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CHAPTER 1

Banach spaces

In these notes X ̸= {0} and Y ̸= {0} are always vector spaces over
the field F ∈ {R,C}.

1.1. Basic properties of Banach and metric spaces

We start with the fundamental definitions of this course which con-
nect the linear structure with convergence.

Definition 1.1. A seminorm on X is a map p : X → R satisfying

a) p(αx) = |α| p(x) (homogeneity),
b) p(x+ y) ≤ p(x) + p(y) (triangle inquality)

for all x, y ∈ X and α ∈ F. If p fulfills in addition

c) p(x) = 0 =⇒ x = 0 (definiteness)

for all x ∈ X, then p is a norm. One mostly writes p(x) = ∥x∥ and
p=∥·∥. The pair (X, ∥·∥) (or just X) is called a normed vector space.

In view of Example 1.4(a), we interpret ∥x∥ as the length of x and
∥x − y∥ as the distance between x and y. Seminorms will only occur
as auxiliary objects, see e.g. Proposition 1.8.

Definition 1.2. Let ∥ · ∥ be a seminorm on a vector space X. A
sequence (xn)n∈N = (xn)n = (xn) in X converges to a limit x ∈ X if

∀ ε > 0 ∃Nε ∈ N ∀n ≥ Nε : ∥xn − x∥ ≤ ε.

We then write xn → x as n→ ∞ or x = limn→∞ xn. Moreover, (xn)
is a Cauchy sequence in X if

∀ ε > 0 ∃Nε ∈ N ∀n,m ≥ Nε : ∥xn − xm∥ ≤ ε.

A normed vector space (X, ∥ · ∥) is a Banach space if each Cauchy
sequence in (X, ∥ · ∥) converges in X. Then one also calls (X, ∥ · ∥) or
∥ · ∥ complete.

In this section we discuss (and partly extend) various results from
Analysis 2 whose proofs were mostly omitted in the lectures. We start
with simple properties of norms and limits.

Remark 1.3. Let ∥ · ∥ be a seminorm on a vector space X and (xn)
be a sequence in X. The following facts are shown as in Analysis 2,
see e.g. Satz 2.2.

a) The vector 0 has the seminorm 0.

2



1.1. Basic properties of Banach and metric spaces 3

b) We have
∣∣ ∥x∥ − ∥y∥

∣∣ ≤ ∥x− y∥ and ∥x∥ ≥ 0 for all x, y ∈ X.

c) If (xn) converges, then it is a Cauchy sequence.

d) If (xn) converges or is Cauchy, it is bounded ; i.e., supn∈N ∥xn∥<∞.

e) If xn → x and yn → y in X as n → ∞ and α, β ∈ F, then the
linear combinations αxn + βyn tend to αx+ βy in X.

f) Limits are unique in the norm case: Let ∥ ·∥ be a norm. If xn → x
and xn → y in X as n→ ∞ for some x, y ∈ X, then x = y. ♢

For our basic examples below and later use, we introduce some no-
tation. Let X be a vector space and S ̸= ∅ be a set. For maps
f, g : S → X and numbers α ∈ F one defines the functions

f + g : S → X; (f + g)(s) = f(s) + g(s),

αf : S → X; (αf)(s) = αf(s).

It is easily seen that the set {f : S → X} becomes a vector space en-
dowed with the above operations. Function spaces are always equipped
with this sum and scalar multiplication. Let X = F. Here one puts

fg : S → F; (fg)(s) = f(s)g(s).

Let α, β ∈ R. We then write f ≥ α (f > α, respectively) if f(s) ≥ α
(f(s) > α, respectively) for all s ∈ S. Similarly one defines α ≤ f ≤ β,
f ≤ g, and so on.

Example 1.4. a) X = Fm is a Banach space for the norms

|x|p =


(∑m

k=1 |xk|
p
) 1

p
, 1 ≤ p <∞,

max{|xk| | k = 1, . . . ,m}, p = ∞,

where x = (x1, . . . , xm) ∈ Fm. Moreover, vectors vn converge to x in Fm

as n → ∞ for each of these norms if and only if all components (vn)k
tend to xk in F as n → ∞. See Satz 2.4, 2.9 and 2.13 in Analysis 2.
We always equip X = F with the absolute value | · | which coincides
with each of the above norms.

b) Let (X, ∥ · ∥) be a Banach space and K a compact metric space.
Then the set

E = C(K,X) = {f : K → X | f is continuous}
endowed with the supremum norm

∥f∥∞ = sup
s∈K

∥f(s)∥

is a Banach space. We equip E with this norm, unless something else
is specified.
Before proving the claim, we note that the above supremum is a

maximum and thus finite, cf. Theorem 1.45 or Analysis 2, and that
convergence in ∥·∥∞ is just uniform convergence from Analysis 1. In the
special case X = R, the norm ∥f−g∥∞ is the maximal vertical distance
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between the graphs of f, g ∈ E. If f ≥ 0 describes the temperature in
K, for instance, then ∥f∥∞ is the maximal temperature. Moreover, the
closed ball BE(f, ε) around f of radius ε > 0 consists of all functions
g in E whose graph belongs to an ‘ε–tube’ around f .
Proof. It is clear that E is a vector space. Let f, g ∈ E and α ∈ F.

Since ∥ · ∥ is a norm, we obtain

∥f∥∞ = 0 =⇒ ∀ s ∈ K : f(s) = 0 =⇒ f = 0,

∥αf∥∞ = sup
s∈K

∥αf(s)∥ = sup
s∈K

|α| ∥f(s)∥ = |α| sup
s∈K

∥f(s)∥ = |α| ∥f∥∞,

∥f + g∥∞ = sup
s∈K

∥f(s)+g(s)∥ ≤ sup
s∈K

(∥f(s)∥+∥g(s)∥) ≤ ∥f∥∞ + ∥g∥∞,

so that E is a normed vector space.
Take a Cauchy sequence (fn) in E. For each ε > 0 there is an index

Nε ∈ N with

∥fn(s)− fm(s)∥ ≤ ∥fn − fm∥∞ ≤ ε

for all n,m ≥ Nε and s ∈ K. By this estimate, (fn(s))n is a Cauchy
sequence in X. Since X is complete, there exists the limit f(s) :=
limn→∞ fn(s) in X for each s ∈ K. Let s ∈ K and ε > 0 be given.
Take the index Nε from above and n ≥ Nε. We then estimate

∥f(s)− fn(s)∥ = lim
m→∞

∥fm(s)− fn(s)∥ ≤ lim sup
m→∞

∥fm − fn∥∞ ≤ ε.

Because Nε does not depend on s, we can take the supremum over
s ∈ K and derive the inequality ∥f − fn∥∞ ≤ ε for all n ≥ Nε.
To see that f belongs to E, fix an integer N with ∥f−fN∥∞ ≤ ε. The

continuity of fN yields a radius δ > 0 such that ∥fN(s) − fN(t)∥ ≤ ε
for all s ∈ BK(t, δ). For such s we deduce

∥f(s)−f(t)∥ ≤ ∥f(s)−fN(s)∥+∥fN(s)−fN(t)∥+∥fN(t)−f(t)∥ ≤ 3ε;

i.e., f ∈ E. Summing up, (fn) converges to f in E as required. 2

c) Let X = C([0, 1]). We set

∥f∥1 =
∫ 1

0

|f(s)| ds

for f ∈ X. The number ∥f − g∥1 yields the area between the graphs
of f, g ∈ X (if F = R), and ∥fn − f∥1 → 0 is called convergence in the
mean. For a mass density f ≥ 0 of a substance, the integral ∥f∥1 is
the total mass. We claim that ∥ · ∥1 is an incomplete norm on X.
Proof. Let α ∈ F and f, g ∈ X. If f ̸= 0, then there are numbers

0 ≤ a < b ≤ 1 and δ > 0 such that |f(s)| ≥ δ for all s ∈ [a, b] since f
is continuous. It follows

∥f∥1 ≥
∫ b

a

|f(s)| ds ≥ (b− a)δ > 0.
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Using standard properties of the Riemann integral, we also derive

∥αf∥1 =
∫ 1

0

|α| |f(s)| ds = |α| ∥f∥1,

∥f + g∥1 =
∫ 1

0

|f(s) + g(s)| ds ≤
∫ 1

0

(|f(s)|+ |g(s)|) ds = ∥f∥1 + ∥g∥1.

As a result, ∥ · ∥1 is a norm on X.1

To see its incompleteness, we consider the functions given by

fn(s) =


0, 0 ≤ s ≤ 1

2
− 1

n
,

ns− n
2
+ 1, 1

2
− 1

n
< s < 1

2
,

1, 1
2
≤ s ≤ 1,

for n ∈ N with n ≥ 2. For m ≥ n ≥ 2 we compute

∥fn − fm∥1 =
∫ 1

2

1
2
− 1

n

|fn(s)− fm(s)| ds ≤
1

n
−→ 0

as n→ ∞; i.e., (fn) is a Cauchy sequence for ∥ ·∥1. There thus exists a
limit f of (fn) in L

1([0, 1]) and a subsequence (fnj
)j tends to f pointwise

a.e. by the Riesz–Fischer Theorem 5.5 in Analysis 3. On the other hand,
fn tends to the characteristic function 1[0,1/2] pointwise as n → ∞, so
that f = 1[0,1/2] a.e. and no representative of f is continuous. Since
limits in (X, ∥ · ∥1) are unique, (fn) does not converge in this space. 2

d) Let X = C(R) and a < b in R. One checks as in part b) that
p(f) = sups∈[a,b] |f(s)| defines a seminorm on X. Moreover, if p(f) = 0,
then f = 0 on [a, b], but of course f does have to be the 0 function. ♢

The vector space X = C([0, 1]) is infinite dimensional since the func-
tions pn ∈ X given by pn(t) = tn are linearly independent for n ∈ N.
Before discussing further examples, we study fundamental ‘topolog-

ical’ concepts in a general framework without vector space structure.

Definition 1.5. A distance or metric d on a set M ̸= ∅ is a map
d :M ×M → R satisfying

a) d(x, y) = 0 ⇐⇒ x = y (definiteness),
b) d(x, y) = d(y, x) (symmetry),
c) d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

for all x, y, z ∈ M . The pair (M, d) (or just M) is called a metric
space. A sequence (xn) in M converges to a limit x ∈M if

∀ ε > 0 ∃Nε ∈ N ∀n ≥ Nε : d(x, xn) ≤ ε,

in which case we write xn → x as n → ∞ or x = limn→∞ xn. It is a
Cauchy sequence if

∀ ε > 0 ∃Nε ∈ N ∀n,m ≥ Nε : d(xm, xn) ≤ ε.

1This part of the proof was omitted in the lectures.
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The space (M, d) (or d) is complete if each Cauchy sequence converges
in (M, d).

A metric d automatically takes values in [0,∞). Indeed, for x, y ∈M
the above properties yield

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2 d(x, y).

In a metric space (M, d) we write B(x, r) = BM(x, r) = Bd(x, r) =
{y ∈ X | d(x, y) < r} for the open ball with center x ∈ M and radius
r > 0, and B(x, r) = {y ∈ X | d(x, y) ≤ r} for the closed ball. We start
with simple examples, cf. Beispiel 2.15 in Analysis 2.

Example 1.6. a) Let X be a normed vector space. Set d(x, y) =
∥x − y∥ for x, y ∈ X. Then Definition 1.5a) follows from Defini-
tion 1.1c), 1.5b) from 1.1a) with α = −1, and 1.5c) from 1.1b). Con-
vergence in (X, ∥ · ∥) and in (X, d) are the same.

b) Let N ⊆ M and d be a metric on M . Then dN(x, y) = d(x, y)
for x, y ∈ N defines the subspace metric dN on N . One often writes d
instead of dN . For instance, let M be a normed vector space and d be
given as in a). Here dN is not a norm unless N is a linear subspace.

c) Let M ̸= ∅ be any set. One defines the discrete metric on M by
setting d(x, x) = 0 and d(x, y) = 1 for all x, y ∈ M with x ̸= y. It is
easy to check that d is indeed a metric on M and that a sequence (xn)
converges to a point x ∈ M in the discrete metric if and only if there
is an index m ∈ N such that xn = x for all n ≥ m.
The map δ :M2 → [0,∞); δ(x, y) = 1, satisfies properties b) and c)

in Definition 1.5, but none of the implications in a); cf. Remark 1.3a).

d) Let (M1, d1) and (M2, d2) be metric spaces. On the product
space M = M1 ×M2, we obtain a metric by setting d((x, y), (u, v)) =
d1(x, u) + d2(y, v). A sequence (xn, yn) in M tends to (x, y) ∈M with
respect to d if and only if xn → x in M1 and yn → y in M2 as n→ ∞.

e) Let M be the unit sphere in R3. The length of the smaller great
circle through x, y ∈M defines a metric on M . ♢

We list basic properties of limits in metric spaces shown in Satz 2.16
of Analysis 2.

Remark 1.7. Let M be a metric space and (xn) be a sequence in
M . Then the following assertions hold.

a) If xn → x in M as n→ ∞, then (xn) is Cauchy.

b) If xn → x and xn → y in M for some x, y ∈ X, then x = y.

c) If (xn) converges or is Cauchy, then it is bounded ; i.e., there exist
a point z ∈M and a radius R > 0 with xn ∈ B(z, R) for all n ∈ N. ♢

The next result describes how to construct a distance from a given
sequence of seminorms. This procedure is often used in analysis.
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Proposition 1.8. Let X be a vector space and pj, j ∈ N, be semi-
norms on X such that for each x ∈ X \ {0} there is an index k ∈ N
with pk(x) > 0. Then

d(x, y) =
∞∑
j=1

2−j pj(x− y)

1 + pj(x− y)
, x, y ∈ X,

defines a metric on X such that d(xn, x) → 0 as n→ ∞ if and only if
pj(xn − x) → 0 as n → ∞ for each j ∈ N. For Cauchy sequences we
have an analogous characterization.

Proof. Note that the function φ(t) = t/(1 + t) increases strictly
for t ≥ 0, φ(0) = 0, and φ(t) ∈ (0, 1) for t > 0. In particular, the series
in the statement converges in [0,∞). Let x, y, z, xn ∈ X for n ∈ N.
1) We have d(x, y) = 0 if and only if pj(x − y) = 0 for all j ∈ N

which is equivalent to x = y by the assumption. Moreover, the identity
d(x, y) = d(y, x) follows from pj(x − y) = pj(y − x) for each j ∈ N.
Using the monotonicity of φ, we further estimate

d(x, z) ≤
∞∑
j=1

2−j
[ pj(x− y)

1 + pj(x− y) + pj(y−z)
+

pj(y − z)

1 + pj(x−y) + pj(y−z)

]
≤ d(x, y) + d(y, z).

Thus, d is a metric on X.
2) Assume that d(xn, x) → 0 as n → ∞. Fix any j ∈ N and let

ε ∈ (0, 1/2). Set η = 2−jε. There is an index Nε,j ∈ N such that

2−j pj(x− xn)

1 + pj(x− xn)
≤ d(x, xn) ≤ η = 2−jε,

pj(x− xn) ≤ ε(1 + pj(x− xn)) ≤ ε+ 1
2
pj(x− xn),

pj(x− xn) ≤ 2ε

for all n ≥ Nε,j; i.e., pj(x− xn) → 0 as n→ ∞.
3) Conversely, assume that pj(x−xn) → 0 as n→ ∞ for each j ∈ N.

Let ε > 0. Fix a number Jε ∈ N with
∞∑

j=Jε+1

2−j ≤ ε.

We then find an index Nε ∈ N such that pj(x − xn) ≤ ε for all j ∈
{1, . . . , Jε} and n ≥ Nε. It follows that

d(x, xn) ≤
Jε∑
j=1

2−jpj(x− xn) +
∞∑

j=Jε+1

2−j ≤ ε
Jε∑
j=1

2−j + ε ≤ 2ε

for all n ≥ Nε. The final assertion is similarly shown. □

We next see that the above approach fits to the ‘uniform convergence
on compact sets’ known e.g. from complex analysis, which is used in
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several variants throughout analysis. In the following example we first
recall important facts about the distance to sets which were shown in
Corollary 2.52 of Analysis 2.

Example 1.9. a) Let X be Banach space and A ⊆ X be non-empty.
For x ∈ X we define its distance to A by

d(x,A) = inf{∥x− y∥ | y ∈ A}.

We also put d(x, ∅) = ∞. The function dA : X → [0,∞); x 7→ d(x,A),
has the following properties.

1) The map dA is Lipschitz with constant 1. To check this claim, pick
x, y ∈ X and z ∈ A, where we may assume that d(x,A) ≥ d(y, A). We
first note that d(x,A) ≤ ∥x−z∥ ≤ ∥x−y∥+∥y−z∥. Taking the infimum
over z ∈ A, we deduce the inequality d(x,A) ≤ ∥x− y∥ + d(y, A) and
hence |d(x,A)− d(y, A)| ≤ ∥x− y∥.
2) We have d(x,A) = 0 if x belongs to A (choose y = x in the

definition). If A is closed, then dA vanishes only on A. (Indeed, if
d(x,A) = 0, then there are vectors yn in A with ∥x − yn∥ → 0 as
n→ ∞, so that x is contained in A by the closedness.)
3) Let A be closed and K ⊆ X be compact with A∩K = ∅. Since dA

is continuous, Theorem 1.45 (see also Analysis 2) then yields a point
x0 ∈ K with

dist(K,A) := inf
x∈K

d(x,A) = d(x0, A) > 0,

where we also use part 2).

Let U ⊆ Rm be open. For j ∈ N we set

Kj = {s ∈ U | |s|2 ≤ j, d(s, ∂U) ≥ 1/j}.

(If U = Rm, then Kj = U ∩ B(0, j).) Because of claim 1), these sets
are closed and bounded, and hence compact by Bolzano-Weiserstraß.
We also have the inclusions Kj ⊆ Kj+1 ⊆ U , and the union of all Kj is
U . Let K ⊆ U be compact. Then K is contained in Kj for all integers
j ≥ 1 with dist(K, ∂U) ≥ 1/j and K ⊆ B(0, j), which exist by 3).
Let f ∈ E := C(U). We define pj(f) = maxs∈Kj

|f(s)| for j ∈ N.
As in Example 1.4d), every pj is a seminorm. Since

⋃
j Kj = U , only

f = 0 satisfies pj(f) = 0 for all j ∈ N. Due to Proposition 1.8, the
space E thus possesses the metric

d(f, g) =
∞∑
j=1

2−j maxs∈Kj
|f(s)− g(s)|

1 + maxs∈Kj
|f(s)− g(s)|

.

Moreover, a sequence (fn) tends to f in (E, d) if and only if
maxs∈Kj

|fn(s) − f(s)| → 0 as n → ∞ for each j ∈ N. By the
above observations, this property is equivalent to the convergence
maxs∈K |fn(s)−f(s)| → 0 as n→ ∞ for every compact subset K ⊆ U .
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One can replace here the sets Kj by the closures Lk of any open
subsets Ok ⊆ U such that Lk ⊆ U is compact and

⋃
k∈NOk = U . (Note

that every compact subset K ⊆ U can be covered by finitely many of
the sets Ok, see Theorem 1.37 or Analysis 2.)
Finally, (X, d) is complete. In fact, let (fn) be Cauchy in (M, d).

Proposition 1.8 yields that the restrictions (fn|Kj
)n are Cauchy in

C(Kj) for each j ∈ N. These sequences have limits f ⟨j⟩ in C(Kj)
by Example 1.4. Since fn|Kj

coincides with the restriction of fn|Kj+1

to Kj, the function f ⟨j⟩ is the restriction of f ⟨j+1⟩ to Kj. We can thus
define a continuous map f : U → F by setting f(s) = f ⟨j⟩(s) for any
j ∈ N with s ∈ Kj. Then (fn|Kj

)n tends to f |Kj
for each j ∈ N, and

hence (fn) to f in (E, d).

b) Let Y = Cb(R) = {f ∈ C(R) | f is bounded} and dY be the
subspace metric of d in part a). Then (Y, dY ) is not complete. Indeed,
take the functions fn ∈ Y given by fn(s) = |s| if |s| ≤ n and fn(s) = n
otherwise. Then fn converges in (X, d) to the function f given by
f(s) = |s|. Therefore (fn) is a Cauchy sequence in (Y, dY ). But it
cannot have a limit g in Y , since then g would be equal to f /∈ Y . ♢

The next definitions belong to the most basic ones in analysis; below
we characterize them in terms of sequences.

Definition 1.10. Let M be a metric space. A subset O ⊆ M is
called open if for each x ∈ O there is a radius rx > 0 with B(x, rx) ⊆ O.
Moreover, ∅ is open by definition. A subset N ⊆M is a neighborhood
of a point x0 ∈ M if there is a radius r0 > 0 with B(x0, r0) ⊆ N . A
subset A ⊆M is called closed if its complement M \ A is open.

We first illustrate these concepts by simple examples.

Example 1.11. Let (M,d) be a metric space, x ∈M , and r > 0.
a) The ball B(x, r) is open. In fact, for each point y ∈ B(x, r) we

define the radius ρ = r − d(x, y) > 0. Let z ∈ B(y, ρ). It follows

d(z, x) ≤ d(z, y) + d(y, x) < ρ+ d(x, y) = r;

i.e., z ∈ B(x, r). This means that B(y, ρ) belongs to B(x, r) as claimed.

b) The ball B(x, r) is closed.2 Indeed, for any given y ∈M \B(x, r)
we set R = d(x, y) > r. Let z ∈ B(y,R− r). We then estimate

R = d(x, y) ≤ d(x, z) + d(z, y) < d(x, z) +R− r,

and thus d(x, z) > r. By this fact, the ball B(y,R− r) is contained in
M \B(x, r), so that M \B(x, r) is open and B(x, r) is closed.

c) The sets ∅ and M are both closed and open. As in part b) with
r = 0, we see that the set {x} is closed for every x ∈M .

2This proof was omitted in the lectures.
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d) We equip Z with the subspace metric d(k, l) = |k− l| of R. Then
the open ball B(k, 1) is equal to the singleton {k} for each k ∈ Z, which
is also closed by part c). ♢

Proposition 1.12. Let (M, d) be a metric space and A,O ⊆ M .
Then we have the following characterizations.
a) The subset A is closed in M if and only if for each sequence (xn)

in A with xn → x in M as n→ ∞, the limit x belongs to A.
b) The subset O is open in M if there does not exist a sequence (xn)

in M \O converging to a point x ∈ O.

Proof.3 By definition, O ⊆ M is open if and only if for each
x ∈ O there is a radius r > 0 such that each y ∈ M with d(x, y) < r
already belongs to O. This statement is equivalent to the fact that no
x ∈ O can be the limit of a sequence in M \O; i.e., assertion b) holds.
Part a) follows from b) by taking complements in M . □

The above characterization of closedness is often employed in these
lectures, for instance in the following useful fact.

Corollary 1.13. Let (M, d) be a complete metric space and A ⊆
M . The set A is closed if and only if it is complete for the subspace
metric dA. In particular, if X is a Banach space and Y ⊆ X a linear
subspace, then Y is closed in X if and only if it is a Banach space for
the restriction ∥ · ∥Y of the norm ∥ · ∥X to Y .

Proof. First, let A be closed. Take a Cauchy sequence (xn) in A
with respect to dA. Since (M, d) is complete, this sequence has a limit
x in M . The point x belongs to A by Proposition 1.12; i.e., (xn) tends
to x in (A, dA).
Second, let (A, dA) be complete. Take a sequence (xn) in A with

a limit x in (M, d). This sequence is Cauchy in (M, d) and hence in
(A, dA). By assumption, it then possesses a limit y in A which has to
be equal to x, so that x is contained in A. Proposition 1.12 thus yields
the closedness of A. The addendum is a direct consequence. □

We can now discuss several typical examples.

Example 1.14. Let X = C([0, 1]) be endowed with ∥ · ∥∞.
a) In R the set S = (0, 1] is neither closed nor open. Indeed, the

points 1 + 1
n
do not belong to S, but tend to 1 as n → ∞, and the

numbers 1
n
∈ S converge to 0 as n → ∞. On the other hand, S is a

neighborhood of 1
2
since it contains the open interval (1

4
, 3
4
).

b) The subset Z is closed in R because it is the union of the closed
sets {k} for k ∈ Z, see Example 1.11 and Proposition 1.15.

c) Let Y = {f ∈ X | f(0) = 0}. Clearly, Y is a linear subspace. Let
(fn) in Y tend to f in X. It follows that 0 = fn(0) → f(0) as n→ ∞,

3This proof was omitted in the lectures.
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hence f(0) = 0 and f ∈ Y . Proposition 1.12 and Corollary 1.13 thus
imply that Y is closed and that Y is a Banach space for ∥ · ∥∞.

d) i) The set O = {f ∈ X | f > 0} is open in X. In fact, let f ∈ O.
We then have mins∈[0,1] f(s) = f(s0) =: δ > 0 for some s0 ∈ [0, 1]. Take
g ∈ X with ∥f − g∥∞ < δ. We now estimate

g(s) = f(s) + g(s)− f(s) ≥ δ − ∥f − g∥∞ > 0

for all s ∈ [0, 1], so that g ∈ Y . This means that the ball B(f, δ) is
contained in O, and hence O is open.
ii) The set A = {f ∈ X | f ≥ 0} is closed in X. Indeed, take a

sequence (fn) in A with a limit f in X. For each s ∈ [0, 1] the numbers
fn(s) ≥ 0 converge to f(s) as n → ∞, so that f ≥ 0 and f ∈ A.
Proposition 1.12 now yields the claim.
iii) The set C = {f ∈ X | f(0) > 0 and f(1) ≥ 0} is neither open

nor closed in X. Again this fact follows from Proposition 1.12: The
functions fn = 1

n
1 belong to C and converge in X to 0 /∈ C which

shows that C is not closed. Moreover, the functions gn given by gn(s) =
1− (1 + 1

n
)s do not belong to C, but they have the limit g(s) = 1− s

in X which is an element of C, so that C is not open.

e) i) Let E = C0(R) := {f ∈ C(R) | f(s) → 0 as s→ ±∞}. Clearly,
E is a linear subspace of Cb(R) := {f ∈ C(R) | f is bounded}. In
Exercise 2.1 it is checked that Cb(R) is a Banach space for the supre-
mum norm, compare also Example 1.4. Let (fn) be a sequence in E
having a limit f in Cb(R). Take some ε > 0. Fix an index N with
∥f − fN∥∞ ≤ ε. Since fN ∈ E, there is a number sε ≥ 0 such that
|fN(s)| ≤ ε for all s ∈ R with |s| ≥ sε. For such s, we then estimate

|f(s)| ≤ |f(s)− fN(s)|+ |fN(s)| ≤ 2ε.

This means that f belongs to E, and hence E is a Banach space for
∥ · ∥∞ by Proposition 1.12 and Corollary 1.13.
ii) We can show that A = {f ∈ E | f ≥ 0} is closed in E as in part d).

However, the set V = {f ∈ E | f > 0} and also A are not open in E.
Indeed, we look at the function f ∈ V ⊆ A given by f(s) = s−2 for
|s| ≥ 1 and f(s) = 1 for s ∈ (−1, 1). We take maps φn ∈ E with
0 ≤ φn ≤ 1

n
and φn(n) =

1
n
for 2 ≤ n ∈ N. Then fn := f − φn belongs

to E but not to A ⊇ V because fn(n) < 0. Since also ∥f − fn∥∞ ≤ 1
n

for every n, Proposition 1.12 yields the claim.

f) Let ℓ > 0. The set L = {f ∈ X | ∀ t, s ∈ [0, 1] : |f(t) − f(s)| ≤
ℓ |t − s|} of functions with Lipschitz constant less or equal ℓ is closed
in X, again because of Proposition 1.12: Even if functions fn ∈ L
converge only pointwise to some f as n→ ∞, we conclude

|f(t)− f(s)| = lim
n→∞

|fn(t)− fn(s)| ≤ ℓ |t− s|

for all t, s ∈ [0, 1], so that the limit f belongs to L.
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On the other hand, the set D = {f ∈ C1([0, 1]) | ∥f ′∥∞ ≤ 1} is not
closed in X. To check this fact, we take the maps fn ∈ D given by
fn(s) = ((s − 1

2
)2 + 1

n
)1/2 for n ∈ N. They tend in X to the function

s 7→ f(s) = |s− 1
2
|, which is not differentiable at 1

2
. ♢

We recall the permanence properties of openness and closedness.

Proposition 1.15. Let M be a metric space. Then the following
assertions hold.
a) The union of an arbitrary collection of open sets in M is open.

The intersection of finitely many open sets in M is open.
b) The intersection of an arbitrary collection of closed sets in M is

closed. The union of finitely many closed sets in M is closed.

Proof.4 Let be C be a collection of open sets O in M . Take
x ∈ V :=

⋃
O∈C O. Then there is a set O′ ∈ C containing x. Since O′ is

open, we have a radius r > 0 with B(x, r) ⊆ O′ ⊆ V . Therefore V is
open. Let O1, · · · , On ⊆M be open and x ∈ D := O1∩· · ·∩On. Again,
there are radii rj > 0 such that B(x, rj) ⊆ Oj for each j ∈ {1, . . . , n}.
Setting ρ := min{r1, . . . , rn} > 0, we arrive at B(x, ρ) ⊆ D, so that D
is open. Assertion b) follows from a) by taking complements. □

The finiteness assumptions in the above result are needed, as seen
by easy examples: The sets (0, 1 + 1

n
) are open in R for each n ∈ N,

but their intersection
⋂

n∈N(0, 1+
1
n
) = (0, 1] is not open in R. The sets

[0, 1− 1
n
] are closed in R for each n ∈ N, but their union

⋃
n∈N[0, 1−

1
n
] =

[0, 1) is not closed in R.
We now construct the ‘nearest’ open or closed set for a given N ⊆M

in a canonical way.

Definition 1.16. Let M be a metric space and N ⊆M . We define
a) the interior N◦ = intN of N in M by N◦ =

⋃
{O ⊆ M |O open

in M,O ⊆ N},
b) the closure N = clsN of N in M by N =

⋂
{A ⊆ M |A closed

in M, A ⊇ N},
c) the boundary ∂N of N in M by ∂N = N \N◦ = N ∩ (M \N◦).
The set N is called dense in M if N =M. An element x of N◦ is an

interior point of N , and x ∈ N an adherent point. Moreover, x ∈M is
said to be an accumulation point of N if there is a sequence in N \{x}
converging to x. If x ∈ N is not an accumulation point of N , then it
is isolated in N .

The above concepts can be characterized in various ways, in partic-
ular using sequences or balls.

Proposition 1.17. Let M be a metric space M and N ⊆M . Then
the following assertions are true.

4This proof was omitted in the lectures.
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a) i) N◦ in the largest open subset of N .
ii) N is open if and only if N = N◦.
iii) N◦ = {x ∈M | ∃ r > 0 with B(x, r) ⊆ N} =: N1

= {x ∈M | ∄ (xn) in M \N with xn → x, n→ ∞} =: N2.

b) i) N in the smallest closed subset of M containing N .
ii) N is closed if and only if N = N .
iii) N = ∂N ∪̇N◦.
iv) N = {x ∈M | ∃ (xn) in N with xn → x, n→ ∞} =: N3.

c) i) ∂N is closed.
ii) ∂N = {x∈M | ∃xn∈N, yn /∈N s.t. xn → x, yn → x, n→ ∞}.

d) N is dense in M if and only if for each x ∈M there are xn ∈ N
with xn → x as n→ ∞.

Proof.5 a) The inclusion N◦ ⊆ N follows from the definition of
N◦, and N◦ is open by Proposition 1.15. If N◦ ⊆ O ⊆ N for an open
set O, then O ⊆ N◦ due to Definition 1.16, so that O = N◦. We have
shown claim i) which implies ii). In iii), we deduce N1 ⊆ N◦ from the
definition of N◦, and N◦ ⊆ N2 is a consequence of Proposition 1.12
and the openness of N◦. If x /∈ N1, then there is a sequence (xn) in
M \N converging to x; i.e., x /∈ N2. Hence, assertion iii) holds.
b) Assertions i) and ii) can be shown as in part a), and Definition 1.16

yields iii). Part iii) in a) implies that N3 =M \ (M \N)◦, and thus N3

is closed. Clearly, N is a subset of N3. From Proposition 1.12 and the
closedness of N , we infer the inclusion N3 ⊆ N . Assertion iv) is now a
consequence of i).
c) and d) follow from parts a) and b) and the definition of ∂N . □

We note that N1 and N3 are the most important descriptions of the
interior and the closure, respectively. We add a typical consequence.

Corollary 1.18. Let X be a normed vector space.
a) If Y ⊆ X is a linear subspace, then also Y is a linear subspace.
b) If Y ⊆ X is convex, then also Y is convex.

Proof. Let Y be convex. Take x, y ∈ Y and t ∈ [0, 1]. Proposi-
tion 1.17 yields vectors xn and yn in Y with xn → x and yn → y in X
as n → ∞. By assumption, the convex combinations txn + (1 − t)yn
belong to Y , and they converge to tx + (1 − t)y. Assertion b) then
follows from Proposition 1.17. Part a) is shown similarly. □

Let M be a metric space and f :M → X. The support of f is

supp f = suppM f = clsM{s ∈M | f(s) ̸= 0}.

We now illustrate the above concepts by a series of standard examples.

5This proof was omitted in the lectures.
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Example 1.19. a) Using the decimal representation of the reals, see
Example 3.18 of Analysis 1, one sees that Q is dense in R and has
empty interior, so that ∂Q = Q \Q◦ = R.
By Example 1.14, the subset Z is closed in R. Moreover, every

intersection B(k, 1) ∩ Z is equal to {k}, so that each k ∈ Z is isolated
in Z and Z has no interior points. If we equip Z with the subspace
metric, then the closed ball BZ(k, 1) = {k−1, k, k+1} differs from the

closure BZ(k, 1) = {k} of BZ(k, 1) for each k ∈ Z.
b) In R, the largest of open subset of (0, 1] is (0, 1) = (0, 1]◦, and

[0, 1] = (0, 1] is the smallest closed set containing (0, 1]. Hence, {0, 1}
is the boundary of (0, 1].

c) The set P of polynomials is dense in X = C([0, 1]) by Weierstraß’
approximation Theorem 5.14 from Analysis 3. Since P ⊆ Ck([0, 1]),
also the subspace Ck([0, 1]) is dense in C([0, 1]) for every k ∈ N.
d) Let X be a normed vector space, x ∈ X, and r > 0. We have

B(x, r) = B(x, r) and ∂B(x, r) = ∂B(x, r)={y∈X| ∥x−y∥= r} =:S,
compare part a).
Proof.6 Proposition 1.17 and Example 1.11 show the relations

B(x, r) ∪̇ ∂B(x, r) = B(x, r) ⊆ B(x, r). The boundaries ∂B(x, r) and

∂B(x, r) are thus contained in S = B(x, r)\B(x, r). Take y ∈ S. Then
the vectors yn = y − 1

n
(y − x) belong to B(x, r) and zn = y + 1

n
(y − x)

to X \ B(x, r) for all n ∈ N, and they converge to y as n → ∞.
Consequently, y is an element of ∂B(x, r) and ∂B(x, r) due to Propo-
sition 1.17. The assertions easily follow. 2

e) Let X=C([0, 1]) and N={f ∈X | f >0 on [0, 1
2
), f≥0 on [1

2
, 1]}.

We then have N◦ = {f ∈ X | f > 0} =: O, N = {f ∈ X | f ≥ 0} =: A,
and ∂N = {f ∈ X | f ≥ 0, ∃ s ∈ [0, 1] with f(s) = 0} =: R.
Proof. By Example 1.14, the set O is open and A is closed in X.

Proposition 1.17 thus yields the inclusions O ⊆ N◦ ⊆ N ⊆ N ⊆ A.
Take f ∈ N \ O. There is a point s0 ∈ [1

2
, 1] with f(s0) = 0. Choose

functions φn in X satisfying 0 ≤ φn ≤ 1/n and φn(s0) > 0 for n ∈ N.
The maps fn := f − φn then belong to X \ N and converge to f in
X as n → ∞. Because of Proposition 1.17, the function f is thus
not contained in N◦ and hence O = N◦. Next, let g ∈ A. The maps
gn = g + 1

n
1 are elements of N and tend to g in X as n→ ∞, so that

g ∈ N and A = N . Definition 1.16 now implies that ∂N = R. 2

f) Let X = C([0, 1]) and put C(0, 1) := C((0, 1)). The closure of

Cc(0, 1) := {f ∈ C(0, 1) | ∃ 0 < af ≤ bf < 1 : supp f ⊆ [af , bf ]}
in X is given by

C0(0, 1) = C0((0, 1)) := {f ∈ C(0, 1) | ∃ lim
t→0

f(t) = 0 = lim
t→1

f(t)}.

6This proof was omitted in the lectures.
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We consider Cc(0, 1) and C0(0, 1) as subspaces of X by extending func-
tions by 0 to [0, 1]. In particular, C0(0, 1) is a Banach space for the
supremum norm by Corollary 1.13.
Proof. As in Example 1.14 we see that C0(0, 1) is closed inX. Since

Cc(0, 1) ⊆ C0(0, 1), Proposition 1.17 yields the inclusion Cc(0, 1) ⊆
C0(0, 1). Let f ∈ C0(0, 1). Choose functions φn ∈ Cc(0, 1) such that
0 ≤ φn ≤ 1 and φn(t) = 1 for 1

n
≤ t ≤ 1− 1

n
and n ≥ 2. The products

fn := φnf then belong to Cc(0, 1). We estimate

∥f − fn∥∞ = sup
0≤t≤ 1

n
,1− 1

n
≤t≤1

|1− φn(t)| |f(t)| ≤ sup
0≤t≤ 1

n
,1− 1

n
≤t≤1

|f(t)|.

The right hand side tends to 0 as n → ∞ because of f ∈ C0(0, 1). As

a result, C0(0, 1) is a subset of Cc(0, 1) as needed. 2

g) The sets L and D from Example 1.14 or C1([0, 1]) have no interior
points in X = C([0, 1]). Indeed, take a function f from one of these
sets. We use the maps φn ∈ X given by φn(s) =

√
s for s ∈ [0, 1

n
) and

φn(s) =
√

1/n for s ∈ [ 1
n
, 1], which are not Lipschitz for each n ∈ N

and tend to 0 in X as n → ∞. The differences fn = f − φn then
converge to f in X and do not belong to L, D, resp. C1([0, 1]). ♢

Though subsets N ⊆M can be equipped with the restriction of the
metric d in M , properties of S ⊆ N may change when passing form d
to dN as indicated in the next facts, see Bemerkung 2.25 in Analysis 2.

Remark 1.20. Let (M, d) be a metric space and N ⊆M be endowed
with the subspace metric dN . A set C ⊆ N is called relatively open
(resp., relatively closed) if it is open (resp., closed) in (N, dN), and
analogously for the other concepts introduced above.

a) The open balls in (N, dN) are given by

BN(x, r) = {y ∈ N | r > dN(x, y) = d(x, y)} = B(x, r) ∩N.
b) A subset S ⊆ N is relatively open (resp., closed) if and only if

there is an open (resp., closed) subset S ′ of M with S = S ′ ∩N .

c) The set N is open (resp., closed) in M if and only if openness
(resp., closedness) in N and M coincide.

d) The open unit ball in N = R2
+ for | · |2 is given by BN(0, 1) =

{(x, y) ∈ R2 |x, y ≥ 0, x2 + y2 < 1}. ♢

After having discussed convergence and topological concepts, we now
study the class of functions which preserve these structures.

Definition 1.21. Let (M, d) and (M ′, d′) be metric spaces.
a) Let D ⊆M , x0 ∈M be an accumulation point of D, y0 ∈M ′, and

f : D →M ′. We say that f(x) converges to y0 as x→ x0 if for every
sequence (xn) in D\{x0} with limit x0 in M we have f(xn) → y0 in M

′

as n→ ∞. We then write y0 = limx→x0 f(x) or f(x) → y0 as x→ x0.
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b) Let f : M → M ′ and x0 ∈ M . The map f is called continuous
at x0 if for every sequence (xn) in M with xn → x0 in M , we have
f(xn) → f(x0) in M

′ as n → ∞. If f is continuous at every x0 ∈ M ,
it is said to be continuous (on M). We write C(M,M ′) = {f : M →
M ′ | f is continuous} and put C(M) := C(M,F). If f ∈ C(M,M ′) is
bijective with f−1 ∈ C(M ′,M), then f is an homeomorphism.

In other words, continuity means that f(x0) = limx→x0 f(x) if x0
is an accumulation point of M . (If x0 is isolated in M , then f is
automatically continuous at x0 since only eventually constant sequences
can converge to x0 in M in this case.) We have formulated part a) in
the above definition a bit more general to admit functions which are not
everywhere defined or possess a limit different from f(x0). To define
continuity for functions f : D → M ′ on a subset D ⊆ M , one has to
replace (M, d) by the metric space (D, dD), cf. Proposition 1.23 below.
We first discuss a couple of simple examples. In the next chapter we

investigate continuous linear maps in great detail.

Example 1.22. a) Every distance d : M ×M → R is continuous,
where M ×M is endowed with the metric from Example 1.6. In fact,
let (xn, yn) → (x, y) in M ×M as n→ ∞. Using the inequalities

d(xn, yn)− d(x, y) ≤ d(xn, x) + d(x, yn)− d(x, y)

≤ d(xn, x) + d(x, y) + d(y, yn)− d(x, y)

= d(x, xn) + d(y, yn),

d(x, y)− d(xn, yn) ≤ d(x, xn) + d(xn, yn) + d(yn, y)− d(xn, yn)

= d(x, xn) + d(y, yn),

we deduce that |d(xn, yn)− d(x, y)| tends to 0 as n→ ∞.7

b) Let X be a normed vector space. Then the maps F × X → X;
(α, x) 7→ αx, and X ×X → X; (x, y) 7→ x+ y, are continuous (cf. the
proof of Corollary 1.18).

c) Let X = C([0, 1]) and φ : F → F be Lipschitz on B(0, r) ⊆ F
with constant Lr for every r ≥ 0. Set (F (u))(s) = φ(u(s)) for all
s ∈ [0, 1] and u ∈ X. Since F (u) belongs to X, we have defined a map
F : X → X. We claim that F is Lipschitz on all balls of X and thus
continuous.
Proof. Let u, v ∈ BX(0, r) for some r > 0. For each s ∈ [0, 1] we

then have |u(s)|, |v(s)| ≤ r and hence

∥F (u)− F (v)∥∞ = sup
s∈[0,1]

|φ(u(s))− φ(v(s))| ≤ sup
s∈[0,1]

Lr |u(s)− v(s)|

= Lr ∥u− v∥∞.

7This proof was omitted in the lectures.
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Let un → u in X. Then R := supn∈N ∥un∥∞ is finite and ∥u∥∞ ≤ R. It
follows

∥F (u)− F (un)∥∞ ≤ LR ∥u− un∥∞ −→ 0, n→ ∞. 2

We recall the permanence properties of continuity from Satz 2.30 in
Analysis 2.

Proposition 1.23. Let (M, d), (M ′, d′) and (M ′′, d′′) be metric
spaces and x0 ∈M . Then the following assertions are true.
a) Let f : M → M ′ continuous at x0 and h : M ′ → M ′′ at f(x0).

Then the composition h ◦ f :M →M ′′ is continuous at x0.
b) Let D ⊆ M , x0 ∈ D and f : M → M ′ be continuous at x0.

Then the restriction f|D : D → M ′ is continuous at x0. The converse
implication is true if D is open in M .
c) Let Y be a normed vector space, f, g : M → Y be continuous at

x0, and α, β ∈ F. Then the linear combination αf + βg : M → Y
is continuous at x0. If Y = F, then also the product fg : M → F is
continuous at x0.

The openness of D is needed in the second part of b), as seen by the
example M = R, D = [0, 1], x0 = 0 and f = 1[0,1]. One can nicely
characterize continuity in terms of open or closed sets.

Proposition 1.24. Let (M, d) and (M ′, d′) be metric spaces, x0 ∈
M , and f :M →M ′.
a) The following assertions are equivalent.

(i) The map f is continuous at x0.
(ii) ∀ ε > 0 ∃ δ > 0 ∀x ∈M with d(x, x0)<δ : d′(f(x), f(x0)) < ε.
(iii) If V is a neighborhoood of f(x0) in M

′, then f−1(V ) is a neigh-
borhood of x0 in M .

b) The following assertions are equivalent.

(i) The map f is continuous on M .
(ii) If O ⊆M ′ is open, then f−1(O) is open in M .
(iii) If A ⊆M ′ is closed, then f−1(A) is closed in M .

Proof.8 a) Let (iii) be wrong. Then there exists a neighborhood
V of f(x0) in M

′ and elements xn of M \ f−1(V ) converging to x0 as
n → ∞. Hence, f(xn) is not contained in V for all n ∈ N so that
(f(xn)) cannot tend to f(x0). Therefore assertion (i) is false.
Let (iii) be true. Set V = B(f(x0), ε) for any given ε > 0. Assump-

tion (iii) yields a radius δ > 0 with B(x0, δ) ⊆ f−1(V ). For every point
x in B(x0, δ), the image f(x) thus is an element of V = B(f(x0), ε),
which is the content of (ii).
Let (ii) be true. Let xn → x as n→ ∞. Take ε > 0. Due to (ii), we

have d′(f(xn), f(x0)) < ε for all sufficiently large n; i.e., f(xn) → f(x0)
as n→ ∞, and (i) has been shown.

8This proof was omitted in the lectures.
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b) Let (i) be valid. Take a closed subset A ⊆M ′. Choose a sequence
(xn) in f

−1(A) with a limit x in M . By continuity, the images f(xn)
in A tend to f(x). Since A is closed, f(x) is contained in A and hence
x in f−1(A). Proposition 1.12 now implies that f−1(A) is closed, and
so (iii) is true. Assertion (ii) follows from (iii) by taking complements.
Let (ii) hold. Choose any x ∈ M . Take a neighborhood V of f(x)

in M ′. We thus have a radius r > 0 with B(x, r) ⊆ V . By (ii), the
preimage f−1(B(f(x), r)) is open in M . As it contains x and belongs
to f−1(V ), the latter is a neighborhood of x in M . The continuity of
f at x is now a consequence of part a), and (i) has been proved. □

We recall variants of continuity from Analysis 2.

Definition 1.25. In the framework of Proposition 1.24, a function
f : M → M ′ is called uniformly continuous if it fulfills statement (ii)
in b) for all x0 ∈M with a radius δ = δε > 0 not depending on x0.
The map f is a called Lipschitz (continuous) if there is a constant

L ≥ 0 such that d′(f(x), f(y)) ≤ L d(x, y) for all x, y ∈M .

