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CHAPTER 1

Strongly continuous semigroups and their generators

Throughout, X and Y are non-zero Banach spaces over the field F ∈ {R,C},
where we mostly write ∥·∥ instead of ∥·∥X etc. for their norms. The space
of all bounded linear maps T : X → Y is denoted by B(X,Y ) and endowed
with the operator norm ∥T∥B(X,Y ) = ∥T∥ = supx ̸=0 ∥Tx∥/∥x∥. We abbreviate
B(X) = B(X,X) and X∗ = B(X,F), where x∗ ∈ X∗ acts as ⟨x, x∗⟩ on X.
Further, I is the identity map on X. Let A : D(A) → Y be linear with domain
D(A) being a linear subspace of X. Then R(A) = AD(A) denotes the range of
A and N(A) = {x ∈ D(A) |Ax = 0} its kernel. For ω ∈ R, we set

R≥0 = [0,∞), R+ = (0,∞), R≤0 = (−∞, 0], R− = (−∞, 0),

Fω = {λ ∈ F |Reλ > ω}, C+ = C0, C− = {λ ∈ C |Reλ < 0},
ω+ = max{ω, 0}, ω− = max{−ω, 0}.

In this course we study linear evolution equations such as

u′(t) = Au(t), t ≥ 0, u(0) = u0, (EE)

on a state space X for given linear operators A and initial values u0 ∈ D(A).
(For a moment we assume that A is closed and densely defined.) We are looking
for the state u(t) ∈ X describing the system governed by A at time t ≥ 0.
A reasonable description of the system requires a unique solution u of (EE)
that continuously depends on u0. In this case (EE) is called wellposed, cf.
Definitions 1.9 and 2.1. We will show in Section 2.1 that wellposedness is
equivalent to the fact that A generates a C0-semigroup T (·) which yields the
solutions via u(t) = T (t)u0. In the next section we will define and investigate
these concepts, before we characterize generators in Sections 1.2 and 1.3. In the
final section the theory is then applied to operators like the Laplacian. Three
intermezzi present basic notions and facts on closed and closable operators,
spectral theory, and Sobolev spaces, mostly taken from the lecture notes [27].

1.1. Basic concepts and properties

We introduce the fundamental notions of these lectures.

Definition 1.1. A map T (·) : R≥0 → B(X) is called a strongly continuous
operator semigroup or just C0-semigroup if it satisfies

(a) T (0) = I and T (t+ s) = T (t)T (s) for all t, s ∈ R≥0,

(b) for each x ∈ X the orbit T (·)x : R≥0 → X; t 7→ T (t)x, is continuous.

Here, (a) is the semigroup property and (b) the strong continuity of T (·).
1
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The generator A of T (·) is given by

D(A) =
{
x ∈ X

∣∣ lim
t→0, t∈R≥0\{0}

1
t (T (t)x− x) exists in X

}
,

Ax = lim
t→0, t∈R≥0\{0}

1
t (T (t)x− x) for x ∈ D(A).

Replacing R≥0 by R, one obtains the concept of a C0-group with generator A.

Observe that the domain D(A) of the generator is defined in a ‘maximal’ way,
in the sense that it contains all vectors whose orbits are differentiable at t = 0.
In view of the introductory remarks, typically the generator is the given object
and T (·) describes the unknown solution. We will first study basic properties
of C0-semigroups, starting with simple observations.

Remark 1.2. a) Let A generate a C0-semigroup or a C0-group. Then its
domain D(A) is a linear subspace and A is a linear map.

b) Let (T (t))t∈R be a C0-group with generator A. Then its restriction
(T (t))t≥0 is a C0-semigroup whose generator extends1 A. (Actually these two
operators coincide by Theorem 1.29.)

c) Let T (·) : R≥0 → B(X) be a semigroup. We then have

T (t)T (s) = T (t+ s) = T (s+ t) = T (s)T (t),

T (nt) = T
(∑n

j=1t
)
=
∏n

j=1
T (t) = T (t)n

for all t, s ≥ 0 and n ∈ N.
Let T (·) : R → B(X) be a group. Then the above properties are valid for all

s, t ∈ R, and hence T (t)T (−t) = T (0) = I = T (−t)T (t). There thus exists the
inverse T (t)−1 = T (−t) for every t ∈ R. ♢

We next construct a C0-group with a bounded generator, which is actually dif-
ferentiable in operator norm. Conversely, an exercise shows that a C0-semigroup
with T (t) → I in B(X) as t→ 0+ must have a bounded generator.

Example 1.3. Let A ∈ B(X) and b > 0. For t ∈ F with |t| ≤ b, the numbers∥∥ tn
n!A

n
∥∥ ≤ (b∥A∥)n

n! are summable in n ∈ N0. As in Lemma 4.23 of [24], the
operator-valued exponential series

T (t) = etA :=
∞∑
n=0

tn

n!
An, t ∈ F,

thus converges in B(X) uniformly for |t| ≤ b. In the same way one sees that

d

dt

N∑
n=0

tn

n!
An =

N∑
n=1

tn−1

(n− 1)!
An = A

N−1∑
k=0

tk

k!
Ak

tends to AetA in B(X) as N → ∞ locally uniformly in t ∈ F. As in Analysis 1 or
4 one then shows that the map F → B(X); t 7→ etA, is continuously differentiable
with derivative AetA. Moreover, (etA)t∈F is a group (where one replaces R≥0

by C in Definition 1.1 (a) if F = C).
The case of a matrix A on X = Cm was treated in Section 4.5 of [25]. ♢

1This concept is defined before Lemma 1.23.
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In the next lemma the exponential boundedness of a semigroup follows from
a mild extra assumption. This assumption is satisfied if ∥T (t)∥ is uniformly
bounded on an interval [0, b] with b > 0 or if T (·) is strongly continuous. (We
need both cases below.)

Lemma 1.4. Let T (·) : R≥0 → B(X) satisfy condition (a) in Definition 1.1
as well as lim supt→0 ∥T (t)x∥ < ∞ for each x ∈ X. Then there are constants
M ≥ 1 and ω ∈ R such that ∥T (t)∥ ≤Meωt for all t ≥ 0.

Proof. 1) We first claim that there are constants c ≥ 1 and t0 > 0 with
∥T (t)∥ ≤ c for all t ∈ [0, t0]. To show this claim, we suppose that there is
a null sequence (tn) in R≥0 such that limn→∞ ∥T (tn)∥ = ∞. The principle of
uniform boundedness (Theorem 4.4 in [24]) then yields a vector x ∈ X with
supn ∥T (tn)x∥ = ∞. There thus exists a subsequence satisfying ∥T (tnj )x∥ → ∞
as j → ∞. This fact contradicts the assumption, and so the claim is true.

2) Let t ≥ 0. Then there are numbers n ∈ N0 and τ ∈ [0, t0) with t = nt0+τ .
Take ω = t−1

0 ln ∥T (t0)∥ if T (t0) ̸= 0 and any ω < 0 otherwise. Set M = ceω−t0 .
Using Remark 1.2, we estimate

∥T (t)∥ = ∥T (τ)T (t0)n∥ ≤ c∥T (t0)∥n ≤ cent0ω = cetωe−τω ≤Meωt. □

The above considerations lead to the following concept, which is discussed
below and will be explored more thoroughly in Section 4.1.

Definition 1.5. Let T (·) be a C0-semigroup with generator A. The quantity

ω0(T ) = ω0(A) := inf
{
ω ∈ R

∣∣∃Mω ≥ 1 ∀ t ≥ 0 : ∥T (t)∥ ≤Mωe
ωt
}
∈ [−∞,∞)

is called its (exponential) growth bound. If supt≥0 ∥T (t)∥ < ∞, then T (·) is
bounded. (Similarly one defines ω0(f) ∈ [−∞,+∞] for any map f : R≥0 → Y .)

Remark 1.6. Let T (·) be a C0-semigroup.

a) Lemma 1.4 implies that ω0(T ) <∞.

b) There are C0-semigroups with ω0(T ) = −∞, see Example 1.8.

c) In general the infimum in Definition 1.5 is not a minimum. For instance,
let X = F2 be endowed with the 1-norm | · |1 and A =

(
0 1
0 0

)
. We then have

T (t) = etA =
(
1 t
0 1

)
and ∥T (t)∥ = 1 + t for t ≥ 0. As a result, the number

Mε := supt≥0 e
−εt ∥T (t)∥ = supt≥0(1 + t)e−εt = ε−1eε−1

tends to infinity as ε→ 0+, where ε ∈ (0, 1].

d) Let X = Cm and A ∈ Cm×m. Satz 4.22 and Theorem 6.3 of [25] imply

ω0(A) = s(A) := max
{
Reλj

∣∣λ1, . . . , λk are the eigenvalues of A
}
.

This result can be generalized to bounded A if dimX = ∞, cf. Example 5.4
of [27]. Every generator satisfies ω0(A) ≥ s(A) by Proposition 1.20. However,
the converse inequality is much more important since A is the given object and
T (·)x the unknown solution. In Chapter 4 we will discuss this point in detail.
Similarly, a semigroup (etA)t≥0 on X = Cm is bounded if and only if s(A)≤0

and all eigenvalues of A on iR are semi-simple. This indicates that boundedness
of C0-semigroups is a more subtle property. ♢
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The next auxiliary result will often be used to check strong continuity.

Lemma 1.7. Let T (·) : R≥0 → B(X) be a map satisfying condition (a) in
Definition 1.1. Then the following assertions are equivalent.

a) T (·) is strongly continuous (and thus a C0-semigroup).

b) T (t)x→ x in X as t→ 0+ for all x ∈ X.

c) There are numbers c, t0 > 0 and a dense subspace D of X such that
∥T (t)∥ ≤ c and T (t)x→ x in X as t→ 0+ for all t ∈ [0, t0] and x ∈ D.

For groups one has analogous equivalences.

Proof. Assertion c) follows from a) because of Lemma 1.4, and b) from c)
by Lemma 4.10 in [24].
Let statement b) be true. Take x ∈ X and t > 0. For h > 0, the semigroup

property and b) imply the limit

∥T (t+ h)x− T (t)x∥ = ∥T (t)(T (h)x− x)∥ ≤ ∥T (t)∥ ∥T (h)x− x∥ −→ 0

as h→ 0+. Let h ∈ (−t, 0). Lemma 1.4 yields the bound

∥T (t+ h)∥ ≤Meω(t+h) ≤Meω+t

for some constants M ≥ 1 and ω ∈ R. We then derive

∥T (t+ h)x− T (t)x∥ ≤ ∥T (t+ h)∥ ∥x− T (−h)x∥ ≤Meω+t∥x− T (−h)x∥ → 0

as h→ 0−, so that a) is true. The addendum is shown similarly. □

In the above lemma the implication ‘c)⇒ a)’ can fail if one omits the bound-
edness assumption, cf. Exercise I.5.9(4) in [7].

We now examine translation semigroups, which are easy to grasp and still
illustrate many of the basic features of C0-semigroups. Another important class
of simple examples are multiplication semigroups as discussed in the exercises.
We recall that supp f is the support of a function f : M → Y on a metric

space M ; i.e., the closure in M of the set {s ∈M | f(s) ̸= 0},

Example 1.8. a) Let X = C0(R) := {f ∈ C(R) | f(s) → 0 as |s| → ∞} be
endowed with ∥·∥∞, which is a Banach space by Example 1.14 in [24]. Take
f ∈ X and t, r, s ∈ R. We define the translations

(T (t)f)(s) = f(s+ t).

They shift the graph of f to the left if t > 0, since (T (t)f)(s) is equals the value
of f at s+ t > s. Clearly, T (0) = I and T (t) is a linear isometry on X so that
∥T (t)∥ = 1. We further obtain T (t)T (r) = T (t+ r) noting(

T (t)T (r)f
)
(s) =

(
T (r)f

)
(s+ t) = f(r + s+ t) =

(
T (t+ r)f

)
(s).

We claim that Cc(R) := {f ∈ C(R) | supp(f) is compact} is dense in C0(R).
Indeed, let f ∈ C0(R) and choose cut-off functions φn ∈ Cc(R) satisfying φn = 1
on [−n, n] and 0 ≤ φn ≤ 1. Then the maps φnf belong to Cc(R) and

∥f − φnf∥∞ ≤ sup
|s|≥n

|(1− φn(s))f(s)| ≤ sup
|s|≥n

|f(s)|

tends to 0 as n→ ∞.



1.1. Basic concepts and properties 5

Pick f ∈ Cc(R) and a number a > 0 with supp f ⊆ [−a, a]. Let t ∈ [−1, 1].
If |s| > a + 1, we have |s + t| > a and thus f(s + t) = 0; i.e., suppT (t)f is
contained in [−a− 1, a+ 1]. It follows

∥T (t)f − f∥∞ ≤ sup
|s|≤a+1

|f(s+ t)− f(s)| −→ 0

as t → 0, since f is uniformly continuous on [−a − 1, a + 1]. Lemma 1.7 then
implies that T (·) is a C0-group.

Similarly, one shows that T (·) is an (isometric) C0-group on X = Lp(R) with
1 ≤ p <∞, see Example 4.12 in [24].

In contrast to these results, T (·) is not strongly continuous on X = L∞(R).
Indeed, consider f = 1[0,1] and observe that

T (t)f(s) = 1[0,1](s+ t) =

{
1, s+ t ∈ [0, 1]

0, else

}
= 1[−t,1−t](s)

for s, t ∈ R. We thus have ∥T (t)f − f∥∞ = 1 for every t ̸= 0.
In addition, T (·) is not continuous as a B(X)-valued function for X = C0(R)

(and neither for X = Lp(R) by Example 4.12 in [24]). In fact, take functions
fn ∈ Cc(R) with 0 ≤ fn ≤ 1, fn(n) = 1, and supp fn ⊆

(
n− 1

n , n+
1
n

)
for n ∈ N.

We then obtain ∥fn∥∞ = 1 and

∥T ( 1n)− I∥ ≥ ∥T ( 1n)fn − fn∥∞ ≥ |fn(n+ 1
n)− fn(n)| = 1 for all n ∈ N.

b) For an interval that is bounded from above, one has to prescribe the
behavior of the left translation at the right boundary point. Here we simply
prescribe the value 0. We work on the Banach space X = C0([0, 1)) := {f ∈
C([0, 1)) | lims→1 f(s) = 0} with ∥·∥∞, see Example 1.14 in [24]. Let t, r ≥ 0,
f ∈ X, and s ∈ [0, 1). We define

(T (t)f)(s) :=

{
f(s+ t), s+ t < 1,

0, s+ t ≥ 1.

Since f(s + t) → 0 as s → 1 − t if t < 1, the function T (t)f belongs to X.
Clearly, T (t) is linear on X and ∥T (t)∥ ≤ 1. We stress that T (t) = 0 whenever
t ≥ 1. (One says that T (·) is nilpotent.) As a consequence, ω0(T ) = −∞ and
T (·) cannot be extended a group in view of Remark 1.2. We next compute

(
T (t)T (r)f

)
(s) =

{
(T (r)f)(s+ t), s < 1− t,

0, s ≥ 1− t,

=

{
f(s+ t+ r), s < 1− t, s+ t < 1− r,

0, else,

= (T (t+ r)f)(s).

Hence, T (·) is a semigroup.
As in part a) or in Example 1.19 of [24], one sees that

Cc([0, 1)) := {f ∈ C([0, 1)) | ∃ bf ∈ (0, 1) : supp f ⊆ [0, bf ]}
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is a dense subspace of X. For f ∈ Cc([0, 1)) and t ∈ (0, 1− bf ) we compute

T (t)f(s)− f(s) =

{
f(s+ t)− f(s), if s ∈ [0, 1− t),

0, if s ∈ [1− t, 1) ⊆ [bf , 1),

and deduce limt→0 ∥T (t)f − f∥∞ = 0 using the uniform continuity of f . Ac-
cording to Lemma 1.7, T (·) is a C0-semigroup on X. ♢

We introduce a solution concept for the problem (EE). Different ones will be
discussed in Section 2.2. Let u : J → X, t ∈ J , and J ⊆ R be an interval. The
derivative of u is defined by u′(t) = limh→0

1
h(u(t+h)−u(t)), if the limit exists.

Definition 1.9. Let A be a linear operator on X with domain D(A) and let
x ∈ D(A). A function u : R≥0 → X solves the homogeneous evolution equation
(or Cauchy problem)

u′(t) = Au(t), t ≥ 0, u(0) = x, (1.1)

if u belongs to C1(R≥0, X) and satisfies u(t) ∈ D(A) and (1.1) for all t ≥ 0.

We next show the fundamental regularity properties of C0-semigroups. Recall
that the generator’s domain D(A) was ‘maximally’ defined as the set of all initial
values for which the orbit is differentiable at t = 0. We now use the semigroup
law to transfer this property to later times. The crucial invariance of the domain
under the semigroup then directly follows from its definition.

Proposition 1.10. Let A generate the C0-semigroup T (·) and x ∈ D(A).
Then T (t)x belongs to D(A), the orbit T (·)x to C1(R≥0, X), and we have

d
dtT (t)x = AT (t)(x) = T (t)Ax for all t ≥ 0.

Moreover, the function u = T (·)x is the only solution of (1.1).

Proof. 1) Let t > 0, h > 0, and x ∈ D(A). Remark 1.2 and the continuity
of T (t) then imply the convergence

1
h

(
T (h)− I

)
T (t)x = T (t) 1h

(
T (h)x− x

)
−→ T (t)Ax

as h → 0. By Definition 1.1 of the generator, the vector T (t)x thus belongs to
D(A) and satisfies AT (t)x = T (t)Ax. Next, let 0 < h < t. We then compute

1
−h
(
T (t− h)x− T (t)x

)
= T (t− h) 1h

(
T (h)x− x

)
−→ T (t)Ax

as h→ 0, by means of Lemma 1.12 below (with S(τ, σ) = T (τ − σ)). Together
we have shown that the orbit u = T (·)x has the derivative AT (·)x. Since T (·)Ax
is continuous, u is contained in C1(R≥0, X). Summing up, u solves (1.1).

2) Let also v solve (1.1). We show v = u by a standard trick. Take t > 0 and
set w(s) = T (t− s)v(s) for s ∈ [0, t]. Let h ∈ [−s, t− s] \ {0}. We write

1
h(w(s+h)−w(s)) = T (t−s−h) 1h(v(s+h)−v(s))−

1
−h(T (t−s−h)−T (t−s))v(s).

Using v ∈ C1, Lemma 1.12, v(s) ∈ D(A) and the first step, we infer that w is
differentiable with derivative

w′(s) = T (t− s)v′(s)− T (t− s)Av(s) = 0,
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where the last equality follows from (1.1) for v. One directly infers that the
scalar function ⟨w(·), x∗⟩ is differentiable with vanishing derivative for each
x∗ ∈ X∗. It is thus constant, which leads to the equality

⟨T (t)x, x∗⟩ = ⟨w(0), x∗⟩ = ⟨w(t), x∗⟩ = ⟨v(t), x∗⟩
for all t > 0. The Hahn–Banach theorem now yields T (·)x = v as asserted, see
Corollary 5.10 of [24]. □

Remark 1.11. Let f ∈ C0(R) \ C1(R). Then the orbit T (·)f = f(· + t) of
the translation semigroup on C0(R) is not differentiable (cf. Example 1.8). ♢

The following simple lemma is used in the above proof and also later on.

Lemma 1.12. Let D = {(τ, σ) | a ≤ σ ≤ τ ≤ b} for some a < b in R,
S : D → B(X) be strongly continuous, and f be contained in C([a, b], X). Then
the function g : D → X; g(τ, σ) = S(τ, σ)f(σ), is also continuous.

Proof. Observe that sup(τ,σ)∈D ∥S(τ, σ)x∥ <∞ for every x ∈ X by conti-

nuity. The uniform boundedness principle thus says that c := supD ∥S(τ, σ)∥ is
finite. For (t, s), (τ, σ) ∈ D we then obtain

∥S(t, s)f(s)− S(τ, σ)f(σ)∥ ≤ ∥(S(t, s)− S(τ, σ))f(s)∥+ c∥f(s)− f(σ)∥.
The right-hand side of this inequality tends to 0 as (τ, σ) → (t, s). □

Remark 1.13. Let xn → x in X and Tn → T strongly in B(X,Y ). As in the
proof of Lemma 1.12 one then shows that Tnxn → Tx in Y as n→ ∞. ♢

Intermezzo 1: Closed operators, spectrum, and X-valued Rie-
mann integrals. As noted above, generators of C0-semigroups are unbounded
unless the semigroup is continuous in B(X). However, we will see in Proposi-
tion 1.19 that they still respect limits to some extent. We introduce the relevant
concepts here. See Chapter 1 in [27] for more details.

Let D(A) ⊆ X be a linear subspace and A : D(A) → X be linear. (One could
also take Y ̸= X as range space.) We often endow D(A) with the graph norm
∥x∥A := ∥x∥+ ∥Ax∥, writing [D(A)], XA

1 , or X1 for (D(A), ∥·∥A) and also ∥x∥1
for ∥x∥A. Observe that [D(A)] is a normed vector space and that A is an element
of B([D(A)], X). Also, a map f ∈ C([a, b], X) belongs to C([a, b], [D(A)]) if and
only if f takes values in D(A) and Af : [a, b] → X is continuous.
The operator A is called closed if for every sequence (xn) in D(A) possessing

the limits
lim
n→∞

xn = x and lim
n→∞

Axn = y in X,

we obtain
x ∈ D(A) and Ax = y.

We start with prototypical examples.

Example 1.14. a) Every operator A ∈ B(X) with D(A) = X is closed, since
here Axn → Ax if xn → x in X as n→ ∞.

b) Let X = C([0, 1]) and Af = f ′ with D(A) = C1([0, 1]). Take a sequence
(fn) in D(A) such that (fn) and (f ′n) tend in X to f and g, respectively. By
Analysis 1, the limit f belongs to C1([0, 1]) and satisfies f ′ = g; i.e., A is closed.
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Next, consider the map A0f = f ′ with D(A0) = {f ∈ C1([0, 1]) | f ′(0) = 0}.
Take (fn) in D(A) such that fn → f and f ′n → g in X as n → ∞. We
again obtain f ∈ C1([0, 1]) and f ′ = g. It further follows f ′(0) = g(0) =
limn→∞ f ′n(0) = 0, so that also A0 is closed. ♢

Before we discuss basic properties of closed operators, we define the Riemann
integral forX-valued functions. Let a < b be real numbers. A (tagged) partition
Z of [a, b] is a finite set of numbers a = t0 < t1 < . . . < tm = b together with
‘tags’ τk ∈ [tk−1, tk] for all k ∈ {1, . . . ,m}. Set δ(Z) = maxk∈{1,...,m}(tk− tk−1).
For a map f ∈ C([a, b], X) and a partition Z, the Riemann sum is given by

S(f, Z) =
m∑
k=1

f(τk)(tk − tk−1) ∈ X.

As for real-valued f it can be shown that for any sequence (Zn) of (tagged)
partitions with limn→∞ δ(Zn) = 0 the sequence (S(f, Zn))n converges in X and
that the limit J does not depend on the choice of such (Zn). We then say that
S(f, Z) tends in X to J as δ(Z) → 0. The Riemann integral is now defined by∫ b

a
f(t) dt = lim

δ(Z)→0
S(f, Z).

We also set
∫ a
b f(t) dt = −

∫ b
a f(t) dt. Like in the real-valued case, one shows

the basic properties the integral (except for monotony), e.g., linearity, additivity
and validity of the standard estimate. Moreover, the same definition and results
work for piecewise continuous functions. The fundamental theorem of calculus
and a result on dominated convergence are shown in the next remark.

Remark 1.15. For a linear operator A in X the following assertions hold.

a) The operator A is closed if and only if its graph Gr(A) = {(x,Ax) |x ∈
D(A)} is closed in X ×X (endowed with the sum norm) if and only if D(A) is
a Banach space with respect to the graph norm ∥·∥A.
b) If A is closed with D(A) = X, then A is continuous (closed graph theorem).

c) Let A be injective. Set D(A−1) := R(A) = {Ax |x ∈ D(A)}. Then A is
closed if and only if A−1 is closed.

d) Let A be closed and f ∈ C([a, b], [D(A)]). We then have∫ b

a
f(t) dt ∈ D(A) and A

∫ b

a
f(t) dt =

∫ b

a
Af(t) dt.

An analogous result is valid for piecewise continuous f and Af . So we can
commute the Riemann integral and bounded linear operators, since [D(A)] is
just X (with an equivalent norm) if A ∈ B(X).

e) Let fn, f : [a, b] → X be (piecewise) continuous for n ∈ N such that
fn(s) → f(s) in X as n → ∞ for each s ∈ [a, b] and ∥fn(·)∥ ≤ φ for a map
φ ∈ L1(a, b) and all n ∈ N. Then there exists the limit

lim
n→∞

∫ b

a
fn(s) ds =

∫ b

a
f(s) ds.

The assumptions are satisfied if fn → f uniformly as n→ ∞.
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f) For f ∈ C([a, b], X), the function

[a, b] → X; t 7→
∫ t

a
f(s) ds,

is continuously differentiable with derivative

d

dt

∫ t

a
f(s) ds = f(t) (1.2)

for each t ∈ [a, b]. For g ∈ C1([a, b], X), we have∫ b

a
g′(s) ds = g(b)− g(a). (1.3)

g) Let J ⊆ R be an interval. Take a sequence (fn) in C1(J,X) and maps
f, g ∈ C(J,X) such that fn → f and f ′n → g uniformly on J as n → ∞. We
then obtain f ∈ C1(J,X) and f ′ = g.

Proof. Parts a) and c) are shown in Lemma 1.4 of [27], and b) is estab-
lished in Theorem 1.5 of [27].
For d), let f be as in the statement. Note that for each partition Z of [a, b]

the Riemann sum S(f, Z) belongs to D(A). Since Af is continuous, we obtain

AS(f, Z) =
m∑
k=1

(Af)(τk)(tk − tk−1) = S(Af,Z) −→
∫ b

a
Af(t) dt

as δ(Z) → 0. Claim d) now follows from the closedness of A.
Dominated convergence with majorant ∥f∥∞1+φ yields assertion e) because∥∥∥∫ b

a
f(s) ds−

∫ b

a
fn(s) ds

∥∥∥ ≤
∫ b

a
∥f(s)− fn(s)∥ds.

For f), take t ∈ [a, b] and h ̸= 0 such that t+h ∈ [a, b]. We can then estimate∥∥∥1
h

(∫ t+h

a
f(s) ds−

∫ t

a
f(s) ds

)
− f(t)

∥∥∥ =
∥∥∥1
h

∫ t+h

t
(f(s)− f(t)) ds

∥∥∥ (1.4)

≤ sup
|s−t|≤h

∥f(s)− f(t)∥ −→ 0

as h→ 0. So we have shown (1.2). In the proof of Proposition 1.10 we have seen
that a function in C1([a, b]) is constant if its derivative vanishes. Equation (1.3)
can thus be deduced from (1.2) as in Analysis 2.
Let fn, f , and g be as in part g). Take a ∈ J . Formula (1.3) says that

fn(t) = fn(a) +

∫ t

a
f ′n(s) ds

for all t ∈ J . Letting n→ 0, from e) we deduce

f(t) = f(a) +

∫ t

a
g(s) ds

for all t ∈ J . Due to (1.2), the map f belongs C1(J,X) and satisfies f ′ = g. □
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For a closed operator A we define its resolvent set

ρ(A) =
{
λ ∈ F

∣∣λI −A : D(A) → X is bijective
}
.

If λ ∈ ρ(A), we write R(λ,A) for (λI−A)−1 and call it resolvent.2 The spectrum
of A is the set

σ(A) = F \ ρ(A).
The point spectrum

σp(A) =
{
λ ∈ F

∣∣ ∃ v ∈ D(A) \ {0} with Av = λv
}

is a subset of σ(A) which can be empty if dimX = ∞, see Example 1.25 in
[27]. We discuss basic properties of spectrum and resolvent which will be used
throughout these lectures.

Remark 1.16. a) Let A be closed and λ ∈ ρ(A). It is easy to check that also
the operator λI − A is closed (see Corollary 1.8 in [27]), and hence R(λ,A) is
closed by Remark 1.15 c). Assertion d) of that remark then shows the bound-
edness of R(λ,A).

b) Let A be a linear operator and λ ∈ F such that λI −A : D(A) → X is bi-
jective with bounded inverse. Then (λI−A)−1 is closed, so that Remark 1.15 c)
implies the closedness of A. In particular, λ belongs to ρ(A).

c) We list several important statements of Theorem 1.13 in [27]. The set
ρ(A) is open and so σ(A) is closed. More precisely, for λ ∈ ρ(A) all µ with
|µ− λ| < 1/∥R(λ,A)∥ are also contained in ρ(A) and we have the power series

R(µ,A) =
∑∞

n=0
(λ− µ)nR(λ,A)n+1. (1.5)

This series converges absolutely in B(X, [D(A)]) and uniformly for µ with
|µ − λ| ≤ δ/∥R(λ,A)∥ and δ ∈ (0, 1), where one also obtains the inequality
∥R(µ,A)∥ ≤ ∥R(λ,A)∥/(1− δ). The resolvent has the derivatives(

d
dλ

)n
R(λ,A) = (−1)nn!R(λ,A)n+1 (1.6)

for all λ ∈ ρ(A) and n ∈ N0. It further fulfills the resolvent equation

R(µ,A)−R(λ,A) = (λ− µ)R(λ,A)R(µ,A) = (λ− µ)R(µ,A)R(λ,A), (1.7)

for λ, µ ∈ ρ(A), and we have

∥R(λ,A)∥ ≥ d(λ, σ(A))−1. (1.8)

d) Let T ∈ B(X) and F = C. By Theorem 1.16 of [27], the spectrum σ(T ) is
even compact and always non-empty, and the spectral radius of T is given by

r(T ) := max
{
|λ|
∣∣λ ∈ σ(A)

}
= inf

n∈N
∥Tn∥

1
n = lim

n→∞
∥Tn∥

1
n .

e) Example 1.21 provides closed operators A with σ(A) = ∅ or σ(A) = F. ♢

This ends the intermezzo, and we come back to the investigation of C0-
semigroups. We first note a simple rescaling lemma which is often used to
simplify the reasoning.

2Usually one takes F = C in spectral theory, but many facts also hold for F = R. Some-
times real scalars are more convenient, and so we treat both fields if it is feasible. In examples
we often restrict to F = C, as already real matrices may only have non-real eigenvalues.
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Lemma 1.17. Let T (·) be a C0-semigroup with generator A, λ ∈ F, and
a > 0. Set S(t) = eλtT (at) for t ≥ 0. Then S(·) is a C0-semigroup and has the
generator B = λI + aA with D(B) = D(A).

Proof. Let t, s > 0. We compute S(t+ s) = eλteλsT (at)T (as) = S(t)S(s).
The strong continuity of S(·) and the identity S(0) = I are clear. Let B be the
generator of S(·). Because of

1
t (S(t)x− x) = aeλt 1

at(T (at)x− x) + 1
t (e

λt − 1)x,

x belongs to D(B) if and only if x ∈ D(A), and we then have Bx = aAx+λx. □

Below we will derive key features of generators, which are consequences of
the next fundamental lemma.

Lemma 1.18. Let T (·) be a C0-semigroup with generator A, λ ∈ F, t > 0,

and x ∈ X. Then the integral
∫ t
0 e

−λsT (s)x ds belongs to D(A) and satisfies

e−λtT (t)x− x = (A− λI)

∫ t

0
e−λsT (s)x ds. (1.9)

Furthermore, for x ∈ D(A) we have

e−λtT (t)x− x =

∫ t

0
e−λsT (s)(A− λI)x ds. (1.10)

Proof. We only consider λ = 0 since the general case then follows by
means of Lemma 1.17. For h > 0 and t > 0 we compute

1

h
(T (h)− I)

∫ t

0
T (s)x ds =

1

h

(∫ t

0
T (s+ h)x ds−

∫ t

0
T (s)x ds

)
=

1

h

(∫ t+h

h
T (r)x dr −

∫ t

0
T (s)x ds

)
=

1

h

∫ t+h

t
T (s)x ds− 1

h

∫ h

0
T (s)x ds, (1.11)

where we substituted r = s+ h. The last line tends to T (t)x− x as h→ 0 due
to the continuity of the orbits and (1.4). By the definition of the generator, this

means that
∫ t
0 T (s)x ds is an element of D(A) and (1.9) holds.

Let x ∈ D(A). Proposition 1.10 then shows that T (·)x belongs to C1(R≥0, X)

with derivative d
dtT (·)x = T (·)Ax. Hence, formula (1.10) follows from (1.3). □

We can now show basic properties of generators. Recall that they commute
with their semigroup by Proposition 1.10.

Proposition 1.19. Let A generate a C0-semigroup T (·). Then A is closed
and densely defined. Moreover, T (·) is the only C0-semigroup generated by A.
If λ ∈ ρ(A), then we have R(λ,A)T (t) = T (t)R(λ,A) for all t ≥ 0.

Proof. 1) To show closedness, we take a sequence (xn) in D(A) with limit
x in X such that (Axn) converges to some y in X. Equation (1.10) yields

1

t
(T (t)xn − xn) =

1

t

∫ t

0
T (s)Axn ds
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for all n ∈ N and t > 0. Letting n→ ∞, we infer

1

t
(T (t)x− x) =

1

t

∫ t

0
T (s)y ds

by means of Remark 1.15 e). Because of (1.4), the right-hand side tends to y as
t→ 0. This exactly means that x belongs D(A) and Ax = y; i.e., A is closed.

2) Let x ∈ X. For n ∈ N, we define the vector

xn = n

∫ 1
n

0
T (s)x ds

which belongs to D(A) by Lemma 1.18. Formula (1.4) shows that (xn) tends
to x, and hence the domain D(A) is dense in X.

3) Let A generate another C0-semigroup S(·). The function S(·)x then solves
(1.1) for each x ∈ D(A) by Proposition 1.10. The uniqueness statement in this
result thus implies that T (t)x = S(t)x for all t ≥ 0 and x ∈ D(A). Since these
operators are bounded, step 2) leads to T (·) = S(·) as desired.

4) Let λ ∈ ρ(A), t ≥ 0, and x ∈ X. Proposition 1.10 implies the identity

R(λ,A)T (t)x = R(λ,A)T (t)(λI −A)R(λ,A)x = T (t)R(λ,A)x. □

We next derive important information about spectrum and resolvent of gen-
erators. Actually we show a bit more than needed later on.

Proposition 1.20. Let A generate the C0-semigroup T (·) and λ ∈ F. Then
the following assertions hold.

a) If the improper integral

R(λ)x :=

∫ ∞

0
e−λsT (s)x ds := lim

t→∞

∫ t

0
e−λsT (s)x ds

exists in X for all x ∈ X, then λ belongs to ρ(A) and R(λ) = R(λ,A).

b) The integral in a) exists even absolutely for all x ∈ X if Reλ > ω0(T ).
Hence, the spectral bound (of A)

s(A) := sup
{
Reλ

∣∣λ ∈ σ(A)
}

(1.12)

is less or equal than ω0(T ).

c) Let M ≥ 1 and ω ∈ R with ∥T (t)∥ ≤ Meωt for all t ≥ 0. Take n ∈ N and
λ ∈ Fω (i.e., Reλ > ω). We then have

∥R(λ,A)n∥ ≤ M

(Reλ− ω)n
.

We recall from Definition 1.5 and Lemma 1.4 that the exponent ω in part c)
has to satisfy ω ≥ ω0(T ) and that any number ω ∈ (ω0(T ),∞) fulfills the
conditions in c).
The integral in part a) is called the Laplace transform of T (·)x. It can

be used for an alternative approach to the theory of C0-semigroups (and their
generalizations), cf. [3]. In Chapter 4 we will study whether the equality s(A) =
ω0(T ) can be shown in b). This property would allow to control the growth (or
decay) of the semigroup in terms of the given object A.
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Proof of Proposition 1.20. a) Let h > 0 and x ∈ X. By Lemma 1.17,
we have the C0-semigroup Tλ(·) = (e−λsT (s))s≥0 with generator A− λI on the
domain D(A). Equation (1.11) yields

1

h
(Tλ(h)− I)R(λ)x = lim

t→∞

1

h
(Tλ(h)− I)

∫ t

0
Tλ(s)x ds

= lim
t→∞

1

h

∫ t+h

t
Tλ(s)x ds−

1

h

∫ h

0
Tλ(s)x ds

= −1

h

∫ h

0
Tλ(s)x ds,

due to the convergence of
∫∞
0 Tλ(s)x ds. The right-hand side tends to −x as

h → 0 by (1.4), so that R(λ)x belongs to D(A − λI) = D(A) and satisfies
(λI −A)R(λ)x = x.

Let x ∈ D(A). Proposition 1.10 says that T (s)Ax = AT (s)x for s ≥ 0, and
A is closed due to Proposition 1.19. Using also Remark 1.15 d), we deduce

R(λ)(λI −A)x = lim
t→∞

∫ t

0
e−λsT (s)(λI −A)x ds = lim

t→∞
(λI −A)

∫ t

0
e−λsT (s)x ds

= (λI −A) lim
t→∞

∫ t

0
e−λsT (s)x ds = (λI −A)R(λ)x = x.

Hence, part a) is shown.

b) Let x ∈ X. Fix a number ω ∈ (ω0(T ),Reλ). It follows ∥e−λsT (s)x∥ ≤
Me(ω−Reλ)s for some M ≥ 1 and all s ≥ 0. For 0 < a < b we can thus estimate∥∥∥∫ b

0
Tλ(s)x ds−

∫ a

0
Tλ(s)x ds

∥∥∥ ≤
∫ b

a
∥Tλ(s)x∥ds ≤M∥x∥

∫ b

a
e(ω−Reλ)s ds → 0

as a, b→ ∞. Consequently,
∫ t
0 Tλ(s)x ds converges (absolutely) in X as t→ ∞

for all x ∈ X, and thus assertion b) follows from a).

c) Let n ∈ N, x ∈ X, and t ≥ 0. Arguing as in Analysis 2, one can differentiate( d

dλ

)n−1
∫ t

0
e−λsT (s)x ds =

∫ t

0
(−1)n−1sn−1e−λsT (s)x ds.

As in step b), the integrals converge as t→ ∞ uniformly for Reλ ≥ ω + ε and
any ε > 0. Hence, part b), (1.6) and a variant of Remark 1.15 g) imply

R(λ,A)nx =
(−1)n−1

(n− 1)!

( d

dλ

)n−1
lim
t→∞

∫ t

0
e−λsT (s)x ds

= lim
t→∞

1

(n− 1)!

∫ t

0
sn−1Tλ(s)x ds =

1

(n− 1)!

∫ ∞

0
sn−1e−λsT (s)x ds.

Computing an elementary integral, one can now estimate

∥R(λ,A)nx∥ ≤ M∥x∥
(n− 1)!

∫ ∞

0
sn−1e(ω−Reλ)s ds =

M

(Reλ− ω)n
∥x∥

for all Reλ > ω since ε is arbitrary. □
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We calculate the generators of the translation semigroups from Example 1.8
and discuss their spectra. They turn out to be the first derivative endowed with
appropriate domains. We also use the above necessary conditions to show that
on certain domains the first derivative fails to be a generator.

Example 1.21. a) Let T (t)f = f(· + t) be the translation group on X =
C0(R). We compute the generator A and its spectrum.
1) Below we use that a function g ∈ X is uniformly continuous since Cc(R)

is dense in X and uniform continuity is preserved by uniform limits.
For f ∈ D(A), t ̸= 0 and s ∈ R, there exist the pointwise limits

Af(s) = lim
t→0

1
t (T (t)f(s)− f(s)) = lim

t→0

1
t (f(s+ t)− f(s)) = f ′(s)

so that f is differentiable with f ′ = Af ∈ C0(R). We have shown the inclusion

D(A) ⊆ C1
0 (R) := {f ∈ C1(R) | f, f ′ ∈ X}.

Conversely, let f ∈ C1
0 (R). For s ∈ R, we compute∣∣1

t (T (t)f(s)− f(s))− f ′(s)
∣∣ = ∣∣1t (f(s+ t)− f(s))− f ′(s)

∣∣
=
∣∣∣1
t

∫ t

0
(f ′(s+ τ)− f ′(s)) dτ

∣∣∣
≤ sup

0≤|τ |≤|t|
|f ′(s+ τ)− f ′(s)|.

The right-hand side tends to 0 as t → 0 uniformly in s ∈ R since f ′ ∈ C0(R)
is uniformly continuous. This means that f belongs to D(A), and so we obtain
A = d

ds with ‘maximal domain’ D(A) = C1
0 (R).

2) For the spectrum, we let F = C. In Theorem 1.29 we will see that A
generates the C0-semigroup (T (t))t≥0 and −A is the generator of (S(t))t≥0 =
(T (−t))t≥0. Proposition 1.20 yields the inqualities s(A) ≤ ω0(A) = 0 and
s(−A) ≤ 0. Observing −(λI− (−A)) = −λI−A, we conclude σ(−A) = −σ(A)
as well as −R(λ,−A) = R(−λ,A). So we have proven the inclusion σ(A) ⊆ iR.

To show the converse, let λ ∈ C+, f ∈ X, and s ∈ R. Since all of the following
limits exist with respect to the supremum norm in s, Proposition 1.20 yields

(R(λ,A)f)(s) =
(

lim
b→∞

∫ b

0
e−λtT (t)f dt

)
(s) = lim

b→∞

∫ b

0
e−λt(T (t)f)(s) dt

= lim
b→∞

∫ b

0
e−λtf(t+ s) dt = lim

b→∞

∫ b+s

s
eλ(s−τ)f(τ) dτ

=

∫ ∞

s
eλ(s−τ)f(τ) dτ.

We pick functions φn ∈ Cc(R) with 0 ≤ φn ≤ 1 and φn = 1 on [0, n] for n ∈ N,
and set α = Reλ > 0, β = Imλ, as well as fn(τ) = eiβτφn(τ). Since ∥fn∥∞ = 1,
the above formula leads to the lower bound

∥R(λ,A)∥ ≥ ∥R(λ,A)fn∥∞ ≥ |R(λ,A)fn(0)| =
∣∣∣ ∫ ∞

0
e−ατe−iβτfn(τ) dτ

∣∣∣
=

∫ ∞

0
e−ατφn(τ) dτ ≥

∫ n

0
e−ατ dτ =

1− e−αn

α
.
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Letting n → ∞, we arrive at ∥R(λ,A)∥ ≥ 1
Reλ . Proposition 1.20 then yields

the equality ∥R(λ,A)∥ = 1
Reλ (take M = 1, ω = 0, and n = 1 there). If iβ

belonged to ρ(A) for some β ∈ R, then we would infer

1
α = ∥R(α+ iβ,A)∥ → ∥R(iβ,A)∥

as α→ 0, which is impossible. We thus obtain σ(A) = iR.
b) We treat the nilpotent left translation semigroup on X = C0([0, 1)); i.e.,

(T (t)f)(s) =

{
f(s+ t), s+ t < 1,

0, s+ t ≥ 1,

for f ∈ X, t ≥ 0 and s ∈ [0, 1). Let A be its generator. Take f ∈ D(A).

As in part a), one shows that the right derivative d+

ds f exists and d+

ds f = Af .
(Here we can only consider t→ 0+.) However, since f and Af are continuous,
Corollary 2.1.2 of [22] says that f ∈ C1([0, 1)), and so we have the inclusion

D(A) ⊆ C1
0 ([0, 1)) :=

{
f ∈ C1([0, 1))

∣∣ f, f ′ ∈ X
}

as well as Af = f ′. Let f ∈ C1
0 ([0, 1)) and note that its 0-extension f̃ to R≥0

belongs to C1
0 (R≥0) and has compact support. As in part a), it follows

1

t
(T (t)f(s)− f(s)) =

{
1
t (f(s+ t)− f(s)), 0 ≤ s < 1− t,

−1
t f(s), 1− t ≤ s < 1,

= 1
t (f̃(s+ t)− f̃(s)) −→ f̃ ′(s) = f ′(s)

as t → 0+ uniformly in s ∈ [0, 1), since f̃ ′ is uniformly continuous. Hence,
D(A) = C1

0 ([0, 1)) and Af = f ′. Because of ω0(A) = −∞, Proposition 1.20
yields σ(A) = ∅ and ρ(A) = F.

c) The operator Af = f ′ with D(A) = C1([0, 1]) on X = C([0, 1]) has the
spectrum σ(A) = F. In fact, for each λ ∈ F the function t 7→ eλ(t) := eλt

belongs to D(A) with Aeλ = λeλ so that even λ ∈ σp(A). Hence, A is not a
generator in view of Proposition 1.20.

d) Let X = C0(R≤0) := {f ∈ C(R≤0) | f(s) → 0 as s → −∞} and A = d
ds

with D(A) = C1
0 (R≤0) := {f ∈ C1(R≤0) | f, f ′ ∈ X}. Then A is not a generator.

Indeed, for all λ ∈ F+ we have eλ ∈ D(A) and Aeλ = λeλ so that λ ∈ σ(A),
violating s(A) <∞ in Proposition 1.20.

e) On X = C([0, 1]) the map A = d
ds with D(A) = {f ∈ C1([0, 1]) | f(1) = 0}

is not a generator as D(A) = {f ∈ X | f(1) = 0} ≠ X, cf. Proposition 1.19. ♢

We stress that in parts c) and d) one does not impose conditions at the upper
boundary of the spatial interval, as needed for a left translation, in contrast to
the example in b). This lack of boundary conditions leads to spectral properties
of A ruling out that it is a generator. We will come back to this point in
Example 1.36.
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1.2. Characterization of generators

Proposition 1.19 and 1.20 contain necessary conditions to be a generator. In
this section we want to show their sufficiency. This is the content of the Hille–
Yosida Theorem 1.26 which is the core of the theory of C0-semigroups. Our
approach is based on the so-called Yosida approximations which are defined by

Aλ := λAR(λ,A) = λ2R(λ,A)− λI ∈ B(X). (1.13)

for λ ∈ ρ(A). Here we note the basic identities

AR(λ,A) = λR(λ,A)− I and AR(λ,A)x = R(λ,A)Ax (1.14)

for x ∈ D(A). The next lemma is stated in somewhat greater generality than
needed later on. In view of Proposition 1.19 and 1.20, for a generator A it says
that the bounded operators Aλ approximate A strongly on D(A) as λ→ ∞.

Lemma 1.22. Let A be a closed operator satisfying (ω,∞) ⊆ ρ(A) and
∥R(λ,A)∥ ≤ M

λ−ω for some M ≥ 1 and ω ∈ R and all λ > ω. As λ → ∞,
we then have

∀x ∈ D(A) : λR(λ,A)x→ x,

∀ y ∈ D(A) with Ay ∈ D(A) : λAR(λ,A)y → Ay.

