thus derive
[V((f(u) = f@)Ap)] 2
< C(Ju =l Vu Aplzz + [V (u = W) A1z + [u— 71~V (Ap)] 12 )
< C(Ju = Tl Vul s | Apl e + [V (u = )| 2| Agl o + [u = Tlz<lpls)
< C(1+Julp2) lu =1l g2 el gs.

This shows the required bound for the first summand in (3.6) since |u|g2 < r.
For the second summand we obtain

V((g(u)v — g(@o)y) = V(9(u)v — g(@)v) ¢ + (9(u)v — g(@)v) V.
The gradient in the first term is expanded as
V(g(u)v — g(@)v) = ¢'(v)Vuv — ¢'(@W)Vuv + g(u)Vo — g(w)Vo
= (¢ (u) — ¢ (@))Vuv + ¢ (u)(Vuv — Vuv)
+ (9(u) — g(@)) Vo + g(@)V(v — )
= (9'(w) — ¢ (@) Vuv + ¢ @V (u—a)v + ¢ @V (v - 70)
+ (9(u) — g(@)) Vo + g(@)V(v — ).
As before, we estimate
[V (g(u)o = g(@)v) |
< O(lu = Tz [Vuvi| s + [V(u = Dol + [V (0 = D) 12

+ lu = oo | V0] 2 + [V (0 = D)l o)
< C(Ju = luee [Vulgslol ol o + 1V (w =) ool o s
+ Voo = Blgo s + |u = Tl Vol 2l oo + V(0 = B)] 2|1 )

< C(L+ |uffpe + [olfp)lw — @2 [¢] 2
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For the remaining term we write

g(u)v — g(@)v = (g9(u) = g(@)v + g(u)(v —0),

and conclude correspondingly
[(g(w) = g@0) VY 12 < (9(w) = 9@V 12 + g(@)(0 D)V
< C(Ju = alzoe ol V8| o + [0 = B3|V
< CO(1+ o) [w — @], [¢] g2

Using also |v|g1 < r, we obtain the first claim. The second inequality follows
immediately by setting w := 0. g

Corollary 3.5. Letw € E(T,R,L). Then A(w(t)) € B(Xs, X1) forallt € [0,T)
and the map t — A(w(t)) is Lipschitz-continuous with

[A(W)]Lip(0,7:B(x2,21)) < C5L.
Proof. We use Lemma 3.4 with w = w(t) and w = w(s), yielding the bound
[A(w(t)) = A(w(5))|B(az,20) < C5lw(t) — w(s)|a, < C5L[E = s|. O

For w € E(T, R, L), we have thus established the properties:

(1) A(w(t)) generates a C°-semigroup on A; for all t € [0, T).

(2) (A(@(t)))te[O’T] is Xj-stable.

(3) The parts of A(w(t)) in Xy generate a C’-semigroup for each ¢ and
(A(ﬁ(t)))te[oﬂ is Xp-stable.

(4) A(w(t)) € B(Xa, A1) for each t and the map t — A(w(t)) is norm-
continuous in B(Xs, X1).

(5) X is a Hilbert space. There are equivalent Hilbert norms | - |; on Ab
such that A(w(t)) — C3R? is contractive for |- |; and |W|, < eC2Llt=sl|@|,
for all t,s € [0,7] and ¥ € Xj.

(6) The analogous assertions hold for the family (—A(w(T —t))):ejo,1)-
(The second part of property (5) follows from (3.5).) Combined with the results
in [Kat70], these facts yield the well-posedness of (3.1), as recorded in the next
proposition. We call a family U(t,s), 0 < s < t < T, of bounded linear
operators on a Banach space X an evolution family if it is strongly continuous
in (t,8), U(s,s) =1 and U(t,s) =U(t,r)U(r,s) foral 0 < s <r <t <T.

Proposition 3.6. Let w,w € E(T,R,L) and assume that (1.6) holds. Then
there is a unique evolution family Ug(t,s) for 0 < s <t < T in B(X1), where
(a) Ug(t,s)Xa C Xa, Uglt,s) is strongly continuous on Xz in (t,s) and

Uz (¢, S)HB(Xk) < Cyexp ((CQL + CgRS)(t — s)), k=1,2;
(b) the derivatives
U (t, s)wo = A(w(t))Ug(t, s)wo,
OsUg(t, s)wo = —Ug(t, s) A(w(s))wo
(t,s)

exist in X1 and are continuous in (t,s);
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(¢) we have in X
t
Us(t,)un — w0 = [ A@(r)Vs(r,s)un .

Ug(t, s)wy — Ug(t, s)wg = /t Ugz(t,7) (A(@(T)) — A(@(T)))U@(T, s)wo dr
for all 0 < s <t <T and wy € Xs.