Bemerkung 2.35 in Analysis 2 says that Lipschitz continuity implies
uniform continuity which in turns yields continuity. Moreover, the
converses of these implications are wrong in general.
The above proposition can be used to show openness or closedness.

Example 1.26. Let X = C([0, 1]), s ∈ [0, 1], and φs : X → F;
φs(g) = g(s). The map φs is continuous since gn(s) → g(s) in F if
gn → g in X as n→ ∞. By Proposition 1.24, the preimage φ−1

s (B) =
{g ∈ X | g(s) ∈ B} is open (resp. closed) in X if B ⊆ F is open (resp.
closed). Using also Proposition 1.15, we see that

U = {f ∈ X | ∃ s ∈ [0, 1] : f(s) ∈ Bs} =
⋃

s∈[0,1]

φ−1
s (Bs)

is open if all sets Bs ⊆ F are open and that

A = {f ∈ X | ∀ s ∈ [0, 1] : f(s) ∈ Bs} =
⋂

s∈[0,1]

φ−1
s (Bs)

is closed if all set Bs ⊆ F are closed. (Compare Example 1.14.) ♢

Quite often one has several norms on a vector space, so that one
needs concepts to compare them.

Definition 1.27. Let ∥ · ∥ and 9 ·9 be norms on a vector space X.
If there is a constant C > 0 such that ∥x∥ ≤ C9x9 for all x ∈ X, then
9 ·9 is called finer or stronger than ∥ ·∥ (and ∥ ·∥ is coarser or weaker
than 9 · 9). In this case one says that the norms are comparable. If
there are constants c, C > 0 such that

c 9x9 ≤ ∥x∥ ≤ C 9x9

for all x ∈ X, then the norms are called equivalent.
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The above notions are again characterized by means of sequences
and open or closed sets.

Proposition 1.28. Let ∥·∥ and 9 ·9 be norms on a vector space X.

a) The following assertions are equivalent.

(i) The norm ∥ · ∥ is coarser than 9 · 9.
(ii) There is a constant C > 0 such that B9·9(x, r/C) ⊆ B∥·∥(x, r)

for all x ∈ X and r > 0.
(iii) If (xn) in X converges for 9 · 9, then it converges for ∥ · ∥.
(iv) If a set A ⊆ X is closed for ∥ · ∥, then it is closed for 9 · 9.
(v) If a set O ⊆ X is open for ∥ · ∥, then it is open for 9 · 9.

In this case the limits in (iii) are equal.

b) The norms are equivalent if and only if (iii), (iv) or (v) becomes an
equivalence, or if there are constants C, c > 0 such that B9·9(x, r/C) ⊆
B∥·∥(x, r) ⊆ B9·9(x, r/c) for all x ∈ X and r > 0.

c) Let the norms be equivalent. Then (X, ∥ · ∥) is complete if and
only if (X,9 · 9) is complete.

Proof. a) Let (i) be true. Let x ∈ X, r > 0 and y ∈ B9·9(x, r/C),
where C > 0 is taken from Definition 1.27. We then obtain the bound

∥x− y∥ ≤ C 9x− y9 ≤ r,

so that y belongs to B∥·∥(x, r). Therefore claim (ii) is valid.
The implication ‘(ii) ⇒ (iii)’ and the equality of the limits are a

consequence of the definition of convergence.
Let (iii) hold. Choose a set A ⊆ X which is closed for ∥ · ∥. Take

a sequence (xn) in A with a limit x ∈ X for 9 · 9. Because of (iii),
the vectors xn also converge for ∥ · ∥ so that x belongs to A by the
closedness. As result, A is also closed for 9 · 9. The implication ‘(iv)
⇒ (v)’ follows by taking complements.
Let statement (v) be true. The ball B∥·∥(0, 1) is then open for 9 ·9,

too. We can thus find a radius r > 0 with B9·9(0, r) ⊆ B∥·∥(0, 1).
Take x ∈ X \ {0}. (The case x = 0 is clear.) The vector r(29x9)−1 x
belongs to B9·9(0, r) and hence to B∥·∥(0, 1); i.e., 1 > r(29x9)−1 ∥x∥
which yields (i) with C := 2/r.
The assertions b) und c) are shown similarly. □

We illustrate the above notions with a few typical examples.
They show in particular that on function spaces one may have non-
comparable (natural) norms and thus different notions of limits, which
is a first fundamental difference to the finite dimensional situation.

Example 1.29. a) On a finite dimensional vector space X all norms
are equivalent by Satz 2.54 in Analysis 2. On X = Fm we have the
more precise result

|x|q ≤ |x|p ≤ m
1
p
− 1

q |x|q
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for all x ∈ Fm and 1 ≤ p ≤ q ≤ ∞. (See Satz 2.8 in Analysis 2.)

b) Let X = C([0, 1]) and 0 < w ∈ X. We set ∥f∥w := ∥wf∥∞ on X.
As in Example 1.4 one checks that this defines a (weighted) norm on
X. Observe that δ := infs∈[0,1]w(s) > 0. We estimate

δ |f(s)| ≤ w(s) |f(s)| ≤ ∥w∥∞ |f(s)|
for all f ∈ X and s ∈ [0, 1]. Taking the supremum over s ∈ [0, 1], we
deduce the equivalence of ∥ · ∥∞ and ∥ · ∥w.
c) Let X = C([0, 1]). Since ∥f∥1 ≤ ∥f∥∞ for f ∈ X, the supremum

norm is finer than the 1-norm on X. On the other hand, Example 1.4
and Proposition 1.28 show that these norms are not equivalent on X
because only ∥·∥∞ is complete. This fact can directly be checked using
the functions fn ∈ X given by fn(s) = 1 − ns for 0 ≤ s ≤ 1

n
and

fn(s) = 0 for 1
n
≤ s ≤ 1, since ∥fn∥∞ = 1 and ∥fn∥1 = 1

2n
for all n ∈ N.

d) The 1-norm and the supremum norm on Cc([0,∞)) := {f ∈
C([0,∞)) | supp f is compact} are not comparable. Indeed, by means
of functions as fn in part c), one sees that ∥ · ∥1 cannot be finer than
∥ · ∥∞. Conversely, take maps gn ∈ Cc([0,∞)) with 0 ≤ gn ≤ 1 and
gn = 1 on [0, n] for n ∈ N. Then ∥gn∥∞ = 1 and ∥gn∥1 ≥ n for all n, so
that ∥ · ∥∞ cannot be finer than ∥ · ∥1. Here one can replace the space
Cc([0,∞)) by {f ∈ Cb([0,∞)) | ∥f∥1 <∞}. ♢

1.2. More examples of Banach spaces

A) Sequence spaces. Let s = {x = (xj) |xj ∈ F for all j ∈ N}
be the space of all sequences in F. A distance on s is given by

d(x, y) =
∞∑
j=1

2−j |xj − yj|
1 + |xj − yj|

, x = (xj) ∈ s, y = (yj) ∈ s.

For vn = (vnj)j and x = (xj) in s, we have d(vn, x) → 0 as n → ∞ if
and only vnj → xj for each j ∈ N, as n → ∞. These facts follow from
Proposition 1.8 with pj(x) = |xj|. The completeness of (s, d) is proved
as in Example 1.9. For x ∈ s, one defines the supremum norm

∥x∥∞ = sup
j∈N

|xj| ∈ [0,∞]

and introduces by

ℓ∞ = {x ∈ s | ∥x∥∞ <∞},
c = {x ∈ s | ∃ lim

j→∞
xj} ⊆ ℓ∞,

c0 = {x ∈ s | lim
j→∞

xj = 0} ⊆ c,

c00 = {x ∈ s | ∃mx ∈ N such that xj = 0 for all j > mx} ⊆ c0

the spaces of bounded, converging, null and finite sequences, respec-
tively. We note that c00 is the linear hull of the unit sequences
en = (δkn)k for n ∈ N, where δnn = 1 and δkn = 0 for k ̸= n.
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For 1 ≤ p <∞ and x ∈ s, one further sets

∥x∥p =
( ∞∑

j=1

|xj|p
) 1

p ∈ [0,∞] and ℓp = {x ∈ s | ∥x∥p <∞},

where ∞p := ∞. Observe that

|xk| ≤ ∥x∥p for all k ∈ N, 1 ≤ p ≤ ∞, x = (xj) ∈ ℓp. (1.1)

We also put

p′ =


∞, p = 1,
p

p−1
, 1 < p <∞,

1, p = ∞.

For p, q ∈ [1,∞], we have the properties

1

p
+

1

p′
= 1; p′′ = p; p′ = 2 ⇐⇒ p = 2; p ≤ q ⇐⇒ q′ ≤ p′.

(1.2)
We stress that a sequence belongs to ℓp if a well-defined quantity

is finite, whereas one has to establish convergence to obtain x ∈ c
or x ∈ c0. In this lecture we use sequence spaces mostly to illustrate
results by relatively simple examples. They further serve as state spaces
for systems which can be described by countably many numbers.

Proposition 1.30. Let p ∈ [1,∞], x, y ∈ ℓp and z ∈ ℓp
′
. Then the

following assertions are true.
a) xz∈ℓ1 and ∥xz∥1=

∑∞
j=1 |xjzj|≤∥x∥p∥z∥p′ (Hölder’s inequality).

b) x+y ∈ ℓp and ∥x+y∥p ≤ ∥x∥p+∥y∥p (Minkowski’s inequality).
c) ℓp is a Banach space; c and c0 are closed subspaces of ℓ∞.

Proof. Satz 2.4 of Analysis 2 yields
J∑

j=1

|xjzj| ≤
( J∑

j=1

|xj|p
) 1

p
( J∑

j=1

|zj|p
′
) 1

p′ ≤ ∥x∥p ∥z∥p′

for J ∈ N if p ∈ (1,∞), and similarly for p ∈ {1,∞}. Assertion a)
then follows by taking the supremum over J ∈ N. Part b) is proven
analogously.

c) 1) One shows that ℓ∞ is a Banach space as in Exercise 2.1 or
Example 1.4, and the closedness of c0 as in Example 1.14e). Let vn =
(vnj)j be sequences in c which converge to v in ℓ∞ as n → ∞. Set
ξn = limj→∞ vnj in F for each n ∈ N. Since |ξn − ξm| ≤ ∥vn − vm∥∞ for
n,m ∈ N, we have a limit ξ of (ξn)n in F. The sequences vn − ξn1 ∈
c0 then tend in ℓ∞ to v − ξ1 as n → ∞, which thus belongs to c0.
Therefore, v has the limit ξ, and so c is closed.
2) Let p ∈ [1,∞), x ∈ ℓp, and α ∈ F. Clearly, also the sequence αx

is an element of ℓp and it fulfills ∥αx∥p = |α| ∥x∥p. If ∥x∥p = 0, then
xj = 0 for all j by (1.1). Hence, ℓp is a normed vector space in view of
assertion b).
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Let vn = (vnj)j for n ∈ N. Assume that (vn)n is a Cauchy sequence
in ℓp. By (1.1) its components yield a Cauchy sequence (vnj)n in F for
each j ∈ N. Their limits in F are denoted by xj for j ∈ N, and we set
x = (xj) ∈ s. Let ε > 0. Take the index Nε ∈ N from Definition 1.2 of
a Cauchy sequence. For all J ∈ N and n ≥ Nε, it follows

J∑
j=1

|vnj − xj|p = lim
m→∞

J∑
j=1

|vnj − vmj|p ≤ ∥vn − vm∥pp ≤ εp.

Letting J → ∞, we deduce
∞∑
j=1

|vnj − xj|p ≤ εp

for all n ≥ Nε. As a result, vn − x belongs to ℓp and converges to 0 in
ℓp as n→ ∞; i.e., x = x− vn + vn ∈ ℓp and vn → x in ℓp. □

Unless something else is said, we endow ℓp with the p–norm, and c0
with ∥ · ∥∞. The sequence spaces are ordered with increasing p.

Proposition 1.31. For exponents 1 < p < q < ∞ and sequences
x ∈ s, we have

c00 ⫋ ℓ1 ⫋ ℓp ⫋ ℓq ⫋ c0 ⫋ ℓ∞ and ∥x∥∞ ≤ ∥x∥q ≤ ∥x∥p ≤ ∥x∥1,
c00

ℓp = ℓp for 1 ≤ p <∞ and c00
∥·∥∞ = c0.

Proof. It is clear that c00 ⫋ ℓ1 and ℓq ⊆ c0 ⫋ ℓ∞ for all q < ∞.

Set yk = k−
1
p . Then (yk) /∈ ℓp, but (yk) ∈ ℓq ∩ c0 for all 1 ≤ p < q <∞.

The sequence (zk) = (1/ ln(k + 1)) belongs to c0, but not to ℓ
q since

∞∑
k=1

1

(ln(k + 1))q
≥
∫ ∞

2

ds

(ln s)q
=

∫ ∞

ln 2

t−qet dt ≥ cq

∫ ∞

ln 2

et/2 dt = ∞

for a constant cq > 0. (Use the transformation t = ln s.)
By Satz 2.8 of Analysis 2 the asserted inequalities are true for the

truncated sequences (x1, . . . , xJ). They then follow by taking the sup-
remum over J ∈ N. Hence, the first part is shown.
For the final claim, take x ∈ ℓp if p ∈ [1,∞) and x ∈ c0 if p = ∞.

We use the finite sequences vn = (x1, . . . , xn, 0, . . . ). The remainder
x − vn = (0, . . . , 0, xn+1, . . . ) tends to 0 in ∥ · ∥p as n → ∞, showing
the asserted density. □

B) Spaces of holomorphic functions. Let U ∈ C be open. A
function f : U → C is called holomorphic if the limit

lim
w→z

f(w)− f(z)

w − z
=: f ′(z)

exists in C for each z ∈ U . We denote the space of such functions by
H(U). We recall that a function is holomorphic on U if and only if at
each z ∈ U it is given by a power series on a ball B(z, rz) ⊆ U . (See
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Satz 1.3 and Theorem 2.12 in Analysis 4.) We use holomorphic maps
only in very few peripherical results.

Example 1.32. Let U ⊆ C be open. We equipH(U) with the metric
of uniform convergence on compact sets from Example 1.9, identifying
U with a subset of R2 as usual. Let (fn) be a Cauchy sequence in
H(U). By Example 1.9 this sequence has a limit f in C(U,C). Weier-
straß’ approximation Theorem 2.20 of Analysis 4 now shows that f is
holomorphic, and so H(U) is complete.
We equip the set H∞(U) = {f ∈ H(U) | f bounded} with the supre-

mum norm. It is a linear subspace of Cb(U,C), which is a Banach space
for ∥ · ∥∞ by Exercise 2.1. Let (gn) be a sequence in H∞(U) with limit
g in Cb(U,C). We see as above that g is holomorphic. Hence, H∞(U)
is closed in Cb(U,C), and thus a Banach space by Corollary 1.13. We
note that H∞(C) consists only of constant functions by Liouville’s The-
orem 2.16 of Analysis 4. ♢

C) Lp spaces. We look for a Banach space of functions with re-
spect to the norm ∥f∥p = (

∫
|f |p dµ)1/p for p ≥ 1. In the following we

recall the relevant definitions and a few facts from Analysis 3.

1) A σ–algebra A on a set S ̸= ∅ is a collection of subsets A of S
satisfying the following properties.

a) ∅ ∈ A.
b) If A ∈ A, then its complement S \ A is contained in A.
c) If Ak∈A for all k ∈ N, then their union

⋃
k∈NAk belongs to A.

Observe that the power set P(S) = {A |A ⊆ S} is a σ–algebra over S.
Let M be a metric space and O(M) = {O ⊆ M |O is open}. The

smallest σ–algebra on M that contains O(M) is given by

B(M) := {A ⊆M |A ∈ A for each σ–algebra A ⊇ O(M)}.
It is called the Borel σ–algebra onM , and one says thatO(M) generates
B(M). We write Bm instead of B(Rm) and endow Cm with B2m. We
stress that Bm is a strict subset of P(Rm). For Borel sets B ∈ Bm one
has B(B) = {A ∈ Bm |A ⊆ B} = {A′ ∩B |A′ ∈ Bm}.
On M = [0,∞] one considers the σ–algebra generated B([0,∞)) ∪

{∞}. It is the Borel σ–algebra for a metric on [0,∞] discussed in the
exercises of Analysis 2. On [−∞,∞] one proceeds similarly.

2) Let A be a σ–algebra on S. A (positive) measure µ on A is a map
µ : A → [0,∞] such that µ(∅) = 0 and

µ
( ⋃

k∈N

Ak

)
=

∞∑
k=1

µ(Ak) for all pairwise disjoint Ak ∈ A, k ∈ N.

The tripel (S,A, µ) is called a measure space. It is finite if µ(S) <∞,
and σ–finite if there are sets Sk in A such that µ(Sk) <∞ for all k ∈ N
and

⋃
k∈N Sk = S. We present a few examples.
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i) Given s ∈ S, we define δs(A) = 1 if s ∈ A and δs(A) = 1 if s /∈ A.
Then the point measure δs is a finite measure on P(S).
ii) Let pk ∈ [0,∞) for all k ∈ N be given. For A ⊆ N, we set

µ(A) =
∑
k∈A

pk =
∞∑
k=1

pkδk,

which is a σ–finite measure on P(N). It is finite if (pk) belongs to ℓ1. If
pk = 1 for all k ∈ N, then we obtain the counting measure ζ(A) = #A.
iii) On Bm there is exactly one measure λ = λm such that λ(J) is

the usual volumen for each interval J in Rm. It is σ–finite and called
Lebesgue measure. Let B ∈ BM . The restriction of λ to B(B) is a σ–
finite measure, also called Lebesgue measure λB = λ. Unless otherwise
specified, we endow Borel sets B in Rm with B(B) and λ.
iv) The collection Lm = {B ∪ N |B ∈ Bm, N ⊆ N ′ for some N ′ ∈

Bm with λ(N ′) = 0} is a σ–algebra on Rm, and λ(B ∪ N) := λ(B)
defines a measure on Lm; the completion of the Lebesgue measure.

3) Let A and B be σ–algebras on sets S and T , respectively. A map
f : S → T is called measurable if f−1(B) ∈ A for every B ∈ B. Besides
the usual permance properties, the pointwise limit of measurable func-
tions is measurable (if T ∈ {F, [−∞,∞]}, say). An Fm–valued function
is measurable if and only if all its components are measurable.
Let A ⊆ S. The characteristic function 1A : S → F is measurable

if and only if A belongs to A. Linear combinations of measurable
characteristic functions are called simple functions. If a function with
values in F or [−∞,∞] is measurable, then also its absolute value, its
real and imaginary part, and its positive f+ = max{0, f} and negative
part f− = −max{0,−f} (if the range is not C) are measurable. For
A = Bm and B = Bk measurability is a rather weak condition.

4) Let (S,A, µ) be a measure space. A non-negative simple function

f can be written as f =
∑k

j=1 yk1Aj
for some yj ≥ 0 and disjoint

Aj ∈ A. Its integral is given by∫
S

f dµ =
k∑

j=1

ykµ(Aj).

Next, let f : S → [0,∞] be measurable. One can approximate f
monotonically by simple functions fn : S → [0,∞). This fact allows us
to define its integral by∫

S

f dµ = sup
n∈N

∫
S

fn dµ ∈ [0,∞].

The function f is called integrable if its integral is finite. We stress
that for non-negative measurable functions one obtains a convenient
integration theory (one only has to avoid negative factors) without
requiring integrability. For instance, the map f →

∫
f dµ is monotone,
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additive and positive homogeneous. The integral is zero if and only if
µ({f ̸= 0}) = 0.
A measurable function f : S → F is integrable if the non-negative

measurable maps (Re f)± and (Im f)± are integrable, which is equiv-
alent to the integrability of |f |. So besides the measurability of f one
only has to check that the number

∫
S
|f | dµ is finite. In this case one

introduces the integral of f by setting∫
S

f dµ =

∫
S

f(s) dµ(s) :=

∫
S

(Re f)+ dµ−
∫
S

(Re f)− dµ

+ i

∫
S

(Im f)+ dµ− i

∫
S

(Im f)− dµ.

One writes dx instead of dλ or dλ(x). (In this case, the above integral
coincides with the Riemann–integral if f is a piecewise continuous func-
tion on [a, b].) The integral is linear, monotone (for F = R), and satis-
fies the inequality |

∫
f dµ| ≤

∫
|f | dµ. It vanishes if µ({f ̸= 0}) = 0.

Let f : S → Fm be measurable. The map |f |2 is integrable if and
only if all components fk : S → F are measurable. One then defines
its integral by ∫

S

f dµ =
(∫

S

fk dµ
)
k
.

It has similar properties as in the scalar-valued case.

5) Let p ∈ [1,∞). For measurable f : S → F, we define the quantity
∥f∥pp =

∫
S
|f |p dµ ∈ [0,∞] and the set

Lp(µ) = Lp(S) = Lp(S,A, µ) = {f : S → F |measurable, ∥f∥p <∞}.
Again, to show that f is contained in Lp(µ) one only has to check its
measurability and that an integral for a non-negative function is finite.
We note that ∥ · ∥p is a seminorm on the vector space Lp(µ). We list
again a few basic examples.
i) For every function f : S → F and s ∈ S, we have

∫
S
f dδs = f(s).

ii) We have Lp(N,P(N), ζ)=ℓp and
∫
N f dζ=

∑∞
j=1 f(j).

iii) Let B ∈ Bm. We usually write Lp(B) instead of L(B,B(B), λ),
where p ∈ [1,∞). A measurable function f : B → F is an element of

Lp(B) if and only if its 0–extension f̃ belongs to Lp(Rm), and we have∫
B

f dx :=

∫
B

f dλB =

∫
Rm

f̃ dx.

6) It would be nice if Lp(µ) was a Banach space, but unfortunately
one has ∥1N∥p = 0 if µ(N) = 0. We are led to the following concept.
Let (S,A, µ) be a measure space. A set N ∈ A is called a null set if

µ(N) = 0. A property which holds for all s ∈ S \N and a null set N
is said to hold almost everywhere (a.e.) are for almost all (a.a.) s.
A countable union of null sets is a null set, and M ∈ A is a null set

if it is contained in a null set. Uncountable unions of null sets can even
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have measure ∞; for instance, we have R =
⋃

x∈R{x}. In (Rm,Bm, λ)
hyperplanes, countable subsets, or graphs of measurable functions are
null sets. On the other hand, ∅ is the only null set in (N,P(N), ζ),
whereas in (S,P(S), δs) with s ∈ S the null sets are those A ⊆ S that
do not contain s.
We further introduce the set of null functions

N = {f : S → F | f is measurable, f = 0 a.e.}
which is a linear subspace of Lp(µ) for every 1 ≤ p <∞. We can thus
define the vector space

Lp(µ) = Lp(S) = Lp(S,A, µ) := Lp(µ)/N = {f̂ = f +N | f ∈ Lp(µ)}.
To avoid that Lp(µ) = {0}, we always assume µ(S) > 0. We set

∥f +N∥p := ∥f∥p, resp.

∫
S

f̂ dµ :=

∫
S

f dµ,

for each f̂ ∈ Lp(µ), resp. f̂ ∈ L1(µ), and any representative f of f̂ .
These definitions do not depend on the choice of the representative.
The Riesz–Fischer Theorem 5.5 in Analysis 3 says that (Lp(µ), ∥ · ∥p)
is a Banach space. Unless something else is said, we endow Lp(µ) with
the p–norm.
In Lp(µ), we write f̂ ≥ 0 if f ≥ 0 a.e. for some representative f of f̂ .

It then follows that g ≥ 0 a.e. for all representatives g of f̂ . Analogous
statements hold for the relations ‘=’ or ‘>.’
One usually identifies f̂ with any representative f and Lp(µ) with

Lp(µ), provided that one only deals with properties not depending on
the representative. For instance, by f 7→ f(0) one can not define a
map on Lp(R,B1, λ).
As noted in Example 1.4, the 1–norm of a mass density u ≥ 0 repre-

sents the total mass of the corresponding object. Consider a velocity
field v : S → R3 of a fluid with density ρ > 0. Then the kinetic energy
of the fluid is given by 1

2

∫
ρ |v|22 dx. Other p-norms occur in the context

of energies for nonlinear material laws. We next illustrate the above
spaces as in Example 1.14.

Example 1.33. a) Let p ∈ [1,∞), (S,A, µ) be a measure space, and
g∈Lp(µ). Then the set E = {f ∈ Lp(µ) | f ≥ g a.e.} is closed in Lp(µ).

Proof. 1) Let9 (f̂n) converge to f̂ in Lp(µ). Choose representatives

fn of f̂n, f of f̂ , and g of ĝ. Then there are null sets Nn such that
fn(s) ≥ g(s) for all s ∈ S \Nn and n ∈ N. Moreover, the Riesz–Fischer
Theorem 5.5 of Analysis 3 provides a subsequence and a null set N such
that fnj

(x) → f(s) for all s ∈ S \N as j → ∞. Therefore f(s) ≥ g(s)
for all s not contained in the nullset

⋃
nNn ∪ N . This means that

f̂ ∈ E, and so E is closed. 2

9As an exception we do not identify f̂ and f in this proof.
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b) In part a) we take the measure space (B,B(B), λ) for some B ∈
Bm. Then E possesses no interior points and thus E = ∂E in Lp(B).
Proof. Let f ∈ E. There is an integer k ∈ N such that B0 = {s ∈

B | 0 ≤ f(s)−g(s) ≤ k} is not a null set (since othewise f−g = ∞ a.e.).
Let (Cn

j )j∈N be a countable covering of Rm with closed cubes of volume
1
n
which have disjoint interiors. Because 0 < λ(B0) =

∑∞
j=1 λ(B0∩Cn

j ),
for each n ∈ N there is an index jn such that the measure of the set
An = B0 ∩ Cn

jn is contained in (0, 1
n
]. Put fn = f − (k + 1)1An . The

maps fn then belong to Lp(B) \E and ∥f − fn∥p ≤ (k + 1)λ(An)
1/p ≤

(k + 1)n−1/p for all n ∈ N. Hence, f is not an interior point of E. 2.

For a measure space (S,A, µ), we further introduce the space

L∞(µ) = L∞(S) = L∞(S,A, µ)
:= {f : S → F | f is measurable and bounded a.e.}

Let f : S→F be measurable. Its essential supremum norm is given by

∥f∥∞ = ess sup
s∈S

|f(s)| := inf{c ≥ 0 | |f(s)| ≤ c for a.e. s ∈ S} ∈ [0,∞].

Of course, f belongs to L∞(µ) if and only if its essential supremum
norm is finite. For the Lebesgue measure on B ∈ Bm this definition
coincides with the usual supremum norm if f is continuous and if λ(B∩
B(x, r)) > 0 für alle x ∈ B und r > 0.
Indeed, suppose there was a point x ∈ B with δ := |f(x)| −

ess supS |f | > 0. Since f is continuous, there exists a radius r > 0
such that |f | ≥ δ

2
+ ess supS |f | on the set B ∩B(x, r) which has posi-

tive measure by assumption. This is impossible.
For B = [0, 1] the map f = a1{0} has the essential supremum norm

0 for all a ∈ [0,∞]. If B = {0}∪ [1/2, 1], the same is true, but here f is
continuous on B. Moreover, the function given by f(s) = 1

s
for s > 0

and f(0) = 0 is not essentially bounded on B = [0,∞). We also set

L∞(µ) = L∞(µ)/N and ∥f +N∥∞ = ∥f∥∞.
The importance of this space becomes clear later, see e.g. Theorem 5.4.

Proposition 1.34. Let (S,A, µ) be a measure space. Then L∞(µ)
endowed with ∥ · ∥∞ is a Banach space.

Proof. Let fk ∈ L∞(µ) and αk ∈ F for k ∈ {1, 2}. Then there
are numbers ck ≥ 0 and null sets Nk such that |fk(s)| ≤ ck for all
s ∈ S \ Nk. We thus obtain |α1f1(s) + α2f2(s)| ≤ |α1| c1 + |α2| c2 for
every s /∈ N1∪N2 =: N , where N is a null set. The linear combination
α1f1+α2f2 then belongs to L∞(µ) and L∞(µ) is a vector space. Taking
the infimum over such ck, we also see that ∥f1+f2∥∞ ≤ ∥f1∥∞+∥f2∥∞.
It is clear that ∥α1f1∥∞ = |α1| ∥f1∥∞. Moreover, N is a linear subspace
of L∞(µ) and we have ∥f1∥∞ = ∥f2∥∞ if f1 = f2 a.e.. Therefore L

∞(µ)

is a vector space, ∥f̂∥∞ is well defined, and it is a norm on L∞(µ).
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Let (f̂n) be Cauchy in L∞(µ). Fix representatives fn of f̂n. For every
j ∈ N there is an index k(j) ∈ N such that ∥fn − fm∥∞ ≤ 1

j
for all

n,m ≥ k(j). Hence, the set

Nn,m,j = {s ∈ S | |fn(s)− fm(s)| > 2
j
}

has measure 0 for these integers, and so N :=
⋃

n,m≥k(j),j∈NNn,m,j is

also a the null set. For s ∈ S \N , we then obtain

|fn(s)− fm(s)| ≤ 2/j for all n,m ≥ k(j) and j ∈ N.
There thus exists f(s) = limn→∞ fn(s) in F for all s ∈ S \ N . We set
f(s) = 0 for all s ∈ N . Then the map f : S → F is measurable. Let
ε > 0 and take j ≥ 1/ε. It follows that

∥f̂n− f̂∥∞ ≤ sup
s∈S\N

|fn(s)−f(s)| = sup
s∈S\N

lim
m→∞

|fn(s)−fm(s)| ≤
2

j
≤ 2ε

if n ≥ k(j). As a result, the equivalence class f̂ = f̂n + f̂ − f̂n belongs

to L∞(µ) and f̂n → f̂ in L∞(µ) as n→ ∞. □

We finally recall Hölder’s inequality and an immediate consequence,
see Satz 5.1 and Korollar 5.2 of Analysis 3.

Proposition 1.35. Let (S,A, µ) be a measure space, p ∈ [1,∞],
f ∈ Lp(µ), and g ∈ Lp′(µ). Then the following assertions hold.
a) We have fg ∈ L1(µ) and ∥fg∥1 ≤ ∥f∥p ∥g∥p′.
b) If µ(S) <∞ and 1 ≤ p < q ≤ ∞, then Lq(µ) ⊆ Lp(µ) and

∥f∥p =
(∫

S

1 |f |p dµ
) 1

p ≤ ∥1∥
1
p

r′ ∥ |f |
p∥

1
p
r = µ(S)

1
p
− 1

q ∥f∥q,

where r = q/p > 1 and r′ = q/(q − p) by (1.2).

The inclusion in Proposition 1.35b) is strict in general, as shown by
the function (0, 1) ∋ t 7→ f(t) = t−1/q. Similarly, one checks that there
is no inclusion between Lq(Rm) and Lp(Rm) if p ̸= q.

1.3. Compactness and separability

Compactness is one of the most important concepts in analysis, as
one could already see in the Analysis lectures. We first define this
notion and some variants in a metric space.

Definition 1.36. Let M be a metric space and K ⊆M .
a) K is compact if every open covering C of K (i.e., a collection

C of open sets O ⊆ M with K ⊆
⋃
{O |O ∈ C}) contains a finite

subcovering {O1, . . . , Om} ⊆ C with K ⊆ O1 ∪ · · · ∪Om.
b) K is sequentially compact if every sequence (xn) in K possesses

a subsequence converging to some x ∈ K.
c) K is relatively compact if K is compact.
d) K is totally bounded if for each ε > 0 there are a number m ∈ N

and points x1, . . . , xm ∈M such that K ⊆ B(x1, ε) ∪ · · · ∪B(xm, ε).
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We stress that sequential compactness gives some convergence for
free, and compactness provides finiteness (which often transfers into
uniformity). Clearly, compactness is just relatively compactness plus
closedness, and it implies total boundedness using the covering C =
{B(x, ε) |x ∈ K}.
In the definition of total boundedness, one can equivalently require

that the centers xj belong to K. To show this, take ε > 0 and the
points x1, . . . , xm ∈ M from Definition 1.36 with ε replaced by ε/2.
If B(xj, ε/2) ∩ K is empty, we drop this element xj. Otherwise we
replace it by some yj in B(xj, ε/2) ∩K. Then B(xj, ε/2) is contained
in B(yj, ε) so that also the balls B(yj, ε) cover K.
If K is totally bounded, then it is bounded as a subset of the ball

B(x1, r) with radius r = ε + maxj∈{1,...,m} d(x1, xj), where xj are the
points from part d) of the above definition.
As in Satz 2.20 of Analysis 1 one sees that a sequence in a metric

space M has a subsequence converging to some x in M if and only if
x is an accumulation point of the sequence.
We first show that in metric spaces the seemingly unrelated con-

cepts of sequential compactness and compactness are equivalent. This
astonishing fact goes back to Heine, Borel, and others.

Theorem 1.37. Let (M, d) be metric space and K ⊆ M . Then K
is compact if and only if it sequentially compact.

Proof. 1) Let K be compact. Suppose K was not sequentially
compact. There thus exists a sequence (xn) in K without an accumu-
lation point in K. In other words, for each y ∈ K there is a radius
ry > 0 such that the open ball B(y, ry) contains only finitely many of
the members xn. Since K ⊆

⋃
y∈K B(y, ry) and K is compact, there

are centers y1, . . . , ym ∈ K such that K ⊆ B(y1, ry1)∪ · · · ∪B(ym, rym).
This inclusion is impossible because (xn) has infinitely many members,
and hence K must be sequentially compact.

2) Let K be sequentially compact and let C be an open covering of
K. We suppose that no finite subset of C coversK. Due to Lemma 1.38
below, for each n ∈ N there are finitely many open balls of radius 1/n
covering K. For every n ∈ N, we can find a ball Bn = B(xn, 1/n)
such that Bn ∩K is not covered by finitely many sets from C (since we
would otherwise obtain a finite subcovering). BecauseK is sequentially
compact, there is an accumulation point x̂ ∈ K of (xn). There further

exists an open set Ô ∈ C with x̂ ∈ Ô, and hence B(x̂, ε) ⊆ Ô for some
ε > 0. We then obtain an index N ∈ N such that d(xN , x̂) < ε/2 and
N ≥ 2/ε. Each x ∈ BN thus satisfies the inequality

d(x, x̂) ≤ d(x, xN) + d(xN , x̂) <
1
N
+ ε

2
≤ ε;

i.e., BN ⊆ B(x̂, ε) ⊆ Ô. By this contradiction, K is compact. □

We have isolated the following lemma from the above proof.
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Lemma 1.38. Let (M, d) be a metric space, K ⊆ M , and each se-
quence in K have an accumulation point. Then K is totally bounded.

Proof. Suppose that K was not totally bounded. There would
thus exist a number r > 0 such that K cannot be covered by finitely
many balls of radius r. As a result, there exists a center x1 ∈ K such
that K ̸⊆ B(x1, r). Take any point x2 ∈ K \ B(x1, r). We then have
d(x2, x1) ≥ r. Since K cannot be contained in B(x1, r) ∪ B(x2, r), we
find an element x3 of K \(B(x1, r)∪B(x2, r)) implying that d(x3, x1) ≥
r and d(x2, x1) ≥ r. Inductively, we obtain a sequence (xn) in K with
d(xn, xm) ≥ r > 0 for all n > m. By assumption, this sequence has an
accumulation point x. This means that there are infinitely members xnj

in B(x, r/2) and thus d(xnj
, xni

) < r for all i ̸= j. This is impossible,
so that K is totally bounded. □

We now show that total boundedness yields relative compactness if
the metric is complete. This fact is often used to check compactness,
see e.g. Proposition 1.46.

Corollary 1.39. Let (M, d) be a metric space and N ⊆ M . Then
the following assertions are equivalent.10

a) N is relatively compact.
b) Each sequence in N has an accumulation point (belonging toN).
c) N is totally bounded and N is complete.

Proof. The implication “a)⇒b)” follows from Theorem 1.37 ap-
plied to N .
Let statement b) be true. Lemma 1.38 yields that N is totally

bounded. Take a Cauchy sequence (xn) in N . There are points x̃n ∈ N
such that d(xn, x̃n) ≤ 1/n for every n ∈ N. By b), there exists a sub-
sequence (x̃nj

)j with a limit x in N . Let ε > 0. We can then find an
index j = j(ε) such that nj ≥ 1/ε, d(x̃nj

, x) ≤ ε and d(xn, xnj
) ≤ ε for

all n ≥ nj. For such n, we estimate

d(xn, x) ≤ d(xn, xnj
) + d(xnj

, x̃nj
) + d(x̃nj

, x) ≤ 3ε,

so that assertion c) has been shown.
Let N be totally bounded and N be complete. Take a sequence (xn)

in N . We choose points x̃n ∈ N as in the previous paragraph. By
assumption, N is covered by finitely many balls B1

j in M of radius 1.

We can then find an index j1 and a subsequence (x̃ν1(k))k in B1
j1
. There

further exist finitely many balls B2
j in M of radius 1/2 which cover

N . Again, there is an index j2 and a subsequence (x̃ν2(k))k of (x̃ν1(k))k
which belongs to B2

j2
. By induction, for every m ∈ N we obtain a

subsequence (x̃νm(k))k of (x̃νm−1(k))k that is contained in a ball Bm
jm of

radius 1/m. To define a diagonal sequence, we set nm = νm(m) for

10In the lectures we showed a slightly weaker result.
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m ∈ N. Note that the points x̃nm and x̃np are elements of Bm
jm for

p ≥ m since np and nm are contained in νm. Take ε > 0. Choose a
number m ∈ N with m,nm ≥ 1/ε. It follows that

d(xnm , xnp) ≤ d(xnm , x̃nm)+d(x̃nm , x̃np)+d(x̃np , xnp) ≤ 1
nm

+ 2
m
+ 1

np
≤ 4ε

for all p ≥ m. Because N is complete, the Cauchy sequence (xnm)m
has a limit x in N . Statement c) is thus true by Theorem 1.37. □

We state two important necessary conditions for compactness.

Corollary 1.40. Let K be a compact subset of a metric space M .
Then K is closed and bounded.

Proof. The boundedness follows from Corollary 1.39 and the re-
marks after Definition 1.36. Let points xn ∈ K tend to some x inM as
n→ ∞. Since K is sequentially compact, there is a subsequence (xnj

)j
with a limit y in K. Hence, x = y belongs to K and K is closed. □

We now discuss whether there is a converse of the above result.

Example 1.41. a) A subset K of a finite dimensional normed vector
space X is compact if and only if K is closed and bounded, because
of Theorem 2.44 in Analysis 2 and Theorem 1.37. In particular, closed
balls are compact in finite dimensions.

b) Let X = ℓp and 1 ≤ p ≤ ∞. We then have ∥en∥p = 1 and

∥en− em∥p = 2
1
p if n ̸= m, so that (en) has no converging subsequence.

As a result, the closed (and bounded) unit ball in ℓp is not compact.

c) Let X = C([0, 1]). For n ∈ N we define the functions fn ∈ X by

fn(t) =


2n+1t− 2, 2−n ≤ t ≤ 3

2
· 2−n,

4− 2n+1t, 3
2
· 2−n < t ≤ 2−n+1,

0, otherwise.

Then ∥fn∥∞ = 1 and ∥fn − fm∥∞ = 1 for n ̸= m, so that again the
closed unit ball is not compact. ♢

The next theorem shows that these simple examples are typical. This
fact is arguably the most important difference between finite and infi-
nite dimensional normed vector spaces, but see Theorem 1.50.

Theorem 1.42. Let X be a normed vector space. The closed unit
ball B = B(0, 1) in X is compact if and only if dimX <∞.

Proof. If dimX <∞, then B is compact by Example 1.41a). Let
dimX = ∞. Take any x1 ∈ X with ∥x1∥ = 1. Set U1 = lin{x1}. Since
U1 is finite dimensional, U1 is closed in X due to Lemma 1.43 below
and X ̸= U1 because of dimX = ∞. Lemma 1.44 thus yields a vector
x2 in X with ∥x2∥ = 1 and ∥x2 − x1∥ ≥ 1

2
. Then U2 = lin{x1, x2} ≠ X

is also closed, and from Lemma 1.44 we obtain an element x3 of X with
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∥x3∥ = 1, ∥x3 − x2∥ ≥ 1
2
, and ∥x3 − x1∥ ≥ 1

2
. Inductively, we can now

construct a sequence (xn) in B such that ∥xn−xm∥ ≥ 1
2
for all n ̸= m;

i.e., B is not sequentially compact. □

We still have to prove two lemmas, the seond one is due to F. Riesz.

Lemma 1.43. Let Y be a finite dimensional subspace of a normed
vector space X. Then Y is closed in X.

Proof. Choose a basis B = {b1, . . . , bm} of Y . Let ỹ =
(y1, . . . , ym) ∈ Fm be the (uniquely determined) vector of coefficients
with respect to B for a given y ∈ Y . Set 9ỹ9 := ∥y∥. This gives a
norm on Fm, which is complete by Satz 2.54 of Analysis 2. Let vn ∈ Y
converge to some x in X. Then (ṽn) is a Cauchy sequence in Fm, and
so there exists a limit z̃ = (z1, . . . , zm) ∈ Fm of (ṽn) for 9 · 9. Set
z = z1b1 + · · · + zmbm ∈ Y . It follows that ∥vn − z∥ = 9ṽn − z̃9 → 0
as n→ ∞, and thus x = z belongs to Y ; i.e., Y is closed. □

Lemma 1.44. Let X be a normed vector space, Y ̸= X be a closed
linear subspace, and δ ∈ (0, 1). Then there exists a vector x̄ ∈ X with
∥x̄∥ = 1 and ∥x̄− y∥ ≥ 1− δ for all y ∈ Y .

Proof. Take any x ∈ X \ Y . Since X \ Y is open, we have d :=
infy∈Y ∥x − y∥ > 0. Hence, d < d/(1 − δ) and there is a vector ȳ ∈ Y
with ∥x − ȳ∥ ≤ d/(1 − δ). Set x̄ = 1

∥x−ȳ∥(x − ȳ). Let y ∈ Y . We then

obtain ∥x̄∥ = 1 and, using the above inequalities,

∥x̄− y∥ =
1

∥x− ȳ∥
∥x− (ȳ + ∥x− ȳ∥y)∥ ≥ d

∥x− ȳ∥
≥ 1− δ. □

We recall a few important consequences of compactness.

Theorem 1.45. Let X be a normed vector space, K be a compact
metric space, and f ∈ C(K,X). Then f is uniformly continuous and
bounded. If X = R, then there are points t± in K such that f(t+) =
maxt∈K f(t) and f(t−) = mint∈K f(t).

Proof.11 1) Let ε > 0. Because f is continuous, for every t ∈ K
there is a radius δt > 0 with ∥f(t)−f(s)∥ < ε for all s ∈ B(t, δt). Since
K =

⋃
t∈K B(t, 1

3
δt) and K is compact, there are points t1, . . . , tm ∈ K

such that K ⊆ B(t1,
1
3
δ1) ∪ · · · ∪B(tm,

1
3
δm), where δk := δtk . Set δ =

min{1
3
δ1, . . . ,

1
3
δm} > 0. Take s, t ∈ K with d(s, t) < δ. Then there are

indices k, l ∈ {1, . . . ,m} such that s ∈ B(tk,
1
3
δk) and t ∈ B(tl,

1
3
δl),

where we may assume that δk ≥ δl. We thus obtain

d(tk, tl) ≤ d(tk, s) + d(s, t) + d(t, tl) <
1
3
δk + δ + 1

3
δl ≤ δk

so that tl ∈ B(tk, δk), and hence

∥f(s)− f(t)∥ ≤ ∥f(s)− f(tk)∥+ ∥f(tk)− f(tl)∥+ ∥f(tl)− f(t)∥ < 3ε.

11This proof was omitted in the lectures.
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2) Suppose there were points tn in K with ∥f(tn)∥ → ∞ as n→ ∞.
Since K is compact, there is a subsequence (tnj

)j converging to some
t ∈ K. The norms ∥f(tnj

)∥ then tend to ∥f(t)∥ as j → ∞, due to the
continuity of t 7→ ∥f(t)∥, which contradicts the limit ∥f(tn)∥ → ∞.
3) Let X = R. By part 2), the supremum z := supt∈K f(t) belongs

to R. We can find elements rn of K with f(rn) → z as n → ∞. The
compactness of K again gives a subsequence (rnj

)j converging to some
t+ in K. Hence, f(t+) = limj→∞ f(rnj

) = z since f is continuous. The
minimum is treated in the same way. □

Theorem 1.42 shows that in an infinite dimensional Banach space a
closed and bounded subset does not need to be compact. The next two
results give stronger sufficient conditions for (relative) compactness of
a set in ℓp or C(K). Besides boundedness, one requires summability,
resp. continuity, uniformly for elements in the set. (It can be seen that
these conditions are in fact necessary.)

Proposition 1.46. Let p ∈ [1,∞). A set K ⊆ ℓp is relatively
compact if it is bounded and fulfills

lim
N→∞

sup
(xj)∈K

∞∑
j=N+1

|xj|p = 0.

Proof. Due to Corollary 1.39, it suffices to prove that K is totally
bounded. Let ε > 0. By assumption, there is an index N ∈ N with

∞∑
j=N+1

|xj|p < εp for all (xj) ∈ K.

For x = (xj) ∈ K, we put x̂ = (x1, . . . , xN) ∈ FN . Since |x̂|p ≤ ∥x∥p,
the set K̂ = {x̂ |x ∈ K} is bounded in FN , and thus it is totally
bounded by Example 1.41 and Corollary 1.39. So we obtain vectors
v̂1, . . . , v̂m ∈ FN such that for all x ∈ K there is an index l ∈ {1, . . . ,m}
with |x̂− v̂l|p < ε. Set vk = (v̂k, 0, . . . ) ∈ ℓp for all k ∈ {1, . . . ,m}. The
total boundedness of K now follows from

∥x− vl∥pp = |x̂− v̂l|pp +
∞∑

j=N+1

|xj|p < 2εp.□

We now establish one of the most important compactness results in
analysis going back to Arzela and Ascoli.

Theorem 1.47. Let K be a compact metric space and F ⊆ C(K) be
bounded and equicontinuous; i.e.,

∀ ε > 0 ∃ δε > 0 ∀ f ∈ F ∀ s, t ∈ K s.t. d(s, t) ≤ δε : |f(s)− f(t)| ≤ ε.