Proof. Let x ∈ D(A) and λ ≥ ω + 1. The assumption and (1.14) yield

∥λR(λ,A)∥ ≤ M |λ|
λ− ω

≤M max{|ω + 1|, 1},

∥λR(λ,A)x− x∥ = ∥R(λ,A)Ax∥ ≤ M

λ− ω
∥Ax∥ −→ 0, λ→ ∞.

By density, the first assertion follows. Taking x = Ay and using (1.14), one
then deduces the second assertion from the first one. □

For linear operators A,B on X we write A ⊆ B if Gr(A) ⊆ Gr(B); i.e.,
if D(A) ⊆ D(B) and Ax = Bx for all x ∈ D(A). In this case we call B an
extension of A. Equality of A and B is then often shown by means of the next
observation, requiring that D(A) is not ‘too small’ and D(B) is not ‘too large.’

Lemma 1.23. Let A and B be linear operators with A ⊆ B such that A is
surjective and B is injective. We then have A = B. In particular, A and B are
equal if they satisfy A ⊆ B and ρ(A) ∩ ρ(B) ̸= ∅.

Proof. We have to prove the inclusion D(B) ⊆ D(A). Let x ∈ D(B). By
the assumptions, there is a vector y ∈ D(A) with Bx = Ay = By. Since B is
injective, we obtain x = y so that x belongs to D(A).

Let λ ∈ ρ(A)∩ρ(B). The first part then shows the equality λI−A = λI−B,
and hence A = B. □

We introduce a class of C0-semigroups which is easier to handle in many
respects, cf. Theorem 1.39.

Definition 1.24. Let ω ∈ R. An ω-contraction semigroup is a C0-semigroup
T (·) satisfying ∥T (t)∥ ≤ eωt for all t ≥ 0. Such a semigroup is also said to be
quasi-contractive. If ω = 0, we call T (·) a contraction semigroup.
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We first discuss this concept and its relation to the exponential bound from
Lemma 1.4, also noting the dependence on the choice of the norm on X.

Remark 1.25. a) Let T (·) be a contraction semigroup. Then the norm of
the orbit t 7→ T (x)x is non-increasing since

∥T (t)x∥ = ∥T (t− s)T (s)x∥ ≤ ∥T (s)x∥
for x ∈ X and t ≥ s ≥ 0. This fact is important since often ∥x∥ is related
significant quantities in applications, e.g., the energy of the state x.

b) Let A ∈ B(X). Estimating the power series in Example 1.3, we derive

∥etA∥ ≤ et∥A∥; i.e., A generates a ∥A∥-contractive semigroup. However, its
growth bound ω0(A) is possibly much smaller than ∥A∥ by Remark 1.6 d).

c) There are unbounded generators A of a C0-semigroup having norms
∥T (t)∥ ≥M for all t > 0 and someM > 1. Hence, they cannot be ω-contractive
for any ω ∈ R. As an example, let X = C0(R) be endowed with the norm

∥f∥ = max
{
sups≥0 |f(s)|,M sups<0 |f(s)|

}
for some M > 1, which is equivalent to the supremum norm. The translations
T (t)f = f(·+ t) thus yield a C0-semigroup on (X, ∥·∥). Take any t > 0. Choose
a function f ∈ C0(R) with ∥f∥∞ = 1 and supp f ⊆ (0, t). We then obtain
∥f∥ = 1, suppT (t)f ⊆ (−t, 0), and so

∥T (t)∥ ≥ ∥T (t)f∥ =M sup
−t≤s≤0

|f(s+ t)| =M.

Since ∥T (t)∥ ≤M , we actually have ∥T (t)∥ =M for all t > 0.

d) However, for each C0-semigroup T (·) on a Banach space X one can find
an equivalent norm on X for which T (·) becomes ω-contractive. Indeed, take
numbers M ≥ 1 and ω ∈ R such that ∥T (t)∥ ≤Meωt for all t ≥ 0. We set

9x9 = sup
s≥0

e−ωs∥T (s)x∥

for x ∈ X, which defines an equivalent norm since ∥x∥ ≤ 9x9 ≤ M∥x∥. We
further obtain

9e−ωtT (t)x9 = sup
s≥0

e−ω(s+t)∥T (s+ t)x∥ ≤ 9x9

so that T (·) is ω-contractive for this norm. However, this renorming can destroy
additional properties as the Hilbert space structure, and in general one cannot
do it for two C0-semigroups at the same time. See Remark I.2.19 in [10]. ♢

The following major theorem characterizes the generators of C0-semigroups.
It was shown in the contraction case independently by Hille and Yosida in
1948. Yosida’s proof extends very easily to the general case and is presented
below. As we see in Theorem 2.2, the generator property of A is equivalent to
‘wellposedness’ of (1.1). In other words, the Hille–Yosida Theorem describes
the class of operators for which (1.1) is solvable in a reasonable sense. It is thus
the fundament of the theory of linear evolution equations, which is actually
concerned with many topics beyond wellposedness – below we treat regularity,
perturbation, approximation, and long-time behavior, for instance.
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Theorem 1.26. Let M ≥ 1 and ω ∈ R. A linear operator A generates a
C0-semigroup T (·) on X satisfying ∥T (t)∥ ≤Meωt for all t ≥ 0 if and only if

A is closed, D(A) = X, (ω,∞) ⊆ ρ(A),

∀n ∈ N, λ > ω : ∥R(λ,A)n∥ ≤ M

(λ− ω)n
.

(1.15)

In this case, if F = C one even has Cω = {λ ∈ C | Reλ > ω} ⊆ ρ(A) and

∀n ∈ N, λ ∈ Cω : ∥R(λ,A)n∥ ≤ M

(Reλ− ω)n
. (1.16)

The operator A generates an ω-contraction semigroup if and only if

A closed, D(A)=X, (ω,∞) ⊆ ρ(A), ∀λ > ω : ∥R(λ,A)∥ ≤ 1

λ− ω
. (1.17)

In this case (1.16) is true with M = 1, if F = C.

In applications it is of course much easier check the assumptions in the quasi-
contractive case. Based on the above result, Theorem 1.39 will provide another,
even more convenient characterization of generators in this case. In the exercises
we discuss a variant without the assumption of a dense domain.

Proof of Theorem 1.26. It is clear that (1.17) yields (1.15) for M = 1.
Propositions 1.19 and 1.20 imply (1.16) and the necessity of (1.15), respec-
tively (1.17). If (1.15) is true, then the shifted operator A− ωI satisfies (1.15)
with ‘ω = 0.’ Below we show that A − ωI generates a bounded semigroup.
Lemma 1.17 then yields the assertion.
To establish the sufficiency of (1.15), we use the (bounded) Yosida approx-

imations An = n2R(n,A) − nI which tend to A strongly on D(A) as n → ∞
and generate semigroups (etAn)t≥0. We first prove that the latter converge to
a C0-semigroup T (·). In a second step we show that T (·) is generated by A.

1) Let (1.15) be true with ω = 0. Take n,m ∈ N and t ≥ 0. Employing
Lemma 1.17, the powers series representation of etAn in Example 1.3 and (1.15),
we estimate

∥etAn∥ = ∥e−nten2R(n,A)t∥ ≤ e−tn
∞∑
j=0

(nt n∥R(n,A)∥)j

j!
≤Me−nt

∞∑
j=0

(nt)j

j!

=M. (1.18)

We further have AnAm = AmAn and hence the core commutativity

Ane
tAm = An

∞∑
j=0

tj

j!
Ajm =

∞∑
j=0

tj

j!
AjmAn = etAmAn.

Take t0 > 0, y ∈ D(A), and t ∈ [0, t0]. Using (1.3), from the above equation we
infer

etAny − etAmy =

∫ t

0

d

ds
e(t−s)AmesAny ds =

∫ t

0
e(t−s)AmesAn(An −Am)y ds.

Estimate (1.18) and Lemma 1.22 then lead to the limit

∥etAny − etAmy∥ ≤ t0M
2∥Any −Amy∥ −→ 0 (1.19)



1.2. Characterization of generators 19

as n,m → ∞. Because of the density of D(A) and the bound (1.18), we can
apply Lemma 4.10 of [24]. Since t0 > 0 is arbitrary, this lemma yields operators
T (t) in B(X) such that etAnx→ T (t)x as n→ ∞ and ∥T (t)∥ ≤M for all t ≥ 0
and x ∈ X. We also obtain T (0) = I and

T (t+ s)x = lim
n→∞

e(t+s)Anx = lim
n→∞

etAnesAnx = T (t)T (s)x

for all t, s ≥ 0, using Remark 1.13. Letting m→ ∞ in (1.19), we further deduce

∥etAny − T (t)y∥ ≤ t0M
2 ∥Any −Ay∥

for all t ∈ [0, t0]. This means that etAny converges to T (t)y uniformly for
t ∈ [0, t0], and hence T (·)y is continuous for all y ∈ D(A). Lemma 1.7 and the
density of D(A) now imply that T (·) is a (bounded) C0-semigroup.

2) Let B generate T (·). We have R+ ⊆ ρ(A)∩ ρ(B) by Proposition 1.20 and
the assumptions. In view of Lemma 1.23 it thus remains to show A ⊆ B (or
B ⊆ A, but more is known about A). For t > 0 and y ∈ D(A), Lemmas 1.18
and 1.22, Remarks 1.13 and 1.15 e), as well as estimate (1.18) yield

1

t
(T (t)y − y) = lim

n→∞

1

t
(etAny − y) = lim

n→∞

1

t

∫ t

0
esAnAny ds =

1

t

∫ t

0
T (s)Ay ds.

As t→ 0, from (1.4) we conclude that y ∈ D(B) and By = Ay; i.e., A ⊆ B. □

We illustrate the above theorem by some examples. Applications to more
complicated partial differential operators will be discussed in Section 1.4.

Example 1.27. a) Let X = C0(R≤0) and A = − d
ds with D(A) = C1

0 (R≤0),
cf. Example 1.21. Then A generates the C0-semigroup given by T (t)f = f(·−t)
for t ≥ 0 and f ∈ X. It has the spectrum σ(A) = C−, where we let F = C.
Proof. We first check in several steps the conditions (1.17).

1) Let f ∈ X and ε > 0. We extend f to a function f̃ ∈ C0(R). As in

Example 1.8 one finds a map g̃ ∈ Cc(R) with ∥f̃ − g̃∥∞ ≤ ε. By the proof of

Proposition 4.13 in [24] there is function h̃ ∈ C∞
c (R) with ∥g̃ − h̃∥∞ ≤ ε. The

restriction h of h̃ to R≤0 thus belongs to D(A) and satisfies ∥f − h∥∞ ≤ 2ε, so
that A is densely defined.

2) Let the sequence (un) in D(A) tend in X to a function u, and (Aun) to
some f in X. The map u is thus differentiable with −u′ = f ∈ X. As a result,
u is contained in D(A) and satisfies Au = f ; i.e., A is closed.

3) Let f ∈ X and λ > 0. To show the bijectivity of λI − A, we note that a
function u belongs to D(A) and solves λu−Au = f if and only if

u′ = −λu+ f and u ∈ C1(R≤0) ∩X
(using that u′ ∈ X by the formulas in display). This condition is equivalent to

u ∈ C1(R≤0)∩X, ∀ t0 ≤ s ≤ 0 : u(s) = e−λ(s−t0)u(t0) +

∫ s

t0

e−λ(s−τ)f(τ) dτ.

Since u and f are bounded and λ > 0, here one can let t0 → −∞ and derive

u(s) =

∫ s

−∞
e−λ(s−τ)f(τ) dτ =: R(λ)f(s) for all s ≤ 0, lim

s→−∞
u(s) = 0.
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Conversely, if the function v := R(λ)f belongs to X, a direct calculation shows
that it is an element of D(A) and satisfies λv −Av = f .

We now show R(λ)f ∈ X, where the continuity is clear. Let ε > 0. There is
a number sε ≤ 0 with |f(τ)| ≤ ε for all τ ≤ sε. For s ≤ sε we then estimate

|R(λ)f(s)| ≤
∫ s

−∞
e−λ(s−τ)|f(τ)| dτ ≤ ε

∫ ∞

0
e−λr dr =

ε

λ
,

substituting r = s− τ . As a result, R(λ)f(s) tends to 0 as s → −∞, and so λ
is contained in ρ(A) and R(λ) = R(λ,A).

4) Employing the above formula for the resolvent, we calculate

∥R(λ,A)f∥∞ ≤ sup
s≤0

∫ s

−∞
e−λ(s−τ)∥f∥∞ dτ = ∥f∥∞

∫ ∞

0
e−λr dr =

∥f∥∞
λ

for all f ∈ X and λ > 0. Theorem 1.26 now implies that A generates a
contraction semigroup T (·). In particular, σ(A) is contained in C−. For λ ∈ C−,
the function e−λ belongs to D(A) and satisfies Ae−λ = −e′−λ = λe−λ so that
C− ⊆ σ(A). The closedness of σ(A) then implies the second assertion.

5) To determine T (·), we take φ ∈ D(A). We set u(t, s) = (u(t))(s) =
(T (t)φ)(s) and for t ≥ 0 and s ≤ 0. By Proposition 1.10, the function u
belongs to C1(R≥0, X) ∩ C(R≥0, [D(A)]) and solves the problem

∂tu(t, s) = −∂su(t, s), t ≥ 0, s ≤ 0,

u(0, s) = φ(s), s ≤ 0.

(Note that X includes the ‘boundary condition’ u(t, s) → 0 as s → −∞.) It is
straighforward to see that via v(t, s) = φ(s− t) one defines another solution in
the same function spaces. The uniqueness statement in Proposition 1.10 then
yields u = v and hence T (t)φ = φ(· − t) for all t ≥ 0. This equation holds for
all φ ∈ X by approximation. □

b) We present an operator A that satisfies (1.15) for n = 1 and some M > 1,
but is not a generator. So one cannot omit the powers n in (1.15).
Let X = C0(R)2 with F = C, ∥(f, g)∥ = max{∥f∥∞, ∥g∥∞}, m(s) = is, and

A

(
u
v

)
=

(
mu+mv

mv

)
=

(
m m
0 m

)(
u
v

)
for (u, v) ∈ D(A) = {(u, v) ∈ X | (mu,mv) ∈ X}.
Since Cc(R)×Cc(R) ⊆ D(A), the domain D(A) is dense in X. Take (un, vn)

in D(A) such that (un, vn) → (u, v) and A(un, vn) → (f, g) in X as n→ ∞. By
pointwise limits, we infer that mu+mv = f and mv = g ∈ C0(R), so that also
mu ∈ C0(R). As a result, the vector (u, v) belongs to D(A) and A is closed.
Let λ ∈ C+. Since 1/(λ−m) and m/(λ−m) are bounded, the operator

R(λ) =

(
1

λ−m
m

(λ−m)2

0 1
λ−m

)
maps X into D(A). We further compute

(λI −A)R(λ) =

(
λ−m −m

0 λ−m

)( 1
λ−m

m
(λ−m)2

0 1
λ−m

)
= I,
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and similarly R(λ)(λw − Aw) = w for w ∈ D(A). So we have shown that
C+ ⊆ ρ(A) and R(λ) = R(λ,A).

For λ > 0 and ∥(f, g)∥ ≤ 1 we next estimate∥∥∥R(λ,A)(f
g

)∥∥∥ ≤ max
{∥∥∥ f

λ−m

∥∥∥
∞

+
∥∥∥ mg

(λ−m)2

∥∥∥
∞
,
∥∥∥ g

λ−m

∥∥∥
∞

}
≤ sup

s∈R

( 1

|λ− is|
+

|s|
|λ− is|2

)
≤ 1

λ
+ sup

s∈R

|s|
λ2 + s2

=
3/2

λ
.

On the other hand, for a > 0 and n ∈ N we choose gn ∈ C0(R) such that
gn(n) = 1 and ∥gn∥∞ = 1. It then follows

∥R(a+ in,A)∥ ≥
∥∥∥R(a+ in,A)

(
0
gn

)∥∥∥ ≥
∥∥∥ m

(a+ in−m)2
gn

∥∥∥
∞

≥
∣∣∣ in

(a+ in− in)2
gn(n)

∣∣∣ = n

a2
.

The resolvent R(λ,A) is thus unbounded on every imaginary line Reλ = a,
violating Proposition 1.20 c); i.e., A does not generate a C0-semigroup.
There are operators satisfying even ∥R(λ,A)∥ ≤ c

Re(λ) for some c > 1 and all

λ ∈ C+ which fail to be a generator (see Example 2 in §12.4 of [12]). ♢

We now turn our attention to the generation of groups. We will reduce this
question to the semigroup case, using the following simple fact.

Lemma 1.28. Let T (·) be a C0-semigroup and t0 > 0 such that T (t0) is
invertible. Then T (·) can be extended to a C0-group (T (t))t∈R.

Proof. Take constants M ≥ 1 and ω ∈ R with ∥T (t)∥ ≤ Meωt for all
t ≥ 0. Set c = ∥T (t0)−1∥. Let 0 ≤ t ≤ t0. We then compute

T (t0) = T (t0 − t)T (t) = T (t)T (t0 − t),

I = T (t0)
−1T (t0 − t)T (t) = T (t)T (t0 − t)T (t0)

−1.

The operator T (t) thus has the inverse T (t0)
−1T (t0− t) with norm less than or

equal to M1 := cMeω+t0 . Next, let t = nt0 + τ for some n ∈ N and τ ∈ [0, t0).
In this case T (t) = T (τ)T (t0)

n is invertible with T (t)−1 = T (t0)
−nT (τ)−1.

We now define T (t) := T (−t)−1 for t ≤ 0. This definition gives a group, since
for t, s ≥ 0 we can calculate

T (−t)T (−s) = T (t)−1T (s)−1 = (T (s)T (t))−1 = T (s+ t)−1 = T (−s− t),

T (−t)T (s) = T (t)−1T (t)T (s− t) = T (s− t) for s ≥ t,

T (−t)T (s) = (T (s)T (t− s))−1T (s) = T (t− s)−1T (s)−1T (s)

= T (t− s)−1 = T (s− t) for t ≥ s;

and similarly for T (s)T (−t). Let t ∈ [0, t0] and x ∈ X. We then obtain

∥T (−t)x− x∥ = ∥T (−t)(x− T (t)x)∥ ≤M1∥x− T (t)x∥ → 0

as t→ 0. So (T (t))t∈R is a C0-group by Lemma 1.7. □
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We next characterize generators of C0-groups in the same way as in The-
orem 1.26, by requiring resolvent bounds also for negative λ. Moreover, A
generates (T (t))t∈R if and only if A and −A generate (T (t))t≥0 and (T (−t))t≥0,
respectively. By rescaling, one can shift the growth bound to ∥T (t)∥ ≤ Meω+t

for t ≥ 0 and ∥T (t)∥ ≤Meω−t for t ≤ 0, and any given ω− ≤ ω+ in R.

Theorem 1.29. Let A be a linear operator, M ≥ 1, and ω ≥ 0. The following
assertions are equivalent.

a) A generates a C0-group (T (t))t∈R with ∥T (t)∥ ≤Meω|t| for all t ∈ R.

b) A generates a C0-semigroup (T+(t))t≥0, and −A with D(−A) := D(A)
generates a C0-semigroup (T−(t))t≥0 with ∥T±(t)∥ ≤Meωt for all t ≥ 0.

c) A is closed, D(A) = X, and for all λ ∈ R with |λ| > ω we have λ ∈ ρ(A)
and ∥(|λ| − ω)nR(λ,A)n∥ ≤M for all n ∈ N.

If one (and thus all) of these conditions is (are) fulfilled, one has T+(t) = T (t)
and T−(t) = T (−t) for every t ≥ 0. Moreover, in part c) one can then replace
‘λ ∈ R’ by ‘λ ∈ C’ and ‘|λ|’ by ‘|Reλ|’ (provided that F = C).

Proof. 1) We first deduce statement b) from a). Assuming a), we set
T+(t) = T (t) and T−(t) = T (−t) for each t ≥ 0. Recall from Remark 1.2 that
T (−t) = T (t)−1. It is easy to check that one thus obtains two C0-semigroups
with growth bounds ∥T±(t)∥ ≤Meωt. We denote their generators by A±.
For x ∈ D(A), there exists d

dtT (0)x = Ax implying A ⊆ A+ and A ⊆ −A−.
To show the inverse inclusion, let x ∈ D(A−) and t > 0. We then compute

1
t (T (t)x− x) = −T (t)1t (T−(t)x− x) −→ −A−x,

1
−t(T (−t)x− x) = −1

t (T−(t)x− x) −→ −A−x

as t→ 0, so that x ∈ D(A) and hence A = −A−. One proves A = A+ similarly.
Therefore, property b) and the first adddendum are true.

2) Let b) be valid. For λ > ω, assertion c) follows from Theorem 1.26.
For λ < −ω, we use that σ(A) = −σ(−A) with R(λ,A) = −R(−λ,−A), cf.
Example 1.21 a). Theorem 1.26 thus also yields the estimate in part c) for
λ < −ω since here −λ = |λ|. The second addendum is shown in the same way.

3) We assume claim c) and derive statement a). Theorem 1.26 implies
that A generates a C0-semigroup (T+(t))t≥0 and −A generates a C0-semigroup
(T−(t))t≥0 (arguing for −A as in the previous step). Let x ∈ D(A) = D(−A)
and t ≥ s ≥ 0. Proposition 1.10 and its proof imply

d
dsT+(s)T−(s)x = T+(s)AT−(s)x+ T+(s)(−A)T−(s)x = 0

and then T+(t)T−(t)x = x. Analogously, one obtains T−(t)T+(t)x = x. It
follows that I = T+(t)T−(t) = T−(t)T+(t) since D(A) is dense. By Lemma 1.28,
T+(·) can thus be extended to a C0-group. Let B be its generator. We have B ⊆
A by definition and s(B) < ∞ by step 1) and Proposition 1.20. Condition c)
and Lemma 1.23 then yield A = B and hence assertion a). □
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1.3. Dissipative operators

Even in the contraction case, the Hille-Yosida Theorem 1.26 poses the difficult
task to show a resolvent estimate with constant 1 for all λ > 0. In this section we
prove the Lumer-Phillips Theorem 1.39 which reduces this task to checking the
dissipativity and a certain range condition of A. The former property can often
be verified by direct computations, and for the latter there are powerful (also
functional analytic) tools to solve the occuring equations. Below these matters
will be illustrated by the first derivative again, more involved applications will
be treated in the following section.
We start with an auxiliary notion. The duality set J(x) of a vector x ∈ X is

defined by

J(x) =
{
x∗ ∈ X∗ ∣∣ ⟨x, x∗⟩ = ∥x∥2, ∥x∥ = ∥x∗∥

}
,

where ⟨x, x∗⟩ = x∗(x) for all x ∈ X and x∗ ∈ X∗. The Hahn–Banach theorem
ensures that J(x) ̸= ∅, cf. Corollary 5.10 in [24]. In standard function spaces
one can compute elements in the duality set explicitely.

Example 1.30. a) Let X be a Hilbert space with scalar product (·|·). By
Riesz’ Theorem 3.10 in [24], for each functional y∗ ∈ X∗ there is a unique
vector y ∈ X satisfying ⟨z, y∗⟩ = (z|y) for all z ∈ X, and one has ∥y∥ = ∥y∗∥.
As a result, y∗ ∈ J(x) is equivalent to ∥x∥ = ∥y∥ and (x|y) = ∥x∥2, or to
∥x∥ = ∥y∥ and (x|y) = ∥x∥∥y∥. These conditions are valid if and only if y = αx
for some α ∈ F with |α| = 1 (due to the characterization of equality in the
Cauchy–Schwarz inequality). Inserting this expression in (x|y) = ∥x∥2, we see
that x = y. The converse implication is clear. Consequently, J(x) = {φx} for
the functional given by φx(z) = (z|x).

b) Let X = Lp(µ) for an exponent p ∈ [1,∞) and a measure space (S,A, µ),
which has to be σ-finite if p = 1. We identify X∗ with Lp

′
(µ) via the usual

duality pairing ⟨f, g⟩Lp×Lp′ =
∫
fg dµ, where p′ = p

p−1 for p > 1 and 1′ = ∞,

see Theorem 5.4 in [24]. Take f ∈ X \ {0}. We set

g = ∥f∥2−pp f |f |p−2

writing 0
0
:= 0. For p = 1, we have ∥g∥∞ = ∥f∥1. For p > 1, we compute

∥g∥p′ = ∥f∥2−pp

(∫
S
|f |(p−1)· p

p−1 dµ
) p−1

p
= ∥f∥2−pp ∥f∥p−1

p = ∥f∥p.

Since also

⟨f, g⟩ = ∥f∥2−pp

∫
S
f f |f |p−2 dµ = ∥f∥2−pp ∥f∥pp = ∥f∥2p ,

we obtain g ∈ J(f). It follows from an exercise that J(f) = {g} if p ∈ (1,∞).
Note that g = f for p = 2 which corresponds to part a).

c) Let ∅ ≠ U ⊆ Rm be open and E = C0(U) with

C0(U) :=
{
f ∈C(U)

∣∣ f(x) → 0 as x→ ∂U and as |x| → ∞ for unbounded U
}
,

which is a Banach space for the supremum norm. For f ∈ E there is a point x0 ∈
U with |f(x0)| = ∥f∥∞. Set φ(g) = f(x0)g(x0) for g ∈ E; i.e., φ = f(x0)δx0 .
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As in Example 2.8 of [24] one checks that φ ∈ E∗ with ∥φ∥ = |f(x0)| = ∥f∥∞.
We clearly have φ(f) = |f(x0)|2 = ∥f∥2∞. Hence, φ belongs to J(f). The same
construction works on E = C(K) for a compact metric space K. ♢

We now state the core concept of this section.

Definition 1.31. A linear operator A is called dissipative if for each vector
x ∈ D(A) there is a functional x∗ ∈ J(x) such that Re⟨Ax, x∗⟩ ≤ 0. The
operator A is called accretive if −A is dissipative.

The next fundamental characterization provides the link between dissipativ-
ity and the resolvent condition (1.17) in the Hille–Yosida theorem. We also
show that a generator of a contraction semigroup is dissipative in a somewhat
stronger sense, which will be used in Theorem 3.8.

Proposition 1.32. A linear operator A is dissipative if and only if it satisfies
∥λx − Ax∥ ≥ λ∥x∥ for all λ > 0 and x ∈ D(A). If A generates a contraction
semigroup, then we have Re⟨Ax, x∗⟩ ≤ 0 for every x ∈ D(A) and all x∗ ∈ J(x).

Proof. 1) Let A generate the contraction semigroup T (·). Take x ∈ D(A)
and x∗ ∈ J(x). Using x∗ ∈ J(x) and the contractivity, we estimate

Re⟨Ax, x∗⟩ = lim
t→0+

Re
〈
1
t (T (t)x− x), x∗

〉
= lim

t→0+
1
t

(
Re⟨T (t)x, x∗⟩ − ∥x∥2

)
≤ lim sup

t→0+

1
t (∥x∥ ∥x

∗∥ − ∥x∥2) = 0.

2) Let A be dissipative. Take x ∈ D(A) and λ > 0. There thus exists a
functional x∗ ∈ J(x) with Re⟨Ax, x∗⟩ ≤ 0. These facts imply the inequalities

λ∥x∥2 ≤ Re(λ⟨x, x∗⟩)− Re⟨Ax, x∗⟩ ≤ |⟨λx−Ax, x∗⟩| ≤ ∥λx−Ax∥∥x∗∥.

Since ∥x∥ = ∥x∗∥, it follows λ∥x∥ ≤ ∥λx−Ax∥.
3) Conversely, let ∥λx − Ax∥ ≥ λ∥x∥ be true for all λ > 0 and x ∈ D(A).

If x = 0 we can take x∗ = 0 in the definition of dissipativity. Otherwise, we
replace x by ∥x∥−1 x, and will thus assume that ∥x∥ = 1.
Take y∗λ ∈ J(λx−Ax). This functional is not zero since ∥y∗λ∥ = ∥λx−Ax∥ ≥

λ∥x∥ = λ > 0 by the assumptions. We now set x∗λ = ∥y∗λ∥−1 y∗λ and note that
∥x∗λ∥ = 1. Using the above properties, we deduce

λ ≤ ∥λx−Ax∥ =
1

∥y∗λ∥
⟨λx−Ax, y∗λ⟩ = Re⟨λx−Ax, x∗λ⟩

= λRe⟨x, x∗λ⟩ − Re⟨Ax, x∗λ⟩ ≤ min{λ− Re⟨Ax, x∗λ⟩, λRe⟨x, x∗λ⟩+ ∥Ax∥}.

This inequality implies the core bounds

Re⟨Ax, x∗λ⟩ ≤ 0 and 1− 1
λ∥Ax∥ ≤ Re⟨x, x∗λ⟩.

Let x̃∗λ be the restriction of x∗λ to the space E = lin{x,Ax} equipped with the
norm of X. Because of ∥x̃∗λ∥ ≤ ∥x∗λ∥ = 1, the Bolzano–Weierstraß theorem
yields a sequence (λj) in R+ and a vector y∗ ∈ E∗ such that λj → ∞ and
x̃∗λj → y∗ as j → ∞. These limits lead to

∥y∗∥ ≤ 1, Re⟨Ax, y∗⟩ ≤ 0 and 1 ≤ Re⟨x, y∗⟩.
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The Hahn–Banach theorem allows us to extend y∗ to a functional x∗ ∈ X∗ with
∥x∗∥ = ∥y∗∥ ≤ 1. It then satisfies Re⟨Ax, x∗⟩ ≤ 0 and

1 ≤ Re⟨x, x∗⟩ ≤ |⟨x, x∗⟩| ≤ ∥x∗∥ ≤ 1

since ∥x∥ = 1. So we have equalities in the above formula, which means that
∥x∗∥ = 1 = ∥x∥ and ⟨x, x∗⟩ = 1 = ∥x∥2; i.e., x∗ ∈ J(x) and A is dissipative. □

The dissipativity of differential operators A heavily depends on the boundary
conditions, as we now discuss for first-order operators on an interval.

Example 1.33. a) Let X = C0(R), b, c ∈ Cb(R) be real-valued, and Au =
bu′ + cu with D(A) = C1

0 (R). Take u ∈ D(A) and some s0 ∈ R with |u(s0)| =
∥u∥∞. Then φ = u(s0)δs0 belongs to J(u) by Example 1.30. We compute

r := Re⟨Au− ∥c+∥∞u, φ⟩ = b(s0)Re(u
′(s0)u(s0)) + (c(s0)− ∥c+∥∞) |u(s0)|2

≤ b(s0)Re(u
′(s0)u(s0)).

We set h(s) = Re(u(s0)u(s)) for s ∈ R. Clearly, h ∈ C1
0 (R) is real-valued and

|u(s0)|2 = h(s0) ≤ ∥h∥∞ ≤ |u(s0)| ∥u∥∞ = |u(s0)|2,
so that h attains its maximum at s0. It follows h

′(s0) = 0 implying r ≤ 0. This
means that A− ∥c+∥∞I is dissipative.

b) Let X = C([0, 1]), b, c ∈ X be real-valued, b(0) ≥ 0 for simplicity, and
Aj = bu′ + cu with D(Aj) = {u ∈ C1([0, 1]) |u′(j) = 0} for j ∈ {0, 1}. Then
A1−∥c+∥∞I is dissipative. If b(1) ≤ 0, also A0−∥c+∥∞I is dissipative. On the
other hand, if b(1) > 0 the operator A0 − ωI does not generate a contraction
semigroup for any ω ∈ R.3
Proof. For u ∈ D(Aj), we use the functional φ(v) = u(s0)v(s0) on X,

where |u(s0)| = ∥u∥∞ for some s0 ∈ [0, 1]. We also set h(s) = Re(u(s0)u(s)) for
s ∈ [0, 1]. As in a), one sees that φ belongs to J(u), h ∈ C1([0, 1]) attains its
maximum at s0, and

r := Re⟨Aju− ∥c+∥∞u, φ⟩ ≤ b(s0)Re(u
′(s0)u(s0)) = b(s0)h

′(s0).

If s0 ∈ (0, 1), this inequality again yields r ≤ 0. Similarly, for s0 = 0 we obtain

h′(0) = lim
s→0+

1
s (h(s)− h(0)) ≤ 0

since h(0) is a maximum of h. Using b(0) ≥ 0, we infer r ≤ 0.
Finally, let s0 = 1. In this case the above argument leads to h′(1) ≥ 0. We

first look at j = 1. Here we have the boundary condition u′(1) = 0 and thus
h′(1) = 0. It follows that r ≤ b(1)h′(1) = 0 and so A1 − ∥c+∥∞I is dissipative.

Let j = 0. For b(1) ≤ 0, we derive r ≤ b(1)h′(1) ≤ 0 so that A0 − ∥c+∥∞I
is dissipative in this case. Next, let b(1) > 0. Fix ω ∈ R. Choose a real-valued
function u ∈ D(A0) with maximum u(1) = 1 and u′(1) > (ω− c(1))/b(1). Since
then φ = δ1, we obtain the inequality

Re⟨A0u− ωu, φ⟩ = b(1)u′(1) + c(1)− ω > 0.

Hence, A0 − ωI cannot generate a contraction semigroup by Proposition 1.32.
(Note that we did not show that Re⟨A0u− ωu, ψ⟩ > 0 for all ψ ∈ J(u).)

3Using a more sophisticated construction, one can show that it is not dissipative.
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□

c) Let X = L2(R) and A = d
ds with D(A) = C1

c (R). For u ∈ D(A), Exam-
ple 1.30 yields {u} = J(u). Integrating by parts, we compute

2Re⟨Au, u⟩ = ⟨Au, u⟩+ ⟨Au, u⟩ =
∫
R
u′uds+

∫
R
u′uds = 0;

i.e., A is dissipative (but not closed by Example 1.42). Then above formula also
implies the dissipativity of −A.
d) Let X = L2(0, 1), Aj = d

ds , and D(Aj) = {u ∈ C1([0, 1]) |u(j) = 0} for
j ∈ {0, 1}. For u ∈ D(Aj) we again have {u} = J(u) and obtain

2Re⟨Au, u⟩ =
∫ 1

0
u′uds+

∫ 1

0
u′uds = uu

∣∣1
0
= |u(1)|2 − |u(0)|2.

It follows that A1 is dissipative. However, A0 − ωI is not dissipative for any
ω ∈ R, since we can find a map u in D(A0) satisfying |u(1)|2 > 2ω∥u∥22 and so

Re⟨A0u− ωu, u⟩ = 1
2 |u(1)|

2 − ω∥u∥22 > 0. ♢

Examples c) and d) can be extended to Lp with p ∈ [1,∞), cf. Example 1.48.
Above we have encountered rather natural dissipative, but non-closed operators.
To treat such operators, we introduce a concept extending closedeness.

Intermezzo 2: Closable operators.

Definition 1.34. A linear operator A is called closable if it possesses a closed
extension B.

Note that a closed operator is closable since A ⊆ A. We first characterize
closability and construct the closure A of a closable operator A, which is the
smallest closed extension of A.

Lemma 1.35. For a linear operator A, the following statements are equivalent.

a) The operator A is closable.

b) Let (xn) be a sequence in D(A) with xn → 0 and Axn → y in X as n→ ∞.
Then y = 0.

c) In the set D(A)={x∈X| ∃ (xn) in D(A), y∈X : xn→x, Axn→y, n→∞}
the vector y is uniquely determined by x. Letting A : D(A) → X; Ax = y, one
thus defines a map. The operator A is linear, closed, and extends A.

Let one and hence all of the properties a)–c) are valid. Then Gr(A) = Gr(A),
D(A) is dense in [D(A)], and we have A ⊆ B for every closed operator B ⊇ A.

Proof. Part c) clearly implies a). Let a) be true and B be a closed exten-
sion of A. Take (xn) as in statement b). Then the vectors Axn = Bxn tend to
y = B0 = 0 since B is closed.

We assume that property b) holds. Let (xn) and (zn) be sequences in D(A)
with limit x in X such that (Axn) converges to y and (Azn) to w in X. Then
(xn − zn) is a null sequence in X with A(xn − zn) = Axn − Azn → y − w as
n→ ∞. Part b) thus implies y = w, so that A is a mapping. One easily verifies

that A is linear and that Gr(A) = Gr(A), which shows the first part of the
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addendum. Hence, A is closed due to Remark 1.15 and A extends A. Therefore
assertion c) is shown.
Let B be another closed extension of A. We then have Gr(A) ⊆ Gr(B) and

so Gr(A) = Gr(A) ⊆ Gr(B) because of the closedness of B. In particular,

B extends A. The density assertion is an immediate consequence of Gr(A) =
Gr(A) and the definition of the graph norm. □

As consequence of this lemma, a linear operator is closed if and only if it is
its own closure. We illustrate the concepts of extension and closure by the first
derivative, again stressing the role of the boundary conditions.

Example 1.36. a) Let X = L1(0, 1) and Af = f(0)1 with D(A) = C([0, 1]).
This operator is not closable. In fact, the functions fn ∈ D(A) given by fn(s) =
max{1− ns, 0} satisfy ∥fn∥1 = 1

2n → 0 as n → ∞, but Afn = 1 for all n ∈ N,
contradicting Lemma 1.35 b).

b) Let X = C([0, 1]) and A0u = u′ with D(A0) = C1
c (0, 1) := C1

c ((0, 1)), as
well as Au = u′ with D(A) = C1

0 (0, 1) := C1
0 ((0, 1)). As in Example 1.14 we see

that A is closed. Hence, A0 is closable and A0 ⊆ A since A0 ⊆ A. To check
equality, let u ∈ C1

0 (0, 1). Take φn ∈ C1
c (0, 1) such that φ = 1 on [ 1n , 1 − 1

n ],
0 ≤ φn ≤ 1 and ∥φ′

n∥∞ ≤ cn for some c > 0 and all n ∈ N with n ≥ 2. (For
instance, one can take

φn(s) =



0, 0 < s < 1
4n ,

8n2
(
s− 1

4n

)2
, 1

4n ≤ s ≤ 1
2n ,

1− 8n2
(

3
4n − s

)2
, 1

2n ≤ s ≤ 3
4n ,

1, 3
4n < s ≤ 1

2 ,

φn(1− s), 1
2 < s < 1,

where c = 4.) Then the function un = φnu belongs to D(A0), and we have

∥un − u∥∞ = sup
s∈[0, 1

n
]∪[1− 1

n
,1]

|(φn(s)− 1)u(s)| ≤ sup
s∈[0, 1

n
]∪[1− 1

n
,1]

|u(s)| −→ 0,

∥φnu′ − u′∥∞ ≤ sup
s∈[0, 1

n
]∪[1− 1

n
,1]

|(φn(s)− 1)u′(s)| −→ 0

as n→ ∞ since u, u′ ∈ C0(0, 1). We further obtain

∥φ′
nu∥∞ ≤ sup

s∈[0, 1
n
]

|φ′
n(s)u(s)|+ sup

s∈[1− 1
n
,1]

|φ′
n(s)u(s)|

≤ sup
s∈[0, 1

n
]

cn
∣∣∣ ∫ s

0
u′(τ) dτ

∣∣∣+ sup
s∈[1− 1

n
,1]

cn
∣∣∣ ∫ 1

s
u′(τ) dτ

∣∣∣
≤ cn

∫ 1
n

0
|u′(τ)|dτ + cn

∫ 1

1− 1
n

|u′(τ)|dτ −→ 0

as n → ∞, because of (1.4) and u′ ∈ C0(0, 1). Hence, A0(φnu) = φ′
nu + φnu

′

converges to Au = u′. This means that A ⊆ A0 and thus A0 = A. In particular
A0 is not closed and thus fails to be a generator.

We discuss further closed extensions of A0 given by Aju = u′ for j ∈ {1, 2, 3}.
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1) Let D(A1) = {u ∈ C1([0, 1]) |u′(1) = 0}. By an exercise, A1 generates a
C0-semigroup on X and σ(A1) = {0}. Observe that A1 is a strict extension of
A. Lemma 1.23 thus implies that ρ(A) ∩ ρ(A1) = ∅ and hence F \ {0} ⊆ σ(A).
(Actually, we have σ(A) = F since 1 /∈ AD(A).) As a result, A is not generator
– it has too many boundary conditions, namely four instead of one as in D(A1).

2) Let D(A3) = C1([0, 1]). Example 1.21 says that σ(A3) = F. So A3 is not
a generator because it has not enough boundary conditions, namely none. We
have A ⊊ A1 ⊊ A3.

3) Let D(A2) = {u ∈ C1([0, 1]) |u(1) = 0}. Also A2 is ‘sandwiched’ between
A and A3; i.e., A ⊊ A2 ⊊ A3, but A1 and A2 are not comparable. The operator
A2 is not a generator as its domain is not dense, see Example 1.21.

Summing up, the ‘minimal’ operator A and the ‘maximal’ operator A3 do
not generate C0-semigroups. Between them there are various, partly noncom-
parable operators (so–called ‘realizations’ of d

ds) which may or may not be
generators. Their domains are often determined by boundary conditions. ♢

We come back to the study of C0-semigroups. Below we use closures in a gen-
eration result, but at first we establish sufficient conditions for a subspace D to
be dense in D(A) in the graph norm. Such a subspace is called core of a closed
operator A. Observe that D is a core if and only if A is the closure of the re-
striction A↾D. In Example 1.36 b) the set C1

c (0, 1) is a core for A. One can often
extend properties from cores to the full domain, see e.g. Proposition 1.38 c).
It is often difficult to decide whether a subspace D is a core of an operator A.

The next result gives a convenient sufficient condition involving the semigroup.

Proposition 1.37. Let A generate the C0-semigroup T (·) on X. Let D be a
linear subspace of D(A) which is dense in X and invariant under the semigroup;
i.e., T (t)D ⊆ D for all t ≥ 0. Then D is dense in [D(A)].

Proof. Set C = sup0≤t≤1 ∥T (t)∥ < ∞. Let x ∈ D(A). The map T (·)x :
R≥0 → [D(A)] is continuous by Proposition 1.10. Take ε > 0. There is a time
τ = τ(ε, x) ∈ (0, 1] with ∥T (t)x− x∥A ≤ ε for all t ∈ [0, τ ]. It follows∥∥∥1

τ

∫ τ

0
T (t)x dt− x

∥∥∥
A
≤ 1

τ

∫ τ

0
∥T (t)x− x∥A dt ≤ ε.

Using the density of D in X, we find a vector y ∈ D with

∥x− y∥ ≤
(
C +

C + 1

τ

)−1
ε.

Let D̃ be the closure of D in [D(A)]. We want to replace y by a vector z in D̃
that is close to x for ∥·∥A. To this aim, we set

z =
1

τ

∫ τ

0
T (t)y dt.

The integrand T (t)y takes values in D by assumption, and as above it is con-
tinuous in [D(A)]. In view of the definition of the integral, z thus belongs to

D̃. The previous inequalities and Lemma 1.18 imply the bound

∥x− z∥A ≤
∥∥∥x− 1

τ

∫ τ

0
T (t)x dt

∥∥∥
A
+

1

τ

∥∥∥∫ τ

0
T (t)(x−y)dt

∥∥∥+ 1

τ

∥∥∥A∫ τ

0
T (t)(x−y)dt

∥∥∥
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≤ ε+
C

τ

∫ τ

0
∥x− y∥dt+ 1

τ
∥(T (τ)− I)(x− y)∥

≤ ε+
(
C +

C + 1

τ

)
∥x− y∥ ≤ 2ε.

Finally, there is a vector w ∈ D with ∥z−w∥A ≤ ε, and hence ∥x−w∥A ≤ 3ε. □

The next result shows further important properties of dissipative operators
following from the characterization in Proposition 1.32. In particular, the Hille–
Yosida estimate (1.17) is reduced to a range condition, and a densely defined,
dissipative operator has a dissipative closure.

Proposition 1.38. Let A be dissipative. Then the following assertions hold.

a) Let λ > 0. Then the operator λI −A is injective and for y ∈ R(λI −A) =
(λI −A)(D(A)) we have ∥(λI −A)−1y∥ ≤ 1

λ∥y∥.
b) Let λ0I −A be surjective for some λ0 > 0. Then A is closed, R+ ⊆ ρ(A),

and ∥R(λ,A)∥ ≤ 1
λ for all λ > 0.

c) Let D(A) be dense in X. Then A is closable and A is also dissipative.

Proof. Assertion a) immediately follows from Proposition 1.32, using that
y = λx−Ax for some x ∈ D(A).

Let the assumptions in b) hold. Part a) then implies that λ0I − A has
an inverse with norm less than or equal to 1

λ0
. In particular, A is closed

by Remark 1.16 b). Let λ ∈ (0, 2λ0). Since |λ − λ0| < λ0 ≤ ∥R(λ0, A)∥−1,
Remark 1.16 c) shows that λ belongs to ρ(A). Step a) also yields the esti-
mate ∥R(λ,A)∥ ≤ 1

λ . In view of (1.8) also 2λ0 is contained in ρ(A) and thus

∥R(2λ0, A)∥ ≤ 1
2λ0

. We can now iterate this argument, deriving assertion b).

c) Assume that D(A) is dense in X. To check the closability of A, we choose
a sequence (xn) in D(A) with limit 0 in X such that (Axn) converges in X to
some y ∈ X. By density, there are vectors yk in D(A) tending to y in X as
k → ∞. Take λ > 0 and n, k ∈ N. Proposition 1.32 implies the lower bound

∥λ2xn − λAxn + λyk −Ayk∥ = ∥(λI −A)(λxn + yk)∥ ≥ λ∥λxn + yk∥.
Letting n→ ∞, we deduce ∥−λy + λyk −Ayk∥ ≥ λ∥yk∥ and thus

∥−y + yk − λ−1Ayk∥ ≥ ∥yk∥.
As λ → ∞, it follows that ∥−y + yk∥ ≥ ∥yk∥. Taking the limit k → ∞, we
conclude y = 0. Due to Lemma 1.35, the operator A is closable.
Let x ∈ D(A). Then there are vectors zn ∈ D(A) with zn → x and Azn → Ax

in X as n→ ∞. Using Proposition 1.32, we now infer the estimate

∥λx−Ax∥ = lim
n→∞

∥λzn −Azn∥ ≥ lim
n→∞

λ∥zn∥ = λ∥x∥,

and thus the dissipativity of A. □

The following theorem by Lumer and Phillips from 1961 is the most im-
portant result to verify the generator property in concrete cases (besides The-
orem 2.25 below). To show that an operator A (or its closure) generates a
contraction semigroup, one only has to establish the density of D(A), the dis-
sipativity of A, and that λ0I − A is surjective (or has dense range) for some



1.3. Dissipative operators 30

λ0 > 0. The first two properties can often be checked by direct computations
using the given information on A. The range condition usually is harder to
show. One has to solve the ‘stationary problem’

∃u ∈ D(A) : λ0u−Au = f

at least for f from a dense set of ‘good’ vectors. (We thus reduce the inves-
tigation of the dynamical problem (1.1) to a stationary one.) Based on our
preparations, the Lumer–Phillips theorem can easily be deduced from the con-
traction case of the Hille–Yosida Theorem 1.26. In Example 1.49 we will see
that one cannot omit the range conditions in parts a) or b).