Proof. We first note that (c) follows from (b) by integration. Let w belong to
E(T,R, L). Properties (1)—(4) are the hypotheses of Theorem 4.1 in [Kat70] (or
of Theorem 5.3.1 in [Paz83]). This result shows the existence and uniqueness
of an evolution family Ug(t,s) on &) satisfying the asserted estimate on X}
and the second differential equation in (b). Theorems 5.1 and 5.2 and equation
(5.2) of [Kat70] require only two more assumptions which are somewhat weaker
than (5). Among other points, they say that (for each wy € X2 and ¢ € [0,T])

e Uy(t,s) leaves invariant Xy with the bound in (a),
e the map [0, tp] = AXo; s +— Ugl(to, s)wo, is continuous,
e and Ug(t, s)wo — wo in Xz as (t,s) — (to,to), with 0 < s <t <T.

Using also property (6), we can further apply Theorem 7.7.13 of [Fat83] (or
Remark 5.3 of [Kat70]), which yields the first equation in (b) and the continuity
of t — V(t) := A(w(t))Ug(t, s)wo in Xy, for wy € Xa, s € [0,T] and ¢ € [s,T].

To check the remaining continuity assertions, we first note that the domain
of the part of A(w(t)) in AX; is equal to Xy and that its graph norm is equivalent
to that of X3 uniformly in ¢ € [0,T]. Indeed, let (u,v) € X} satisfy

A(w(t))(u,v) = (v, f(u(t))Apu + g(u(t))v(t)v) = (¢,v) € X1.

Since w € E(T, R, L), we derive v € Ha, Apu = f(u(t)) "1 (¢ — g(u(t))v(t)v) =:
h(t) € Hy and that |h(t)|3, is uniformly bounded. Hence, u = AL h(t) belongs
to Hs and its norm in H3 is bounded independently of ¢ € [0, T].

For a fixed A > C3R3, the resolvent (A\—A(w(t)))~! thus belongs to B(X7, X>)
and is uniformly bounded in this space for ¢ € [0, T]. This fact and (4) yield that
the resolvent is continuous as a map from [0, 7] to B(X;, X2). So the continuity
of V seen above implies that ¢ — Ug(t, s)wp is continuous in Xs.

We now proceed as indicated in Remark 5.4 of [Kat70]. Let 0 < sg < tg <T
and (tn, sn) — (to,s0) for 0 < s, <t,, <T. Fix 7 € (80, tp). For large n we have
tn, > 7 > s, and so Ug(ty, Sn)wo = Ug(tn, T)Ug (T, sn)wo tends to Ug(to, so)wo
in Xy by the established strong continuity of Ug(¢,s) in ¢t and in s separately.
We have thus shown the strong continuity of (¢, s) — Ug(t, s) in Xo. Combined
with (4), it implies the remaining parts of (b). O

4. THE NONLINEAR PROBLEM

Having solved the linear nonautonomous problem, we proceed with the main
result of this paper, we can now solve the nonlinear problem by a fixed point
method. Recall the definition of » > 0 in (2.4) and that we treat space dimen-
sions n < 3. The constant Cj is taken from Lemma 3.3.
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Theorem 4.1. Let (1.6) be true and wo = (ug,vo) € X satisfy |wolx, < nr/Cs
for somen € (0,1). Then there is a time T = T(n,r, |wo|x,) > 0 and a function
w € CH0,T;X1) N C(0,T; Xp) with |w(t)|x, <7 fort€[0,T] that solves

d

aw(t) = A(w(t)w(t), tel0,T], w(0) = wp. (4.1)
If we set w(t) = (u(t),v(t)), then u = Oy and u € C(0,T;Hsz) N CL(0,T;Ha) N
C?(0,T;H1) satisfies |(u(t), Opu(t))|x, <7 and

Ofu= f(w)Apu+g(u)(Qu)*, t€0,T],

u(0) = u, Aru(0) = vo. (4.2)

Any other solution of (4.2) in this class on a time interval [0,T"] coincides with
w on [0, min{T,T"})]. Moreover, the map

By, (0, &) N Bx,(0; R) — C(0,T;Hs) x C(0,T;H1); (ug,vo) — (u, dpu),
is Lipschitz for every R > 0, where T =T (n,r, R).

Finally, if f and g are given as in (1.4) for a function K fulfilling (1.2), then
the assertions also hold if we replace in (4.2) the PDE by Ou(u+ K(u)) = Apu.