(1.3)

Then F is relatively compact. If F is also closed, it is compact.
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Proof. 1) For each εN := 1/N and N ∈ N, we take the radius
δN := δεN from (1.3). Since K is compact, Corollary 1.39 gives points
t1,N , . . . , tmN ,N ∈ K with K ⊆ B(t1,N , δN) ∪ · · · ∪ B(tmN ,N , δN). We
relabel them as {sl | l ∈ N} = {tk,N | k = 1, . . . ,mN ;N ∈ N}.
2) Take a sequence (fn) in F . Since F is bounded, we have

supn∈N |fn(s1)| ≤ supf∈F ∥f∥ < ∞. By Bolzano-Weierstraß, there ex-
ists a subsequence (fν1(k)(s1))k with a limit in F. Similarly, we obtain
a converging subsequence (fν2(k)(s2))k of (fν1(k)(s2))k . Note that the
points fν2(k)(s1) still converge in F as k → ∞. We iterate this procedure
and define the diagonal sequence (fnj

)j = (fνj(j))j. The values fnj
(sl)

have a limit as j → ∞ for each fixed l ∈ N, since fnj
(sl) = fνl(kj)(sl)

for all j ≥ l and certain indices kj → ∞ (depending on l).
3) Let ε > 0. Fix a number N ∈ N with εN = 1/N ≤ ε. Pick

the radius δN = δεN > 0 from (1.3) and the points tk,N from step 1).
Part 2) yields an index Jε ∈ N such that |fni

(tk,N)− fnj
(tk,N)| ≤ ε for

all i, j ≥ Jε and k ∈ {1, . . . ,mN}. Take t ∈ K. There is an integer
l ∈ {1, . . . ,mN} with d(t, tl,N) < δN by part 1). We can thus estimate

|fni
(t)− fnj

(t)|
≤ |fni

(t)− fni
(tl,N)|+ |fni

(tl,N)− fnj
(tl,N)|+ |fnj

(tl,N)− fnj
(t)|

≤ εN + ε+ εN ≤ 3ε

for all i, j ≥ Jε and all t ∈ K. Since Jε does not depend on the argu-
ment t, we have shown that the subsequence (fnj

)j is Cauchy in C(K).
This space is complete by Example 1.4 so that (fnj

)j converges in C(K).
The relative compactness of F now follows from Corollary 1.39. The
addendum is clear. □

In the next result we see that the equicontinuity (1.3) is consequence
of a bit uniform extra regularity of the functions in F . We state this
important fact in terms of a given sequence.

Corollary 1.48. Let α ∈ (0, 1] and K be a compact metric space.
Assume that the sequence (fn) is bounded in C(K) and uniformly
Hölder continuous; i.e., there is a constant c ≥ 0 such that

|fn(t)| ≤ c and |fn(t)− fn(s)| ≤ c d(t, s)α (1.4)

for all t, s ∈ K and n ∈ N. Then there exists a subsequence (fnj
)j with

a limit f in C(K) such that the function f also satisfies (1.4).

Proof. The first part follows from Theorem 1.47 with F =
{fn |n ∈ N}, noting that (1.3) holds with δε = (ε/c)1/α. The last
claim can be shown as in Example 1.14f). □

Condition (1.4) with α = 1 is true for bounded sequences in
C1([0, 1]), for instance. We first illustrate the above concepts and then
discuss in Example 1.49c) a typical application of Arzela–Ascoli.
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Example 1.49. a) The sequence (fn) in Example 1.41c) is not
equicontinuous since

∣∣fn(322−n)− fn(2
−n)
∣∣ = 1 for all n ∈ N, but

3
2
2−n − 2−n → 0 as n→ ∞.

b) The analogue of Arzela–Ascoli in Cb(R) or C0(R) is wrong. For
instance, consider the sequence (fn) in Cb(R) given by fn(t) = 0 for
|t− n| ≥ 1/2 and fn(t) = 1− 2 |t− n| for |t− n| < 1/2. It is bounded
and equicontinuous, but ∥fn − fm∥∞ = 1 for n ̸= m.

c) Let k ∈ C([0, 1]2) and set Tf(t) =
∫ 1

0
k(t, s)f(s) ds for t ∈ [0, 1]

and f ∈ X = C([0, 1]). Then the set F = {g = Tf | f ∈ BX(0, 1)} is
relatively compact in X.
Proof. Let f ∈ BX(0, 1) and g = Tf . Korollar 2.48 in Analysis 2

shows that g belongs to X. Since ∥Tf∥∞ ≤ ∥k∥∞ ∥f∥∞ ≤ ∥k∥∞, the
set F is bounded. Let ε > 0. By the uniformy continuity of k, we find
a radius δ > 0 such that |k(t, s)−k(t′, s)| ≤ ε for all t, t′, s ∈ [0, 1] with
|t′ − t| ≤ δ. Arzela–Ascoli now implies the assertion because

|g(t′)− g(t)| ≤
∫ 1

0

|k(t, s)− k(t′, s)| |f(s)| ds ≤ ε

for all g ∈ F and t, t′ ∈ [0, 1] with |t′ − t| ≤ δ. 2

In metric spaces which are not normed vector spaces, it is possible
that the closed balls are compact also in the infinite dimensional situ-
ation. The most prominent theorem in this direction is due to Montel
and deals with holomorphic functions, see Example 1.32.

Theorem 1.50. Let U ⊆ C be open and F ⊆ H(U) be locally
bounded; i.e., for each point z ∈ U there is a radius rz > 0 such
that Bz := B(z, rz) ⊆ U and supf∈F supw∈Bz

|f(w)| is finite. Then F
is relatively compact in H(U). In particular, all closed balls in H∞(U)
are compact for the metric of H(U).

Proof. Let (fn) be a sequence in F .
1) We first show that the sequence (fn) is uniformly Lipschitz on

certain balls. Take a point z0 ∈ U and set r = rz0/2. Let w, z ∈
B(z0, r) and n ∈ N. Cauchy’s integral formula (see Theorem 2.8 in
Analysis 4) then yields

fn(w)− fn(z) =
1

2πi

∫
|ζ−z0|=2r

fn(ζ)
( 1

ζ − w
− 1

ζ − z

)
dζ

=
1

2πi

∫
|ζ−z0|=2r

fn(ζ)
w − z

(ζ − w)(ζ − z)
dζ,

|fn(w)− fn(z)| ≤
4πr

2π

|z − w|
r2

max
|ζ−z0|=2r

|fn(ζ)| = k(z0) |z − w|

with k(z0) := 2r−1 supn∈N supζ∈Bz0
|fn(ζ)| <∞.

2) As in Example 1.9 there are compact sets Kj ⊆ Kj+1 ⊆ U for
j ∈ N whose union is equal to U . Since every Kj can be covered
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with finitely many of the balls Bz, the restrictions (fn)|Kj
are bounded

uniformly in n ∈ N, for each fixed j ∈ N.
Suppose the set Fj = {(fn)|Kj

|n ∈ N} was not equicontinuous for
some j ∈ N. There thus exist points wn, zn ∈ Kj and a number ε0 > 0
such that |wn − zn| → 0 as n → ∞ and |fn(wn) − fn(zn)| ≥ ε0 for all
n ∈ N. Since Kj is compact, there are subsequences (wnl

)l and (znl
)l

with limits w0 and z0 in Kj, respectively. It follows w
0 = z0. Take the

radius r from part 1) for the point z0. There is an index L ∈ N such
that wnl

and znl
belong to B(z0, r) for all l ≥ L. Step 1) then implies

0 < ε0 ≤ |fnl
(wnl

)− fnl
(znl

)| ≤ k(z0) |wnl
− znl

| −→ 0, l → ∞,

which is impossible. Hence, Fj is equicontinuous for each j ∈ N.
3) Let j = 1. Theorem 1.47 now yields a subsequence (fν1(k))k which

converges in C(K1) to a function g⟨1⟩. Iteratively, for each m ∈ N one
obtains subsequences (fνm(k))k of (fνm−1(k))k that converge on C(Km) to

a function g⟨m⟩. Let j < m in N. The restriction of g⟨m⟩ to Kj coincides
with g⟨j⟩ since the restrictions of fνm(k) toKj converge to both functions
in C(Kj). We can thus define a continuous map g : U → C by setting
g(z) = g⟨m⟩(z) for z ∈ Km. By construction, the diagonal sequence
(fnm)m = (fνm(m))m tends to g in H(U). Corollary 1.39 now says that
F is relatively compact.
4) To prove the addendum, take a sequence (gn) in a closed ball

B(f, r) of H∞(U). Because its uniform boundedness, it has a subse-
quence (gnj

)j with a limit g in H(U). Moreover, g belongs to B(f, r)
since for every z ∈ U we have the estimate

|g(z)− f(z)| = lim
j→∞

|gnj
(z)− f(z)| ≤ r. □

We next derive the amazing convergence theorem of Vitali. To this
aim, we first recall a simple useful fact.

Lemma 1.51. Let (xn) be a sequence in a metric space M and x ∈
M . Then (xn) tends to x if and only if each subsequence (xnj

)j has a
subsequence with limit x.

Proof. If (xn) has the limit x, then the subsequence condition is
clearly satisfied. Let this condition be true. Assume that (xn) does
not tend to x. Then there exists a number δ > 0 and a subsequence
such that d(xnj

, x) ≥ δ for all j ∈ N. But the assumption yields a
subsequence of (xnj

)j converging to x, which is a contradiction. □

Theorem 1.52. Let U ⊆ C be open and pathwise connected, and
let the set A ⊆ U have an accumulation point in U . Assume that the
sequence (fn) in H(U) is locally bounded and that it converges pointwise
on A to a function f0 : A → C. Then f0 has an extension f in H(U)
and (fn) tends to f in H(U).
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Proof. The set {fn |n ∈ N} is relatively compact in H(U) by
Theorem 1.50. Each subsequence (fν(j))j thus has an accumulation
point f ν in H(U). Because of the assumption, these functions coincide
on A. Theorem 2.21 of Analysis 4 then yields that all functions f ν =: f
are equal on U , so that (fn) tends to f due to Lemma 1.51. □

We add another concept that will be needed later in the course.

Definition 1.53. A metric space is called separable if it contains a
countable dense subset.

In Exercise 6.2 simple properties of this notion are established; for
instance, separability is preserved under homeomorphisms. Here we
only discuss standard examples based on the following auxiliary fact.

Lemma 1.54. Let X be a normed vector space and Y ⊆ X be a
countable subset such that linY is dense in X. Then X is separable.

Proof. The set

linQ Y =
{
y =

m∑
j=1

qj yj

∣∣∣ yj ∈ Y, qj ∈ Q (Q+ iQ if F = C), m ∈ N
}

is countable, since Y is countable. Let x ∈ X and ε > 0. By assump-
tion, there exists a vector y =

∑m
j=1 aj yj in linY with ∥x − y∥ ≤ ε,

where we may assume that all yj ∈ Y are non-zero. We then choose
numbers qj ∈ Q (or qj ∈ Q + iQ) with |aj − qj| ≤ ε/(m∥yj∥) and set
z =

∑m
j=1 qj yj. The vector z then belongs to linQ Y and satisfies

∥y − z∥ ≤
m∑
j=1

|aj − qj| ∥yj∥ ≤ ε.

Hence, ∥x− z∥ ≤ 2ε. □

Example 1.55. a) The spaces ℓp, 1 ≤ p < ∞, and c0 are separable
since c00 = lin{ek | k ∈ N} is dense in all of them by Proposition 1.31.

b) The space C([0, 1]) is separable since lin{pn |n ∈ N} with pn(t) =
tn is dense in C([0, 1]) by Weierstraß’ Theorem 5.14 in Analysis 3.

c) Let U ⊆ Rm be open and p ∈ [1,∞). The space Lp(U) is separable
because Korollar VI.2.30 in [El] shows the density of the linear hull of
the functions 1J for intervals J = (a, b] with a, b ∈ Qm and J ⊆ U .

d) The space ℓ∞ is not separable. In fact, the set Ω of {0, 1}–valued
sequences is uncountable and two different elements in Ω have distance
1. Suppose that the set {vk | k ∈ N} was dense in ℓ∞. Then Ω belongs to⋃

k∈NB(vk, 1/4). As each ball B(vk, 1/4) contains at most one sequence
ω ∈ Ω, the set Ω must be countable, which is wrong. ♢



CHAPTER 2

Continuous linear operators

2.1. Basic properties and examples of linear operators

The set of linear maps T : X → Y is designated by L(X, Y ). From
Linear Algebra it is known that it is a vector space for the sum and
scalar multiplication defined before Example 1.4. Recall that T (0) = 0.
We usually write Tx instead of T (x) and ST ∈ L(X,Z) instead of S◦T
for all x ∈ X, T ∈ L(X, Y ), S ∈ L(Y, Z), and vector spaces Z. One
often calls T ∈ L(X, Y ) an operator.
If dimX < ∞ and dimY < ∞, each element T of L(X, Y ) can be

represented by a matrix, and it is continuous. (See Bemerkung 2.36 in
Analysis 2 and the text preceding it.) However, in infinite dimensional
spaces there are discontinuous linear maps.

Example 2.1. a) By T (xk) = (kxk) we define a linear map T :
c00 → c00. This operator is not continuous for any p–norm on c00.
Indeed, take the finite sequences vn = n− 1

2 en for n ∈ N, which satisfy
T (vn) = n

1
2 en, ∥vn∥p = n− 1

2 → 0, and ∥T (vn)∥p = n
1
2 → ∞ as n→ ∞.

b) The map Tf = f ′ is linear from C1([0, 1]) to C([0, 1]), but not
continuous if both spaces are endowed with the supremum norm. To
check this claim, we consider the functions fn(t) = n−1/2 sin(nt), and
note that ∥fn∥∞ ≤ n−1/2 and ∥f ′

n∥∞ ≥ |f ′
n(0)| = n1/2.

On the other hand, T is continuous if we equip C1([0, 1]) with the
norm given by ∥f∥C1 = ∥f∥∞ + ∥f ′∥∞ and C([0, 1]) with ∥f∥∞. ♢

We first characterize the (Lipschitz) continuity of linear operators by
their boundedness.

Lemma 2.2. Let X and Y be normed vector spaces and T : X → Y
be linear. The following assertions are equivalent.
a) T is Lipschitz continuous.
b) T is continuous.
c) T is continuous at x = 0.
d) T is bounded; i.e, there is a constant c > 0 with ∥Tx∥Y ≤ c ∥x∥X

for every x ∈ X.

Proof. The implications ‘a) ⇒ b) ⇒ c)’ are clear.
Let c) be true. Since also T0 = 0, there exists a radius δ > 0 such

that ∥Tz∥ ≤ 1 for all vectors z ∈ B(0, δ). Let x ∈ X \{0}, and set z =
δ

∥x∥x ∈ B(0, δ). Because T is linear, we deduce 1 ≥ ∥Tz∥ ≥ δ
∥x∥∥Tx∥

and hence d) with c = 1/δ. Of course, x = 0 fulfills assertion d).

38
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Let d) be true. The linearity of T then yields ∥Tx− Tz∥ = ∥T (x−
z)∥ ≤ c ∥x− z∥ for all x, z ∈ X. □

The above equivalence leads to the next definition.

Definition 2.3. For normed vector spaces X and Y , we set

B(X, Y ) = {T : X → Y |T is linear and continuous}1

and put B(X,X) = B(X). The dual space B(X,F) of X is denoted
by X⋆. An element x⋆ ∈ X⋆ is called linear functional on X, and one
often writes ⟨x, x⋆⟩X = ⟨x, x⋆⟩ instead of x⋆(x).
For maps T : X → Y the operator norm is given by

∥T∥ = inf{c ≥ 0 | ∀ x ∈ X : ∥Tx∥Y ≤ c ∥x∥X} ∈ [0,∞].

The space B(X, Y ) thus consists of all linear maps T : X → Y
with ∥T∥ <∞. Unless something else is said, we endow B(X, Y ) with
∥T∥B(X,Y ) := ∥T∥. We next show a few basic facts.

Remark 2.4. Let X, Y, Z be normed vector spaces, x ∈ X, and
T ∈ L(X, Y ). Then the following assertions are true.
a) The space B(X, Y ) does not change if we replace the norms on X

or Y by equivalent ones, though the norm ∥T∥ of T ∈ B(X, Y ) may
depend on the choice of ∥ · ∥X or ∥ · ∥Y .
b) The identity I : X → X; Ix = x, has norm ∥I∥ = 1.

c) ∥T∥ (1)
= supx ̸=0

∥Tx∥
∥x∥

(2)
= sup∥x∥≤1 ∥Tx∥

(3)
= sup∥x∥=1 ∥Tx∥ =: s.2

d) ∥Tx∥ ≤ ∥T∥ ∥x∥.
e) Let T ∈ B(X, Y ) and S ∈ B(Y, Z). Then their product ST belongs

to B(X,Z) with ∥ST∥ ≤ ∥S∥ ∥T∥.

Proof. Assertions a) and b) are clear.
c) Let ∥T∥ < ∞. For every ε > 0, Definition 2.3 yields ∥Tx∥ ≤

(∥T∥ + ε) ∥x∥. Taking the infimum over ε > 0, we obtain the relation
‘≥’ in (1). Similarly, one treats the case ∥T∥ = ∞. We clearly have
‘≥’ in (2) and (3) for both cases. The remaining inequality ∥T∥ ≤ s is
a consequence of the bound

∥Tx∥
∥x∥

=
∥∥∥T( 1

∥x∥x
)∥∥∥ ≤ s for x ̸= 0.

Claim d) is true for x = 0, and follows for x ̸= 0 from (1) in part c).
Assertion d) yields ∥STx∥ ≤ ∥S∥∥Tx∥ ≤ ∥S∥∥T∥∥x∥, and thus e). □

Proposition 2.5. Let X and Y be normed vector spaces. Then
B(X, Y ) is a normed vector space with respect to the operator norm.
If Y is a Banach space, then B(X, Y ) is also a Banach space. In
particular, X⋆ is a Banach space.

1One also uses the notation L(X,Y ) for this space.
2In contrast to the lectures, we allow for ∥T∥ = ∞ here.
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Proof. Clearly, B(X, Y ) is a vector space. If ∥T∥ = 0, then Tx =
0 for all x ∈ X by Remark 2.4, and hence T = 0. Let T, S ∈ B(X, Y ),
x ∈ X, and α ∈ F. We then deduce from Remark 2.4 that

∥T + S∥ = sup
∥x∥=1

∥(T + S)x∥ ≤ sup
∥x∥=1

(∥Tx∥+ ∥Sx∥) ≤ ∥T∥+ ∥S∥,

∥αT∥ = sup
∥x∥=1

∥αTx∥ = sup
∥x∥=1

|α| ∥Tx∥ = |α| sup
∥x∥=1

∥Tx∥ = |α| ∥T∥.

Thus, B(X, Y ) is a normed vector space for the operator norm.
Assume that Y is a Banach space. Take a Cauchy sequence (Tn) in

B(X, Y ). Let ε > 0. There is an index Nε ∈ N such that ∥Tn−Tm∥ ≤ ε
for all n,m ≥ Nε. Let x ∈ X. Since Tn − Tm belongs to B(X, Y ),
Remark 2.4 yields

∥Tnx− Tmx∥ ≤ ∥Tn − Tm∥ ∥x∥ ≤ ε∥x∥

for all n,m ≥ Nε. Hence, (Tnx) is a Cauchy sequence in Y and possesses
a unique limit y =: Tx ∈ Y . Let α, β ∈ F and x, z ∈ X. We deduce
from the linearity of Tn that

T (αx+ βz) = lim
n→∞

Tn(αx+ βz) = lim
n→∞

(αTnx+ βTnz) = αTx+ βTz.

Since (Tn) is Cauchy, there is a constant c > 0 with ∥Tn∥ ≤ c for all n,
whence ∥Tx∥ = limn→∞ ∥Tnx∥ ≤ c ∥x∥. As a result, T is contained in
B(X, Y ). Let n ≥ Nε. The above displayed estimate implies

∥(T − Tn)x∥ = lim
m→∞

∥(Tn − Tm)x∥ ≤ ε ∥x∥;

i.e., ∥T − Tn∥ ≤ ε as required. □

We now discuss several important classes of bounded operators and
compute their norms, starting with the most simple one. (See also the
exercises.)

Example 2.6 (Multiplication operators). a) Let K be a compact
metric space and X = C(K). We fix a function m in C(K), and define
Tf = mf for every f ∈ X.
1) The function Tf clearly belongs to X. We also have T (αf+βg) =

αmf + βmg = αTf + βTg for all f, g ∈ X and α, β ∈ F. The operator
T is thus contained in L(X).
2) For each f ∈ X we estimate

∥Tf∥∞ = sup
s∈K

|m(s)| |f(s)| ≤ ∥m∥∞ ∥f∥∞,

so that T is an element of B(X) with norm ∥T∥ ≤ ∥m∥∞.
3) To show equality, we take the map f = 1 in X. Since ∥1∥∞ = 1,

Remark 2.4 yields the lower bound ∥T∥ ≥ ∥T1∥∞ = ∥m1∥∞ = ∥m∥∞,
and hence ∥T∥ = ∥m∥∞.
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b) Let (S,A, µ) be a σ–finite measure space, 1 ≤ p ≤ ∞, and X =

Lp(µ). Fix an element m̂ of L∞(Rm). For f̂ = f +N ∈ X we define

T f̂ = mf +N for any representatives f ∈ f̂ and m ∈ m̂.3

1) Take other functions f1 ∈ f̂ and m1 ∈ m̂. Then there are null sets
N ′ and N ′′ such that f(s) = f1(s) for all s ∈ S \N ′ and m(s) = m1(s)
for all s ∈ S \ N ′′. We thus obtain m(s)f(s) = m1(s)f1(s) for all s

outside the null set N ′ ∪N ′′, so that the equivalence class T f̂ does not
depend on the representatives of f̂ and m̂.
2) The product mf is measurable. Pick a number c > ∥m∥∞. We

then have a null set N such that |m(s)f(s)| ≤ c |f(s)| for all s ∈
S \ N . Hence, the map mf belongs to Lp(µ) and satisfies ∥mf∥p ≤
∥m∥∞ ∥f∥p. (Take the infimum over c > ∥m∥∞.) We have thus shown

that T maps X into X and ∥T f̂∥p = ∥mf∥p ≤ ∥m̂∥∞ ∥f̂∥p.
3) For f, g ∈ L(Rm) and α, β ∈ F we compute

T (αf̂ + βĝ) = T (αf + βg +N ) = αmf + βmg +N = αT f̂ + βT ĝ.

Consequently, T is an element of B(X) fulfilling ∥T∥ ≤ ∥m̂∥∞.
4) We finally claim that ∥T∥ = ∥m̂∥∞. This statement is true if m̂ =

0. So let ∥m̂∥∞ = ∥m∥∞ > 0. By assumption, there are sets Sn ∈ A for
n ∈ N of finite measure whose union is equal to S. Take ε ∈ (0, ∥m∥∞)
and n ∈ N. We put Aε,n = {s ∈ Sn | |m(s)| ≥ ∥m∥∞− ε} ∈ A. We can
find an index k ∈ N with µ(Aε,k) ∈ (0,∞) since {|m| ≥ ∥m∥∞ − ε} is
not a null set. This fact allows us to define the map fε = ∥1Aε,k

∥−1
p 1Aε,k

belonging to Lp(Rm) with norm ∥fε∥p = 1. Using Remark 2.4, we infer

∥T∥ ≥ ∥T f̂ε∥p = ∥mfε∥p =
1

∥1Aε,k
∥p

[ ∫
Aε,k

|m(s)|p dµ(s)
] 1

p ≥ ∥m∥∞−ε,

where we let p < ∞. In the limit ε → 0 is follows that ∥T∥ = ∥m̂∥∞.
The case p = ∞ is treated in the same way. ♢

We next look at a crucial class of bounded operators. More sophisti-
cated examples for it are studied at the end of this section, for instance.

Example 2.7 (Integral operators). Let X = C([0, 1]) and the kernel
k ∈ C([0, 1]2) be given. Let f ∈ X. We define

(Tf)(t) =

∫ 1

0

k(t, s)f(s) ds, t ∈ [0, 1].

1) In Example 1.49 we have seen that Tf belongs to X. Basic prop-
erties of the Riemann integral imply that T : X → X is linear.
2) Set κ = supt∈[0,1]

∫ 1

0
|k(t, s)| ds ≤ ∥k∥∞. We then calculate

∥Tf∥∞ = sup
t∈[0,1]

∣∣∣∫ 1

0

k(t, s)f(s) ds
∣∣∣ ≤ sup

t∈[0,1]

∫ 1

0

|k(t, s)| |f(s)| ds ≤ κ∥f∥∞.

3As an exception, here we explicitely take into acccount that Lq = Lq/N .
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The operator T thus belongs to B(X) and satisfies ∥T∥ ≤ κ.

3) By continuity, there is a number t0 ∈ [0, 1] with κ =
∫ 1

0
|k(t0, s)| ds.

To show a lower bound for the norm, we introduce the functions

fn : [0, 1] → F; fn(s) =
k̄(t0, s)

|k(t0, s)|+ 1
n

,

for n ∈ N. Since fn ∈ X and ∥fn∥∞ ≤ 1, Remark 2.4 leads to

∥T∥ ≥ ∥Tfn∥∞ ≥ |Tfn(t0)| =
∫ 1

0

|k(t0, s)|2

|k(t0, s)|+ 1
n

ds −→ κ

as n→ ∞, using e.g. Lebesgue’s theorem. It follows that ∥T∥ = κ.
Note that for k ≥ 0 one obtains this equality more easily as ∥T∥ ≥

∥T1∥∞ = κ in this case. ♢

The following type of linear maps will be studied in great detail in
the penultimate chapter.

Example 2.8 (Linear functionals). a) Let X = C([0, 1]). For a fixed
t0 ∈ [0, 1] we define the point evaluation φ(f) = f(t0) for all f ∈ X.
It is clear that φ : X → F is linear and that |φ(f)| ≤ ∥f∥∞. Hence,
φ belongs to X∗ with norm ∥φ∥ ≤ 1. On the other hand, we have
∥1∥∞ = 1 and thus ∥φ∥ ≥ |φ(1)| = 1, implying ∥φ∥ = 1.

b) Let X = Lp(µ) for a measure space (S,A, µ) and 1 ≤ p ≤ ∞,
and let g ∈ Lp′(µ) be fixed. Hölder’s inequality says that the integral
φ(f) =

∫
fg dµ ∈ F exists for all f ∈ X and that it is bounded by

|φ(f)| ≤ ∥f∥p ∥g∥p′ . Since linearity is clear, we see that φ is an element
of X⋆ with ∥φ∥ ≤ ∥g∥p′ . (Equality is shown in Proposition 5.1.)

c) On X = C([0, 1]) with ∥ · ∥1, the linear form f 7→ φ(f) = f(0) is
not continuous. For instance, the functions fn given by fn(t) = 1− nt
for 0 ≤ t < 1

n
and fn(t) = 0 for 1

n
≤ t ≤ 1 satisfy ∥fn∥1 = 1

2n
→ 0 as

n→ ∞, but φ(fn) = 1 for all n ∈ N. ♢

In the following examples, we encounter another fundamental differ-
ence between the finite and the infinite dimensional situation. See also
Example 4.12 for related operators.

Example 2.9 (Shift operators). Let X ∈ {c0, c, ℓp | 1 ≤ p ≤ ∞}.
The right and left shift operator on X are given by

Rx = (0, x1, x2, . . . ) and Lx = (x2, x3, . . . )

for x ∈ X. Clearly, R,L : X → X are linear maps satisfying ∥Rx∥p =
∥x∥p and ∥Lx∥p ≤ ∥x∥p for all x ∈ X, as well as ∥Le2∥p = 1. The
operators R and L thus belong to B(X) with norm 1. We stress that
LR = I, RLx = (0, x2, x3, . . .), Le1 = 0, and

• R is injective, but not surjective, and it has a left inverse, but
no right inverse;
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• L is surjective, but not injective, and it has a right inverse, but
no left inverse.

Recall that in the case dimX <∞ the injectivity and the surjectivity
of a map T ∈ L(X) are equivalent, and that here a right or left inverse
is automatically an inverse! ♢

We introduce several notions in the context of linear operators and
list related observations.

Definition 2.10. Let T : X → Y be a linear map for normed vector
spaces X and Y .
a)We denote kernel and range of T by N(T ) = {x ∈ X |Tx = 0}

and R(T ) = T (X) = TX = {y = Tx |x ∈ X}, respectively.
b) An injective operator T ∈ B(X, Y ) is called an embedding, which

is designated by X ↪→ Y .
c) A bijective operator T ∈ B(X, Y ) having a continuous inverse T−1

is called isomorphism or invertible. One then writes X ≃ Y .
d) The map T is said to be isometric if ∥Tx∥ = ∥x∥ for all x ∈ X,

and contractive if ∥T∥ ≤ 1.

Remark 2.11. a) Let X and Y be normed vector spaces and J :
X → Y be an isomorphism. Let xn ∈ X and yn := Jxn for n ∈ N.
Hence, xn = J−1yn and so the sequence (xn) converges if and only if
(yn) converges. Proposition 1.12 and Theorem 1.37 then show that a
set C ⊆ X is closed [open, resp. compact] if and only if the image
D = JC ⊆ Y is closed [open, resp. compact]. Similarly, X is a Banach
space if and only if Y is a Banach space.

b) The kernel N(T ) of a map T ∈ B(X, Y ) is closed by Proposi-
tion 1.24. An isometry is contractive and injective, and a contraction
is continuous. In Example 2.9, the right shift R is an isometry, and the
left shift L has norm 1, but L is not an isometry.

c) Let T ∈ B(X, Y ) be an isometry. Then its inverse T−1 : R(T ) →
X is linear and isometric. In fact, for y = Tx in R(T ) we compute
∥T−1y∥ = ∥x∥ = ∥Tx∥ = ∥y∥.
d) Let X be a Banach space and let the operator T ∈ B(X, Y ) satisfy

the lower bound ∥Tx∥ ≥ c ∥x∥ for some c > 0 and all x ∈ X (e.g., if T
is isometric). Then its range R(T ) is closed in Y .
Proof. Take a sequence (yn) = (Txn) in R(T ) with limit y in Y .

The assumption yields ∥xn − xm∥ ≤ c−1∥yn − ym∥ → 0 as n,m → ∞.
By completeness, there exists x = limn→∞ xn. The continuity of T then
implies that y = Tx belongs to R(T ); i.e., R(T ) is closed. 2

e) Let Y be a linear subspace of (X, ∥ · ∥X) with its own norm ∥ · ∥Y .
The identity I : (Y, ∥ · ∥Y ) → (X, ∥ · ∥X) is continuous (and thus an
embedding) if and only if ∥y∥X = ∥Iy∥X ≤ c ∥y∥Y for all y ∈ Y and a
constant c ≥ 0 if and only if ∥ · ∥Y is finer than ∥ · ∥X . We have the
examples ℓp ↪→ ℓq if 1 ≤ p ≤ q ≤ ∞ and C1([0, 1]) ↪→ C([0, 1]). ♢
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We illustrate the above concepts by several important operators.

Example 2.12. a) Let ∅ ≠ B ∈ Bm with λ(B) < ∞ such that for
all x ∈ B and r > 0 we have λ(B ∩ B(x, r)) > 0. For f ∈ Cb(B) set
Jf = f + N . This map is linear and bounded from Cb(B) to Lp(B)
for p ∈ [1,∞], since ∥Jf∥p = ∥f∥p ≤ λ(B)1/p ∥f∥∞ for all f ∈ Cb(B).
If Jf = 0, then f = 0 a.e.. Take any x ∈ B. The assumption gives
xn ∈ B with f(xn) = 0 and xn → x as n → ∞. It follows f(x) = 0 by
continuity. As a result, J : Cb(B) → Lp(B) is an embedding.

b) We define a map J on C([−1, 1]) by setting

Jf(t) =


0, |t| ≥ 2,

(2 + t)f(−2− t), −2 < t < −1,

f(t), |t| ≤ 1,

(2− t)f(2− t), 1 < t < 2,

for f ∈ C([−1, 1]). Clearly, the map Jf is contained in C0(R) and J
is linear and isometric. Hence, J : C([−1, 1]) ↪→ C0(R) is an isometric
embedding. (One can also embed C(K) into C0(Rm) for any compact
K ⊆ Rm using Tietze’s extension theorem, see Satz B.1.5 in [We].)

c) Let X = {f ∈ C1([0, 1]) | f(0) = 0} be endowed with the norm
given by ∥f∥ = ∥f ′∥∞. Then the map D : X → C([0, 1]); Df = f ′, is

an isometric isomorphism with inverse defined by D−1g(t) =
∫ t

0
g(s) ds

for t ∈ [0, 1] and g ∈ C([0, 1]). The Banach space structures of X and
C([0, 1]) are thus the ‘same’ by Remark 2.11. But, the isomorphism D
destroys other properties such as non-negativity (e.g., f(t) = t(1 − t)
is non-negative on [0, 1], in contrast to Df(t) = f ′(t) = 1− 2t).

d)4 Each sequence m ∈ ℓ∞ induces the multiplication operator
Tm : x 7→ mx on ℓp for p ∈ [1,∞]. Example 2.6b) with (S,A, µ) =
(N,P(N), ζ) implies that the mapping ℓ∞ → B(ℓp); m 7→ Tm, is an
isometry which is also linear. By the previous remark, ℓ∞ is thus
isomorphic to a closed subspace of B(ℓp). From Example 1.55 and
Exercise 6.2 we then infer that B(ℓp) is not separable. ♢

The next simple extension lemma is used thoughout mathematics.

Lemma 2.13. Let X be a normed vector space, Y be a Banach space,
D ⊆ X be a dense linear subspace (endowed with the norm of X), and
T0 ∈ B(D, Y ). Then there exists exactly one extension T ∈ B(X, Y ) of
T0; i.e., T0x = Tx for all x ∈ D. We further have ∥T0∥ = ∥T∥, and T
is isometric if T0 is isometric.

Proof. Let x ∈ X. Choose vectors xn ∈ D such that xn → x in X
as n→ ∞. Since ∥T0xn−T0xm∥ ≤ ∥T0∥∥xn−xm∥, the sequence (T0xn)
is Cauchy and thus converges to an element of Y denoted by Tx. Let
also (x̃n) inD tend to x. Because of ∥T0xn−T0x̃n∥ ≤ ∥T0∥∥xn−x̃n∥ → 0

4This example was mentioned in the lectures at a different place.
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as n→ ∞, the vector Tx indeed does not depend on the approximating
sequence. It is clear that Tx = T0x for x ∈ D (take xn = x).
Let x, z ∈ D and α, β ∈ F. Pick xn, zn ∈ D with xn → x and zn → z

as n→ ∞. Because T0 is continuous and linear, we obtain

T (αx+βz) = lim
n→∞

T0(αxn+βzn) = lim
n→∞

(αT0xn+βT0zn) = αTx+βTz,

and hence T : X → Y is linear. Since

∥Tx∥ = lim
n→∞

∥T0xn∥ ≤ ∥T0∥ lim
n→∞

∥xn∥ = ∥T0∥ ∥x∥ ,

the operator T belongs to B(X, Y ) with ∥T∥ ≤ ∥T0∥. (If T0 is isometric,
one sees that T is also isometric.) On the other hand, Remark 2.4 yields

∥T∥ = sup
x∈X, ∥x∥=1

∥Tx∥ ≥ sup
x∈D, ∥x∥=1

∥T0x∥ = ∥T0∥ ,

so that ∥T0∥ = ∥T∥.
Let S ∈ B(X, Y ) satisfy Sx = T0x for all x ∈ D. Let z ∈ X. Choose

xn ∈ D with xn → z as n→ ∞. The uniqueness assertion follows from

Sz = lim
n→∞

Sxn = lim
n→∞

T0xn = Tz. □

Convolutions and Young’s inequality. In this subsection we
derive Young’s important inequality for convolutions. Their relevance
will become clear in Theorem 4.13 and Section 4.2. We first introduce
and discuss the convolution f ∗ g of functions f ∈ Lp(Rm) and g ∈
Lq(Rm) for suitable p, q ∈ [1,∞]. Note that the map

φ : R2m → [0,∞); φ(x, y) = |f(x− y)g(y)|,

is measurable as a combination of measurable maps.

Step 1). Let f, g ∈ L1(Rm). By means of Fubini’s Theorem 3.29 in
Analysis 3 and the transformation z = x− y, we derive∫

R2m

φ(x, y) d(x, y) =

∫
Rm

∫
Rm

|f(x− y)| dx |g(y)| dy

=

∫
Rm

∫
Rm

|f(z)| dz |g(y)| dy = ∥f∥1∥g∥1 <∞

and thus the integrability of φ on R2m. Therefore Fubini’s theorem
shows that the convolution

(f ∗ g)(x) =
∫
Rm

f(x− y)g(y) dy (2.1)

is defined in F for a.e. x ∈ Rm (where we set f ∗ g = 0 on the null set)
and that it belongs to L1(Rm) with

∥f ∗ g∥1 ≤
∫
Rm

∫
Rm

|f(x− y)g(y)| dy dx = ∥φ∥1 = ∥f∥1 ∥g∥1.
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Step 2). Let q ∈ [1,∞), f ∈ L1(Rm), and g ∈ Lq(Rm). Fubini’s
theorem again yields the existence of the integral

ψ(x) :=

∫
Rm

|f(x− y)g(y)| dy =

∫
Rm

|f(x− y)|
1
q′ |f(x− y)|

1
q |g(y)| dy

in [0,∞] for all x ∈ Rm and that ψ is measurable on Rm. From Hölder’s
inequality, we then deduce

ψ(x)q ≤
(∫

Rm

|f(x− y)| dy
) q

q′
∫
Rm

|f(x− y)| |g(y)|q dy

= ∥f∥q−1
1

∫
Rm

|f(x− y)| |g(y)|q dy,

also using q′ = q/(q − 1) and the transformation z = x − y. Step 1)
now implies the estimate

∥ψ∥qq =
∫
Rm

ψq dx ≤ ∥f∥q−1
1 ∥ |f | ∗ |g|q ∥1 ≤ ∥f∥q−1

1 ∥f∥1
∫
Rm

|g|q dx

≤ ∥f∥q1 ∥g∥qq . (2.2)

This time we cannot directly deduce the measurability of f ∗ g from
Fubini’s theorem since we integrated ψq instead of ψ. To deal with this
problem, we use also Proposition 1.35 and compute

∥ψ∥qq ≥
∫
B(0,n)

ψ(x)q dx ≥ δn

∫
B(0,n)

ψ(x) dx = δn

∫
R2m

1B(0,n)(x)φ(x, y) d(x, y)

for a constant δn > 0 and every n ∈ N. Therefore, the function given
by φn(x, y) = 1B(0,n)(x)φ(x, y) is integrable on R2m. Fubini’s theorem
thus shows that f ∗ g is defined by (2.1) for a.e. x ∈ B(0, n) and each
n ∈ N (and hence for a.e. x ∈ Rm) and that the map 1B(0,n)f ∗ g is
measurable on Rm. Letting n → ∞, we see that the pointwise limit
f ∗ g is measurable on Rm. Estimate (2.2) finally yields

∥f ∗ g∥qq =
∫
Rm

∣∣∣∣∫
Rm

f(x− y)g(y) dy

∣∣∣∣q dx ≤
∫
Rm

ψq dx ≤ ∥f∥q1 ∥g∥qq.

We have thus proved a part of the next result, see Theorem 4.33 in
[Br] for the remaining cases. A different proof for the full statement is
given at the end of Section 2.3.

Theorem 2.14. Let 1 ≤ p, q, r ≤ ∞ with 1 + 1
r
= 1

p
+ 1

q
. Take

f ∈ Lp(Rm) and g ∈ Lq(Rm). Then the convolution (f ∗ g)(x) in (2.1)
is defined in F for a.e. x ∈ Rm (where we set f ∗g = 0 on the null set),
and it gives a function in Lr(Rm). We further have Young’s inequality
∥f ∗ g∥r ≤ ∥f∥p ∥g∥q.

Let p, q, r ∈ [1,∞], 1+ 1
r
= 1

p
+ 1

q
, and g ∈ Lq(Rm) be fixed. The above

theorem yields the bounded linear operator T : Lp(Rm) → Lr(Rm);
f 7→ f ∗ g, with norm ∥T∥ ≤ ∥g∥q.
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2.2. Standard constructions

One can construct new normed vector spaces out of given ones in
various ways. The basic methods are treated below, see also Corol-
lary 1.13. These results are standard tools in analysis.

A) Product spaces. We start with the simplest case. Let X
and Y be normed vector spaces. The Cartesian product X × Y =
{(x, y) |x ∈ X, y ∈ Y } is a normed vector space for each of the norms

∥(x, y)∥p =

{
max{∥x∥X , ∥y∥Y }, p = ∞,

(∥x∥pX + ∥y∥pY )
1/p , p ∈ [1,∞).

These norms are equivalent. We have (xn, yn) → (x, y) in X×Y if and
only if xn → x in X and yn → y in Y , as n → ∞. Moreover, X × Y
is complete if X and Y are complete. These facts can be proved as in
Analysis 2 for the case R = X = Y . There are obvious modifications
for finite products.

B) Direct sums. We now discuss how to decompose X into closed
subspaces. Surprisingly, in a Banach space this procedure is equivalent
to the Cartesian product, see Remark 2.17.

Definition 2.15. Let X1 and X2 be closed linear subspaces of a
normed vector space X such that X1 + X2 = X and X1 ∩ X2 = {0}.
We then say that X is the direct sum of X1 and X2 and that X2 is the
complement of X1. In this case we write X = X1 ⊕ X2. Let Y be a
vector space. A map P ∈ L(Y ) is called projection if P 2 = P .

We first show that bounded projections yield direct sums.

Lemma 2.16. Let X be a normed vector space and P ∈ B(X) be a
projection. Then the operator I − P ∈ B(X) is also a projection. We
have the equations

R(P ) = N(I − P ) =: X1, N(P ) = R(I−P ) =: X2, X = X1 ⊕X2.

Moreover, P satisfies ∥P∥ ≥ 1 if P ̸= 0.

Proof. From P = P 2 we deduce (I −P )2 = I − 2P +P 2 = I −P .
If y ∈ R(P ), then there is a vector x ∈ X with y = Px and thus
(I−P )y = Px−P 2x = 0; i.e. y ∈ N(I−P ). Conversely, if (I−P )x = 0,
then x = Px ∈ R(P ). So we have shown the asserted equalities for X1,
which yield those for X2 since I−P is a projection and I−(I−P ) = P .
By Proposition 1.24 the subspaces X1 and X2 are closed as kernels of
continuous maps. We can write x = Px+(I −P )x ∈ X1+X2 for each
x ∈ X. If x ∈ X1 ∩X2, then Px = 0 and thus 0 = x−Px = x. Hence,
X = X1⊕X2. The last assertion follows from ∥P∥ = ∥P 2∥ ≤ ∥P∥2. □

We next construct a projection for a given direct sum.
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Remark 2.17. a) LetX be a normed vector space withX = X1⊕X2.
For each x ∈ X we then have unique vectors x1 ∈ X1 and x2 ∈ X2

with x = x1 + x2. Set Px = x1. Then P : X → X is the unique linear
projection with R(P ) = X1 and N(P ) = X2.
Proof. By assumption, for each x ∈ X exists vectors x1 ∈ X1 and

x2 ∈ X2 with x = x1 + x2. If also x̃k ∈ Xk satisfy x = x̃1 + x̃2, then
the differences x1 − x̃1 = x̃2 − x2 belong to X1 ∩X2 = {0}, so that the
components xk ∈ Xk of x are unique.
The definition of P easily yields the identities P 2 = P , R(P ) = X1

and N(P ) = X2. Let x, y ∈ X and α, β ∈ F. There are vectors
xk, yk ∈ Xk such that x = x1 + x2 and y = y1 + y2. We then compute

P (αx+βy) = P ((αx1+βy1)+(αx2+βy2)) = αx1+βy1 = αPx+βPy,

so that P is linear.
Let also Q ∈ L(X) satisfy Q2 = Q, R(Q) = X1 and N(Q) = X2.

Take x ∈ X and write x = x1 + x2 as above. We then have x1 = Qy
for some y ∈ X, and so Qx = Qx1 +Qx2 = Q2y = Qy = x1 = Px. 2

b) Let X be a Banach space. Proposition 4.32 says that the projec-
tion P in part a) is continuous and that X1 ⊕X2

∼= X1 ×X2. ♢

We illustrate the above concepts with simple examples.

Example 2.18. a) Let X = R2, t ∈ R, and P = ( 1 t
0 0 ). Then P is

a projection with R(P ) = R × {0}, N(P ) = {(−tr, r) | r ∈ R}, and
∥P∥ = 1 + |t| for | · |1.
b) Let X = Lp(R), p ∈ [1,∞], and Pf = 1R+f for f ∈ X. Clearly,

∥Pf∥p ≤ ∥f∥p and P 2 = P , so that P ∈ B(X) is a projection with
∥P∥ = 1. We further have (I − P )f = 1(−∞,0]f . To express the direct
sum X = R(P )⊕N(P ) more conveniently, we introduce the isometric
isomorphism J : R(P ) → Lp(R+); Jf = f |R+ , whose inverse is given
by J−1g = g on R+ and J−1g = 0 on (−∞, 0]. On R− one proceeds
similarly. We can thus identify X with Lp(R+)⊕ Lp(R−), considering
Lp(R±) as subspaces of L

p(R) by extending functions by 0.

c) The closed subspace c0 has no complement in ℓ∞, see Satz IV.6.5
in [We]. ♢

C) Quotient spaces. Let X be a normed vector space, Y a linear
subspace and

X/Y = {x̂ = x+ Y |x ∈ X}
be the quotient space. The quotient map

Q : X → X/Y, Qx = x̂,

is linear and surjective with N(Q) = Y . (See Linear Algebra.) One
sets codimY = dimX/Y . We define the quotient norm q by

q(x) = ∥x̂∥ = ∥Qx∥ := inf
y∈Y

∥x− y∥ = d(x, Y ).
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for x̂ = x+ Y ∈ X/Y . If x̄+ Y = x+ Y , then x̄− x belongs to Y and
thus d(x, Y ) = d(x̄, Y ); i.e., ∥x̂∥ does not depend on the representative
of x̂. For α ̸= 0, we have

∥αx̂∥ = inf
y∈Y

∥α(x− 1
α
y)∥ = |α| inf

z∈Y
∥x− z∥ = |α| ∥x̂∥.