Theorem 1.39. Let A be a linear and densely defined operator. The following
assertions hold.

a) Let A be dissipative and λ0 > 0 such that λ0I −A has dense range. Then
A generates a contraction semigroup.

b) Let A be dissipative and λ0 > 0 such that λ0I − A is surjective. Then A
generates a contraction semigroup.

c) Let A generate a contraction semigroup. Then A is dissipative, F+ ⊆ ρ(A),
and ∥R(λ,A)∥ ≤ 1/Re(λ) for λ ∈ F+.

One can replace ‘contraction’ by ‘ω-contraction’ and A by A− ωI for ω ∈ R.

Operators satisfying the assumptions in assertion b) are called maximally
dissipative or m-dissipative. (Such maps cannot have non-trivial dissipative
extensions because of Lemma 1.23 and Proposition 1.38 a).) If a closed operator
A satisfies the hypotheses of part a), then A generates a contraction semigroup
since A = A. This variant of the result is often very useful in applications. For
the addendum, one can easily check that A− ωI has the closure A− ωI.

Proof of Theorem 1.39. Let the conditions in a) be true. Proposi-
tion 1.38 then tells us that A possesses a dissipative closure A. Let y ∈ X. By
assumption, there are vectors xn ∈ D(A) such that the images yn = λ0xn−Axn
tend to y in X as n→ ∞. The dissipativity of A yields the inequality

λ0∥xn − xm∥ ≤ ∥(λ0 −A)(xn − xm)∥ = ∥yn − ym∥
for all n,m ∈ N thanks to Proposition 1.32. This means that (xn) has a limit x
in X, and hence the vectors Axn = Axn = λ0xn−yn tend to λ0x−y as n→ ∞.
Since A is closed, x belongs to D(A) and satisfies Ax = λ0x−y so that λ0I−A
is surjective. Proposition 1.38 b) and Theorem 1.26 now imply assertion a).
Part b) follows directly from Proposition 1.38 b) and Theorem 1.26. Claim c)

is a consequence of Propositions 1.32 and 1.20. Finally, a rescaling argument
based on Lemma 1.17 yields the addendum. □

We will reformulate the range condition in the Lumer–Phillips theorem using
duality. To this aim, we recall the following concept from the lecture Spectral
Theory. For a densely defined linear operator A, we define its adjoint A∗ by

A∗x∗ = y∗ for all x∗ ∈ D(A∗), where (1.20)

D(A∗) =
{
x∗ ∈ X∗ ∣∣∃ y∗ ∈ X∗ ∀x ∈ D(A) : ⟨Ax, x∗⟩ = ⟨x, y∗⟩

}
.
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This means that ⟨Ax, x∗⟩ = ⟨x,A∗x∗⟩ for all x ∈ D(A) and x∗ ∈ D(A∗). Recall
from Remark 1.23 in [27] that A∗ is a closed linear operator. The domain D(A∗)
in (1.20) is defined in a ‘maximal way’ which is convenient for the theory, but
for concrete operators it is often very difficult to calculate D(A∗) explicitly. The
next result replaces the range condition by the injectivity of λ0I − A∗ (or the
dissipativity of A∗), cf. Theorem 1.24 in [27]. In Example 1.49 we present a
closed and densely defined dissipative operator having a non-dissipative adjoint.

Corollary 1.40. Let A be linear and densely defined. If A is dissipative
and λ0I − A∗ be injective for some λ0 > 0, then A generates a contraction
semigroup. Moreover, λI −A∗ is injective for each λ > 0 if A∗ is dissipative.

Proof. The addendum follows from Proposition 1.38. Let λ0I − A∗ be
injective. Take a functional x∗ ∈ X∗ such that ⟨λ0x − Ax, x∗⟩ = 0 for all x ∈
D(A). From (1.20) we infer that x∗ belongs to D(A∗) and satisfies A∗x∗ = λ0x

∗,
and thus x∗ = 0. The Hahn–Banach theorem now implies the density of R(λ0I−
A), see Corollary 5.13 in [24]. Theorem 1.39 then yields the assertion. □

Examples 1.33 c) and d) indicate that integration by parts is a very convenient
tool to check dissipativity for differential operators in an L2-context. To tackle
such problems, we briefly discuss concepts and basic facts from Section 4.2 of
[24] and also from Chapter 3 of [27], where the topic is treated in much greater
detail. The material below is needed in many of our examples.

Intermezzo 3: Weak derivatives and Sobolev spaces. Let ∅ ≠ G ⊆
Rm be open, k ∈ N, j ∈ {1, . . . ,m}, and p ∈ [1,∞]. A function u ∈ Lp(G) has
a weak derivative in Lp(G) with respect to the jth coordinate if there is a map
v ∈ Lp(G) satisfying ∫

G
u∂jφdx = −

∫
G
vφdx

for all φ ∈ C∞
c (G). The function v is uniquely determined a.e. by Lemma 4.15

in [24]. We set ∂ju := v in the above situation. The Sobolev space

W 1,p(G) :=
{
u ∈ Lp(G)

∣∣ ∀ j ∈ {1, . . . ,m} ∃ ∂ju ∈ Lp(G)
}
.

is a Banach space when endowed with the norm

∥u∥1,p =


(
∥u∥pp +

∑m
j=1 ∥∂ju∥

p
p

) 1
p
, p <∞,

maxj∈{1,...,m}{∥u∥∞, ∥∂ju∥∞}, p = ∞,

see Proposition 4.19 of [24]. (As usual we identify functions which are equal
almost everywhere.) Hence, by definition weak derivatives can be integrated
by parts against‘test functions’ φ ∈ C∞

c (G). This norm is equivalent to the
one given by ∥u∥p+

∑m
j=1 ∥∂ju∥p due to Remark 4.16 in [24]. Analogously one

defines the Sobolov spaces W k,p(G) and higher-order weak derivatives ∂α =
∂α1
1 . . . ∂αm

m for α ∈ Nm0 and |α| = α1 + · · · + αm ≤ k. We put ∂0u = u. One
often writes Hk(G) instead ofW k,2(G) which is a Hilbert space. We summarize
properties of Sobolev spaces and weak derivatives that are needed later on.
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Remark 1.41. a) Let u ∈ Ck(G) such that u and all its derivatives up to
order k are contained in Lp(G). Then u belongs to W k,p(G) and its classical
and weak derivatives coincide by Remark 4.16 of [24].

b) Let u, un, v ∈ Lp(G) and α ∈ Nm0 such that un → u and ∂αun → v in
Lp(G) as n → ∞. Then u possesses the weak derivative ∂αu = v as shown in
Lemma 4.17 in [24] or Lemma 3.16 in [27]. In other words, the operator ∂α

with (maximal) domain {u ∈ Lp(G) | ∃ ∂αu ∈ Lp(G)} is closed in Lp(G).

c) Let p <∞. Theorem 3.27 of [27] says that C∞
c (Rm) is dense in W k,p(Rm)

and that C∞(G)∩W k,p(G) is dense inW k,p(G). (See also Theorem 4.21 of [24]
for the first result.)

d) Let −∞ ≤ a < b ≤ ∞, J = (a, b), and u ∈ Lp(J). Then the function
u belongs to W 1,p(J) =: W 1,p(a, b) if and only if (a representative of) u is
continuous and there is a map v ∈ Lp(J) satisfying

u(t) = u(s) +

∫ t

s
v(τ) dτ for all t, s ∈ J. (1.21)

We then have u′ = ∂u := ∂1u = v, and u possesses a continuous extension to a
(or b) if a > −∞ (or b < ∞). Moreover, ∥u∥∞ ≤ c∥u∥1,p for all u ∈ W 1,p(J)
and a constant c > 0, so that we have a linear continuous injection (embedding)
W 1,p(a, b) ↪→ Cb(J). See Theorems 3.22 and 3.31 as well as Remark 3.33 in
[27]. (One can also directly show the embedding starting from (1.21).)
As an example, take a function u ∈ Cc(R) whose restrictions u+ and u− to

R≥0 and R≤0, respectively, are continuously differentiable. The map u then
belongs to W 1,p(R) for all p ∈ [1,∞] and its derivative is given by (u±)′ on R±
by Example 4.18 of [24], where one also finds a multidimensional example.

e) Let u ∈ W 1,p(G) and v ∈ W 1,p′(G) with 1
p + 1

p′ = 1. Proposition 4.20

of [24] yields that uv is an element of W 1,1(G) and satisfies the product rule
∂j(uv) = u∂jv + v∂ju. Analogous results hold for higher-order derivatives.

f) Let G have a C1-boundary ∂G or G be bounded with a Lipschitz boundary
∂G ∈ C1−. See the beginning of Section 3.3 in [27] for these concepts. By the
Trace Theorem 3.38 in [27], the mapW 1,p(G)∩C(G) → Lp(∂G,dσ); u 7→ u↾∂G,
has a continuous extension tr :W 1,p(G) → Lp(∂G,dσ) called the trace operator.

Its kernel is the closure W 1,p
0 (G) of the test functions C∞

c (G) in W 1,p(G). If
tru = 0, one says that u vanishes on ∂G ‘in the sense of trace.’
Let G have a bounded Lipschitz boundary, f ∈W 1,p(G)m, and u ∈W 1,p′(G).

The Divergence Theorem 3.41 in [27] then yields∫
G
udiv f dx = −

∫
G
f · ∇udx+

∫
∂G

tr(u) ν · tr(f) dσ. (1.22)

Here ν is the unit outer normal and the dot denotes the scalar product in Rm.
We usually omit the trace operator in the boundary integral. If G = Rm the
formula is true without the boundary integral. ♢

Coming back to semigroups, we illustrate the above concepts by a simple
example concerning generation properties of d

ds in L2(R).
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Example 1.42. Let X = L2(R) and A = d
ds with D(A) = C1

c (R).
1) The operators ±A are densely defined and dissipative by Example 1.33.

Proposition 1.38 then yields their closability and the dissipativity of their clo-
sures, where −A has the closure −A. We next prove A = (∂,W 1,2(R)).
For each u ∈ D(A) there are functions un ∈ C1

c (R) such that un → u and
u′n = Aun → Au in L2(R) as n → ∞. In view of Remark 1.41 b), the map u
thus belongs toW 1,2(R) and Au = ∂u; i.e., A ⊆ (∂,W 1,2(R)). For the converse,
take u ∈W 1,2(R). Remark 1.41 c) then provides a sequence (un) in C

1
c (R) with

limit u in W 1,2(R). Hence, un → u and u′n → ∂u in L2(R) so that u is an
element of D(A).

2) We compute A
∗
. Let u, v ∈W 1,2(R). Formula (1.22) then yields

⟨Au, v⟩ =
∫
R
∂u v ds = −

∫
R
u∂v ds = ⟨u,−∂v⟩,

so that (−∂,W 1,2(R)) is a restriction of A
∗
, see (1.20). Conversely, let v ∈

D(A
∗
). The functions v and A

∗
v thus belong to L2(R) and satisfy∫

R
uA

∗
v ds = ⟨u,A∗

v⟩ = ⟨Au, v⟩ =
∫
R
u′v ds

for all u ∈ C∞
c (R) ⊆ D(A) ⊆ D(A), which means that v ∈ W 1,2(R) and

A
∗
v = −∂v = −Av. We have shown A

∗
= −A. Corollary 1.40 then implies

that ±A generate contraction semigroups.
3) To determine these semigroups, we recall from Example 1.8 that the trans-

lation group T (t)f = f(· + t) on X has a generator B. For f ∈ D(A) the
functions w(t) = 1

t (T (t)f − f) converge uniformly to f ′ as t → 0+. Moreover,
the supports suppw(t) are contained in the bounded set supp f + [−1, 0] for all
0 ≤ t ≤ 1, so that w(t) tends to f ′ in X. We obtain A ⊆ B and so A ⊆ B.
Lemma 1.23 and Theorem1.29 now yield A = B and hence A generates T (·). ♢

We conclude this section with a discussion of isometric groups.

Corollary 1.43. Let A be linear. The following statements are equivalent.

a) The operator A generates an isometric C0-group T (·); i.e., ∥T (t)x∥ = ∥x∥
for all x ∈ X and t ∈ R.
b) The operator A is closed, densely defined, ±A are dissipative, and λ0I±A

are surjective for some λ0 > 0.

c) The operator A is closed, densely defined, R \ {0} belongs to ρ(A), and
∥R(λ,A)∥ ≤ 1

|λ| for all λ ∈ R \ {0}.
If F = C, one can also replace in c) the set R\{0} by C\ iR and |λ| by |Reλ|.

Proof. The Lumer-Phillips Theorem 1.39 says that b) holds if and only
if A and −A generate contraction semigroups. Theorem 1.29 thus implies the
equivalence of assertions b) and c), the addendum, and that b) is true if and
only if A generates a contractive C0-group T (·). It remains to show that a
contractive C0-group T (·) is already isometric. Indeed, in this case we have

∥T (t)x∥ ≤ ∥x∥ = ∥T (−t)T (t)x∥ ≤ ∥T (−t)∥ ∥T (t)x∥ ≤ ∥T (t)x∥
for all x ∈ X and t ∈ R, so that T (t) is isometric. □
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We want to show an important variant of the above corollary on Hilbert
spaces which requires a few more concepts from [27]. Let X be a Hilbert space.
For a linear operator onX with dense domain we define the Hilbert space adjoint
A′ of A as in (1.20) replacing the duality pairing ⟨x, x∗⟩ by the inner product
(x|y). A linear operator A on X is called symmetric if

∀x, y ∈ D(A) : (Ax|y) = (x|Ay),

which means that A ⊆ A′ if D(A) is dense. If A is densely defined, we say that
it is self-adjoint if A = A′; i.e., if A is symmetric and

D(A) = D(A′) =
{
y ∈ X

∣∣∃ z ∈ X ∀x ∈ D(A) : (Ax|y) = (x|z)
}

=
{
y ∈ X

∣∣ (D(A), ∥·∥) → F; x 7→ (Ax|y), is continuous
}
.

(The last equality is a consequence of Riesz’ representation Theorem 3.10 in
[24].) A densely defined, linear operator A is called skew-adjoint if A = −A′

which is equivalent to the self-adjointness of iA, if F = C. Finally, T ∈ B(X) is
unitary if it has the inverse T−1 = T ′.

We recall a very useful criterion from Theorem 4.7 of [27]. Let F = C. A
symmetric, densely defined, closed operator A is self-adjoint if and only if its
spectrum σ(A) belongs to R, which in turn follows from ρ(A) ∩ R ̸= ∅.
As in Remark 1.23 in [27] one can check that A′ is a closed linear map.

Hence, every densely defined, symmetric operator is closable with A ⊆ A′ (cf.
Lemma 1.35) and each self-adjoint operator is closed. Let A be symmetric and
densely defined. Take u, v ∈ D(A). There are sequences (un) and (vn) in D(A)
with limits u and v in X, respectively, such that Aun → Au and Avn → Av in
X as n→ ∞. We then compute

(Au|v) = lim
n→∞

(Aun|vn) = lim
n→∞

(un|Avn) = (u|Av),

so that also the closure A is symmetric.
There are densely defined, symmetric, closed operators that are not self-

adjoint. (By Example 4.8 of [27] this is the case for A = i∂ with D(A) = {u ∈
W 1,2(R+) |u(0) = 0} on X = L2(R+). Here one has D(A′) =W 1,2(R+).)

The next result due to Stone from 1930 belongs to the mathematical foun-
dations of quantum mechanics.

Theorem 1.44. Let X be a Hilbert space and A be a linear operator on X
with a dense domain. Then A generates a C0-group of unitary operators if and
only if A is skew-adjoint.

Proof. 1) Let A′ = −A. Hence, A is closed. For x ∈ D(A), we have
J(x) = {φx} with φx = (·|x) by Example 1.30. We thus obtain

2Re⟨Ax,φx⟩ = (Ax|x) + (Ax|x) = (x|−Ax) + (x|Ax) = 0.

Therefore A, A′ = −A, and (−A)′ = A are dissipative.
From Corollary 1.40 we then deduce that A and −A generate contraction

semigroups. Corollary 1.43 now shows that A generates a C0-group T (·) of
invertible isometries. Hence, each T (t) is unitary by Proposition 5.52 in [24].
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2) Let A generate a unitary C0-group T (·). We infer T (t)′ = T (t)−1 = T (−t)
for all t ∈ R by Remark 1.2, and so T (·)′ is a unitary C0-group with the
generator −A. For x, y ∈ D(A) we thus obtain

(Ax|y) = lim
t→0

(
1
t (T (t)x− x)

∣∣y) = lim
t→0

(
x
∣∣1
t (T (t)

′y − y)
)
= (x|−Ay).

This means that −A ⊆ A′. We further know from Theorem 1.29 that σ(A) and
σ(−A) are contained in iR (in {0} if F = R). Equation (4.3) in [27] then yields

σ(A′) = σ(A) ⊆ iR. The assertion −A = A′ now follows from Lemma 1.23. □

1.4. The Laplacian and related operators

In this section we discuss generation and related properties of the Laplacian

∆ = ∂21 + · · ·+ ∂2m = div∇
in various settings, where we partly treat more general operators. To apply the
Lumer–Phillips Theorem 1.39, we have to check three conditions. The density of
the domain often follows from basic results on function spaces. With the right
tools one can usually verify dissipativity in a straightforward way (imposing
appropriate boundary conditions). For the range condition one has to solve the
‘elliptic problem’ u−∆u = f plus boundary conditions for given f .
Using differing methods, this will be done first on Rm, then on intervals,

and finally on bounded domains imposing Dirichlet boundary conditions. As
we will see in the next chapter, these results will allow us to solve diffusion
equations, actually with improved regularity. We will further use the Dirichlet–
Laplacian in the wave equation, cf. Example 1.55. We strive for a self-contained
presentation (employing the lectures Functional Analysis and Spectral Theory),
but for certain additional facts we have to cite standard results from the theory
of partial differential equations.

A) The Laplacian on Rm. Since the Laplacian has constant coefficients,
on the full space Rm the Fourier transform is a very powerful tool to check the
range condition. We first recall relevant results from Spectral Theory, taken
from Sections 3.1 and 3.2 of [27]. Let F = C. For a function f ∈ L1(Rm) we
define its Fourier transform

(Ff)(ξ) = f̂(ξ) :=
1

(2π)
m
2

∫
Rm

e−iξ·xf(x) dx, ξ ∈ Rm,

where we put ξ · x =
∑m

j=1 ξjxj . This formula clearly defines a function Ff :

Rm → Cm which is bounded by (2π)−m/2∥f∥1. Actually, Ff belongs to C0(Rm)
by Corollary 3.8 in [27]. For further investigations the Schwartz space

Sm =
{
f ∈ C∞(Rm)

∣∣∀ k ∈ N0, α ∈ Nm0 : pk,α(f) := sup
x∈Rm

|x|k2 |∂αf(x)| <∞
}
.

turns out to be very useful.
By Remark 3.6 of [27] the family of seminorms {pk,α | k ∈ N0, α ∈ Nm0 }

yields a complete metric on Sm. The space C∞
c (Rm) and also the Gaussian

γ(x) = e−
1
2
|x|22 are contained in Sm. Proposition 3.10 of [27] shows that the
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restriction F : Sm → Sm is bijective and continuous with the continuous inverse
given by

F−1g(y) = (Fg)(−y) = 1

(2π)
m
2

∫
Rm

eiy·ξg(ξ) dξ, y ∈ Rm,

for g ∈ Sm. In our context the core fact is Plancherel’s theorem, which says
that one can extend F : Sm → Sm to a unitary map F2 : L2(Rm) → L2(Rm)
satisfying F2f = Ff for f ∈ L2(Rm) ∩ L1(Rm), see Theorem 3.11 in [27]. We
stress that F2f is not given by the above integral formula if f ∈ L2(Rm) is

not integrable; but we still write F instead of F2 and f̂ instead of F2f . The
inversion formula F−1g(y) = Fg(−y) for y ∈ Rm extends to g ∈ L2(Rm).
To apply the Fourier transform to differential operators, one needs the fol-

lowing properties. Lemma 3.7 of [27] yields the differentiation formulas

F(∂αu) = i|α|ξαFu and ∂αFu = (−i)|α|F(xαu) (1.23)

for u ∈ Sm and α ∈ Nm0 , where we write ξα for the map ξ 7→ ξα = ξα1
1 . . . ξαm

m

and so on. Due to Theorem 3.25 in [27], we have the crucial description

W k,2(Rm) =
{
u ∈ L2(Rm)

∣∣ |ξ|k2 û ∈ L2(Rm)
}

(1.24)

with equivalent norms ∥u∥k,2 ≂ ∥u∥2 + ∥|ξ|k2 û∥2 for k ∈ N0, and also that the

first part of (1.23) is true for u ∈W |α|,2(Rm).
To check the range condition for the Laplacian on Rm, we take f ∈ L2(Rm)

and λ ∈ C\R≤0. We look for a function u ∈W 2,2(Rm) satisfying λu−∆u = f .
Because of formula (1.23), such a solution fulfills the problem

f̂ = λû−
m∑
k=1

i2ξ2k û = (λ+ |ξ|22)û.

The unique map solving this equation is given by û = (λ + |ξ|22)−1f̂ , which is

an element of L2(Rm) by (1.26) below and since f̂ ∈ L2(Rm). We now define

u := R(λ)f = F−1
( f̂

λ+ |ξ|22

)
. (1.25)

Since F is bijective on L2(Rm), this function belongs to L2(Rm). Based on these
observations we can now establish our first generation result for the Laplacian.

Example 1.45. Let E = L2(Rm) with F = C, A = ∆, and D(A) =
W 2,2(Rm). The operator A is self-adjoint and generates a contraction semi-
group on E. Moreover, its graph norm is equivalent to that of W 2,2(Rm).

Proof. The asserted norm equivalence follows from (1.24) and Plancherel’s
theorem because of F(∆u) = −|ξ|22 û for u ∈W 2,2(Rm), see (1.23). The domain
D(A) is dense in E since it contains C∞

c (Rm), see Proposition 4.13 of [24].
Let f ∈ E and λ ∈ C \ R≤0. To check the range condition, we estimate∣∣∣ f̂

λ+ |ξ|22

∣∣∣ ≤ cλ|f̂ | with cλ :=

{
1
|λ| , Reλ ≥ 0,

1
|Imλ| , Reλ < 0.

(1.26)
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Since f̂ ∈ E by Plancherel’s theorem, the term in parentheses in (1.25) thus
belongs to E. Using Plancherel once more, we introduce u = R(λ)f ∈ E as in
(1.25) and estimate

∥u∥2 = ∥û∥2 ≤ cλ∥f∥2; i.e., ∥R(λ)∥B(E) ≤ cλ. (1.27)

We further compute

|ξ|22 |û| =
∣∣∣ |ξ|22 ± λ

λ+ |ξ|22

∣∣∣|f̂ | ≤ (1 + |λ|cλ)|f̂ |.

Equation (1.24) now implies that u belongs to W 2,2(Rm) with norm ∥u∥2,2 ≤
(1 + |λ|cλ)∥f∥2. Therefore R(λ) maps E continuously into W 2,2(Rm). From
the first part of (1.23) and (1.25) we then deduce

F(λu−∆u) = (λ+ |ξ|22)û = f̂ ,

obtaining λu−∆u = f in E by the bijectivity of F .
This means that λI−A is bijective with the bounded inverse R(λ). Hence, A

is closed by Remark 1.16. Moreover, the spectrum σ(A) is contained in R≤0,
4

and inequality (1.27) implies the Hille–Yosida estimate for λ > 0. As a result,
E generates a contraction semigroup on A by Theorem 1.26.
Let u, v ∈W 2,2(Rm). Gauß’ formula (1.22) and ∆ = div∇ yield

(Au|v) =
∫
Rm

div(∇u)v dx = −
∫
Rm

∇u · ∇v dx =

∫
Rm

udiv(∇v) dx = (u|Av),

so that A is symmetric. Since σ(A) ⊆ R≤0, the self-adjointness of A finally
follows from Theorem 4.7 of [27]. □

We stress that the above norm equivalence says that one can bound in L2(Rm)
each derivative of u ∈ D(A) up to order 2 just by u and the sum ∆u of unmixed
second derivatives. In particular, if m ≥ 2 the possible cancellations in ∆u do
not play a role! On C0(Rm) the situation is quite different. Here we use of the
version of the Lumer–Phillips theorem involving the closure. With the available
tools we can compute its domain only for m = 1, see the comments below.

Example 1.46. Let E = C0(Rm), D(A0) = {u ∈ C2(Rm) |u,∆u ∈ E},
and A0 = ∆. The operator A0 has a closure A that generates a contraction
semigroup on E. If m = 1, we have Au = u′′ and D(A) = D(A0) = C2

0 (R) :=
{u ∈ C2(R) |u, u′, u′′ ∈ E}.

Proof. 1) The domain of A0 is dense in E because of C∞
c (Rm) ⊆ D(A0),

cf. the proof of Proposition 4.13 in [24]. Let u ∈ D(A0). Example 1.30 says

that the functional φ = u(x0)δx0 belongs to J(u), where x0 ∈ Rm satisfies

|u(x0)| = ∥u∥∞. Setting h = Re(u(x0)u) ∈ D(A0), we obtain

Re⟨A0u, φ⟩ = Re(u(x0)∆u(x0)) = ∆h(x0).

As in Example 1.33 we see that h(x0) is a maximum of h. By Analysis 2, the ma-
trixD2h(x0) is thus negative semidefinite and hence ∆h(x0) = tr(D2h(x0)) ≤ 0;
i.e., A0 is dissipative.

4Actually we have the equality σ(A) = R≤0 by Example 3.47 in [27].
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Let f ∈ Sm and define u = R(1)f by (1.25). Lemma 3.7 in [27] implies
that u is an element of Sm ⊆ D(A0). As seen in the previous proof we have
u − ∆u = f , so that R(I − A0) contains the dense subspace Sm. The first
assertion now follows from the Lumer–Phillips Theorem 1.39.

2) Let m = 1 and u ∈ D(A). Because of A = A0 there are functions un ∈
D(A0) with un → u and u′′n → Au in E as n→ ∞. We further need to control
the first derivative. For later use, the argument is presented in somewhat greater
generality. We look at an interval J of length |J | > 0, a function v ∈ C2(J)
with bounded v and v′′, δ ∈ (0, |J |), and points r, s ∈ J with δ < s − r < 2δ.
Taylor’s theorem provides a number σ ∈ (r, s) such that

v(s) = v(r) + v′(r)(s− r) + 1
2v

′′(σ)(s− r)2,

v′(r) =
v(s)− v(r)

s− r
− 1

2v
′′(σ)(s− r).

The last equation yields

|v′(r)| ≤ 2
δ max
τ∈[r,r+2δ]

|v(τ)|+ δ max
τ∈[r,r+2δ]

|v′′(τ)|, (1.28)

∥v′∥∞ ≤ 2
δ ∥v∥∞ + δ∥v′′∥∞ .

Inserting v = un into (1.28), we infer that u′n is an element of E. With v =
un − um, it also follows that u′n tends in E to a map f . As a result, u belongs
to C1(R) with u′ = f ∈ E. The limit (u′n)

′ → Au in E then leads to u ∈ C2
0 (R)

and Au = u′′. □

For m ≥ 2 the domain D(A) is not C2
0 (Rm) in Example 1.46. To make this

fact plausible, we look at the function

ũ(x, y) =

{
(x2 − y2) ln(x2 + y2), (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

By a straightforward computation, the second derivative

∂2xũ(x, y) = 2 ln(x2 + y2) +
4x2

x2 + y2
+

(6x2 − 2y2)(x2 + y2)− 4x2(x2 − y2)

(x2 + y2)2

is unbounded on B(0, 1), but the functions ũ, ∇ũ, and ∆ũ(x, y) = 8x
2−y2
x2+y2

are

bounded on B(0, 2). To deal with larger (x, y), we simply take a smooth map
φ with suppφ ⊆ B(0, 2) which is equal to 1 on B(0, 1). Then the functions
u = φũ and ∆u = φ∆ũ + 2∇φ · ∇ũ + ũ∆φ are bounded and have compact
support on Rm, but u does not belong to W 2,∞(Rm). (One can construct an
analogous example in E = C0(Rm) instead of L∞(Rm) using ln ln.)

With much more effort, Corollary 3.1.9 in [18] shows that the operator A1 =
∆ with domain

D(A1) =
{
u ∈ E

∣∣ ∀ p ∈ (1,∞), r > 0 : u ∈W 2,p(B(0, r)), ∆u ∈ E
}

is closed in E and that ρ(A1) contains a halfline (ω,∞). Since D(A0) ⊆ D(A1),
we first obtain A = A0 ⊆ A1, and then A = A1 by Lemma 1.23.
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B) The second derivative on (0, 1). On an interval the equation λu−
∆u=f with boundary conditions becomes an ordinary boundary value problem.
In [27] we solved such problems explicitly and obtained concrete formulas for
the resolvent. We only look at Dirichlet conditions u(0) = 1 = u(1), others can
be treated similarly (see the exercises). We start with the sup-norm case.

Example 1.47. Let E = C0(0, 1), D(A) = {u ∈ C2(0, 1) |u, u′′ ∈ E}, and
Au = u′′. Then the operator A generates a contraction semigroup on E, and
its graph norm is equivalent to that of C2([0, 1]).

Proof. The equivalence of the norms can be deduced from (1.28), which
is also true with intervals [r − 2δ, r] ⊆ (0, 1). Let f ∈ E. Take ε > 0. As

in Example 1.8 we find a map f̃ ∈ Cc(0, 1) with ∥f − f̃∥∞ ≤ ε. Moreover,
proceeding as in the proof of Proposition 4.13 in [24] one constructs a function

g ∈ C∞
c (0, 1) ⊆ D(A) satisfying ∥f̃ − g∥∞ ≤ ε. Hence, A is densely defined.

The dissipativity of A is shown as in Example 1.46, where the argument s0 of
the maximum of |u| belongs to (0, 1) since the cases s0 ∈ {0, 1} are excluded by
the boundary conditions unless u = 0.

Let f ∈ E. If F = C, take λ ∈ C \ R≤0 and
√
λ =: µ ∈ C+. If F = R, let

λ > 0 and µ =
√
λ > 0. Set(

a(f, µ)
b(f, µ)

)
=

1

2µ(e−µ − eµ)

(
e−µ

∫ 1
0 (e

µτ − e−µτ )f(τ) dτ∫ 1
0 (e

µe−µτ − e−µeµτ )f(τ) dτ

)
.

In Example 2.16 of [27] it is shown that the map u : [0, 1] → F;

u(s) = a(f, µ)eµs + b(f, µ)e−µs +
1

2µ

∫ 1

0
e−µ|s−τ |f(τ) dτ, (1.29)

belongs to C2([0, 1]) and satisfies λu−u′′ = f as well as u(0) = 0 = u(1). Hence,
u an element of D(A) and λI−A is surjective. The Lumer–Phillips Theorem 1.39
now implies that A is closed and generates a contraction semigroup on E.
Moreover, (1.29) gives the resolvent via R(λ,A)f := u. □

We next show the analogous result for Lp(0, 1). Here we check dissipativity
on Lp also for p ̸= 2.

Example 1.48. Let E = Lp(0, 1), 1 ≤ p <∞, Au = ∂2u, and

D(A) = {u ∈W 2,p(0, 1) |u(0) = u(1) = 0} =W 2,p(0, 1) ∩W 1,p
0 (0, 1).

(Remark 1.41 yields W 1,p(0, 1) ↪→ C([0, 1]).) The operator A generates a con-
traction semigroup on E and its graph norm is equivalent to ∥·∥2,p.

Proof. The last assertion follows from Proposition 3.37 of [27], cf. (1.28).
The domain D(A) is dense due to Proposition 4.13 in [24] since it contains
C∞
c (0, 1). One can extend the operator R(λ,A) from (1.29) to a map R(λ) on

E = Lp(0, 1) for λ ∈ F\R≤0 where µ =
√
λ ∈ F+. Omitting a factor, we rewrite

the last summand of (1.29) as

v(s) :=

∫ 1

0
e−µ|s−τ |f(τ) dτ = e−µs

∫ s

0
eµτf(τ) dτ + eµs

∫ 1

s
e−µτf(τ) dτ
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for f ∈ E and s ∈ [0, 1]. Using (1.21), we can now differentiate

v′(s) = −µe−µs
∫ s

0
eµτf(τ) dτ + f(s) + µeµs

∫ 1

s
e−µτf(τ) dτ − f(s).

Since the terms ±f(s) cancel, v belongs to C1([0, 1]). Similarly, the weak de-
rivative ∂2v ∈ Lp(0, 1) exists and satisfies λv− ∂2v = 2µf . The other two sum-
mands uj in (1.29) are smooth and fulfill λuj = u′′j . The boundary conditions

u(0) = 0 = u(1) are shown as in Example 2.16 of [27] (where f ∈ C([0, 1])).
Summing up, u = R(λ)f is an element of D(A) and solves λu−Au = f .

To apply the Lumer–Phillips theorem, it remains to check the dissipativity.
To avoid certain technical problems we restrict ourselves to p ∈ [2,∞), see
Example 2.30. for the case p ∈ [1, 2). Let u ∈ D(A) \ {0}. We set w = |u|p−2 u.

Then w̃ := ∥u∥2−pp w belongs to J(u) by Example 1.30. Note that w(0) =
0 = w(1) by the boundary conditions. Remark 1.41 yields the embedding
W 2,p(0, 1) ↪→ C1([0, 1]) so that w is contained in C1([0, 1]) since p ≥ 2. We
then compute

w′ = d
ds

(
(uu)

p−2
2 u

)
= |u|p−4 |u|2 u′ + p−2

2 (|u|2)
p−2
2

−1 (u′u+ uu′)u

= |u|p−4 (|u|2u′ + (p− 2)Re(uu′)u).

Formula (1.22) and w(0) = 0 = w(1) now imply

Re⟨Au,w⟩ = Re

∫ 1

0
∂2uw ds = −

∫ 1

0
Re(u′w′) ds+Re(u′w)

∣∣1
0

= −
∫ 1

0
|u|p−4

(
|uu′|2 + (p− 2)(Re(uu′))2

)
ds

= −
∫ 1

0
|u|p−4

(
(Im(uu′))2 + (p− 1)(Re(uu′))2

)
ds ≤ 0,

and hence Re⟨Au, w̃⟩ ≤ 0. Theorem 1.39 now implies the assertion, and R(λ)
is the resolvent of A. □

We add an example where A is dissipative, but not a generator, and A∗ is
not dissipative, cf. Corollary 1.40. This can happen since we here impose too
many (four) boundary conditions instead of two (for two derivatives) as above.

Example 1.49. Let E = L2(0, 1), Au = ∂2u, and

D(A) = {u ∈W 2,2(0, 1) |u(0) = u′(0) = u(1) = u′(1) = 0} =W 2,2
0 (0, 1).

(The last space is the closure of C∞
c (0, 1) in W 2,2(0, 1); the final equality fol-

lows as in Remark 1.41.) Then A is closed, densely defined, dissipative, and
symmetric, but not a generator and not self-adjoint, and A∗ is not dissipative.

Proof. The density of D(A) follows again from Proposition 4.13 in [24].
To check closedness, take maps un ∈ D(A) such that un → u and u′′n → v in
E as n → ∞. Proposition 3.37 in [27] then shows that also (u′n) converges in
E, cf. (1.28). From Remark 1.41 we now deduce that u belongs to W 2,2(0, 1)
and un → u in W 2,2(0, 1). The boundary conditions for un transfer to u via the
limits of (un) and (u′n) since W

1,2(0, 1) ↪→ C([0, 1]) by Remark 1.41. Hence, u
belongs to D(A) and A is closed.
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Let u ∈ D(A) and v ∈ W 2,2(0, 1). Using integration by parts (1.22) and the
boundary conditions of u, we compute

(Au|v) =
∫ 1

0
∂2u v ds = −

∫ 1

0
u′v′ ds+ u′v

∣∣1
0
=

∫ 1

0
u∂2v ds− uv′

∣∣1
0
= (u|∂2v).

Hence, A is symmetric (take v ∈ D(A)) and dissipative (take v = u). Moreover,
the operator ∂2 with domain W 2,2(0, 1) is a restriction of A′ and also of A∗.
Let v ∈ D(A∗). As in Example 1.42 one can see that A∗v ∈ E is the second

weak derivative of v ∈ E. Proposition 3.37 in [27] thus implies that v belongs
to W 2,2(0, 1). It follows A∗ = ∂2 with D(A∗) = W 2,2(0, 1) ̸= D(A). Here we
can replace A∗ by A′. Hence, A is not self-adjoint.
Since ∂2eµs = λeµs for µ =

√
λ and λ ∈ F \ R≤0, the operator λI − A∗ is

not injective. As a result, A∗ is not a generator and not dissipative in view of
Propositions 1.20 and 1.38. Moreover, the spectrum of A contains F\R≤0 since
σ(A) = σ(A∗) by Theorem 1.24 of [27]. In particular, A is not a generator. □

C) Operators in L2 defined by sesquilinear forms. In many appli-
cations one looks at the Laplacian or related ‘elliptic operators in divergence
form’ on a domain in Rm. In an L2-context we can show generation properties
of these operators, though it is not possible to describe their domains precisely
by our means. (This point is discussed below.) We restrict ourselves again to
Dirichlet boundary conditions for simplicity; others are treated in the exercises.
Most of the results are presented for a larger class of operators (defined by
sesquilinear forms) since the analysis is almost the same as for the Laplacian
itself. The main tool is the Lax–Milgram lemma which is a core consequence of
Riesz’ representation of Hilbert space duals.

Theorem 1.50. Let Y be a Hilbert space and a : Y ×Y → F be a sesquilinear
map which is bounded and strictly accretive; i.e.,

|a(x, y)| ≤ C∥x∥∥y∥ and Re a(y, y) ≥ η∥y∥2

for all x, y ∈ Y and some constants C, η > 0. Then for each functional ψ ∈ Y ∗

there is a unique vector z ∈ Y satisfying a(y, z) = ψ(y) for all y ∈ Y . The
map Y ∗ → Y ; ψ 7→ z, is antilinear and bounded.

Proof. Let y ∈ Y . The map φy := a(·, y) belongs to Y ∗ with ∥φy∥ ≤
C∥y∥. Riesz’ Theorem 3.10 in [24] yields a unique element Sy of Y satisfying
φy = (· |Sy) and ∥Sy∥ = ∥φy∥ ≤ C∥y∥. Moreover, S : Y → Y is linear since
both maps y 7→ φy and φy 7→ Sy are antilinear in y. We next estimate

η∥y∥2 ≤ Re a(y, y) = Re(y|Sy) ≤ |(y|Sy)| ≤ ∥y∥∥Sy∥,

and hence ∥Sy∥ ≥ η∥y∥ for every y ∈ Y . As a consequence, S is bounded,
injective and has a closed range R(S) by Remark 2.11 in [24]. For a vector
y ⊥ R(S) we also obtain

0 = (y|Sy) = Re(y|Sy) = Re a(y, y) ≥ η∥y∥2

and hence y = 0. It follows that Y = R(S) = R(S) by Theorem 3.8 in [24] (or
a corollary to Hahn–Banach), and so S is invertible with ∥S−1∥ ≤ 1

η .
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Let ψ ∈ Y ∗. There is a unique vector v ∈ Y such that ψ = (·|v) thanks to
Riesz’ theorem. The above construction implies the identity

ψ(y) = (y|v) = (y|SS−1v) = a(y, S−1v)

for all y ∈ Y . We set z = S−1v = S−1Φ−1
Y ψ, where ΦY : Y → Y ∗ denotes the

antilinear isomorphism from Riesz’ theorem.
For uniqueness, let also w ∈ Y satisfy a(y, w) = ψ(y) for all y ∈ Y . Taking

y = z − w, we infer 0 = a(z − w, z − w) ≥ η∥z − w∥ and thus w = z. □

In the typical applications of Theorem 1.50, Y is a subspace of W 1,2(G) for
an open set G ⊆ Rm (say, with a regular boundary), where we focus on Y =

W 1,2
0 (G). One is then mainly interested in properties related to the L2-norm,

so that one also looks at L2(G). We note that W 1,2
0 (G) is densely embedded in

L2(G). We extend the above setting to the cover this framework.
Let a : Y × Y → F be as given in Theorem 1.50. We also assume that Y

is densely embedded in a Hilbert space X by JY : Y → X. (Often we omit
JY in our notation, in our examples it is just the inclusion.) By means of the
isometric, antilinear Riesz’ isomorphism Φ = ΦX : X → X∗ from Theorem 3.10
in [24], we identify X and X∗ most of the time. Proposition 5.46 in [24] yields
the dense embedding J∗

Y : X∗ ↪→ Y ∗. It follows

Y ↪→ X ∼= X∗ ↪→ Y ∗, (1.30)

where we have ⟨y, J∗
Y Φx⟩Y = (JY y|x)X = (y|x)X for x ∈ X and y ∈ Y .

We stress that we not identify Y with Y ∗ since this would require the Riesz
isomorphism ΦY , which is quite different from ΦX in our examples.
To associate an operator in X with a, we define

D(A) =
{
x ∈ Y

∣∣ ∃ c > 0 ∀ y ∈ Y : |a(y, x)| ≤ c∥y∥X
}
. (1.31)

Since Y is dense in X, we can extend −a(·, x) to an element φx of X∗. Thanks
to Riesz’ theorem and (1.30), it can be represented by a unique element Ax ∈ X
in the sense that

∀y ∈ Y : −a(y, x) = (y|Ax)X = ⟨y, J∗
Y ΦAx⟩Y = ⟨y,Ax⟩Y . (1.32)

In the last equality we consider Ax ∈ X as element in Y ∗, as one usually does.
Formula (1.32) determines Ax uniquely by the density of Y . Moreover, A is
linear as in the proof of Theorem 1.50. We further need the adjoint form

a′ : Y × Y → F; a′(y, z) = a(z, y).

Note that a′ is also sesquilinear, bounded, and strictly accretive. We call a
symmetric if a = a′. We can now show that A has very convenient properties.

Theorem 1.51. Let X and Y be Hilbert spaces with an embedding JY :
Y ↪→ X having dense range and norm κ. Assume that a : Y × Y → F is
sesquilinear, bounded, and strictly accretive. Define A by (1.31) and (1.32).
Then A generates an ω-contraction semigroup on X with ω := −ηκ−2. In
particular, s(A) ≤ ω < 0 and A is invertible. The adjoint A′ of A is given by
the form a′ as in (1.31) and (1.32), so that A is self-adjoint if a is symmetric.
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Proof. 1) Let x ∈ D(A). The definition (1.32) and the assumptions imply

Re(Ax|x)X = Re(x|Ax)X = −Re a(x, x) ≤ −η∥x∥2Y ≤ −ηκ−2∥x∥2X ≤ 0,

and thus the dissipativity of A and Aω := A + ηκ−2I. As A = Aω − ηκ−2I,
Proposition 1.38 a) yields the injectivity of A.

Take z ∈ X and set ψ = −(·|z)X ∈ X∗ ↪→ Y ∗. Theorem 1.50 thus provides
an element x ∈ Y with a(y, x) = −(y|z)X for all y ∈ Y . Since then |a(y, x)| ≤
∥z∥X∥y∥X by Cauchy–Schwarz, x belongs to D(A). Moreover, we have (y|z)X =
(y|Ax)X due to (1.32) and so Ax = z because of the density of Y . Summing
up, A = Aω − ωI is bijective.

To check the density of D(A) in X, let z ∈ X be orthogonal to D(A) and set
y = A−1z ∈ D(A). Strict accretivity then leads to

0 = (y|Ay)X = −a(y, y) = −Re a(y, y) ≤ −η∥y∥2Y ,

so that y = 0 and z = 0. Hence, D(A) is dense in X by Theorem 3.8 in [24].
Theorem 1.39 now shows that A generates an ω-contraction semigroup on X.
In particular, s(A) ≤ ω < 0 and A is invertible.

2) We next compute A′. Let A† be the operator associated with a′. Take
x ∈ D(A) and y ∈ D(A†). The definitions imply

(Ax|y)X = (y|Ax)X = −a(y, x) = −a′(x, y) = (x|A†y)X ;

i.e., A† ⊆ A′. Both operators are invertible by part 1) and also (4.3) of [27].
Lemma 1.23 now yields A† = A′. □

Chapter VI of [14] or Chapter 1 of [21] provide more general versions of this
result and many related facts, see also the exercises and Section 2.3.
The next straightforward application is a version of Example 5.11 of [27].

Here we need Poincaré’s inequality. For every bounded open set G ⊆ Rm and
p ∈ [1,∞), there is a constant c = c(G, p) > 0 such that

∥u∥p ≤ c ∥|∇u|2∥p = c
(∫

G

( m∑
j=1

|∂ju|2
) p

2
dx
) 1

p
(1.33)

for all u ∈W 1,p
0 (G), see Theorem 3.36 in [27]. Note ∥|∇u|2∥22 =

∑
j

∫
|∂ju|2 dx.

Example 1.52. Let G ⊆ Rm be open and bounded, and the coefficients
ajk ∈ L∞(G,F) for j, k ∈ {1, . . . ,m} be strictly elliptic; i.e.,

Re
∑m

j,k=1
ajk(x)zjzk ≥ η|z|22 (1.34)

for some η > 0, all z ∈ Fm, and a.e. x ∈ G. We write a = (ajk)j,k. Let

E = L2(G) and V = W 1,2
0 (G), where ∥·∥ = ∥·∥2 and V is equipped the norm

∥v∥V = ∥|∇v|2∥2 which is equivalent to the usual one by (1.33). We define

a : V × V → F; a(v, w) =
∑m

j,k=1

∫
G
∂jv ajk∂kw dx.

Then the conditions of Theorem 1.51 are satisfied with C = ∥|a|2∥∞, η and
κ = c(G, 2), where |a(x)|2 is the operator norm for |z|2 in Fm.
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So a induces an invertible generator A of a contraction semigroup on E, and
A is self-adjoint if a is Hermitian. After complex conjugation, for f ∈ E the
function u ∈ D(A) with Au = f is given by∫

G
vf dx = −

∑m

j,k=1

∫
G
∂jv ajk∂kudx, (1.35)

for all v ∈ V , where D(A) is the set of u ∈ V such that the right-hand side is
bounded by c∥v∥2 for some c = c(a, u) and all v ∈ V . ♢

One calls u ∈ V satisfying (1.35) a ‘weak solution’ of Au = f . To obtain a
better understanding of this equation, we impose stronger conditions on G and
a. In particular, let ajk ∈ W 1,∞(G) for j, k ∈ {1, . . . ,m}. We then define an
‘elliptic’ operator in ‘divergence form’ with ‘Dirichlet boundary conditions’ via

A0u = div(a∇u) =
∑m

j,k=1
∂j(ajk∂ku), u ∈ D(A0) =W 2,2(G) ∩W 1,2

0 (G).