Proof. 1) We construct a solution of (4.1) by means of the contraction principle.
Let wg € Xy with |wg|x, < nr/Cy for some n € (0,1). We fix numbers R =
2C4|wg|x, and L = RCj5 for the constants Cy and Cs from Lemmas 3.3 and 3.4,
respectively. We further fix a sufficiently small final time T' > 0 such that
1
e(CZL+C3R3)T S min{Q, 1/7’} and T S 204L
For these parameters we define the set Ep := E(T, R, L) as in (3.3) and endow
it with the metric

(4.3)

Then (C(0,7;X1),d) is a complete normed space, and the subset of w €
C(0,T; &x1) with |w(t)|x, < 7 forallt € [0,T] and [w]ipo,rx,) < L is closed
in (C(0,T; &1),d). The reflexivity of Xy yields that every ball in X5 is weakly
closed. Thus, if a sequence {¥;}r C E(R) converges in &} to some V¥, then
U € E(R). As a result, (E7,d) is complete. For w € Er we define

(I)wO (w)(t) = Uw(ta O)UJO,

where U, is given by Proposition 3.6. We look for a fixed point of ®,,, on Ep
To show that ®,,, maps Er into itself, we first note that Proposition 3.6 and
(4.3) yield

r for k=1,
R for k=2,

for all t € [0,T]. For the Lipschitz bound for t — ®,,,(w)(t), we estimate

[ Doy (w) (1), < Cael AR Py < { (4.4)

t
mﬁmW—%Mm%Mg/mm@mmmmmm
t/

< SEPT] {1A(w(5))|8(205,200) U (5, 0)wolx, } [t — ]
se|0,
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< C5Cue O LACENT |y 1o 1t — | < Lt — 1],

for 0 < ¢/ < t < T, using Proposition 3.6, Lemma 3.4 and (4.3). Hence,
[(I)wo (w)]Lip(07T;X1) < L and ‘1>w0 (’LU) € ET.

To prove that @, is a strict contraction in (C'(0,T"; X1), we take w,w € Er.
Proposition 3.6 Lemma 3.4 and (4.3) yield as above that

’U (t O w() — U (t O)U}O‘Xl

/ U (t, s)(A(w(s)) — A(E(s)))Uw(s,O)w()!Xl ds
<T SE%]{\U (t, 8) () [A(@(5)) — A@(3))|5(xs,20) U5, 0) 55) | [wol e,

< TC3( AT O i — Wl (0,152,) [wol x,
~ ..
< CyLT ||lw — wHC(O,T;Xl) <5 llw— w”c(o,Tm) ; te[0,T].

The contraction principle now gives a (unique) function w € Ep satisfying
w = Uy(-,0)wp, or, Sw(t) = A(w(t))w(t) for t € (0,T) and w(0) = wy, due
Proposition 3.6.

2) Let there be a solution w € CY(0,T7'; &) N C(0,T"; Xs) of (4.1) with
w(0) = wo and |w(t)|x, <7 for all t € [0,7'] and some T” > 0. Proposition 3.6
and (4.1) now yield

/8 ))ds—/OUw(t, s)(A(w(s)) — A(w(s)))w(s)ds

for all ¢ € [0, min{T,7"}]. Proposition 3.6 and Lemma 3.4 lead to

t
|MWw@M§%MWmmmnmAm@—ww%m

for some M, 3 > 0 so that w = w on [0, min{7,7"}] by Gronwall’s inequality.

3) We show the continuous dependence of w on the initial data. Let wq, W €
Bx, (0,n7r/Cy4) N Ba, (0, R) where n € (0,1) and R > 0. The first part of the
proof provides fixed points w(-,wp) = w = Py,w and W(-,wp) = W = Py, W
in E7 which solve (4.1). (Note that we can take the same 7" in view of (4.3).)
The strict contractivity and Proposition 3.6 then imply

}w(t, wo) — @(t,@o)‘xl = |Uw(t, O)wo — Uﬁ(t, 0)@0‘)(1
< (Do (1) (£) = B (@) ()], + [Vt 0) (w0 — ),
1 L _
< i\w(t,’wo) —w(t, Wo)| y, + MePT wo — Wo) x,
for some M, 5 > 0. This gives

|w(t, wo) — W(t,Wo)| ,, <2MeT|wy —Wo| 4,

X
for t € [0,T], as asserted.

4) Finally, we transfer the results to the second order problems. If w = (u,v)
solves (4.1), then v = J,u and it easily follows that u belongs to C(0,T;H3) N
CY(0,T;Ha) N C%(0,T;H1) and satisfies (4.2). Conversely, if u belongs to this
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space and satisfies |(u(t), du(t)|x, < r and (4.2) on [0,7], then w = (u, Opu)
is contained C1(0,7;X;) N C(0,T; Xy) and solves (4.1). This equivalence then
implies the remaining assertions concerning (4.2). In a similar way, we derive
the last part of the theorem. O

An inspection of the proofs yields that for f,g € C%(R) N W2>(R) with
f > 0, the smallness condition in X} can be dropped. (Observe that we still
bound the norms in X3 by R.) In view of (1.4) we thus obtain our final result.

Corollary 4.2. In the setting of Theorem 4.1 we consider the Kerr nonlinearity
k(z) = Az3 for some A\ > 0. Then we can drop in the theorem all restrictions
involving .
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