Let x1, x2 ∈ X. Take ε > 0. There are yk ∈ Y mit ∥xk−yk∥ ≤ ∥x̂k∥+ε
for k ∈ {1, 2}. We then obtain

∥x̂1+x̂2∥ = inf
y∈Y

∥x1+x2−y∥ ≤ ∥x1+x2−(y1 + y2)∥ ≤ ∥x̂1∥+∥x̂2∥+2ε.

Since ε > 0 is arbitrary, the quotient norm is a seminorm. Because of
∥Qx∥ = ∥x̂∥ ≤ ∥x∥, the quotient map Q has norm ∥Q∥ ≤ 1.5

Now, let Y be closed. If ∥x̂∥ = 0 for some x̂ ∈ X/Y , then there
exist yn ∈ Y with ∥x − yn∥ → 0 as n → ∞. From the closedness of
Y it follows that x belongs to Y , and hence x̂ = 0. So far we have
established that X/Y is a normed vector space for the quotient norm.
Moreover, for each δ ∈ (0, 1), Lemma 1.44 gives a vector x̄ ∈ X with
∥x̄∥ = 1 and

∥Q∥ ≥ ∥Qx̄∥ = inf
y∈Y

∥x̄− y∥ ≥ 1− δ.

Letting δ → 1, we deduce that ∥Q∥ = 1.

Proposition 2.19. Let X be a normed vector space and Y be a
linear subspace.
a) Then X/Y is vector space with seminorm q : x + Y 7→ d(x, Y ).

The map Q : X → X/Y ; Qx = x + Y , is linear and surjective with
N(Q) = Y and ∥Q∥ ≤ 1.
b) Let Y be closed. Then q is a norm and ∥Q∥ = 1.
c) Let X be a Banach space and Y be closed. Then X/Y is complete.

Proof.6 It remains to show the completeness of X/Y . Let (x̂n)
be a Cauchy sequence in X/Y . We find a subsequence such that

∥x̂m − x̂nk
∥ ≤ 2−k for all m ≥ nk. (2.3)

Hence, there are vectors ynk
∈ Y with ∥xnk+1

− xnk
− ynk

∥ ≤ 2 · 2−k

for every k ∈ N. Set zk = xnk+1
− xnk

− ynk
and vN = xn1 +

∑N
k=1 zk.

Since X is a Banach space and
∑∞

k=1 ∥zk∥ < ∞, there exists the limit
x = limN→∞ vN in X. (See Lemma 4.23.) We further have

vN = xnN+1
−

N∑
k=1

ynk
and

N∑
k=1

ynk
∈ Y,

so that v̂N = x̂nN+1
. As Q is continuous, the difference x̂nN+1

− x̂ =
Q(vN − x) tends to 0 in X/Y as N → ∞. For ε > 0 we thus obtain an

5Here we use the operator norm also for semi-normed spaces.
6This proof was omitted in the lectures.
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index N = Nε ∈ N such that 2−N ≤ ε and ∥x̂− x̂nN
∥ ≤ ε. Using also

inequality (2.3), we deduce

∥x̂− x̂m∥ ≤ ∥x̂− x̂nN
∥+ ∥x̂nN

− x̂m∥ ≤ 2ε

for all m ≥ nN . □

We complement the examples of the preceding subsection.

Example 2.20. a) Let X = Y ⊕ Z for a Banach space X. Then
the map J : Z → X/Y ; Jz = ẑ = z + Y , is linear and continuous. If
Jz = 0, then z ∈ Y and thus z = 0. Let x̂ = x+ Y ∈ X/Y . There are
vectors y ∈ Y and z ∈ Z with x = y + z, so that x̂ = ẑ = Jz. Hence,
J is bijective. The continuity of J−1 follows from the open mapping
theorem 4.28 below. As a result, Z ≃ X/Y via J . In Example 2.18b)
we thus obtain Lp(R)/Lp(R+) ≃ Lp(R−) for p ∈ [1,∞].

b) The quotient construction is more general than the direct sum.
For instance, ℓ∞/c0 exists, though c0 has no complement in ℓ∞ by
Example 2.18c). ♢

D) Completion. On a Banach space one occasionally considers
another weaker incomplete norm. One then wants to pass to a ‘larger’
Banach space with this norm. This is made precise in the following
result. It possesses another much shorter proof which is indicated after
Proposition 5.24, see also Korollar III.3.2 in [We]. We provide the
more constructive proof below since it is useful in certain situations
and it is similar to Cantor’s construction of R out of Q.

Proposition 2.21. Let X be a normed vector space. Then there is
a Banach space X̃ and a linear isometry J : X → X̃ such that JX is
dense in X̃. Any other Banach space with this property is isometrically
isomorphic to X̃.

Proof.7 Let E be the vector space of all Cauchy sequences v =
(xn)n∈N in X. Note that for (xn) ∈ E the sequence (∥xn∥) is Cauchy
in R and thus the number p(v) := limn→∞ ∥xn∥ exists in R. It is easy
to check that p is a seminorm on E and that its kernel is given by the
linear subspace c0(X) of all null sequences in X. We now define the
vector space X̃ = E/c0(X) and put 9ṽ9 = p(v) for any representative
v ∈ E of ṽ ∈ X̃. If w ∈ E is another representative of ṽ, then v − w ∈
c0(X) and we thus obtain p(v) ≤ p(v − w) + p(w) = p(w) as well as
p(w) ≤ p(v). Hence, 9ṽ9 is well defined and it gives a norm on X̃. We
further introduce the map

J : X → X̃; x 7−→ (x, x, . . . ) + c0(X),

which is linear and isometric. Let ṽ ∈ X̃ and ε > 0. Choose a represen-
tative v = (xk) ∈ E. There is an index N = Nε ∈ N with ∥xk−xN∥ ≤ ε

7This proof was only sketched in the lectures.
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for all k ≥ N . It follows 9ṽ − JxN9 = limk→∞ ∥xk − xN∥ ≤ ε, and
hence the range of J is dense in X̃.
Let (ṽm) be a Cauchy sequence in X̃ with representives vm =

(xm,j)j ∈ E. For each m ∈ N, we can find an index jm such that
jm+1 > jm and

∥xm,j − xm,jm∥ ≤ 1

m
for all j ≥ jm.

We define the diagonal sequence w = (ym)m = (xm,jm)m. The above
inequality then yields

∥yn − ym∥ = 9Jyn−Jym9 ≤ 9Jyn− ṽn9 + 9ṽn− ṽm9 + 9ṽm−Jym9
= lim

j→∞
∥xn,jn − xn,j∥+ 9ṽn − ṽm9 + lim

j→∞
∥xm,j − xm,jm∥

≤ 1

n
+ 9ṽn − ṽm 9 +

1

m
,

so that w ∈ E. Let ε > 0. Using the above extimate and that (ṽm) is a
Cauchy sequence in X̃, we find an indexNε ∈ N such that ∥yn−ym∥ ≤ ε
and 1/Nε ≤ ε for all n,m ≥ Nε. We can thus estimate

9w̃ − ṽm9 ≤ 9w̃ − Jym 9 + 9 Jym − ṽm9
= lim

n→∞
∥yn − ym∥+ lim

j→∞
∥xm,jm − xm,j∥ ≤ 2ε

for all m ≥ Nε, so that X̃ is complete.
It remains to prove uniqueness. Let X̃ ′ be a Banach space and

J ′ : X → X̃ ′ be isometric and linear with dense range J ′X in X̃ ′.
Remark 2.11 shows that the operator T0 = J◦(J ′)−1 : J ′X → X̃, is well
defined and isometric. It has the dense range JX. Using Lemma 2.13
and the completeness of X̃, we can extend T0 to an isometric linear
map T : X̃ ′ → X̃ still having a dense range. Remark 2.11 and the
completeness of X̃ ′ yield the closedness of the range of T , which is thus
equal to X̃. Consequently, T is the required isometric isomorphism. □

Remark 2.22. Usually one identifies X with the subspace JX of
X̃ (as one does with Q and R). Note that an equivalent norm on X
yields the same extrapolation space with an equivalent norm. Let Y be
a Banach space. Every T ∈ B(X, Y ) can uniquely be extended to an
operator T̃ ∈ B(X̃, Y ) by means of Lemma 2.13. Also, T̃ is isometric
if T is isometric. ♢

Example 2.23. Let p ∈ [1,∞). The map J : (C([0, 1]), ∥ · ∥p) →
Lp(0, 1); f 7→ f + N , is isometric. Theorem 5.9 of Analysis yields
that J has dense range. Using the above remark, we obtain a linear
isometric map J̃ : (C([0, 1]), ∥ · ∥p)∼ → Lp(0, 1) with dense range.

By Remark 2.11, the range of J̃ is closed and thus J̃ is an isometric
isomorphism. In this way one can view Lp(0, 1) as the completion of
C([0, 1]) with respect to the p–norm. ♢
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E) Sum of Banach spaces. Let8 X and Y be Banach spaces
which are linear subspaces of a vector space Z that possesses a metric
d which for addition and scalar multiplication of Z are continuous. (We
call such a metric compatible.) We assume that the inclusion maps from
X to Z and from Y to Z are continuous. We then define the sum

X + Y = {z = x+ y |x ∈ X, y ∈ Y }

which is a linear subspace of Z. We can consider X and Y as linear
subspaces of X+Y . A typical example is Lp(µ)+Lq(µ) for p, q ∈ [1,∞]
and a measure space (S,A, µ), where we may take Z as the space of
measurable functions modulo null functions, endowed with the metric
describing local convergence in measure. This space will be used in
Section 2.3.
We point out that the sum X + Y does not need to be direct, i.e.,

for a given z ∈ X + Y there may be many pairs (x, y) ∈ X × Y such
that z = x+ y. Moreover, the norm in X does not need to be finer or
coarser than that of Y . We endow X + Y with the sum norm

∥z∥X+Y = inf{∥x∥X + ∥y∥Y | z = x+ y, x ∈ X, y ∈ Y }

which turns out to be coarser those of X and of Y . Thus, X + Y can
serve as a space where we can compare the convergence in X with that
in Y . We will further need the linear subspace D = {(u,−u) |u ∈
X ∩ Y } of X × Y .

Proposition 2.24. Let X and Y be Banach spaces which are linear
subspaces of a vector space Z endowed with a compatible metric. We
assume that the inclusion maps from X to Z and from Y to Z are
continuous. Then (X+Y, ∥ · ∥X+Y ) is a Banach space which is isomet-
rically isomorphic to the quotient space (X × Y )/D, where X × Y is
endowed with the norm ∥x∥X + ∥y∥Y . Moreover, ∥x∥X ≤ ∥x∥X+Y for
x ∈ X and ∥y∥Y ≤ ∥y∥X+Y for y ∈ Y .

Proof. Let z ∈ X + Y and α ∈ F. Note that ∥z∥X+Y exists in
[0,∞). If ∥z∥X+Y = 0, then there are xn ∈ X and yn ∈ Y such that
z = xn + yn for all n ∈ N and ∥xn∥X + ∥yn∥Y → 0 as n → ∞. By
continuity, xn and yn both tend to 0 in Z, and so z = 0 since the metric
is compatible. We further have

∥αz∥X+Y = inf{∥αx∥X+∥αy∥Y | z=x+y, x∈X, y∈Y } = |α| ∥z∥X+Y .

Let z1, z2 ∈ X + Y . For any ε > 0, we can choose xj ∈ X and yj ∈ Y
such that zj = xj +yj and ∥xj∥X +∥yj∥Y ≤ ∥zj∥X+Y + ε for j ∈ {1, 2}.
Since z1 + z2 = (x1 + x2) + (y1 + y2), we conclude

∥z1 + z2∥X+Y ≤ ∥x1 + x2∥X + ∥y1 + y2∥Y ≤ ∥z1∥X+Y + ∥z2∥X+Y + 2ε.

8This subsection was not containd in the lectures.
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As a result, X+Y is a normed vector space. The last assertion is clear.
We next show that

J : (X × Y )/D → X + Y ; J((x, y) +D) = x+ y,

is a linear, isometric and surjective map and that D is closed in X×Y .
In view of Remark 2.11 and Proposition 2.19, these facts imply that J
is an isometric isomorphism and that X + Y is a Banach space.
First, let vn = (xn,−xn) ∈ D converge to v in X×Y . Then xn tends

to some x in X and −xn to some y in Y . Since both sequences also
converge in Z, we obtain y = −x ∈ X ∩ Y and z ∈ D; i.e., D is closed
in X × Y .
We next treat J . If (x, y) + D = (x′, y′) + D in (X × Y )/D, then

(x − x′, y − y′) ∈ D and thus x − x′ = y′ − y. This means that
J((x, y) + D) = x + y = x′ + y′ = J((x′, y′) + D), and J is in fact a
map. It is clear that J is linear and surjective. Let (x, y) ∈ X ×Y and
set E = (X × Y )/D. The operator J is isometric since

∥(x, y) +D∥E = inf{∥(x+ u, y − u)∥X×Y |u ∈ X ∩ Y }
= inf{∥x+ u∥X + ∥y − u∥Y |u ∈ X ∩ Y }
= inf{∥x′∥X + ∥y′∥Y |x′ ∈ X, y′ ∈ Y, x′ + y′ = x+ y}
= ∥x+ y∥X+Y ,

where we take u = x′ − x = y − y′. □

Proposition 2.25. Let Xj and Yj (with j ∈ {0, 1}) be Banach
spaces which are linear subspaces of vector spaces V and W with com-
patible metrics, respectively. Moreover, these inclusion maps are con-
tinuous. Let T0 ∈ B(X0, Y0) and T1 ∈ B(X1, Y1) be operators such that
T0u = T1u =: Tu for all u ∈ X0 ∩X1. Then T has a unique extension

T̃ ∈ B(X0+X1, Y0+Y1) with T̃ xj = Tjxj for all xj ∈ Xj and j ∈ {0, 1}.

Proof. Let x = x0 + x1 for xj ∈ Xj. We then define

T̃ x = T0x0 + T1x1 ∈ Y0 + Y1.

If x = x′0+x
′
1 for x

′
j ∈ Xj, we obtain u := x′0−x0 = x1−x′1 ∈ X0∩X1.

It follows that

T0x
′
0 + T1x

′
1 = T0x0 + T0u+ T1x1 − T1u = T̃ x+ Tu− Tu = T̃ x,

and thus T̃ : X0 + X1 → Y0 + Y1 is a map. Clearly, T̃ xj = Tjxj for
all xj ∈ Xj and j ∈ {0, 1}. Take any x′j ∈ Xj and α, β ∈ F. Set
x′ = x′0 + x′1. We then compute

T̃ (αx+ βx′) = T0(αx0 + βx′0) + T1(αx1 + βx′1)

= α(T0x0 + T1x1) + β(T0x
′
0 + T1x

′
1) = αT̃x+ βT̃x′,

so that T̃ is linear. Moreover,

∥T̃ x∥Y0+Y1 ≤ ∥T0x0∥Y0 + ∥T1x1∥Y1 ≤ max{∥T0∥, ∥T1∥} (∥x0∥+ ∥y1∥).
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Taking the infimum over all decompositions x = x0 + x1 in X0 + X1,

we derive that T̃ is bounded. Let S ∈ B(X0 +X1, Y0 + Y1) be another

extension of T0 and T1. Then Sx = Sx0 + Sx1 = T0x1 + T1x1 = T̃ x,

and T̃ is unique. □

2.3. The interpolation theorem of Riesz and Thorin

Interpolation9 theory is an important branch of functional analysis
which treats the following problem. Let Xj and Yj (with j ∈ {0, 1})
be Banach spaces which are linear subspaces of vector spaces W and Z
with compatible metrics, respectively. Assume that T0 : X0 → Y0 and
T1 : X1 → Y1 are bounded linear operators such that T0u = T1u =: Tu
for all u ∈ X0 ∩ X1. Due to Paragraph 2.2E), we can extend T to a

bounded linear operator T̃ : X0 +X1 → Y0 + Y1 where the sum space

X + Y = {z = x+ y |x ∈ X, y ∈ Y }
is endowed with the complete norm

∥z∥X+Y = inf{∥x∥X + ∥y∥Y | z = x+ y, x ∈ X, y ∈ Y }.
One now wants to find Banach spaces X between X0∩X1 and X0+X1

and Y between Y0 ∩ Y1 and Y0 + Y1 such that T̃ can be restricted to a
bounded linear map fromX to Y which also extends T0. We refer to the
lecture notes [Lu] for an introduction to this area and its applications.
Here we restrict ourselves to one of the seminal results in this subject
due to Riesz and Thorin, which deals with Lp–spaces.
Let (Ω,A, µ) and (Λ,B, ν) be σ-finite measure spaces and take

p0, p1, q0, q1 ∈ [1,∞]. Set U = Lp0(µ)∩Lp1(µ) and V = Lq0(ν)∩Lq1(ν).
Take θ ∈ [0, 1] and define

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+
θ

q1
.

Observe that every p ∈ [p0, p1] if p0 ≤ p1 and every p ∈ [p1, p0] if p0 ≥ p1
can be written in this way. The exponent q between q0 and q1 is then
fixed via θ ∈ [0, 1]. It is possible that the spaces Lp0(µ) and Lp1(µ) are
not included in each other. We thus use the sum space Lp0(µ)+Lp1(µ)
to express that operators on Lp0(µ) and on Lp1(µ) are restrictions of
common operator.
As seen in Analysis 3, Hölder’s inequality shows that U ⊆ Lp(µ) and

V ⊆ Lq(ν) with the norm bounds

∥f∥p ≤ ∥f∥1−θ
p0

∥f∥θp1 and ∥g∥q ≤ ∥g∥1−θ
q0

∥g∥θq1 (2.4)

for all f ∈ U and g ∈ V . We recall from Theorem 5.9 of Analysis 3
that the space of simple functions

E(A) = lin{1A |A ∈ A, µ(A) <∞}
9This section was not containd in the lectures.
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with a support of finite measure is dense in Lr(µ) if r ∈ [1,∞). The
proof given there also shows that the space of simple functions

E∞(A) = lin{1A |A ∈ A}
is dense in L∞(µ). Moreover, for f ∈ U with p0 ̸= p1 we can find a
sequence (fn) in E(A) such that fn → f in Lp0(µ) and in Lp1(µ), and
thus also in Lp(µ) by (2.4).
We want to show that Lp(µ) with p as above is embedded into

Lp0(µ) + Lp1(µ). Let p0 ≤ p1. (The other case is treated analogously.)

For f ∈ Lp(µ) \ {0}, we set f̃ = ∥f∥−1
p f so that ∥f̃∥p = 1. Because

of f̃ ∈ Lp(µ) the set {f̃ ≥ 1} has finite measure (if p < ∞), and thus

the function f0 = 1{f̃≥1}f̃ belongs to Lp0(µ), cf. Proposition 1.35. The

function f1 = 1{f̃<1}f̃ is contained in L∞(µ) and hence in Lp1(µ), see

(2.4). The maps f̃ = f0 + f1 and f thus belong to Lp0(µ) + Lp1(µ).

Using ∥f̃∥p = 1, we further compute

∥f∥Lp0 (µ)+Lp1 (µ) = ∥f∥p ∥f̃∥Lp0 (µ)+Lp1 (µ) ≤ ∥f∥p (∥f0∥p0 + ∥f1∥p1)

= ∥f∥p
(∫

{f̃≥1}
|f̃ |p0 dµ

) 1
p0

+ ∥f∥p
(∫

{f̃<1}
|f̃ |p1 dµ

) 1
p1

≤ ∥f∥p
(∫

{f̃≥1}
|f̃ |p dµ

) 1
p0

+ ∥f∥p
(∫

{f̃<1}
|f̃ |p dµ

) 1
p1

≤ 2 ∥f∥p ,

so that Lp(µ) ↪→ Lp0(µ)+Lp1(µ). Similarly, one verifies the embedding
Lq(ν) ↪→ Lq0(ν) + Lq1(ν).

Theorem 2.26 (Riesz–Thorin). Let (Ω,A, µ) and (Λ,B, ν) be σ-
finite measure spaces, F = C, and p0, p1, q0, q1 ∈ [1,∞]. Take θ ∈ [0, 1]
and define p, q ∈ [1,∞] via

1

p
=

1− θ

p0
+

θ

p1
and

1

q
=

1− θ

q0
+
θ

q1
.

Assume there are operators Tj ∈ B(Lpj(µ), Lqj(ν)) such that T0u =
T1u =: Tu for all u ∈ U = Lp0(µ) ∩ Lp1(µ). Then T has a unique

extension Tθ ∈ B(Lp(µ), Lq(ν)). Moreover, Tθ is the restriction of T̃ ∈
B(Lp0(µ)+Lp1(µ), Lq0(ν)+Lq1(ν)) which is the unique extension of T0
and T1 to this space (see Proposition 2.25), and we have

∥Tθ∥B(Lp(µ),Lq(ν)) ≤ ∥T0∥1−θ
B(Lp0 (µ),Lq0 (ν)) ∥T1∥

θ
B(Lp1 (µ),Lq1 (ν)) .

We note that the theorem is also true for F = R with an additional
multiplicative constant in the estimate, see Satz II.4.2 in [We].

Proof. The result trivially holds if θ ∈ {0, 1}. So we can take
θ ∈ (0, 1). First let p0 = p1; i.e., p0 = p. Let f ∈ Lp(µ). The
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assumptions then yield Tf ∈ V = Lq0(ν)∩Lq1(ν) and, using also (2.4),

∥Tf∥q ≤ ∥T0f∥1−θ
q0

∥T1f∥θq1 ≤ ∥T0∥1−θ ∥f∥1−θ
p ∥T1∥θ ∥f∥θp

= ∥T0∥1−θ ∥T1∥θ ∥f∥p
so that the theorem has been shown in this case.
Next, let p0 ̸= p1. In this case, we have p < ∞, and thus E(A) is

dense in Lp(µ). We consider simple functions

f =
m∑
j=1

aj 1Aj
∈ E(A) ⊆ U = Lp0(µ) ∩ Lp1(µ),

where we may assume that the sets Aj are pairwise disjoint and have
finite measure. The assumptions again yield Tf ∈ V . By equation
(5.5) we have

∥Tf∥q = sup
g∈E(B),∥g∥q′≤1

∣∣∣ ∫
Λ

(Tf) g dν
∣∣∣ (2.5)

if q′ <∞. If q′ = ∞ (i.e., q = 1 which is equivalent to (q0, q1) = (1, 1)),
then (2.5) is valid with E(B) replaced by E∞(B). Further, take g =∑n

k=1 bk 1Bk
∈ E(B) with ∥g∥q′ ≤ 1 where we may assume that the sets

Bk are pairwise disjoint and have finite measure. (If q′ = ∞, we allow
for µ(Bk) = ∞.) Let z ∈ S := {ζ ∈ C | Re ζ ∈ [0, 1]}. We then define
the function F (z) by

(F (z))(ω) = |f(ω)|p
(

1−z
p0

+ z
p1

)
−1
f(ω)

for ω ∈ Ω with f(ω) ̸= 0, and by (F (z))(ω) = 0 if f(ω) = 0. For
q′ <∞, we set

(G(z))(λ) = |g(λ)|
q′
(

1−z
q′0

+ z
q′1

)
−1
g(λ)

for λ ∈ Λ with g(λ) ̸= 0, and put (G(z))(λ) = 0 if g(λ) = 0. If
q′ = ∞, we simply take G(z) = g. We write p(z) = p(1−z

p0
+ z

p1
) − 1

and q(z) = q′(1−z
q′0

+ z
q′1
) − 1. Observe that F (θ) = f and G(θ) = g,

as well as F (z) ∈ E(A), G(z) ∈ E(B) if q′ < ∞ and G(z) ∈ E∞(B) if
q′ = ∞. The assumptions lead to TF (z) ∈ V . We further introduce
the function

φ(z) =

∫
Λ

T (F (z))G(z) dν =
m∑
j=1

n∑
k=1

aj|aj|p(z) bk|bk|q(z)
∫
Λ

(T1Aj
)1Bk

dν

for z ∈ S. Observe that φ ∈ C(S) is holomorphic on S◦.
We want to apply the Three-Lines-Theorem, see Satz II.4.3 in [We],

and thus check the estimates assumed in this result. Writing z =
s+ it ∈ S with s ∈ [0, 1] and t ∈ R, we compute

|F (z)(ω)| = |f(ω)|p
(

1−s
p0

+ s
p1

)
, |G(z)(λ)| = |g(λ)|

q′
(

1−s
q′0

+ s
q′1

)
(2.6)
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for all s ∈ [0, 1], t ∈ R, ω ∈ Ω and λ ∈ Λ. The right hand sides are
bounded in z ∈ S for fixed ω and λ. In the same way one sees that φ
is bounded on S. The Three–Lines-Theorem then yields∣∣∣ ∫

Λ

(Tf)g dν
∣∣∣ = |φ(θ)| ≤

(
sup
t∈R

|φ(it)|
)1−θ(

sup
t∈R

|φ(1 + it)|
)θ

(2.7)

Hölder’s inequality, the assumptions and estimate (2.6) with s = 0
further imply

|φ(it)| ≤ ∥T0F (it)∥q0 ∥G(it)∥q′0 ≤ ∥T0∥ ∥F (it)∥p0 ∥G(it)∥q′0

= ∥T0∥
(∫

Ω

|f |
pp0
p0 dµ

) 1
p0

(∫
Λ

|g|
q′q′0
q′0 dν

) 1
q′0

= ∥T0∥ ∥f∥
p
p0
p ∥g∥

q′
q′0
q′ ≤ ∥T0∥ ∥f∥

p
p0
p ,

where we also used that ∥g∥q′ ≤ 1. Similarly one sees that

|φ(1 + it)| ≤ ∥T1F (1 + it)∥q1 ∥G(1 + it)∥q′1
≤ ∥T1∥ ∥F (1 + it)∥p1 ∥G(1 + it)∥q′1

= ∥T1∥
(∫

Ω

|f |
pp1
p1 dµ

) 1
p1

(∫
Λ

|g|
q′q′1
q′1 dν

) 1
q′1

= ∥T1∥ ∥f∥
p
p1
p ∥g∥

q′
q′1
q′ ≤ ∥T1∥ ∥f∥

p
p1
p .

Formulas (2.5) and (2.7) now lead to

∥Tf∥q ≤ ∥T0∥1−θ ∥f∥p(1−θ)/p0
p ∥T1∥θ ∥f∥pθ/p1p = ∥T0∥1−θ ∥T1∥θ ∥f∥p

(2.8)
for all f ∈ E(A). Let f ∈ U . As observed above the theorem, we can
approximate f by fn ∈ E(A) in Lp0(µ), in Lp1(µ) and in Lp(µ). By
the assumptions, also Tfn tends to Tf in Lq0(ν) and in Lq1(ν), and
hence in Lq(ν) due to (2.4). Inequality (2.8) thus holds for all f ∈ U .
Lemma 2.13 then allows to extend T uniquely from its domain U to an
operator Tθ ∈ B(Lp(µ), Lq(µ)) with norm less or equal ∥T0∥1−θ ∥T1∥θ.
As observed before the theorem, we have Lp(µ) ↪→ Lp0(µ)+Lp1(µ) and

similarly for the range spaces. Hence, Tfn = T̃ fn tends both to Tθf

and T̃ f in Lq0(ν) + Lq1(ν) so that Tθ is an restriction of T̃ . □

We next use the Riesz–Thorin theorem to give a different proof of
Young’s inequality for convolutions from Theorem 2.14.
1a) Recall the definition (2.1) of the convolution f ∗ g for f, g ∈

L1(Rm) and that φ(x, y) = |f(x− y)g(y)|. There we have shown that

∥f ∗ g∥1 ≤ ∥φ∥1 = ∥f∥1 ∥g∥1.
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1b) In a second step, we take f ∈ L1(Rm) and g ∈ L∞(Rm). We
compute∫

B(0,n)×Rd

φ(x, y) d(x, y) ≤
∫
B(0,n)

∫
Rm

|f(x− y)| ∥g∥∞ dy dx

= ∥g∥∞
∫
B(0,n)

∫
Rm

|f(z)| dz dx = λ(B(0, n)) ∥f∥1 ∥g∥∞.

Fubini’s theorem now yields that (f∗g)(x) is defined for a.e. x ∈ B(0, n)
and gives a measurable function on B(0, n). Letting n → ∞, the
same holds on Rm. Replacing in the above estimate the integral over
x ∈ B(0, n) by a supremum in x ∈ Rm, we further obtain

∥f ∗ g∥∞ ≤ ∥f∥1 ∥g∥∞.
1c) Fix any f ∈ L1(Rm). We define T1g = f ∗ g for g ∈ L1(Rm)

and T∞g = f ∗ g for g ∈ L∞(Rm). We have shown that that Tr ∈
B(Lr(Rm)) with ∥Tr∥ ≤ ∥f∥1 for r ∈ {1,∞}. We can now extend
the convolution to an operator Tg = f ∗ g := f ∗ (g1 + g∞) for g =
g1 + g∞ ∈ L1(Rm) + L∞(Rm). Let q ∈ (1,∞). Set θ = 1/q′ ∈ (0, 1),
so that 1

q
= 1−θ

1
+ θ

∞ . The Riesz–Thorin theorem allows us to restrict

T to a bounded operator Tq ∈ B(Lq(Rm)) with ∥Tq∥ ≤ ∥f∥1. For all
f ∈ L1(Rm), g ∈ Lq(Rm) and q ∈ [1,∞], we have thus shown that
f ∗ g ∈ Lq(Rm) and

∥f ∗ g∥q ≤ ∥f∥1 ∥g∥q.
2a) We fix g ∈Lq(Rm) and q ∈ [1,∞], and vary f . For f ∈L1(Rm),

step 1c) yields the bounded linear operator S1 : L1(Rm) → Lq(Rm);
S1f = f ∗ g, with norm ∥S1∥ ≤ ∥g∥q. Let now f ∈ Lq′(Rm). Due to
Hölder’s estimate, the map y 7→ f(x− y)g(y) is integrable on Rm and∣∣∣ ∫

Rm

f(x− y)g(y) dy
∣∣∣ ≤ ∥f(x− ·)∥q′ ∥g∥q = ∥f∥q′ ∥g∥q

for each x ∈ Rm. One sees as above that f ∗ g =: Sq′f is a measurable
function and

∥Sq′f∥∞ = ∥f ∗ g∥∞ ≤ ∥f∥q′ ∥g∥q ;
i.e., Sq′ belongs to B(Lq′(Rm), L∞(Rm)) with norm less or equal ∥g∥q.
We can thus define the convolution Sf = f ∗ g for all g ∈ Lq(Rm),
f ∈ L1(Rm) + Lq′(Rm) and q ∈ [1,∞].
2b) Finally, take p ∈ [1, q′] and r ∈ [1,∞] with 1+ 1

r
= 1

p
+ 1

q
. Choose

θ = q/p′ ∈ [0, 1]. Observe that

1

p
=

1− θ

1
+
θ

q′
and

1

r
=

1− θ

q
+

θ

∞
.

By means of the Riesz–Thorin theorem we then restrict S to an opera-
tor Sp ∈ B(Lp(Rm), Lr(Rm)) with norm less or equal ∥g∥q. In this way
we have proved Theorem 2.14.



CHAPTER 3

Hilbert spaces

So far we can only treat lengths of vectors or their distance by means
of the norm. In Fm one also uses orthogonality (or angles) in a crucial
way. The relevant concepts are introduced below in our setting. We
will see that the resulting ‘Hilbert spaces’ inherit much more structure
of the finite dimensional case as a general Banach space.

3.1. Basic properties and orthogonality

Definition 3.1. A scalar product on a vector space X is a map
(·|·) : X2 → F possessing the properties
a) (αx+ βz|y) = α (x|y) + β (z|y),
b) (x|y) = (y|x),
c) (x|x) ≥ 0, (x|x) = 0 ⇐⇒ x = 0,

for all x, y, z ∈ X and α, β ∈ F. The map is called a sesquilinear form
if it fulfills a) and b), as well as positive definite if c) is valid. The
pair (X, (·|·)), or simply X, is said to be a Pre-Hilbert space.1 We set

∥x∥ =
√
(x|x), and call it a Hilbert norm.

We start with several simple observations which will often be used.

Remark 3.2. Let (X, (·|·)) be a Pre-Hilbert space.
a) Properties a) and b) in Definition 3.1 easily yield the relations

(0|y) = 0, (x|0) = 0, (x|x) ∈ R, and

(x|αy + βz) = (αy + βz|x) = ᾱ (y|x) + β̄ (z|x) = ᾱ (x|y) + β̄ (x|z)
for all α, β ∈ F and x, y, z ∈ X.

b) We have the Cauchy–Schwarz inequality

|(x|y)| ≤ ∥x∥ ∥y∥ for all x, y ∈ X. (CS)

Here one obtains equality if and only if x and y are linearly dependent.
See Linear Algebra or Satz V.1.2 in [We].

c) The Hilbert norm in Definition 3.1 is indeed a norm on X.
Proof. Let x, y ∈ X and α ∈ F. Definition 3.1 and (CS) yield

∥x∥ = 0 ⇐⇒ (x|x) = 0 ⇐⇒ x = 0,

∥αx∥ =
√
αᾱ (x|x) = |α| ∥x∥,

∥x+ y∥2 = (x+ y|x+ y) = ∥x∥2 + (x|y) + (y|x) + ∥y∥2

1One also uses the notions ‘inner product’ and ‘inner product space’.
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= ∥x∥2 + 2Re (x|y) + ∥y∥2 (3.1)

≤ ∥x∥2 + 2 ∥x∥ ∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2. 2

d) The scalar product (·|·) : X2 → F is Lipschitz on each ball of X2

and thus continuous.
Proof. Using (CS), we estimate

|(x1|y1)− (x2|y2)| ≤ |(x1 − x2|y1)|+ |(x2|y1 − y2)|
≤ r ∥x1 − x2∥+ r ∥y1 − y2∥

≤
√
2r ∥(x1, y1)− (x2, y2)∥

for all xk, yk ∈ X with ∥(xk, yk)∥ := (∥xk∥2 + ∥yk∥2)
1
2 ≤ r. 2

e) From (3.1) we deduce the parallelogramm identity

∥x+y∥2 + ∥x−y∥2 = ∥x∥2+2Re (x|y)+∥y∥2 + ∥x∥2−2Re (x|y)+∥y∥2

= 2 ∥x∥2 + 2 ∥y∥2 (3.2)

for all x, y ∈ X.

f) In view of Definition 3.1, a linear subspace of a Pre-Hilbert space
is a Pre-Hilbert space with the restricted scalar product. ♢

For the deeper properties of (X, (·|·)) we need completeness.

Definition 3.3. Let (·|·) be a scalar product on X. If the Hilbert
norm ∥ · ∥ is complete, then (X, (·|·)) is called a Hilbert space.

We discuss the basic examples of Hilbert spaces, see also Section 4.2
and the exercises.

Example 3.4. a) On X = Fm we have the Euclidean scalar product

(x|y) =
m∑
k=1

xkȳk with norm ∥x∥22 =
m∑
k=1

|xk|2

for x, y ∈ Fm. The pair (Fm, (·|·)) is a Hilbert space by Example 1.4.
Note that | · |p on Fm is not induced by a scalar product if m ≥ 2

and p ̸= 2, since |e1+e2|2p+ |e1−e2|2p = 22/p+22/p ̸= 2(|e1|2p+ |e2|2p) = 4
contradicting (3.2).

b) Similarly, X = ℓ2 is a Hilbert space with the scalar product

(x|y) =
∞∑
k=1

xkȳk and the norm ∥x∥22 =
∞∑
k=1

|xk|2 ,

cf. Proposition 1.30. Note that the first series converges absolutely
because of Hölder’s inequality with p = p′ = 2.

c) Let (S,A, µ) be a measure space. Hölder’s inequality with p = p′ =
2 and basic properties of the integral imply that the space X = L2(µ)
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possesses the scalar product

(f |g) =
∫
S

fg dµ with norm ∥f∥22 =
∫
S

|f |2 dµ.

It is a Hilbert space by Theorem 5.5 in Analysis 3. ♢

In Pre-Hilbert spaces one can define angles, where we restrict our-
selves to the angle π/2.

Definition 3.5. Two elements x and y of a Pre-Hilbert space X are
called orthogonal if (x|y) = 0. Two non-empty subsets A,B ⊆ X are
called orthogonal if (a|b) = 0 for all a ∈ A and b ∈ B. One then writes
x ⊥ y respectively A ⊥ B, and also x ⊥ A instead of {x} ⊥ A. The
orthogonal complement of A is given by

A⊥ = {x ∈ X |x ⊥ a for every a ∈ A}.
A projection P ∈ L(X) is called orthogonal if R(P ) ⊥ N(P ).

We discuss a few typical examples for orthogonal vectors.

Example 3.6. a) Let (S,A, µ) be a measure space. Functions f, g ∈
L2(µ) with disjoint support (up to null sets) are orthogonal since then
(f |g) =

∫
S
fg dµ = 0.

b) Set fn(s) = eins for s ∈ [0, 2π] and n ∈ Z. If n ̸= m the functions
fn and fm are orthogonal in L2(0, 2π) because of

(fn|fm) =
∫ 2π

0

einse−ims ds =
1

i(n−m)
ei(n−m)s

∣∣∣2π
0

= 0.

Here the orthogonality is caused by oscillations and not by a disjoint
support as in a). (Compare (1, 0) ⊥ (0, 1) and (1,−1) ⊥ (1, 1) in R2.)

c) Let f ∈ L2(R) be even and g ∈ L2(R) be odd. Then f ⊥ g since

(f |g) =
∫ 0

−∞
f(s)g(s) ds+

∫ ∞

0

f(s)g(s) ds

=

∫ ∞

0

f(−t)g(−t) dt+
∫ ∞

0

f(s)g(s) ds = 0,

where we substituted s = −t in the first integral. ♢

We now collect various properties of orthogonality which are often
employed in these lectures.

Remark 3.7. Let X be a Pre-Hilbert space, A,B ⊆ X be non-
empty, and x, y ∈ X. The next assertions follow mostly from the
above definitions.
a) We have x ⊥ x if and only if x = 0; and thusX⊥ = {0}. Moreover,

x ⊥ y is equivalent to y ⊥ x. Observe that {0}⊥ = X.

b) Let x ⊥ y. Then equation (3.1) yields Pythagoras’ identity

∥x+ y∥2 = ∥x∥2 + ∥y∥2.
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c) Part a) implies the relations A∩A⊥ ⊆ {0} and A ⊆ (A⊥)⊥ =: A⊥⊥.

d) It is easy to see that A⊥ is a linear subspace of X. It is also closed.
In fact, let (xn) in A⊥ tend to x in X. Since the scalar product is

continuous (see Remark 3.2), we obtain (x|a) = limn→∞ (xn|a) = 0 for
all a ∈ A. Hence, x ⊥ A and A⊥ is closed.

e) If A ⊆ B, then B⊥ ⊆ A⊥. As in d) one sees that A⊥ = (linA)⊥.

f) If (x|z) = (y|z) for some x, y ∈ X and all z from a dense subset
D ⊆ X, then x = y. Indeed, there are vectors zn in D converging to
x− y in X. The continuity of the scalar product then yields

∥x− y∥2 = (x− y|x− y) = lim
n→∞

(x− y|zn) = 0. ♢

Many of the special properties of Hilbert spaces rely on the following
projection theorem.

Theorem 3.8. Let X be a Hilbert space and Y ⊆ X be a closed linear
subspace. Then there is a unique orthogonal projection P ∈ B(X) with
R(P ) = Y and N(P ) = Y ⊥. It satisfies ∥P∥ = 1 if Y ̸= {0} and

∥x− Px∥ = inf
y∈Y

∥x− y∥ for every x ∈ X.

We have the decomposition X = Y ⊕Y ⊥ with Y ⊥⊥=Y and X/Y ∼= Y ⊥.
In particular, a linear subspace Z of X is dense if and only if Z⊥ = {0}.

Given x ∈ X, the vector Px has the minimal distance to x within
elements of Y , and the difference x − Px ∈ N(P ) is orthogonal to Y .
Hilbert spaces thus inherit these basic geometric facts from Fm.

Proof. 1) Due to Remark 3.7, Y ⊥ is a closed linear subspace of X
and Y ∩ Y ⊥ = {0}. Let x ∈ X. To construct Px, we look for a vector
yx in Y satisfying ∥x− yx∥ = infy∈Y ∥x− y∥ =: δ. There are elements
yn of Y with ∥x− yn∥ → δ as n→ ∞. From (3.2) and 1

2
(yn + ym) ∈ Y

we deduce the limit

0 ≤ ∥1
2
(yn − ym)∥2 = ∥1

2
(yn − x)− 1

2
(ym − x)∥2

= 1
2
∥yn − x∥2 + 1

2
∥ym − x∥2 − ∥1

2
(yn + ym)− x∥2

≤ 1
2
∥yn − x∥2 + 1

2
∥ym − x∥2 − δ2 −→ 0 as n,m→ ∞.

Since X is complete and Y is closed, there exists the point yx =
limn→∞ yn in Y , and we obtain ∥yx − x∥ = limn→∞ ∥yn − x∥ = δ.
2) Set zx := x−yx. We want to show that zx ⊥ Y . Take w ∈ Y \{0}

and put α = ∥w∥−2(zx|w). The linear combination αw+ yx belongs to
Y . We thus infer

δ2 ≤ ∥x− (αw + yx)∥2 = ∥zx − αw∥2

= ∥zx∥2 − 2Reα(zx|w) + |α|2 ∥w∥2 = δ2 − |(zx|w)|2

∥w∥2
,
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using (3.1) as well as the definition of zx and α. It follows that (zx|w) =
0 and thus zx ⊥ Y . Taking into account x = yx + zx, we have shown
the equality Y + Y ⊥ = X, and hence X = Y ⊕ Y ⊥. The last assertion

is a consequence of this decomposition because of Z⊥ = Z
⊥
.

3) Remark 2.17 gives a unique operator P = P 2 ∈ L(X) withR(P ) =
Y and N(P ) = Y ⊥, where Px = yx. Pythagoras further implies that
∥Px∥2 ≤ ∥yx∥2 + ∥zx∥2 = ∥x∥2 since yx ⊥ zx; i.e., P ∈ B(X) and
∥P∥ ≤ 1. Lemma 2.16 then yields ∥P∥ = 1 if Y ̸= {0}.
The inclusion Y ⊆ Y ⊥⊥ follows from Remark 3.7. Let x ⊥ Y ⊥.

We then compute 0 = (x|zx) = (yx+ zx|zx) = ∥zx∥2 employing step 2).
Hence, the vector x = yx belongs to Y so that Y = Y ⊥⊥. Example 2.20
further implies the isomorphy Y ⊥ ∼= X/Y . □

We illustrate the above theorem by a few basic examples.

Example 3.9. a) Let X = F2 and Y = F×{0}. Then Y ⊥ = {0}×F
and P = ( 1 0

0 0 ), see Example 2.18.

b) Let X =L2(R) and Y = {f ∈ X | f = 0 a.e. on R−} ∼= L2(R+).
With Theorem 3.8 and Example 2.18 we obtain the isomorphies Y ⊥ ∼=
X/Y ∼= {f ∈ X | f = 0 a.e. on R+} ∼= L2(R−), using Pf = 1R+f .

c) Let X = L2(R) and Y = {f ∈ X | f(s) = f(−s) for a.e. s ∈ R}
be the set of even functions in X. As in Example 1.33 one sees that the
linear subspace Y is closed in X. Let f ∈ X, and set Pf(s) = 1

2
(f(s)+

f(−s)) for a.e. s ∈ R. The map Pf belongs to Y , ∥Pf∥2 ≤ ∥f∥2, and
we have Pf = f if f ∈ Y . As a result, P ∈ B(X) is a projection
with ∥P∥ = 1 and R(P ) = Y . Its kernel N(P ) = {f ∈ L2(R) | f(s) =
−f(−s) for a.e. s ∈ R} is the space of odd functions in X, so that the
projection P is orthogonal by Example 3.6.

d) Let A ̸= ∅ be a subset of a Hilbert space X. Set Y = linA.
Remark 3.7 and Theorem 3.8 yield the identity A⊥⊥ = Y ⊥⊥ = Y . ♢

LetX be a Hilbert space. For each fixed y ∈ X we define the function

Φ(y) : X → F; x 7→ (x|y) . (3.3)

The map Φ(y) is linear and satisfies |Φ(y)(x)| ≤ ∥x∥ ∥y∥ by (CS) for
all x, y ∈ X. Hence, Φ(y) is an element of X⋆ with ∥Φ(y)∥X⋆ ≤ ∥y∥X .
The next important representation theorem by F. Riesz says that the
resulting operator ΦX = Φ : X → X⋆ is isometric and bijective. This
seemingly very abstract fact is a very powerful tool to solve (linear)
partial differential equations.

Theorem 3.10. Let X be a Hilbert space and define the map ΦX =
Φ : X → X⋆ by (3.3). Then Φ is bijective, isometric and antilinear.2

Let x⋆ ∈ X⋆. Then y = Φ−1(x⋆) is the unique element of X fulfilling
⟨x, x⋆⟩ = (x|y) for all x ∈ X, and we have ∥y∥X = ∥x⋆∥X⋆.

2This means that Φ(αx+ βy) = ᾱΦ(y) + β̄Φ(y) for all α, β ∈ F and x, y ∈ X.
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Proof. Equation (3.3) and Remark 3.2 imply that Φ is antilinear.
Let y ∈ X \ {0}, and set x = 1

∥y∥y. Then ∥x∥ = 1, and we thus obtain

∥Φ(y)∥X⋆ ≥ |⟨x,Φ(y)⟩| = 1

∥y∥
(y|y) = ∥y∥.

Hence, ∥Φ(y)∥X⋆ = ∥y∥X and thus Φ is isometric and injective.
To show surjectivity, fix φ ∈ X⋆ \ {0}. Then Z := N(φ) ̸= X is

a closed linear subspace of X. Theorem 3.8 yields that Z⊥ ̸= {0}.
We take any y0 ∈ Z⊥ \ {0} and set y1 = φ(y0)

−1y0 ∈ Z⊥ \ {0}. Let
x ∈ X. We calculate φ(x−φ(x)y1) = φ(x)−φ(x)φ(y1) = 0 using that
φ(y1) = 1. As a result, x− φ(x)y1 belongs to Z leading to

0 = (x− φ(x)y1|y1) = (x|y1)− φ(x) ∥y1∥2,
φ(x) = (x| ∥y1∥−2y1) for all x ∈ X.