(Operators in non-divergence form and with lower-order terms can then be
treated by perturbation arguments, if the coefficients are regular enough, cf.
Example 3.11.) One sets W−1,2(G) = W 1,2

0 (G)∗ if W 1,2
0 (G) is equipped with

the full norm ∥·∥1,2. We write V ∗ instead since we use the equivalent norm

∥·∥V on V = W 1,2
0 (G). The second part of the next result is also true in the

framework of Theorem 1.51, cf. Section 1.4.2 in [21].

Example 1.53. In addition to the hypotheses of Example 1.52, we assume
that ajk ∈ W 1,∞(G) for all j, k ∈ {1, . . . ,m} and that ∂G is Lipschitz. Inte-
gration by parts via (1.22) then yields (v|A0u)L2 = −a(v, u) = (v|Au)L2 for all
v ∈ V and u ∈ D(A0). By density of V , it follows A0u = Au and hence A0 ⊆ A.
In particular, A0 is dissipative.

Observe that D(A) is dense in V because of C∞
c (G) ⊆ D(A0) ⊆ D(A). For

u ∈ D(A), the definition (1.32) yields

∥Au∥V ∗ = sup
∥v∥V ≤1

|⟨v,Au⟩V | = sup
∥v∥V ≤1

|a(v, u)| ≤ C∥u∥V .

Therefore we can extend A to a bounded operator Ã : V → V ∗, which is the
‘weak extension’ of A. Its range contains L2(G) and is thus dense in V ∗. We
further obtain

η∥u∥2V ≤ |a(u, u)| = |⟨u,Au⟩V | ≤ ∥u∥V ∥Au∥V ∗ , η∥u∥V ≤ ∥Au∥V ∗ .

By density, the last inequality can be extended to ∥Ãu∥V ∗ ≥ η∥u∥V for all

u ∈ V . Corollary 4.31 in [24] then implies the invertibility of Ã. ♢

The equality A0 = A is not true in the above example, in general. If ∂G ∈ C2

and ajk = akj ∈ C1(G,R), Theorem 6.3.4 of [8] shows that A0 = A and that
the graph norm of A and ∥·∥2,2 are equivalent. The proof uses PDE methods.

D) The Dirichlet–Laplacian and the wave equation. Examples 1.52
and 1.53 can be applied to the case of a = I yielding the Dirichlet–Laplacian
∆D. For later reference, we restate the results.



1.4. The Laplacian and related operators 45

Example 1.54. Let G ⊆ Rm be open and bounded with Lipschitz boundary
∂G, E = L2(G), and A0 = ∆ with D(A0) = W 2,2(G) ∩W 1,2

0 (G). Then A0 is
densely defined, symmetric, and dissipative. The operator A0 has an extension
∆D which is self-adjoint, invertible and generates an ω-contraction semigroup,
where ω = −c(G, 2)−2 < 0 is given by (1.33). Moreover, [D(∆D)] is densely

embedded in W 1,2
0 (G). The domain D(∆D) contains all maps u ∈ W 1,2

0 (G) for
which there is a function f =: ∆Du in L2(G) such that

∀ v ∈W 1,2
0 (G) : (v|∆Du)L2(G) = −

∫
G
∇v · ∇udx.

Observe that it enough to consider here real-valued v ∈ W 1,2
0 (G). Then, for

u ∈ D(∆D) the above definition yields Reu ∈ D(∆D) and ∆D(Reu) = Re∆Du.

The operator ∆D has an invertible bounded extension ∆̃D : W 1,2
0 (G) →

W−1,2(G) (the weak Dirichlet–Laplacian) which acts as

∀u, v ∈W 1,2
0 (G) : ⟨v, ∆̃Du⟩W 1,2

0 (G)
= −

∫
G
∇v · ∇udx.

To see that ∆̃−1
D extends ∆−1

D , take φ ∈ L2(G) ↪→ W−1,2(G). The maps

ṽ = ∆̃−1
D φ ∈ W 1,2

0 (G) and v = ∆−1
D φ ∈ D(∆D) both satisfy ∆̃Dṽ = φ and

∆̃Dv = ∆Dv = φ, so that ṽ = v as ∆̃D is injective. ♢

The next operator will be used to solve the wave equation as explained in
Example 2.4. We again write V for W 1,2

0 (G) equipped with the norm ∥|∇v|2∥2.

Example 1.55. Let G ⊆ Rm be open and bounded with Lipschitz boundary
∂G and ∆D be given on L2(G) by Example 1.54. Set E = V × L2(G), D(A) =
D(∆D)× V , and

A =

(
0 I

∆D 0

)
.

Then A is skew-adjoint, and thus generates a unitary C0-group on E due to
Stone’s Theorem 1.44. Moreover, D(A) and D(∆D)×V have equivalent norms.

Proof. Let (u1, v1) and (u2, v2) belong to D(A). We compute(
A
(
u1
v1

)∣∣(u2
v2

))
E
=
((

v1
∆Du1

)∣∣(u2
v2

))
E
=

∫
G

(
∇v1 · ∇u2 +∆Du1v2

)
dx

= −
∫
G

(
v1∆Du2 +∇u1 · ∇v2

)
dx = −

((
u1
v1

)∣∣( v2
∆Du2

))
E
,

using the scalar product of V and the definition of ∆D. We thus arrive at(
A
(
u1
v1

)∣∣(u2
v2

))
E
=
((
u1
v1

)∣∣−A(u2v2))E . Hence, −A is a restriction of A′. We define

R =
(

0 ∆−1
D

I 0

)
: E → D(∆D)× V = D(A),

where ∆−1
D exists thanks to Example 1.54. It is easy to see that AR = I and

RAw = w for every w ∈ D(A). Hence, A is invertible and thus also −A and
A′, see (4.3) in [27]. Lemma 1.23 then yields that −A = A′.
The last assertion can be checked using (1.33) and the definition of ∆D. □



CHAPTER 2

The evolution equation and regularity

In the first two sections we discuss the solvability properties of (also inhomo-
geneous) evolution equations. A class of more regular C0-semigroups and the
corresponding Cauchy problems will be investigated in the last section.

2.1. Wellposedness and the inhomogeneous problem

In this section we come back to the relationship between generation properties
of A and the solvability of the corresponding differential equation. In a second
part we treat inhomogeneous problems in which one adds a given input function
to the evolution equation.

Let A be a closed operator on X and x ∈ D(A). We study the (homogeneous)
evolution equation (or Cauchy problem)

u′(t) = Au(t), t ≥ 0, u(0) = x. (2.1)

Recall from Definition 1.9 that a (classical) solution of (2.1) is a function u ∈
C1(R≥0, X) taking values in D(A) and satisfying (2.1) for all t ≥ 0. Observe
that then Au belongs to C(R≥0, X) and thus u to C(R≥0, [D(A)]).
Let the states u(t) ∈ X describe a physical system at time time t ≥ 0 whose

properties are encoded in the operator A and its domain. We then want to
predict the future behavior of the system by means of (2.1). To this aim, we
need solutions for ‘many’ initial values x. Moreover, the solutions have to be
uniquely determined by x since otherwise we do not really predict the behavior.
In addition, one will know the initial value only approximately, so that for
a reasonable prediction the solutions should not vary too much under small
changes of the data.1 The next definition makes these requirements precise.

Definition 2.1. Let A be closed. The Cauchy problem (2.1) is called well-
posed if D(A) is dense in X, if for each x ∈ D(A) there is a unique solution
u = u(· ;x) of (2.1), and if the solutions depend continuously on the data; i.e.,

∀ b > 0 : (D(A), ∥·∥X) → C([0, b], X); x 7→ u(· ;x), is continuous. (2.2)

The next theorem says that for closed A the wellposedness of (2.1) and the
generation property of A are equivalent. This fact justifies the definitions made
at the beginning of Chapter 1.

Theorem 2.2. Let A be a closed operator. It generates a C0-semigroup T (·)
if and only if (2.1) is wellposed. In this case, the function u = T (·)x solves
(2.1) for each given x ∈ D(A).

1Actually, the same applies to the dependence on the operator A, but this will be discussed
in Section 3.2.
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Proof. 1) Let A generate T (·) and x ∈ D(A). Then T (·)x is the unique so-
lution of (2.1) by Proposition 1.10. Condition (2.2) follows from the exponential
boundedness of T (·) proven in Lemma 1.4.

2) Conversely, let (2.1) be wellposed.
i) We define the map T (t) : D(A) → D(A) by T (t)x = u(t;x) for x ∈ D(A)

and t ≥ 0 using uniqueness. Clearly, T (0) = I and T (·)x : R≥0 → (D(A), ∥·∥X)
is continuous. For x, y ∈ D(A) and α, β ∈ F, the function αu(· ;x) + βu(· ; y)
solves (2.1) with initial value αx+βy since A is linear. Hence, T (t) is linear for
every t ≥ 0. Let t, s ≥ 0 and x ∈ D(A). Then u(s;x) belongs to D(A) so that
v(t) := T (t)u(s;x) = T (t)T (s)x for t ≥ 0 is the unique solution of (2.1) with
initial value u(s;x). On the other hand, u(t + s;x) = T (t + s)x for t ≥ 0 also
solves this problem. Uniqueness then shows that T (t)T (s)x = T (t+ s)x.

ii) For each b > 0 there is a constant c(b) > 0 such that ∥T (t)x∥ ≤ c(b) ∥x∥
for all x ∈ D(A) and t ∈ [0, b]. In fact, if this claim was wrong, there would
exist a time b > 0, a sequence (xn) in D(A), and times tn ∈ [0, b] such that
∥xn∥ = 1 and 0 < ∥T (tn)xn∥ =: cn → ∞ as n → ∞. Set yn = 1

cn
xn ∈ D(A)

for every n ∈ N. The initial values yn then tend to 0 as n → ∞, but the
norms ∥u(tn; yn)∥ = 1

cn
∥T (tn)xn∥ = 1 do not converge to 0. This contradicts

assumption (2.2), and thus T (·) is locally uniformly bounded.
Lemma 2.13 of [24] now allows us to extend each single map T (t) to a bounded

linear operator on D(A) = X (also denoted by T (t)) having the same operator
norm. Moreover, Lemma 4.10 in [24] yields the strong continuity of the family
(T (t))t≥0. The semigroup law extends from D(A) to X by approximation, so
that T (·) is a C0-semigroup.
iii) Let B be the generator of T (·). We have A ⊆ B since T (·) solves (2.1).

Because D(A) is dense inX and T (t)D(A) ⊆ D(A) for all t ≥ 0, Proposition 1.37
shows that D(A) is dense in [D(B)]. So for each x ∈ D(B) there are vectors
xn in D(A) such that xn → x and Axn = Bxn → Bx in X as n → ∞. The
closedness of A now implies that x ∈ D(A), and thus A = B. □

We discuss variants of the above result.

Remark 2.3. a) One cannot drop condition (2.2) in Theorem 2.2: Let B
be a closed, densely defined, unbounded operator in a Banach space Y . Set
X = Y × Y and A =

(
0 B
0 0

)
with D(A) = Y × D(B). Observe that A is closed

and D(A) is dense in X. For (x, y) ∈ D(A) one has the unique solution u(t) =
(x+ tBy, y) of (2.1) with u(0) = (x, y). But for t > 0 one cannot continuously
extend T (t) : (x, y) 7→ u(t) to a map on X since T (t)(0, y) = (tBy, y).

b) Let A be closed. By Proposition II.6.6 in [7], problem (2.1) has a unique
solution for A and each x ∈ D(A) if and only if the operator A1 on X1 = [D(A)]
given by A1x = Ax with D(A1) = {x ∈ X1 |Ax ∈ X1} generates a C0-semigroup
on X1. Moreover, if ρ(A) ̸= ∅ and (2.1) has a unique solution for each x ∈ D(A),
then A is a generator on X, see Theorem II.6.7 in [7]. ♢

We now use Example 1.55 to solve the wave equation. For simplicity, we
restrict ourselves to the time interval R≥0 though one could actually treat R,
thus solving the problem backward in time starting from t = 0.
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Example 2.4. Let G ⊆ Rm be open and bounded with ∂G ∈ C1−. We study
the wave equation with Dirichlet boundary conditions

∂2t u(t, x) = ∆u(t, x), t ≥ 0, x ∈ G,

u(t, x) = 0, t ≥ 0, x ∈ ∂G, (2.3)

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ G,

for given functions (u0, u1). Let ∆D on L2(G) be given by Example 1.54. We

take u0 ∈ D(∆D) and u1 ∈ V =W 1,2
0 (G), using the norm ∥v∥V = ∥|∇v|2∥2.

We interpret the partial differential equation (2.3) as the second-order evo-
lution equation

u′′(t) = ∆Du(t), t ≥ 0, u(0) = u0, u′(0) = u1, (2.4)

in L2(G). Here we look for solutions u in C2(R≥0, L
2(G)) ∩ C1(R≥0, V ) ∩

C(R≥0, [D(∆D)]). In particular, the boundary condition in (2.3) is understood

in the sense of trace u(t) ∈ W 1,2
0 (G) and the Laplacian in the form sense of

Example 1.54. To obtain a first-order evolution equation, we set

E = V × L2(G), D(A) = D(∆D)× V, and A =

(
0 I

∆D 0

)
.

From Example 1.55 we know that A generates a unitary C0-group T (·) on E.
We claim that (2.4) has a solution u if and only if the problem (2.1) on E for

this A and the initial value w0 := (u0, u1) ∈ D(A) has a solution w = (w1, w2),
which is then given by w = (u, u′).

To show the claim, let w solve (2.1) for A. The function u := w1 then belongs
to C1(R≥0, V ) ∩ C(R≥0, [D(∆D)]) with u(0) = u0 and w2 to C1(R≥0, L

2(G)) ∩
C(R≥0, V ). Equation (2.1) for A also yields that u′ = w′

1 = w2 so that u is an
element of C2(R≥0, L

2(G)) with u′(0) = u1 and it satisfies u′′ = w′
2 = ∆Dw1 =

∆Du as required. Conversely, let u solve (2.4). We then set w = (u, u′). This
map is contained in C(R≥0, [D(A)]) ∩ C1(R≥0, E) and it fulfills w(0) = w0 as
well as w′ = (u′, u′′) = (u′,∆Du) = Aw.

Thus, there is a unique solution u of (2.4) for (u0, u1) ∈ D(A). It has constant
‘energy’ 1

2

∫
G(|∇u(t)|

2
2 + |∂tu(t)|2)dx = 1

2∥w(t)∥
2
E = 1

2∥w
0∥2E by unitarity. ♢

Inhomogeneous evolution equations. To equation (2.1) we now add a
given function f , which can model a force in a wave equation or a source-sink
term in a diffusion problem. We take a time interval J ⊆ R with inf J = 0
and set J ′ = J ∪ {0}. This general class of J is useful for Section 2.3 and for
applications to nonlinear problems, cf. [26].

Let A generate the C0-semigroup T (·), u0 ∈ X, and f ∈ C(J ′, X).2 We study
the inhomogeneous evolution equation

u′(t) = Au(t) + f(t), t ∈ J, u(0) = u0. (2.5)

Our first solution concept is similar to the homogeneous case in Definition 1.9,
where we require continuity of u at t = 0 because of the initial condition.

Definition 2.5. A map u : J ′ → X is a (classical) solution of (2.5) on J if
u belongs to C1(J,X) ∩ C(J ′, X), u(t) ∈ D(A) for t ∈ J , and u satisfies (2.5).

2In the lectures a somewhat more general setting was treated.
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Again, a solution is contained in C(J, [D(A)]). We first show uniqueness of
such solutions and that they are given by Duhamel’s formula (2.6).

Proposition 2.6. Let A generate the C0-semigroup T (·), u0 ∈ X, and f ∈
C(J ′, X). If u solves (2.5) on J , then it is given by

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(s) ds, t ∈ J ′. (2.6)

In particular, solutions of (2.5) are unique. If T (·) is a C0-group, we can take
any interval J of positive length that contains 0.

Proof. Let t ∈ J and set v(s) = T (t− s)u(s) for 0 ≤ s ≤ t, where u solves
(2.5) on J . We focus on the case 0 /∈ J . As in the proof of Proposition 1.10
and using (2.5), one shows that v is continuously differentiable with derivative

v′(s) = T (t− s)u′(s)− T (t− s)Au(s) = T (t− s)f(s)

for all 0 < s ≤ t. Let ε ∈ (0, t). By integration we deduce∫ t

ε
T (t− s)f(s) ds = v(t)− v(ε) = u(t)− T (t− ε)u(ε).

Since the integrand is continuous on J ′, we can let ε→ 0 in the above integral.
Lemma 1.12 and (2.5) further imply that T (t−ε)u(ε) → T (t)u0. The last claim
is shown in the same way. □

Note that Duhamel’s formula (2.6) defines a function u for all x ∈ X and
f ∈ C(J ′, X). One can thus ask whether u still solves the equation (2.5) for
such data. In the present setting, this is not true in general as the next example
shows, but we continue to discuss this point in the following section.

Example 2.7. Let X = C0(R), A = d
ds with D(A) = C1

0 (R), and φ ∈
X \C1(R). The operator A generates the C0-group T (·) on X given by T (t)g =
g(· + t), see Example 1.21. The function T (t)φ then does not belong to D(A),
for each t ≥ 0, and at some t0 ∈ R the map t 7→ (T (t)φ)(0) = φ(t) is not
differentiable, cf. Remark 1.11. Define f ∈ C(R≥0, X) by f(t) = T (t)φ and let
u0 = 0. Formula (2.6) then yields

u(t) =

∫ t

0
T (t− r)T (r)φdr = tT (t)φ, t ≥ 0.

So u does not solve (2.5) as u(t) /∈ D(A) and u is not differentiable for t > 0. ♢

We now show criteria on f implying that Duhamel’s formula (2.6) provides
a solution of (2.5). We start with the core step that says that time and ‘space’
regularity are equivalent. As in Proposition 1.10, for instance, we heavily rely
on the Definition 1.1 of generators.

Lemma 2.8. Let A generate the C0-semigroup T (·), u0 ∈ D(A), and f ∈
C(J ′, X). Set v(t) =

∫ t
0 T (t−s)f(s) ds for t ∈ J ′. Then the following assertions

are equivalent.
a) v ∈ C1(J,X).
b) v(t) ∈ D(A) for all t ∈ J and Av ∈ C(J,X).
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In this case, (2.6) gives the unique solution of (2.5) on J . If (2.5) has a
solution on J , then properties a) and b) are true.

Proof. 1) By Proposition 1.10, the orbit T (·)u0 belongs to C1(R≥0, X) ∩
C(R≥0, [D(A)]) with derivative d

dtT (t)u0 = AT (t)u0 for all t ≥ 0, since u0 ∈
D(A). Let u solve (2.5). We then deduce v = u − T (·)x from Proposition 2.6,
so that v satisfies properties a) and b). Proposition 2.6 yields uniqueness.
2) Let a) or b) be valid. It remains to show that v solves (2.5) with u0 = 0,

since then u defined by (2.6) is a solution of (2.5) for the given initial value u0.

Recalling Lemma 1.4, we first note that ∥v(t)∥ ≤Meω+t
∫ t
0 ∥f(s)∥ ds tends to 0

as t→ 0 by the boundeness of f near 0. It is then easy to check the continuity
of v : J ′ → X, e.g., using Remark 1.15 e).
We next fix t ∈ J and take h ̸= 0 such that t+ h ∈ J . We compute

D1(h) :=
1

h
(T (h)− I)v(t) =

1

h
(v(t+ h)− v(t))− 1

h

∫ t+h

t
T (t+ h− s)f(s) ds

=: D2(h)− I(h).

Since f ∈ C(J ′, X), it follows

∥I(h)− f(t)∥ =
∥∥∥1
h

∫ t+h

t

(
T (t+ h− s)f(s)− f(t)

)
ds
∥∥∥

≤ |h|
|h|

max
|s−t|≤|h|

∥T (t+ h− s)f(s)− f(t)∥ −→ 0

as h → 0, thanks to Lemma 1.12. As a result, D1(h) converges if and only if
D2(h) converges as h→ 0. The convergence of D1 means that v(t) ∈ D(A) and
D1(h) → Av(t) as h→ 0, and that of D2 is equivalent to the differentiability of
v at t with D2(h) → v′(t) as h→ 0. We further obtain that Av(t) = v′(t)−f(t);
i.e., v satisfies the differential equation in (2.5) for this t. For each t ∈ J the
properties a) and b) imply the convergence of D2 and D1, respectively, and
hence the function v solves (2.5) with u0 = 0. □

The next theorem is the fundamental existence result for the inhomogeneous
evolution equation (2.5). For simplicity, we restrict ourselves to the case 0 ∈ J .

Theorem 2.9. Let A generate the C0-semigroup T (·), u0 ∈ D(A), and 0 ∈ J .
Assume either that f ∈ C1(J,X) or that f ∈ C(J, [D(A)]). Then the function
u given by (2.6) is the unique solution of (2.5) on J .

Proof. Proposition 2.6 yields uniqueness. Let f ∈ C1(J,X) and t ∈ J .

Writing v(t) =
∫ t
0 T (s)f(t− s) ds, we see that v has the continuous derivative

v′(t) = T (t)f(0) +

∫ t

0
T (s)f ′(t− s) ds

as in Analysis 2 or Remark 1.15. Hence, property a) in Lemma 2.8 is satisfied.
Let f ∈ C(J, [D(A)]). Proposition 1.10 and Lemma 1.12 imply that the vector

T (t−s)f(s) belongs to D(A) and the map (t, s) 7→ AT (t−s)f(s) = T (t−s)Af(s)
is continuous in X for s ≤ t in J . Remark 1.15 d) yields that v(t) belongs to

D(A) and Av(t) =
∫ t
0 T (t− s)Af(s) ds. By means of Remark 1.15 e), one then
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checks that Av is an element of C(J,X), and so statement b) of Lemma 2.8 is
fulfilled. The theorem now follows from Lemma 2.8. □

Variants for more regular solutions are discussed in the exercises. We apply
the above result to the wave equation with a given force.3

Example 2.10. In the setting of Example 2.4, we consider the inhomogeneous
wave equation

∂2t u(t, x) = ∆u(t, x) + g(t, x), t ≥ 0, x ∈ G,

u(t, x) = 0, t ≥ 0, x ∈ ∂G, (2.7)

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ G,

for given u0 ∈ D(∆D), u1 ∈ V = W 1,2
0 (G) and g ∈ C(R≥0, L

2(G)), where we
set g(t, x) = (g(t))(x) for all t ≥ 0 and almost every x ∈ G. As in Example 2.4
we write these equations as

u′′(t) = ∆Du(t) + g(t), t ≥ 0, u(0) = u0, u′(0) = u1, (2.8)

and look for solutions u in C2(R≥0, L
2(G)) ∩ C1(R≥0, V ) ∩ C(R≥0, [D(∆D)]).

Again the second-order problem is equivalent to the first-order problem

w′(t) = A(t)w(t) + f(t), t ≥ 0, w0 = (u0, u1),

on E = V × L2(G) with w = (u, u′),

A =

(
0 I

∆D 0

)
on D(A) = D(∆D)× V, and f =

(
0

g

)
.

In view of Theorem 2.9 and Example 1.55, we then obtain a unique solution u
of (2.8) if either g belongs to C1(R≥0, L

2(G)) and thus f to C1(R≥0, E)), or g
is contained in C(R≥0, V ) and thus f in C(R≥0, [D(A)]).
Note that g is only required to possess one derivative, but u has two. One

gains this derivative because of the structure of E, D(A), and f . ♢

2.2. Mild solution and extrapolation

So far we have considered solutions of (2.1) or (2.5) taking values in D(A),
which is surely a natural choice. However, in many situations one wants to
admit solutions and initial values in X. For instance, in the wave equation
from Examples 2.4 and 2.10 the squared norm of the state space E is (up to
factors) equal to the physical energy, and it is often desirable only to require
that the solutions have finite energy. We first introduce a concept motivated
by Proposition 2.6. It plays an important role for certain nonlinear evolution
equations, see [26]. Let J be an interval with inf J = 0 and J ′ = J ∪ {0}.

Definition 2.11. Let A generate the C0-semigroup T (·), u0 ∈ X, and f ∈
C(J ′, X). The function u ∈ C(J ′, X) given by

u(t) = T (t)u0 +

∫ t

0
T (t− s)f(s) ds, t ∈ J ′,

is called mild solution (on J ′) of (2.5).

3The map g in (2.7) corresponds to a force if the vibrating object has mass density 1.
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The continuity of the mild solution and u(0) = u0 were noted in the proof of
Lemma 2.8. The above definition has the obvious draw-back that one does not
directly see the connection to A and to (2.5). For f = 0, Lemma 1.18 suggests
the following notion which involves A explicitly.

Definition 2.12. Let A be a closed operator, u0 ∈ X, 0 ∈ J , and f ∈
C(J,X). A function u ∈ C(J,X) is called an integrated solution (on J) of

(2.5) if the integral
∫ t
0 u(s) ds belongs to D(A) and satisfies

u(t) = u0 +A

∫ t

0
u(s) ds+

∫ t

0
f(s) ds for all t ∈ J. (2.9)

The questions arise whether integrated solutions are unique, how they relate
to mild ones, and whether they solve a differential equation. At least, the func-

tion t 7→
∫ t
0 u(s) ds is differentiable, though in X instead of [D(A)]. Moreover,

for mild solutions it is not clear at all how to differentiate t 7→ T (t − s)f(s).
The key idea to solve these problems is to enlarge the state space X suitably.
By Section 2.2D) of [24], each normed vector space Y possesses its comple-

tion Ỹ . It is a Banach space such that there is an isometry J : Y → Ỹ with
dense range. This property determines Ỹ uniquely up to isometric isomor-
phisms. Note that Y equipped with an equivalent norm again yields Ỹ (with
an equivalent norm).

Definition 2.13. Let A be a closed operator with µ ∈ ρ(A). We define the
extrapolated norm ∥x∥A−1 = ∥x∥−1 = ∥R(µ,A)x∥ for x ∈ X and the extrapola-

tion space X−1 = XA
−1 as the completion of (X, ∥·∥−1).

We identify X with a dense subspace of X−1. Note that ∥·∥−1 a coarser
norm on X than the original one (which is not complete if A is unbounded).
Moreover, the norm ∥·∥−1 does not depend on the choice of µ ∈ ρ(A), up to
equivalence: Let λ ∈ ρ(A)\{µ}. Using the resolvent equation (1.7), we compute

∥R(λ,A)x∥ ≤ ∥R(µ,A)x∥+ |µ− λ| ∥R(λ,A)R(µ,A)x∥
≤ (1 + |µ− λ| ∥R(λ,A)∥) ∥R(µ,A)x∥, (2.10)

and one can interchange λ and µ here.
By means of Lemma 2.13 in [24] and density, one can extend an operator

S ∈ B(X) to XA
−1 if (and only if) it satisfies ∥R(µ,A)Sx∥X ≤ c∥R(µ,A)x∥X

for some c > 0 and all x ∈ X.
In Example 2.17 we compute X−1 in one case. But actually one can quite

often use X−1 to ‘legalize illegal computations’ without knowing a precise de-
scription of it. The next result shows that we can extend the C0-semigroup
generated by A to XA

−1 keeping many of its properties.

Proposition 2.14. Let A generate the C0-semigroup T (·) on X, t ≥ 0,
and µ, λ ∈ ρ(A). Then the operators T (t) have bounded extensions T−1(t) to
X−1 = XA

−1, forming a C0-semigroup on X−1. It is generated by the extension
A−1 ∈ B(X,X−1) of A, where D(A−1) = X, and ∥·∥X is equivalent to the graph
norm of A−1. Moreover, the resolvent R(λ,A) has an extension in B(X−1, X)
which is the resolvent of A−1. The maps R := R(µ,A−1) : X−1 → X and R−1 =
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µI −A−1 : X → X−1 are isometric isomorphisms satisfying A = RA−1R
−1 on

D(A), so that σ(A) = σ(A−1). Analogous facts are true for R(λ,A) and T (t).

Proof. 1) Let λ ∈ ρ(A) and x ∈ X. By estimate (2.10) we have
∥R(λ,A)x∥ ≤ cλ∥x∥−1 for a constant cλ. Because X is dense in X−1, we
can extend R(λ,A) to a map Rλ in B(X−1, X) using Lemma 2.13 in [24]. We
note that Rµ is an isometry. For x ∈ D(A) we have

∥Ax∥−1 = ∥(A− µI + µI)R(µ,A)x∥X ≤ (1 + |µ| ∥R(µ,A)∥)∥x∥,

so that A has an extension A−1 ∈ B(X,X−1). The identity IX = (λIX −
A)R(λ,A) on X can thus be extended to IX−1 = (λIX−1 − A−1)Rλ on X−1,
and analogously one obtains IX = Rλ(λIX−1 − A−1) on X. This means that
λ ∈ ρ(A−1) and Rλ = R(λ,A−1). (Note that A−1 is closed in X−1 as Rλ ∈
B(X−1).) We next compute

R(µ,A−1)A−1(µI −A)x = A−1R(µ,A)(µI −A)x = Ax

for x ∈ D(A). It follows that σ(A) = σ(A−1) since R(λI − A−1)R
−1 = λI − A

on D(A). Using X ↪→ X−1, we show the asserted norm equivalence by

∥x∥A−1 = ∥x∥−1 + ∥A−1x∥−1 ≤ c∥x∥X + ∥A−1∥ ∥x∥X ,
∥x∥X = ∥RR−1x∥X = ∥µx−A−1x∥−1 ≤ max{|µ|, 1} ∥x∥A−1 .

2) It is easy to see that A−1 = R−1AR with D(A−1) = X generates the C0-
semigroup onX−1 given by T−1(t) := R−1T (t)R for t ≥ 0, cf. Paragraph II.2.1 in
[7]. This semigroup extends T (·) because of T−1(t)x = (µI−A)T (t)R(µ,A)x =
T (t)x for x ∈ X. The other assertions are shown similarly. □

Part 1) of the proof also works if one only assumes that A is closed and
densely defined with µ ∈ ρ(A). Using these concepts and results, we can now
easily show that mild and integrated solutions coincide and that they are just
the unique (classical) solutions in X−1 of the extrapolated problem

u′(t) = A−1u(t) + f(t), t ∈ J, u(0) = u0 ∈ X. (2.11)

Proposition 2.15. Let A generate the C0-semigroup T (·) on X, u0 ∈ X,
0 ∈ J , and f ∈ C(J,X). Then the mild solution u ∈ C(J,X) given by (2.6)
also belongs to C1(J,X−1) and u is the (classical) solution of (2.11) in X−1.
It is also the unique integrated solution of (2.5) in the sense of (2.9).

Proof. The first assertion follows from Theorem 2.9 and Proposition 2.14
using the conditions on u0 and f , as well as X = D(A−1) and T−1(t)↾X = T (t).

Let u ∈ C(J,X) be the (unique) solution of (2.11). Integrating this differen-
tial equation, we derive the identity

u(t)− u0 =

∫ t

0
A−1u(s) ds+

∫ t

0
f(s) ds

for t ∈ J . We can take A−1 ∈ B(X,X−1) out of the integral, resulting in

(A−1 − µI)

∫ t

0
u(s) ds = u(t)− u0 − µ

∫ t

0
u(s) ds−

∫ t

0
f(s) ds.
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Since the right-hand side belongs to X and R(µ,A−1) extends R(µ,A), the

integral
∫ t
0 u(s) ds thus belongs to D(A) and u is an integrated solution of (2.5).

Let u ∈ C(J,X) be an integrated solution of (2.5). As A−1 ∈ B(X,X−1),

we can differentiate t 7→ A
∫ t
0 u(s) ds in X−1 with derivative A−1u(t). Equation

(2.9) then implies that u is contained in C1(J,X−1) and solves (2.11). □

For any Banach space X we have the isometry

JX : X → X∗∗; JX(x) = ⟨x, · ⟩X×X∗ ,

see Proposition 5.24 of [24]. The space X is called reflexive if JX is surjective.
By Example 5.27 in [24], a Hilbert space X is reflexive (with JX = ΦX∗ΦX for
the Riesz isomorphisms) and also Lp(µ) for p ∈ (1,∞). In the reflexive case
one can describe the extrapolation by duality in a convenient way.

Proposition 2.16. Let A be closed with µ ∈ ρ(A) and dense domain.
Then there is an isomorphism Ψ : [D(A∗)] → (X−1)

∗ satisfying (Ψx∗)(x) =
⟨x, x∗⟩X×X∗ for x ∈ X ↪→ X−1 and x∗ ∈ D(A∗). Let X be reflexive, in addition.
We then have an isomorphism Φ : X−1 → [D(A∗)]∗ extending JX : X → X∗∗.

Proof. Replacing A−µI by A we can restrict ourselves to the case µ = 0.
Let x∗ ∈ D(A∗). For x−1 ∈ X−1 we set

(Ψx∗)(x−1) = ⟨(A−1)
−1x−1, A

∗x∗⟩X×X∗ .

We first observe that

|(Ψx∗)(x−1)| ≤ ∥(A−1)
−1x−1∥X ∥A∗x∗∥X∗ ≤ ∥x−1∥X−1 ∥x∗∥A∗ ,

so that Ψx∗ belongs to (X−1)
∗ with norm less or equal ∥x∗∥A∗ and hence

Ψ : [D(A∗)] → (X−1)
∗ is a linear contraction. This map acts as (Ψx∗)(x) =

⟨x, x∗⟩X×X∗ for x ∈ X since (A−1)
−1 extends A−1 on X.

To show surjectivity, we take φ ∈ (X−1)
∗. Let x ∈ X. We then estimate

|φ(A−1x)| ≤ ∥φ∥(X−1)∗ ∥A−1x∥X−1 = ∥φ∥(X−1)∗ ∥x∥X ,
and hence φ ◦ A−1 is contained in X∗. There thus exists an element y∗ of X∗

such that φ(A−1x) = ⟨x, y∗⟩X for all x ∈ X and ∥y∗∥X∗ ≤ ∥φ∥(X−1)∗ . We set

x∗ = (A∗)−1y∗ ∈ D(A∗) recalling that σ(A∗) = σ(A) by Theorem 1.24 of [27].
It follows A∗x∗ = y∗ and

∥x∗∥A∗ = ∥(A∗)−1A∗x∗∥X∗ + ∥A∗x∗∥X∗ ≤ c∥y∗∥X∗ ≤ c∥φ∥(X−1)∗ .

Moreover, the definitions of Ψ and y∗ yield

(Ψx∗)(x−1) = ⟨(A−1)
−1x−1, A

∗x∗⟩X×X∗ = φ(A−1(A−1)
−1x−1) = φ(x−1)

for all x−1 ∈ X−1; i.e., φ = Ψx∗ and Ψ is surjective. It is also injective with a
bounded inverse by the above lower estimate, and thus Ψ is invertible.
Let X be reflexive so that also the isomorphic space X−1 is reflexive, see

Corollary 5.51 in [24]. We then define the isomorphism Φ = Ψ∗JX−1 : X−1 →
[D(A∗)]∗. For x ∈ X and x∗ ∈ D(A∗) we compute

⟨x∗,Φx⟩D(A∗) = ⟨Ψx∗, JX−1x⟩(X−1)∗ = ⟨x,Ψx∗⟩X−1 = ⟨x, x∗⟩X = ⟨x∗, JXx⟩X∗ ,

using the above properties. This shows the last assertion. □
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By extrapolation we now obtain solutions u of the wave equation (2.8) such

that (u(t), u′(t)) only take values in the space W 1,2
0 (G)×L2(G) of finite energy.

Example 2.17. As in Examples 2.4 and 2.10 we study the wave equation

u′′(t) = ∆̃Du(t) + g(t), t ∈ J, u(0) = u0, u′(0) = u1, (2.12)

now with the invertible extension ∆̃D : W 1,2
0 (G) → W−1,2(G) = W 1,2

0 (G)∗ of
∆D : D(∆D) → L2(G) from Example 1.54 and with data w0 = (u0, u1) ∈ E =

W 1,2
0 (G) × L2(G) and g ∈ C(J, L2(G)), where 0 ∈ J . We look for solutions in

Z := C(J,W 1,2
0 (G)) ∩ C1(J, L2(G)) ∩ C2(J,W−1,2(G)) and set again

A =
(

0 I
∆D 0

)
on D(A) = D(∆D)×W 1,2

0 (G), and f =
(
0
g

)
.

Example 1.55 provides the inverse

A−1 =
(

0 ∆−1
D

I 0

)
: E → D(A).

To compute E−1 we recall from Example 1.54 that ∆̃−1
D extends ∆−1

D . Set

F = L2(G)×W−1,2(G). For (u, v) ∈ E we compute4

∥(u, v)∥E−1 = ∥A−1(u, v)∥E = ∥(∆̃−1
D v, u)∥E ≂ ∥(u, v)∥F .

As noted before Definition 2.13, it follows that E−1 is also the completion of
(E, ∥·∥F ). Since I : (E, ∥·∥F ) → F is an isometry with dense range, the space
F is isomorphic to E−1 by Proposition 2.21 of [24]. Identifying F and E−1, the
extension of A to E is given by

A−1 =
( 0 I
∆̃D 0

)
: E → L2(G)×W−1,2(G).

It generates a C0-semigroup on F by Proposition 2.14. Theorem 2.9 thus yields
a unique solution w of (2.11) in F for our data. As in Examples 2.4 and 2.10,
one now obtains a unique solution u ∈ Z of (2.12) given by w = (u, u′). ♢

2.3. Analytic semigroups and sectorial operators

So far we have treated C0-semigroups and groups without requiring further
properties of them. However, both from the view point of applications and from
a more theoretical perspective, it is natural and rewarding to study classes of
C0-semigroups with specific properties. (In [7] such questions are treated in
detail.) For instance, compact semigroup or resolvent operators often occur in
concrete problems, and they have special properties, of course. If the Banach
space X carries an order structure (e.g., X = Lp(µ) or X = C0(G)), then
‘positive’ semigroups preserving the order are important, and they are used to
describe diffusion or transport phenomena. Occasionally we will come back to
positivity and (more rarely) to compactness later in the course.
Another possible property of C0-semigroups T (·) is the improved regularity of

the map R+ ∋ t 7→ T (t) beyond strong continuity.5 In this section we study the
strongest case in this context, namely analyticity of the map R+ → B(X); t 7→
T (t). This class turns out to be of great importance in applications to diffusion

4The symbol ≂ means that c∥(∆̃−1
D v, u)∥E ≤ ∥(u, v)∥F ≤ C∥(∆̃−1

D v, u)∥E for all (u, v)
and some constants c, C > 0.

5Recall from the exercises that the generator A is bounded if T (t) → I in B(X) as t → 0.
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problems, for instance. We first introduce and discuss a class of operators which
is crucial to determine the generators of such ‘analytic semigroups.’
In this section, let F = C. For ϕ ∈ (0, π], we write

Σϕ = {λ ∈ C \ {0} | | arg λ| < ϕ}
for the open sector with (half) opening angle ϕ. Observe that Σπ/2 = C+ is
the open right halfplane and Σπ = C \ R≤0 is the plane with cut R≤0.

Definition 2.18. A closed operator A is called sectorial (of type (K,ϕ)) if
for some constants ϕ ∈ (0, π) and K > 0 the sector Σϕ belongs to ρ(A) and the
resolvent satisfies the inequality

∥R(λ,A)∥ ≤ K

|λ|
for all λ ∈ Σϕ. (2.13)

The supremum φ(A) = φ ∈ (0, π] of all such ϕ is called the angle of A.

Often we will look at maps A such that the shifted operator A−ωI is sectorial
for some ω ∈ R, which can be treated by rescaling arguments. Clearly, if A is
sectorial with angle φ, then it has type (Kϕ, ϕ) for all ϕ ∈ (0, φ). Typically, Kϕ

explodes as ϕ→ φ as we will see below in several examples.6 We also note that
several variants of the above concepts are used in literature; e.g., many authors
consider operators whose resolvent set contains a sector opening to the left.
We first discuss a few relatively simple examples which are typical neverthe-

less, starting with the arguably ‘nicest’ class of operators.

Example 2.19. Let X be a Hilbert space and A be densely defined and
self-adjoint on X satisfying σ(A) ⊆ R≤0. Then A is sectorial of angle π.

Proof. Let ϕ ∈ (π2 , π) and λ ∈ Σϕ ⊆ ρ(A). Since R(λ,A)′ = R(λ,A) by
(4.3) in [27], the operator R(λ,A) is normal. Propositions 4.3 and 1.20 of [27]
and the assumption then yield

∥R(λ,A)∥ = r(R(λ,A)) =
1

d(λ, σ(A))
≤ 1

d(λ,R≤0)
=

{
1
|λ| , Reλ ≥ 0,

1
|Imλ| , Reλ < 0.

If Reλ < 0, we can write λ = |λ| e±iθ for some θ ∈ (π2 , ϕ). Elementary properties
of sine thus imply |Imλ| = |λ| sin θ > |λ| sinϕ > 0, and hence

∥R(λ,A)∥ ≤
1

sinϕ

|λ|
=:

Kϕ

|λ|
for all λ ∈ Σϕ. □

By Example 1.45 we can apply the above result to A = ∆ with D(A) =
W 2,2(Rm) in L2(Rm), and by Example 1.54 to A = ∆D in L2(G) for an open
and bounded set G ⊆ Rm with ∂G ∈ C1−. We next treat the second derivative
in sup-norm with Dirichlet boundary conditions. Note that the operator A
below is not densely defined and that D(A0) requires more boundary conditions.

Example 2.20. Let X=C([0, 1]), A= d2

ds2
, and D(A)={u∈C2([0, 1]) |u(0) =

u(1) = 0}. The closure of D(A) is X0 = C0(0, 1). We set A0u = u′′ for u ∈

6If (2.13) holds for ϕ = π, one can deduce A = 0 from Theorem 2.25 and results in [27].
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D(A0) = {u ∈ D(A) |u′′ ∈ X0}. The operators A in X and A0 in X0 are
sectorial of angle π. Moreover, A0 is densely defined by Example 1.47.

Proof. The closure of D(A) can be determined as in Example 1.47. We
only treat A, as A0 is handled similarly. Let f ∈ X and λ ∈ Σπ. Note that
λ = µ2 for µ =

√
λ ∈ C+. As in Example 1.47 one can check that λ ∈ ρ(A) and

R(λ,A)f(s) = a(f, µ)eµs + b(f, µ)e−µs +
1

2µ

∫ 1

0
e−µ|s−τ |f(τ) dτ

for s ∈ [0, 1] and the coefficients(
a(f, µ)
b(f, µ)

)
=

1

2µ(e−µ − eµ)

(
e−µ

∫ 1
0 (e

µτ − e−µτ )f(τ) dτ∫ 1
0 (e

µe−µτ − e−µeµτ )f(τ) dτ

)
.

Fix ϕ ∈ (π2 , π). Take λ ∈ Σϕ and hence µ ∈ Σϕ/2. Set θ = arg µ. It follows

0 ≤ |θ| < ϕ
2 and Reµ = |µ| cos θ ≥ |µ| cos ϕ2 . So we can estimate

∥R(λ,A)f∥∞ ≤ |a(f, µ)| eReµ + |b(f, µ)|+ ∥f∥∞
2|µ|

sup
s∈[0,1]

∫ s

s−1
e−Reµ |r| dr

≤ ∥f∥∞
2|µ| (eReµ − e−Reµ)

(∫ 1

0

(
eReµτ + e−Reµτ

)
dτ

+

∫ 1

0

(
eReµe−Reµτ + e−ReµeReµτ

)
dτ

)
+

∥f∥∞
|µ|Reµ

=
∥f∥∞

2|µ|Reµ (eReµ − e−Reµ)

(
(eReµ − 1 + 1− e−Reµ)

+ eReµ(1− e−Reµ) + e−Reµ(eReµ − 1)
)
+

∥f∥∞
|µ|Reµ

=
2∥f∥∞
|µ|Reµ

≤
2

cos(ϕ/2)

|λ|
∥f∥∞. □

For the first derivative we obtain a significantly smaller sectoriality angle.

Example 2.21. Let X = C0(R) and Au = u′ for D(A) = C1
0 (R). Then

A is sectorial of angle π
2 . (The analogous result for X = Lp(R) is shown in

Example 5.10 of [27].)

Proof. By Example 1.21, we have σ(A) = iR and ∥R(λ,A)∥ = 1/Reλ for
λ ∈ C+. Take ϕ ∈ (0, π/2). Let λ ∈ Σϕ. We obtain Reλ ≥ |λ| cosϕ and hence

∥R(λ,A)∥ ≤
1

cosϕ

|λ|
,

which shows sectoriality of angle greater or equal π/2. (The same argument
works for every generator of a bounded C0-semigroup.) Since iR ⊆ σ(A) the
angle cannot be greater that π/2. □

To study analytic semigroups, we need a bit of complex analysis in Banach
spaces Y . (See also Section 5.1 of [27].) Let J ⊆ R be a closed interval and
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γ ∈ C(J,C) be piecewise C1. If J = [a, b] and γ(a) = γ(b), the curve γ is called
closed. Set Γ = γ(J). For f ∈ C(J, Y ) we introduce the complex curve integral∫

γ
f dz =

∫
J
f(γ(s))γ′(s) ds.

If J is not compact, above it is assumed that the right-hand side exists as
an improper Riemann integral in Y . As in the proof of Proposition 1.20, one
obtains existence if the function ∥f ◦ γ∥ |γ′| is integrable on J . We also write7∫

γ
f |dλ| =

∫
J
f(γ(s))|γ′(s)|ds.

The curve integral possesses the usual properties.
Let U ⊆ C be open and starshaped, f : U → Y be (complex) differentiable, γ

be closed, Γ ⊆ U , and z ∈ U \ Γ. We then have Cauchy’s theorem and formula∫
γ
f(w) dw = 0, (2.14)

n(γ, z)f(z) =
1

2πi

∫
γ

f(w)

w − z
dw, where n(γ, z) :=

1

2πi

∫
γ

dw

w − z
(2.15)

is the winding number. In fact, Theorems 2.6 and 2.8 in [25] show these
equations with f replaced by ⟨f, y∗⟩ for each y∗ ∈ Y ∗. We hence obtain〈 ∫

Γ f dz, y
∗〉 = 0 for every y∗ ∈ Y ∗, implying (2.14) by Corollary 5.10 in [24].

Formula (2.15) is established similiarly. If Y = C, identity (2.15) yields

eta =
1

2πi

∫
∂B(a,1)

eλt(λ− a)−1 dλ for a ∈ C, t > 0.