We have shown that φ ∈ R(Φ) and so Φ is bijective. The other asser-
tions easily follow. □

Usually, one identifies a Hilbert space X with its dual X⋆; i.e., one
omits the Riesz isomorphism ΦX in the notation. We stress that this
can only be done for one Hilbert space at the same time.

3.2. Orthonormal bases

In this section we extend the concept of the Euclidean basis in Fm

to the setting of (separable) Hilbert spaces X. We only have to use
series instead of finite sums if dimX = ∞. Except for the definition,
we restrict ourselves to countable bases to simplify the presentation a
bit. This will lead to additional separability assumptions at the end of
the section. Actually, it is not difficult to remove these restrictions, see
Section V.4 in [We].

Definition 3.11. Let X be a Pre-Hilbert space. A non-empty subset
S of X is an orthonormal system if ∥v∥ = 1 and (v|w) = 0 for all
v, w ∈ S with v ̸= w. Let B be a orthonormal system. It is called
orthonormal basis if it is maximal; i.e., if S is another orthonormal
system in X with B ⊆ S, then we already have B = S.

We first state the most basic examples.

Example 3.12. a) The set S = {en |n ∈ N} is orthonormal in ℓ2.

b) Let X = L2(0, 2π) with F = C. We put vk(s) = 1√
2π
eiks for

s ∈ [0, 2π] and k ∈ Z. The set S = {vk | k ∈ Z} is orthonormal by

Example 3.6 and ∥vk∥22 = 1
2π

∫ 2π

0
1 ds = 1.

c) In X = L2(0, 2π) the set S = { 1√
2π
1, 1√

π
cos(n·), 1√

π
sin(n·) |n ∈

N} is orthonormal, cf. Korollar 5.16 in Analysis 3. ♢
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We recall theGram–Schmidt procedure from Linear Algebra which al-
lows us to construct a orthonormal system with the same linear span as
a given linearly independent, at most countable subset. (See Satz V.4.2
of [We] for a proof.)

Lemma 3.13. Let X be a Pre-Hilbert space and Σ = {xj | j ∈ J} be a
linearly independent subset of X with J = {1, . . . , N} or J = N. Then
there is an orthonormal system S = {vj | j ∈ J} with linΣ = linS,
which is inductively given by v1 = ∥x1∥−1x1 and

yn+1 = xn+1 −
n∑

j=1

(xn+1|vj) vj, vn+1 =
1

∥yn+1∥
yn+1.

In the next result we collect the most important properties of an
orthonormal system S. In particular, it provides the formula for the
orthogonal projection onto linS. In the proof one uses arguments from
Linear Algebra, as well as Pythagoras’ identity to show convergence.

Proposition 3.14. Let S = {vn |n ∈ N} be an orthonormal system
in a Hilbert space X and x∈X. Then the following assertions are true.
a)
∑∞

n=1 |(x|vn)|
2 ≤ ∥x∥2. (Bessel’s inequality)

b) The series Px :=
∑∞

n=1 (x|vn) vn converges in X. It defines a map

P ∈ B(X) which is the orthogonal projection onto linS. We further
have the identities ∥Px∥2 =

∑∞
n=1 |(x|vn)|

2 ≤ ∥x∥2 and X = linS⊕S⊥.
c) Let numbers αn ∈ F satisfy Px =

∑∞
n=1 αnvn. Then these coeffi-

cients are given by αn = (x|vn) for all n ∈ N.

Proof. Let x ∈ X and N,M ∈ N.
a) We set xN = x−

∑N
k=1 (x|vk) vk. Orthonormality yields

(xN |vn) = (x|vn)−
N∑
k=1

(x|vk) (vk|vn) = (x|vn)− (x|vn) = 0

for all n ∈ {1, . . . , N}. Using also (vk|vn) = 0 for k ̸= n, Pythagoras’
formula and ∥vk∥ = 1, we deduce the lower bound

∥x∥2 = ∥xN∥2+
N∑
k=1

∥(x|vk)vk∥2 = ∥xN∥2+
N∑
k=1

|(x|vk)|2 ≥
N∑
k=1

|(x|vk)|2 .

Assertion a) follows taking the supremum over N ∈ N.
b) Let N > M . As in a), we obtain∥∥∥ N∑

k=M

(x|vk) vk
∥∥∥2 = N∑

k=M

|(x|vk)|2 −→ 0 as M,N → ∞,

since the sequence (|(x|vk)|2)k is summable by a). Because X is com-
plete, there exists the series Px :=

∑∞
k=1(x|vk) vk in X. The map
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P : X → X is linear. With M = 1 the above equality implies that

∥Px∥2 = lim
N→∞

∥∥∥ N∑
k=1

(x|vk)vk
∥∥∥2 = lim

N→∞

N∑
k=1

|(x|vk)|2

=
∞∑
k=1

|(x|vk)|2 ≤ ∥x∥2, (3.4)

where we also employed part a). The operator P thus belongs to B(X)
with ∥P∥ ≤ 1. Since the scalar product is sesquilinear and continuous,
we further obtain

P 2x =
∞∑
n=1

( ∞∑
m=1

(x|vm)vm
∣∣∣vn)vn =

∞∑
n=1

∞∑
m=1

(x|vm) (vm|vn) vn

=
∞∑
n=1

(x|vn)vn = Px;

i.e., P is a projection. Observe that S ⊆ R(P ) ⊆ linS. By
Lemma 2.16, R(P ) is a closed linear subspace so that R(P ) = linS.
Formula (3.4) implies that y ∈ N(P ) if and only if y ⊥ vn for ev-

ery n ∈ N which is equivalent to y ∈ S⊥ = linS
⊥
, see Remark 3.7.

Lemma 2.16 thus yields the last claim in statement b), too.
c) Let Px =

∑∞
n=1 αnvn and m ∈ N. By means of b), we compute

(x|vm) =
∞∑
n=1

(x|vn) (vn|vm) = (Px|vm) =
∞∑
n=1

αn(vn|vm) = αm. □

Let {vn |n ∈ N} an orthonormal basis in a Hilbert spaceX. The next
theorem says that we can write each vector x ∈ X uniquely as a series
of the basis vectors times the coefficients (x|vn). Moreover, the norm
of x is equal to the ℓ2–norm of the coefficients’ sequence. We can thus
work as in Fm, except for additional limits. According to statement c),
we need a density result to check that a given orthonormal system is a
basis. A different way to construct a basis is given by Theorem 6.7.

Theorem 3.15. Let S = {vn |n ∈ N} be a orthonormal system in a
Hilbert space X. Then the following assertions are equivalent.

a) S is a orthonormal basis.
b) S⊥ = {0}.
c) X = linS.
d) For all x ∈ X we have x =

∑∞
n=1 (x|vn) vn with a limit in X.

e) For all x, y ∈ X we have (x|y) =
∑∞

n=1 (x|vn) (vn|y).
f) For all x ∈ X we have ∥x∥2=

∑∞
n=1 |(x|vn)|

2. (Parseval’s equality)

The coefficients in d) are uniquely determined.
Let X be separable with dimX = ∞. Then X possesses a (countable)

orthonormal basis, and for every orthonormal system S there exists an
orthonormal basis B containing S.
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Proof. 1) Let statement a) be true. Suppose there would exist a
non-zero vector y ∈ S⊥. Then the set S ′ = S∪{ 1

∥y∥y} is an orthonormal

system, contradicting the maximality of S. So b) is shown.
Part b) and the projection theorem, more precisely Example 3.9d),

yield that linS = S⊥⊥ = X.
From Proposition 3.14 we deduce the implication ‘c)⇒d)’ and the

first addendum.
Assertion d) implies e) taking the scalar product with y, and part f)

follows from e) with x = y.
Let S fulfill property f). Suppose that S was not an orthonormal

basis. There thus exists an orthonormal system S ′ ⊇ S with S ′ ̸= S,
and hence a vector x ∈ X with ∥x∥ = 1 and x ⊥ S. Statement f)
would thus yield the wrong identity 0 =

∑∞
n=1 |(x|vn)|

2 = ∥x∥2 = 1.

2) Let Σ = {xn |n ∈ N} be dense in X. Put y1 = xn1 where xn1

is the first non-zero element xn. Iteratively, we define yj+1 as the first
vector xn with n > nj which does not belong to the linear span of y1 =
xn1 , . . . , yj = xnj

. By induction one sees that the set Γ = {yj | j ∈ N}
is linearly independent and has the span D := linΣ, which is dense in
X. Using Lemma 3.13, out of Γ we construct an orthonormal system
S = {wj | j ∈ N} whose linear hull is equal to D. The implication
‘c)⇒a)’ then shows that S is a orthonormal basis.
3) Let X be separable and S be orthonormal system in X. Step 2)

then yields an orthonormal basis B0 of the space (linS)⊥, which is
separable as a subset of X by Exercise 6.2. Then B = S ∪ B0 is an
orthonormal basis of X since B⊥ = {0}. □

Remark 3.16. Let S = {vn |n ∈ N} be an orthonormal system in a
Hilbert space X.
a) Theorem 3.15 implies that S is an orthonormal basis in linS.

b) It can happen that
∑∞

n=1 ∥(x|vn) vn∥ =
∑∞

n=1 |(x|vn)| = ∞ for

some x ∈ linS, see Example 3.17b); i.e, the series x =
∑

n(x|vn) vn does
not converge absolutely and the sequence ((x|vn))n of the coefficients
does not belong to ℓ1. (It is contained in ℓ2 by Bessel’s inequality in
Proposition 3.14.)
However, the series always converges unconditionally : For every bi-

jection π : N → N and each x ∈ X, the series
∑∞

n=1(x|vπ(n)) vπ(n)
converges to x in X. See Satz V.4.8 in [We]. ♢

We discuss simple examples mainly based on Weierstraß’ approxi-
mation theorem.

Example 3.17. a) Example 3.12 and Theorem 3.15 imply that the
set B = {en |n ∈ N} is an orthonormal basis in ℓ2 because its linear
hull c00 is dense in ℓ2 by Proposition 1.31.

b) Let X = L2(0, 2π) with F = C and vn(t) = 1√
2π
eint for n ∈ Z.

Weierstraß’ Theorem 5.14 in Analysis 3 implies that the linear hull
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lin{vn |n ∈ Z} is dense in C([0, 2π]), and hence in X by Exam-
ple 2.12a). Using Example 3.12 and a variant of Theorem 3.15 for
the index set Z, we see that {vn |n ∈ Z} is an orthonormal basis in X.
Let f ∈ X. We define its Fourier coefficients by

cn := (f |vn) =
1√
2π

∫ 2π

0

f(t)e−int dt.

Theorem 3.15 now yields the convergence of the Fourier series

f =
∞∑

n=−∞

cnvn

in L2(0, 2π) and the identity∫ 2π

0

|f(t)|2 dt =
∑
n∈Z

1

2π

∣∣∣ ∫ 2π

0

f(t)e−int dt
∣∣∣2,

cf. Theorem 5.15 in Analysis 3.
Let f = 1[0,π]. We then we obtain c0 =

√
π/2 and, for n ̸= 0,

cn =
1√
2π

∫ π

0

e−int dt = − 1

in
√
2π

(e−inπ − 1) =

{
0, n even,
√
2

in
√
π
, n odd.

Hence, the sequence (cn) is not summable.

c) Similarly, the set S = { 1√
2π
1, 1√

π
cos(n·), 1√

π
sin(n·); n ∈ N} is an

orthonormal basis in X = L2(0, 2π). See Korollar 5.16 in Analysis 3.

d) Let X = L2(−1, 1) and pn(t) = tn for n ∈ N0 and t ∈ [−1, 1].
The set D = lin{pn |n ∈ N} of polynomials is dense in C([−1, 1])
by Theorem 5.14 in Analysis 3, and thus in X due to Example 2.12.
Lemma 3.13 gives us an orthonormal system {vn |n ∈ N} (multiples
of the so–called Legendre polynomials) with the dense linear hull D.
Theorem 3.15 now shows that {vn |n ∈ N} is an orthonormal basis. ♢

Each m–dimensional vector space is isomorphic to Fm after fixing a
basis. This result is now extended to separable Hilbert spaces and ℓ2.

Theorem 3.18. Every separable Hilbert space X with dimX = ∞
is isometrically isomorphic to ℓ2 via J : X → ℓ2; Jx = ((x|vn))n, and
J−1((αn)) =

∑∞
n=1 αnvn, for any fixed orthonormal basis {vn |n ∈ N}.

Proof. The map J is isometric due to Parseval’s equality in Theo-
rem 3.15. Its linearity is clear. Let (αn) ∈ ℓ2. For N > M , Pythagoras’
identity and ∥vn∥ = 1 yield∥∥∥ N∑

n=M

αnvn

∥∥∥2 = N∑
n=M

|αn|2 −→ 0 as M,N → ∞.

The series x :=
∑

n αnvn thus converges since X is a Hilbert space.
Proposition 3.14 now shows that αn = (x|vn) for all n ∈ N so that J is
surjective. The theorem then follows from Remark 2.11. □



CHAPTER 4

Two main theorems on bounded linear operators

We discuss two fundamental results of functional analysis, the prin-
ciple of uniform boundedness and the open mapping theorem, which
both rely on a corollary to Baire’s theorem.

4.1. The principle of uniform boundedness and strong
convergence

We start with a very helpful result by Baire.

Theorem 4.1. Let M be a complete metric space and On ⊆ M be
open and dense for each n ∈ N. Then their intersection D =

⋂
n∈NOn

is dense in M .

Proof. For every x0 ∈ M and δ > 0 we must find a vector x in
B0 ∩ D, where we put B0 = B(x0, δ). So let x0 ∈ M and δ > 0.
Since O1 is open and dense, there is an element x1 of O1 ∩ B0 and
a radius δ1 ∈ (0, 1

2
δ] with B(x1, δ1) ⊆ O1 ∩ B0. Iteratively, one finds

xn ∈ On ∩Bn−1, δn ∈ (0, 1
2
δn−1] and Bn = B(xn, δn) such that

Bn ⊆ On ∩Bn−1 ⊆ On ∩ (On−1 ∩Bn−2) ⊆ · · · ⊆ (On ∩ . . . ∩O1) ∩B0.

Since δm ≤ 2−mδ, the vector xn belongs to Bm ⊆ B(xm, 2
−mδ) for all

n ≥ m. Hence, (xn) is a Cauchy sequence. Its limit x is contained in
each set Bm, and thus in D ∩B0 by the above inclusions. □

The set R2 \ R is open and dense in R2, for instance. A countable
intersection D of open and dense sets is called residual. A property is
generic if it is satisfied by all elements of such a set.

Corollary 4.2. Let M be a complete metric space and M =⋃
n∈NAn for closed subsets An ⊆M . Then there exists an index N ∈ N

with A◦
N ̸= ∅.

Proof. Suppose that A◦
n = ∅ for all n ∈ N. Then On =M \An is

open and dense. Theorem 4.1 implies that
⋂

n∈NOn is dense inM . This
fact contradicts the assumption since

⋂
nOn =M \

⋃
nAn = ∅. □

Example 4.3. One needs the completeness ofM in the above corol-
lary. For instance, take (c00, ∥ · ∥p) with p ∈ [1,∞] and An = {x =
(x1, . . . , xn, 0, . . . ) |xj ∈ F}. These sets are closed for all n ∈ N by
Lemma 1.43, and

⋃
nAn = c00. But, each An has empty interior since

for x ∈ An the vectors ym = x+ 1
m
en+1 /∈ An tend to x as m→ ∞. ♢

69
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The following principle of uniform boundedness is one of the four
most fundamental theorems of linear functional analysis treated in this
course. It says that completeness provides uniformity for free in some
cases. Using the full power of Baire’s theorem instead of Corollary 4.2,
one can considerably strengthen the result, see Section II.4 of [Yo].

Theorem 4.4. Let X be a Banach space, Y be a normed vector
space, and T ⊆ B(X, Y ). If the set of operators T is pointwise bounded
(i.e., ∀x ∈ X ∃ cx ≥ 0 ∀T ∈ T : ∥Tx∥ ≤ cx), then T is uniformly
bounded (i.e., ∃ c > 0 ∀T ∈ T : ∥T∥ ≤ c).1

Proof. We put An = {x ∈ X | ∥Tx∥ ≤ n for all T ∈ T }. By
asssumption, each vector x ∈ X belongs to every set An with n ≥ cx;
i.e.,

⋃
n∈NAn = X. Let (xk) in An converge to x in X. We then have

∥Tx∥ = limk→∞ ∥Txk∥ ≤ n for all T ∈ T so that An is closed for each
n ∈ N. Corollary 4.2 now yields an index N ∈ N, a point x0 ∈ AN and
a radius ε > 0 with B(x0, ε) ⊆ AN . Let z ∈ B(0, ε). The vectors x0±z
then belong to B(x0, ε) ⊆ AN , and hence

∥Tz∥ = ∥T (1
2
(z + x0) +

1
2
(z − x0))∥ ≤ 1

2
∥T (z + x0)∥+ 1

2
∥T (x0 − z))∥

≤ N
2
+ N

2
= N.

Finally, let x ∈ X with ∥x∥ ≤ 1. Set z = εx ∈ B(0, ε). It follows
N ≥ ∥Tz∥ = ε ∥Tx∥ and thus ∥T∥ ≤ N

ε
for all T ∈ T . □

The above result is often used in the next simpler version called
Banach–Steinhaus theorem.

Corollary 4.5. Let X be a Banach space, Y be a normed vector
space, and Tn belong to B(X, Y ) for every n ∈ N. Assume that (Tnx)n
converges in Y for each x ∈ X. Then supn∈N ∥Tn∥ <∞.

Proof. The assumpotion shows that cx := supn ∥Tnx∥ is finite for
each x ∈ X, so that the result follows from Theorem 4.4. □

We again note that we really need completeness here.

Example 4.6. Let X = c00 and Y = c0 be endowed with ∥ · ∥∞.
Set Tnx = (x1, 2x2, . . . , nxn, 0, . . . ) for n ∈ N and x ∈ X. Then Tn
belongs to B(X, Y ) with ∥Tn∥ = n since ∥Tnx∥∞ ≤ n ∥x∥∞ and ∥Tn∥ ≥
∥Tnen∥∞ = n for all n ∈ N and x ∈ X. Hence, the sequence (Tn)
is unbounded. However, (Tnx)n converges for each x ∈ X because
there is an index m = mx ∈ N with xk = 0 if k > m and thus
Tnx = (x1, 2x2, . . . ,mxm, 0, . . . ) for all n ≥ m. ♢

The principle of uniform boundedness is often used to establish the
existence of interesting objects which are difficult to construct explic-
itly. As a typical example we look at pointwise divergent Fourier series.

1Uniform boundedness is equivalent to ∃ c > 0 ∀T ∈ T , x ∈ B(0, 1) : ∥Tx∥ ≤ c.
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Example 4.7. We endow X = {f ∈ C([−π, π]) | f(−π) = f(π)}
with the supremum norm and let f ∈ X. As in Korollar 5.16 of Anal-
ysis 3 one can find coefficients ak, bk ∈ F such that the Fourier sum

Sn(f, t) =
a0
2

+
n∑

k=1

(ak cos(kt) + bk sin(kt)), t ∈ [−π, π],

converges to f in L2(−π, π) as n → ∞. We claim that there is a
function f ∈ X whose Fourier series diverges at t = 0.
Proof. The fomulas for ak and bk from Analysis 3 and simple

manipulations yield the representation

Sn(f, t) =
1

π

∫ π

−π

f(s+ t)Dn(s) ds

for t ∈ [−π, π], see p. 146 of [We]. Here f has been extended to a
2π–periodic function on R and we use the ‘Dirichlet kernel’

Dn(t) =

{
sin(n+ 1

2
)t

2 sin t
2

, t ∈ [−π, π] \ {0},
n+ 1

2
, t = 0.

In view of our claim, we define the map φ : X → F; φn(f) = Sn(f, 0),
which clearly belongs to X⋆ for each n ∈ N. Similar as in Example 2.7,
one can compute

∥φn∥ =
1

π

∫ π

−π

|Dn(t)| dt.

It is straightforward to show that this integral tends to ∞ as n → ∞,
see the proof of Satz IV.2.10 in [We]. Corollary 4.5 then implies that
φn(f) cannot converge for all f ∈ X, as asserted.2 2

The convergence used in Corollary 4.5 plays an important role in
analysis so that we discuss it a bit.

Definition 4.8. Let X and Y be normed vector spaces and Tn, T ∈
B(X, Y ) for n ∈ N. We say that (Tn) converges strongly to T if Tnx→
Tx in Y as n→ ∞ for each x ∈ X. One then writes Tn

s−→ T .

Observe that it is not clear at the moment whether this type of con-
vergence can be described by a metric, cf. Remark 5.35. Nevertheless
its basic properties are easy to show.

Remark 4.9. Let X and Y be normed vector spaces and Tn, T, Sn,
and S belong to B(X, Y ) for n ∈ N. Then the following assertions hold.

a) If (Tn) tends to T and S strongly, then S = T by the uniqueness
of limits in Y .

b) Let (Tn) have the limit T in operator norm. Then (Tn) converges
to T strongly since ∥Tnx − Tx∥ ≤ ∥Tn − T∥ ∥x∥ for all x ∈ X. The

2A more or less concrete example of a pointwise divergent Fourier series is given
in Section 18 of [Ko].



4.1. The principle of uniform boundedness 72

converse is wrong in general. As an example, consider the operators
given by Pnx = (x1, . . . , xn, 0, . . . ) on X = Y = ℓ2 which converge
strongly to I but ∥Pn − I∥ ≥ ∥(Pn − I)en+1∥2 = 1 for all n ∈ N.
c) Let the operators Tn tend strongly to T , Sn tend strongly to S,

and α, β ∈ F. Then the vectors (αTn + βSn)x converge to (αT + βS)x
as n→ ∞, so that (αTn + βSn) has the strong limit αT + βS. ♢

The next result is an important tool in analysis. It allows to con-
struct bounded linear operators as strong limits on a dense set of ‘good’
vectors, provided one has a uniform bound.

Lemma 4.10. Let X be a normed vector space, Y be a Banach space,
Tn ∈ B(X, Y ) for all n ∈ N, and S ⊆ X be a subset whose span
D = linS is dense in X. Assume that supn∈N ∥Tn∥ =: M < ∞ and
that (Tnx)n converges for every x ∈ S as n → ∞. Then there is a
unique operator T ∈ B(X, Y ) such that (Tn) converges strongly to T
and ∥T∥ ≤ lim infn→∞ ∥Tn∥ =: M0. If D = X, these assertions are
also true if Y is a normed vector space.

Proof. By linearity, the limit T0x := limn→∞ Tnx exists for every
x ∈ D. As in the proof of Proposition 2.5 one checks that T0 : D → Y
is linear. Choose a subsequence with M0 = limj→∞ ∥Tnj

∥. We then
obtain ∥T0x∥ = limj→∞ ∥Tnj

x∥ ≤ M0 ∥x∥ for each x ∈ D, and hence
T0 belongs to B(D, Y ) with ∥T0∥ ≤ M0. So far we have not used that
Y is Banach space, and the addendum is thus proved if D = X. In the
general case, Lemma 2.13 yields a unique extension T ∈ B(X, Y ) of T0
with ∥T∥ = ∥T0∥ ≤M0, since Y is a Banach space and D is dense.
Let ε > 0 and x ∈ X. Fix a vector z ∈ D with ∥x − z∥ ≤ ε. Then

there exists an index Nε ∈ N such that ∥T0z−Tnz∥ ≤ ε for all n ≥ Nε.
We estimate

∥Tx− Tnx∥ ≤ ∥T (x− z)∥+ ∥Tz − Tnz∥+ ∥Tn(z − x)∥
≤M0ε+ ε+Mε

for n ≥ Nε, so that (Tn) tends strongly to T also if D ̸= X. □

We first illustrate by standard examples that one cannot omit the
uniform bound in the above lemma and that the operator norm is not
‘continuous’ for the strong limit in general.

Example 4.11. a) Let X = Y = c0, D = c00 and Tnx =
(x1, 2x2, . . . , nxn, 0, . . . ) for all x ∈ c0 and n ∈ N. As in Example 4.6
we see that Tn ∈ B(X) satisfies ∥Tn∥ = n → ∞. The operators Tn
thus do not have a strong limit by Corollary 4.5. However, for each
x ∈ c00 the vectors Tnx tend to (x1, . . . ,mxm, 0, . . .) as n → ∞ where
m = mx ∈ N is given by Example 4.6.

b) Let X = Y = c0 and Tnx = xnen for all x ∈ c0 and n ∈ N. Since
∥Tnx∥∞ = |xn| → 0 as n → ∞, the operators Tn have the strong limit
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T := 0. However, ∥Tnen∥∞ ≥ 1 and ∥Tnx∥∞ ≤ ∥x∥∞ for all n ∈ N and
x ∈ X. Here the limit limn→∞ ∥Tn∥ = 1 exists, but it is strictly larger
than ∥T∥ = 0, despite the strong convergence. ♢

We now look at two important examples of bounded operators which
exhibit strong convergence, starting with left translations. Recall Ex-
ample 2.9 for a discrete version.

Example 4.12. Let X ∈ Lp(R) for some 1 ≤ p < ∞. For every
t ∈ R we define (T (t)f)(s) = f(s+ t) for s ∈ R and f ∈ X. It is clear
that T (t) : X → X is linear,

∥T (t)f∥pp =
∫
R
|f(s+ t)|p ds = ∥f∥pp ,

and T (t) has the inverse T (−t). Hence, T (t) ∈ B(X) is an isometric
isomorphism. (This assertion can similarly be shown for p = ∞.) For
all b > a and t ∈ R we have

(T (t)1[a,b])(s) = 1[a,b](s+ t) =

{
1, a− t ≤ s ≤ b− t

0, otherwise

}
= 1[a−t,b−t](s)

for all s ∈ R; i.e., T (t) really is a left translation if t ≥ 0.
Setting f = t−1/p

1[0,t] for t > 0 we further obtain ∥f∥p = 1 and

∥T (t)f − f∥pp = t−1
∫ t

−t
1p ds = 2. Therefore the map R → B(X); t 7→

T (t), is not continuous with respect to the operator norm. We claim
that it is strongly continuous ; i.e., the functions R → X; t 7→ T (t)f ,
are continuous for every f ∈ X.
By Lemma 4.10, we only have to consider f ∈ Cc(R) since ∥T (t)∥ = 1

for all t ∈ R and Cc(R) is dense in X by Theorem 5.9 in Analysis 3. Let
t0 ∈ R and t ∈ [t0−1, t0+1]. Since f ∈ Cc(R) is uniformly continuous,
we derive

∥T (t)f − T (t0)f∥∞ = sup
s∈R

|f(s+ t)− f(s+ t0)| −→ 0 as t→ t0.

There is a compact interval J ⊆ R with supp(T (t)f − T (t0)f) ⊆ J for
t ∈ [t0 − 1, t0 + 1]. We then obtain

∥T (t)f −T (t0)f∥p ≤ λ(J)1/p ∥T (t)f −T (t0)f∥∞ −→ 0 as t→ t0.

This result remains valid for X = C0(R) with an analogous proof. ♢

As a second example, we study mollifiers which are essential tools
in analysis. Let U ⊆ Rm be open. We define the space of test functions
on U by C∞

c (U) = {φ ∈ C∞(U) | suppφ is compact}. The map

φ0(x) =

{
e
− 1

1−|x|22 , |x|2 < 1,

0, |x|2 ≥ 1,

belongs to C∞
c (Rm), for instance. Take any test function φ on Rm

with support B(0, 1) which is positive on B(0, 1). Set k = ∥φ∥−1
1 φ
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and kε(x) = ε−mk(1
ε
x) for all x ∈ R and ε > 0. The function kε is

contained in C∞
c (Rm) with supp kε = B(0, ε), kε ≥ 0, and

∥kε∥1 =
∫
Rm

ε−mk(1
ε
x) dx =

∫
Rm

k(y) dy = 1

for all ε > 0, where we have used the transformation y = 1
ε
x.

Let p ∈ [1,∞]. The space Lp
loc(U) contains all measurable maps

f : U → F (modulo null functions) such that f |K belongs to Lp(K)
for each compact set K ⊆ U . Proposition 1.35 yields the inclusion of
the ‘locally integrable functions’ L1

loc(U) in Lp
loc(U). A sequence (fn)

has a limit f in Lp
loc(U) if the restrictions to each compact set K ⊆ U

converge in Lp(K). (As in Example 1.9 one can construct a distance
on Lp

loc(U) corresponding to this convergence.)

The extension of f by 0 to Rm is denoted by f̃ . Let f : U → F be
measurable and f̃ belong to L1

loc(Rm). We define the mollifier Gε by

(Gεf)(x) := (kε ∗ f̃)(x) =
∫
Rm

kε(x− y)f̃(y) dy (4.1)

=

∫
U∩B(x,ε)

kε(x− y)f(y) dy

for all x ∈ U or x ∈ Rm. (This integral exists since f̃ is integrable
on B(x, ε) and kε is bounded.) The next result says that we can use
the operators Gε to approximate locally integrable functions by smooth
ones. In particular, test functions are dense in Lp(U) if p <∞. As the
proof indicates, mollifiers are often used in combination with cut-off
arguments. We improve this proposition in the next section. Note that
for U = Rm the number ε0 is equal to ∞ since ∂Rm = ∅.3 This special
case is considerably simpler.

Proposition 4.13. Let U ⊆ Rm be open, f : U → F be measurable
with f̃ ∈ L1

loc(Rm), ε > 0, and 1 ≤ p ≤ ∞. Define Gε by (4.1). Then
the following assertions hold.
a) The map Gεf is an element of C∞(Rm). If there is a compact set

K ⊆ U with f(x) = 0 for a.e. x ∈ U \K, then Gεf ∈ C∞
c (U) for all

ε ∈ (0, ε0) with ε0 := dist(K, ∂U).
b) The restriction Gε to Lp(U) belongs to B(Lp(U)) with ∥Gε∥ ≤ 1.

Let 1 ≤ p <∞ and f ∈ Lp(U). Then Gεf → f in Lp(U) as ε→ 0.
c) Let 1 ≤ p < ∞. Then C∞

c (U) is dense in Lp(U). More precisely,
if f ∈ Lp(U) ∩ Lq(U) for some 1 ≤ p, q < ∞ then there are functions
fn ∈ C∞

c (U) converging to f in Lp(U) and in Lq(U).

Proof. a) Let ε > 0 and f̃ ∈ L1
loc(Rm). Fix a point x0 ∈ Rm and

a radius r > 0. Let x ∈ B(x0, r) and j ∈ {1, . . . ,m}. We then estimate

|∂xj
kε(x− y)f̃(y)| ≤ ∥∂xj

kε∥∞ 1B(x0,r+ε)(y) |f̃(y)| =: h(y)

3Concerning ε0, the result presented in the lectures was slightly weaker.
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for all y ∈ Rm. The function h is integrable on Rm. The differentiation
theorem 3.18 of Analysis 3 now yields that kε ∗ f is partially differen-
tiable at x0. Iterating this argument, one concludes that Gεf belongs
to C∞(Rm).
Let K ⊆ U be compact such that f(x) = 0 for a.e. x ∈ U \ K.

Since K ∩ ∂U = ∅ and K is compact, the number ε0 = dist(K, ∂U) is
positive by Example 1.9. Take ε ∈ (0, ε0). The set Sε := K + B(0, ε)
then belongs to U . Let zn = xn + yn ∈ Sε for n ∈ N with xn ∈ K
and yn ∈ B(0, ε). By compactness of both sets, (xn) and (yn) have
subsequences with limits x ∈ K and y ∈ B(0, ε), respectively; i.e., Sε

is compact. On the other hand, equation (4.1) yields supp(Gεf) ⊆ Sε.

b) Let f ∈ Lp(U). Young’s inequality Theorem 2.14 implies that

Gεf ∈ Lp(U) and ∥Gεf∥p ≤ ∥kε∥1 ∥f̃∥p = ∥f∥p. As a result, Gε

induces an element of B(Lp(U)) with ∥Gε∥ ≤ 1 for all ε > 0.
Let p ∈ [1,∞). To show that Gε → I strongly on Lp(U), it suffices

to consider g ∈ Cc(U) due to Lemma 4.10 since ∥Gε∥ ≤ 1 and Cc(U)
is dense in Lp(U) by Theorem 5.9 in Analysis 3. Let g ∈ Cc(U),
K := supp(g), and ε ∈ (0, ε0). Again, Sε = K + B(0, ε) ⊆ U is
compact and K, suppGεg ⊆ Sε for ε ∈ (0, ε0). We then derive

sup
x∈U

|Gεg(x)− g(x)| = sup
x∈Sε

∣∣∣∫
Rm

kε(x− y)g̃(y) dy −
∫
Rm

kε(x− y) dy g(x)
∣∣∣

≤ sup
x∈Sε

∫
B̄(x,ε)

kε(x− y) |g̃(y)− g(x)| dy

≤ ∥kε∥1 sup
x∈Sε,|x−y|≤ε

|g̃(y)− g̃(x)| −→ 0

as ε→ 0, using that ∥kε∥1 = 1 and that g̃ is uniformly continuous. We
fix some index ε ∈ (0, ε0) and let ε ∈ (0, ε]. The distance ∥Gεg− g∥p ≤
λ(Sε)

1/p ∥Gεg − g∥∞ then tends to 0 as ε→ 0.

c) Let f ∈ Lp(U) ∩ Lq(U) for some 1 ≤ p, q < ∞. By Example 1.9
there are open and bounded sets Un for n ∈ N with Un ⊆ U whose
union is equal U . Using assertion a), for each n ∈ N we can choose a
number εn ∈ (0, 1/n] such that the function fn = Gεn(1Unf) belongs
to C∞

c (U). Since 1Unf → f pointwise as n → ∞ and |1Unf | ≤ |f | for
all n, Lebesgue’s theorem yields the limits 1Unf → f in Lp(U) and in
Lq(U). Employing ∥Gεn∥ ≤ 1 and part b), we then derive

∥Gεn(1Unf)− f∥r ≤ ∥Gεn∥ ∥1Unf − f∥r + ∥Gεnf − f∥r −→ 0

as n→ ∞, where r ∈ {p, q}. □

4.2. Sobolev spaces

The classical (partial) derivative does not fit well to Lp spaces since
it is defined via a pointwise limit. For a treatment of partial differential
equations in an L2 or Lp context one needs the more general concept of
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‘weak derivatives’. Here we restrict ourselves to basic results focusing
on simple properties of the function spaces and a bit of calculus. The
mollifiers from Proposition 4.13 are the crucial tool in this theory. For
an introduction to this area we refer to the books [Br] or [Do], and
also to the lecture notes [ST].
Throughout in this section, let U ⊆ Rm be open and non-empty. To

motivate the definition below, we consider f ∈ C1(U) and m ≥ 2. Take
any test function φ ∈ C∞

c (U). Let g̃ ∈ C1(Rm) be the 0–extension
of the product g := fφ ∈ C1

c (U). There is a number a > 0 with
suppφ ⊆ (−a, a)m. Set C = (−a, a)m−1. Using the product rule and
the fundamental theorem of calculus, we obtain∫

U

φ∂1f dx = −
∫
U

f∂1φ dx+

∫
U

∂1g dx

= −
∫
U

f∂1φ dx+

∫
C

∫ a

−a

∂1g̃(x1, x
′) dx1 dx

′

= −
∫
U

f∂1φ dx+

∫
C

(g̃(a, x′)− g̃(−a, x′)) dx′

= −
∫
U

f∂1φ dx, (4.2)

since g̃(a, x′) = g̃(−a, x′) = 0. Other partial derivatives can be treated
in the same way. The following definition now relies on the observation
that the right hand side of (4.2) is defined for all locally integrable f .
It can thus serve as the definition of ∂1f on the left hand side of (4.2).

Definition 4.14. Let U ⊆ Rm be open, f, g ∈ L1
loc(U), j ∈

{1, . . . ,m}, and 1 ≤ p ≤ ∞. Assume that∫
U

gφ dx = −
∫
U

f ∂jφ dx (4.3)

for all φ ∈ C∞
c (U). Then g =: ∂jf is called weak derivative of f . We

write Dj(U) for the space of such f . One further defines the Sobolev
spaces (of first order) by

W 1,p(U) = {f ∈Lp(U) | f ∈Dj(U), ∂jf ∈Lp(U) for all j∈{1, . . . ,m}}

and endows them with

∥f∥1,p =


(
∥f∥pp

m∑
j=1

∥∂jf∥pp
) 1

p

, 1 ≤ p <∞,

max
{
∥f∥∞, ∥∂1f∥∞, . . . , ∥∂mf∥∞

}
, p = ∞.

As usually, the spaces Dj(U) and W
1,p(U) are spaces of equivalence

classes modulo the space of null functions N . The above definition can
be extended to derivatives of higher order in a straigthforward way.
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We first have to settle the basic question whether the weak derivative
is uniquely determined by (4.3). This is done via the fundamental
lemma of calculus of variations.

Lemma 4.15. Let g ∈ L1
loc(U) satisfy∫

Rm

gφ dx = 0 for all φ ∈ C∞
c (U).

Then g = 0 a.e.. Hence, a function f ∈ Dj(U) has exactly one j–th
weak derivative.

Proof. Assume that g ̸= 0 on a Borel set B ⊆ U with λ(B) >
0. Theorem 1.26 of Analysis 3 yields a compact set K ⊆ B with
λ(K) > 0. We fix a positive number δ < 1

2
dist(K, ∂U). The sum

S = K + B(0, δ) ⊆ U is also compact. Proposition 4.13 then shows
that φ = Gδ1S belongs to C∞

c (U). For all x ∈ K, we compute

φ(x) =

∫
B(x,δ)

kδ(x− y)1S(y) dy =

∫
B(x,δ)

kδ(x− y) dy = 1,

using the definition (4.1) ofGε. Since φg ∈ L1(U), the functionsGε(φg)
converge to φg in L1(U) as ε → 0 by Proposition 4.13. There thus
exist a nullset N and a subsequence εj → 0 such that (Gεj(φg))(x) →
φ(x)g(x) = g(x) ̸= 0 as j → ∞ for each x ∈ K\N . Fix any x ∈ K\N .
For every j ∈ N, we further deduce

(Gεj(φg))(x) =

∫
U

kεj(x− y)φ(y)g(y) dy = 0

from the assumption, since the function y 7→ kεj(x− y)φ(y) belongs to
C∞

c (U). This contradiction implies the assertions. □

We next collect simple properties of the spaces Dj(U) and W
1,p(U).

Remark 4.16. Let 1 ≤ p ≤ ∞ and j ∈ {1, . . . ,m}.
a) Formula (4.2) yields the inclusion C1(U) +N ⊆ Dj(U) and that

weak and classical derivatives coincide for f ∈ C1(U). This fact justifies
to use the same notation for both of them.

b) From Definition 4.14 one easily deduces that Dj(U) is a vector
space and ∂j : Dj(U) → L1

loc(U) is linear.

c) It is straightforward to check that (W 1,p(U), ∥ · ∥1,p) is a normed
vector space. Moreover, a sequence (fn) converges in W 1,p(U) if and
only if (fn) and (∂jfn) converge in Lp(U) for all j ∈ {1, . . . ,m}.
d) The map

J : W 1,p(U) → Lp(U)1+m; f 7→ (f, ∂1f, . . . , ∂mf),

is a linear isometry, where Lp(U)1+m is endowed with the norm∣∣(∥f∥p, ∥∂1f∥p, . . . , ∥∂mf∥p)∣∣p. We see in the proof of Proposition 4.19

that W 1,p(U) is isometrically isomorphic to a closed subspace of
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Lp(U)1+m. Since the p–norm and the 1–norm on R1+m are equivalent,
there are constants C, c > 0 with

c
(
∥f∥p +

m∑
j=1

∥∂jf∥p
)
≤ ∥u∥1,p ≤ C

(
∥f∥p +

m∑
j=1

∥∂jf∥p
)

for all f ∈ W 1,p(U). ♢

The next lemma first gives a convergence result in L1
loc(U) for weak

derivatives which is analogous to that from Analysis 1 for uniform limits
and the classical derivative. Second, it makes clear that the mollifiers
fit perfectly well to weak derivatives except for some trouble near ∂U .
We use the following fact. Let (S,A, µ) be a measure space and

p ∈ [1,∞]. As in Remark 3.2d), we deduce from Hölder’s inequality

the continuity of Lp(µ)× Lp′(µ) → F; (f, g) 7→
∫
S

fg dµ. (4.4)

Lemma 4.17. Let 1 ≤ p ≤ ∞ and j ∈ {1, . . . ,m}.
a) Let fn ∈ Dj(U) and f, g ∈ L1

loc(U) such that fn → f and ∂jfn → g
in L1

loc(U) as n → ∞. Then f ∈ Dj(U) and ∂jf = g. If these limits
exist in Lp(U) for all j, then f belongs to W 1,p(U).
b) Let p < ∞, f ∈ Dj(U), f, ∂jf ∈ Lp

loc(U), x ∈ U , and 0 < ε <
d(x, ∂U). We then have ∂j(Gεf)(x) = Gε(∂jf)(x). Moreover, Gεf
tends to f and ∂jGεf to ∂jf in Lp

loc(U) as ε→ 0.

Proof. a) Let φ ∈ C∞
c (U). By assumption a), the functions φ∂jfn

converge to φ g and fn ∂jφ to f ∂jφ in L1(U). Using (4.4) and Defini-
tion 4.14, we compute∫
U

φ∂jf dx = lim
n→∞

∫
U

φ∂jfn dx = lim
n→∞

−
∫
U

fn ∂jφ dx = −
∫
U

f ∂jφ dx.

The first claim in a) has been shown, the second one directly follows.

b) 1) Let f ∈ Dj(U), x ∈ U , and 0 < ε < d(x, ∂U) =: δ. Take η ∈
(0, 1

2
(δ−ε)). Choose a point x0 ∈ B(x, η). The function y 7→ φε,x(y) :=

kε(x − y) belongs to C∞
c (U) and has the support B(x, ε) ⊆ B(x0, ε +

η) ⊆ U . Observe that |∂jφε,x| is bounded by the integrable function
∥∂jkε∥∞1B(x0,ε+η). The differentiation theorem 3.18 of Analysis 3 and
Definition 4.14 now imply

(∂jGεf)(x) =

∫
U

∂xj
kε(x− y)f(y) dy = −

∫
U

(∂jφε,x)(y)f(y) dy

=

∫
U

φε,x(y) ∂jf(y) dy = (Gε∂jf)(x).

2) Let also f, ∂jf ∈ Lp
loc(U). Fix a compact set K ⊆ U and ε ∈

(0, dist(K, ∂U)). Take ε ∈ (0, ε] and x ∈ K. The integrand y 7→ kε(x−
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y)f(y) in (4.1) then has support in the compact set S = K+B(0, ε) ⊆
U . From Proposition 4.13 and Example 2.6b) we deduce the limit

1KGε(f) = 1KGε(1Sf) −→ 1K1Sf = 1Kf, ε→ 0,

in Lp(U) since 1Sf ∈ Lp(U). This means that the restrictions of
Gεf tend to f |K in Lp(K). Step 1) also yields that 1K∂jGε(f) =
1KGε(∂jf). As above we then infer that ∂jGε(f) → ∂jf in Lp(K) as
ε→ 0. Assertion b) is shown because K was arbitrary. □

The above convergence result is a crucial tool when extending prop-
erties from classical to weak derivatives, see Proposition 4.20 below. We
first use it to compute weak derivatives and to show the completeness
of Sobolev spaces.

Example 4.18. a) Let f ∈ C(R) be such that f± := f|R± belong to
C1(R±). Then f is an element of D1(R) with weak derivative

∂1f =

{
f ′
+ on R+,
f ′
− on R−

}
=: g.

For f(x) = |x|, we thus obtain ∂1f = 1R+ − 1R− .
Proof. For every φ ∈ C∞

c (R), integration by parts yields∫
R
fφ′ ds =

∫ 0

−∞
f−φ

′ ds+

∫ ∞

0

f+φ
′ ds

= −
∫ 0

−∞
f ′
−φ ds+ f−φ

∣∣∣0
−∞

−
∫ ∞

0

f ′
+φ ds+ f+φ

′
∣∣∣∞
0

= −
∫
R
gφ ds,

since f+(0) = f−(0) by the continuity of f . 2

b) The function f = 1R+ does not belong to D1(R).
Proof. Assume there would exist the weak derivative g = ∂1f ∈

L1
loc(R). For every φ ∈ C∞

c (R) we then obtain∫
R
gφ ds = −

∫
R
1R+φ

′ ds = −
∫ ∞

0

φ′ ds = φ(0).

Taking φ with suppφ ⊆ (0,∞), we deduce from Lemma 4.15 that g = 0
on (0,∞). Similarly, it follows that g = 0 on (−∞, 0). Hence, g = 0
in L1

loc(R) and so φ(0) = 0 for all φ ∈ C∞
c (R) by the above identity in

display. This statement is wrong. 2

c) Let U = B(0, 1) ⊆ Rm, p ∈ [1,∞) and β ∈ (1 − m
p
, 1]. Set

f(x) = |x|β2 for 0 < |x|2 < 1 and gj(x) = βxj|x|β−2
2 for 0 < |x|2 < 1

and j ∈ {1, . . . ,m}, as well as and f(0) = gj(0) = 0. Then f ∈
W 1,p(B(0, 1)) and ∂jf = gj. Observe that f is unbounded and has no
continuous extension at x = 0 if β < 0 (which is admitted if m > p).
Proof. The functions r 7→ rβprm−1 and r 7→ r(β−1)prm−1 are in-

tegrable on (0, 1) since β > 1 − m
p
. Using polar coordinates, we infer
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that f, gj ∈ Lp(B(0, 1)) for j ∈ {1, . . . ,m}, see Beispiel 5.3 in Analy-
sis 3. We introduce the regularized functions fn(x) = (n−2 + |x|22)β/2
for n ∈ N and x ∈ B(0, 1). Then fn ∈ C1

b (B(0, 1)) ↪→ W 1,p(B(0, 1))

and ∂jfn(x) = βxj (n
−2 + |x|22)

β
2
−1. Observe that fn(x) and ∂jfn(x)

tend to f(x) and gj(x) for x ̸= 0 as n → ∞, respectively. Moreover,
|fn| ≤ max{|f |, 2β/2} and |∂jfn| ≤ |gj| a.e. on B(0, 1) for all n and j.
Dominated convergence then yields the limits fn → f and ∂jfn → gj
in Lp(B(0, 1)) as n→ ∞. The claim thus follows from Lemma 4.17.2

Proposition 4.19. Let 1 ≤ p ≤ ∞ and U ⊆ Rm be open. Then
W 1,p(U) is a Banach space. It is separable if 1 ≤ p < ∞. Moreover,
W 1,2(U) =: H1(U) is a Hilbert space endowed with the scalar product

(f |g)1,2 =
∫
U

fg dx+
m∑
j=1

∫
Rm

∂jf ∂jg dx.

Proof. Let (fn) be a Cauchy sequence in W 1,p(U). The sequences
(fn) and (∂jfn) thus are Cauchy in Lp(U) for every j ∈ {1, . . . ,m}, and
hence have limits f and gj in L

p(U), respectively. Lemma 4.17 now im-
plies that f ∈ W 1,p(U) and gj = ∂jf for all j; i.e., W 1,p(U) is a Banach
space. Using Remark 2.11, we then deduce from Remark 4.16d) that
W 1,p(U) is isometrically isomorphic to a closed subspace of Lp(U)1+m,
so that the separability for p < ∞ follows from Example 1.55 and
Exercise 6.2. The last assertion is clear. □

Under suitable regularity and integrability assumptions, weak deriva-
tives also satisfy the product and substitution rules. Here we only
present the basic version of the product rule that is needed below.

Proposition 4.20. Let p ∈ [1,∞], U ⊆ Rm be open, f ∈ W 1,p(U),
and g ∈ W 1,p′(U). Then the product fg belongs toW 1,1(U) and satisfies
∂j(fg) = (∂jf)g + f∂jg for every j ∈ {1, . . . ,m}.

Proof. Hölder’s inequality implies that fg, (∂jf)g, and f∂jg be-
long to L1(U) for all j ∈ {1, . . . ,m}. Let φ ∈ C∞

c (U) and K := suppφ
Set fn = G1/nf ∈ C∞(U) ∩ Lp(U) and gn = G1/ng ∈ C∞(U) ∩ Lp′(U)
for n ∈ N. We let 1/n < dist(K, ∂U).
1) Let p ∈ (1,∞) so that p′ ∈ (1,∞). By Proposition 4.13 the

functions fn converge to f in Lp(U) and gn to g in Lp′(U) as n → ∞.
Lemma 4.17 further yields the limits ∂jfn → ∂jf and ∂jgn → ∂jg in
Lp(K) as n → ∞. Using (4.4), (4.2) and the product rule for C1–
functions, we now conclude that∫

U

fg ∂jφ dx = lim
n→∞

∫
U

fngn ∂jφdx = − lim
n→∞

∫
U

((∂jfn)gn+fn∂jgn)φ dx

= −
∫
U

((∂jf)g + f∂jg)φ dx.

Hence, fg has the weak derivative ∂j(fg) = g∂jf + f∂jg.
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2) Let p = 1. The above used convergence in Lp′(U) may now fail
since p′ = ∞. The functions fn and ∂jfn still converge to f and
∂jf in L1(U). Passing to a subsequence, we can thus assume that
they converge pointwise a.e. and that |fn|, |∂jfn| ≤ h a.e. for some
h ∈ L1(U) and all n ∈ N and j ∈ {1, . . . ,m}. Proposition 4.13 and
Lemma 4.17 imply that ∥gn∥∞ ≤ ∥g∥∞ and supx∈K |∂jgn| ≤ ∥∂jg∥∞.
Since L∞(U) ⊆ L1

loc(U), we deduce from Lemma 4.17 that after passing
to subsequences (gn) and (∂jgn) tend pointwise a.e. on K to g respec-
tively ∂jg. Based on dominated convergence we can now show the
assertion as in step 1). The case p = ∞ is treated analogously. □

We now establish an important density result. In the proof we first
use a cut-off argument to obtain a compact support and then perform
a mollification. The cut-off must be chosen so that the extra terms
caused by the W 1,p–norm vanish in the limit.

Theorem 4.21. Let p, q ∈ [1,∞). The space C∞
c (Rm) is dense in

W 1,p(Rm) and also inW 1,p(Rm)∩W 1,q(Rm) endowed with ∥·∥1,p+∥·∥1,q.

Proof. 1) Let f ∈ W 1,p(Rm). Take a map ϕ ∈ C∞(R) with 0 ≤
ϕ ≤ 1, ϕ = 1 on [0, 1], and ϕ = 0 on [2,∞). Set φn(x) = ϕ

(
1
n
|x|2
)

for n ∈ N and x ∈ Rm. We then have φn ∈ C∞
c (Rm), 0 ≤ φn ≤ 1

and ∥∂jφn∥∞ ≤ ∥ϕ′∥∞ 1
n
for all n ∈ N, as well as φn(x) → 1 for all

x ∈ Rm as n → ∞. So the functions φnf converge to f in Lp(Rm)
as n → ∞ by Lebesgue’s convergence theorem with majorant |f |. Let
j ∈ {1, . . . ,m}. Proposition 4.20 further implies that

∥∂j(φnf − f)∥p = ∥(φn∂jf − ∂jf) + (∂jφn)f∥p
≤ ∥φn∂jf − ∂jf∥p + 1

n
∥ϕ′∥∞ ∥f∥p

Again by Lebesgue, the right hand side tends to 0 as n → ∞. Given
ε > 0, we can thus fix an index N ∈ N such that ∥φNf − f∥1,p ≤ ε.
2) Proposition 4.13 implies that the maps G 1

n
(φNf) belong to

C∞
c (Rm) for n ∈ N and that G 1

n
(φNf) → φNf in Lp(Rm) as n → ∞.

From Lemma 4.17 we deduce that ∂jG 1
n
(φNf) = G 1

n
∂j(φNf) for all

ε > 0, n ∈ N, and j ∈ {1, . . . ,m}, so that ∂jG 1
n
(φNf) tends to ∂j(φNf)

in Lp(Rm) as n→ ∞. For all sufficiently large n we finally estimate

∥G 1
n
(φNf)− f∥1,p ≤ ∥G 1

n
(φNf)− φNf∥1,p + ∥φNf − f∥1,p ≤ 2ε.

If f ∈W 1,p(Rm)∩W 1,q(Rm), we obtain density even in ∥·∥1,p+∥·∥1,q. □

4.3. The open mapping theorem and invertibility

The invertibility of T ∈ B(X, Y ) means that for each y ∈ Y there
is a unique solution x = T−1y of the equation Tx = y which depends
continuously on y. We start with a few simple properties of invertible
operators and then establish the automatic continuity of T−1 in Banach
spaces.
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Lemma 4.22. Let X, Y, and Z be normed vector spaces, T ∈ B(X, Y )
and S ∈ B(Y, Z) be invertible. Then ST ∈ B(X,Z) is invertible with
the inverse T−1S−1 ∈ B(Z,X).

Proof. The operators ST and T−1S−1 are continuous and linear.
Moreover, T−1S−1ST = IX and STT−1S−1 = IZ . □

Lemma 4.23. Let Z be a Banach space and zj ∈ Z, j ∈ N0, satisfy
s :=

∑∞
j=0 ∥zj∥ <∞. Then the partial sums Sn =

∑n
j=0 zj converge in

Z as n → ∞. Their limit is denoted by
∑∞

j=0 zj and has norm less or
equal s.

Proof. Let n > m in N0. Then ∥Sn − Sm∥ ≤
∑n

j=m+1 ∥zj∥ tends

to 0 as n,m → ∞. Since Z is Banach space, the sequence (Sn) has a
limit S with ∥S∥ = limn→∞ ∥Sn∥ ≤ s. □

We next show that small perturbations T+S of an invertible operator
T are again invertible and that the inverse is given by the Neumann
series. The smallness condition below is sharp as shown by the example
T = I and S = −I. The basic idea is the formula T +S = (I+ST−1)T
which suggests to proceed as in the case of the geometric series.

Proposition 4.24. Let X be Banach space, Y be a normed vector
space and T, S ∈ B(X, Y ). Assume that T is invertible and that ∥S∥ <
∥T−1∥−1. Then S + T is invertible and

(S + T )−1 =
∞∑
n=0

(−T−1S)nT−1 (convergence in B(Y,X)),

∥(S + T )−1∥ ≤ ∥T−1∥
1− ∥T−1S∥

.

In particular, the set of invertible operators is open in B(X, Y ).

Proof. We have q := ∥T−1S∥B(X) < 1 by assumption, and hence∑∞
n=0 ∥(T−1S)n∥ ≤ 1/(1 − q). Proposition 2.5 says that B(X) is a

Banach space, and so Lemma 4.23 yields the convergence of

R :=
∞∑
n=0

(−T−1S)nT−1 =
∞∑
n=0

T−1(−ST−1)n

in B(Y,X) with norm ∥R∥ ≤ ∥T−1∥/(1− q). Moreover,

R(S + T ) =
∞∑
n=0

(−T−1S)n(T−1S + I)

= −
∞∑
j=1

(−T−1S)j +
∞∑
n=0

(−T−1S)n = I,

(S + T )R =
∞∑
n=0

(ST−1 + I)(−ST−1)n = I. □



4.3. The open mapping theorem and invertibility 83

The next example shows that in general the inverse of a bijective
bounded operator is not continuous.

Example 4.25. Let X = c00 with ∥ · ∥p and Tx = (k−1xk). The
operator T belongs to B(X) and is bijective with inverse T−1y = (kyk).
But T−1 : c00 → c00 is not continuous by Example 2.1. ♢

The following concept is useful in this context.

Definition 4.26. Let M and M ′ be metric spaces. A map f :M →
M ′ is called open if the image f(O) is open inM ′ for each open O ⊆M .

Remark 4.27. a) A bijective map f : M → M ′ is open if and only
if f(O) = {y ∈ M ′ | f−1(y) ∈ O} = (f−1)−1(O) is open in M ′ for each
open O ⊆M if and only if f−1 is continuous. (See Proposition 1.24.)

b) In Example 4.25 the maps T, T−1 : c00 → c00 are bijective and lin-
ear, T is continuous but not open, and T−1 is open but not continuous,
due to part a). Observe that c00 is not a Banach space. ♢

We now prove the open mapping theorem which is the second funda-
mental principle of functional analysis. In Banach spaces it gives the
continuity of an inverse for free. This is a very useful fact in many
situations since often one does not have a formula for the inverse.

Theorem 4.28. Let X and Y be Banach spaces and T ∈ B(X, Y ) be
surjective. Then T is open. If T is even bijective, then it is invertible.

Proof. The second assertion is a consequence of the first one
because of Remark 4.27. So let T be surjective. We abbreviate
Ur = BX(0, r) and Vr = BY (0, r) for every r > 0.

Claim A). There is a radius ε > 0 with Vε ⊆ TU2.
Assume that claim A) has been shown. Let O ⊆ X be open, x ∈ O,

and y = Tx be an arbitrary element of TO. Then there is a number
r > 0 with BX(x, r) ⊆ O. From A) and the linearity of T we deduce

BY (y,
εr
2
) = y + r

2
Vε ⊆ Tx+ r

2
TU2 = {T (x+ r

2
z) | z ∈ U2}

= TBX(x, r) ⊆ TO;

i.e., T is open.
Proof of A). The surjectivity of T yields Y =

⋃∞
n=1 TUn. Since Y is

complete, Corollary 4.2 gives N ∈ N, y0 ∈ Y and r > 0 such that

BY (y0, r) ⊆ TUN = (2N)TU 1
2
= 2N TU 1

2
,

where we also use the linearity of T and the characterization of closures
from Proposition 1.17. Setting z0 =

1
2N
y0 and ε = r

2N
, we deduce

BY (z0, ε) =
1
2N

{y0 + w |w ∈ Vr} = 1
2N
BY (y0, r) ⊆ TU 1

2
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Observe that TU 1
2
is convex and TU 1

2
= −TU 1

2
. By approximation,

these facts also hold for TU 1
2
, cf. Corollary 1.18. It follows

Vε = BY (z0, ε)− z0 ⊆ TU 1
2
− TU 1

2
= {x+y = 2(1

2
x+ 1

2
y) |x, y ∈ TU 1

2
}

⊆ 2TU 1
2
= TU1.

For later use, we note that the above inclusion yields

Vαε = αVε ⊆ αTU1 = TUα for all α > 0. (4.5)

Claim A) and thus the theorem then follow from the next assertion.

Claim B). We have TU1 ⊆ TU2.
Proof of B) Let y ∈ TU1. There is a vector x1 ∈ U1 with ∥y−Tx1∥ <

ε/2; i.e., y−Tx1 ∈ Vε/2 and so y−Tx1 ∈ TU1/2 due to (4.5). Similarly,
we obtain a point

x2 ∈ U1/2 with y − T (x1 + x2) = y − Tx1 − Tx2 ∈ V ε
4
⊆ TU 1

4
.

Inductively, we find elements xn of U21−n satisfying

y − T (x1 + · · ·+ xn) ∈ Vε2−n (4.6)

for each n ∈ N. Since X is a Banach space and
∑∞

n=1 ∥xn∥ < 2, by
Lemma 4.23 there exists the limit x :=

∑∞
n=1 xn in U2. Letting n→ ∞

in (4.6), we thus obtain

y =
∞∑
n=1

Txn = Tx ∈ TU2. □

We collect important consequences of the open mapping theorem.

Corollary 4.29. Let ∥·∥ and 9 ·9 be complete norms on the vector
space X such that ∥x∥ ≤ c 9x9 for some c > 0 and all x ∈ X. Then
these norms are equivalent.

Proof. The map I : (X,9 · 9) → (X, ∥ · ∥) is continuous by as-
sumption, and it is linear and bijective. Due to the completeness and
Theorem 4.28, the map I−1 : (X, ∥ · ∥) → (X,9 ·9) is also continuous.
The assertion now follows from I−1x = x. □

We add a simple example showing that one needs completeness here.

Example 4.30. On X = C1([0, 1]) we have the complete norm
9f9 = ∥f∥∞+∥f ′∥∞ and the non complete norm ∥f∥ = ∥f∥∞ ≤ 9f9,
which are not equivalent. For instance, the functions fn(t) = sin(nt)
satisfy ∥fn∥∞ ≤ 1, but 9fn9 ≥ |f ′

n(0)| = n. ♢

The next result will be improved at the end of the next chapter.

Corollary 4.31. Let X and Y be Banach spaces and T ∈ B(X, Y )
be injective. The following assertions are equivalent.
a) The operator T−1 : R(T ) → X is continuous.
b) There is a constant c > 0 with ∥Tx∥ ≥ c ∥x∥ for every x ∈ X.
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c) The range R(T ) is closed.

Proof. Let statement a) be true. For all x ∈ X we then compute
∥x∥ = ∥T−1Tx∥ ≤ ∥T−1∥ ∥Tx∥, so that b) is shown.
The implication ‘b)⇒c)’ was proved in Remark 2.11.
Let c) hold. Corollary 1.13 then says that (R(T ), ∥ · ∥Y ) is Banach

space. Since T : X → R(T ) is bounded and bijective, assertion a)
follows from Theorem 4.28. □

Proposition 4.32. Let X be a Banach space and X = Y ⊕Z. Then
the following assertions hold.
a) X ∼= Y × Z.
b) The projection P with R(P ) = Y and N(P ) = Z is continuous

(cf. Remark 2.17).

Proof. a) Since Y and Z are Banach spaces, their product Y ×Z is
a Banach space for the norm ∥(y, z)∥ = ∥y∥+∥z∥, see Paragraph 2.2A).
Further, the map T : Y ×Z → X; T (y, z) = y+z, is linear, continuous
(since ∥T (y, z)∥ ≤ ∥y∥ + ∥z∥ = ∥(y, z)∥) and bijective (since X =
Y ⊕ Z). Theorem 4.28 now yields part a).
b) Let x = y + z ∈ Y ⊕ Z. Then Px = y. The operator T from a)

satisfies (y, z) = T−1x. Assertion a) now implies

∥Px∥ = ∥y∥ ≤ ∥y∥+ ∥z∥ = ∥T−1x∥Y×Z ≤ ∥T−1∥ ∥x∥. □

We have thus shown that in Banach spaces direct sums and Cartesian
products are essentially the same.



CHAPTER 5

Duality

Let X be a normed vector space. We then have the Banach space
X⋆ = B(X,F) and the ‘duality pairing’

X ×X⋆ → F; (x, x⋆) 7→ x⋆(x) =: ⟨x, x⋆⟩ = ⟨x, x⋆⟩X . (5.1)

This map is linear in both components, and it is continuous since
|⟨x, x⋆⟩| ≤ ∥x∥X ∥x⋆∥X⋆ , cf. Remark 3.2d). To some extent, it replaces
the scalar product in non-Hilbertian Banach spaces, though the quality
of this replacement depends on the properties of the space.
We first determine the dual space X⋆ if X = Lp(µ) for p ∈ [1,∞),

which is of course crucial to apply the theory below. In the main part of
the chapter, we establish the third and fourth fundamental principle of
functional analysis and discuss their consequences. In the last section
we use duality theory for a better understanding of mapping properties
of linear operators.

5.1. The duals of sequence and Lebesgue spaces

We first look at the simpler case of the sequence spaces. Set Xp = ℓp

for 1 ≤ p < ∞ and X∞ = c0 for p = ∞. By (1.2) the exponent
p′ ∈ [1,∞] is given by 1

p
+ 1

p′
= 1. Given y ∈ ℓp

′
, we define the function

Φp(y) : Xp → F; Φp(y)(x) =
∞∑
k=1

xkyk.

Hölder’s inequality shows that this series converges absolutely and
|Φp(y)(x)| ≤ ∥x∥p ∥y∥p′ . Since Φp(y) is linear, it is contained in X⋆

p

with ∥Φp(y)∥X⋆
p
≤ ∥y∥p′ . As a result, the mapping

Φp : ℓ
p′ → X⋆

p ; ⟨x,Φp(y)⟩ =
∞∑
k=1

xkyk (∀ x ∈ Xp, y ∈ ℓp
′
), (5.2)

is contractive, and it is clearly linear. Since Φp(y)(ek) = yk for all
k ∈ N, the operator Φp is injective.

Proposition 5.1. Equation (5.2) defines an isometric isomorphism
Φp : ℓp

′ → X⋆
p for all p ∈ [1,∞]. We thus obtain for each functional

x⋆ ∈ X⋆
p exactly one sequence y ∈ ℓp

′
such that ⟨x, x⋆⟩ =

∑
k xkyk for

all x ∈ Xp, where ∥y∥p′ = ∥x⋆∥X⋆
p
. Via this isomorphism,

c⋆0
∼= ℓ1, (ℓ1)⋆ ∼= ℓ∞, and (ℓp)⋆ ∼= ℓp

′
for 1 < p <∞.

86
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Proof. In view of the above considerations it remains to show the
surjectivity of Φp and that ∥Φpy∥X⋆

p
≥ ∥y∥p′ for all y ∈ ℓp

′
. We restrict

ourselves to the case p = 1, where p′ = ∞. (The remainder can be
proved similarly, see Theorem 5.4 and Exercise 11.3.)
Let x⋆ ∈ (ℓ1)⋆. We define yk = x⋆(ek) for every k ∈ N, and set

y = (yk). Since |yk| ≤ ∥x⋆∥ ∥ek∥1 = ∥x⋆∥ for all k ∈ N, the sequence
y belongs to ℓ∞ and ∥y∥∞ ≤ ∥x⋆∥. Equation (5.2) also implies that
Φ1(y)(ek) = yk = x⋆(ek). Since x⋆ and Φ1(y) are linear, we arrive at
Φ1(y)(x) = x⋆(x) for all x ∈ c00. Using continuity and the density of
c00 in ℓ

1, see Proposition 1.31, we conclude that Φ1(y) = x⋆ and so Φ1 is
bijective. It also follows that ∥y∥∞ ≤ ∥x⋆∥ = ∥Φ1y∥ for all y ∈ ℓ∞. □

We will see in Example 5.15 that the dual of ℓ∞ is not isomorphic to
ℓ1. Observe that the right hand side in (5.2) does not depend on p and
that it coincides with the scalar product in ℓ2 except for the complex
conjugation. The same is true in the next, more general case.

Let (S,A, µ) be a measure space and p ∈ [1,∞). We define the map

Φp(g) : L
p(µ) → F; Φp(g)(f) =

∫
S

fg dµ. (5.3)

for each fixed g ∈ Lp′(µ). Hölder’s inequality yields that

Φp(g) ∈ Lp(µ)⋆ and ∥Φp(g)∥X⋆ ≤ ∥g∥p′ ,
cf. Example 2.8. Consequently, Φp : Lp′(µ) → Lp(µ)⋆ is linear and
contractive. To show that Φp is in fact an isometric isomorphism, we
need further preparations.
A map ν : A → F is called an F-valued measure1 if

∃
∞∑
n=1

ν(An) = ν
( ∞⋃

n=1

An

)
in F

for all pairwise disjoint sets An in A for n ∈ N. Since then ν(∅) =
ν(∅∪∅∪ . . . ) =

∑∞
n=1 ν(∅) in F, we obtain that ν(∅) = 0. A measure µ

in the sense of Paragraph 1.2C) is also called positive measure. (It is an
F–valued measure if and only if it is finite.) An F-valued measure ν is
called µ–continuous if one has ν(A) = 0 for all A ∈ A with µ(A) = 0.
One then writes ν ≪ µ.

Example 5.2. Let µ be a positive measure on A and ρ ∈ L1(µ). For
all A ∈ A we define

ν(A) =

∫
S

1Aρ dµ =

∫
A

ρ dµ.

Then ν is an F-valued measure on A with ν ≪ µ. It is denoted by
dν = ρ dµ, and one calls ρ the density of ν with respect to µ.

1One usually says signed measure instead of ‘R–valued measure’. The dual
of C(K) for a compact metric space can be identifieed with a space of F–valued
measures, see Satz II.2.5 in [We] or Appendix C of [Co].
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We also assume that ρ ≥ 0. In this case ν is a positive measure. Let
f : S → F be measurable with f ≥ 0 or ρf ∈ L1(µ). We then obtain
the equality

∫
f dν =

∫
fρ dµ, where f ∈ L1(ν) in the second case.

Proof. 1) Let ρ ≥ 0. Then ν is a positive measure by Korollar 2.23
in Analysis 3, and it is finite since ρ is integrable. The definition of
ν here means that characteristic functions f satisfy

∫
f dν =

∫
fρ dµ.

By linearity this equation extends to simple functions f , and then by
dominated or monotone convergence to integrable or non-negative ones.
2) A map ρ ∈ L1(µ) can be written as ρ = ρ1 − ρ2 + iρ3 − iρ4 for

integrable ρj ≥ 0, Using part 1) one now easily checks that ν is an
F–valued measure. The definition of ν then implies its µ–continuity. 2

The Radon–Nikodym theorem is a converse to the above example
which is one of the fundamental results of measure theory: The seem-
ingly very weak assumption of µ–continuity of ν already implies that
ν has a density with respect to µ and is thus a very special F–valued
measure. We give a proof based on Riesz’ Theorem 3.10, where we
restrict ourselves to the main special case.

Theorem 5.3. Let A be a σ–algebra on S, µ be a σ–finite positive
measure on A, and ν be an F–valued measure on A with ν ≪ µ. Then
there is a unique density ω ∈ L1(µ) such that dν = ω dµ. If ν is a
positive measure, then ω ≥ 0.

Proof.2 We show the theorem if µ and ν are positive and bounded.
For the general case we refer to Satz VII.2.3 in [El] if F = R and to
Theorem C.7 in [Co] if F = C.
1) Consider the finite positive measure τ = µ+ν on A. Observe that

µ(A), ν(A) ≤ τ(A) for all A ∈ A. For simple functions f =
∑m

j=1 ak1Aj

with an indexm ∈ N, values aj ∈ F and setsAj ∈ A (which are pairwise
disjoint, without loss of generality), we deduce

∥f∥2L2(µ) =
m∑
j=1

|aj|2 µ(Aj) ≤
m∑
j=1

|aj|2 τ(Aj) = ∥f∥2L2(τ).

Hölder’s inequality further yields

∥f∥L1(µ) ≤ µ(S)1/2 ∥f∥L2(µ) ≤ µ(S)1/2 ∥f∥L2(τ),

see Proposition 1.35. If φ = 0 a.e. for τ , then also for µ. It thus
follows ∥f∥L1(µ) ≤ µ(S)1/2 ∥f∥L2(τ) for all simple functions f in L2(τ).
By approximation, each element f of L2(τ) belongs to L1(µ) and is
bounded by ∥f∥L1(µ) ≤ µ(S)1/2 ∥f∥L2(τ). We can then define the linear
and continuous map

φ : L2(τ) → F; φ(f) =

∫
S

f dµ.

2This proof was omitted in the lectures.



5.1. The duals of sequence and Lebesgue spaces 89

2) Theorem 3.10 now yields a function g ∈ L2(τ) ↪→ L1(τ) such that

0 ≤ µ(A) =

∫
S

1A dµ = φ(1A) =

∫
S

1Ag dτ =

∫
A

g dτ

for all A ∈ A; i.e, dµ = g dτ . To show that g ≥ 0, we set An = {g ≤
− 1

n
} ∈ A for n ∈ N. The above inequality implies that

0 ≤
∫
An

g dτ ≤ −τ(An)

n
,

and hence τ(An) = 0 for all n ∈ N. We deduce that {g < 0} =
⋃

nAn

is τ–null set, thus a µ–null set. Similarly, one sees that g is real–valued
a.e.; and hence g ≥ 0 a.e.. In the same way, one obtains a function
h ≥ 0 in L1(τ) with dν = h dτ .

3) Set N = {g = 0}. Since µ(N) =
∫
N
g dτ = 0, the assumption

ν ≪ µ yields that ν(N) = 0. We now define the function

0 ≤ ω(s) =

{
h(s)
g(s)

, s ∈ S \N,
0, s ∈ N,

which is clearly measurable. For every A ∈ A, we then compute

ν(A) = ν(A∩N c) =

∫
A∩Nc

h dτ =

∫
A∩Nc

ωg dτ =

∫
A∩Nc

ω dµ =

∫
A

ω dµ,

using step 2) and Example 5.2. This means that dν = ω dµ. Moreover,
∥ω∥1 =

∫
S
ω dµ = ν(S) is finite.

To show uniqueness, take another density w̃ ∈ L1(µ) with ν(A) =∫
A
ω̃ dµ for all A ∈ A. Arguing as for g, one sees that ω̃ ≥ 0. Set

Bn = {ω̃ ≥ ω + 1
n
} for n ∈ N. Because of

0 = ν(Bn)− ν(Bn) =

∫
Bn

(ω − ω̃) dµ ≤ −µ(Bn)

n
,

we deduce the inequality ω̃ ≤ ω µ–a.e. as in step 2). One analogously
obtains ω ≤ ω̃ µ–a.e., and so ω = ω̃ in L1(µ). □

We now represent the dual of Lp(µ) for p ∈ [1,∞) by Lp′(µ) via (5.3).
This result is due to F. Riesz for p>1 and to Steinhaus for p=1.

Theorem 5.4. Let 1 ≤ p < ∞ and (S,A, µ) be a measure space
which is σ–finite if p = 1. Then the map Φp : Lp′(µ) → Lp(µ)⋆ from
(5.3) is an isometric isomorphism, and thus Lp(µ)⋆ ∼= Lp′(µ) via

∀φ ∈ Lp(µ)⋆ ∃! g ∈ Lp′(µ) ∀ f ∈ Lp(µ) : ⟨f, φ⟩Lp =

∫
S

fg dµ.

Proof. Set X = Lp(µ). It remains to prove that Φp is surjective
and ∥Φp(g)∥X⋆ ≥ ∥g∥p′ for all g ∈ Lp′(µ). We assume that µ(S) < ∞
and that 1 < p <∞ and hence p′ = p

p−1
∈ (1,∞). (The general case is

treated in Satz VII.3.2 of [El] for F = R and in Appendix B of [Co].)
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1) Let φ ∈ Lp(µ)⋆. Since µ(S) < ∞, the characteristic function 1A

belongs to Lp(µ) for each A ∈ A. We define ν(A) = φ(1A).
Take sets Aj ∈ A with Aj ∩ Ak = ∅ for all j, k ∈ N with j ̸= k. We

put A =
⋃∞

j=1Aj ∈ A and Bn =
⋃n

j=1Aj ∈ A for all n ∈ N. Observe

that 1Bn → 1A pointwise as n → ∞ and 0 ≤ 1Bn ≤ 1A ∈ Lp(µ) for
all n ∈ N. Hence, 1Bn tends to 1A in Lp(µ) as n→ ∞ by the theorem
of dominated convergence. We also have 1Bn = 1A1 + · · ·+ 1An for all
n ∈ N due to disjointness. Using the continuity and linearity of φ, we
then conclude that

ν(A) = φ(1A) = lim
n→∞

φ(1Bn) = lim
n→∞

n∑
k=1

φ(1Ak
) =

∞∑
k=1

ν(Ak).

As a result, ν is an F–valued measure. If µ(A) = 0, then 1A = 0 in
Lp(µ) and so ν(A) = φ(1A) = 0; i.e., ν ≪ µ.
The Radon–Nikodym Theorem 5.3 thus gives a map g ∈ L1(µ) with

φ(1A) = ν(A) =

∫
S

1A g dµ for all A ∈ A.

The linearity of φ yields

φ(f) =

∫
S

fg dµ for every simple function f : S → F. (5.4)

Since we only know that g ∈ L1(µ), at first we can extend this
equation to f ∈ L∞(A) only. Indeed, by Satz 2.13 of Analysis 3 there
are simple functions fn : S → F converging to f uniformly as n → ∞.
The integrals

∫
fng dµ then tend to

∫
fg dµ as n → ∞ by (4.4). On

the other hand, since µ(S) < ∞ Proposition 1.35 implies that fn → f
in Lp(µ), and hence φ(fn) → φ(f) as n → ∞. As a result, (5.4) is
satisfied by all functions f in L∞(µ).

2) To show g ∈ Lp′(A), we set

h(s) =

{
0, g(s) = 0,
|g(s)|p

′

g(s)
, g(s) ̸= 0.

Then h is measurable and

|h|p = |g|p(p′−1) = |g|p
′
= gh.

Let An = {|g| ≤ n} ∈ A for n ∈ N. The functions 1Ang then belong
to L∞(µ) ↪→ Lp′(µ) and 1Anh to L∞(µ) ↪→ Lp(µ), again owing to
µ(S) <∞. Employing (5.4) for f = 1Anh, we can now compute∫

S

1An |g|
p′ dµ =

∫
S

1Anhg dµ = φ(1Anh) ≤ ∥φ∥X⋆ ∥1Anh∥p

= ∥φ∥
[ ∫

S

1An |h|pdµ
] 1

p
= ∥φ∥X⋆

[ ∫
S

1An |g|p
′
dµ
] 1

p
,
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S

1An |g|p
′
dµ
] 1

p′ ≤ ∥φ∥X⋆ .

As n→ ∞, Fatou’s lemma yields that g ∈ Lp′(µ) and ∥g∥p′ ≤ ∥φ∥X⋆ .

3) Let f ∈ Lp(µ). There are simple functions fn converging to f
in Lp(µ) by Theorem 5.9 in Analysis 3. Using the continuity of φ,
g ∈ Lp′(µ) and (4.4), we conclude that f fulfills (5.4). This means that
Φp(g) = φ and Φp is surjective. The lower estimate ∥g∥p′ ≤ ∥φ∥X⋆ =
∥Φp(g)∥X⋆ was shown in step 2). □

Usually one identifies Lp′(µ) with Lp(µ)⋆ for 1 ≤ p < ∞ and writes
⟨f, g⟩ =

∫
fg dµ for the duality, and analogously for the sequence

spaces.

5.2. The extension theorem of Hahn-Banach

Many of the non-trivial properties of duality rely on the Hahn-
Banach theorem proved below. By means of an extension process it
produces ‘tailor-made’ continuous functionals. We start with the basic
order theoretic version which will also yield a third variant of Hahn–
Banach at the end of the section.
Let X be a vector space. A map p : X → R is called sublinear if

p(λx) = λp(x) and p(x+ y) ≤ p(x) + p(y)

for all x, y ∈ X and λ ≥ 0. A typical example is a seminorm.

Theorem 5.5. Let X be a vector space with F = R, p : X → R be
sublinear, Y ⊆ X be a linear subspace, and φ0 : Y → R be linear with
φ0(y) ≤ p(y) for all y ∈ Y . Then there exists a linear map φ : X → R
satisfying φ(y) = φ0(y) for all y ∈ Y and φ(x) ≤ p(x) for all x ∈ X.

Proof. 1) We define the set

M = {(Z, ψ) |Z ⊆ X is a linear subspace, ψ : Z → R is linear with

Y ⊆ Z, ψ|Y = φ0, ψ ≤ p|Z},
which contains (Y, φ0). On M we set (Z, ψ) ≼ (Z ′, ψ′) if Z ⊆ Z ′ and
ψ′|Z = ψ. Straightforward calculations show that this relation is a
partial order on M (i.e.; it is reflexive, antisymmetric and transitive).
Let K be a totally ordered non-empty subset ofM, which means that

for (Z, ψ), (Z ′, ψ′) ∈ K we have (Z, ψ) ≼ (Z ′, ψ′) or (Z ′, ψ′) ≼ (Z, ψ).
We want to check that U =

⋃
{Z | (Z, ψ) ∈ K} is a linear subspace of

X, that by setting f(x) := ψ(x) for every x ∈ U and any (Z, ψ) ∈ K
with x ∈ Z we define a linear map f : U → R, and that (U, f) belongs
to M and is an upper bound for K.
Take x ∈ U . There is a pair (Z, ψ) in K with x ∈ Z. If x also belongs

to Ẑ for some (Ẑ, ψ̂) ∈ K, then we have (Ẑ, ψ̂) ≼ (Z, ψ), for instance,

and thus ψ̂(x) = ψ(x). Hence, f : U → R is a well defined map. Next,
pick y ∈ U and α, β ∈ R. Choose (Z ′, ψ′) ∈ K with y ∈ Z ′ and, say,
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(Z, ψ) ≼ (Z ′, ψ′). The linear combination αx + βy is then an element
of Z ′ ⊆ U and the linearity of ψ′ yields

f(αx+ βy) = ψ′(αx+ βy) = αψ′(x) + βψ′(y) = αf(x) + βf(y).

Therefore f is a linear map on the subspace U . Similarly one checks the
properties f |Y = φ0 and f ≤ p|U so that the pair (U, f) is an element
of M. By construction, we obtain (Z, ψ) ≼ (U, f) for all (Z, ψ) ∈ K.
Zorn’s Lemma (see Theorem 1.2.7 of [DS]) now gives a maximal

element (V, φ) in M. We next show that V = X; i.e., the linear form
φ has the required properties.

2) We suppose that V ̸= X and fix a vector x0 ∈ X \ V . We use the
linear subspace Ṽ = V + lin{x0}. Since V ∩ lin{x0} = {0}, for each
x ∈ Ṽ we have unique elements v ∈ V and t ∈ R with x = v + tx0.
We will construct a linear map φ̃ : Ṽ → R with (V, φ) ≼ (Ṽ , φ̃) ∈ M.
Since (V, φ) ̸= (Ṽ , φ̃), this fact contradicts the maximality of (V, φ), so
that V = X and the theorem is shown. Let u,w ∈ V . We compute

φ(u) + φ(w) = φ(u+ w) ≤ p(u+ w) ≤ p(u+ x0) + p(w − x0),

φ(w)− p(w − x0) ≤ p(u+ x0)− φ(u).

There thus exists a number

α ∈
[
sup
w∈V

(φ(w)− p(w − x0)), inf
u∈V

(p(u+ x0)− φ(u))

]
.

We next introduce the linear map φ̃ : Ṽ → R; φ̃(x) = φ(v) + αt, using
the decomposition x = v + tx0 ∈ Ṽ .
For y ∈ Y ⊆ V , the definitions yield φ̃(y) = φ(y) = φ0(y). To

show φ̃ ≤ p|Ṽ , take x = v + tx0 ∈ Ṽ . For t = 0 and x = v, we have
φ̃(v) = φ(v) ≤ p(v) = p(v). By means of the definition of α and the
sublinearity of p, we estimate

φ̃(x) = φ(v) + tα ≤ φ(v) + t
(
p(1

t
v + x0)− φ(1

t
v)
)
= p(v + tx0) = p(x)

for t > 0 and inserting u = 1
t
v. For t < 0, we similarly compute

φ̃(x) = φ(v)+tα ≤ φ(v)+t
(
φ(−1

t
v)−p(−1

t
v−x0)

)
= p(v+tx0) = p(x)

with w = −1
t
v. As a result, we have shown that φ̃(x) ≤ p(x) for x ∈ Ṽ ,

and hence (Ṽ , φ̃) belongs to M as needed. □

As a preparation for later results we describe how to pass from C–
linear functionals to R–linear ones, and vice versa.

Lemma 5.6. Let X be a normed vector space with F = C.
a) Let x⋆ ∈ X⋆. Set ξ⋆(x) = Rex⋆(x) for all x ∈ X. Then the map

ξ⋆ : X → R is R–linear with ∥ξ⋆∥ := sup∥x∥≤1 |ξ⋆(x)| = ∥x⋆∥.
b) Let ξ⋆ : X → R be continuous and R–linear. Set x⋆(x) = ξ⋆(x)−

iξ⋆(ix) for all x ∈ X. Then the functional x⋆ belongs to X⋆ and satisfies
∥x⋆∥ = ∥ξ⋆∥ and Rex⋆ = ξ⋆.
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Proof. The R–linearity of ξ⋆ in part a) can be shown in a straight-
forward way. Define x⋆ as in assertion b). Take x ∈ X and α, β ∈ R.
Using the R–linearity of ξ⋆, we then compute

x⋆((α + iβ)x) = ξ⋆((αx+ iβx)− iξ⋆((iαx− βx)

= αξ⋆(x) + βξ⋆(ix)− iαξ⋆(ix) + iβξ⋆(x)

= (α + iβ)x⋆(x).

Since its additivity is clear, the functional x⋆ in b) thus is C–linear. In
part b) we also have the identity ξ⋆ = Rex⋆. It implies the inequality
∥ξ⋆∥ ≤ ∥x⋆∥ in statements a) and b).
To show the converse, pick x ∈ X with ∥x∥ = 1. We set α = 1 if

x⋆(x) = 0 and α = x⋆(x)/ |x⋆(x)| otherwise. Since ∥α−1x∥ = 1, the
C–linearity of x⋆ yields

0 ≤ |x⋆(x)| = x⋆( 1
α
x) = ξ⋆( 1

α
x) ≤ ∥ξ⋆∥.

Taking the supremum over x with ∥x∥ = 1, we obtain ∥x⋆∥ ≤ ∥ξ⋆∥ in
a) and b). □

We can now establish the main version of the Hahn–Banach theorem.
It allows to extend every bounded linear functional on a subspace to
the full normed vector spaceX keeping its norm. Such a result is wrong
for operators in general. For instance, an extension P ∈ B(ℓ∞, c0) of
the identity I : c0 → c0 would be a bounded projection onto c0 in ℓ∞,
which does not exist by Example 2.18.
In Hilbert spaces even an operator version of the Hahn–Banach the-

orem follows from the projection Theorem 3.8. Let X and Z be Hilbert
spaces, Y ⊆ X be a linear subspace, and T0 belong B(Y, Z). By
Lemma 2.13, the operator T0 has a linear extension T1 to Y with the
same norm. Let P be the orthogonal projection onto Y . Then the
operator T = T1P ∈ B(X,Z) extends T0 and has the same norm.
We also point out that the proof of Hahn–Banach is highly non-

conconstructive. Nevertheless under certain assumptions on X∗ one
obtains uniqueness in the next result, see Exercise 12.1.

Theorem 5.7. Let X be a normed vector space, Y ⊆ X be a linear
subspace (endowed with the norm of X), and y⋆ ∈ Y ⋆. Then there
exists a functional x⋆ ∈ X⋆ such that ⟨y, x⋆⟩ = ⟨y, y⋆⟩ for all y ∈ Y
and ∥x⋆∥ = ∥y⋆∥.

Proof. 1) Let F = R. Set p(x) = ∥y⋆∥ ∥x∥ for all x ∈ X. The
map p is sublinear and y⋆(y) ≤ p(y) for all y ∈ Y . Theorem 5.5 yields
a linear functional x⋆ : X → R with x⋆|Y = y⋆ and x⋆(x) ≤ p(x) for all
x ∈ X. We further have

−x⋆(x) = x⋆(−x) ≤ p(−x) = p(x)

so that |x⋆(x)| ≤ p(x) = ∥y⋆∥ ∥x∥ for all x ∈ X. As a result, x⋆ belongs
to X⋆ with ∥x⋆∥ ≤ ∥y⋆∥. The equality ∥x⋆∥ = ∥y⋆∥ now follows from
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the estimate

∥x⋆∥ ≥ sup
∥y∥=1,y∈Y

|⟨y, x⋆⟩| = sup
∥y∥=1,y∈Y

|⟨y, y⋆⟩| = ∥y⋆∥.

2) Let F = C. We consider X as a normed vector space XR over
R by restricting the scalar multiplication to real scalars; i.e., to the
map R×X → X; (α, x) 7→ αx. Lemma 5.6a) first shows that the real
part η⋆ = Re y⋆ belongs to Y ⋆

R and ∥η⋆∥ = ∥y⋆∥. Due to step 1), the
functional η⋆ then has an extension ξ⋆ ∈ (XR)

⋆ with ∥ξ⋆∥ = ∥η⋆∥ =
∥y⋆∥. From Lemma 5.6b) we finally obtain a map x⋆ ∈ X⋆ satisfying
∥x⋆∥ = ∥ξ⋆∥ = ∥y⋆∥ and

x⋆(y) = ξ⋆(y)− iξ⋆(iy) = Re y⋆(y)− i Re y⋆(iy)

= Re y⋆(y)− i Re(iy⋆(y)) = y⋆(y)

for all y ∈ Y , where we used the C–linearity of y⋆. □

Example 5.8. Let Y = c ⊆ X = ℓ∞ and y⋆(y) = limn→∞ yn for
y ∈ Y . Clearly, y⋆ belongs to Y ⋆ and has norm 1. The Hahn–Banach
theorem yields an extension x⋆ ∈ (ℓ∞)⋆ of y⋆ with norm 1. Note that
x⋆(y) = y⋆(y) = 0 for y ∈ c0. The functional x⋆ cannot be represented
by a sequence z ∈ ℓ1 as in (5.2) since otherwise it would follow both
z ̸= 0 and

0 = ⟨en, x⋆⟩ℓ∞ =
∞∑
j=1

δnjzj = zn for all n ∈ N. ♢

The next result allows to distinguish between a closed linear subspace
Y and a vector x0 /∈ Y . This fact will lead to the main corollaries of
the Hahn–Banach theorem below.

Proposition 5.9. Let X be a normed vector space, Y & X be a
closed linear subspace, and x0 ∈ X \ Y . Then there exists a functional
x⋆ ∈ X⋆ such that x⋆(y) = 0 for all y ∈ Y , x⋆(x0) = d(x0, Y ) =
infy∈Y ∥x0 − y∥ > 0, and ∥x⋆∥ = 1.

Proof. We define the linear subspace Z = Y + lin{x0} of X and
the linear map z⋆ : Z → F by z⋆(y + tx0) = t d(x0, Y ) for all y ∈ Y
and t ∈ F, using that Y ∩ lin{x0} = {0}. Clearly, z⋆|Y = 0 and
z⋆(x0) = d(x0, Y ). We further compute

∥z⋆∥ = sup
∥y+tx0∥≤1

|t| inf
ỹ∈Y

∥x0 − ỹ∥ ≤ sup
∥y+tx0∥≤1

∥tx0 + y∥ ≤ 1,

where we have chosen ỹ = −1
t
y assuming that t ̸= 0 without loss of

generality. Recall that d(x0, Y ) > 0 by Example 1.9 since Y is closed.
Take vectors yn ∈ Y with ∥x0 − yn∥ → d(x0, Y ). The properties of z⋆

now yield the limit

∥z⋆∥ ≥
∣∣∣∣〈 1

∥x0 − yn∥
(x0 − yn), z

⋆

〉∣∣∣∣ = d(x0, Y )− 0

∥x0 − yn∥
−→ 1
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as n→ ∞, so that ∥z⋆∥ = 1. The Hahn–Banach extension of z⋆ is the
required map x⋆ ∈ X⋆. □

The next easy consequence is used very often in analysis.

Corollary 5.10. Let X be a normed vector space, x, x1, x2 ∈ X,
and D⋆ ⊆ X⋆ be dense. Then the following assertions hold.
a) Let x ̸= 0. Then there exists a functional x⋆ ∈ X⋆ with ⟨x, x⋆⟩ =

∥x∥ and ∥x⋆∥ = 1.
b) Let x1 ̸= x2. Then there is a map x⋆ ∈ X⋆ with x⋆(x1) ̸= x⋆(x2).
c) ∥x∥ = maxx⋆∈X⋆,∥x⋆∥X⋆≤1 |⟨x, x⋆⟩| = supx⋆∈D⋆,∥x⋆∥X⋆≤1 |⟨x, x⋆⟩|.

Proof. Assertion a) is a consequence of Proposition 5.9 with
Y = {0}, and a) implies b) taking x = x1 − x2. For x in X we
have sup∥x⋆∥≤1 |⟨x, x⋆⟩| ≤ ∥x∥, and so assertion c) follows from a) and
an approximation argument. □

Interestingly, one has a precise formula for the functional in part a)
above in some cases.

Example 5.11. Let 1 ≤ p < ∞ and (S,A, µ) be a measure
space, which is σ–finite if p = 1. Given f ∈ Lp(µ) \ {0}, we set
g = ∥f∥1−p

p f̄ |f |p−2
1{f ̸=0} (i.e., g = 1

∥f∥2 f̄ for p = 2). One can then

check that g ∈ Lp′(µ) with ∥g∥p′ = 1 and ⟨f, g⟩ = ∥f∥p. Let D be a
dense subset of Lp′(µ). Corollary 5.10 and Theorem 5.4 further yield

∥f∥p = sup
g∈D,∥g∥p′≤1

∣∣∣ ∫
S

fg dµ
∣∣∣. (5.5)

We next combine the Hahn-Banach theorem with the principle of
uniform boundedness.

Corollary 5.12. Let X be a normed vector space and M ⊆ X.
Then set M is bounded in X if and only if the sets x⋆(M) are bounded
in F for each x⋆ ∈ X⋆.