We want to imitate this formula for sectorial A. To this aim, we need a curve
Γ encircling the (typically unbounded) spectrum of A counter clockwise. This
curve has to be contained in Σϕ for some ϕ < φ(A) in order to use the resolvent
estimate (2.13), so that it has to be unbounded. Because of the exponential
function, the real part of λ ∈ Γ has to tend to −∞ to guarantee the convergence
of the integral. We thus assume that A is sectorial with angle φ larger than
π/2. For given numbers R > r > 0 and θ ∈ (π/2, φ) we define the paths

Γ1 = Γ1(r, θ) =
{
λ = γ1(s) = −se−iθ

∣∣ s ∈ (−∞,−r]
}
,

Γ2 = Γ2(r, θ) =
{
λ = γ2(α) = reiα

∣∣α ∈ [−θ, θ]
}
,

Γ3 = Γ3(r, θ) =
{
λ = γ3(s) = seiθ

∣∣ s ∈ [r,∞)
}
,

Γ = Γ(r, θ) = Γ1 ∪ Γ2 ∪ Γ3, ΓR = Γ ∩B(0, R). (2.16)

We write
∫
Γ instead of

∫
γ since the maps γj are injective. We first show that

the relevant integral exists in B(X).

Lemma 2.22. Let A be sectorial of type (K,ϕ) with ϕ > π
2 , t > 0, θ0 ∈ (π2 , ϕ),

θ ∈ [θ0, ϕ), r > 0, and Γ = Γ(r, θ) be defined by (2.16). Then the integral

etA :=
1

2πi

∫
Γ
etλR(λ,A) dλ = lim

R→∞

1

2πi

∫
ΓR

etλR(λ,A) dλ (2.17)

7This notation was not used in the lectures.
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converges absolutely in B(X). The operator etA ∈ B(X) does not depend on the
choice of r > 0 and θ ∈ (π2 , ϕ). We further have ∥etA∥ ≤M for all t > 0 and a
constant M =M(K, θ0) > 0.

Proof. Since ∥R(λ,A)∥ ≤ K
|λ| on Γ by (2.13), we can estimate∫

ΓR

∥etλR(λ,A)∥|dλ| ≤ K

∫ R

r

exp(tsRe e−iθ)

|se−iθ|
|e−iθ|ds+K

∫ R

r

exp(tsRe eiθ)

|seiθ|
|eiθ|ds

+K

∫ θ

−θ

exp(trRe eiα)

|reiα|
|ireiα|dα

≤ 2K

∫ ∞

r

ets cos θ

s
ds+K

∫ θ

−θ
etr cosα dα

≤ K
(
2

∫ ∞

rt |cos θ|

e−σ

σ
(−t cos θ) dσ

−t cos θ
+ 2θetr

)
≤ K

(
2

∫ ∞

rt |cos θ0|

e−σ

σ
dσ + 2πetr

)
=: Kc(t, r, θ0)

for all R > r and t > 0, where we substituted σ = −st cos θ and used that
cos θ ≤ cos θ0 < 0. The limit in (2.17) thus exists absolutely in B(X) by
the majorant criterium, and ∥etA∥ ≤ Kc(t, r, θ0). If we take r = 1/t, then
c(t, t−1, θ0) =: c(θ0) does not depend on t > 0.
So it remains to check that the integral in (2.17) is independent of r > 0 and

θ ∈ (π2 , ϕ). To this aim, we define Γ′ = Γ(r′, θ′) for some r′ > 0 and θ′ ∈ (π2 , ϕ),

where we may assume that θ′ ≥ θ. We further set Γ′
R = Γ′∩B(0, R) and choose

R > max{r, r′}. Let C+
R and C−

R be the circle arcs from the endpoints of ΓR
to that of Γ′

R in {λ ∈ C | Imλ > 0} and {λ ∈ C | Imλ < 0}, respectively. (If
θ = θ′, then C±

R contain just one point.) Then SR = ΓR ∪C+
R ∪ (−Γ′

R)∪ (−C−
R )

is a closed curve in the starshaped domain Σϕ. So (2.14) shows that∫
SR

etλR(λ,A) dλ = 0.

We further estimate∥∥∥∫
C+

R

etλR(λ,A) dλ
∥∥∥ ≤

∫ θ′

θ
etRRe eiα K

|Reiα|
|iReiα|dα ≤ K(θ′ − θ)etR cos θ → 0,

as R→ ∞ since cosα ≤ cos θ < 0, and analogously for C−
R . So we conclude∫

Γ
etλR(λ,A) dλ = lim

R→∞

∫
ΓR

etλR(λ,A) dλ = lim
R→∞

∫
Γ′
R

etλR(λ,A) dλ

=

∫
Γ′
etλR(λ,A) dλ. □

We next establish some of the fundamental properties of the operators etA.
We stress that we do not assume that A is densely defined here. In part c) one
sees the impact of a dense domain. A typical example for a sectorial operator
with non-dense domain is the Dirichlet–Laplacian in supremum norm, unless
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one includes the Dirichlet boundary condition into the state space X. See
Example 2.20 and also Chapter 3 of [18].

Theorem 2.23. Let A be sectorial of angle φ > π
2 . Define etA as in (2.17)

for t > 0, and set e0A = I. Then the following assertions hold.

a) etAeτA = eτAetA = e(t+τ)A for all t, τ ≥ 0.

b) The map t 7→ etA belongs to C1(R+,B(X)). Moreover, etAX ⊆ D(A),
d
dte

tA = AetA and ∥AetA∥ ≤ C/t for a constant C > 0 and all t > 0. We also

have AetAx = etAAx for all x ∈ D(A) and t ≥ 0.

c) Let x ∈ X. Then etAx converges as t→ 0 in X if and only if x is contained

in D(A). In this case, etAx tends to x as t→ 0.

d) Let D(A) be dense. Then (etA)≥0 is a C0-semigroup with generator A.

Proof. Let r > 0 and π
2 < θ < ϕ < φ and set Γ = Γ(r, θ) as in (2.16).

a) We proceed as for the holomorphic functional calculus in Theorem 5.1 of
[27]. Let t, τ > 0. We use that etA does not depend on the choice of r and θ
by Lemma 2.22. Take r < r′ and π

2 < θ′ < θ. Set Γ′ = Γ(r′, θ′). Employing the
resolvent equation (1.7) and Fubini’s theorem, we compute

etAeτA =
1

(2πi)2

∫
Γ
etλ
∫
Γ′
eτµR(λ,A)R(µ,A) dµ dλ

=
1

2πi

∫
Γ
etλR(λ,A)

1

2πi

∫
Γ′

eτµ

µ− λ
dµdλ

+
1

2πi

∫
Γ′
eτµR(µ,A)

1

2πi

∫
Γ

etλ

λ− µ
dλ dµ.

One shows Fubini in this context by inserting the parametrizations and applying
a functional Φ ∈ B(X)∗. The integrability in the parameters (s, s′) etc. is
checked as in Lemma 2.22 or below.
Fix λ ∈ Γ and take R′ > max{r, r′, |λ|}. We set C ′

R′ = {z = R′eiα |α ∈
[θ′, 2π − θ′]} and S′

R′ = Γ′
R′ ∪ C ′

R′ . Cauchy’s formula (2.15) yields

1

2πi

∫
S′
R′

eτµ

µ− λ
dµ = eτλ

since n(S′
R′ , λ) = 1. As in Lemma 2.22, we further compute∫
Γ′
R′

eτµ

µ− λ
dµ −→

∫
Γ′

eτµ

µ− λ
dµ and

∣∣∣ ∫
C′

R′

eτµ

µ− λ
dµ
∣∣∣ ≤ 2πR′ sup

µ∈C′
R′

eτ Reµ

|µ− λ|
≤ eτR

′ cos θ′ 2πR′

R′ − |λ|
−→ 0

as R′ → ∞, using that cosα ≤ cos θ′ < 0. It follows

eτλ =
1

2πi

∫
Γ′

eτµ

µ− λ
dµ.
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Next, fix µ ∈ Γ′ and take R > r. Set CR = {z = Reiα |α ∈ [θ, 2π − θ]} and
SR = ΓR ∪ CR. We now have n(SR, µ) = 0 and derive as above∫

Γ

etλ

λ− µ
dλ = 0.

The above equalities imply that

etAeτA =
1

2πi

∫
Γ
etλeτλR(λ,A) dλ = e(t+τ)A = e(τ+t)A = eτAetA.

b) Let t > 0 and R > r. Since λ 7→ R(λ,A) is continuous in B(X, [D(A)]),
also the integral

TR(t) =

∫
ΓR

etλR(λ,A) dλ

belongs to B(X, [D(A)]). Recall from (2.17) that TR(t) tends to 2πietA in B(X)
as R→ ∞. We further compute

ATR(t) =

∫
ΓR

etλAR(λ,A) dλ =

∫
ΓR

etλλR(λ,A) dλ−
∫
ΓR

etλ dλ I.

Take the circle arc CR from step a). Using Cauchy’s theorem (2.14), one shows
as above that∣∣∣ ∫

ΓR

etλdλ
∣∣∣ = ∣∣∣−∫

CR

etλdλ
∣∣∣ ≤ 2πR sup

α∈[θ,2π−θ]
etR cosα ≤ 2πRetR cos θ → 0, R→ ∞.

Following the proof of Lemma 2.22 (with r = 1/t and ∥λR(λ,A)∥ ≤ K by
(2.13)), we then estimate∫

ΓR

∥λetλR(λ,A)∥ |dλ| ≤ 2K

∫ ∞

r
ets cos θ ds+K

∫ θ

−θ
recosα dα

≤ 2K

t|cos θ|
+

2θeK

t
=:

C ′

t
.

Hence, ATR(t) converges to
∫
Γ λe

tλR(λ,A) dλ in B(X) as R → ∞. Since A is

closed, the operator etA maps X into D(A) with

AetA =
1

2πi

∫
Γ
λetλR(λ,A) dλ, (2.18)

and it satisfies ∥AetA∥ ≤ C′

2πt for all t > 0.

Observe that TR(·) belongs to C1(R≥0,B(X, [D(A)])) with derivative

d
dtTR(t) =

∫
ΓR

λetλR(λ,A) dλ

for t ≥ 0. Let ε > 0 and t ≥ ε. In a similar way as above, one sees that∥∥∥∫
Γ\ΓR

λetλR(λ,A) dλ
∥∥∥ ≤ 2K

∫ ∞

R
ets cos θ ds ≤ 2K

ε|cos θ|
eRε cos θ −→ 0, R→ ∞.
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Therefore d
dtTR(t) tends to Ae

tA in B(X) uniformly for t ≥ ε, see (2.18). Using

also Remark 1.15 g), we infer that t 7→ etA ∈ B(X) is continuously differentiable
for t > 0 with d

dte
tA = AetA. For x ∈ D(A), we further obtain

AetAx = lim
R→∞

1

2πi

∫
ΓR

etλR(λ,A)Ax dλ = etAAx.

c) Let x ∈ D(A), R > r, and t > 0. Take the curve CR from part a). As in
step a), Cauchy’s formula (2.15) yields

1

2πi

∫
Γ

etλ

λ
dλ = lim

R→∞

1

2πi

∫
ΓR∪CR

etλ

λ− 0
dλ = 1

Noting that λR(λ,A)x− x = R(λ,A)Ax, we conclude

etAx− x =
1

2πi

∫
Γ
etλ
(
R(λ,A)− 1

λ

)
x dλ =

1

2πi

∫
Γ

etλ

λ
R(λ,A)Ax dλ.

Due to (2.13) the right integrand is bounded by c|λ|−2∥Ax∥ on Γ for all t ∈ (0, 1].
Lebesgue’s convergence theorem then implies the existence of the limit

lim
t→0

etAx− x =
1

2πi

∫
Γ

1

λ
R(λ,A)Axdλ =: z.

Let KR = {Reiα | − θ ≤ α ≤ θ}. Cauchy’s theorem (2.14) shows that∫
ΓR∪(−KR)

1

λ
R(λ,A)Ax dλ = 0.

Since also ∥∥∥∫
KR

1

λ
R(λ,A)Ax dλ

∥∥∥ ≤ 2πRK

R2
∥Ax∥ −→ 0

as R → ∞, we arrive at z = 0. Because of the uniform boundedness of etA, it
follows that etAx→ x as t→ 0 for all x ∈ D(A).

Conversely, let etAx → y as t → 0. Then y is contained in D(A) by part b).
The previous step and the last claim in b) imply that R(1, A)etAx = etAR(1, A)x
tends to R(1, A)x ∈ D(A) as t → 0. We thus obtain R(1, A)y = R(1, A)x, and

so x = y belongs to D(A).

d) Let D(A) be dense. The above results then show that (etA)≥0 is a bounded
C0-semigroup. Let B be its generator. To check that A = B, take x ∈ D(A).
For t > s > 0, assertion b) leads to

etAx− esAx =

∫ t

s
eτAAx dτ.

Since the semigroup is strongly continuous, we can let s→ 0 resulting in

1

t

(
etAx− x

)
=

1

t

∫ t

0
eτAAx dτ.

The right-hand side tends to Ax as t→ 0 by strong continuity; i.e., A ⊆ B. As
the spectra of A and B are contained in C−, Lemma 1.23 yields A = B. □
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Below we prove a converse to the above theorem and study further regularity
properties of etA, assuming that D(A) is dense for simplicity. There are variants
of the following results without the density of the domain, see Section 2.1 of
[18]. We first introduce a basic concept.

Definition 2.24. Let ζ ∈ (0, π/2]. An analytic C0-semigroup on Σζ is a
family of operators {T (z) | z ∈ Σζ ∪ {0}} such that

(a) T (0) = I and T (w)T (z) = T (w + z) for all z, w ∈ Σζ ;
(b) the map T : Σζ → B(X); z 7→ T (z), is (complex) differentiable;
(c) T (z)x→ x in X as z → 0 in Σζ′ for all x ∈ X and each ζ ′ ∈ (0, ζ).

The generator of T (·) is defined as the generator of the C0-semigroup (T (t))t≥0,
and the angle ψ ∈ (0, π/2] of T (·) is the supremum of possible ζ. If ∥T (z)∥ is
bounded for z ∈ Σζ′ and each ζ ′ ∈ (0, ζ), then T (·) is called bounded.

We now establish the fundamental characterization theorem of bounded an-
alytic C0-semigroups which goes back to Hille in 1948. Basically it says that a
densely defined operator A generates such a semigroup if and only if A is sec-
torial of angle greater than π/2. Moreover, it gives two useful characterizations
of sectoriality and describes the class of bounded analytic C0-semigroups in a
different, very convenient way. For n ∈ N with n ≥ 2 we inductively define the
powers of a linear operator A by

D(An) =
{
x ∈ D(An−1)

∣∣An−1x ∈ D(A)
}

and Anx = A(An−1x).

Theorem 2.25. Let A be a closed linear operator on X. Then the following
assertions are equivalent.

a) A is densely defined and sectorial of angle φ > π/2.

b) A is densely defined, C+ ⊆ ρ(A), and there is a constant C > 0 such that
∥R(λ,A)∥ ≤ C/|λ| for all λ ∈ C+.

c) For some ϑ ∈ (0, π/2), the maps e±iϑA generate bounded C0-semigroups.

d) A generates a bounded C0-semigroup (T (t))t≥0 such that T (t)X ⊆ D(A)
and ∥AT (t)∥ ≤M1/t for all t > 0 and a constant M1 > 0.

e) A generates a bounded analytic C0-semigroup with angle ψ ∈ (0, π/2].

If this is the case, T (t) is given by (2.17), and we have T (t)X ⊆ D(An),
∥AnT (t)∥ ≤ Mnt

−n, T (·) ∈ C∞(R+,B(X)), and dn

dtnT (t) = AnT (t) for all
t > 0, n ∈ N, and some constants Mn > 0.

Proof. We prove the chain of implications e) ⇒ c) ⇒ b) ⇒ a) ⇒ d) ⇒ e)
going from analyticity to sectoriality and back via claim d) using Theorem 2.23.

1) Let part e) be true. Take ϑ ∈ (0, ψ). The maps T (e±iϑt) for t ≥ 0 then yield
two bounded C0-semigroups T±ϑ with generators A±ϑ. Using Proposition 1.20,
the path S = {z = seiϑ|s ≥ 0} and Cauchy’s theorem (2.14), we obtain

R(1, A)x =

∫ ∞

0
e−tT (t)x dt =

∫
S
e−zT (z)x dz = eiϑ

∫ ∞

0
e−se

iϑ
Tϑ(s)x ds

= eiϑR(eiϑ, Aϑ)x = R(1, e−iϑAϑ)x

for x ∈ X, and hence Aϑ = eiϑA with domain D(A). Similarly, one treats −ϑ.
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2) We assume property c) and that the semigroups generated by e±iϑA are
bounded by M . Proposition 1.19 shows the density of D(A). Because of
Proposition 1.20 in [27] and Proposition 1.20, condition c) first yields that
ρ(A) = e∓iϑρ(e±iϑA) ⊇ e∓iϑC+ and hence ρ(A) ⊇ Σπ

2
+ϑ ⊇ C+. To check the

resolvent estimate in b), we write λ = reiα with r > 0 and 0 ≤ α < π
2 . Set

m = min{sinϑ, cosϑ}. It follows

∥R(λ,A)∥ = ∥e−iϑR(e−iϑλ, e−iϑA)∥ ≤ M

rRe ei(α−ϑ)
≤ M/m

|λ|
since cos(α−ϑ) ≥ cos(π2 −ϑ) = sinϑ if α ≥ ϑ and cos(α−ϑ) ≥ cosϑ otherwise.

The case α ∈ (−π/2, 0) can similarly be treated using eiϑA. Hence, b) is valid.

3) Let assertion b) be true. If a point is with s ∈ R \ {0} was contained
in σ(A), then ∥R(is + r,A)∥ would explode as r → 0+ by (1.8), contradicting
the assumption. This means that iR \ {0} ⊆ ρ(A), and we infer the bound
∥R(is,A)∥ ≤ C/|s| for s ∈ R \ {0} by continuity. Take q ∈ (0, 1) and λ = r+ is
with s ̸= 0 and |r| < q|s|/C. Set θ = arctan(q/C) > 0 and note that λ ∈ Σπ

2
+θ.

Remark 1.16 c) then shows that λ belongs to ρ(A) and the inequality

∥R(λ,A)∥ ≤ C/(1− q)

|s|
≤

C
(1−q) cos θ

|λ|
.

Combined with condition b), we obtain the sectoriality of A with angle φ > π/2.

4) The implication ‘a)⇒ d)’ was proven in Theorem 2.23 together with T (·) ∈
C1(R+,B(X)) and d

dtT (t) = AT (t) for t > 0, where T (t) is given by (2.17).

5) Let statement d) be valid. Let t > 0 and n ∈ N. Since AT (t) =
T (t− t/n)AT (t/n), we obtain that T (t)X ⊆ D(A2), and then T (t)X ⊆ D(An)
and AnT (t) = (AT ( tn))

n by iteration. Condition d) now implies the bound
∥AnT (t)∥ ≤ (M1n)

nt−n.

Observe that en =
∑∞

k=0
nk

k! ≥ nn

n! . Let q ∈ (0, 1). We take numbers z ∈ C+

with |z − t| < qt
eM1

for some t > 0. The power series

T (z) =
∞∑
n=0

(z − t)n

n!
AnT (t)

at t converges absolutely in B(X) and uniformly for the above z because of

∞∑
n=0

|z − t|n

n!

Mn
1 n

n

tn
≤

∞∑
n=0

( qt

eM1

)nMn
1 e

n

tn
=

1

1− q
.

This works for z ∈ Σζ(q) with ζ(q) := arctan q
eM1

since taking t = Re z for such

z one obtains |Im z| = |z− t| < qt
eM1

= Re(z) tan ζ(q). So we have extended T (·)
to a differentiable map T : Σζ(q) → B(X) bounded by 1/(1− q).

Let Φ ∈ B(X)∗. For fixed t ≥ 0, we note that the holomorphic functions
z 7→ ⟨T (z)T (t),Φ⟩ and z 7→ ⟨T (z + t),Φ⟩ coincide for z ∈ R+. Consequently,
they are the same for all z ∈ Σζ(q) thanks to the Identity Theorem 2.21 in
[25]. The Hahn–Banach theorem now yields that T (z)T (t) = T (z + t) for all
z ∈ Σζ(q). In the same way one can replace here t > 0 by any w ∈ Σζ(q).
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It remains to check the strong continuity as z → 0. Let z ∈ Σζ(q), x ∈ X,
and ε > 0. We fix h > 0 such that ∥T (h)x − x∥ < ε. Using the boundedness
and the continuity of T (·) on Σζ(q), we estimate

∥T (z)x− x∥ ≤ ∥T (z)∥ ∥x− T (h)x∥+ ∥T (z + h)x− T (h)x∥+ ∥T (h)x− x∥
≤ ε

1−q + ∥T (z + h)− T (h)∥ ∥x∥+ ε,

lim
z→0

∥T (z)x− x∥ ≤
(
1 + 1

1−q
)
ε.

As a result, T (z)x→ x as z → 0 in Σζ(q) and claim e) is proved with ψ ≥ ζ(1).

6) The first three assertions in the addenddum were shown in steps 4) and 5).
In step 4) we have also seen that T (·) ∈ C1(R+,B(X)) and d

dtT (t) = AT (t) for

t > 0. Writing An−1T (t) = T (t− δ)An−1T (δ) for some δ ∈ (0, t) and n ∈ N, an
induction yields that T (·) belongs to Cn(R+,B(X)) with dn

dtnT (t) = AnT (t). □

We collect additional information concerning the above theorem.

Remark 2.26. a) Let ω ∈ R and A be closed. By rescaling one sees that A
generates an analytic C0-semigroup (T (z))z∈Σζ∪{0} for some ζ > 0 such that

e−ωzT (z) is bounded on all smaller sectors if and only if A is densely defined
and A− ωI is sectorial of angle greater than π/2, cf. Section 2.1 in [18].

b) Let A be sectorial of angle φ > π
2 and z ∈ Σφ−π/2. Taking θ ∈ (π2 +

|arg z|, φ) for Γ, in (2.17) one can replace t > 0 by z obtaining an analytic
C0-semigroup on Σφ−π/2. See Proposition II.4.3 of [7] or Proposition 2.1.1 of
[18]. This means that in Theorem 2.25 the angle ψ of the semigroup is at least
φ − π

2 . On the other hand, a variant of step 2) in the above proof shows that
φ ≥ ψ + π

2 . We thus derive the equality φ = ψ + π
2 for the angles.

In a similar way, one can check that ψ is the supremum of all ϑ for which
statement c) of Theorem 2.25 is true.

c) In view of property a) or d) in Theorem 2.25, the translations T (t)f = f(·+
t) cannot be extended to an analytic C0-semigroup on C0(R), cf. Example 2.21.
The same is true for every C0-group T (t) with an unbounded generator since
T (t) : X → X then is a bijection. ♢

In the next result we combine Theorem 2.25 c) with the Lumer–Phillips The-
orem 1.39 to obtain a very convenient sufficient condition for the generation of
a bounded analytic C0-semigroup. In this case it is actually contractive on a
sector. We note that the corresponding angle can be smaller than the angle ψ
of analyticity, and that there exist bounded analytic C0-semigroups which are
contractive only on R+ or not even there. (There are examples on X = C2.)

Corollary 2.27. Let A be densely defined and dissipative. Assume that
there are numbers λ0 > 0 such that λ0I − A is surjective and ϑ ∈ (0, π/2)
such that also the operators e±iϑA are dissipative. Then A generates a bounded
analytic C0-semigroup T (·) of angle ψ ≥ ϑ with ∥T (z)∥ ≤ 1 for z ∈ Σϑ.

Proof. Theorem 1.39 implies that A is closed and C+ ⊆ ρ(A). The opera-
tors I − e±iϑA = e±iϑ(e∓iϑI −A) are thus surjective, and hence e±iϑA generate
contraction semigroups again by Theorem 1.39. The first assertion now follows
from Theorem 2.25 and Remark 2.26.
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To show contractivity, we take x ∈ D(A) and x∗ ∈ J(x). Set ξ = ⟨Ax, x∗⟩.
By dissipativity, the numbers e±iϑξ belong to C− and hence ξ to C \Σϑ+π/2. It
follows that Re(e±iαξ) ≤ 0 for all α ∈ [0, ϑ), and so also the operators e±iαA are
dissipative. As above we see that they generate contraction semigroups, which
are given by T (e±iαt) for t ≥ 0 due to step 1) in the proof of Theorem 2.25. □

We first apply Corollary 2.27 in a mildly improved version of Example 2.19.

Corollary 2.28. Let X be a Hilbert space and A be densely defined, self-
adjoint and dissipative; i.e., (Ax|x) ≤ 0 for x ∈ D(A) by Lemma 4.6 of [27]
and Example 1.30.8 Then σ(A) ⊆ R≤0 and A generates a contractive analytic
C0-semigroup of angle π

2 .

Proof. Let λ > 0 and x ∈ D(A). Dissipativity and Proposition 1.32 yield
the lower bound ∥λx − Ax∥ ≥ λ∥x∥. Since A is self-adjoint, this bound shows
that λ is an element of ρ(A) due to Theorem 4.7 d) of [27]. The spectrum of
A = A′ is real by the same theorem, and hence σ(A) is contained in R≤0.

For ϑ ∈ (0, π/2) the number (e±iϑAx|x) belongs to C− as (Ax|x) ≤ 0. The
operators e±iϑA are thus dissipative, too. Taking the supremum over ϑ < π/2,
the second assertion follows from Corollary 2.27. □

We next discuss prototypical generators of (contractive) analytic C0-semi-
groups starting with operators A on L2(G) given by strictly accretive forms as
in Theorem 1.51. The corollary can directly applied to Example 1.53, i.e.,
to elliptic operators in divergence-form with Dirichlet boundary conditions.
(Neumann boundary conditions can be treated in a similar way.)

Corollary 2.29. Let X and Y be Hilbert spaces with an embedding JY :
Y ↪→ X having dense range and norm κ. Assume that a : Y × Y → C is
sesquilinear, bounded, and strictly accretive with constants C, η > 0 as in The-
orem 1.50. Define A by (1.31) and (1.32). Then A generates an analytic C0-
semigroup which is contractive on the sector Σϑ for ϑ := arctan(η/C) ∈ (0, π2 ).

Proof. Theorem 1.51 says that A generates an ω-contraction semigroup
on X with ω = −ηκ−2. By Corollary 2.27 and Theorem 1.39, it remains to
check the dissipativity of e±iϑA. Let u ∈ D(A). Using (1.32), we compute

Re(e±iϑAu|u) = Re(u|e±iϑAu) = Re
(
u
∣∣A(e±iϑu)

)
= −Re

(
e∓iϑa(u, u)

)
= − cos(ϑ)Re a(u, u)∓ sin(ϑ) Im a(u, u).

The first summand in the last line is negative (for u ̸= 0). Concerning the
second one, the properties of the form imply the inequality

|Im a(u, u)| ≤ |a(u, u)| ≤ C∥u∥2Y ≤ Cη−1Re a(u, u).

Since sin(ϑ) = cos(ϑ) tan(ϑ) = ηC−1 cos(ϑ), we conclude

Re(e±iϑAu|u) ≤ (− cos(ϑ) + Cη−1 sin(ϑ))Re a(u, u) = 0. □

The Dirichlet–Laplacian ∆D on L2(G) is a special case of the above results
by Example 1.54. We now treat the space Lp(G) for p ∈ (1,∞) and p ̸= 2 with
considerably more effort in a direct way, assuming a bit more regularity of ∂G.

8One calls such operators non-positive (definite) and writes A = A′ ≤ 0.
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Example 2.30. Let p ∈ (1,∞) and A = ∆ for E = Lp(Rm) and D(A) =

W 2,p(Rm) or for E = Lp(G) and D(A) = W 2,p(G) ∩W 1,p
0 (G), assuming that

G ⊆ Rm is open and bounded with ∂G ∈ C2. Then A generates a bounded
analytic C0-semigroup on E which is contractive on Σκp for

κp =
π

2
− arctan

|p− 2|
2
√
p− 1

= arccot
|p− 2|
2
√
p− 1

∈
(
0,
π

2

]
.

Moreover, the graph norm of A and ∥·∥2,p are equivalent. In particular, for
p = 2 the semigroup has angle π/2. Here one can allow for open and bounded
G ⊆ Rm with ∂G ∈ C1− if one replaces A by ∆D from Example 1.54.

Proof. 1) Once we know that A is closed, the graph norm of A and ∥·∥2,p
are complete on D(A). As the latter norm is stronger, Corollary 4.29 in [24]
(to the open mapping theorem) implies their equivalence.
For p = 2 and ∆D the result follows from Corollary 2.28 since then A is

self-adjoint and dissipative by Examples 1.45 and 1.54. For the other cases we
use Corollary 2.27, also allowing for G = Rm. The domain D(A) is dense by
Proposition 4.13 in [24]. Theorem 9.15 in [9] for G ̸= Rm and Theorem 4.3.8
in [15] for G = Rm show that I − A is surjective.9 Below we check that the
operators A and e±iκpA are dissipative.

2) Let u ∈ D(A) \ {0}. We define u∗ = |u|p−2u, where we set u∗(x) = 0 if

u(x) = 0. Recall that ∥u∥2−pp u∗ ∈ J(u) by Example 1.30.
First, take p ≥ 2. Assume for a moment that u ∈ C1(G) so that u∗ ∈ C1(G).

(Here and below it is crucial that p ≥ 2.) Using u∗ = (uu)
p
2
−1u, we compute

∂ku
∗ = |u|p−2∂ku+ p−2

2 (uu)
p
2
−2(u∂ku+ u∂ku)u

= |u|p−4
(
uu∂ku+ (p− 2)uRe(u∂ku)

)
=: v.

for k ∈ {1, . . . ,m}. The function v is bounded in Lp
′
by c∥∂ku∥p∥u∥p−2

p due to

Hölder’s inequality with 1
p′ =

1
p +

p−2
p .

To treat the given map u ∈ D(A), we approximate it in W 1,p
0 (G) by un ∈

C∞
c (G) using Remark 1.41. Passing to a subsequence, we can assume that un

tends to u a.e. and that |un| ≤ g for a fixed function g ∈ Lp(G). Dominated

convergence then implies that |un|p−2 converges to |u|p−2 in Lp/(p−2)(G), and
analogously for the other factors without derivatives. Using Hölder again, we
can thus extend the above formula for ∂ku

∗ to u ∈ D(A) (actually to u ∈
W 1,p

0 (G)), showing that u∗ belongs to W 1,p′

0 (G). It follows

∂ku∂ku
∗ = |u|p−4

(
|u∂ku|2 + (p− 2)(Re(u∂ku))

2 + i(p− 2) Im(u∂ku)Re(u∂ku)
)

= |u|p−4
(
(p−1)(Re(u∂ku))

2 + (Im(u∂ku))
2 + i(p− 2) Im(u∂ku)Re(u∂ku)

)
.

Since u∗ ∈W 1,p′

0 (G), formula (1.22) then yields

⟨∆u, u∗⟩ = −
∫
G
∇u · ∇u∗ dx = −

∫
G
|u|p−4

(
(p− 1)|Re(u∇u)|2 + |Im(u∇u)|2)

9These results are based on harmonic analysis for G = Rm and p ̸= 2 (e.g., the so-called
Calderón–Zygmund theory) and also on PDE methods for bounded G.
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+ i(p− 2)|u|p−4 Im(u∇u) · Re(u∇u)
)
dx,

and A = ∆ is dissipative. The inequalities of Hölder and Young further imply

|Im⟨∆u, u∗⟩| ≤ |p− 2|
∫
G
|u|

p
2
−2|Re(u∇u)| |u|

p
2
−2|Im(u∇u)|dx

≤ |p− 2|
[√

p− 1

∫
G
|u|p−4 |Re(u∇u)|2 dx

] 1
2
[ 1√

p− 1

∫
G
|u|p−4 |Im(u∇u)|2 dx

] 1
2

≤ |p− 2|
√
p− 1

2

∫
G
|u|p−4 |Re(u∇u)|2 dx+

|p− 2|
2
√
p− 1

∫
G
|u|p−4 |Im(u∇u)|2 dx

= − |p− 2|
2
√
p− 1

Re⟨∆u, u∗⟩.

We set z = −⟨∆u, u∗⟩ ∈ C+. The above inequality shows that z = 0 if Re z = 0.
For Re z > 0, we derive the inequality

|arg z| = arctan
|Im z|
Re z

≤ arctan
|p− 2|
2
√
p− 1

=
π

2
− κp .

It follows |arg(e±iκpz)| ≤ π
2 and the dissipativity of the operators e±iκpA. Corol-

lary 2.27 thus implies the assertion for p ≥ 2.

3) Next, let p ∈ (1, 2).10 We have to approximate u ∈ D(A) \ {0} in W 2,p(G)
by more regular functions. IfG = Rm, we know from Remark 1.41 that C∞

c (Rm)
is dense in W 2,p(Rm). For bounded G, we look at f := u− Au ∈ Lp(G). Take
q ∈ (max{m, 2},∞). Proposition 4.13 of [24] yields functions fn ∈ C∞

c (G)
tending to f in Lp(G) as n → ∞. By step 2), the maps un = (I − A)−1fn
belong to W 2,q(G) ∩W 1,q

0 (G) for n ∈ N, and also to C1(G) due to Sobolev’s
embedding Theorem 3.31 in [27]. Lemma 9.17 of [9] shows that (un) converges
to u in W 2,p(G). We now drop the index n temporarily and assume that u is

contained in C∞
c (Rm), respectively in C1(G) ∩W 2,p(G) ∩W 1,p

0 (G).

To avoid singularities at zeros of u, we further replace u∗ by u◦ε = up−2
ε u

with uε :=
√
ε+ |u|2 ≥ max{|u|,

√
ε} for ε > 0. The function u◦ε belongs to

C∞
c (Rm), respectively to C1(G) ∩ C0(G). As in step 2), we first calculate

∂ku
◦
ε = up−4

ε

(
ε∂ku+ uu∂ku+ (p− 2)Re(u∂ku)u

)
,

∂ku ∂ku
◦
ε = up−4

ε

(
ε|∂ku|2 + (p− 1)(Re(u∂ku))

2 + (Im(u∂ku))
2

+ i(p− 2) Im(u∂ku)Re(u∂ku)
)
.

Arguing as above, we obtain the inequalities

−Re⟨∆u, u◦ε⟩ =
∫
G
up−4
ε

(
ε|∇u|2 + (p− 1)|Re(u∇u)|2 + |Im(u∇u)|2

)
dx

≥
∫
G
up−4
ε

(
(p− 1)|Re(u∇u)|2 + |Im(u∇u)|2

)
dx,

|Im⟨∆u, u◦ε⟩| ≤
|p− 2|
2
√
p− 1

∫
G
up−4
ε

(
(p− 1)|Re(u∇u)|2 + |Im(u∇u)|2

)
dx

10In the lectures this part of the proof was omitted.
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≤ − |p− 2|
2
√
p− 1

Re⟨∆u, u◦ε⟩,

Observe that |u◦ε| ≤ |u|p−1 ∈ Lp
′
(G) since p < 2 and that u◦ε converges pointwise

to u∗ as ε → 0, where u◦ε(x) = 0 = u∗(x) if u(x) = 0. So u◦ε tends to u∗ in

Lp
′
(G) by dominated convergence. It follows

|Im⟨∆u, u∗⟩| ≤ − |p− 2|
2
√
p− 1

Re⟨∆u, u∗⟩.

So far the maps u = un belong to C∞
c (Rm), respectively to C1(G)∩W 2,p(G)∩

W 1,p
0 (G), and converge to a given u in [D(A)]. Passing to a subsequence, (un)

tends to u pointwise a.e. and |un| ≤ h for some h ∈ Lp and all n ∈ N. We infer

that u∗n → u∗ a.e. and |u∗n| ≤ hp−1 ∈ Lp
′
. The functions u∗n thus converge to

u∗ in Lp
′
. Hence, the inequality in display is true for all u ∈ D(A). We now

proceed as for p ≥ 2 and conclude that e±iϑ∆ are dissipative for 0 ≤ ϑ ≤ κp.
The assertion for p < 2 then also follows from Corollary 2.27. □

For more general generation result we refer to [22], [28] and Chapter 3 of [18],
where the latter focusses on the sup-norm setting. The case p = 1 is treated
in [29]. These works make heavy use of results and methods from partial
differential equations. In Example 1.53 we studied certain elliptic operators
in divergence form on L2(G) in a self-contained way using functional analytic
methods, though without computing the domain explicitly. This approach can
be extended to more general operators and with more effort to Lp(G), see [21].

Inhomogeneous evolution equations. If A generates an analytic C0-
semigroup, we next show that also the inhomogeneous problem (2.5) exhibits
better regularity properties than in the general case. So the mild solution
just misses differentiability in X for continuous inhomogeneities f , and it is
differentiable if f possesses very little extra regularity.

Let x ∈ X, b > 0, f ∈ C([0, b], X) and A−ωI be densely defined and sectorial
of angle φ > π

2 for some ω ∈ R. We study the inhomogeneous evolution equation

u′(t) = Au(t) + f(t), t ∈ (0, b] =: J, u(0) = x. (2.19)

It has the mild solution

u(t) = T (t)x+

∫ t

0
T (t− s)f(s) ds =: T (t)x+ v(t), t ∈ [0, b], (2.20)

where A generates the analytic C0-semigroup T (·). By Definition 2.5, a solution
of (2.19) on J is a map u ∈ C(J,X) ∩ C1(J,X) with u(t) ∈ D(A) for all t ∈ J
which satisfies (2.19). We need the Hölder space Cα([a, b], X) with exponent
α ∈ (0, 1). It contains all functions u ∈ C([a, b], X) fulfilling

[u]α := sup
a≤s<t≤b

∥u(t)− u(s)∥
(t− s)α

<∞,

and it becomes a Banach space when endowed with the norm

∥u∥α := ∥u∥∞ + [u]α.
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For 0 < α < β < 1 we have the embeddings

C1([a, b], X) ↪→ Cβ([a, b], X) ↪→ Cα([a, b], X) ↪→ C([a, b], X). (2.21)

We now establish the results indicated above.

Theorem 2.31. Let x ∈ X, b > 0, f ∈ C([0, b], X), and A − ωI be densely
defined and sectorial of angle φ > π

2 for some ω ∈ R. Then the mild solution u
of (2.19) satisfies the following assertions.
a) We have u ∈ Cβ([ε, b], X) for all β ∈ (0, 1) and ε ∈ (0, b). If also x ∈ D(A),

we can even take ε = 0 here.
b) If f ∈ Cα([0, b], X) for some α ∈ (0, 1), then u solves (2.19) on (0, b]. If

also x ∈ D(A), then u solves (2.19) on [0, b].

Remark 2.32. For α = 0 and x = 0, Theorem 2.31 b) is wrong due to Ex-
ample 4.1.7 in [18]. One thus needs a bit of extra regularity of f . Much more
detailed and deeper information on the regularity of u can be found in Chapter 4
of [18], where also ‘spatial regularity’ is studied (and not only time regularity
as above), see also the exercises and Chapter 3 of [26]. ♢

Proof of Theorem 2.31. By Theorem 2.25 and Remark 2.26, the orbit
T (·)x solves (2.19) with f = 0 on R+ if x ∈ X and on R≥0 if x ∈ D(A). In
particular, T (·)x belongs to the space C1([ε, b], X) for all ε > 0 (and for ε = 0
if x ∈ D(A)). In view of (2.21), it thus remains to study the map v from (2.20).
Theorem 2.25 and Remark 2.26 yield constants cj = cj(b) with j ∈ {0, 1} such
that ∥T (t)∥ ≤ c0 and ∥tAT (t)∥ ≤ c1 for t ∈ (0, b].

To show assertion a), let 0 ≤ s < t ≤ b. We first note that ∥v∥∞ ≤ c0b∥f∥∞.
The increment of v is split into the terms

v(t)− v(s) =

∫ t

s
T (t− τ)f(τ) dτ +

∫ s

0
(T (t− τ)− T (s− τ))f(τ) dτ =: I1 + I2.

It follows

∥I1∥ ≤ c0(t− s) ∥f∥∞ ≤ c0b
1−β(t− s)β∥f∥∞.

For t > s > τ ≥ 0, we further compute

T (t− τ)− T (s− τ) = (T (t− s)− I)T (s− τ) =

∫ t−s

0
T (σ)AT (s− τ) dσ,

using that T (s − τ)X ⊆ D(A) by Theorem 2.25. This formula leads to the
inequality

∥T (t− τ)− T (s− τ)∥ ≤ c0c1(t− s)

(s− τ)
,

which is not good enough as the denominator is not integrable in τ < s. Since
it also gives more than the needed factor |t − s|β, we only apply the above
estimate to a fraction of the integrand in I2, obtaining

∥I2∥ ≤
∫ s

0
∥T (t− τ)− T (s− τ)∥β ∥T (t− τ)− T (s− τ)∥1−β ∥f(τ)∥ dτ

≤
∫ s

0
cβ0 c

β
1

(t− s)β

(s− τ)β
(2c0)

1−β dτ ∥f∥∞ ≤ 21−βc0c
β
1 b

1−β

1− β
∥f∥∞ (t− s)β.
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Hence, v belongs to Cβ([0, b], X) and there is a constant c = c(β, b, c0, c1) such
that ∥v∥Cβ ≤ c∥f∥∞. (Observe that c explodes as β → 1.)

We now treat part b). In view of Lemma 2.8 (with u0 = 0), it suffices to
show that v ∈ C([0, b], [D(A)]). Let t ∈ [0, b]. To use the Hölder continuity of
f , we insert in the Duhamel integral the constant vector f(t) and obtain

v(t) =

∫ t

0
T (t− s)(f(s)− f(t)) ds+

∫ t

0
T (τ)f(t) dτ =: v1(t) + v2(t),

substituting τ = t− s. As in Lemma 2.8, one checks the continuity of the maps
v1, v2 : [0, b] → X. By Lemmas 1.18 and 1.12, the function v2 takes values in
D(A) and t 7→ Av2(t) = T (t)f(t)− f(t) is continuous in X.
For 0 < ε < ε0 ≤ t ≤ b, Theorem 2.25 implies that the truncated integral

v1,ε(t) :=

∫ t−ε

0
T (t− s)(f(s)− f(t)) ds = T (ε)

∫ t−ε

0
T (t− ε− s)(f(s)− f(t)) ds

is an element of D(A) and that Av1,ε ∈ C([ε, b], X). Moreover, v1,ε(t) tends to
v1(t) as ε→ 0, and from AT (ε) ∈ B(X) we infer

Av1,ε(t) = AT (ε)

∫ t−ε

0
T (t−ε−s)(f(s)−f(t)) ds =

∫ t−ε

0
AT (t−s)(f(s)−f(t)) ds.

Next, let 0 < ε < η < ε0 ≤ t. It follows

Av1,ε(t)−Av1,η(t) =

∫ t−ε

t−η
AT (t− s)(f(s)− f(t)) ds.

From Theorem 2.25 we then deduce that

∥Av1,ε(t)−Av1,η(t)∥ ≤ c1

∫ t−ε

t−η
(t− s)−1(t− s)α[f ]α ds

=
c1
α
[f ]α(t− s)α

∣∣t−η
t−ε =

c1
α
[f ]α(η

α − εα).

Hence, Av1,ε converges in C([ε0, b], X) as ε → 0. Since A is closed, the vector
v1(t) is contained in D(A) and (Av1,ε)ε has the limit Av1 in C([ε0, b], X) for all
ε0 > 0, so that v1 belongs to C((0, b], [D(A)]). Finally, v1(0) = 0 ∈ D(A) and

∥Av1(t)∥ = lim
ε→0

∥Av1,ε(t)∥ ≤ lim
ε→0

∫ t−ε

0
c1(t− s)−1[f ]α(t− s)α ds ≤ c1

α
[f ]αt

α

tends to 0 as t→ 0. We conclude that Av ∈ C([0, b], X) as required. □

The following example is a straightforward consequence of our results.

Example 2.33. Let G ⊆ Rm be bounded and open with ∂G ∈ C1−, u0 ∈
E = L2(G), and f ∈ Cα([0, b], E) for some α ∈ (0, 1). Theorem 2.31 and
Example 2.30 then yield a unique solution u in C1((0, b], E)∩C((0, b], [D(∆D)])∩
C([0, b], E) of the inhomogeneous diffusion equation

u′(t) = ∆Du(t) + f(t), 0 < t ≤ b, u(0) = u0, (2.22)

where ∆D is the Dirichlet–Laplacian from Example 1.54 with D(∆D)⊆W 1,2
0 (G).

Let u0 and f be real-valued, in addition. In view of Example 1.54, then
also Reu solves (2.22) and thus u = Reu by uniqueness. We conclude that
T (·) leaves invariant the closed (real) subspace ER = L2(G,R) of E. As in an
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exercise one sees that T (·) induces a C0-semigroup on ER which is generated
by the restriction of ∆D to D(∆D)∩ER. Moreover, this semgroup satisfies the
assertions of Theorem 2.25 except for the extension to complex ‘times’ z ∈ Σζ .

Next, we also assume that ∂G ∈ C2 so that D(A) = W 2,2(G) ∩W 1,2
0 (G) as

noted in Example 2.30. Set f(t, x) = (f(t))(x) for all 0 < t ≤ b and almost every
x ∈ G, and analogously for u. Then we can interpret (2.22) more concretely as
the partial differential equation

∂tu(t, x) = ∆u(t, x) + f(t, x), t ∈ (0, b], x ∈ G,

u(t, x) = 0, t ∈ (0, b], x ∈ ∂G,

u(0, x) = u0(x), x ∈ G.

In general, here the first and third equality hold for a.e. x ∈ G and the second
one in the sense of trace. If m ≤ 3, then W 2,2(G) ↪→ C(G) by Sobolev’s
embedding Theorem 3.31 in [27], and thus the boundary condition is satisfied
pointwise. The solutions become more regular if we improve the regularity of
u0, f and ∂G, see Section 5 of [18]. ♢



CHAPTER 3

Perturbation and approximation

So far we have only looked at one given generator A. In this chapter we
add another operator to A or we approximate it. Both procedures are of great
importance both from a theoretical perspective and for applications.

3.1. Perturbation of generators

Let A generate a C0-semigroup T (·) and B be linear. We study the question
whether ‘A + B’ generates a C0-semigroup S(·), and then also whether S(·)
inherits properties of T (·). Positive results in this direction will allow us to
transfer our knowledge about A to larger classes of operators. In this setting
one faces two basic problems.
First, how one defines ‘A + B’ if D(A) ∩ D(B) is ‘small’ (e.g., equal to {0}

as in Example III.5.10 in [7])? In this section we only treat the basic case that
D(A) ⊆ D(B). We then put D(A+B) = D(A).
Second, if B with D(B) ⊇ D(A) is ‘too large’, it can happen that A + B

fails to be a generator. For instance, let A be a generator whose spectrum is
unbounded to the left (e.g., d/ds on C0(R≤0) with D(A) = C1

0 (R≤0) or ∆ on
L2(Rm) as in Example 1.27, resp. 1.45), and B = −(1+ δ)A for any δ > 0. The
sum A+B = −δA then has the spectral bound s(A+B) = ∞ and hence A+B
is not a generator by Proposition 1.20. Below we restrict ourselves to ‘small’
perturbations B employing the following important concept.