Proof. The implication “⇒” is clear. To show the converse, set
Tx(x

⋆) = ⟨x, x⋆⟩ for each fixed x ∈M and all x⋆ ∈ X⋆. By assumption,
the functionals Tx ∈ B(X⋆,F) are pointwise bounded by |Tx(x⋆)| ≤
c(x⋆) := supx∈M |x⋆(x)| < ∞ for all x⋆ ∈ X⋆ and x ∈ M . Since X⋆ is
a Banach space, Theorem 4.4 yields a constant C such that

C ≥ ∥Tx∥ = sup
∥x⋆∥≤1

|⟨x, x⋆⟩| = ∥x∥

for all x ∈M , where we have used Corollary 5.10c). □

Density is often checked by means of the following result.

Corollary 5.13. Let X be a normed vector space and Y ⊆ X be a
linear subspace. Then Y is not dense in X if and only if there exists a
functional x⋆ ∈ X⋆ \ {0} with ⟨y, x⋆⟩ = 0 for all y ∈ Y .
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Proof. The implication “⇒” follows from Proposition 5.9. If Y is
dense and x⋆ ∈ X⋆ vanishes on Y , then x⋆ must be 0 by continuity. □

The next consequence of Hahn–Banach says that X⋆ is at least as
large as X in terms of separability.

Corollary 5.14. Let X be a normed vector space and X⋆ be sepa-
rable. Then X is separable.

Proof. By assumption and Exercise 6.2, we have a dense subset
{x⋆n |n ∈ N} in ∂BX⋆(0, 1). There are vectors yn ∈ X with ∥yn∥ = 1
and |⟨yn, x⋆n⟩| ≥ 1

2
for every n ∈ N. Set Y = lin{yn |n ∈ N}. Suppose

that Y ̸= X. Corollary 5.13 then yields a functional x⋆ ∈ X⋆ such that
∥x⋆∥ = 1 and ⟨y, x⋆⟩ = 0 for all y ∈ Y . There exists an index j ∈ N
with ∥x⋆ − x⋆j∥ ≤ 1

4
. We then deduce the contradiction

1

2
≤
∣∣⟨yj, x⋆j⟩∣∣ = ∣∣⟨yj, x⋆j − x⋆⟩

∣∣ ≤ 1

4
. □

Example 5.15. The spaces c0 and ℓ1 = c⋆0 are separable, whereas
ℓ∞ = (ℓ1)⋆ is not separable, see Example 1.55. (Since separability is
preserved under isomorphisms by Exercise 6.2, we can omit here the
isomorphisms from Proposition 5.1.) The above result implies that also
(ℓ∞)⋆ is not separable. In particular, ℓ1 cannot be isomorphic to (ℓ∞)⋆,
cf. Proposition 5.1. ♢

So far we do not know whether there are non-zero bounded linear
maps between two normed vector spaces X ̸= Y . (If X = Y , the
identity belongs to B(X).) We now can at least construct operators of
finite rank.

Example 5.16. LetX and Y be normed vector spaces with dimX ≥
n, the vectors x1, . . . , xn ∈ X be linearly independent, and y1, . . . , yn ∈
Y . For each k ∈ {1, . . . , n}, we put Zk = lin{x1, . . . , xk−1, xk+1, . . . , xn}
if n ≥ 2 and Z1 = {0} if n = 1. Proposition 5.9 provides us with a
functional x⋆k ∈ X⋆ such that x⋆k|Zk

= 0 and x⋆k(xk) = 1; i.e., ⟨xj, x⋆k⟩ =
δjk for j, k ∈ {1, . . . , n}. We now define

Tx =
n∑

k=1

⟨x, x⋆k⟩ yk ∈ lin{y1, . . . , yn} =: Y0

for all x ∈ X. Clearly, T ∈ B(X, Y ) with ∥T∥ ≤
∑n

k=1 ∥x⋆k∥∥yk∥. Since
also Txj = yj, we have R(T ) = Y0. If X = Y and xk = yk for all k, we
further deduce the identity

T 2x =
n∑

j=1

n∑
k=1

⟨x, x⋆k⟩⟨xk, x⋆j⟩xj = Tx. ♢

We now show that closed subspaces of finite dimension or co-
dimension have a complement, which is needed in Spectral Theory.
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Proposition 5.17. For a normed vector space X the following as-
sertions hold.
a) Let U ⊆ X be a finite dimensional linear subspace. Then U is

closed and there exists a closed linear subspace Z with X = U ⊕ Z.
b) Let Y be a closed linear subspace with finite codimension dimX/Y .

Then there exists a closed linear subspace V with dimV = dimX/Y
and X = Y ⊕ V .

Proof. a) Let {x1, . . . , xn} be a basis of U . We define T as in
Example 5.16 with xk = yk. Then T ∈ B(X) is a projection with range
U and thus Lemma 2.16 implies assertion a).
b) Let Q : X → X/Y ; Qx = x + Y , be the quotient map (see

Proposition 2.19) and let B = {b1, . . . , bn} be a basis of X/Y . Since
Q is surjective, there are vectors xk ∈ X with Qxk = bk. Set V =
lin{x1, . . . , xn}.
If
∑n

k=1 αkxk = 0 for some αk ∈ F, then
∑n

k=1 αkbk = Q0 = 0, and
hence αk = 0 for all k ∈ {1, . . . , n} because B is a basis. The set
{x1, . . . , xn} is thus linearly independent and dimV = dimX/Y . By
part a), the space V is closed.
If x ∈ Y ∩V , then x =

∑n
k=1 βkxk for some βk ∈ F since x ∈ V . From

x ∈ Y we infer Qx = 0 which yields 0 =
∑n

k=1 βkbk and thus βk = 0
for all k ∈ {1, . . . , n}. As a result, x = 0. Take x ∈ X. There are
coefficients αk ∈ F with Qx = α1b1 + · · ·+ αnbn. Set v = α1x1 + · · ·+
αnxn ∈ V . We then obtain Q(x − v) =

∑n
k=1 αk(bk − Qxk) = 0, and

hence x−v ∈ Y and x = x−v+v ∈ Y +V . It follows X = Y ⊕V . □

Geometric version of Hahn–Banach. Let X be a normed vec-
tor space, A,B ⊆ X, A ∩ B = ∅ and A,B ̸= ∅. A functional x⋆ ∈ X⋆

separates the sets A and B if

∀ a ∈ A, b ∈ B : Re⟨a, x⋆⟩ < Re⟨b, x⋆⟩,

and it separates A and B strictly if

sA := sup
a∈A

Re⟨a, x⋆⟩ < iB := inf
b∈B

Re⟨b, x⋆⟩.

Observe that N(x⋆) is a closed linear subspace with codimension 1 (cf.
Linear Algebra). Hence, H0 = x0+N(x⋆) is a closed affine hyperplane.
Let F = R, x⋆ separate A and B, and x0 ∈ X satisfy γ := ⟨x0, x⋆⟩ ∈
[sA, iB]. Then A and B are contained in the different halfspaces H± :=
{x ∈ X |x⋆(x) ⋛ γ} separated by H0, since x

⋆|A ≤ sA ≤ x⋆|H0 = γ ≤
iB ≤ x⋆|B.
Let A ⊆ X. As a crucial tool we define the Minkowski functional

pA : X → [0,∞]; pA(x) = inf{λ > 0 | 1
λ
x ∈ A},

where inf ∅ = ∞. Note that pB(0,1)(x) = ∥x∥. We show several of the
basic properties of this map below, using the following observations.
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Remark 5.18. If A,B ⊆ X are convex and α ∈ F, then also αA and
A+B are convex. To check the second assertion, take ak ∈ A, bk ∈ B,
and t ∈ [0, 1] for k ∈ {1, 2}. We then have t(a1+b1)+(1− t)(a2+b2) =
(ta1 + (1 − t)a2) + (tb1 + (1 − t)b2) which belongs to A + B by the
convexity of A and B. The first assertion is shown similarly. ♢

Lemma 5.19. Let X be a normed vector space and A ⊆ X convex
with 0 ∈ A◦. (There thus exists a radius δ > 0 with B(0, δ) ⊆ A.)
Then the following assertions hold.
a) We have pA(x) ≤ 1

δ
∥x∥ for all x ∈ X.

b) The map pA is sublinear.
c) If A is also open, we have A = p−1

A ([0, 1)).

Proof. a) The assumption implies that the vector δ
∥x∥x belongs to

A for each x ∈ X \ {0}, so that pA(x) ≤ 1
δ
∥x∥.

b) Let t > 0, x, y ∈ X, and ε > 0. The definition of pA yields the
equalities pA(0x) = 0pA(x) and

pA(tx) = inf{λ > 0 | t
λ
x ∈ A} = inf{tµ > 0 | 1

µ
x ∈ A} = t pA(x).

Further, there are numbers 0 < λ ≤ pA(x) + ε and 0 < µ ≤ pA(y) + ε
with 1

λ
x, 1

µ
y ∈ A. Since A is convex, the vector

1

λ+ µ
(x+ y) =

λ

λ+ µ

1

λ
x+

µ

λ+ µ

1

µ
y

is contained in A, so that pA(x+ y) ≤ λ+ µ ≤ pA(x) + pA(y) + 2ε. In
the limit ε→ 0, we deduce assertion b).
c) Let A be open. First, take an element x ∈ X with pA(x) < 1.

Then there exists a number λ ∈ (0, 1) with 1
λ
x ∈ A. The convexity

of A yields that x = λ 1
λ
x + (1 − λ)0 ∈ A. Conversely, pick x with

pA(x) ≥ 1. The product 1
λ
x is then contained in X \ A for all λ < 1.

Since X \ A is closed, we obtain x ∈ X \ A letting λ→ 1. □

We now establish the separation theorems which are geometric ver-
sions of Hahn–Banach. Simple examples in R2 show that one needs
convexity for separation and also compactness for strict separation.

Theorem 5.20. Let X be a normed vector space, A,B ⊆ X be
convex and non-empty, and A ∩B = ∅. The following assertions hold.
a) Let A and B be open. We have x⋆ ∈ X⋆ separating A and B.
b) Let A be closed and B be compact. There is a functional x⋆ ∈ X⋆

separating A and B strictly.

Proof. We let F = R. The case F = C then follows by Lemma 5.6.
a) Let A and B be open. Fix a vector x0 ∈ A−B and put

C = A−B − x0 =
⋃
b∈B

A− b− x0.
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The set C is open because of Proposition 1.15, it is convex by Re-
mark 5.18, 0 belongs to C, and y0 := −x0 /∈ C (since 0 /∈ A − B).
Thanks to Lemma 5.19, the Minkowski functional pC is thus sublinear
and satisfies pC(y0) ≥ 1. We define y⋆(ty0) = tpC(y0) for all t ∈ R.
The map y⋆ : lin{y0} → R is linear and y⋆(y) ≤ pC(y) for all y = ty0.
(If t < 0, we have pC(y) ≥ 0 ≥ tpC(y0).) Theorem 5.5 now gives a
linear functional x⋆ : X → R with x⋆(x) ≤ pC(x) for all x ∈ X and
x⋆(y0) = y⋆(y0) = pC(y0) ≥ 1. For x ∈ X, Lemma 5.19a) implies that

|x⋆(x)| = max{x⋆(x), x⋆(−x)} ≤ max{pC(x), pC(−x)} ≤ 1
δ
∥x∥

for some δ > 0, and hence x⋆ belongs to X⋆. Let a ∈ A and b ∈ B.
Then the vector x = a − b − x0 is an element of C. Since y0 = −x0,
Lemma 5.19c) yields

1 > pC(x) ≥ ⟨x, x⋆⟩ = ⟨a, x⋆⟩ − ⟨b, x⋆⟩+ ⟨y0, x⋆⟩.

Using ⟨y0, x⋆⟩ ≥ 1, we deduce that ⟨a, x⋆⟩ < ⟨b, x⋆⟩, and thus part a).

b) Let A be closed and B be compact. The number ε :=
1
3
dist(A,B) > 0 is positive by Example 1.9. The sets Aε = A +

B(0, ε) =
⋃

a∈AB(a, ε) and Bε = B + B(0, ε) are thus disjoint and, as
above, open and convex. From step a) we obtain a functional x⋆ ∈ X⋆

satisfying

⟨a+ x, x⋆⟩ < ⟨b+ y, x⋆⟩
for all a ∈ A, b ∈ B and x, y ∈ B(0, ε). For y = 0 and x = ±εz with
z ∈ B(0, 1), it follows ε |⟨z, x⋆⟩| < ⟨b − a, x⋆⟩. Taking the supremum
over z ∈ B(0, 1), we derive the inequality 0 < ε ∥x⋆∥ ≤ ⟨b − a, x⋆⟩ for
all a ∈ A and b ∈ B which implies assertion b). □

A typical application of the above result is given in Theorem 5.36.
We first discuss another consequence based on new concepts which we
will used in Section 5.4 to describe the mapping properties of operators.
Let X be a normed vector space, A ⊆ X and B⋆ ⊆ X⋆ be non-empty.

The annihilators of A and B⋆ are defined by

A⊥ = {x⋆ ∈ X⋆ | ∀ a ∈ A we have ⟨a, x⋆⟩ = 0} ⊆ X⋆,
⊥B⋆ = {x ∈ X | ∀ b⋆ ∈ B⋆ we have ⟨x, b⋆⟩ = 0} ⊆ X.

(5.6)

In view of Riesz’ Theorem 3.10, in a Hilbert space X ∼= X⋆ these two
sets are isomorphic to the orthogonal complement. We first collect their
simple properties which follow from the corollaries to Hahn–Banach.

Remark 5.21. Let X be a normed space, A ⊆ X, and B⋆ ⊆ X⋆.
a) As in Remark 3.7, but now using (5.1), one verifies that A⊥ and

⊥B⋆ are closed linear subspaces of X⋆ and X, respectively, and that
linA ⊆ ⊥(A⊥), (linA)⊥ = A⊥, and ⊥(linB⋆) =

⊥B⋆.

b) Corollary 5.13 shows that A⊥ = {0} if and only if linA = X.
From Corollary 5.10 we deduce that A⊥ = X⋆ if and only if A = {0}.
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c) By definition, we have ⊥B⋆ = X if and only if B⋆ = {0}. Due to
Corollary 5.10, linB⋆ = X⋆ implies that ⊥B⋆ = {0}.
d) The converse implication in part c) is wrong in general. For

instance, let X = ℓ1 and B⋆ = {en |n ∈ N} ⊆ X⋆ = ℓ∞. We then have
linB⋆ = c0, but

⊥B⋆ = {0} since all y ∈ ℓ1 satisfy ⟨y, en⟩ℓ1 = yn. ♢

In Hilbert spaces the next result follows from the projection theorem,
see Example 3.9d). We now need the separation theorem to show it.

Proposition 5.22. Let X be a normed vector space X and be A ⊆ X
non-empty. We then have linA = ⊥(A⊥).

Proof. Remark 5.21 yields the inclusion linA ⊆ ⊥(A⊥). Suppose
there was a vector x0 in ⊥(A⊥) \ linA. Theorem 5.20b) with B = {x0}
then gives a separating functional x⋆ ∈ X⋆ satisfying

s := sup
x∈linA

Re⟨x, x⋆⟩ < Re⟨x0, x⋆⟩.

Suppose r := Re⟨x, x⋆⟩ ≠ 0 for some x ∈ linA. For t ∈ R we then infer

Re⟨tx, x⋆⟩ = tr → ∞

{
as t→ ∞, if r > 0,

as t→ −∞, if r < 0.

This contradicts the above estimate for s, and thus Re⟨x, x⋆⟩ = 0 for
all x ∈ linA. Hence, s = 0. Using it instead of t, we similarly obtain
Im⟨x, x⋆⟩ = 0 for all x ∈ linA so that x⋆ belongs to A⊥. We arrive at
the contradiction 0 = s < Re⟨x0, x⋆⟩ = 0 since x0 ∈ ⊥(A⊥). □

On a dual space one can interchange the order of the annihilators,
but one does not have an analogue of the above result in general. As
an example, let X = ℓ1 and B⋆ = {en |n ∈ N} ⊆ X⋆ = ℓ∞. In
Remark 5.21d), we have seen that linB⋆ = c0 and that ⊥B⋆ = {0},
hence (⊥B⋆)

⊥ = X⋆ = ℓ∞ ̸= linB⋆. See Theorem 4.7 in [Ru] for more
information.

Proposition 5.23. Let X be a normed vector space and Y ⊆ X be
a closed linear subspace. Then the maps

T : X⋆/Y ⊥ → Y ⋆; T (x⋆ + Y ⊥) = x⋆|Y ,
S : (X/Y )⋆ → Y ⊥; Sφ = φ ◦Q,

are isometric isomorphisms, where Q : X → X/Y ; Qx = x+ Y .

See Exercise 12.3 for a proof. This result is used in Spectral Theory.
In a Hilbert space X it is a part of the projection theorem 3.8.



5.3. Reflexivity and weak convergence 101

5.3. Reflexivity and weak convergence

Let X be a normed vector space. The bidual of X is X⋆⋆ := (X⋆)⋆.
For each x ∈ X we define the map

JX(x) : X
⋆ → F; ⟨x⋆, JX(x)⟩X⋆ = ⟨x, x⋆⟩X . (5.7)

Clearly, JX(x) is linear in x⋆ and we have |JX(x)(x⋆)| ≤ ∥x∥ ∥x⋆∥, so
that JX(x) belongs to X⋆⋆. Moreover, the operator JX is linear in x,
and by means of Corollary 5.10 and equation (5.7) we obtain

∥x∥X = sup
∥x⋆∥≤1

|⟨x, x⋆⟩| = ∥JX(x)∥X⋆⋆ .

We state these obeservations in a proposition.

Proposition 5.24. Let X be a normed vector space. Then equation
(5.7) defines a linear isometry JX : X → X⋆⋆. □

This result leads to a quick proof of the existence part of Proposi-
tion 2.21: The closure X̃ of the range JX(X) in X⋆⋆ is a Banach space;
i.e., X is isometrically isomorphic to a dense subspace of a Banach
space. We next introduce an interesting class of Banach spaces.

Definition 5.25. A normed vector space X is called reflexive if the
isometry JX from (5.7) is surjective.

Remark 5.26. a) Let X be reflexive. Then X ∼= X⋆⋆ since also J−1
X

is isometric, and hence X is a Banach space. However, there are non-
reflexive Banach spaces which are isomorphic to their biduals (with an
isomorphism different from JX), see Example 1.d.2 in [LT].

b) If X reflexive and B⋆ ⊆ X⋆, then B⊥
⋆ = JX(

⊥B⋆) by (5.7). Here
(and in similar points below) reflexive Banach spaces share some prop-
erties of Hilbert spaces, which are not true in a general Banach space.

c) In Corollary 5.51 we will show that reflexivity is preserved under
isomorphisms.

d) One usually identifies the space X with the range R(JX) in X
⋆⋆

and a reflexive space X with its bidual X⋆⋆. ♢

We next discuss the basic exampels of reflexive spaces.

Example 5.27. a) Hilbert spaces X are reflexive.
Proof. For a Hilbert space Z we have the antilinear bijection ΦZ :

Z → Z⋆; ⟨v,ΦZ(z)⟩Z = (v|z)Z , for all v ∈ Z (see Theorem 3.10). It
is straightforward to check that the dual space X⋆ of X is a Hilbert
space equipped with the scalar product (x⋆|y⋆)X⋆ := (Φ−1

X y⋆|Φ−1
X x⋆)X

for x⋆, y⋆ ∈ X⋆. Take any x⋆⋆ ∈ X⋆⋆. Set x⋆ = Φ−1
X⋆x⋆⋆ ∈ X⋆ and

x = Φ−1
X x⋆ ∈ X. Using the above definitions, we compute

⟨y⋆, x⋆⋆⟩X⋆ = (y⋆|x⋆)X⋆ = (Φ−1
X x⋆|Φ−1

X y⋆)X = ⟨x, y⋆⟩X
for every y⋆ ∈ X⋆; i.e., JX(x) = x⋆⋆ as asserted. 2
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b) Let 1 < p <∞ and (S,A, µ) be a measure space. ThenX = Lp(µ)
is reflexive. (An example is X = ℓp.)
Proof. Let r ∈ (1,∞). Theorem 5.4 yields the isomorphism Φr :

Lr′(µ) → Lr(µ)⋆; ⟨φ,Φr(ψ)⟩Lr =
∫
φψ dµ, for all φ ∈ Lr(µ) and ψ ∈

Lr′(µ). Take ϕ ∈ X⋆⋆. The map ϕ ◦ Φp then belongs to Lp′(µ)⋆. Since
p′′ = p, we have a function f ∈ Lp(µ) satisfying Φp′(f) = ϕ ◦ Φp. Let
Φp(g) with g ∈ Lp′(µ) be an arbitrary element of X⋆. We now calculate

⟨Φp(g), ϕ⟩X⋆ = ϕ(Φp(g)) = ⟨g,Φp′(f)⟩Lp′ =

∫
S

gf dµ = ⟨f,Φp(g)⟩Lp .

Hence, ϕ = JX(f) as asserted. 2

c) The space c0 is not reflexive. Indeed, its bidual c
⋆⋆
0 is isomorphic to

ℓ∞ by Proposition 5.1. From Example 1.55 we know that c0 is separable
and ℓ∞ not, so that they cannot be isomorphic. Remark 5.26a) thus
yields the claim. ♢

In the above example and also below, we use that separability is
preserved under isomorphisms by Exercise 6.2. We show permanence
properties of reflexivity needed later on.

Proposition 5.28. Let X be a normed vector space.
a) Let X be reflexive and Y be a closed linear subspace of X. Then

(Y, ∥ · ∥X) is reflexive.
b) The space X is reflexive if and only if X⋆ is reflexive.
c) Let X be reflexive. Then is X separable if and only if X⋆ separable.

Proof. a) Let Y ⊆ X be a closed linear subspace. Take y⋆⋆ ∈
Y ⋆⋆. For each x⋆ ∈ X⋆, the restriction x⋆|Y belongs to Y ⋆ with
∥x⋆|Y ∥Y ⋆ ≤ ∥x⋆∥X⋆ . We define the linear map x⋆⋆ : X⋆ → F by
x⋆⋆(x⋆) = ⟨x⋆|Y , y⋆⋆⟩Y ⋆ for all x⋆ ∈ X⋆. As |x⋆⋆(x⋆)| ≤ ∥x⋆∥X⋆∥y⋆⋆∥Y ⋆⋆ ,
the functional x⋆⋆ is an element of X⋆⋆. By the reflexivity of X, there
exists a vector y ∈ X such that

⟨x⋆|Y , y⋆⋆⟩Y ⋆ = ⟨x⋆, x⋆⋆⟩X⋆ = ⟨y, x⋆⟩X for all x⋆ ∈ X⋆.

Suppose that y /∈ Y . Since Y is closed, Proposition 5.9 yields a map
x̃⋆ ∈ X⋆ satisfying x̃⋆|Y = 0 and ⟨y, x̃⋆⟩X ̸= 0. This fact contradicts
the above equation in display, and y is thus contained in Y .
Take any y⋆ ∈ Y ⋆. Let x⋆ ∈ X⋆ be a Hahn–Banach extension of

y⋆. We then obtain ⟨y, y⋆⟩Y = ⟨y, x⋆⟩X = ⟨y⋆, y⋆⋆⟩Y ⋆ by the above
considerations, and therefore JY (y) = y⋆⋆.

b) Let X be reflexive. Take a functional x⋆⋆⋆ ∈ X⋆⋆⋆. We set x⋆(x) =
⟨JX(x), x⋆⋆⋆⟩X⋆⋆ for all x ∈ X. Clearly, x⋆ belongs to X⋆. Let x⋆⋆ ∈
X⋆⋆. By assumption, there is a vector x ∈ X with x⋆⋆ = JX(x). It
follows ⟨x⋆, x⋆⋆⟩X⋆ = ⟨x, x⋆⟩X⋆ = ⟨x⋆⋆, x⋆⋆⋆⟩X⋆⋆ . Hence, X⋆ is reflexive.
Conversely, assume that X is not reflexive. Proposition 5.9 then

yields a map x⋆⋆⋆ ∈ X⋆⋆⋆ \ {0} satisfying ⟨JX(x), x⋆⋆⋆⟩X⋆⋆ = 0 for all
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x ∈ X. Suppose that X⋆ was reflexive. There thus exists a functional
x⋆ ∈ X⋆ with x⋆⋆⋆ = JX⋆(x⋆). We infer that

0 = ⟨JX(x), JX⋆(x⋆)⟩X⋆⋆ = ⟨x⋆, JX(x)⟩X⋆ = ⟨x, x⋆⟩X for all x ∈ X,

which means that x⋆ = 0, contradicting x⋆⋆⋆ ̸= 0.

c) The implication “⇐” was shown in Corollary 5.14. If X is sep-
arable, then X⋆⋆ ∼= X is also separable. Hence, X⋆ is separable by
Corollary 5.14. □

We can now treat further main examples.

Example 5.29. a) The space X = ℓ1 is not reflexive, because it is
separable and its dual X⋆ = ℓ∞ is not. Since c0 is not reflexive by
Example 5.27 and it is a closed subspace of ℓ∞, also the space ℓ∞ fails
to be reflexive.

b) The spaces C([0, 1]), L∞(0, 1), and L1(0, 1) are not reflexive by
Exercise 13.2.

c) Let U ⊆ Rm be open and p ∈ (1,∞). By Remark 4.16d),
the Sobolev space W 1,p(U) is isomorphic to a closed subspace F of
Lp(U)1+m. As in Example 5.27 one sees that Lp(U)1+m is reflexive,
and hence also F by Proposition 5.28. Corollary 5.51 thus shows that
W 1,p(U) is reflexive. ♢

In order to obtain fundamental compactness results below, we intro-
duce new convergence concepts.

Definition 5.30. Let X be a normed vector space.

a) A sequence (xn) in X converges weakly to x ∈ X if

∀x⋆ ∈ X⋆ : ⟨xn, x⋆⟩ → ⟨x, x⋆⟩ as n→ ∞.

b) A sequence (x⋆n) in X
⋆ converges weakly⋆ to x⋆ ∈ X⋆ if

∀x ∈ X : ⟨x, x⋆n⟩ → ⟨x, x⋆⟩ as n→ ∞.

We then write xn ⇀ x or xn
σ−→ x or σ–limn→∞ xn = x, respectively,

x⋆n
⋆
⇀ x⋆ or x⋆n

σ⋆

−→ x⋆ or σ⋆–limn→∞ x⋆n = x⋆. One often replaces here
the letter ‘σ’ by ‘w’.

We first collect simple, but important properties of weak and weak⋆

convergence, see also the exercises.

Remark 5.31. Let X be a normed vector space, xn, x, y ∈ X,
x⋆n, x

⋆ ∈ X⋆, and n→ ∞.
a) The weak⋆ convergence in X⋆ = B(X,F) is just the strong conver-

gence of a sequence of operators in B(X,F) as discussed in Section 4.1.
Let the sequence (⟨x, x⋆n⟩)n be Cauchy in F for each x ∈ X.

Lemma 4.10 then yields a functional x⋆ ∈ X⋆ satisfying x⋆n
σ⋆

−→ x⋆

as n→ ∞. In this sense, X⋆ is ‘weakly⋆ sequentially complete’.

b) Weak and weak⋆ convergence are linear in view of Definition 5.30.



5.3. Reflexivity and weak convergence 104

c) If xn → x in the norm of X, then xn
σ−→ x (since |⟨xn − x, x⋆⟩| ≤

∥xn − x∥ ∥x⋆∥). If x⋆n → x⋆ in the norm of X⋆, then x⋆n
σ⋆

−→ x⋆. In
X = Fm weak or weak⋆ convergence are equivalent to componentwise
convergence (take x = ek or x

⋆ = ek), and thus to convergence in norm.

d) The weak and weak⋆ limits are unique.

Proof. Let xn
σ−→ x and xn

σ−→ y with x ̸= y. Corollary 5.10
then yields a functional x⋆ ∈ X⋆ satisfying ⟨x, x⋆⟩ ̸= ⟨y, x⋆⟩. This is
impossible since ⟨xn, x⋆⟩ converges to both ⟨x, x⋆⟩ and ⟨y, x⋆⟩. The
second assertion follows from part a). 2

e) For x ∈ X we have ⟨x, x⋆⟩X = ⟨x⋆, JX(x)⟩X⋆ so that the σ-
convergence on X⋆ implies the σ⋆-convergence. If X is reflexive, then
the two types of convergence on X⋆ coincide. Reflexive spaces thus are
‘weakly sequentially complete’ due to statement a). ♢

For weak or weak⋆ convergence several properties can fail which one
might hope to be true. These examples are of great importance. See
also the exercises.

Remark 5.32. Let n→ ∞.
a) For weakly or weakly⋆ convergent sequences each subsequence may

diverge in norm. The norm of a weak or weak⋆ limit may be strictly
smaller than the limes inferior of the norms of the sequence.
Proof. In X = ℓ2 we have ⟨en, x⟩ = xn → 0 for all x ∈ ℓ2. This

means that en
σ−→ 0 and en

σ⋆

−→ 0. But each subsequence of (en) diverges
in ℓ2 since ∥en − em∥2 = 21/2 for all n ̸= m. Moreover, ∥en∥ = 1 and
the weak limit 0 has a strictly smaller norm. 2

b) A weakly⋆ convergent sequence in a non-reflexive space may not
possess a weakly converging subsequence.
Proof. In X⋆ = ℓ1 = c⋆0 we have ⟨x, en⟩c0 = xn → 0 for each x ∈ c0

so that en
σ⋆

−→ 0. Take any subsequence (enj
)j. For k ∈ N, we set yk =

(−1)j if k = nj and yk = 0 otherwise, and put y = (yj) ∈ ℓ∞ = (ℓ1)⋆.
Then ⟨enj

, y⟩ℓ1 = ynj
does not converge as j → ∞. 2

c) There are (non-reflexive) spaces which are not ‘weakly sequentially
complete’.
Proof. Let X = c0 and vn = e1 + · · · + en ∈ c0 ⊆ ℓ∞. For each

y ∈ ℓ1, we have

⟨vn, y⟩c0 = ⟨y, vn⟩ℓ1 =
n∑

k=1

yk −→
∞∑
k=1

yk = ⟨y,1⟩ℓ1 as n→ ∞.

This means that vn
σ⋆

−→ 1 in ℓ∞ and that (⟨vn, y⟩c0)n is a Cauchy
sequence in F for every y ∈ ℓ1. If (vn) had a weak limit x in c0, then
x would also be the weak⋆ limit of (vn) in ℓ

∞ and thus x = 1 by the
uniqueness of weak⋆ limits, which is impossible. 2

We state a useful characterization of weak and weak⋆ convergence.
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Proposition 5.33. Let X be a normed vector space, xn, x ∈ X and
x⋆n, x

⋆ ∈ X⋆ for n ∈ N, D⋆ ⊆ X⋆ with linD⋆ = X⋆, and D ⊆ X with
linD = X. Then the following equivalences are true.
a) xn

σ−→ x as n→ ∞ if and only if supn ∥xn∥X <∞ and ⟨xn, y⋆⟩ →
⟨x, y⋆⟩ as n→ ∞ for all y⋆ ∈ D⋆.

b) Let X be complete. Then x⋆n
σ⋆

−→ x⋆ as n → ∞ if and only if
supn ∥x⋆n∥X⋆ <∞ and ⟨y, x⋆n⟩ → ⟨y, x⋆⟩ as n→ ∞ for all y ∈ D.

If a) is valid, then ∥x∥ ≤ limn→∞∥xn∥; and if b) holds, then ∥x⋆∥ ≤
limn→∞∥x⋆n∥. Moreover, in equivalence b) the implication ‘⇐’ is true
for all normed vector spaces X.

Proof. For the implications ‘⇒’ we use Corollary 4.5, whereas
‘⇐’ and the addendum follow from Lemma 4.10. In part a) one has to
apply these results to the vectors JX(xn) ∈ X⋆⋆ = B(X⋆,F). □

In the following examples we use the above characterization to de-
scribe weak convergence in sequence and Lebesgue spaces quite well,
whose duals were described in Proposition 5.1 and Theorem 5.4.

Example 5.34. a) Let X = c0 oder X = ℓp for 1 < p < ∞, (vn) in
X be bounded, and x ∈ X. Proposition 5.33 with D⋆ = {en |n ∈ N}
then yields the equivalence

vn
σ−→ x ⇐⇒ ∀ k ∈ N : (vn)k = ⟨vn, ek⟩ → ⟨x, ek⟩ = xk

as n → ∞, since c00 = linD⋆ is dense in X⋆. (On the right-hand side
one has ‘componentwise convergence’.)
For sequences in ℓ1 or ℓ∞ one obtains an analogous result for the

σ⋆-convergence taking D = {en |n ∈ N} in c0, respectively ℓ
1.

b) The implication ‘⇐’ fails in a) for p = 1. In fact, the sequence (en)
converges componentwise to 0, but it is bounded and diverges weakly
in ℓ1 by the proof of Remark 5.32b).

c) The assumption of boundedness cannot be omitted in Proposi-
tion 5.33. For instance, the sequence (nen) in ℓ

2 converges compenen-
twise to 0, but is unbounded and thus cannot converge weakly.

d) Let (S,A, µ) be a measure space, X = Lp(µ), 1 < p < ∞, and
(fn) be bounded in X. We then deduce the equivalence

fn
σ−→ f ⇐⇒

∫
A

fn dµ→
∫
A

f dµ for all A ∈ A with µ(A) <∞

as n→ ∞ from Proposition 5.33 and Theorem 5.9 of Analysis 3 (saying
that the subspace of simple functions is dense in Lp′(µ)).
The weak⋆ convergence in L∞(µ) can be characterized analogously

if the measure space is σ–finite.

e) The sequence given by fn(s) = sin(ns) tends weakly to 0 in
L2(0, 1), though ∥fn∥22 → 1

2
as n→ ∞. This weak limit can be checked
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using part d) or integrating by parts. For each φ ∈ C∞
c (0, 1) we have

|⟨fn, φ⟩| =
∣∣∣ 1
n

∫ 1

0

cos(ns)φ′(s) ds
∣∣∣ ≤ ∥φ′∥∞

n
−→ 0

as n→ ∞, and thus fn
σ−→ f by Proposition 5.33 and the density result

Proposition 4.13. Here oscillations lead to weak convergence.3 ♢

Weak convergence in a bounded subset is often given by a metric.

Remark 5.35. If X⋆ is separable, then the weak sequential conver-
gence in a bounded subset M of X is given by the metric

d(x, y) =
∞∑
j=1

2−j

∣∣⟨x− y, x⋆j⟩
∣∣

1 +
∣∣⟨x− y, x⋆j⟩

∣∣
for x, y ∈ M , where D⋆ = {x⋆j | j ∈ N} is dense in X⋆. This result
follows from Propositions 5.33 and 1.8 using the seminorms pj(x) =∣∣⟨x, x⋆j⟩∣∣. Observe that for each x ∈ X \ {0} there is an index k ∈ N
such that ⟨x, x⋆k⟩ ≠ 0 due to Corollary 5.10 and the density of D⋆.
Similarly, if X is separable then the weak⋆ sequential convergence in a
bounded subset of X⋆ is given by an analogous metric. ♢

The next theorem by Mazur says that closed convex sets are ‘weakly
sequentially closed’. It is a consequence of the separation theorem and
often used in combination with Theorem 5.40.

Theorem 5.36. Let X be a normed vector space, C ⊆ X be closed
and convex, and let (xn) in C converge weakly to some x ∈ X. Then
x belongs to C. Moreover, a sequence (yN) of convex combinations of
the vectors {xn |n ≥ N} tends to x in norm as N → ∞.

Proof. 1) Suppose that x was not contained in C. Theorem 5.20b)
with A = C and B = {x} then gives a functional x⋆ ∈ X⋆ with
supn Re⟨xn, x⋆⟩ < Re⟨x, x⋆⟩. But this inequality cannot hold since
⟨xn, x⋆⟩ converges to ⟨x, x⋆⟩ as n→ ∞. Hence, x belongs to C.
2) Let N ∈ N. It is straightforward to check that the set

CN =
{
y =

m∑
j=N

tjxj

∣∣∣m ∈ N, m ≥ N, tj ≥ 0, tN + · · ·+ tm = 1
}

is convex, and it contains all xn for n≥N . Its closure CN is also convex
by Corollary 1.18. Step 1) then shows that x belongs to every CN . So
we can choose points yN ∈ CN with ∥x−yN∥ ≤ 1

N
for each N ∈ N. □

We note that one needs convexity in Mazur’s theorem and that it
may fail for the weak⋆ convergence.

3This example was omitted in the lectures.
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Remark 5.37. a) The vectors en in the closed unit sphere S of ℓ2

converge weakly in ℓ2 to 0 /∈ S.

b) The elements en tend weakly⋆ to 0 in X⋆ = ℓ1, and they belong
to the closed affine subspace A = {y ∈ ℓ1 | ⟨y,1⟩ = 1}, but 0 /∈ A. ♢

We now prove a simplified version of the Banach–Alaoglu theorem.
It extends the Bolzano–Weierstraß theorem to Banach spaces which
are adjoints of a separable space and says that the balls BX⋆(0, r)
are ‘weakly⋆ sequentially compact’ (instead being compact as in finite
dimensions). This fact is the fourth of the fundamental principles of
linear functional analysis. At the end of this section we give one of its
many applications.

Theorem 5.38. Let X be a separable normed vector space. Let (x⋆n)
be a bounded sequence in X⋆. Then there is a functional x⋆ ∈ X⋆

and a subsequence (x⋆nj
)j converging weakly⋆ to x⋆ as j → ∞, where

∥x⋆∥ ≤ limn→∞∥x⋆n∥. Hence, each sequence in a ball BX⋆(0, r) has a
weak⋆ accumulation point.

Proof. There are vectors whose norms ∥x⋆nl
∥ tend to limn→∞∥x⋆n∥

as l → ∞. We replace x⋆n by this subsequence without relabelling it.
Let {xk | k ∈ N} be dense in X. Since (⟨x1, x⋆n⟩)n∈N is bounded

in F, there exists a subsequence (⟨x1, x⋆ν1(j)⟩)j with a limit in F.
Since also (⟨x2, x⋆ν1(j)⟩)j is bounded, there is a converging subsequence

(⟨x2, x⋆ν2(j)⟩)j. For each k ∈ N we iteratively obtain subsequences

(x⋆νk(j))j of (x⋆νk−1(j)
)j such that (⟨xk, x⋆νk(j)⟩)j converges. We define

y⋆m = x⋆νm(m) for eachm ∈ N. Then the sequence (⟨xk, y⋆m⟩)m has a limit

for every k ∈ N since for each m ≥ k there is an index jm = jm(k) ≥ m
with νm(m) = νk(jm). Since {xk | k ∈ N} is dense and the subsequence
(y⋆m) of (x

⋆
n) is also bounded, Proposition 5.33 implies the assertion. □

Remark 5.39. a) The above version of the theorem of Banach–
Alaoglu can fail if X is not separable. As the simplest example we
consider X = ℓ∞, where X⋆ is already a rather unpleasant space, cf.
Theorem IV.5.1 in [DS]. The maps φn : X → F; φn(x) = xn, belong
to X⋆ with ∥φn∥ = 1 for all n ∈ N. Take any subsequence (φnj

)j. As
in Remark 5.32b) we find a sequence x ∈ ℓ∞ such that ⟨x, φnj

⟩ = xnj

diverges and hence (φn) has no weakly⋆ convergent subsequence.4

b) The theorem of Banach–Alaoglu can fail for the weak convergence.
For instance, look at en ∈ ℓ1 = X for n ∈ N. Take any subsequence
(enj

)j and choose as above an element y in ℓ∞ = (ℓ1)⋆ such that (ynj
)j

diverges. Then ⟨enk
, y⟩ = ynk

does not converge. ♢

4In Theorem V.3.1 in [Co] one can find the full version of the Banach–Alaoglu
theorem without the separability assumption.
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In a reflexive space we can derive a version of the Banach-Alaoglu
theorem with weak convergence, cf. Remark 5.31. A standard trick
even allows us to get rid of the separability assumption,

Theorem 5.40. Let X be a reflexive Banach space. Let (xn) be a
bounded sequence in X. Then there is a vector x ∈ X and a subsequence
(xnj

)j converging weakly to x as j → ∞, where ∥x∥ ≤ limn→∞∥xn∥.

Proof. Let Y = lin{xn |n ∈ N} be endowed with the norm of
X. By Proposition 5.28, the space Y is reflexive, and it is separable
by Lemma 1.54. Proposition 5.28 then shows that Y ⋆ is separable.
Theorem 5.38 now yields a subsequence (JY (xnj

))j of (JY (xn))n with
weak⋆ limit y⋆⋆ in Y ⋆⋆. Since Y is reflexive, there exists a vector x ∈ Y
such that JY (x) = y⋆⋆ and

⟨xnj
, y⋆⟩Y = ⟨y⋆, JY (xnj

)⟩Y ⋆ −→ ⟨y⋆, JY (x)⟩Y ⋆ = ⟨x, y⋆⟩Y
for all y⋆ ∈ Y ⋆, as j → ∞. We further obtain

∥x∥ = ∥JY (x)∥ ≤ limn→∞∥JY (xn)∥ = limn→∞∥xn∥,
using also Proposition 5.24. Let x⋆ ∈ X⋆. The restriction x⋆|Y then
belongs to Y ⋆. As a result,

⟨xnj
, x⋆⟩X = ⟨xnj

, x⋆|Y ⟩Y −→ ⟨x, x⋆|Y ⟩Y = ⟨x, x⋆⟩X ,

which means that xnj

σ−→ x as j → ∞. □

We next use the Banach-Alaoglu theorem and results about Sobolev
spaces to solve a basic problem about static electric fields.

Example 5.41. LetD ⊆ R3 open and bounded with a C1–boundary.
The trace theorem shows that the mapping W 1,2(D) ∩ C(D) →
L2(∂D, σ); u 7→ u|∂D, has a unique continuous linear extension tr :
W 1,2(D) → L2(∂D, σ), where σ is the surface measure from Analysis 3.
The kernel of tr is equal to the closure W 1,2

0 (D) of the test functions
in W 1,2(D). (See Theorem 3.38 in [ST].) We fix a map g ∈ C1/2(∂D)
and define the closed affine subspace

A = {u ∈ W 1,2(D) | tru = g}
of W 1,2(D). We are looking for the potential u of the electric field
E = ∇u in the vacuum D which is generated by the charge density g
at the boundary. (We ignore the physical units and related constants.)
A general principle in physics says that this potential u ∈ A has to
minimize the ‘electrical energy’

φ(u) :=

∫
D

|∇u|2 dx

among all functions in A. We now show that such a minimizer exists.5

5One can also prove its uniqueness.
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Proof. A more sopisticated version of the trace theorem yields a
function u0 ∈ A so that this set is non-empty. (See Theorem 2.5.7
in [Ne].) There thus exists the number µ := infu∈A φ(u) ≥ 0. We
fix a sequence (un) in A with φ(un) → µ as n → ∞. The functions
ũn := un − u0 belong to W 1,2

0 (D) = N(tr). On W 1,2
0 (D) the quantity

9v9 = φ(v)1/2 defines a norm which is equivalent to ∥·∥1,2 as discussed
at the end of Secton V.3 in [We]. We thus obtain the inequalities

∥un∥1,2 ≤ ∥ũn∥1,2 + ∥u0∥1,2 ≤ c 9ũn9 +∥u0∥1,2
≤ c(φ(un)

1/2 + φ(u0)
1/2)∥u0∥1,2

for all n; i.e., (un) is bounded in W 1,2(D). This space is reflexive by
Example 5.29. Theorem 5.40 thus yields a a subsequence (unj

)j with
a weak limit u in W 1,2(D). Due to Exercise 13.4, also the continuous
images trunj

= g converge to tru as j → ∞ so that tru = g and u

is contained in A. We recall the isometric map J : W 1,2(D) → L2(D)4;
v 7→ (v, ∂1v, ∂2, v, ∂3v) from Remark 4.16d). Using again Exercise 13.4,
we then deduce that the partial derivatives (∂kunj

)j tend weakly in
L2(D) to ∂ku. Proposition 5.33 now imples that

φ(u) =
3∑

k=1

∥∂ku∥22 ≤ lim inf
j→∞

3∑
k=1

∥∂kunj
∥22 ≤ µ,

and hence φ(u) = µ by the definition of µ.6 2

5.4. Adjoint operators

In this section we introduce the notions which allow to connect du-
ality theory with linear operators.
Let X and Y be normed vector spaces and T ∈ B(X, Y ). For each

y⋆ ∈ Y ⋆ we define a map φy⋆ : X → F by setting φy⋆(x) = ⟨Tx, y⋆⟩Y .
It is clear that φy⋆ is linear in x ∈ X and that |φy⋆(x)| ≤ ∥T∥ ∥y⋆∥
if ∥x∥ ≤ 1. So we obtain φy⋆ ∈ X⋆ with ∥φy⋆∥ ≤ ∥T∥ ∥y⋆∥. Observe
that φy⋆ is uniquely determined by y⋆ for a given T . We now introduce
T ⋆y⋆ := φy⋆ ∈ X⋆. we have thus defined a map

T ⋆ : Y ⋆ → X⋆; ⟨x, T ⋆y⋆⟩X = ⟨Tx, y⋆⟩Y (∀x ∈ X, y⋆ ∈ Y ⋆), (5.8)

which is called the adjoint of T .
If X and Y are Hilbert spaces, analogously we introduce the Hilbert

space adjoint T ′ of T by

T ′ : Y → X; (x|T ′y)X = (Tx|y)Y (∀x ∈ X, y ∈ Y ). (5.9)

Here we have T ′ = Φ−1
X T ⋆ΦY for the Riesz isomorphisms from Theo-

rem 3.10.

6One can check that all partial derivatives ∂ku belong to W 1,2
loc (D) and that

∆u = (∂11 + ∂22 + ∂33)u = 0 on D, see Theorems 8.2.4 and 8.3.1 in [Ev].
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Proposition 5.42. Let X, Y and Z be normed vector spaces, S, T ∈
B(X, Y ), R ∈ B(Y, Z), and α ∈ F. The following assertions hold.
a) T ⋆ ∈ B(Y ⋆, X⋆) with ∥T ⋆∥ = ∥T∥.
b) (T + S)⋆ = T ⋆ + S⋆, (αT )⋆ = αT ⋆, and (RT )⋆ = T ⋆R⋆.
The analogous assertions (with (αT )′ = αT ′) and T = (T ′)′ =: T ′′

are true for Hilbert spaces and the Hilbert space adjoints.