Definition 3.1. Let A and B be linear operators on X with D(A) ⊆ D(B).
Then B is called A-bounded (or relatively bounded) with constants a, b ≥ 0 if

∀ y ∈ D(A) : ∥By∥ ≤ a∥Ay∥+ b∥y∥. (3.1)

In this case we set D(A+B) = D(A) (unless something else is specified). The
A-bound of B is the infimum of the numbers a ≥ 0 for which (3.1) is valid with
some b = b(a) ≥ 0.

Observe that B is A-bounded if and only B belongs to B([D(A)], X). For later
use, we derive a quantitative version of this equivalence involving the resolvent.
Let A be closed with λ ∈ ρ(A) and B be linear with D(A) ⊆ D(B). First

assume that γ := ∥BR(λ,A)∥ is finite. Let y ∈ D(A). We compute

∥By∥ = ∥BR(λ,A)(λy −Ay)∥ ≤ γ∥Ay∥+ γ|λ| ∥y∥, (3.2)

which is (3.1) with a = γ. Conversely, let B be A-bounded and x ∈ X. Using
(3.1) and AR(λ,A) = λR(λ,A)− I, we see that BR(λ,A) ∈ B(X) estimating

∥BR(λ,A)x∥ ≤ a∥AR(λ,A)x∥+ b∥R(λ,A)x∥
≤
(
a|λ| ∥R(λ,A)∥+ a+ b∥R(λ,A)∥

)
∥x∥. (3.3)

73
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The next result says that B is A-bounded if it is of ‘lower order’, cf. the exercises.

Lemma 3.2. Let A and B be linear operators satisfying D(A) ⊆ D(B) and

∥By∥ ≤ c∥Ay∥α ∥y∥1−α

for all y ∈ D(A) and some constants c ≥ 0 and α ∈ [0, 1). Then the map B has
the A-bound 0. In the assumption one can replace ∥Ay∥ by ∥y∥A.

Proof. As the case α = 0 is clear, we let α ∈ (0, 1). Recall Young’s

inequality ab ≤ ap/p + bp
′
/p′ from Analysis 1, where a, b ≥ 0, p ∈ (1,∞) and

p′ = p
p−1 . Taking p =

1
α > 1 and p′ = 1

1−α , for y ∈ D(A) and ε > 0 we compute

∥By∥ ≤ ε∥Ay∥α cε−1∥y∥1−α ≤ αε
1
α ∥Ay∥+ c

1
1−α (1− α)ε−

1
1−α ∥y∥.

If one replaces ∥Ay∥ by ∥y∥A, one only obtains an extra summand αε
1
α ∥y∥. □

Our arguments are based on the next perturbation result for the resolvent.

Lemma 3.3. Let A be closed with λ ∈ ρ(A) and B be linear with D(A) ⊆ D(B)
and ∥BR(λ,A)∥ < 1. Then the sum A+B with D(A+B) = D(A) is closed, λ
is contained in ρ(A+B), and the resolvent satisfies

R(λ,A+B) = R(λ,A)

∞∑
n=0

(BR(λ,A))n = R(λ,A)(I −BR(λ,A))−1,

∥R(λ,A+B)∥ ≤ ∥R(λ,A)∥
1− ∥BR(λ,A)∥

.

Moreover, the graph norms of A and A+B on D(A) are equivalent.

Proof. In view of Theorem 1.27 in [27], we only have to show the last
assertion. Note that ∥(I − BR(λ,A))−1∥ ≤ 1/(1− q) with q = ∥BR(λ,A)∥ by
Proposition 4.24 in [24]. For y ∈ D(A) we estimate

∥y∥A = ∥y∥+ ∥AR(λ,A+B)(λI −A−B)y∥
= ∥y∥+ ∥AR(λ,A)(I −BR(λ,A))−1(λy − (A+B)y)∥
≤ ∥y∥+ (|λ| ∥R(λ,A)∥+ 1) 1

1−q (|λ| ∥y∥+ ∥(A+B)y∥) ≤ c∥y∥A+B
for a constant c > 0. The converse inequality is proven similarly. □

We start with the bounded perturbation theorem due to Phillips (1953) which
is the prototype for the results in this section. It characterizes the perturbed
semigroup S(·) in terms of an integral equation and describes it by a series
expansion, both only involving T (·) and B. These formulas allow us to transfer
certain properties from T (·) to S(·), see Example 3.6, the exercises or Sec-
tion III.1 in [7]. The proof is based on the Hille–Yosida Theorem 1.26, where
we use an equivalent norm to avoid the powers in the estimate (1.15).

Theorem 3.4. Let A generate a C0-semigroup T (·) satisfying ∥T (t)∥ ≤Meωt

for all t ≥ 0 and constants M ≥ 1 and ω ∈ R. Let B ∈ B(X). Then the sum
A+B with D(A+B) = D(A) generates the C0-semigroup S(·) which fulfills

∥S(t)∥ ≤Me(ω+M∥B∥)t, (3.4)
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S(t)x = T (t)x+

∫ t

0
T (t− s)BS(s)x ds, (3.5)

S(t)x = T (t)x+

∫ t

0
S(t− s)BT (s)x ds, (3.6)

S(t) =

∞∑
n=0

Sn(t), S0(t) := T (t), Sn+1(t)x :=

∫ t

0
T (t− s)BSn(s)x ds, (3.7)

for all t ≥ 0, x ∈ X, and n ∈ N0. The Dyson-Phillips series in (3.7) converges
in B(X) absolutely and uniformly on compact subsets of R≥0. The operator
family (S(t))t≥0 is the only strongly continuous family of operators solving (3.5).
The graph norms of A and A+B on D(A) are equivalent.

Proof. 1) Observe that A + B is densely defined. The operator A − ωI

generates the C0-semigroup T̃ (·) = (e−ωtT (t))t≥0 by Lemma 1.17. As in Re-
mark 1.25 we define the norm

9x9 = sups≥0 ∥e−ωsT (s)x∥

on X satisfying ∥x∥ ≤ 9x9 ≤ M∥x∥ for x ∈ X and for which T̃ (·) becomes
contractive. (We also denote the induced operator norm by triple bars.) For
x ∈ X, we estimate

9Bx9 ≤M∥Bx∥ ≤M∥B∥ ∥x∥ ≤M∥B∥ 9x9 .

Take λ > M∥B∥ ≥ 9B9. The Hille–Yosida estimate (1.17) thus implies the
inequality 9BR(λ,A− ωI)9 ≤ 9B9 /λ < 1. From Lemma 3.3 we then deduce
that λ belongs to ρ(A+B − ωI), the bound

9R(λ,A+B − ωI)9 ≤ λ−1

1− λ−1 9B9
=

1

λ− 9B9
,

and the equivalence of the graph norms. The Hille–Yosida Theorem 1.26 now
shows that A+B−ωI generates a C0-semigroup S̃(·) on (X,9·9) with 9S̃(t)9 ≤
e9B9t ≤ eM∥B∥t for all t ≥ 0. Finally, by Lemma 1.17 the sum A+B generates
the semigroup given by S(t) = eωtS̃(t) fulfilling

∥S(t)x∥ ≤ 9S(t)x9 ≤ eωteM∥B∥t 9 x9 ≤Me(ω+M∥B∥)t∥x∥

for all t ≥ 0 and x ∈ X, as asserted.

2) We next prove (3.5), (3.6) and uniqueness, treating BS(·)x or −BT (·)x as
inhomogeneities. For x ∈ D(A), the function u = S(·)x solves the problem

u′(t) = (A+B)u(t) = Au(t) + f(t), t ≥ 0, u(0) = x,

where f := BS(·)x : R≥0 → X is continuous. Proposition 2.6 then shows that
u is given by

S(t)x = u(t) = T (t)x+

∫ t

0
T (t− s)f(s) ds = T (t)x+

∫ t

0
T (t− s)BS(s)x ds

for t ≥ 0. We derive (3.5) for all x ∈ X by approximation since D(A) is dense
in X and all operators (in particular B) are bounded uniformly in s ∈ [0, t].
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To show (3.6), we perturb A+B by −B ∈ B(X). Indeed, v = T (·)x satisfies

v′(t) = (A+B)v(t)−Bv(t), t ≥ 0, v(0) = x ∈ D(A),

and we can proceed as for (3.5).
Let U(·) be another strongly continuous solution of (3.5). For x ∈ X, t ≥ 0,

t0 > 0 and t ∈ [0, t0], we estimate

∥S(t)x− U(t)x∥ =
∥∥∥∫ t

0
T (t− s)B

(
S(s)x− U(s)x

)
ds
∥∥∥

≤Meω+t0∥B∥
∫ t

0
∥S(s)x− U(s)x∥ds.

Gronwall’s inequality from Lemma 4.5 in [25] then yields that S(t)x−U(t)x = 0,
and hence U(·) = S(·).
3) Let t ≥ 0 and x ∈ X. Concerning (3.7), we note that S1(·) is strongly

continuous and satisfies

∥S1(t)x∥ ≤
∫ t

0
Meω(t−s)∥B∥Meωs∥x∥ ds =M2teωt∥B∥∥x∥.

Inductively one further deduces the strong continuity of Sn(·) and the inequality

∥Sn(t)∥ ≤ Mn+1∥B∥n

n!
tneωt

for all n ∈ N. By the majorant criterion the series in (3.7) thus converges
in B(X) to some R(t) uniformly on compact subsets of R≥0. Hence, R(·) is
strongly continuous and fulfills∫ t

0
T (t− s)BR(s)x ds =

∞∑
n=0

∫ t

0
T (t− s)BSn(s)x ds =

∞∑
n=0

Sn+1(t)x =

∞∑
j=1

Sj(t)x

= R(t)x− T (t)x.

The uniqueness of (3.5) finally implies R(t) = S(t). □

Using also −A, we extend the above result to the group case.

Corollary 3.5. Let A generate the C0-group T (·) satisfying ∥T (t)∥ ≤Meω|t|

for all t ∈ R and constants M ≥ 1 and ω ≥ 0. Let B ∈ B(X). Then the
sum A + B with D(A + B) = D(A) generates the C0-group S(·) which fulfills

∥S(t)∥ ≤Me(ω+M∥B∥)|t| and (3.5)–(3.7) for all t ∈ R.

Proof. Theorem 1.29 says that ±A are generators of C0-semigroups with
∥T±(t)∥ ≤ Meωt for t ≥ 0. From Theorem 3.4 we then infer that A + B

and −(A+B) generate C0-semigroups S±(·) with ∥S±(t)∥ ≤Me(ω+M∥B∥)t. By
Theorem 1.29, the sum A+B is a generator of a C0-group S(·) with the asserted
bound. Formulas (3.5)–(3.7) for t ∈ R are shown as in the previous proof. □

If a model involves the mass density of a substance, it is natural to require
that a non-negative initial function leads to a non-negative solution. We will
come back to this issue at the end the chapter. Here we first show such behavior
is inherited under suitable perturbations.
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Example 3.6. Let E = C0(U) or E = Lp(µ) for an open set U ⊆ Rm,
respectively for a measure space (S,A, µ) and 1 ≤ p < ∞. We set E+ =
{f ∈ E | f ≥ 0}. Let T (·) be a C0-semigroup on E with generator A such that
T (t)f ≥ 0 for all f ∈ E+ and t ≥ 0. We call such operators or semigroups
positive.1 We look at two classes of perturbations.

a) Let also B ∈ B(E) be positive. Take f ∈ E+. The function T (t−s)BT (s)f
is then non-negative for each s ∈ [0, t]. Since E+ is closed in E, we infer that
S1(t)f ≥ 0 and, by induction, that all terms Sn(t)f in the Dyson-Phillips series
(3.7) belong to E+. So the semigroup S(·) generated by A+B is positive and
satisfies S(t) ≥ T (t) = S0(t); i.e., S(t)f ≥ T (t)f for all f ∈ E+.

b) Let Bf = bf for a map b ∈ Cb(U,R) if E = C0(U), resp. b ∈ L∞(µ,R)
if E = Lp(µ). For all f ∈E+ we have (B + ∥b−∥∞I)f ≥ b+f ≥ 0; i.e., B0 :=
B + ∥b−∥∞I is positive. By part a), A + B0 is the generator of a positive C0-

semigroup S̃(·) ≥ T (·) and so A+B = A+B0−∥b−∥∞I generates the positive

C0-semigroup S(·) given by S(t) = e−∥b−∥∞tS̃(t) ≥ e−∥b−∥∞tT (t) for t ≥ 0.
As a simple example, we take U = S = R, µ = λ, and A = d

ds with D(A) =

C1
0 (R) if E = C0(U), resp. D(A) =W 1,p(R) if E = Lp(µ). Because A generates

the positive translation semigroup on E, the operator Cu = u′+bu with D(C) =
D(A) also generates a positive C0-semigroup. ♢

We next use Corollary 3.5 to treat a damped or excited wave equation.

Example 3.7. Let G ⊆ Rm be bounded and open with a C1−-boundary and
∆D be the Dirichlet–Laplacian on L2(G) given by Example 1.54. We set E =

Y × L2(G), where Y = W 1,2
0 (G) is endowed with the norm ∥v∥Y = ∥|∇v|2∥2.

As in Example 1.55 we define the operator

A =
(

0 I
∆D 0

)
with D(A) = D(∆D)× Y

on E. It is skew-adjoint and thus generates a unitary C0-group T (·). We further
let b ∈ L∞(G,R) and introduce the bounded operator B =

(
0 0
0 b

)
on X.

1) By Corollary 3.5, the sum A + B with domain D(A) generates the C0-

group S(·) on E bounded by e∥b∥∞|t|. Let w0 = (u0, u1) ∈ D(A). Following
Example 2.4, we can show that (u, u′) = S(·)w0 yields the unique solution u in
C2(R≥0, L

2(G))∩C1(R≥0, Y )∩C(R≥0, [D(∆D)]) of the perturbed wave equation

u′′(t) = ∆Du(t) + bu′(t), t ≥ 0, u(0) = u0, u′(0) = u1. (3.8)

We look at the energy e(t) = 1
2

∫
G(|∂tu(t)|

2 + |∇u(t)|22) dx = 1
2∥S(t)w0∥2E for

t ≥ 0. As in Analysis 2 one defines derivatives in Banach spaces and shows their
basic properties as the chain rule, see [1]. In particular, the map Φ(x) = ∥x∥2
on a Hilbert space X has the derivative given by [Φ′(x)](y) = 2Re(y|x) for
x, y ∈ X. Using also the definition of ∆D and (3.8), we obtain the derivative

e′(τ) = Re

∫
G

(
∂2t u(τ)∂tu(τ) +∇∂tu(τ) · ∇u(τ)

)
dx

= Re

∫
G

(
∂2t u(τ)−∆Du(τ)

)
∂tu(τ) dx =

∫
G
b|∂tu(τ)|2 dx

1We note that these concepts do not fit to our usual notation such as R+ = (0,∞) for
the set of positive real numbers. A function f ≥ 0 is still called non-negative.
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for τ ≥ 0. (Note that Re z = Re z. The above calculation simplifies a bit if
F = R.) Integration in time now yields the energy equality

e(t) = e(0) +

∫ t

0

∫
G
b(x)|∂tu(τ, x)|2 dx dτ, t ≥ 0. (3.9)

The term bu′ thus acts as a damping if b ≤ 0, and as an excitation if b ≥ 0.

2) As in Example 2.17 we want to admit data w0 ∈ E. To determine the extra-

polation space EA+B−1 for A+B, we fix λ > 3∥b∥∞ and take w ∈ E. Lemma 3.3

then yields the bound ∥R(λ,A+B)w∥E ≤ 3
2∥R(λ,A)w∥E since ∥BR(λ,A)∥ ≤

λ−1∥b∥∞. Conversely, from (3.4) and the Hille–Yosida estimate (1.17) we infer
∥BR(λ,A+B)∥ ≤ ∥b∥∞/(λ−∥b∥∞) ≤ 1

2 . Writing R(λ,A) = R(λ,A+B−B),
Lemma 3.3 then leads to the ineqality ∥R(λ,A)w∥E ≤ 2∥R(λ,A + B)w∥E .
These expressions thus define equivalent norms on E, which are also equivalent
to w 7→ ∥A−1w∥E by (2.10). From Example 2.17 we now infer that EA+B−1 is

isomorphic to F = L2(G)×W−1,2(G) ∼= EA−1, where the isomorphisms extend
the identity on E. Moreover, by approximation we obtain

(A+B)−1 =
( 0 I
∆̃D b

)
: E −→ F ∼= EA+B−1

for the extension ∆̃D : Y →W−1,2(G) from Example 1.54.
Let w0 ∈ E. As in Example 2.4 and Example 2.17, we obtain a unique solu-

tion u of (3.8) with ∆̃D in C2(R≥0,W
−1,2(G)) ∩ C1(R≥0, L

2(G)) ∩ C(R≥0, Y ).
Since S(t) is uniformly bounded on E, we can extend (3.9) to (u(t), u′(t)) =
S(t)w0. In particular, S(·) is contractive if b ≤ 0. ♢

We now turn our attention to unbounded perturbations B of a generator A.
As noted above, we should impose a smallness assumption on B. We restrict
ourselves to two very useful theorems for contraction and analytic semigroups,
employing the simpler characterizations of the generation properties available
here.2 We start with the dissipative perturbation theorem.

Theorem 3.8. Let A generate the contraction semigroup T (·) and B be dis-
sipative. Assume that B is A-bounded with constant a < 1 in (3.1). Then
A + B with D(A + B) = D(A) generates a contraction semigroup S(·) which
also satisfies formulas (3.5) and (3.6) for all x ∈ D(A). The graph norms of A
and A+B on D(A) are equivalent.

Proof. 1) Observe that A + B is densely defined and that we have
Re⟨Ax, x∗⟩ ≤ 0 for all x ∈ D(A) and x∗ ∈ J(x) due to Proposition 1.32. Since
B is dissipative, for each x ∈ D(A) there is a functional y∗ ∈ J(x) satisfying
Re⟨Bx, y∗⟩ ≤ 0. Hence, Re⟨Ax + Bx, y∗⟩ ≤ 0 and A + B is dissipative. The
assumption provides constants a ∈ [0, 1) and b ≥ 0 with ∥Bx∥ ≤ a∥Ax∥+ b∥x∥
for all x ∈ D(A). First, assume that a < 1

2 . Fix λ0 >
b

1−2a ≥ 0. Inequality

(3.3) and the Hille–Yosida estimate (1.17) then yield

∥BR(λ0, A)∥ ≤ aλ0∥R(λ0, A)∥+ a+ b∥R(λ0, A)∥ ≤ a+ a+ bλ−1
0 < 1.

2In Section III.3 of [7] one can find results for general generators A based on the fixed
point equation (3.5) for S(·).
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Lemma 3.3 now implies that A + B is closed, its graph norm is equivalent to
∥·∥A, and λ0 belongs to ρ(A+B). The sum A+B thus generates a contraction
semigroup by the Lumer–Phillips Theorem 1.39.

2) Let a ∈ [12 , 1). We take k ∈ N with k > 2a
1−a . Then 1

kB is dissipative

and A-bounded with a constant a′ := a
k < 1−a

2 < 1
2 . By step 1), the sum

C1 := A+ 1
kB generates a contraction semigroup and fulfills ∥·∥A ≂ ∥·∥C1 . We

inductively assume that Cj := A+ j
kB is a generator of a contraction semigroup

and that ∥·∥A ≂ ∥·∥Cj for some j ∈ {1, . . . , k − 1}. It follows

∥By∥ ≤ a∥Ay∥+ b∥y∥ ≤ a∥Cjy∥+
aj

k
∥By∥+ b∥y∥,

(1− a)∥By∥ ≤
(
1− aj

k

)
∥By∥ ≤ a∥Cjy∥+ b∥y∥,∥∥ 1

kBy
∥∥ ≤ a

k(1− a)
∥Cjy∥+

b

k(1− a)
∥y∥

for all y ∈ D(A). Since ã := a
k(1−a) < 1

2 , step 1) shows that the operator

Cj +
1
kB = Cj+1 generates a contraction semigroup and that its graph norm is

equivalent to ∥·∥Cj , and thus to ∥·∥A by the induction hypothesis. By iteration,
Ck = A+B is a generator of a contraction semigroup and ∥·∥A ≂ ∥·∥A+B.

The last assertion can be shown as in Theorem 3.4, using that ±B ∈
B([D(A)], X). But note that it is not clear that (3.5) and (3.6) hold for all
x ∈ X by approximation since B may be unbounded. □

The above iteration scheme relies on the fact that the perturbed operators
Cj are all dissipative and thus have the same constant 1 in the Hille–Yosida
estimate. If X is reflexive and one has a = 1 in the above theorem, the closure
of A+B generates a contraction semigroup by Corollary III.2.9 in [7].
We now use Theorem 3.8 to solve the Schrödinger equation for the Coulomb

potential, see also Example 4.23 in [27].

Example 3.9. Let E = L2(R3) with F = C and A = i∆ with D(A) =
W 2,2(R3). Example 1.45 implies that A is skew-adjoint, and so it generates
a unitary C0-group T (·) by Stone’s Theorem 1.44. We further set Bv(x) =
ib|x|−1

2 v(x) =: −iV (x)v(x) for some b ∈ R, where V (0) := 0.
Sobolev’s Theorem 3.31 in [27] yields the embedding W 2,2(R3) ↪→ C0(R3).

Let ε > 0 and v ∈W 2,2(R3). Using also polar coordinates, we then estimate

∥Bv∥22 = b2
∫
B(0,ε)

|v(x)|2

|x|22
dx+ b2

∫
R3\B(0,ε)

|v(x)|2

|x|22
dx

≤ 4πb2
∫ ε

0

∥v∥2∞
r2

r2 dr +
b2

ε2

∫
R3\B(0,ε)

|v(x)|2 dx

≤ 4πb2CSobε∥v∥22,2 + b2ε−2∥v∥22.
Since the graph norm of A is equivalent to ∥·∥2,2 by Example 1.45, we conclude
that B has the A-bound 0. Further, ±B is dissipative since

Re(±Bv|v) = ±Re
(
ib

∫
R3

|v(x)|2

|x|22
dx
)
= 0.
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Theorem 3.8 thus says that A+B and −(A+B) generate a contraction semi-
group. From Corollary 1.43 we infer that A + B is the generator of the iso-
metric group S(·), which is unitary by Proposition 5.52 of [24]. The function
u = S(·)u0 then solves the Schrödinger equation

u′(t) = i∆u(t) + ib|x|−2
2 u(t), t ∈ R, ( ⇐⇒ iu′(t) = −(∆− V )u(t), )

u(0) = u0.

Let ∥u0∥2 = 1 so that ∥u(t)∥2 = 1 by unitarity. For a suitable constant b > 0
and appropriate units, the integral

∫
G |u(t, x)|2 dx is the probability that the

electron in the hydrogen atom stays in the (Borel) set G ⊆ R3 at time t ∈ R.♢
We show the core sectorial perturbation theorem. Here the perturbed operator

keeps the angle ϕ in the sectoriality estimate, but has an increased shift ω.

Theorem 3.10. Let F = C and A be closed. Assume there are constants
ω ≥ 0, K > 0, and ϕ ∈ (0, π) such that ω +Σϕ ⊆ ρ(A) and

∀λ ∈ Σϕ : ∥R(λ+ ω,A)∥ ≤ K
|λ| .

Let B be A-bounded with constant a ∈
[
0, 1

K+1

)
in (3.1). Then there is a number

ω′ ≥ ω such that A+B−ω′I is sectorial of type (K ′, ϕ) for some K ′ > K, and
we have [D(A+B)] = [D(A)] with equivalent norms.
Let ϕ > π/2 and D(A) be dense. Then the sum A+B generates an analytic

C0-semigroup, which also satisfies formulas (3.5) and (3.6) for all x ∈ D(A).

Proof. Let a, b ≥ 0 as in (3.1). Fix q ∈ (a(K + 1), 1) and set r =
K(aω+b)
q−a(K+1) ≥ 0. Take λ ∈ Σϕ \ B(0, r) with B(0, 0) := ∅ and x ∈ X. (Note

that b = 0 = aω if r = 0.) Using (3.1), the assumption and |λ| ≥ r, we estimate

∥BR(λ,A− ωI)x∥ ≤ a∥AR(λ+ ω,A)x∥+ b∥R(λ+ ω,A)x∥

≤ a∥(λ+ ω)R(λ+ ω,A)x∥+ a∥x∥+ bK

|λ|
∥x∥

≤ a
(K(|λ|+ ω)

|λ|
+ 1
)
∥x∥+ bK

|λ|
∥x∥

≤ a(K + 1)∥x∥+ (q − a(K + 1))∥x∥ = q∥x∥.
Lemma 3.3 thus implies that λ ∈ ρ(A+B − ωI), ∥·∥A+B ≂ ∥·∥A, and

∥R(λ,A+B − ωI)∥ ≤ ∥R(λ+ ω,A)∥
1− q

≤ K/(1− q)

|λ|
for all λ ∈ Σϕ \B(0, r). To deal with λ ∈ B(0, r), we shift Σϕ by γ = r if ϕ ≤ π

2
and by γ = r/ sinϕ > r if ϕ > π

2 . Because of the inclusion γ+Σϕ ⊆ Σϕ\B(0, r),
the above estimate in display yields the inequality

∥R(µ,A+B − (ω + γ)I)∥ = ∥R(µ+ γ,A+B − ωI)∥ ≤ K/(1− q)

|µ+ γ|
≤ K ′

|µ|
for all µ ∈ Σϕ, with K

′ = K
1−q if ϕ ≤ π/2 and K ′ = K

(1−q) sinϕ if ϕ > π/2. Here

we use that |1+γµ−1| is larger than the distance between −1 and Σϕ which is 1,
resp. sinϕ. Setting ω′ = γ + ω, we arrive at the first assertion. The second one
follows from Theorem 2.25 and Remark 2.26, and the proof of Theorem 3.4. □
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The following example contains several important techniques which often
occur in applications to partial differential equations. It says that first-order
perturbations B have ∆D-bound 0 if the coefficients are not too bad.

Example 3.11. Let G ⊆ Rm be bounded and open with a C2-boundary,
p ∈ (1,∞), E = Lp(G) with F = C, A = ∆ with D(A) = W 2,p(G) ∩W 1,p

0 (G).
By Example 2.30, the operator A is sectorial with angle φ > π

2 and its graph
norm is equivalent to ∥·∥2,p. Theorem 3.31 of [27] yields the Sobolev embedding
W 2,p(G) ↪→W 1,q1(G) ∩ Lq0(G) where qk ∈ (p,∞) is arbitrary if p = m

2−k and

qk :=

{
∞, p > m

2−k ,
mp

m−(2−k)p , p < m
2−k ,

for k ∈ {0, 1}. (One has W 2,p(G) ↪→ W k,q(G) if q > p, 2 − m
p /∈ Z, and

2 − m
p ≥ k − m

q .) Note that qk > p. We choose a number θ ∈ (0, 1) close to 1

and introduce the exponents q̃k ∈ (p, qk) and rk ∈ (p,∞) by

1

q̃k
=

1− θ

p
+

θ

qk
and

1

rk
=

1

p
− 1

q̃k
.

Let v ∈ D(A). (Actually v ∈ W 2,p(G) is enough.) For given coefficients
b ∈ Lr1(G)m and b0 ∈ Lr0(G), the operator B is defined by

Bv = b · ∇v + b0v = b0v +
∑m

j=1
bj∂jv.

Using the above definitions and Hölder’s inequality, to show (3.1) we compute

∥Bv∥p ≤ ∥|b|r1∥r1∥|∇v|q̃1∥q̃1 + ∥b0∥r0∥v∥q̃0
≤ ∥b∥r1∥v∥1−θ1,p ∥v∥θ1,q1 + ∥b0∥r0∥v∥1−θp ∥v∥θq0 .

Proposition 3.37 of [27] yields constants c, ε0 > 0 such that

∥v∥1,p ≤ ε∥v∥2,p + cε−1∥v∥p
for all ε ∈ (0, ε0]. Further, note that (a + b)1−θ ≤ a1−θ + b1−θ for a, b ≥ 0.
Sobolev’s embedding, the equivalence of ∥·∥A and ∥·∥2,p, and the elementary
Young inequality then imply

∥Bv∥p ≤ c(b)
(
ε1−θ∥v∥1−θ2,p ∥v∥θ2,p + ε−1∥v∥1−θp εθ∥v∥θ2,p + ε−1∥v∥1−θp ε∥v∥θ2,p

)
≤ ĉ(b)

(
ε1−θ∥v∥A + 2(1− θ)ε

−1
1−θ ∥v∥p + θε∥v∥A + θε

1
θ ∥v∥A

)
for constants c(b), ĉ(b) > 0 depending on ∥b∥r1 and ∥b0∥r0 , but not on ε. The
operator B : D(A) → Lp(G) thus has A-bound 0. By Theorem 3.10, the sum
A+B with D(A) then generates an analytic C0-semigroup on Lp(G). ♢

3.2. The Trotter–Kato theorems

In applications one often knows the parameters in a problem only approxi-
mately since they rely on measurements. As in the case of inital values one can
then argue that the solution should depend continuously on the parameters. In
other words, let An and A generate C0-semigroups Tn(·) and T (·) for n ∈ N, and
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assume that ‘An → A’ as n→ ∞ in some sense. Do we obtain ‘Tn(t) → T (t)’?
Moreover, can we omit (or modify) the assumption that A is a generator?
These questions also occur if one wants to regularize a problem in order to

‘legalize’ certain calculations, and also in numerical analysis where the operators
An are matrices on subspaces of finite dimensions mn → ∞ (if dimX = ∞).
In the easiest case one has D(An) = D(A) and each difference An−A posesses

a bounded extension Bn tending to 0 in operator norm as n→ ∞. (For instance,
take Anu = (∆D + Vn)u in L2(G) with Vn → V in L∞(G) and A = ∆D + V .)
We then have c := supn∈N ∥Bn∥ <∞ and ∥T (t)∥ ≤Meωt for all t ≥ 0 and some
M ≥ 1 and ω ∈ R. The perturbation formula (3.5) and estimate (3.4) yield

∥Tn(t)x− T (t)x∥ =
∥∥∥∫ t

0
T (t− s)BnTn(s)x ds

∥∥∥
≤M2∥Bn∥

∫ t

0
eω(t−s)e(ω+cM)s∥x∥ds ≤ c(t0)∥Bn∥ ∥x∥

for all x ∈ X, t ∈ [0, t0], t0 > 0, and a constant depending on t0. This means
that Tn(t) tends to T (t) in B(X) locally uniformly in t if ∥An−A∥ → 0, n→ ∞.

We give a typical example for which the question cannot be settled just by
the bounded perturbation Theorem 3.4.

Example 3.12. Let G ⊆ Rm be open and bounded with a C1−-boundary,
E = L2(G) with F = C, ∆D be the Dirichlet–Laplacian in E from Example 1.54,
and n ∈ N0. Recall that ∆D is invertible and generates a contraction semigroup
on E. Let an ∈ L∞(G) satisfy 1

δ ≥ an(x) ≥ δ > 0 and an(x) → a0(x) as n→ ∞
for a.e. x ∈ G and a constant δ.
We define An = an∆D on the dense domain D(An) = D(∆D). To treat the

multiplicative perturbation An of ∆D, we use the weighted scalar products

(f |g)n =

∫
G

1

an
fg dx

for f, g ∈ E. The induced norm satisfies δ∥f∥2L2 ≤ ∥f∥2n ≤ δ−1∥f∥2L2 . Let
v ∈ D(∆D). We compute

Re(Anv|v)n = Re

∫
G

an
an

∆Dv v dx = Re(∆Dv|v)L2 ≤ 0,

so that An is dissipative with respect to ∥·∥n. The same arguments works for
the operators e±iϑAn and all ϑ ∈ (0, π2 ], based on the proof of Corollary 2.28.
To check the range condition, take f ∈ E. Since an∆Dv = f is equivalent to

v = ∆−1
D (a−1

n f), the operator An is invertible in E and hence in (E, ∥·∥n). As
ρ(An) is open, also λ0I − An is invertible for small λ0 > 0. By Corollary 2.27,
each An thus generates an analytic C0-semigroup Tn(·) which is contractive for
z ∈ C+ with respect to ∥·∥n. For z ∈ C+, f ∈ E and n ∈ N0, we then obtain
the uniform bound

∥Tn(z)f∥L2 ≤ δ−1/2∥Tn(z)f∥n ≤ δ−1/2∥f∥n ≤ δ−1∥f∥L2 .

Observe that Anv tends to A0v pointwise a.e. as n → ∞ and moreover
|Anv| ≤ δ−1|∆Dv|. Dominated convergence then yields the limit Anv → A0v
in E for each v ∈ D(∆D). Does Tn(T ) tends to T0(t) strongly? ♢
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The next example indicates that one needs a uniform bound on the semi-
groups Tn(·) to obtain a general result.

Example 3.13. Let X = ℓ2 with F = C, n ∈ N, A((xk)k) = (ikxk)k
with D(A) = {x ∈ ℓ2 | (kxk)k ∈ ℓ2} and An((xk)k) = (ikxk + δk,nkxk)k with
D(An) = D(A) for the Kronecker delta δk,n. As in the exercises, one sees that
the multiplication operators A and An generate the C0-semigroup on X given
by T (t)x = (eiktxk)k and Tn(t)x = (eiktekδk,ntxk)k, respectively. For x ∈ D(A)
the distance ∥Anx − Ax∥2 = |nxn| = |(Ax)n| tends to 0 as n → ∞; i.e.; An
converges on the common domain strongly to A. On the other hand, we have

∥Tn(t)∥ ≥ ∥Tn(t)en∥2 = |eintent| = ent −→ ∞

as n → ∞ for each t > 0. So Tn(t) cannot converge strongly, since strong
convergence would imply uniform boundedness of {Tn(t) |n ∈ N}. ♢

The first Trotter–Kato theorem from 1958/59 shows that the convergence
of resolvents and semigroups are equivalent and that these properties follow
from the convergence of the generators, provided that the C0-semigroups Tn(·)
are exponentially bounded uniformly in n. The implications b)⇔ c)⇐d) are
proven by arguments typical for the theory.

Theorem 3.14. Let An and A generate C0-semigroups Tn(·) and T (·), re-
spectively, which satisfy ∥Tn(t)∥, ∥T (t)∥ ≤Meωt for all t ≥ 0 and n ∈ N, as well
as some M ≥ 1 and ω ∈ R. Let D be a core of D(A). Then the implications
a)⇒ b)⇔ c)⇔ d) hold among the following claims, with limits as n→ ∞ in X.

a) For each n ∈ N we have D ⊆ D(An), and Any → Ay for all y ∈ D.

b) For all y∈D and n∈N there are yn∈D(An) with yn → y and Anyn → Ay.

c) For some λ ∈ Fω we have R(λ,An)x→ R(λ,A)x for all x ∈ X.

d) For each t ≥ 0 we have Tn(t)x→ T (t)x for all x ∈ X.

If c) or d) are true, then c) is valid for all λ ∈ Fω = ω+ F+ and the limit in
d) is uniform on all compact subsets of R≥0.

Proof. The implication from a) to b) is trivial (take yn = y). Let state-
ment b) be true. Pick any λ ∈ Fω. Since λI − A : [D(A)] → X is an isomor-
phism, the set (λI −A)D is dense in X. The Hille–Yosida estimate (1.15) and
the assumption yield the uniform bound ∥R(λ,An)∥ ≤ M

Reλ−ω for all n ∈ N. By
Lemma 4.10 of [24] we thus have to show property c) only for all x = λy −Ay
with y ∈ D. Let y ∈ D. Due to condition b), there are vectors yn ∈ D(An)
such that yn → y and Anyn → Ay in X as n→ ∞. These limits imply

xn := λyn −Anyn −→ x = λy −Ay.

Estimating

∥R(λ,An)x−R(λ,A)x∥ ≤ ∥R(λ,An)(x− xn)∥+ ∥R(λ,An)xn −R(λ,A)x∥
≤ M

Reλ−ω∥x− xn∥+ ∥yn − y∥ −→ 0, n→ ∞,

we conclude assertion c) for all λ ∈ Fω.
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Next, let property c) be valid for some λ ∈ Fω. Let y ∈ D. We set x = λy−Ay
and yn = R(λ,An)x ∈ D(An). It follows that yn → y and

Anyn = λR(λ,An)x− x −→ λR(λ,A)x− x = λy − x = Ay

as n→ ∞; i.e., claim b) holds.

We assume condition d). Take x ∈ X and λ ∈ Fω. Proposition 1.20 yields

∥R(λ,A)x−R(λ,An)x∥ ≤
∫ ∞

0
e−Reλt∥T (t)x− Tn(t)x∥ dt.

The integrand is bounded by 2M∥x∥e(ω−Reλ)t and tends to 0 for each t ≥ 0 as
n→ ∞. Part c) now follows from dominated convergence, for all λ ∈ Fω.

Finally, let again c) be true for some λ ∈ Fω. Take x ∈ X, t0 > 0, t ∈ [0, t0],
and ε > 0. Since D(A) is dense, there is a vector y ∈ D(A) with ∥x − y∥ ≤ ε.
Set z = λy −Ay ∈ X. We then compute

∥Tn(t)x− T (t)x∥ ≤ ∥Tn(t)∥ ∥x− y∥+ ∥Tn(t)y − T (t)y∥+ ∥T (t)∥ ∥y − x∥
≤ 2Meω+t0ε+ ∥(Tn(t)− T (t))R(λ,A)z∥.

Commuting resolvents and semigroups, the last term is split in the three terms

∥(Tn(t)− T (t))R(λ,A)z∥ ≤ ∥Tn(t)(R(λ,A)z −R(λ,An)z)∥
+ ∥R(λ,An)(Tn(t)z − T (t)z)∥
+ ∥(R(λ,An)−R(λ,A))T (t)z∥

=: d1,n(t) + d2,n(t) + d3,n(t).

Because of c), the summand d1,n(t) ≤ Meω+t0∥R(λ,A)z − R(λ,An)z∥ tends 0
uniformly for t ∈ [0, t0] as n→ ∞. Since the set {T (t)z | t ∈ [0, t0]} is compact,
the same holds for d3,n by an exercise in Functional Analysis.
It remains to show this convergence for d2,n. As above we find an element

w ∈ X satisfying ∥z −R(λ,A)w∥ ≤ ε. Inserting v := R(λ,A)w, we compute

d2,n(t) ≤ ∥R(λ,An)(Tn(t)− T (t))(z −R(λ,A)w)∥+ ∥R(λ,An)(Tn(t)− T (t))v∥
≤ M

Reλ−ω 2Meω+t0ε+ ∥[Tn(t)R(λ,An)−R(λ,An)T (t)]R(λ,A)w∥.

We denote the last summand by d̂2,n(t). To dominate also this term, we write

d̂2,n(t) =
∥∥∥−∫ t

0
∂s[Tn(t− s)R(λ,An)T (s)R(λ,A)w] ds

∥∥∥
=
∥∥∥∫ t

0

(
Tn(t− s)AnR(λ,An)T (s)R(λ,A)w

− Tn(t− s)R(λ,An)T (s)AR(λ,A)w
)
ds
∥∥∥

=
∥∥∥∫ t

0
Tn(t− s)[R(λ,An)−R(λ,A)]T (s)w ds

∥∥∥
≤Meω+t0t0 sup

s∈[0,t0]
∥[R(λ,An)−R(λ,A)]T (s)w∥.
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The right-hand side converges to 0 uniformly for t ∈ [0, t0] as n→ ∞, again due
to c) and the compactness of {T (s)w | s ∈ [0, t0]}. Combining these estimates,
we derive assertion d) with local uniform convergence. □

Example 3.15. In the setting of Example 3.13, the above theorem implies
that the C0-semigroup generated by An = an∆D converges strongly on L2(G)
to the one generated by A = a∆D. Here we have D(∆D) = D = D(A) = D(An),
ω = 0, and M = δ−1. ♢

In Theorem 3.14 we have assumed that the limit operator A is a generator.
We want to replace this assumption by a range condition as in the Lumer–
Phillips theorem. In the main step of our argument we start with strongly
converging resolvents and have to show that the limit operators form again the
resolvent of a map (which then turns out to be a generator thanks to the Hille–
Yosida theorem). In this step we employ the next concept (imitating (1.7)) and
discuss some properties which are of independent interest.

Definition 3.16. Let ∅ ̸= Λ ⊆ F. A set {R(λ) |λ ∈ Λ} in B(X) is called
pseudo-resolvent if it satisfies

R(λ)−R(µ) = (µ− λ)R(λ)R(µ) for all λ, µ ∈ Λ. (3.10)

We first show that pseudo-resolvents occur as strong limits of resolvents,
which only have to converge for one point λ0.

Lemma 3.17. Let R(λ,An) be resolvents with ∥R(λ,An)∥≤ M
Reλ−ω for all n∈N

and λ∈Fω⊆ρ(An) and some ω∈R and M>0. Let (R(λ0, An))n tend strongly
to an operator R(λ0) ∈ B(X) for some λ0 ∈ Fω. Then for each λ ∈ Fω the maps
R(λ,An) converge strongly to a pseudo-resolvent {R(λ) |λ ∈ Fω} as n→ ∞.

Proof. We show the strong convergence for all λ ∈ Fω below. Then the
resolvent equation (1.7) for R(λ,An) and λ ∈ Fω ⊆ ρ(An) implies (3.10) with
Λ = Fω in the strong limit. Let µ ∈ Fω. Remark 1.16 yields the expansion

R(λ,An) =
∞∑
k=0

(µ− λ)kR(µ,An)
k+1

for all λ ∈ Fω with |µ − λ| ≤ Reµ−ω
2M ≤ 1

2∥R(µ,An)∥
−1. If R(µ,An) converges

strongly as n → ∞, then also the partial sums of the above series have strong
limits. The norms of the remainder terms

∞∑
k=K+1

(µ− λ)kR(µ,An)
k+1

are bounded by c
∑∞

k=K+1 2
−k = c2−K with c =M/(Reµ− ω), which tends to

0 as K → ∞ independently of n. As a result, the operator R(λ,An) converges
strongly as n → ∞ for λ ∈ B(µ, 1

2M (Reµ − ω)). The radii of these balls are
greater than δ/(2M) > 0 for all µ ∈ Fω+δ and each δ > 0. Take λ ∈ Fω. Choose
δ ∈ (0,Reλ0−ω) with λ ∈ Fω+δ. Starting from λ0, we can thus show the strong
convergence of (R(λ,An))n by a finite iteration. □
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We note that in Lemma 3.17 the limits R(λ) do not need to be injective, which
would be necssary to form a resolvent. For instance, the bounded generators
An = −nI satisfy ∥etAn∥ = e−nt ≤ 1 for all t ≥ 0 and n ∈ N, and their
resolvents R(λ,An) =

1
λ+nI tend to 0 = R(λ) as n→ ∞ for all λ ∈ F+. Before

we deal with this problem, we derive important properties of pseudo-resolvents.

Lemma 3.18. For a pseudo-resolvent {R(λ) |λ∈Λ} and all λ, µ ∈ Λ, we have
a) R(λ)R(µ) = R(µ)R(λ),
b) N(R(λ)) = N(R(µ)),
c) R(λ)X = R(µ)X.

Proof. Interchanging λ and µ, equation (3.10) implies assertion a). These
facts further yield the formulas

R(λ) = (I + (µ− λ)R(λ))R(µ) = R(µ)(I + (µ− λ)R(λ)),

which lead to the inclusions N(R(µ)) ⊆ N(R(λ)) and R(λ)X ⊆ R(µ)X. The
converse inclusions are shown analogously. □

We now establish sufficient conditions for a pseudo-resolvent to be a resolvent.

Lemma 3.19. Let {R(λ) |λ ∈ Λ} be a pseudo-resolvent.

a) Let R(λ0) be injective for some λ0 ∈ Λ. Then there is a closed operator A
domain D(A) = R(λ0)X such that Λ ⊆ ρ(A) and R(λ) = R(λ,A) for all λ ∈ Λ.
Hence, A is densely defined if R(λ0) has dense range.

b) Let R(µ) have dense range for some µ ∈ Λ and let there be λj ∈ Λ with
|λj | → ∞ as j → ∞ such that ∥λjR(λj)∥ ≤M for all j ∈ N and some constant
M > 0. Then R(λ) is injective for all λ ∈ Λ (and thus a resolvent by part a)).

Proof. a) The assumption allows us to define the closed operator A =
λ0I −R(λ0)

−1 with domain D(A) = R(λ0)X. It satisfies the equations

(λ0I−A)R(λ0) = R(λ0)
−1R(λ0) = I, R(λ0)(λ0y−Ay) = R(λ0)R(λ0)

−1y = y

for all y ∈ D(A), so that λ0 ∈ ρ(A) and R(λ0) = R(λ0, A). Lemma 3.18 shows
that R(λ)X = D(A) for all λ ∈ Λ. Using this fact and (3.10), we compute

(λI −A)R(λ) = [(λ− λ0)I + (λ0I −A)]R(λ0)[I − (λ− λ0)R(λ)]

= I + (λ− λ0)(R(λ0)[I − (λ− λ0)R(λ)]−R(λ)) = I,

and similarly R(λ)(λy −Ay) = y for y ∈ D(A). Assertion a) is thus proved.

b) We have λj ̸= µ and λj ̸= 0 for all sufficiently large j ∈ N. Equation (3.10)
and the assumptions then yield the limit

∥(λjR(λj)− I)R(µ)∥ =
∥∥∥ λj
µ− λj

(R(λj)−R(µ))−R(µ)
∥∥∥

=
∥∥∥ λj
µ− λj

R(λj)−
µ

µ− λj
R(µ)

∥∥∥
≤ M + ∥µR(µ)∥

|µ− λj |
−→ 0

as j → ∞. Since the set R(µ)X is dense and the operators λjR(λj) are uni-
formly bounded, it follows that λjR(λj)x → x as j → ∞ for all x ∈ X. If we
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had R(λ)x = 0 for some x ∈ X, then R(λj)x = 0 for all j by Lemma 3.18. As
a result, R(λ) is injective for every λ ∈ Λ. □

With these preparations we can now show the second Trotter–Kato theorem
which adds a generation result to the first one, imposing range conditions.

Theorem 3.20. Let An generate C0-semigroups Tn(·) such that ∥Tn(t)∥ ≤
Meωt for all t ≥ 0 and n ∈ N and some constants M ≥ 1 and ω ∈ R. We then
obtain the implications a)⇒ b)⇔ c) among the following statements.

a) There exists a densely defined operator A0 such that D(A0) ⊆ D(An) for
all n ∈ N and Any → A0y as n → ∞ for all y ∈ D(A0), and the range
(λ0I −A0)D(A0) is dense in X for some λ0 ∈ Fω.
b) For some λ0 ∈ Fω the operators R(λ0, An) converge strongly to a map

R ∈ B(X) with dense range.

c) There is a C0-semigroup T (·) with generator A such that Tn(t) converges
strongly to T (t) for all t ≥ 0 as n→ ∞.

If property b) is true, then R = R(λ0, A). If part a) holds, then A = A0. The
semigroups Tn(·) and T (·) satisfy the assertions of Theorem 3.14 if we assume
conditions a), b) or c).

Proof. The implication ‘c)⇒b)’ with R = R(λ0, A) is a consequence of
Theorem 3.14 since ∥T (t)∥ ≤Meωt follows from the assumptions.

Let statement a) be true. Take y ∈ D(A0) and set x = λ0y−A0y. Using the
assumption and the Hille–Yosida estimate (1.15), we compute

∥R(λ0, An)x− y∥ = ∥R(λ0, An)
(
(λ0y −A0y)− (λ0I −An)y

)
∥

≤ M

Reλ0 − ω
∥A0y −Any∥ −→ 0

as n→ ∞. Since the range (λ0I−A0)D(A0) is dense and R(λ0, An) is uniformly
bounded, the resolvents R(λ0, An) thus converge strongly to a map R ∈ B(X).
The range of R contains the dense set D(A0); so that claim b) is shown.

Assume condition b). By assumption, the resolvents satisfy the Hille–Yosida
estimate (1.15) with uniform constants. Hence, Lemma 3.17 shows that the
operators R(λ,An) converge strongly to a pseudo-resolvent {R(λ) |λ ∈ Fω} as
n→ ∞, which also fulfills ∥R(λ)∥ ≤M(Reλ0−ω) as a strong limit. Moreover,
R(λ0) = R has dense range by b). Lemma 3.19 thus provides a closed operator
A with dense domain R(λ0)X such that R(λ) = R(λ,A) for all λ ∈ Fω ⊆
ρ(A). Also the products (λ − ω)kR(λ,An)

k tend to (λ − ω)kR(λ)k strongly
for all k ∈ N and λ ∈ Fω as n → ∞, so that A satisfies (1.15). From the
Hille–Yosida Theorem 1.26 we then infer that A generates a C0-semigroup T (·).
Theorem 3.14 now yields statement c) and the last addendum.

Finally, we have to show that A0 has the closure A if property a) is true. Let
y ∈ D(A0). Assertions a) and b) yield

y = lim
n→∞

R(λ0, An)(λ0y −Any) = R(λ0, A)(λ0y −A0y),

so that Ay = A0y and A0 ⊆ A. Therefore, A0 possesses the closure A0 ⊆ A.
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On the other hand, the range (λ0I−A0)D(A0) is dense in X since it contains
the set (λ0I −A0)D(A0). Let y ∈ D(A0). There exist vectors yk ∈ D(A0) such
that yk → y and A0yk → A0y in X as k → ∞. Above we have checked the
equality yk = R(λ0, A)(λ0yk − A0yk) which tends to y = R(λ0, A)(λ0y − A0y).
Hence, ∥y∥ is bounded by a constant times ∥λ0y − A0y∥. Proposition 1.19 of
[27] then implies that the range (λ0I −A0)D(A0) is closed, and so λ0I −A0 is
surjective. Because of λ0 ∈ ρ(A), Lemma 1.23 yields the quality A0 = A. □

3.3. Approximation formulas

Based on the Trotter–Kato theorems, we now discuss further approximation
results for C0-semigroups. We start with an auxiliary fact.

Lemma 3.21. Let S ∈ B(X) satisfy ∥Sn∥ ≤ M for all n ∈ N and some
M > 0. We then obtain

∥en(S−I)x− Snx∥ ≤M
√
n∥Sx− x∥ for all n ∈ N, x ∈ X.

Proof. For n,m, l ∈ N with m > l and x ∈ X, we first compute

en(S−I) − Sn = e−n
∞∑
j=0

nj

j!
Sj −

∞∑
j=0

nj

j!
e−nSn = e−n

∞∑
j=0

nj

j!
(Sj − Sn),

∥Smx− Slx∥ =
∥∥∥m−1∑
j=l

Sj(S − I)x
∥∥∥ ≤M(m− l)∥Sx− x∥.

Using Hölder’s inequality and elementary series, we then estimate

∥en(S−I)x − Snx∥ ≤Me−n∥Sx− x∥
∞∑
j=0

√
nj

j!

√
nj

j! |n− j|

≤Me−n∥Sx− x∥
( ∞∑
j=0

nj

j!

) 1
2
( ∞∑
j=0

nj

j!
(n− j)2

) 1
2

≤Me−n∥Sx− x∥ e
n
2
√
ne

n
2 =M

√
n ∥Sx− x∥. □

We next show the Lax–Chernoff product formula which is the core of this
section. It was proved by Lax and Richtmyer in 1957 without its generation
part, which was added by Chernoff in 1972 (who also discussed further variants
of the result). The theorem says that

consistency and stability imply convergence,

which is a fundamental principle in numerical analysis. In this context one has
to combine it with finite dimensional approximations, cf. Section 3.6 of [22]. In
the exercises we treat convergence rates for vectors x in suitable subspaces.

Theorem 3.22. Let V : R≥0 → B(X) be a function such that V (0) = I and
∥V (t)k∥ ≤Mekωt for all t ≥ 0 and k ∈ N and some ω ∈ R and M ≥ 1. Assume
that the limit A0y := limt→0

1
t (V (t)x − x) exists for all y in a dense subspace

D(A0). Let the range (λI − A0)D(A0) be dense in X for some λ ∈ Fω. Then
A0 is closable and its closure A generates the C0-semigroup T (·). The products
V ( tn)

n strongly converge to T (t) locally uniformly in t ≥ 0 as n→ ∞.
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Proof. By rescaling, we may assume that ω = 0. For s > 0 we define
the bounded operator As = 1

s (V (s) − I) on X. The assumptions imply that
Asy → A0y for all y ∈ D(A0) as s→ 0 and that

∥etAs∥ = e−
t
s ∥e

t
s
V (s)∥ ≤ e−

t
s

∞∑
k=0

tk

skk!
∥V (s)k∥ ≤ e−

t
s e

t
sM =M

for all t ≥ 0. Theorem 3.20 thus shows that A0 has a closure A which generates
the C0-semigroup T (·) and that for each null sequence (sn) the operators etAsn

strongly tend to T (t) as n→ ∞, uniformly for t ∈ [0, t0] and every t0 > 0.
We claim that also etAt/n strongly converges to T (t) locally uniformly in t as

n → ∞. If the claim was wrong, there would exist a vector x ∈ X and times
tn ∈ [0, t0] for some t0 > 0 such that

inf
n∈N

∥etnAtn/nx− T (tn)x∥ > 0.

Since sn := tn/n→ 0 as n→ ∞, we obtain a contradiction.
Let x ∈ X, ε > 0, t0 > 0, and t ∈ [0, t0]. Choose y ∈ D(A0) with ∥x− y∥ ≤ ε.

Lemma 3.21 then yields

∥etAt/nx− V (t/n)nx∥

≤ ∥etAt/n∥ ∥x− y∥+ ∥en(V (t/n)−I)y − V (t/n)ny∥+ ∥V (t/n)n∥ ∥x− y∥
≤ 2Mε+M

√
n∥V (t/n)y − y∥ = 2Mε+ tM√

n
∥At/ny∥

≤ 2Mε+ t0M√
n

sup
0≤s≤t0

∥Asy∥.

The right-hand side tends to 2Mε as n→ ∞, so that

V (t/n)n = etAt/n + V (t/n)n − etAt/n

strongly converges to T (t) locally uniformly in t. □

We add two special cases of the above general approximation result. (More
examples are discussed in the exercises.) The first one is the Lie–Trotter product
formula, shown by Trotter 1959 in a more direct way. It is of great importance
in numerical analysis for problems where one can compute approximations of
T (·) and S(·) in an efficient way, cf. the exercises. It also provides a generation
result for sums of operators without a smallness condition, but involving a
closure. Note that the assumptions after (3.11) are satisfied if we know that
(the closure of) C is a generator.

Corollary 3.23. Assume that A and B generate C0-semigroups T (·) and
S(·), respectively, subject to the stability bound∥∥(T ( tn)S( tn))n∥∥ ≤Meωt (3.11)

for all n ∈ N and t ≥ 0 and some M ≥ 1 and ω ∈ R. Let D := D(A) ∩ D(B)
and (λI− (A+B))D be dense in X for some λ ∈ Fω. Then the sum C = A+B
on D(C) = D has a closure C which generates a C0-semigroup U(·) given by

U(t)x = lim
n→∞

(
T
(
t
n

)
S
(
t
n

))n
x

uniformly on all compact subsets of R≥0 and for all x ∈ X.
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Proof. Define V (t) = T (t)S(t) for t ≥ 0. For x ∈ D, the vectors
1
t (V (t)x− x) = T (t)1t (S(t)x− x) + 1

t (T (t)x− x)

converge to Bx+Ax as t→ 0+. The result now follows from Theorem 3.22. □

The stability condition (3.11) holds if both semigroups are ω
2 -contractive. In

general, one cannot find an equivalent norm for which both semigroups become
quasi-contractive, cf. Remark 1.25. In fact, there are generators A and B such
that A+B exists and generates a C0-semigroup, but (3.11) is violated, and
thus the Lie–Trotter product formula fails, see [16].
The Lie–Trotter formula can be used to give an alternative proof of the

positivity assertion in Example 3.6. It also yields a rigorous mathematical
interpretation for the ‘Feynman path integral formula’ in quantum mechanics
for the Schrödinger group eit(∆−V ), see Paragraph 8.13 in [10].

By Proposition 1.20, the resolvent of the generator is the Laplace transform

L(T (·)x)(λ) =
∫ ∞

0
e−λtT (t)x dt = R(λ,A)x, Reλ > ω0(A). (3.12)

of the semigroup. In the next corollary we invert this transformation for semi-
group orbits, approximating T (t) by powers of the resolvent. In numerics the
resulting formula is called ‘implicit Euler scheme.’ These two fundamental for-
mulas often allow us to transfer properties from the resolvent to the semigroup
and back, see e.g. Corollary 3.25. This is an important fact since the resol-
vent is closely related to the generator, which is usually the given object in
applications. We use this link in Example 3.26.

Corollary 3.24. Let A generate the C0-semigroup T (·). We then have

T (t)x = lim
n→∞

(
n
tR
(
n
t , A

))n
x = lim

n→∞

(
I − t

nA
)−n

x

uniformly on all compact subsets of R≥0 and for all x ∈ X.

Proof. Take M ≥ 1 and ω > 0 with ∥T (t)∥ ≤ Meωt for all t ≥ 0. Set
δ = 1

ω(ω+1) . We then define V (0) = I, V (t) = 1
tR(

1
t , A) for 0 < t ≤ δ, and

V (t) = 0 for t > δ. The Hille–Yosida estimate (1.15) yields

∥V (t)n∥ = t−n∥R(1t , A)
n∥ ≤ M

tn(t−1 − ω)n
=

M

(1− ωt)n
≤Men(1+ω)t

for 0 < t ≤ δ < 1
ω by the choice of δ. From Lemma 1.22 we deduce the limit

1
t (V (t)x− x) = 1

t

(
1
tR
(
1
t , A

)
x− x

)
= 1

tR
(
1
t , A

)
Ax −→ Ax

as t→ 0 for all x ∈ D(A). Theorem 3.22 implies the assertion. □

We note that one can show the resolvent approximation directly without
involving Chernoff’s product formula, see Theorem 1.8.3 in [22]. In the next
result we use notions introduced in Example 3.6.

Corollary 3.25. Let U ⊆ Rm be open and E = C0(U) or let (S,A, µ) be
a measure space and E = Lp(µ) for some 1 ≤ p < ∞. We assume that A
generates a C0-semigroup T (·) on E. Then T (t) is positive for all t ≥ 0 if and
only if R(λ,A) is positive for all λ ≥ ω and some ω > ω0(A).
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Proof. Let the resolvent be positive for λ > ω and take t > 0. For all
f ∈ E+ and large n ∈ N, then the functions (ntR(

n
t , A))

nf are non-negative
and hence their limit T (t)f also belongs to E+. (Here we use Corollary 3.24.)
For λ > ω0(A), the converse follows in a similiar way from formula (3.12). □

Employing the above result and the ‘weak maximum principle’, we show that
the Dirichlet–Laplacian generates a positive semigroup.

Example 3.26. Let G ⊆ Rm be open and bounded with a C2-boundary,
1 < p < ∞, Ep = Lp(G), and Ap = ∆ with D(Ap) = W 2,p(G) ∩ W 1,p

0 (G).
These operators generate bounded analytic C0-semigroups Tp(·) on Ep, see Ex-
ample 2.30. We want to prove their positivity.
Let λ > 0, 1 < p < q < ∞, and f ∈ C0(G). Note that C+ ⊆ ρ(Ap) by

Proposition 1.20 and that C0(G) is densely embedded into Er for r ∈ (1,∞).
Set u = R(λ,Aq)f ∈ D(Aq). Then λu − ∆u = f on G and u also belongs to
D(Ap), since G is bounded. It follows u = R(λ,Ap)f as λ ∈ ρ(Ap). This means
that u ∈

⋂
1<r<∞D(Ar) and that R(λ,Aq) is the restriction of R(λ,Ap), by

density. Hence, u and ∆u = λu − f are contained in C0(G) by the Sobolev
embedding W 2,q(G) ↪→ C(G) for q > m

2 , see Theorem 3.31 in [27].
Let also f ≥ 0. We show that u ≥ 0. First, u = R(λ,A2)f is real-valued by

Example 2.33 and formula (3.12). Suppose there was a point x0 ∈ G such that
u(x0) < 0. Since u = 0 on ∂G and G is compact, the function u must have a
minimum u(x1) < 0 for some x1 ∈ G. Proposition 3.1.10 in [18] thus yields
∆u(x1) ≥ 0, implying that f(x1) = λu(x1) −∆u(x1) < 0 which is impossible.
Hence, u = R(λ,Ap)f is non-negative.
Since C0(G) is dense in Ep and the map v 7→ v+ is Lipschitz on Ep, we

obtain the positivity of R(λ,Ap) by approximation. Corollary 3.25 then shows
the positivity of Tp(t) for all t ≥ 0 and p ∈ (1,∞). ♢

Similarly one can treat the case E = C0(G) starting from the sectoriality
result Corollary 3.1.21 in [18]. In [21] one finds criteria for positivity of semi-
groups on L2(G) generated by sesquilinear forms.



CHAPTER 4

Long-time behavior

This chapter is devoted to the long-term behavior of C0-semigroups focusing
on exponential stability and dichotomy. We want to derive these basic proper-
ties from conditions on the spectrum and the resolvent of the (given) generator.
In this chapter we take F = C, unless F = R is also admitted explicitely.

4.1. Exponential stability and dichotomy

We first introduce the most basic property concerning the long-time behavior.
This concept and Definition 4.8 also make sense if F = R.

Definition 4.1. A C0-semigroup T (·) is called (uniformly) exponentially
stable if there exist constants M, ε > 0 such that

∥T (t)∥ ≤Me−εt for all t ≥ 0.

The above concept can be reformulated as ω0(T ) = ω(A) < 0, see Defini-
tion 1.5, or equivalently as ∥T (t)x∥ ≤Me−εt∥x∥ for all x ∈ X and t ≥ 0.

Let A generate T (·) and ε > 0. Observe that we have ∥T (t)∥ ≤ e−εt for all
t ≥ 0 if and only if A+ εI is dissipative by the Lumer–Phillips Theorem 1.39.
Though this is a rather special situation, it covers the important case of the
Dirichlet–Laplacian ∆D on L2(G) for a bounded domain, see Example 1.54.

We first characterize exponential stability by properties of the semigroup
itself. To this aim, we recall from Theorem 1.16 in [27] that an operator T ∈
B(X) has a spectral radius satisfying

r(T ) = max
{
|λ|
∣∣λ ∈ σ(T )

}
= limn→∞ ∥Tn∥

1
n = infn∈N ∥Tn∥

1
n ≤ ∥T∥. (4.1)

The next result says in particular that a C0-semigroup automatically decays
exponentially if it tends to 0 in operator norm as t→ 0.

Proposition 4.2. Let T (·) be a C0-semigroup with generator A. Then the
following assertions are equivalent.

a) T (·) is exponentially stable.

b) ∥T (t0)∥ < 1 for some t0 > 0.

c) r(T (t1)) < 1 for some t1 > 0.

d) ω0(A) < 0.

In this case, then statement b) is valid for all sufficiently large t0 > 0, claim c)
is true for all t1 > 0, and we have s(A) < 0, cf. (1.12). We further obtain

ets(A) ≤ etω0(A) = r(T (t)) and ω0(A) = lim
t→∞

1
t ln ∥T (t)∥ = inf

t>0

1
t ln ∥T (t)∥

for all t ≥ 0 and with ln 0 := −∞.

92
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Proof. Since ln ∥T (t+ s)∥ ≤ ln ∥T (t)∥+ln ∥T (s)∥ for t, s ≥ 0, the elemen-
tary Lemma IV.2.3 in [7] shows that the limit limt→∞

1
t ln ∥T (t)∥ exists and

equals ω := inft>0
1
t ln ∥T (t)∥. This equality yields etω ≤ ∥T (t)∥ for all t ≥ 0

and thus ω ≤ ω0(A). Take any ω1 > ω. By the description via the limit, there
is a time τ ≥ 0 such that ∥T (t)∥ ≤ eω1t for all t ≥ τ so that ∥T (t)∥ ≤ Meω1t

for all t ≥ 0 and the number M := sup{e−ω1t∥T (t)∥ | 0 ≤ t ≤ τ} ∈ [1,∞). This
means that ω1 ≥ ω0(A) and so ω = ω0(A). Using (4.1), we infer the identities

r(T (t)) = lim
n→∞

exp
(
t 1
nt ln ∥T (nt)∥

)
= exp

(
t lim
n→∞

1
nt ln(∥T (nt)∥)

)
= etω0(A)

for t > 0. The other claims about T (·) now follow easily. Proposition 1.20 says

that s(A) ≤ ω0(A), which yields the remaining inequality ets(A) ≤ etω0(A). □

For bounded A, Example 5.4 of [27] implies the equality s(A) = ω0(A).
The next example due to Arendt (1993) shows that s(A) < ω0(A) is possible
for unbounded generators. See also Examples IV.2.7 and IV.3.4 as well as
Exercises IV.2.13 and IV.3.5 in [7].

Example 4.3. Let X = Lp(1,∞) ∩ Lq(1,∞) for 1 < p ≤ q < ∞ which is
a reflexive Banach space for the norm ∥f∥ = ∥f∥p + ∥f∥q. We look at the
positive operators given by (T (t)f)(s) = f(set) for f ∈ X, where throughout
we let t ≥ 0, s > 1, and r ∈ (1,∞). Computing

(T (t)T (τ)f)(s) = (T (τ)f)(set) = f(seteτ ) = (T (t+ τ)f)(s)

for τ ≥ 0, we see that T (·) is a semigroup. Take f ∈ Lr(1,∞). We estimate

∥T (t)f∥rr =
∫ ∞

1
|f(set)|r ds =

∫ ∞

et
|f(τ)|re−t dτ ≤ e−t∥f∥rr ,

where we substituted τ = set. For f ∈ X it follows

∥T (t)f∥ = ∥T (t)f∥p + ∥T (t)f∥q ≤ e−t/p∥f∥p + e−t/q∥f∥q ≤ e−t/q∥f∥,

so that T (t) belongs to B(X) with growth bound ω0(T ) ≤ −1/q.
Let f ∈ Cc(1,∞). There is a number s0 > 1 such that f(set) = 0 for all

set ≥ s ≥ s0. By uniform continuity, the maps T (t)f tend to f uniformly as
t→ 0, and thus in X due to the bounded support. Lemma 1.7 now yields that
T (·) is C0-semigroup. Let A be its generator. Taking p = q = r, we also obtain
a C0-semigroup Tr(·) on Lr(1,∞) with generator Ar.
Let ft = 1[et,et+1] for t ≥ 0. Observe that ∥ft∥r = 1 and so ∥ft∥ = 2. Since

T (t)ft(s) = 1[et,et+1](se
t) = 1[1,1+e−t](s)

for s > 1, we have ∥T (t)ft∥r = e−t/r. It follows that

∥T (t)ft∥ ≥ ∥T (t)ft∥q = e−t/q = 1
2e

−t/q∥ft∥,

and hence ω0(T ) = ω0(A) = −1/q.
To determine s(A), we look at the functions gα(s) = s−α for s > 1 and

α > 1/r. Then gα belongs to Lr(1,∞) and

1
t (T (t)gα − gα) + αgα =

(
1
t (e

−αt − 1) + α
)
gα.
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These maps tend to 0 in Lr(1,∞) as t → 0 so that gα belongs to D(Ar) with
Argα = −αgα. This means that −α is an eigenvalue of Ar and so s(Ar) ≥ −1/r.
As ω0(Ar) = −1/r, Proposition 1.20 shows that s(Ar) = ω0(Ar) = −1/r.
We now pass to X. Since X ↪→ Lp(1,∞) and T (t) = Tp(t)↾X , A is the ‘part

of Ap in X’ (i.e., Af = Apf and D(A) = {f ∈ D(Ap) ∩ X |Apf ∈ X}) by
Proposition II.2.3 in [7]. Proposition 1.20 yields R(0, Ap)f =

∫∞
0 Tp(t)f dt. We

first take f ∈ Cc(1,∞) with f(s) = 0 for s ≥ s0. Observe that Tp(t)f = 0 for
all t > ln s0 and that t 7→ Tp(t)f is also continuous in supremum norm. The
integral thus converges both in Lp(1,∞) and in C0(1,∞). We infer

R(0, Ap)f(s) =
(∫ ∞

0
Tp(t)f dt

)
(s) =

∫ ∞

0
f(set) dt =

∫ ∞

s
f(τ)

dτ

τ
,

substituting τ = set. Hölder’s inequality now implies

|R(0, Ap)f(s)| ≤ ∥f∥p
(∫ ∞

s
τ−p

′
dτ
) 1

p′
= ∥f∥p

( s1−p′
p′ − 1

) 1
p′

=
s−1/p

(p′ − 1)1/p′
∥f∥p.

We finally take q > p. Then
∫∞
1 s−q/p ds is finite, so that R(0, Ap) continu-

ously maps (Cc(1,∞), ∥·∥p) into X and hence Lp(1,∞) into X by density. This
means that [D(Ap)] ↪→ X ↪→ Lp(1,∞). Proposition IV.2.17 of [7] thus shows
that σ(A) = σ(Ap), and so

s(A) = −1/p < −1/q = ω0(A)

in view of the above results. Rescaling with a number ω ∈ (1/q, 1/p), we then
obtain a generator A+ ωI of an exponentially growing C0-semigroup with the
negative spectral bound ω − 1/p. ♢

As the best possible identity s(A) = ω0(A) fails in general, one can try to
show exponential stability under stronger assumptions. We will first establish
it assuming an additional bound of the resolvent. In the next section we actu-
ally prove s(A) = ω0(A) (and more) for a class of C0-semigroups with better
regularity properties including analytic ones. We will also comment on results
about weaker convergence properties.
If dimX = ∞ it is often more appropriate to complement spectral conditions

by resolvent estimates. To establish a corresponding stability theorem, we need
some properties of the ‘Bochner integral’ (where we take F ∈ {R,C}) and the
Fourier transform.
Let J ⊆ R be an interval. Simple functions f : J → X and their integral

are defined as for X = R. A function f : J → X is called strongly measurable
if there are simple functions fn : J → X converging to f pointwise almost
everywhere. Observe that then the function t 7→ ∥f(t)∥X is measurable, and
that continuous functions are strongly measurable. By Theorem X.1.4 in [2],
the map f is strongly measurable if and only if f is Borel measurable and there
is a null set N ⊆ J such that f(J \ N) is separable. (The latter is true for
separable X, of course.) We then define the space

Lp(J,X) =
{
f : J → X

∣∣ f is strongly measurable, ∥f(·)∥X ∈ Lp(J)
}
,

∥f∥p = ∥∥f(·)∥X∥Lp(J) =
(∫

J
∥f(t)∥pX dt

) 1
p
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for p ∈ [1,∞) and analogously for p = ∞. Here we identify functions that
coincide almost everywhere. One can show that f belongs to L1(J,X) if and
only if there are simple functions converging to f pointwise a.e. such that the
sequence (fn)n is Cauchy for ∥·∥1, see p.90 and Theorem X.3.9 in [2]. This
fact implies that the integrals

∫
J fn(t) dt converge in X and that their limit is

independent of the choice of such a sequence (fn)n. This limit is denoted by∫
J f(t) dt and called the (Bochner) integral of f .
It can be shown that (Lp(J,X), ∥·∥p) is a Banach space and that the

Bochner integral satisfies Hölder’s inequality and the theorems of Riesz–Fischer,
Lebesgue and Fubini, see Chapter X in [2] or Chapter 1 in [13]. However, the

dual of Lp(J,X) for p ∈ [1,∞) coincides with Lp
′
(J,X∗) only for a certain class

of Banach spaces X, e.g., reflexive ones. (Otherwise the dual is larger.) The
duality pairing is given by ⟨f, g⟩Lp(J,X) =

∫
J⟨f(t), g(t)⟩X dt for f ∈ Lp(J,X)

and g ∈ Lp
′
(J,X∗). See Theorem 1.3.10 and Corollary 1.3.22 of [13].

Let A be closed and f ∈ L1(J,X) take values in D(A) a.e. and Af be inte-
grable. The integral

∫
J f dt then belongs to D(A) and fulfills

A

∫
J
f(t) dt =

∫
J
Af(t) dt

by Theorem C.4 of [7].
For f ∈ L1(R, X), we define the Fourier transform

f̂(τ) = Ff(τ) = 1√
2π

∫
R
e−iτtf(t) dt, τ ∈ R.

As in the scalar case one shows that f̂ ∈ C0(R, X) and the convolution and
inversion theorems, see Theorem 1.8.1 of [3]. Let X be a Hilbert space. By
Plancherel’s Theorem 1.8.2 in [3], the Fourier transform then extends from
L1(R, X) ∩ L2(R, X) to a unitary operator

F : L2(R, X) → L2(R, X)

where L2(R, X) is a Hilbert space with the inner product

(f |g) =
∫
R
(f(t)|g(t))X dt, f, g ∈ L2(R, X).

In the theorem below we also need the next auxiliary result by Datko (1970).

Lemma 4.4. Let T (·) be a C0-semigroup, 1 ≤ p < ∞, and F ∈ {R,C}. If
T (·)x ∈ Lp(R≥0, X) for all x ∈ X, then T (·) is exponentially stable.

Proof. Define the bounded operator

Φn : X → Lp(R≥0, X); x 7→ 1[0,n]T (·)x,
for each n ∈ N. The assumption shows that supn∈N ∥Φnx∥ is finite for each
x ∈ X, and hence C := supn∈N ∥Φn∥ < ∞ thanks to the principle of uniform

boundedness. It follows
∫ t
0 ∥T (s)x∥

p ds ≤ Cp∥x∥p for all t ≥ 0 and x ∈ X. Fix

constants M ≥ 1 and ω > 0 such that ∥T (t)∥ ≤ Meωt for all t ≥ 0. Let t ≥ 1
and x ∈ X. We calculate

1− e−pω

pω
∥T (t)x∥p ≤ 1− e−pωt

pω
∥T (t)x∥p =

∫ t

0
e−pωs∥T (s)T (t− s)x∥p ds
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≤
∫ t

0
Mpeωspe−ωsp∥T (t− s)x∥p ds =Mp

∫ t

0
∥T (τ)x∥p dτ

≤ (CM)p∥x∥p,

so that ∥T (t)∥ ≤ N for all t ≥ 0, where N := max{Meω, (pω)1/pCM(1 −
e−pω)−1/p}. We then derive

t∥T (t)x∥p =
∫ t

0
∥T (t− s)T (s)x∥p ds ≤ Np

∫ t

0
∥T (s)x∥p ds ≤ (CN)p∥x∥p,

and hence ∥T (t)∥ ≤ CN
t1/p

. Proposition 4.2 now implies the assertion. □

We first give a heuristic argument for the following stability theorem. Let A
generate the C0-semigroup T (·) on a Hilbert space X. Assume that s(A) < 0.
Pick a number ω > ω0(A). We set

Tω(t) =

{
e−ωtT (t), t ≥ 0,

0, t < 0.

Then there are constants M ≥ 1 and ε > 0 such that ∥Tω(t)∥ ≤ Me−εt for all
t ≥ 0. Take x ∈ X and τ ∈ R. The map Tω(·)x belongs to L1(R, X)∩L2(R, X)

with 2-norm less or equal M(2ε)−1/2∥x∥. Using Proposition 1.20, we compute

F(Tω(·)x)(τ) =
1√
2π

∫ ∞

0
e−iτte−ωtT (t)x dt =

1√
2π
R(ω + iτ,A)x. (4.2)

Plancherel’s theorem then yields

∥R(ω + i·, A)x∥L2(R,X) =
√
2π∥Tω(·)x∥L2(R,X) ≤M

√
π/ε∥x∥. (4.3)

We want to transform this inequality to the imaginary axis by means of the
resolvent equation (1.7); i.e.,

R(iτ,A)x = R(ω + iτ,A)x+ ωR(iτ,A)R(ω + iτ,A)x. (4.4)

Assuming the boundedness ∥R(i·, A)∥ on R, from the above results we infer
that R(i·, A)x is an element of L2(R, X). It is now tempting to use Plancherel’s
theorem once more and to conclude

∞ > ∥R(i·, A)x∥L2(R,X) = ∥F(T0(·)x)∥L2(R,X) =
√
2π∥T (·)x∥L2(R≥0,X).

Datko’s lemma would then yield ω0(A) < 0. However, above we need the
assertion ω0(A) < 0 to employ (4.2) for ω = 0 and to apply F to T0(·)x.

These problems can actually be settled by means of a refined version of
(4.2) and an approximation argument, see the proof of Theorem V.1.11 of [7].
Below we instead use a shorter argument taken from Theorem 5.2.1 of [3].
The resulting stability theorem of Gearhart is also special case of Theorem 4.19
below, which has a more involved proof not given in these lectures.

Theorem 4.5. Let X be a Hilbert space. A C0-semigroup T (·) with generator
A is exponentially stable if and only if

s(A) ≤ 0 and C := supλ∈C+
∥R(λ,A)∥ <∞.

If this is the case, s(A) is negative.
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Proof. The necessity of the conditions and the addendum follow from
Proposition 1.20. Let the conditions in display be true. We set ω+ =
max{0, ω0(A)}. Let ω > ω+, τ ∈ R, and x ∈ X. We define Tω(·) as above
and abbreviate rω(τ) = R(ω + iτ,A)x.

Fix ω > ω+ and take ω ∈ (ω+, ω]. There exist constants M ≥ 1 and ε > 0

with ∥T (t)∥ ≤Me(ω−ε)t for all t ≥ 0, and so Tω(·)x is an element of L1(R, X)∩
L2(R, X) with 2-norm less or equal M(2ε)−1/2∥x∥. Using Tω(·) ∈ L2(R, X) in
the last step, as in (4.2)–(4.4) we thus obtain

∥rω∥L2(R,X) ≤M
√
π/ε∥x∥,

∥rω∥L2(R,X) ≤ ∥rω∥L2(R,X) + |ω − ω| sup
τ∈R

∥R(ω + iτ,A)∥ ∥rω∥L2(R,X)

≤M
√
π/ε(1 + ωC)∥x∥ =: (2π)

1
2C∥x∥,

∥Tω(·)x∥L2(R,X) =
1√
2π
∥rω∥L2(R,X) ≤ C∥x∥.

Fatou’s lemma then yields

∥Tω+(·)x∥2L2(R,X) =

∫ ∞

0
lim
ω→ω+

e−2ωt∥T (t)x∥2dt ≤ lim
ω→ω+

∥Tω(·)x∥2L2(R,X) ≤ C
2∥x∥2.

Datko’s Lemma 4.4 now implies that (Tω+(t))t≥0 is exponentially stable. This
is impossible in the case ω+ = ω0(A), so that ω0(A) has to be negative. □

In a general (complex) Banach space X the boundedness of the resolvent
R(·, A) on C+ only implies the existence of some constants M, ε > 0 such that

∥T (t)x∥ ≤Me−εt∥x∥A (4.5)

for all t ≥ 0 and x ∈ D(A) by a theorem from 1996 due to Weis and Wrobel
(which also gives improved estimates for certain classes of Banach spaces), see
Proposition 5.1.6 and Theorem 5.1.7 in [3]. We thus obtain exponential decay
of classical solutions only. In Example 4.3, the resolvent of A+ ωI is bounded
on C+ by Theorem 5.3. There are generators A on Hilbert spaces with s(A) < 0
such that (4.5) fails, see Remark 5.5.
Theorem 4.5 is of great importance for applications. We treat damped wave

equations in two (relatively simple) examples, checking the resolvent estimate by
a contradiction argument. The first one deals with a strictly positive damping.

Example 4.6. We first recall the setting and the results of Example 3.7. Let
G ⊆ R3 be bounded and open with ∂G ∈ C1−, ∆D be the Dirichlet–Laplacian
on L2(G) from Example 1.54, and b ∈ L∞(G) satisfy b(x) ≥ β for almost every

x ∈ G and some β > 0. We set E = Y ×L2(G), where Y =W 1,2
0 (G) is endowed

with the norm ∥v∥Y = ∥|∇v|2∥2, and define the operator

A =
(

0 I
∆D −b

)
=: A0 +

(
0 0
0 −b

)
with D(A) = D(∆D)× Y

on E. It generates a C0-group T (·) solving the damped wave equation

u′′(t) = ∆Du(t)− bu′(t), t ≥ 0, u(0) = u0, u′(0) = u1. (4.6)

More precisely, for (u0, u1) ∈ E the orbit w(t) = T (t)(u0, u1) has the
form w = (u, u′) for the unique solution u of (4.6) in C2(R≥0,W

−1,2(G)) ∩
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C1(R≥0, L
2(G))∩C(R≥0, Y ). Here we consider the operator ∆D also as a map

from Y =W 1,2
0 (G) to W−1,2(G).

Recall from Example 3.7 that the semigroup (T (t))t≥0 is contractive since
−b ≤ 0. We assert that it is exponentially stable, and thus the energy

1
2∥T (t)(u0, u1)∥

2
E = 1

2∥|∇u|2∥
2
2 +

1
2∥∂tu(t)∥

2
2

of the solution decays as ce−2εt∥(u0, u1)∥2E for some c, ε > 0. This claim is
proved by means of Theorem 4.5.
To this end, we first we first note that A is invertible with bounded inverse

A−1

(
f
g

)
=

(
∆−1
D (bf + g)

f

)
, (f, g) ∈ E.

Below we show that

iR ⊆ ρ(A) and supτ∈R ∥R(iτ,A)∥ =: κ <∞. (4.7)

In view of Remark 1.16, by inequality (4.7) each number λ ∈ C with |Reλ| ∈[
0, 1

2κ

]
is an element of ρ(A) and the resolvent is bounded by ∥R(λ,A)∥ ≤

2κ. Due this bound and the Hille–Yosida estimate (1.15), the assumptions of
Theorem 4.5 are fulfilled and the assertion follows.

We establish (4.7). Since s(A) ≤ 0, any point iτ ∈ σ(A) would belong to
∂σ(A) so that Proposition 1.19 of [27] (or (4.17) below) would yield

m(τ) := inf
{
∥iτw −Aw∥E

∣∣w ∈ D(A), ∥w∥E = 1
}
= 0.

Note that ∥R(iτ,A)∥ ≤ 1/m(τ) if m(τ) > 0. Therefore the lower bound
infτ∈Rm(τ) =: m0 > 0 will imply our claim (4.7) with κ = 1/m0.
Since 0 ∈ ρ(A) and ρ(A) is open, there is a number τ0 > 0 such that

[−iτ0, iτ0] ⊆ ρ(A). For τ ∈ [−τ0, τ0] and w ∈ D(A) with ∥w∥E = 1, we set
iτw −Aw = z and obtain the first lower bound

∥iτw −Aw∥E = ∥z∥E ≥ ∥R(iτ,A)∥−1 ∥R(iτ,A)z∥E = ∥R(iτ,A)∥−1,

inf
|τ |≤τ0

m(τ) ≥
(
max
|τ |≤τ0

∥R(iτ,A)∥
)−1

=: ρ > 0. (4.8)

Fix ε ∈ (0,min{ρ, β2 )} with 0 < 3εβ
β−2ε < τ0. Suppose there are τ ∈ R and w =

(φ,ψ) ∈ D(A) such that ∥w∥2E = ∥|∇φ|2∥22 + ∥ψ∥22 = 1 and ∥iτw − Aw∥E ≤ ε.
We infer |τ | ≥ τ0 from (4.8) and

ε ≥
∣∣((iτI −A)

(
φ
ψ

)∣∣(φ
ψ

))
E

∣∣
=
∣∣∣∫
G
∇(iτφ− ψ) · ∇φdx+

∫
G

(
−∆Dφ + (iτ + b)ψ

)
ψ dx

∣∣∣
=
∣∣∣iτ(∥|∇φ|2∥22 + ∥ψ∥22)−

∫
G
∇φ · ∇ψ dx+

∫
G
∇φ · ∇ψ dx+

∫
G
b|ψ|2 dx

∣∣∣
=
∣∣∣i(τ + 2 Im

∫
G
∇φ · ∇ψ dx) +

∫
G
b|ψ|2 dx

∣∣∣,
using the definition of ∆D. The imaginary and real parts thus satisfy

ε ≥
∣∣∣τ + 2 Im

∫
G
∇φ · ∇ψ dx

∣∣∣ and ε ≥
∫
G
b|ψ|2 dx ≥ β∥ψ∥22.
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The second estimate yields ∥|∇φ|2∥22 = 1− ∥ψ∥22 ≥ 1− ε
β , and hence

1− 2∥|∇φ|2∥22 ≤
2ε

β
− 1 < 0

because of ε < β
2 . We conclude that

|τ |
(
1− 2ε

β

)
≤ |τ |

∣∣1− 2 ∥|∇φ|2∥22
∣∣ = ∣∣∣τ + 2 Im

∫
G
∇φ · iτ∇φdx

∣∣∣
≤
∣∣∣τ + 2 Im

∫
G
∇φ · ∇ψ dx

∣∣∣+ ∣∣∣2 Im∫
G
∇φ ·

(
iτ∇φ−∇ψ

)
dx
∣∣∣

≤ ε+ 2∥|∇φ|2∥2 ∥|∇(iτφ− ψ)|2∥2 ≤ ε+ 2∥(iτI −A)w∥E ≤ 3ε

by the choice of w = (φ,ψ) and the definition of A. It follows |τ | ≤ 3εβ
β−2ε < τ0.

This contradiction yields m(τ)≥ε>0 for |τ |≥τ0, as needed for (4.7). ♢

Above the damping b acts everywhere in space (but only on the second com-
ponent of the state (u, u′)). It is an intriguing question for which b ≥ 0 the
solutions to the wave equation (4.6) tend to 0 exponentially, as the semigroup is
unitary if b = 0. In general this is a difficult problem beyond the scope of these
lectures. But on an interval we can show exponentially stability only assuming
that 0 ≤ b ∈W 1,∞ is non-zero. The proof is taken from Theorem 3.2.1 in [17].

Example 4.7. In Example 4.6 we take G = (0, 1) and a non-zero damping
0 ≤ b ∈ W 1,∞(0, 1). We define E, A and T (·) as in Example 4.6. Then T (·) is
exponentially stable.

Proof. As in the previous example the claim (4.7) implies ω0(A) < 0. Now

we have D(∆D) = W 2,2(0, 1) ∩W 1,2
0 (0, 1) by Example 1.48. So D(A) is com-

pactly embedded into E and thus has only point spectrum, see Theorem 3.34,
Remark 2.13 and Theorem 2.15 of [27]. Like in Example 4.6 one sees that A is
invertible. Note that W 1,∞(0, 1) = C1−([0, 1]) by Proposition 3.24 in [27].

1) Let w = (u, v) ∈ D(A) be an eigenvector for the eigenvalue iτ ∈ iR.
Integrating by parts, we compute

0 =
(
iτw −Aw

∣∣w)
E
= iτ

∫ 1

0
(|u′|2 + |v|2) ds−

∫ 1

0
(v′u′ + u′′v) ds+

∫ 1

0
b|v|2 ds

= iτ

∫ 1

0
(|u′|2 + |v|2) ds+ 2i Im

∫ 1

0
u′v′ ds+

∫ 1

0
b|v|2 ds

using v(0) = 0 = v(1). As the real part of the right-hand side, the last integral
is 0 which implies b|v| |v| = 0 and thus bv = 0. The eigenvalue equation
then yields iτu = v and u′′ = iτv = −τ2u, so that |τ | =: n ∈ N and u(s) =
c sin(nπs) for some c ̸= 0 by the 0-boundary condition. It follows 0 = b(s)v(s) =
icτb(s) sin(nπs) for all s ∈ (0, 1) which is impossible since τ ̸= 0 and b is a non-
zero continuous function. Hence, iR belongs to the resolvent set of A.

2) Assume that ∥R(iτ,A)∥ was unbounded for τ ∈R. Then there are numbers
τn ∈ R with |τn| → ∞ and elements wn = (un, vn) ∈ D(A) with ∥u′n∥22+∥vn∥22 =
1 for all n ∈ N and (fn, gn) := iτnwn −Awn → 0 in E as n→ ∞. We have

fn = iτnun − vn and gn = iτnvn − u′′n + bvn. (4.9)
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Hence, the products τnun = −i(vn+ fn) are uniformly bounded in L2(0, 1) and
thus (un) tends to 0 in L2(0, 1). Employing that ((fn, gn)|wn)E converges to 0,
as in part 1) we infer the limit

∫
b|vn|2 ds → 0. It leads to bvn → 0 in L2(0, 1)

as n→ ∞ since b is bounded. The equations (4.9) implies

−u′′n − τ2nun = iτnfn + gn − bvn

for n ∈ N. Pick a map φ ∈ C1([0, 1],R). We multiply the above identity by φu′n,
integrate over (0, 1), and take the real part. Note that 2Re(u′′nu

′
n) = d/ds |u′n|2

and 2Re(unu
′
n) = d/ds |un|2. Integration by parts then yields∫ 1

0
φ′(|u′n|2 + τ2n |un|2) ds− φ|u′n|2

∣∣1
0
= 2Re

∫ 1

0
(gn − bvn + iτnfn)φu

′
n ds

= 2Re

∫ 1

0

[
(gn − bvn)φu

′
n − i(φfn)

′τnun
]
ds

because of un(0) = 0 = un(1). The right-hand side converges to 0 as n → ∞
by the above observations and Hölder.
We now take special φ to exploit the above limit. Since τ2n |un|2 = |vn +

fn|2 the integral on the left tends to α if φ′ = α1. Choosing φ(s) = s and
φ(s) = 1 − s, we first deduce |u′n(1)|2 → 1 and |u′n(0)|2 → 1. Finally, we set
φ(s) =

∫ s
0 b(σ) dσ and β = φ(1) > 0. Using φ(0) = 0 and φ′ = b, we infer that

β = lim
n→∞

∫ 1

0
b(|u′n|2 + τ2n |un|2) ds = lim

n→∞

[ ∫ 1

0
b|u′n|2 ds+

∫ 1

0
|b

1
2 vn + b

1
2 fn|2 ds

]
.

(4.10)
Similar as above the last integral tends to 0 as n→ ∞. To treat the penultimate
one, we multiply the second equation in (4.9) by bun and integrate over (0, 1).
Integration by parts yields∫ 1

0

[
gnbun−iτnunbvn−bvnbun

]
ds = −

∫ 1

0
u′′nbun ds =

∫ 1

0
b|u′n|2 ds+

∫ 1

0
b′u′nun ds.

The previous results and Hölder imply that the first and last integral tend 0 as
n → ∞. So the same is true for the third one, which yields the contradiction
β = 0 via (4.10). □

We next introduce a more sophisticated concept for the long-time behavior.

Definition 4.8. A C0-semigroup T (·) has an exponential dichotomy if there
are constants N, δ > 0 and a projection P = P 2 ∈ B(X) such that T (t)P =
PT (t), T (t) : N(P ) → N(P ) has an inverse denoted by Tu(−t), and we have
the estimates ∥T (t)P∥ ≤ Ne−δt and ∥Tu(−t)(I − P )∥ ≤ Ne−δt for all t ≥ 0.

Clearly, exponential dichotomy coincides with exponential stability if P = I.
Setting Q = I − P , we recall from Lemma 2.16 in [24] that Q = Q2 and that
Xs := PX = N(Q) and Xu := QX = N(P ) are closed with Xs ⊕ Xu = X.
Exponential dichotomy then means that T (t)Xj ⊆ Xj for all t ≥ 0 and j =
{s, u}, that Ts(·) := T (·)|Xs is an exponentially stable C0-semigroup on Xs,
and that T (·) induces a C0-group Tu(·) on Xu which is exponentially stable in
backward time. (Use Lemma 1.28 for the group property.)
We first characterize this notion in terms of the spectrum of T (t).
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Proposition 4.9. A C0-semigroup T (·) has an exponential dichotomy if and
only if S1 := {λ ∈ C | |λ| = 1} ⊆ ρ(T (t)) for some (and hence all) t > 0.

Proof. Let T (·) have an exponential dichotomy. Take t > 0 and λ ∈ S1.
Then the series

Rλ = λ−1
∞∑
n=0

λ−nT (nt)P − λ−1
∞∑
n=1

λnTu(−nt)Q

converges in B(X). We then compute

(λI − T (t))Rλ =
(
I − λ−1T (t)

)( ∞∑
n=0

(
λ−1T (t)

)n
P −

∞∑
n=1

(
λ−1Tu(t)

)−n
Q

)

=

∞∑
n=0

(
λ−1T (t)

)n
P −

∞∑
k=1

(
λ−1T (t)

)k
P

−
∞∑
n=1

(
λ−1Tu(t)

)−n
Q+

∞∑
k=0

(
λ−1Tu(t)

)−k
Q

= P +Q = I.

Similarly one sees that Rλ(λI − T (t)) = I, and hence S1 belongs to ρ(T (t)).
Conversely, let S1⊆ρ(T (t)) for some t > 0. We define the ‘spectral projection’

P :=
1

2πi

∫
S1
R(λ, T (t)) dλ.