Proof. Let α, β ∈ F, x ∈ X, y⋆, u⋆ ∈ Y ⋆ and z⋆ ∈ Z⋆. For a), we
compute

⟨x, T ⋆(αy⋆ + βu⋆)⟩ = ⟨Tx, αy⋆ + βu⋆⟩ = α⟨Tx, y⋆⟩+ β⟨Tx, u⋆⟩
= α⟨x, T ⋆y⋆⟩+ β⟨x, T ⋆u⋆⟩ = ⟨x, αT ⋆y⋆ + βT ⋆u⋆⟩.

Since x ∈ X is arbitrary, this means that T ⋆(αy⋆ + βu⋆) = αT ⋆y⋆ +
βT ⋆u⋆ and thus T ⋆ is linear. Moreover, Corollary 5.10 yields

∥T∥ = sup
∥x∥≤1

∥Tx∥ = sup
∥x∥≤1,∥y⋆∥≤1

|⟨Tx, y⋆⟩| = sup
∥x∥≤1,∥y⋆∥≤1

|⟨x, T ⋆y⋆⟩|

= sup
∥y⋆∥≤1

∥T ⋆y⋆∥ = ∥T ⋆∥,

and assertion a) is shown. We further calculate

⟨x, (RT )⋆z⋆⟩ = ⟨RTx, z⋆⟩ = ⟨Tx,R⋆z⋆⟩ = ⟨x, T ⋆R⋆z⋆⟩
so that (RT )⋆ = T ⋆R⋆. The remaing parts of b) and the Hilbert space
variants of a) and b) are shown similarly. In the Hilbert setting, we
finally compute

(Tx|y) = (x|T ′y) = (T ′y|x) = (y|T ′′x) = (T ′′x|y)
for all y ∈ X; i.e., T = T ′′. (Note that T ′′ exists due to a).) □

In view of the above result, each operator T ∈ B(X, Y ) possesses
its bi-adjoint T ⋆⋆ := (T ⋆)⋆ ∈ B(X⋆⋆, Y ⋆⋆) with ∥T∥ = ∥T ⋆⋆∥. We
introduce important concepts in the Hilbert space setting.

Definition 5.43. Let X and Y be Hilbert spaces and T ∈ B(X, Y ).
The operator T is called unitary if T ′T = IX and TT ′ = IY (i.e.,
it exists T−1 = T ′). Let X = Y . Then T is called self-adjoint if
(Tx|y) = (x|Ty) for all x, y ∈ X (i.e., T = T ′).

We compute adjoints for basic classes of operators, cf. the exercises.

Example 5.44. a) For X = Fm and a matrix T = [akl], the adjoint
T ⋆ is given by [alk] and T

′ by [alk]. (See Linear Algebra.)

b) On X = c0 or X = ℓp with 1 ≤ p < ∞ (and also on ℓ∞) we
consider the shift operators Lx = (xn+1)n and Rx = (0, x1, x2, . . . ).
Take x ∈ X and y ∈ X⋆. Using Proposition 5.1, we calculate

⟨x, L⋆y⟩ = ⟨Lx, y⟩ =
∞∑
k=1

xk+1yk =
∞∑
n=2

xnyn−1 = ⟨x,Ry⟩.
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Since x and y are arbitrary, we first obtain L⋆y = Ry and then L⋆ = R.
Similarly one derives that R⋆ = L and, for p = 2, L′ = R and R′ = L.

c) Let X = L2(R) and (T (t)f)(s) = f(s+ t) for f ∈ X and s, t ∈ R,
see Example 4.12. For f, g ∈ X we compute

(T (t)f |g) =
∫
R
f(s+ t)g(s) ds =

∫
R
f(τ)g(τ − t) dτ = (f |T (−t)g).

As in part b), it follows that T (t)′ = T (−t) = T (t)−1 and hence T (t)
is unitary. Analogously one sees that T (t)⋆ = T (−t) on Lp(R) for
p ∈ [1,∞) and t ∈ R, employing Theorem 5.4.

d) Let A ∈ Bm, 1 ≤ p <∞, and k : A× A→ F be measurable with

κp =

(∫
A

(∫
A

|k(x, y)|p
′
dy

)p/p′

dx

)1/p

<∞, if p > 1,

κ1 = ess sup
y∈A

∫
A

|k(x, y)| dx <∞, if p = 1.

For p = 2 this means that k ∈ L2(A × A). Let p ∈ (1,∞), f ∈ Lp(A)
and g ∈ Lp′(A). The function (x, y) 7→ φ(x, y) = k(x, y)f(y)g(x) is
measurable on A × A as a product of measurable functions. Using
Fubini’s Theorem 3.29 in Analysis 3 and Hölder’s inequality (first in
the y– and then in the x–integral), we deduce∫

A×A

|φ| d(x, y) =
∫
A

∫
A

|k(x, y)| |f(y)| dy |g(x)| dx

≤
∫
A

(∫
A

|k(x, y)|p′ dy
) 1

p′
(∫

A

|f(y)|p dy
) 1

p |g(x)| dx

≤ κp ∥f∥p
(∫

A

|g(x)|p′ dx
) 1

p′
= κp ∥f∥p ∥g∥p′ <∞.

Since φ is integrable on A× A, by Fubini’s theorem the integral

hg(x) :=

∫
A

k(x, y) f(y) g(x) dy = g(x)

∫
A

k(x, y) f(y) dy

exists for x /∈ Nfg and a null set Nfg, and hg is measurable on A (after
setting hg(x) = 0 for all x ∈ Nfg). We now take gn = 1A∩B(0,n) for
every n ∈ N and define the null set Nf =

⋃
nNfgn . In this way we see

that the function

Tf(x) :=

{∫
A
k(x, y) f(y) dy, x ∈ A \Nf ,

0, x ∈ Nf ,
(5.10)

exists and that it is measurable. Note that this definition does not
depend on the representative of f .
Using again Hölder’s inequality in the y–integral, we further estimate

∥Tf∥pp =
∫
A

∣∣∣ ∫
A

k(x, y) f(y) dy
∣∣∣p dx
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≤
∫
A

(∫
A

|k(x, y)|p′ dy
) p

p′
(∫

A

|f(y)|p dy
) p

p
dx

= κpp ∥f∥pp ,
so that Tf belongs to Lp(A). The linearity of T is clear, and hence T
is an element of B(Lp(A)) with norm less or equal κp.
Since φ is integrable, Fubini’s theorem finally implies

⟨Tf, g⟩ =
∫
A

∫
A

k(x, y)f(y) dy g(x) dx =

∫
A

∫
A

f(y)k(x, y)g(x) dx dy

=

∫
A

f(y)

∫
A

k(x, y)g(x) dx dy = ⟨f, T ⋆g⟩.

As before, for each g ∈ Lp′(A) his equality means that

T ⋆g(y) =

∫
A

k(x, y)g(x) dx for a.e. y ∈ A. (5.11)

For p = 2 one derives analogously

T ′g(y) =

∫
A

k(x, y)g(x) dx

for every g ∈ L2(A) and a.e. y ∈ A. Hence, T is self adjoint if k(x, y) =

k(y, x) for a.a. x, y ∈ A (which is equivalent to ‘for a.a. y ∈ A we have

k(x, y) = k(y, x) for a.a. x ∈ A’ by Korollar 3.25 in Analysis 3).
Let p = 1. We first deduce from Fubini’s theorem the inequality

τ :=

∫
A×A

|k(x, y)f(y)| d(x, y) =
∫
A

∫
A

|k(x, y)| dx |f(y)| dy ≤ κ1 ∥f∥1

for all f ∈ L1(A). The function (x, y) 7→ k(x, y)f(y) thus is integrable
on A2. By Fubini’s theorem, formula (5.10) now defines a function Tf
in L1(A) satisfying ∥Tf∥1 ≤ τ ≤ κ1 ∥f∥1 for each f ∈ L1(A). As a
result, T belongs to B(L1(A)) with ∥T∥ ≤ κ1. As above one can also
check that T ∗ ∈ B(L∞(A)) is given as in (5.11).7 ♢

We now relate T ⋆⋆ to T also in non-Hilbertian Banach spaces.

Proposition 5.45. For normed vector spaces X and Y , the follow-
ing assertions hold.
a) For T ∈ B(X, Y ) we have T ⋆⋆ ◦ JX = JY ◦ T .
b) If Y is reflexive, then T = J−1

Y T ⋆⋆JX .

Proof. Let x ∈ X and y⋆ ∈ Y ⋆. Using (5.8) and (5.7), we compute

⟨y⋆, T ⋆⋆JX(x)⟩Y ⋆ = ⟨T ⋆y⋆, JX(x)⟩X⋆ = ⟨x, T ⋆y⋆⟩X = ⟨Tx, y⋆⟩Y
= ⟨y⋆, JY (Tx)⟩Y ⋆ .

These equalities yields assertion a) which implies assertion b). □

One usually identifies T and T ⋆⋆ if X and Y are reflexive.

7In the lectures we have only sketched the case p > 1.
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Range and kernel of bounded linear operators. Let T ∈
B(X, Y ). Then the kernel N(T ) is closed, but R(T ) need not to be
closed. An example is the Volterra operator given by

Tf(t) =

∫ t

0

f(s) ds

for f ∈ X = C([0, 1]) and t ∈ [0, 1]. It is straightforward to check that
T belongs to B(X) with R(T ) = {g ∈ C1([0, 1]) | g(0) = 0} This space

is different from R(T ) = {g ∈ X | g(0) = 0}.
Leaving aside this difficulty for a moment, we now describe range

and kernel of T by means of its adjoint and the annihilators from (5.6).

Proposition 5.46. Let X and Y be normed vector spaces and T ∈
B(X, Y ). Then the following assertions hold.
a) R(T )⊥ = N(T ⋆).

b) R(T ) = ⊥N(T ⋆). Thus, R(T ) is dense if and only if T ⋆ is injective.
c) N(T ) = ⊥R(T ⋆). Hence, T is injective if R(T ⋆) is dense.

d) R(T ⋆) ⊆ N(T )⊥.

e) Let X be reflexive. Then R(T ⋆) = N(T )⊥. Hence, R(T ⋆) is dense
if and only if T is injective.

Proof. a) Let y⋆ ∈ Y ⋆. The functional y⋆ belongs to R(T )⊥ if
and only if for all x ∈ X we have 0 = ⟨Tx, y⋆⟩ = ⟨x, T ⋆y⋆⟩, which is
equivalent to y⋆ ∈ N(T ⋆).

b) Proposition 5.22 and part a) show that R(T ) = ⊥(R(T )⊥) =
⊥N(T ⋆). The addendum now follows from Remark 5.21.
c) Let x ∈ X. Due Corollary 5.10, the vector x is contained in N(T )

if and only if for all y⋆ ∈ Y ⋆ we have 0 = ⟨Tx, y⋆⟩ = ⟨x, T ⋆y⋆⟩, which
is equivalent to x ∈ ⊥R(T ⋆). Remark 5.21 yields the second part.

d) Proposition 5.22 and step a) imply that R(T ⋆) = ⊥(R(T ⋆)⊥) =
⊥N(T ⋆⋆). We thus have to prove the inclusion ⊥N(T ⋆⋆) ⊆ N(T )⊥. Let
y⋆ ∈ ⊥N(T ⋆⋆) and take any x ∈ N(T ). Proposition 5.45 then yields
the equality T ⋆⋆JXx = JY Tx = 0 so that JXx is an element of N(T ⋆⋆).
We now infer ⟨x, y⋆⟩ = ⟨y⋆, JXx⟩ = 0; i.e., y⋆ belongs to N(T )⊥.
e) Let X be reflexive. It remains to show that N(T )⊥ ⊆ ⊥N(T ⋆⋆)

in view of step d). So let y⋆ ∈ N(T )⊥ and take any x⋆⋆ ∈ N(T ⋆⋆).
Because X is reflexive, there exists a vector x ∈ X with JXx = x⋆⋆.
Proposition 5.45 yields that JY Tx = T ⋆⋆JXx = 0. Since JY is injective
by Proposition 5.24, the vector x is contained in N(T ), and hence
⟨y⋆, x⋆⋆⟩ = ⟨x, y⋆⟩ = 0 so that y⋆ is an element of ⊥N(T ⋆⋆). □

Remark 5.47. In parts c) and d) of the above result, the converse
implication and inclusion, respectively, do not hold in general. In fact,
let X = c0 and T = I − L for the left shift L. If Tx = 0 then
xn = xn+1 for all n ∈ N and thus N(T ) = {0}. We have T ⋆ = I − R
by Example 5.44. In Example 1.25 of [ST] it is shown that the range

of I −R in X⋆ = ℓ1 is not dense, hence R(T ⋆) ̸= X⋆ = N(T )⊥. ♢
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We next state an easy consequence of Proposition 5.46b). The lecture
Spectral Theory will elaborate on this and the following results.

Corollary 5.48. Let X and Y be normed vector spaces, y ∈ Y ,
and let T ∈ B(X, Y ) have closed range. Then the equation Tx = y has
a solution x0 ∈ X if and only if we have ⟨y, y⋆⟩ = 0 for all y⋆ ∈ N(T ⋆).
Every other solution is given by x = x0 + z for any z ∈ N(T ). Hence,
T is surjective if and only if R(T ) is closed and T ⋆ is injective.

Using also the results of Chapter 4, we can now characterize the
invertibility of T by injectivity properties of T and T ⋆. We stress that
usually injectivity is easier to check than surjectivity, but of course one
must know the adjoint to apply the result.

Corollary 5.49. Let X and Y be Banach spaces and T ∈ B(X, Y ).
The operator T is invertible if and only if
a) T ⋆ injective and
b) there is a constant c > 0 such that ∥Tx∥ ≥ c ∥x∥ for all x ∈ X.

Proof. Statement b) clearly implies the injectivity of T . From
Corollary 4.31 we then deduce that b) is true if and only if T is injective
and R(T ) is closed. Corollary 5.48 thus yields that the validity of a)
and b) is equivalent to the bijectivity of T , and hence to its invertibility
by Theorem 4.28. □

We can now prove that invertibility is preserved when taking ad-
joints. In contrast, by Proposition 5.46 injectivity and the density of
the range are exchanged when passing to T ⋆ at least in reflexive spaces.

Theorem 5.50. Let X and Y be Banach spaces and T ∈ B(X, Y ).
The operator T is invertible if and only if T ⋆ ∈ B(Y ⋆, X⋆) is invertible.
In this case we have (T−1)⋆ = (T ⋆)−1.

Proof. 1) Let T be invertible. Since IX = T−1T , we obtain IX⋆ =
(IX)

⋆ = T ⋆(T−1)⋆ by Proposition 5.42. Similarly, it follows IY ⋆ =
(T−1)⋆T ⋆. Hence, T ⋆ has the inverse (T−1)⋆ ∈ B(X⋆, Y ⋆).
2) Let T ⋆ be invertible, and thus injective. By step 1), T ⋆⋆ is invert-

ible. Let x ∈ X. Propositions 5.24 and 5.45 imply the lower bound

∥x∥ = ∥JXx∥ = ∥(T ⋆⋆)−1T ⋆⋆JXx∥ ≤ ∥(T ⋆⋆)−1∥ ∥T ⋆⋆JX(x)∥
= ∥(T ⋆⋆)−1∥ ∥JY Tx∥ = ∥(T ⋆⋆)−1∥ ∥Tx∥

From Corollary 5.49 we now deduce the invertibility of T . □

The next corollary was already stated in Remark 5.26, but only used
in examples.

Corollary 5.51. Let X be reflexive and Φ : X → Y be an iso-
mophism. Then Y is reflexive.
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Proof. Let y⋆⋆ ∈ Y ⋆⋆. Set y = ΦJ−1
X (Φ⋆⋆)−1y⋆⋆ ∈ Y , using the

easy part of the above theorem. Take y⋆ ∈ Y ⋆. By means of (5.8) and
(5.7), we compute

⟨y, y⋆⟩Y = ⟨ΦJ−1
X (Φ⋆⋆)−1y⋆⋆, y⋆⟩Y = ⟨J−1

X (Φ⋆⋆)−1y⋆⋆,Φ⋆y⋆⟩X
= ⟨Φ⋆y⋆, (Φ⋆⋆)−1y⋆⋆⟩X⋆ = ⟨y⋆,Φ⋆⋆(Φ⋆⋆)−1y⋆⋆⟩Y ⋆ = ⟨y⋆, y⋆⋆⟩Y ⋆ ,

so that JY y = y⋆⋆. □

We add a couple of results in Hilbert spaces which are used in the
next chapter. The first one says that unitary operators preserve the
full structure of Hilbert spaces.

Proposition 5.52. Let X and Y be Hilbert spaces and T ∈ B(X, Y ).
Then equivalences are true.
a) T is a isometry if and only if we have (Tx|Tz)Y = (x|z)X for all

x, z ∈ X.
b) T is unitary if and only if T is bijective and isometric if and only

if T is bijective and preserves the scalar product.

Proof. a) The implication ‘⇐’ is shown by setting x = z. To
verify ‘⇒’, take α ∈ {1, i} and x, z ∈ X. Using (3.1) the isometry of T
and |α| = 1, we calculate

∥Tx+ αTz)∥2 = ∥Tx∥2 + 2Re (Tx|αTz) + ∥αTz∥2

= ∥x∥2 + 2Re ᾱ (Tx|Tz) + ∥z∥2,
∥T (x+ αz)∥2 = ∥x+ αz∥2 = ∥x∥2 + 2Re ᾱ (x|z) + ∥z∥2.

It follows Re ᾱ (Tx|Tz) = Re ᾱ (x|z) and thus assertion a).
b) The second equivalence is a consequence of step a). To show the

first equivalence, take x, z ∈ X. If T is unitary, we obtain (Tx|Tz) =
(x|T ′Tz) = (x|z) so that T is isometric by assertion a). If T is isometric,
part a) yields (T ′Tx|z) = (Tx|Tz) = (x|z). Since z ∈ X is arbitrary,
we conclude that T ′Tx = x for all x ∈ X and hence T ′T = I. Now,
the bijectivity of T implies that T ′ = T−1. □

In the next two results we see that the numerical range {(Tx|x) |x ∈
∂B(0, 1)} plays an important role for self-adjoint operators.

Proposition 5.53. Let X be a Hilbert space with F = C and T ∈
B(X). Then T is self-adjoint if and only if (Tx|x) ∈ R for every x ∈ X.

Proof. The implication ‘⇒’ follows from (Tx|x) = (x|Tx) =

(Tx|x). To show the implication ’⇐’, take α ∈ {1,−i} and x, y ∈ X.
By means of |α| = 1 and the assumption, we calculate

a := (T (x+ αy)|x+ αy) = (Tx|x) + ᾱ (Tx|y) + α (Ty|x) + (Ty|y) ,
ā = (Tx|x) + α (y|Tx) + ᾱ (x|Ty) + (Ty|y) .
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Since a = a by assumption, we obtain

(Tx|y) + (Ty|x) = (y|Tx) + (x|Ty) (taking α = 1),

i (Tx|y)− i (Ty|x) = −i (y|Tx) + i (x|Ty) (taking α = −i).

These equations imply that (Tx|y) = (x|Ty); i.e., T is self adjoint. □

Proposition 5.54. A self-adjoint operator T ∈ B(X) on a Hilbert
space X satisfies

∥T∥ = sup
∥x∥≤1

|(Tx|x)| =:M.

Proof. The inequality “≥” is clear. Let x, y ∈ ∂B(0, 1). Employ-
ing T ′ = T , we compute

(T (x+ y)|x+ y)− (T (x− y)|x− y)

= 2 (Tx|y) + 2 (Ty|x) = 2 (Tx|y) + 2(Tx|y) = 4Re (Tx|y) .
Observe that |(Tz|z)| ≤M∥z∥2 for all z ∈ X. The above equation and
(3.2) thus yield

4Re (Tx|y) ≤M∥x+ y∥2 +M∥x− y∥2 = 2M(∥x∥2 + ∥y∥2) = 4M.

If Tx ̸= 0, we can replace y by ỹ := ∥Tx∥−1 Tx in this inequality. We
then obtain ∥Tx∥ ≤M for all x ∈ X with ∥x∥ = 1. (This fact trivially
holds if Tx = 0.) As a result, ∥T∥ ≤M . □

We illustrate the above results by matrix examples.

Remark 5.55. The non self-adjoint matrix T = ( 0 1
−1 0 ) satisfies

(Tx|x) = 0 for all x ∈ R2, so that we need F = C in the implication
‘⇐’ of Proposition 5.53 and the self-adjointness in Proposition 5.54.
For X = C2, consider the non self-adjoint matrix T = ( 0 0

1 0 ). Then
|(Tx|x)| ≤ 1

2
|x|22 for all x ∈ C2, but ∥T∥ ≥ |Te2|2 = 1, which again

shows that we need the self-adjointness in Proposition 5.54. ♢

Proposition 5.56. Let X be a Hilbert space and P = P 2 ∈ B(X)
be orthogonal. We then have ∥P∥ = 1 (if P ̸= 0), P = P ′, and
(Px|x) = ∥Px∥2 ≥ 0 for all x ∈ X.

Proof. The first assertion was shown in Theorem 3.8. For x, y ∈
X te vector y − Py belongs to N(P ) ⊥ R(P ) and thus

(Px|y) = (Px|Py + (I − P )y) = (Px|Py) ,
and similarly (x|Py) = (Px|Py). Therefore, P = P ′. This fact further
yields that (Px|x) = (PPx|x) = ∥Px∥2. □

In fact the above properties of a projection on a Hilbert space are
all equivalent, see Satz V.5.9 in [We].



CHAPTER 6

The spectral theorem for compact self-adjoint
operators

In the lecture Spectral Theory one establishes a diagonalization the-
orem for self-adjoint operators generalizing the corresponding result for
hermitian matrices. Moreover, many of the properties related to the
Jordan normal form will be extended to so-called compact operators.
These theorems play a crucial role in mathematics and its applications.
Their quite sophisticated proofs are out of reach in the present course.
However, for compact and self-adjoint maps we can show them by our
means below. Fortunately, this special case is sufficient for many ex-
amples. We first discuss the basic properties of compact operators.

6.1. Compact operators

Throughout X, Y and Z are Banach spaces. We study operators
which provide compactness, using concepts from Section 1.3 freely.

Definition 6.1. A linear map T : X → Y is called compact if
TB(0, 1) is relatively compact in Y . The set of all compact operators
is denoted by B0(X, Y ). We put B0(X) = B0(X,X).

We start with some simple observations.

Remark 6.2. a) Let T be compact. Then the set TB(0, 1) is
bounded so that T is continuous; i.e., B0(X, Y ) ⊆ B(X, Y ).

b) The space of operators of finite rank is defined by

B00(X, Y ) = {T ∈ B(X, Y )
∣∣ dimTX <∞},

cf. Example 5.16. For T in B00(X, Y ), the set TB(0, 1) is relatively
compact by Example 1.41, and hence B00(X, Y ) ⊆ B0(X, Y ).

c) The identity I : X → X is compact if and only if B(0, 1) is
compact in X which is equivalent to dimX <∞ by Theorem 1.42.

d) For T ∈ L(X, Y ) the following assertions are equivalent.

(i) T is compact.
(ii) T maps bounded sets in X into relatively compact sets in Y .
(iii) For every bounded sequence (xn)n inX there exists a convergent

subsequence (Txnj
)j in Y .

Proof. Let statement (i) be true. Take a bounded sequence (xn) in
X. Set r = supn ∥xn∥. The images Txn then belong to the relatively

117
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compact set TB(0, r) = rTB(0, 1). Corollary 1.39 now implies asser-
tion (iii). This corollary also yields the implication ‘(iii)⇒(ii)’, whereas
‘(ii)⇒(i)’ is clear. 2

The next result yields the very useful fact that B0(X, Y ) is a closed
‘two-sided ideal’ in B(X, Y ).

Proposition 6.3. The set B0(X, Y ) is a closed linear subspace of
B(X, Y ). Let T ∈ B(X, Y ) and S ∈ B(Y, Z). If one of the operators T
or S is compact, then ST is compact.

Proof. Take vectors xk ∈ X, k∈N, satisfying c := supk ∥xk∥<∞.
1) Let T,R ∈ B0(X, Y ) and α ∈ F. We then have converging subse-

quences (Txkj)j and (Rxkjl )l. Hence also (αTxkj)j and ((T + R)xkjl )l
have a limit, so that B0(X, Y ) is a vector space.
2) Let Tn ∈ B0(X, Y ) tend in B(X, Y ) to an operator T as n →

∞. As in step 1), for each n ∈ N we find a subsequence (xνn(j))j of
(xνn−1(j))j such that (Tnxνn(j))j converges. Set um = xνm(m) for m ∈ N.
By construction, for every n ∈ N the sequence (Tnum)m has a limit.
Let ε > 0. Fix an index N = Nε ∈ N such that ∥TN − T∥ ≤ ε. Take
m, k ≥ N in N. We then estimate

∥Tum − Tuk∥ ≤ ∥(T − TN)um∥+ ∥TN(um − uk)∥+ ∥(TN − T )uk∥
≤ 2εc+ ∥TN(um − uk)∥.

Therefore (Tum) is a Cauchy sequence and thus has a limit. We have
shown that T is compact and so B0(X, Y ) is closed.
3) Let S ∈ B0(X, Y ). Since (Txk)k is bounded, there is a converging

subsequence (STxkj)j; i.e., ST is compact. Let T ∈ B0(X, Y ). We then
have a subsequence (Txkj)j with a limit, and thus (STxkj)j converges.
Again, ST is compact. □

In the next examples we first note that strong limits may lose com-
pactness. The typical examples of compact operators are integral op-
erators on bounded sets. To ensure compactness on unbounded sets,
the kernels have to decay at infinity sufficiently fast.

Example 6.4. a) Strong limits of compact operators may fail to be
compact. Consider, e.g., X = ℓ2 and Tnx = (x1, . . . , xn, 0, 0, . . . ) for all
x ∈ X and n ∈ N. We have seen in Remark 4.9 that Tn → I strongly
as n → ∞. By Remark 6.2, each Tn belongs B00(X) ⊆ B0(X) but I is
not compact.

b) Let X ∈ {C([0, 1]), Lp([0, 1])
∣∣ 1 ≤ p ≤ ∞}, k ∈ C([0, 1]2), and

Tf(t) =

∫ 1

0

k(t, τ)f(τ) dτ

for f ∈ X and t ∈ [0, 1]. As in Examples 1.49 and 2.7 one checks
that T belongs to B0(X,C([0, 1])), using the Arzela–Ascoli Theorem.
The map J : C([0, 1]) → Lp(0, 1); f 7→ f +N , is linear and bounded
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by Example 2.12. Proposition 6.3 now shows that S = JT belongs to
B0(X,C([0, 1])). Note that S is given as T if one ignores null functions.

c) Let A ∈ Bm, E = L2(A) and k ∈ L2(A× A). For f ∈ E, we set

Tf(x) =

∫
A

k(x, y)f(y) dy, x ∈ A.

By Example 5.44, this defines an operator T ∈ B(E). We claim that
T is compact.
Proof. We first extend k by 0 to a function k̃ in L2(R2m), and

analogously for f . As above, this kernel induces an operator T̃ in
B(L2(Rm)). For f ∈ E we have T̃ f̃ = Tf on A. The compactness of
T thus follows from that of T̃ . Hence, we restrict ourselves to the case
A = Rm and drop the tilde.
Theorem 5.9 of Analysis 3 yields maps kn ∈ Cc(R2m) that tend to k

in E. Let Tn be the corresponding integral operators in B(E). There
is a closed ball Bn ⊆ Rm such that supp kn ⊆ Bn ×Bn. We then have

Tnf(x) =

{
0, x ∈ Rm \Bn,∫
Bn
kn(x, y)f(y) dy, x ∈ Bn.

for f ∈ E and n ∈ N. Let Rnf = f |Bn . Fix n ∈ N and take a bounded
sequence (fk) in E. Arguing as in part b), one finds a subsequence such
that the functions RnTnfkj have a limit g in C(Bn) as j → ∞. Since
Bn has finite measure, this sequence converges also in L2(Bn). The
maps Tnfkj thus tend in E to the 0–extension g̃ of g as j → ∞, and so
Tn is compact. Since T − Tn is an integral operator on E with kernel
k−kn ∈ L2(R2m), Example 5.44 shows the bound ∥T−Tn∥ ≤ ∥k−kn∥2
for all n ∈ N. The operators Tn thus converge to T in B(E) so that T
is compact by Proposition 6.3. 2

d) Let X = L2(R). For f ∈ X, we define

Tf(t) =

∫
R
e−|t−s|f(s) ds, t ∈ R.

Theorem 2.14 yields that T ∈ B(X). The map T is not compact.1

Proof. For fn=1[n,n+1] and n>m in N we compute ∥fn∥2 = 1 and

∥Tfn − Tfm∥22 ≥
∫ n+2

n+1

∣∣∣∣∫ n+1

n

es−t ds−
∫ m+1

m

es−t ds

∣∣∣∣2 dt

=

∫ n+2

n+1

e−2t
(
en+1 − en − em+1 + em

)2
dt

≥ 1
2
(e−2n−2 − e−2n−4)(en+1 − 2en)2

= 1
2
(e−2 − e−4)(e− 2)2 > 0.

Hence, (Tfn) has no converging subsequence. 2

1This proof and the next example were omitted in the lectures.
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e) The right shift R on c0 or ℓp with p ∈ [1,∞] is not compact
since the sequence (Ren) = (en+1) has no converging subsequence (cf.
Example 2.9). Similarly, one shows the non-compactness of the left
shift L or of the translation T (t), t ∈ R, on Lp(R), see Example 4.12.♢

We show that a compact operator improves weak to strong limits.2

Proposition 6.5. Let T ∈ B0(X, Y ) and (xn) tend weakly to x in
X. Then the images Txn converge to Tx in Y as n→ ∞.

Proof. We have ⟨Txn − Tx, y⋆⟩ = ⟨xn − x, T ⋆y⋆⟩ → 0 as n → ∞
for each y⋆ ∈ Y ⋆ and hence Txn

σ→ Tx. Take any subsequence (xnj
)j.

It is bounded by Proposition 5.33. The compactness of T thus yields a
subsubsequence (Txnjl

)l converging to some y in Y . There thus exist

the weak limits Txnjl

σ→ Tx and Txnjl

σ→ y as l → ∞, and hence

y = Tx. Lemma 1.51 now implies that (Txn) tends to Tx in Y . □

The following theorem by Schauder nicely connects duality with
compactness. It will be used in Spectral Theory.

Theorem 6.6. An operator T ∈ B(X, Y ) is compact if and only if
its adjoint T ⋆ ∈ B(Y ⋆, X⋆) is compact.

Proof. 1) Let T be compact and take y⋆n ∈ Y ⋆ with supn∈N ∥y⋆n∥ =:

c < ∞. The set K = TBX(0, 1) is a compact metric space for the
distance induced by ∥ · ∥Y . We use the restrictions fn = y⋆n|K ∈ C(K)
for n ∈ N. Putting c1 := maxy∈K ∥y∥ <∞, we obtain the bound

∥fn∥∞ = max
y∈K

|⟨y, y⋆n⟩| ≤ cc1

for every n ∈ N. Moreover, (fn)n∈N is equicontinuous since

|fn(y)− fn(z)| = |⟨y − z, y⋆n⟩| ≤ c ∥y − z∥
for all n ∈ N and y, z ∈ K. Arzela–Ascoli’s Theorem 1.47 thus yields
a subsequence (fnj

)j with a limit in C(K). We deduce that

∥T ⋆y⋆nj
− T ⋆y⋆nl

∥X⋆ = sup
∥x∥≤1

∣∣∣⟨x, T ⋆(y⋆nj
− y⋆nl

)⟩
∣∣∣ = sup

∥x∥≤1

∣∣∣⟨Tx, y⋆nj
− y⋆nl

⟩
∣∣∣

= sup
y∈K

|fnj
(y)− fnl

(y)|

tends to 0 as j, l → ∞. This means that (T ⋆y⋆nj
)j converges and so T ⋆

is compact.
2) Let T ⋆ be compact. By step 1), the bi-adjoint T ⋆⋆ is compact.

Let JX : X → X⋆⋆ be the isometry from Proposition 5.24. Propo-
sition 5.45 says that T ⋆⋆JX = JY T , and hence JY T is compact by
Proposition 6.3. If (xn) is bounded in X, we thus obtain a converging
subsequence (JY Txnj

)j which is Cauchy. Since JY is isometric, also
(Txnj

)j is Cauchy and thus has a limit; i.e., T is compact. □
2The following two proofs were omitted in the lectures.
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6.2. The spectral theorem

In this section we extend the diagonalization theorem for hermitian
matrices to compact self-adjoint operators in a Hilbert space. We first
introduce a few basic concepts and state simple facts.
Let T ∈ B(X). A number λ ∈ F is called eigenvalue of T with

eigenvector v ∈ X if v ̸= 0 and Tv = λv. We write

Eλ = N(λI − T )

for the correspoding eigenspace. It is a closed linear subspace of X.
(These and related concepts are intensively treated in Spectral Theory.)
Let now X be a Hilbert space. We denote by Pλ the orthogonal

projection onto Eλ for an eigenvalue λ of T ∈ B(X), see Theorem 3.8.
Assume that T is self-adjoint. Let λ ̸= µ be eigenvalues of T with
eigenvectors v and w, respectively. We then obtain

λ ∈ R, since λ ∥v∥2 = (λv|v) = (Tv|v) = (v|Tv) = λ ∥v∥2; (6.1)

Eλ ⊥ Eµ , since (λ− µ) (v|w) = (λv|w)− (v|µw) (6.2)

= (Tv|w)− (v|Tw) = 0,

using the self-adjointness and in (6.2) also that µ is real. Since T = T ′

and X is reflexive, Proposition 5.46 yields

R(T )⊥ = N(T ) and R(T ) = N(T )⊥. (6.3)

The following basic version of the spectral theorem says that a com-
pact and self-adjoint operator largely behaves like a hermitian ma-
trix. It possesses at most countably many eigenvalues and the non-
zero ones have finite dimensional eigenspaces. The eigenvectors yield
an orthonormal basis B̃ of X, in which T becomes an infinite diagonal
matrix. The diagonal elements are the eigenvalues listed according to
their multiplicity. See the comments below the theorem. Equivalently,
one can write the image Tx as the series (6.4) over the basis vectors
where T is represented by its eigenvalues. Since the non-zero eigenval-
ues form a null sequence (if there are infinitely many), one can often
neglect all but finitely many and thus work on a finite dimensional
subspace spanned by eigenvectors.

Theorem 6.7. Let X be a Hilbert space with dimX = ∞, and T ∈
B(X) be compact and self-adjoint. Then T has at most countably many
eigenvalues. The pairwise different non-zero eigenvalues of T are de-
noted by λj for j ∈ J and an index set J ∈ {∅,N, {1, . . . , N}

∣∣N ∈ N}.
We write Pj = Pλj

and Ej = Eλj
for j ∈ J , as well as P0 for the or-

thogonal projection onto N(T ). Let λ0 = 0 and J0 = J∪{0}. Moreover,
the following assertions hold.
a) νj := dimEj < ∞ for j ∈ J , as well as TPj = PjT and PjPk =

PkPj = 0 for j ̸= k in J0.
b) Let J = N. Then λj → 0 as j → ∞.
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c) Let J ̸= N. Then dimN(T ) = ∞.
d) ∥T∥ = supj∈J0 |λj|.
e) T =

∑
j∈J λjPj with convergence in B(X).

f) We write (µk)k∈K with K ⊆ N for the eigenvalues λj repeated νj
times for each j ∈ J . The space N(T )⊥ = R(T ) has an orthonormal
basis B consisting of eigenvectors bk, k ∈ K. For each x ∈ X we obtain

Tx =
∑
k∈K

µk (x|bk)bk . (6.4)

We can extend the basis B of N(T )⊥ in part f) to an orthonormal

basis B̃ = {b̃i|i ∈ I} of X by means of Theorem 3.15, assuming3 that
X is separable if dimN(T ) = ∞ and taking an index set I ⊆ Z. In the

possibly two-sided sequence (b̃i)i∈I we start with the basis vectors for
N(T ). We obtain a sequence (µ̃i)i∈I by adding dimN(T )–many zeros
before the eigenvalues (µk)k∈K . Theorem 3.18 provides the isometric
isomorphism

J : X → ℓ2(I); Jx = ((x|b̃i))i∈I ,
with inverse J−1(αi)i =

∑
i αib̃i. It is then easy to see that T is iso-

morphic to the inifinite diagonal matrix

JTJ−1 =

. . . 0 0
0 µ̃i 0

0 0
. . .


acting on the sequence space ℓ2(I) = {(αi))i∈I |

∑
i∈I |αi|2 <∞}.

Proof of Theorem 6.7. 1) Let λ be an eigenvalue of T and v be
a corresponding eigenvector. Note that λ is real by (6.1) and that the
image Tv = λv belongs to Eλ. For y ∈ E⊥

λ we have (Ty|v) = (y|Tv) =
(y|λv) = 0, and hence T leaves also E⊥

λ invariant. We then compute

TPλx = PλTPλx = PλT (Pλ − I)x+ PλTx = PλTx

for x ∈ X, using that Pλ = I on Eλ and Pλ = 0 on E⊥
λ = (Pλ − I)X.

Formula (6.2) easily yields the last part of assertion a).
Let dimEλ = ∞. By Lemma 3.13, we obtain an orthonormal system

{vn |n ∈ N} in Eλ. Compactness provides a converging subsequence
(Tvnk

)k. Pythagoras’ formula and orthonormality now imply

∥Tvnk
− Tvnl

∥2 = ∥λvnk
− λvnl

∥2 = λ2 (∥vnk
∥2 + ∥vnl

∥2) = 2λ2.

Since the left-hand side tends to 0 as k, l → ∞, the eigenvalue λ has
to be 0. So statement a) is shown.

2) The main step is the claim: ∥T∥ or −∥T∥ is an eigenvalue of T .
If T = 0, then the claim and the theorem with J = ∅ are true. So let

T ̸= 0. Since T = T ′, Proposition 5.54 provides vectors xn ∈ X with
∥xn∥ = 1 such that the numbers |(Txn|xn)| tend to ∥T∥ as n → ∞.

3As noted in Section 3.2 this assumption can be avoided.
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Note that (Txn|xn) is real by Proposition 5.53. There thus exists a
subsequence ((Txnl

|xnl
))l with a limit λ in R and |λ| = ∥T∥ ≠ 0. From

formula (3.1) we then deduce

∥Txnl
−λxnl

∥2 = ∥Txnl
∥2 − 2Re(Txnl

|λxnl
) + λ2 ∥xnl

∥2

≤ 2λ2∥xnl
∥2 − 2λ(Txnl

|xnl
) = 2λ2 −2λ(Txnl

|xnl
) → 0

as l → ∞, and hence (Txnl
− λxnl

)l is a null sequence. Since T is
compact, another subsequence (Txnlk

)k tends to a vector y in X. This
fact yields the convergence

xnlk
= 1

λ

(
(λI − T )xnlk

+ Txnlk

)
−→ λ−1y

as k → ∞. In particular, y is nonzero as ∥xnlk
∥ = 1. Using the

continuity of T , we further infer

y = lim
k→∞

Txnlk
= λ−1Ty,

so that λ =: λ1 is an eigenvalue and the claim is established.

3) We next iterate step 2, starting from the the closed subspaces
X1 := E1 and X2 := X⊥

1 of X. By part 1), the operator T leaves
invariantX2 and we can thus define the restriction T2 := T |X2 ∈ B(X2).
It is straightforward to check that T2 is again self-adjoint and compact.
If T2 ̸= 0, we set J = {1} and stop the iteration. Otherwise, T2 has an
eigenvalue λ2 ̸= 0 with |λ2| = ∥T2∥ ≤ ∥T∥ = |λ1| due to the claim in 2).
Observe that λ2 ̸= λ1 since X2 ∩ E1 = {0} and eigenvectors of T2 are
also eigenvectors of T . Statement (6.2) thus shows that all eigenvectors
of T for λ2 belong to X2; i.e., N(λ2I − T2) = N(λ2I − T ) = E2.
We now iterate this procedure obtaining the restriction Tj = T |Xj

to

the orthogonal complement Xj = (E1 ⊕ · · · ⊕ Ej−1)
⊥. If TN+1 = 0 for

some N ∈ N, we stop and take J = {1, . . . , N}. With arguments as
below one can finish the proof in this simpler case.
We focus on the other alternative that J = N. Here we obtain a

sequence (λj)j∈N of non-zero eigenvalues with ∥Tj∥ = |λj| ≥ |λj+1| for
all j ∈ N. In this case the absolute values |λj| tend to a number α ≥ 0
as j → ∞. Moreover, assertion d) has been shown.

4) To check that α = 0, we take a unit vector vn ∈ En for each n ∈ N.
The vectors are pairwise orthogonal by (6.2). Compactness yields a
converging subsequence (Tvnl

)l. Employing Pythagoras’ identity, we
calculate

∥Tvnl
−Tvnk

∥2 = ∥λnl
vnl

−λnk
vnk

∥2 = λ2nl
∥vnl

∥2+λ2nk
∥vnk

∥2 = λ2nl
+λ2nk

.

as k, l → ∞, the left-hand side tends to 0 and the right-hand side to
2α2 so that α = 0 and statement b) is true.
Let x ∈ X and n ∈ N. Set Qn = P1+ · · ·+Pn. Since the projections

Pj onto En are orthogonal to each other and have the kernels E⊥
n ,
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Qn is a projection with range Xn and kernel Xn+1 so that it is also
orthogonal. Using the equations λjPj = TPj = PjT , we compute

Tx−
n∑

j=1

λjPjx = Tx−
n∑

j=1

TPjx = T (I −Qn)x.

Assertion b) then implies that∥∥∥T −
n∑

j=1

λjPj

∥∥∥ ≤ ∥Tn+1∥ ∥I −Qn∥ = |λn+1| −→ 0

as n→ ∞ and hence part e) is valid.

5) The Gram–Schmidt Lemma 3.13 yields a orthonormal basis of
eigenvectors in each eigenspace Ej = PjX whose union B forms a or-
thonormal system because of (6.2). The subspace L = lin{Pjx |x ∈
X, j ∈ N} is contained in R(T ) and R(T ) in L because of assertion e),

so that R(T ) = L. Theorem 3.15 now implies that B is a orthonormal

basis of R(T ). The operator T does not have another non-zero eigen-
value, since its eigenvector would belong to R(T ) and be orthogonal to
B by (6.2). Assertion e) and Theorem 3.15 yield

Tx =
∑
k∈K

(Tx|bk)bk =
∑
k∈K

µk (x|bk)bk

and the other parts of assertion f), using also 6.3. Finally, if J ̸= N, for-
mula 6.3 implies statement c) since the spaces Ej are finite dimensional
and dimX = ∞. □

We next sketch a standard application of the above result to bound-
ary value problems for ordinary differential equations. This class of
problems is the source for many orthonormal bases used in mathemat-
ics and other sciences. We follow Section II.6 of [Co].

Example 6.8. Let q∈C([0, 1],R) and αj, βj∈R with α2
j +β

2
j >0 for

j∈{0, 1}. In X = L2(0, 1) we define the linear map A : D(A) → X by

Au = −u′′ + qu,

D(A) = {u ∈ W 2,2(0, 1) |αju(j) + βju
′(j) = 0 for j ∈ {0, 1}}.

(Note that the boundary conditions are included in the domain.) Here
we write u′ instead of ∂1u, W

2,2(0, 1) is the space of u ∈ W 1,2(0, 1)
with u′ ∈ W 1,2(0, 1), and we use that W 1,2(0, 1) ↪→ C([0, 1]), see Re-
mark 3.33 in [ST]. We assume that A is injective.
As in Satz 4.17 of Analysis 4 one can check that for each f ∈ X

there is a unique function u ∈ D(A) fulfilling Au = f and given by

u(t) =

∫ 1

0

g(t, s)f(s) ds =: (Tf)(t), t ∈ [0, 1],
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for a continuous map g : [0, 1]2 → R. Lemma II.6.8 of [Co] shows
that g(t, s) = g(s, t) for all t, s ∈ [0, 1]. The linear operator T : X →
X is compact and self-adjoint by Examples 5.44 and 6.4. It satisfies
R(T ) = D(A), ATf = f for f ∈ X, and TAu = u for u ∈ D(A), see
Theorem II.6.9 in [Co]. Finally, for all eigenvalues λ ̸= 0 of T , the
eigenspace N(λI − T ) is one-dimensional by Lemma II.6.11 of [Co].
The Spectral Theorem 6.7 and some calculations then provide eigen-

values µn ∈ R \ {0} with |µn| → ∞ as n ∈ N and an orthonormal basis
of X consisting of eigenvectors vn ∈ D(A) \ {0} with Avn = µnvn for
n ∈ N, Let f ∈ X. We obtain the Fredholm alternative:

a) Let µ ̸= µn for all n ∈ N. Then there is a unique solution
u ∈ D(A) of the equation Au− µu = f .

b) Let µ = µn for some n ∈ N. Then there is solution u ∈ D(A)
of Au − µu = f if and only if (f |vn) = 0. Each other solution
is of the form u+ αvn for some α ∈ F.

See Theorem II.6.12 in [Co]. ♢
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[Ne] J. Nečas, Direct Methods in the Theory of Elliptic Equations. Translated from

the 1967 French original. Springer–Verlag, 2012.
[Ru] W. Rudin, Functional Analysis. 2nd edition. McGraw–Hill, 1991.
[ST] R. Schnaubelt, Spectral Theory. Class Notes. Karlsruhe, 2025.
[We] D. Werner, Funktionalanalysis. 5te erweiterte Auflage. Springer–Verlag, 2005.
[Yo] K. Yosida, Functional Analysis. Reprint of the 1980 Edition, Springer–Verlag,

1995.

126


	Chapter 1. Banach spaces
	1.1. Basic properties of Banach and metric spaces
	1.2. More examples of Banach spaces
	1.3. Compactness and separability

	Chapter 2. Continuous linear operators
	2.1. Basic properties and examples of linear operators
	2.2. Standard constructions
	2.3. The interpolation theorem of Riesz and Thorin

	Chapter 3. Hilbert spaces
	3.1. Basic properties and orthogonality
	3.2. Orthonormal bases

	Chapter 4. Two main theorems on bounded linear operators
	4.1. The principle of uniform boundedness and strong convergence
	4.2. Sobolev spaces
	4.3. The open mapping theorem and invertibility

	Chapter 5. Duality
	5.1. The duals of sequence and Lebesgue spaces
	5.2. The extension theorem of Hahn-Banach
	5.3. Reflexivity and weak convergence
	5.4. Adjoint operators

	Chapter 6. The spectral theorem for compact self-adjoint operators
	6.1. Compact operators
	6.2. The spectral theorem

	Bibliography