Theorem 5.5 in [27] shows that P 2 = P ∈ B(X), σ(Ts(t)) = σ(T (t)) ∩ B(0, 1),
and σ(Tu(t)) = σ(T (t)) \ B(0, 1) for all t > 0. Moreover, T (τ) commutes with
P for all τ ≥ 0 since the same is true for T (t) and thus its resolvent. Because
of r(Ts(t)) < 1, Proposition 4.2 yields the exponential stability of Ts(·) on
PX. Moreover, Tu(t) is invertible and σ(Tu(t)

−1) = σ(Tu(t))
−1 ⊆ B(0, 1) by

Proposition 1.20 in [27]. As for Ts(·), we infer that (Tu(t)−1)t≥0 is exponentially
stable on QX. Consequently, T (·) has an exponential dichotomy. □

In Corollary 4.17 and Theorem 4.19 we characterize exponential dichotomy
in terms of A in certain situations. Here we give a typical implication of this
property to the long-time behavior of inhomogeneous problems.

Proposition 4.10. Let A generate the C0-semigoup T (·) having an exponen-
tial dichotomy with projections P and Q = I − P . Assume that u0 ∈ X and
f ∈ C0(R≥0, X) satisfy

Qu0 = −
∫ ∞

0
Tu(−t)Qf(t) dt.

Then the mild solution u of the inhomogeneous problem (2.5) on R≥0 also be-
longs to C0(R≥0, X) and fulfills

u(t) = T (t)Pu0+

∫ t

0
T (t−s)Pf(s) ds−

∫ ∞

t
Tu(t−s)Qf(s) ds, t ≥ 0. (4.11)
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Proof. Let t ≥ 0. We first note that the integrals in the displayed equa-
tions above and those below exist because of the exponential dichotomy. Using
Duhamel’s formula (2.6), P +Q = I and the assumption, we compute

u(t) = T (t)Pu0 + Tu(t)Qu0 +

∫ t

0
T (t− s)Pf(s) ds+

∫ t

0
Tu(t− s)Qf(s) ds

= T (t)Pu0 −
∫ ∞

0
Tu(t− s)Qf(s) ds+

∫ t

0
T (t− s)Pf(s) ds

+

∫ t

0
Tu(t− s)Qf(s) ds

so that (4.11) is true.
Let ε > 0. There is a time s0 ≥ 0 such that ∥f(s)∥ ≤ ε for all s ≥ s0. Let

t ≥ s0. Formula (4.11) and the exponential dichotomy lead to the estimate

∥u(t)∥ ≤ Ne−δt∥u0∥+
∫ s0

0
Ne−δ(t−s)∥f∥∞ ds+

∫ t

s0

Ne−δ(t−s)εds

+

∫ ∞

t
Ne−δ(s−t)ε ds

≤ Ne−δt
(
∥u0∥+ δ−1(eδs0 − 1)∥f∥∞

)
+ 2Nδ−1ε,

which easily implies that u(t) → 0 as t→ ∞. □

4.2. Spectral mapping theorems

Let A generate the C0-semigroup T (·). We say that T (·) or A satisfy the
spectral mapping theorem if

σ(T (t)) \ {0} = etσ(A) for all t ≥ 0, (4.12)

where we put et∅ := ∅ for t > 0 and e0∅ := {1}. Observe that we have to exclude

0 on the left-hand side since 0 does not belong to etσ(A). Theorem 5.3 of [27]

shows the identity σ(T (t)) = etσ(A) for A ∈ B(X).
Assume for a moment that (4.12) is true for T (·). It follows

r(T (t)) = max
{
|etµ|

∣∣µ ∈ σ(A)
}
= max

{
etReµ

∣∣µ ∈ σ(A)
}
= ets(A),

ω0(A) = s(A), ω0(A) < 0 ⇐⇒ s(A) < 0,
(4.13)

for all t ≥ 0, where we employ Proposition 4.2 in the second line. Using also
Proposition 4.9, we also deduce from (4.12) the equivalence

T (·) has exp. dichotomy ⇐⇒ eiR = S1 ⊆ ρ(T (1)) ⇐⇒ iR ⊆ ρ(A). (4.14)

Example 4.3 thus tells us that the spectral mapping theorem is not valid for
some C0-semigroups. We first explore which partial results are still true. For
this purpose, we recall the following concepts and results from spectral theory
for a closed operator A. We define by

σp(A) =
{
λ ∈ C

∣∣λI −A is not injective
}
,

σap(A) =
{
λ ∈ C

∣∣∀n ∈ N ∃xn∈ D(A) : ∥xn∥ = 1, λxn −Axn → 0 (n→ ∞)
}
,

σr(A) =
{
λ ∈ C

∣∣ (λI −A)D(A) is not dense in X
}
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the point spectrum, the approximate point spectrum and the residual spectrum
of A, respectively. We call the elements of σap(A) approximate eigenvalues and
the corresponding xn approximate eigenvectors. Proposition 1.19 of [27] shows

σap(A) = σp(A) ∪
{
λ ∈ C

∣∣ (λI −A)D(A) is not closed in X
}
, (4.15)

σ(A) = σap(A) ∪ σr(A), (4.16)

∂σ(A) ⊆ σap(A). (4.17)

Let A be also densely defined. Theorem 1.24 of [27] then says that

σr(A) = σp(A
∗), σ(A) = σ(A∗), and R(λ,A)∗ = R(λ,A∗) (4.18)

for λ ∈ ρ(A). The following spectral inclusion theorem provides the easy inclu-
sion in (4.12) and in related formulas for the parts of the spectrum.

Proposition 4.11. Let A generate the C0-semigroup T (·), and t ≥ 0. We
then have

etσ(A) ⊆ σ(T (t)) and etσj(A) ⊆ σj(T (t)) for j∈{p, ap, r}.

(Approximate) Eigenvectors of A for the (approximate) eigenvalue λ are (ap-
proximate) eigenvectors of T (t) for the (approximate) eigenvalue etλ.

Proof. Let λ ∈ C and t ≥ 0. In view of (4.16), we only have to treat the
parts σj . Recall from Lemma 1.18 that

eλtx− T (t)x = (λI −A)

∫ t

0
eλ(t−s)T (s)x ds for x ∈ X,

=

∫ t

0
eλ(t−s)T (s)(λx−Ax) ds for x ∈ D(A).

Hence, if λx = Ax for some x ∈ D(A) \ {0}, then eλtx = T (t)x and x is an
eigenvector of T (t) for the eigenvalue eλt ∈ σp(T (t)). If (λI − A)D(A) is not

dense in or not equal to X, then R(eλtI−T (t)) has the same property. Finally,
let xn be approximate eigenvectors of A for λ ∈ σap(A). It follows that

∥eλtxn − T (t)xn∥ ≤ c∥λxn −Axn∥ −→ 0

as n→ ∞ so that xn are approximate eigenvectors for eλt ∈ σap(T (t)). □

We have thus shown the inequality s(A) ≤ ω0(A) from Proposition 4.2 again.
We also obtain the analogous implication for exponential dichotomy.

Corollary 4.12. Let A generate the C0-semigroup T (·) having an exponen-

tial dichotomy. We then have iR ⊆ ρ(A) since eiR = S1 ⊆ ρ(T (1)) ⊆ C \ eσ(A)
by Propositions 4.9 and 4.11.

In the following example we use the spectral inclusion to compute the spec-
tra of the translation semigroup on 1-periodic functions. Here the spectral
mapping theorem fails for irrational t, but a variant with an additional closure
holds. Moreover, the spectrum of T (t) changes drastically under arbitrarily
small perturbations of t.
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Example 4.13. Let X = {f ∈ C(R) | ∀ t ∈ R : f(t) = f(t + 1)} be endowed
with the supremum norm and T (t)f = f(· + t) for t ∈ R and f ∈ X. It is easy
to see that X is a Banach space and that T (·) is an isometric C0-group on X
(since each f ∈ X is uniformly continuous). As in Example 1.21 one can verify
that the generator A of T (·) is given by Af = f ′ with D(A) = C1(R) ∩X. Let
Γk = {λ ∈ C |λk = 1} for k ∈ N. We claim that

σ(A) = σp(A) = 2πiZ,

σ(T (t)) =

{
S1 = exp(tσ(A)), t ∈ R≥0 \Q,
Γk = etσ(A), t = j/k, j, k ∈ N, without common divisors.

Proof. Clearly, e2πin belongs to D(A) and Ae2πin = 2πine2πin for all n ∈ Z.
Note that T (n) = I for all n ∈ N0. Proposition 4.11 thus yields eσ(A) ⊆
σ(T (1)) = {1} so that σ(A) ⊆ 2πiZ. The first assertion is proved.

Since T (t) is isometric and invertible, formula (4.1) implies that

r(T (t)) = 1 = r(T (t)−1) = min
{
|λ|
∣∣λ ∈ σ(T (t))

}
,

where we also use Proposition 1.20 of [27]. This means that σ(T (t)) is included

in S1 for t ≥ 0. If t ∈ R≥0 \ Q, it is known that etσ(A) = et2πiZ is dense in S1.
The second claim then follows from Proposition 4.11 and the closedness of the
spectra because of

S1 = etσ(A) ⊆ σ(T (t)) ⊆ S1.
Let t = j/k for some j, k ∈ N without common divisors. The spectral map-

ping theorem for bounded operators from Theorem 5.3 of [27] then yields

σ(T (t))k = σ
(
T
( j
k

)k)
= σ(T (j)) = {1};

i.e., σ(T (t)) ⊆ Γk. On the other hand, the set etσ(A) = exp(2πi jkZ) is equal to Γk
and contained in σ(T (t)) by Proposition 4.11, establishing the last assertion. □

In order to use spectral information on A to show exponential stability or
dichotomy, we need the converse inclusions in Proposition 4.11. As we have
seen they fail in general for the spectrum itself. We next show them for σp
and σr, starting with the spectral mapping theorem for the point spectrum. (In
Example 4.13 it implies that T (t) has not only point spectrum for t /∈ Q though
σ(A) = σp(A).)

Theorem 4.14. Let A generate the C0-semigroup T (·). We then have

σp(T (t)) \ {0} = etσp(A) for all t ≥ 0.

Proof. We have to prove σp(T (t)) \ {0} ⊆ etσp(A) since the other inclusion
was shown in Proposition 4.11. Let t > 0, λ ∈ C and x ∈ X \ {0} such that
eλtx = T (t)x. Hence, the function u(s) = e−λsT (s)x has period t > 0. Suppose
that all Fourier coefficients

1√
t

∫ t

0
e−

2πin
t
su(s) ds, n ∈ Z,

would vanish. Therefore all Fourier coefficients of the scalar function φx∗(s) =
⟨u(s), x∗⟩ are 0 for any x∗ ∈ X∗. Parseval’s formula (see Example 3.17 of [24])
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then yields φx∗ = 0 for all y x∗ ∈ X∗, and so u = 0 by the Hahn–Banach
theorem. This is wrong and thus there exists an index m ∈ Z with

y :=

∫ t

0
e−

2πims
t e−λsT (s)x ds ̸= 0.

Lemma 1.18 shows that y ∈ D(A) and(
A−

(
λ+ 2πim

t

)
I
)
y = e−λte−

2πim
t
tT (t)x− x = 0.

Therefore the number µ := λ + 2πim
t belongs to σp(A) and hence eλt = eµt to

etσp(A). We have shown σp(T (t)) ⊆ etσp(A), as needed. □

Formula (4.18) now suggests to use duality and derive a spectral mapping
theorem for σr from Theorem 4.14. Unfortunately, T (·)∗ may fail to be strongly
continuous. (For instance the adjoint T (·)∗ of the left translations T (·) on
L1(R) are the right translations on L∞(R) which are not strongly continuous
by Example 1.8.) To deal with this problem, we introduce a new concept.

1) Let A generate the C0-semigroup T (·) and set C = sup0≤t≤1 ∥T (t)∥. We
define the sun dual

X⊙ =
{
x∗ ∈ X∗ ∣∣T (t)∗x∗ → x∗ as t→ 0

}
.

(One has X⊙ = X∗ if X is reflexive by Paragraph I.5.14 in [7] or an exercise.)
We first check that X⊙ is a closed subspace of X∗ being invariant under T (·)∗.1

Let x∗n ∈ X⊙ with x∗n → x∗ in X∗ as n→ ∞. Take ε > 0. There is an index
k ∈ N with ∥x∗k−x∗∥ ≤ ε. We fix a time tε ∈ (0, 1] such that ∥T (t)∗x∗k−x∗k∥ ≤ ε
for all t ∈ [0, tε]. Since ∥T (t)∥ = ∥T (t)∗∥ by Proposition 5.42 of [24], it follows

∥T (t)∗x∗ − x∗∥ ≤ ∥T (t)∗∥ ∥x∗− x∗k∥+ ∥T (t)∗x∗k − x∗k∥+ ∥x∗k− x∗∥ ≤ (2 + C)ε,

so that x∗ ∈ X⊙ and X⊙ is closed. Clearly, T (·)∗ is a semigroup on X∗. Let
t, τ ≥ 0 and x∗ ∈ X⊙. We then obtain the invariance of X⊙ by computing

T (t)∗T (τ)∗x∗ − T (τ)∗x∗ = T (τ)∗(T (t)∗x∗ − x∗) −→ 0, t→ 0,

By Lemma 1.7, the operators T (t)⊙ = T (t)∗ ↾X⊙ for t ≥ 0 thus form a C0-
semigroup on X⊙, endowed with ∥·∥X∗ . Its generator is denoted by A⊙.

2) We have to show that the point spectra of the duals and sun duals are the
same. Let x∗ ∈ D(A⊙). Take x ∈ D(A). We derive A⊙ ⊆ A∗ from

⟨x,A⊙x∗⟩ = lim
t→0

〈
x, 1t (T (t)

∗ − I)x∗
〉
= lim

t→0

〈
1
t (T (t)− I)x, x∗

〉
= ⟨Ax, x∗⟩,

As restrictions, the operators A⊙ and T (t)⊙ satisfy the inclusions

σp(A
⊙) ⊆ σp(A

∗) and σp(T (t)
⊙) ⊆ σp(T (t)

∗) for t ≥ 0.

3) To show the converse relations, we first prove D(A∗) ⊆ X⊙. Let x∗ ∈ D(A∗)
and t ∈ [0, 1]. Lemma 1.18 yields

∥T (t)∗x∗ − x∗∥ = sup
x∈X,∥x∥≤1

|⟨x, T (t)∗x∗ − x∗⟩| = sup
∥x∥≤1

|⟨T (t)x− x, x∗⟩|

= sup
∥x∥≤1

∣∣∣〈A∫ t

0
T (s)x ds, x∗

〉∣∣∣ = sup
∥x∥≤1

∣∣∣〈 ∫ t

0
T (s)x ds,A∗x∗

〉∣∣∣ ≤ C∥A∗x∗∥t.

1The next paragraph was omitted in the lectures, but treated in an earlier exercise.
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This means that x∗ belongs to X⊙ and hence

D(A∗) ⊆ X⊙. (4.19)

4) Let T (t)∗x∗ = eλtx∗ for some x∗ ∈ X∗ \ {0}, λ ∈ C, and t ≥ 0. Take
µ ∈ ρ(A∗) = ρ(A), cf. (4.18). Note that R(µ,A)∗ = R(µ,A∗) is injective and
mapsX∗ into D(A∗) ⊆ X⊙ and that it commutes with T (t)∗. Hence, R(µ,A∗)x∗

is an eigenvector for T (t)⊙ and the eigenvalue eλt.
Let x∗ ∈ D(A∗) \ {0} with A∗x∗ = λx∗. As above, we obtain the limit∥∥∥1
t
(T (t)⊙x∗ − x∗)− λx∗

∥∥∥ = sup
x∈X,∥x∥≤1

∣∣∣〈A1

t

∫ t

0
T (s)x ds, x∗

〉
− ⟨x, λx∗⟩

∣∣∣
= sup

∥x∥≤1

∣∣∣〈x, 1
t

∫ t

0
T (s)∗A∗x∗ ds− λx∗

〉∣∣∣
≤
∥∥∥1
t

∫ t

0
λT (s)⊙x∗ ds− λx∗

∥∥∥ −→ 0

as t→ 0, using A∗x∗ = λx∗ and (4.19). We have thus shown

σp(A
⊙) = σp(A

∗) and σp(T (t)
⊙) = σp(T (t)

∗) for all t ≥ 0. (4.20)

These equalities also hold for the full spectra. For this and further information
we refer to Proposition IV.2.18 and §II.2.6 of [7].
We now easily obtain the spectral mapping theorem for the residual spectrum.

Theorem 4.15. Let A generate the C0-semigroup T (·). We then have

σr(T (t)) \ {0} = etσr(A) for all t ≥ 0.

Proof. Let t ≥ 0. Combining (4.18), (4.20) and Theorem 4.14, we obtain

σr(T (t)) \ {0} = σp(T (t)
∗) \ {0} = σp(T (t)

⊙) \ {0} = etσp(A
⊙) = etσp(A

∗)

= etσr(A). □

As a result, the spectral mapping theorem can only fail if we are not able
to transport approximate eigenvectors from T (t) to A. This can be done if
the semigroup has some additional regularity, as stated in the spectral mapping
theorem for eventually norm continuous semigroups due to Phillips (1951). Be-
sides analytic C0-semigroups, this class includes various generators arising in
retarded problems, see Example 4.18, and also in mathematical biology, see the
comments before Theorem 5.8.

Theorem 4.16. Let A generate the C0-semigroup T (·) and let the map

(t0,∞) → B(X); t 7→ T (t), (4.21)

be continuous (in operator norm) for some t0 ≥ 0. Then T (·) satisfies the
spectral mapping theorem

σ(T (t)) \ {0} = etσ(A) for all t ≥ 0.

Assumption (4.21) is true if T (·) is analytic (then t0 = 0) or if T (t0) is compact
for some t0 > 0.
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Proof. Let T (t0) be compact. Then the closure of T (t0)BX(0, 1) is com-
pact. By an exercise in Functional Analysis, the map

[t0,∞) → X; t 7→ T (t)x = T (t− t0)T (t0)x,

thus is uniformly continuous for x ∈ BX(0, 1) and so (4.21) is true.
In view of Proposition 4.11, Theorem 4.15 and formula (4.16), it remains to

show that σap(T (t)) \ {0} ⊆ etσap(A) for all t > 0. To this aim, let λ ∈ C, τ > 0
and xn ∈ X satisfy ∥xn∥ = 1 for all n ∈ N and λxn − T (τ)xn → 0 as n → ∞.
We look for a number µ ∈ σap(A) with λ = eτµ. Considering the C0-semigroup
(e−νsT (sτ))s≥0 with λ = eν and its generator B = τA − νI, see Lemma 1.17,
we can assume that λ = 1, τ = 1 and µ ∈ 2πiZ.

Fix some k ∈ N with k > t0. Let n ∈ N. By (4.21), the maps [0, 1] → X; s 7→
T (s)T (k)xn, are continuous uniformly for n; i.e., equi-continuous. Moreover,

∥T (k)xn − xn∥ ≤ ∥T (k − 1)(T (1)xn − xn)∥+ · · ·+ ∥T (1)xn − xn∥
tends to 0 as n → ∞. This fact implies that also the functions [0, 1] → X;
s 7→ T (s)(T (k)xn − xn), are equi-continuous. Hence, the same is true for the
differences [0, 1] → X; s 7→ T (s)xn.
Choose x∗n ∈ X∗ such that ∥x∗n∥ ≤ 1 and ⟨xn, x∗n⟩ ≥ 1

2 for all n ∈ N, using the
Hahn–Banach theorem. Since the functions φn : [0, 1] → C; s 7→ ⟨T (s)xn, x∗n⟩,
are equi-continuous and uniformly bounded, the Arzelà–Ascoli theorem (see
Theorem 1.47 in [24]) provides a subsequence (φnj )j converging in C([0, 1]) to
a function φ. Observe that

∥φ∥∞ ≥ |φ(0)| = lim
j→∞

|φnj (0)| = lim
j→∞

|⟨xnj , x
∗
nj
⟩| ≥ 1

2

showing that φ ̸= 0. Example 3.17 of [24] thus implies that φ has a nonzero
Fourier coefficient; i.e., there exists an index m ∈ Z such that for µ := 2πim

we have
∫ 1
0 e−µsφ(s) ds ̸= 0. We now set zn =

∫ 1
0 e−µsT (s)xn ds. Lemma 1.18

leads to zn ∈ D(A) and

(µI −A)zn = (I − e−µT (1))xn = xn − T (1)xn −→ 0

as n→ ∞. We further compute

lim inf
j→∞

∥znj∥ ≥ lim inf
j→∞

|⟨znj , x
∗
nj
⟩| = lim inf

j→∞

∣∣∣ ∫ 1

0
e−µs⟨T (s)xnj , x

∗
nj
⟩ds
∣∣∣

=
∣∣∣ ∫ 1

0
e−µsφ(s) ds

∣∣∣ > 0

so that µ belongs to σap(A), as desired. □

The above theorem yields the desired characterizations (4.13) and (4.14).

Corollary 4.17. Let A generate the C0-semigroup T (·) satisfying (4.21).
Then the following equivalences hold.
a) The semigroup T (·) is exponentially stable if and only if s(A) < 0.
b) The semigroup T (·) has an exponential dichotomy if and only if iR ⊆ ρ(A).

In Example 3.16 of [26] we apply statement a) to a reaction-diffusion system.
Here we discuss a simpler example.
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Example 4.18. Let A,B ∈ Cm×m. For a given ‘pre-history’ ϕ ∈ X =
C([−1, 0],Cm) we consider the delay equation

u′(t) = Au(t) +Bu(t− 1), t ≥ 0, u(θ) = ϕ(θ), θ ∈ [−1, 0]. (4.22)

It can easily be solved as the solution is given iteratively by Duhamel’s formula
on intervals [n, n + 1] for n ∈ N0. (For more general retardation terms as in
Section VI.6 of [7], one can use fixed-point arguments.) Since we need semigroup
theory to study the long-time behavior, we instead look at the operator

Lϕ = ϕ′ with D(L) =
{
ϕ ∈ C1([−1, 0],Cm)

∣∣ϕ′(0) = Aϕ(0) +Bϕ(−1)
}
.

On the space X of ‘history functions’ θ 7→ vt(θ) := v(t + θ) it generates a
C0-semigroup T (·) having the translation property

(T (t)ϕ)(θ) =

{
ϕ(t+ θ), t+ θ ≤ 0,

(T (t+ θ)ϕ)(0), t+ θ > 0,

for t ≥ 0 and θ ∈ [−1, 0]. Let ϕ ∈ D(L). Then u(t) = ϕ(t) for t ≤ 0 and u(t) =
(T (t)ϕ)(0) for t > 0 gives the unique solution in C([−1,∞),Cm)∩C1(R≥0,Cm)
of (4.22). These results are special cases of Theorem VI.6.1, Lemma VI.6.2,
and Corollary VI.6.3 of [7]; a version of (4.22) was also treated in an exercise.
We first check that T (·) satisfies (4.21). To this aim, note that Duhamel’s

formula for (4.22) and the above observations yield

(T (t)ϕ)(0) = etAϕ(0) +

∫ t

0
e(t−s)AB(T (s)ϕ)(−1) ds, t ≥ 0,

for ϕ ∈ D(L) and thus for all ϕ ∈ X by density. For b ≥ t ≥ τ ≥ 1 and
θ ∈ [−1, 0] we deduce

T (t)ϕ(θ)− T (τ)ϕ(θ) = T (t+ θ)ϕ(0)− T (τ + θ)ϕ(0)

=
[
e(t+θ)A− e(τ+θ)A

]
ϕ(0) +

∫ t+θ

τ+θ
e(t+θ−s)AB(T (s)ϕ)(−1)ds

+

∫ τ+θ

0

[
e(t+θ−s)A − e(τ+θ−s)A

]
B(T (s)ϕ)(−1) ds.

Since A is bounded, it follows ∥T (t)ϕ − T (τ)ϕ∥∞ ≤ c(b)|t − τ |∥ϕ∥∞ so that
(4.21) is valid with t0 = 1.
By Arzela–Ascoli, see Corollary 1.48 in [24], the domain D(L) is compactly

embedded into X. Remark 2.13 and Theorem 2.15 of [27] then show that σ(A)
consists of eigenvalues only. By the definition of L, we have ϕ ∈ D(L)\{0} and
λϕ = Lϕ for λ ∈ C if and only if ϕ = eλx for some non-zero vector x ∈ Cm
with λx = Ax + e−λBx if and only if ξ(λ) := det(λI − A − e−λB) = 0. (The
latter identity is called ‘characteristic equation.’) Theorem 4.16 thus says that
the delay semigroup satisfies T (·) satisfies the spectral mapping theorem, and
its exponentially stability is equivalent to

s(L) = sup
{
Reλ

∣∣λ ∈ C, ξ(λ) = 0
}
< 0

by Corollary 4.17. In Section VI.6.c of [7] this condition is much improved in
the positive case etA ≥ 0 and B ≥ 0. ♢
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We add three other important results on the long-time behavior of semigroups
without proof, starting with Gearhart’s spectral mapping theorem. It was shown
by Gearhart in 1978 for quasi-contraction semigroups and independently by
Herbst (1983), Howland (1984), and Prüss (1984) for general C0-semigroups. It
says that spectral information on A combined with resolvent estimates yield the
corresponding spectra for the semigroup, provided that X is a Hilbert space.
For a proof we refer to Theorem 2.5.4 in [20].

Theorem 4.19. Let A generate the C0-semigroup T (·) on a Hilbert space X.
Let t > 0 and λ ∈ C. Then

eλt ∈ ρ(T (t)) ⇐⇒ ∀ k ∈ Z : λk := λ+
2πik

t
∈ ρ(A), sup

k∈Z
∥R(λk, A)∥ <∞.

We add two results on weaker decay properties, assuming that the semigroup
is bounded. As in (4.5), the first one deals with classical solutions; i.e., initial
values in D(A). Since one looks at estimates of T (t) in B(X1, X), one can obtain
decay rates which are not exponential in contrast to convergence in B(X), cf.
Proposition 4.2. To obtain polynomial decay, one can allow for a corresponding
growth of the resolvent along iR.

Theorem 4.20. Let A generate the bounded C0-semigroup T (·) on a Hilbert
space X and let α > 0. The follwing two assertions are equivalent.
a) ∥T (t)x∥ ≤ Nt−1/α∥x∥A for some N > 0 and all t ≥ 1 and x ∈ D(A).
b) σ(A) ⊆ C− and ∥R(iτ,A)∥ ≤ C |τ |α for some C > 0 and all τ ∈ R\ [−1, 1].

Property b) and Remark 1.16 imply that |Imλ| ≥ c|Reλ|−1/α for all λ ∈ σ(A)
with Reλ ≤ −δ for some c, δ > 0. The implication ‘b)⇒ a)’ is due to Borichev
and Tomilov (see [6] from 2010), who also constructed an example saying that
it fails in an L1-space. The converse implication was shown by Batty and
Duyckaerts in [5] from 2008 even for general X and other rates. In this more
general framework they also proved a variant of ‘b)⇒ a)’ with a logarithmic
correction. A version of Theorem 4.20 for a large class of decay rates was
established in [23].

In the setting of the above theorem, by density one obtains strong stability
of T (·); i.e., T (t)x tends to 0 as t → ∞ for all x ∈ X. But this fact is true in
much greater generality, as established already in 1988 by Arendt and Batty as
well as, with a different proof, by Lyubich and Vũ.

Theorem 4.21. Let A generate the bounded C0-semigroup T (·) on a Banach
space X. Assume that σ(A) ∩ iR is countable and that σp(A

∗) ∩ iR = ∅. (The
latter is true if σp(A) ∩ iR = ∅ and X is reflexive.) Then T (·) strongly stable.

The proof by Lyubich and Vũ can be found in Theorem V.2.21 of [7], and
we refer to Lemma V.2.20 in [7] for the addendum. A variety of related results
are discussed in [3].



CHAPTER 5

Stability of positive semigroups

Evolution1 equations often describe the behavior of positive quantities, such
as the concentration of a species or the distribution of mass or temperature. It
is then a crucial property of the system that non-negative initial functions lead
to non-negative solutions. This property of positivity has to be verified in the
applications, of course, and we will see below that it implies many additional
useful features of the semigroup solving the equation. To deal with positivity, we
consider as state spaces only the following classes of Banach spaces E consisting
of scalar-valued functions.

Standing hypothesis. In this chapter, E denotes a function space of the
type Lp(µ), C0(U) or C(K), where p ∈ [1,∞), (S,A, µ) is a σ–finite measure
space, U is a locally compact metric space (e.g., an open subset of Rm), or K
is a compact metric space, respectively.

We stress that we still take C as the scalar field in order to use spectral theory.
Actually, we could work in the more general class of (complex) Banach lattices
E, but for simplicity we restrict ourselves to the above indicated setting. It
suffices for the typical applications; however for certain deeper investigations
one actually needs the more abstract framework. We refer to the monographs
[4] and [19] for a discussion of positive C0-semigroups in Banach lattices.
In the spaces E given by the standing hypothesis, we have the usual concept of

non-negative functions f ≥ 0, of positive and negative parts f± and domination
f ≤ g of real-valued functions, and of the absolute value |f |. We write E+ =
{f ∈ E | f ≥ 0} for the cone of non-negative functions, which is closed in E.
For all f, g ∈ E, it holds ∥|f |∥ = ∥f∥, and 0 ≤ f ≤ g implies that ∥f∥ ≤ ∥g∥.

Recall from Example 3.6 that an operator T ∈ B(E) is called positive if
Tf ≥ 0 for every f ∈ E+. One then writes T ≥ 0. A C0-semigroup T (·)
is positive if each operator T (t), t ≥ 0, is positive. We discuss a few basic
properties of positive operators T, S ∈ B(E) which are used below without
further notice. First, products of positive operators are positive. Next,

for all f, g ∈ E with f ≥ g we have T (f − g) ≥ 0 ⇐⇒ Tf ≥ Tg.

For real-valued f , also the image Tf = Tf+ − Tf− has real values. Moreover,
Tf ≤ |Tf | ≤ Tf+ + Tf− = T |f |. For complex-valued f , we take a point x in
Ω ∈ {S,U,K}. Choose a number α such that |α| = 1 and |Tf(x)| = αTf(x),
where we fix a representative of Tf if E = Lp. It follows that

|Tf(x)| = αTf(x) = T (Re(αf))(x) + iT (Im(αf))(x) = T (Re(αf))(x)

1This chapter was not part of the lectures.
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≤ T (|Re(αf)|)(x) ≤ T (|αf |)(x) = T (|f |)(x).

Consequently,

|Tf | ≤ T |f | holds for all f ∈ E.

We further write 0 ≤ T ≤ S if 0 ≤ Tf ≤ Sf for all f ∈ E+. Let 0 ≤ T ≤ S.
Then |Tf | ≤ T |f | ≤ S |f | is true for all f ∈ E, and hence

∥T∥ = sup
∥f∥≤1

∥Tf∥ = sup
∥f∥≤1

∥|Tf |∥ ≤ sup
∥f∥≤1

∥S |f |∥ ≤ ∥S∥.

We recall from Corollary 3.25 that the semigroup is positive if and only
if there exists a number ω ≥ ω0(A) such that R(λ,A) ≥ 0 for all λ > ω.
In Example 3.26 we have seen that the Dirichlet–Laplacian ∆D with domain
W 2,p(G)∩W 1,p

0 (G) generates a positive C0-semigroup on Lp(G) for p ∈ (1,∞),
where G = Rm or G ⊆ Rm is bounded and open with ∂G ∈ C2.

To discuss the Neumann Laplacian we need Hopf’s lemma. For w ∈ C2(B)∩
C1(B), it is a special case of the lemma in Section 6.4.2 in [8]. Our result can
be shown in the same way using Proposition 3.1.10 of [18].

Lemma 5.1. Let B = B(y, ρ) ⊂ Rm be an open ball and w belong to W 2,p(B)
for all p ∈ (1,∞) and satisfy 0 ≤ ∆w ∈ C(B). Assume that there is a apoint
x0 ∈ ∂B such that w(x0) > w(x) for all x ∈ B. Then ∂νw(x0) > 0 for the outer
normal ν(x) = ρ−1(x− y) of ∂B.

Example 5.2. Let G ⊆ Rm be open and bounded with boundary of class
C2, or let G = Rm. Set E = Lp(G) for p ∈ (1,∞). The Neumann Laplacian
on E is given by ∆Nu = ∆u on D(∆N ) = {u ∈ W 2,p(G) | ∂νu = 0}. One
sees as in Example 2.30 that the operator eiθ∆N is dissipative on Lp(G), if

0 ≤ |θ| ≤ arccot( |p−2|
2
√
p−1

) ∈ (0, π/2]. Theorem 9.3.5 in [15] further implies that

that I −∆N is surjective. Consequently, ∆N generates a contractive analytic
C0-semigroup on E by Corollary 2.27.
To show positivity, let λ > 0 and 0 ≤ f ∈ C0(G). Set u = R(λ,∆N )f .

Corollary 3.1.24 in [18] implies that u belongs to D(∆N ) for all p ∈ (1,∞) and
∆u to C(G). As in Example 3.26, we see that u takes real values. Suppose there
was a point x0 ∈ G such that u(x0) < 0. The function u thus has a minimum
u(x1) < 0 for some x1 ∈ G. We then have ∆u(x1) = λu(x1)− f(x1) < 0 and so
∆u(x) ≤ 0 for all x in a neighborhood of x1 in G. If x1 ∈ G, Proposition 3.1.10
in [18] then yields ∆u(x1) ≥ 0 which is impossible.
So all such minimina occur on ∂G. Since ∂G is C2, we can find an open

ball B ⊆ G with B ∩ ∂G = {x1} on which −u satisfies the assumptions of
Lemma 5.1. Hence, ∂νv(x1) < 0 contradicting u ∈ D(∆N ). We have shown
that R(λ,∆N )f ≥ 0 and by density the resolvent is positive. The positivity of
the semigroup then follows from Corollary 3.25. ♢

The next result collects the basic features of the spectral theory of positive
semigroups. For a generator A we define two more quantities

s0(A) = inf
{
r > s(A)

∣∣ supµ∈Cr
∥R(µ,A)∥ <∞

}
,

ω1(A) = inf
{
ω ∈ R

∣∣∃Mω ≥ 1 ∀ t ≥ 0, x ∈ D(A) : ∥T (t)x∥ ≤Mωe
ωt∥x∥A

}
.
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Theorem 5.3. Let A generate the positive C0-semigroup T (·) on E. Then
the following assertions hold.

a) Let Reλ > s(A) and f ∈ E. Then the improper Riemann integral∫ ∞

0
e−λtT (t)f dt = R(λ,A)f (5.1)

exists. Moreover, ∥R(λ,A)∥ ≤ ∥R(Reλ,A)∥.
b) s(A) = s0(A).

c) Let σ(A) ̸= ∅. Then s(A) belongs to σ(A).

d) For λ ∈ ρ(A), the resolvent R(λ,A) is positive if and only if λ > s(A).

e) s(A) = ω1(A). In particular, if s(A) < 0, then there are N, δ > 0 such that
∥T (t)x∥ ≤ Ne−δt∥x∥A for all x ∈ D(A) and t ≥ 0.

Proof. a) For λ > ω0(A), Corollary 3.25 yields that R(λ,A) ≥ 0. If
µ ∈ (s(A), λ) with 0 < λ− µ < ∥R(λ,A)∥−1, the Neumann series gives

R(µ,A) =

∞∑
n=0

(λ− µ)nR(λ,A)n+1 ≥ 0.

Since ∥R(r,A)∥ is bounded for r ≥ s(A) + ε and any fixed ε > 0, we deduce
the positivity of R(µ,A) for all µ > s(A) (establishing one implication of asser-
tion d)). Let µ > s(A), Reα > 0, f ∈ E and t ≥ 0. We set

V (t)f =

∫ t

0
e−µsT (s)f ds.

From Lemma 1.18 we deduce that

0 ≤ V (t)f = R(µ,A)f −R(µ,A)e−µtT (t)f ≤ R(µ,A)f

for all f ∈ E+. Hence, ∥V (t)∥ ≤ ∥R(µ,A)∥ for all t ≥ 0, and thus the function
R≥0 ∋ t 7→ e−αtV (t)f is integrable. Integrating by parts, we deduce∫ t

0
e−αse−µsT (s)f ds =

∫ t

0
αe−αsV (s)f ds+ e−αtV (t)f

for all f ∈ E. We can now let t → ∞, obtaining the integral in (5.1) with
λ = µ + α on the left-hand side. Proposition 1.20 then yields λ ∈ ρ(A) and
(5.1). Since we can vary µ > s(A), these results also hold for all Reα ≥ 0. It
further follows that

|R(µ+ α,A)f | ≤
∫ ∞

0
e−(µ+Reα)t|T (t)f |dt ≤

∫ ∞

0
e−µtT (t)|f |dt = R(µ,A)|f |.

This inequality implies that ∥R(µ + α,A)∥ ≤ ∥R(µ,A)∥, and thus the second
assertion in a) is true.

b) It is clear that s(A) ≤ s0(A). The converse inequality follows from a) and
the fact that ∥R(r,A)∥ is bounded for r ≥ s(A) + ε and any fixed ε > 0.

c) Assume that σ(A) ̸= ∅. We can find λn ∈ ρ(A) tending to σ(A) with
Reλn > s(A) > −∞. Assertion a) and (1.8) imply that

∥R(Reλn, A)∥ ≥ ∥R(λn, A)∥ ≥ d(λn, σ(A))
−1 −→ ∞
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as n → ∞. If s(A) ∈ ρ(A), then R(Reλn, A) would converge to R(s(A), A)
leading to a contradiction. The spectral bound thus belongs to σ(A).

d) Let R(λ,A) be positive for some λ ∈ ρ(A). Take 0 ̸= f ∈ E+. The
function 0 ̸= u := R(λ,A)f is also non-negative and Au = limt→0

1
t (T (t)f − f)

is real-valued. Hence, λu = f+Au is real, so that λ ∈ R. Let µ > max{λ, s(A)}.
Part a) of the proof shows that R(µ,A) ≥ 0, and thus

R(λ,A) = R(µ,A) + (µ− λ)R(µ,A)R(λ,A) ≥ R(µ,A) ≥ 0.

Using s(A) ∈ σ(A) and (1.8), we deduce that

1

µ− s(A)
≤ 1

d(µ, σ(A))
≤ ∥R(µ,A)∥ ≤ ∥R(λ,A)∥.

If λ ≤ s(A), the limit µ→ s(A) would give a contradiction. Hence, d) holds.

e) Let λ > s(A) and f ∈ D(A). Assertion a) then implies that

e−λtT (t)f = f +

∫ t

0
e−λsT (s)(A− λI)f ds −→ f +R(λ,A)(A− λI)f = 0

as t → ∞. Hence, e−λtT (t) is bounded in B([D(A)], X) uniformly for t ≥ 0
by the principle of uniform boundedness. This fact implies that ω1(A) ≤ s(A).
Conversely, let Reλ > ω1(A) and f ∈ D(A). Then the integral∫ t

0
e−λtT (t)f dt =: Rλf

converges in E. As in the proof of Proposition 1.20, it follows that Rλf ∈ D(A)
and (λI − A)Rλf = f . Moreover, Rλ(λI − A)f = f if f ∈ D(A2). We denote
by A1 the restriction of A to X1 = [D(A)] with domain D(A1) = D(A2). We
have shown that λ ∈ ρ(A1). Since A and A1 are similar via the ismorphism
R(λ,A) : D(A) → D(A2), we arrive at λ ∈ ρ(A); i.e., s(A) = ω1(A). □

The next corollary immediately follows from part b) of the above theorem
and Gearhart’s stability Theorem 4.5.

Corollary 5.4. Every generator A of a positive semigroup on E = L2(µ)
satisfies s(A) = ω0(A).

Remark 5.5. The above corollary actually holds for all our spaces E, see
Section 5.3 in [3], but it fails already on Lp ∩ Lq by Example 4.3. For any
generator A, one has s(A) ≤ ω1(A) ≤ s0(A) ≤ ω0(A). (These inequalities follow
from the proof of Theorem 5.3 e), Proposition 5.1.6 and Theorem 5.1.7 in [3],
and Proposition 1.20.) Hence, in Theorem 5.3 assertion e) is direct consequence
of part b) thanks to the (more difficult) general result in [3], which is due to Weis
and Wrobel. The positive semigroup in Example 4.3 satisfies s0(A) < ω0(A),
see Example 5.1.11 in [3]. Moreover, there are (non-positive) semigroups on
Hilbert spaces X such that s(A) < ω1(A) < s0(A), see Example 5.1.10 in [3].♢

As an application we look at a cell division problem.

Example 5.6. Let
∫ b
a u(t, s) ds be the number of cells of a certain species at

time t ≥ 0 of size s ∈ [a, b]. We make the following assumptions on this species.

• Each cell grows linearly with time at (normalized) velocity 1.
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• Cells of size s ≥ α > 0 divide with per capita rate b(s) ≥ 0 in two
daughter cells of equal size, where b = 0 on [1,∞) and on [α/2, α].

• Cells of size s die with per capita rate µ(s) ≥ 0.
• The functions b ̸= 0 and µ are continuous, and α > 1/2.
• There are no cells at size α/2.

It is just a normalization that the cells divide up size s = 1. The assumptions of
linear growth and that α > 1/2 are made for simplicity, see [11] for the general
case. The assumptions on b indicate that the interesting cell sizes belong to
J = [α/2, 1] (for others one only has growth and death), so that we choose as
state space E = L1(J). Hence, the norm ∥u(t)∥1 equals the number of (relevant)
cells at time t, if u ≥ 0. It can be shown that under the above assumptions
smooth cell size distributions u satisfy the equations

∂tu(t, s) = −∂su(t, s)− µ(s)u(t, s)− b(s)u(t, s) + 4b(2s)u(t, 2s), t ≥ 0, s ∈ J,

u(t, α2 ) = 0, t ≥ 0, (5.2)

u(0, s) = u0(s), s ∈ J.

Note that b(2s) = 0 for s ≥ 1/2. For such s we put v(2s) := 0 for any function
v on J . We take 0 ≤ u0 ∈ D(A) := {v ∈W 1,1(J) | v(α/2) = 0} and define

Av = −v′ − µv − bv +Bv, Bv(s) = 4b(2s)v(2s), (5.3)

for v ∈ D(A), respectively v ∈ E and s ∈ J . Observe that B is a bounded (and
positive) operator on E because

∥Bv∥1 ≤ 4∥b∥∞
∫ 1/2

α/2
|v(2s)| ds ≤ 2∥b∥∞∥v∥1.

Since − d
ds with domain D(A) generates a positive C0-semigroup on E (the

nilpotent translations), Example 3.6 shows that also A generates a positive C0-
semigroup T (·) on E. It is clear that the non-negative map u(t, s) = (T (t)u0)(s)
with t ≥ 0 and s ∈ J belongs to C1(R+, E) ∩ C(R+,W

1,1(J)) and satisfies the
system (5.2), where the first line holds for a.e. s ∈ J . On the other hand, each
solution u ∈ C1(R+, E) ∩ C(R+,W

1,1(J)) of (5.2) is given by T (·). ♢

In the above example the embedding D(A) ↪→ E is compact due to Theo-
rem 3.34 in [27]. Therefore the resolvent of A is compact and σ(A) consists of
eigenvalues only, see Remark 2.13 and Theorem 2.15 of [27]. We can even deter-
mine the eigenvalues by the zeros of a holomorphic function ξ. (The assumption
α > 1

2 is only needed to obtain the simple formula of ξ below.)

Lemma 5.7. Let A be given by (5.3). Then a number λ ∈ C belongs to σ(A)
if and only if

0 = ξ(λ) := −1 +

∫ 1/2

α/2
4b(2σ) exp

(
−
∫ 2σ

σ
(λ+ µ(τ) + b(τ)) dτ

)
dσ.

Proof. As noted above, we have σ(A) = σp(A). Hence, λ ∈ C belongs to
σ(A) if and only if there is a map 0 ̸= v ∈ D(A) with λv = v′. Equivalently,
0 ̸= v ∈W 1,1(J) satisfies

v′(s) = −(λ+ b(s) + µ(s))v(s), 1/2 ≤ s ≤ 1,
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v′(s) = −(λ+ b(s) + µ(s))v(s) + 4b(2s)v(2s), α/2 ≤ s < 1/2,

v(α/2) = 0.

The differential equations are only fulfilled by the function given by

v(s) = c exp
(∫ 1

s
(λ+ b(σ) + µ(σ)) dσ

)
, 1

2 ≤ s ≤ 1,

v(s) = c exp
(∫ 1

s
(λ+ b(σ) + µ(σ)) dσ

)
·
[
1−

∫ 1/2

s
4b(2σ) exp

(
−
∫ 2σ

σ
(λ+ µ(τ) + b(τ)) dτ

)
dσ
]
, α

2 ≤ s < 1
2 ,

for any constant c ̸= 0. Clearly, this map v belongs to W 1,1(J), and it satisfies
v(α/2) = 0 if and only if ξ(λ) = 0. □

Theorem 5.3 shows that ω1(A) = s(A), and Remark 5.5 even yields ω0(A) =
s(A). In Proposition VI.1.4 of [7] it is further shown that t 7→ T (t) is continuous
in operator norm for t > 1− α

2 . (Here one uses the nilpotency of the semigroup
generated by A0 := A−B and the Dyson–Phillips series (3.7) for A = A0+B.)

Therefore the spectral mapping theorem σ(T (t)) = etσ(A) \ {0} is true implying
again ω0(A) = s(A), see Theorem 4.12 and Corollary 4.17. Positivity even
yields a very simple criterion for ω0(A) = s(A) < 0.

Theorem 5.8. The semigroup generated by A from (5.3) is exponentially
stable on E if and only if

ξ(0) = −1 +

∫ 1/2

α/2
4b(2σ) exp

(
−
∫ 2σ

σ
(µ(τ) + b(τ)) dτ

)
dσ < 0.

In particular, there are constants N, δ > 0 such that ∥u(t)∥1 ≤ Ne−δt∥u0∥1 for
all t ≥ 0 and all solutions u ∈ C1(R+, E) ∩ C(R+,W

1,1(J)) of (5.2).

Proof. In view of Lemma 5.7 and the discussion above the statement of
the theorem, we have to show that all zeros of ξ have strictly negative real
parts. To characterize this property, we use the positivity of the semigroup in
a crucial way. Theorem 5.3 says that s(A) belongs to σ(A). Thus ω0(A) < 0
if and only if all real zeros of ξ are strictly negative. On R, the function ξ is
continuous and strictly decreasing from ∞ to −1. Consequently, ξ has exactly
one real zero, which is strictly negative if and only if ξ(0) < 0. □
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