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CHAPTER 1

Banach spaces

In these notes X # {0} and Y # {0} are always vector spaces over
the field F € {R, C}.

1.1. Basic properties of Banach and metric spaces

We start with the fundamental definitions of this course which con-
nect the linear structure with convergence.

DEFINITION 1.1. A seminorm on X is a map p : X — R satisfying
a) plax) = |a| p(z) (homogeneity),
b) p(z +vy) < p(z) + p(y) (triangle inquality)
forall x,y € X and o € F. If p fulfills in addition
¢)plz) =0 = =0 (definiteness)
for all x € X, then p is a norm. One mostly writes p(x) = ||z|| and
p=|-|l. The pair (X,||-||) (or just X ) is called a normed vector space.

In view of Example 1.4(a), we interpret ||z|| as the length of z and
|lx — y|| as the distance between x and y. Seminorms will only occur
as auxiliary objects, see e.g. Proposition 1.8.

DEFINITION 1.2. Let || - || be a seminorm on a vector space X. A
sequence (Tp)nen = (Tn)n = (x,) in X converges to a limit z € X if
Ve>0 dIN.eN Vn>N.: |z,—z| <e.

We then write z, — x asn — oo or x = lim, o =,. Moreover, (x,)
s a Cauchy sequence in X if

Ve>0 dAN.eN Vnm>N.: |z, — x| <e.
A normed vector space (X,|| - ||) is a Banach space if each Cauchy
sequence in (X, -||) converges in X. Then one also calls (X, ]| -||) or
|| - || complete.

In this section we discuss (and partly extend) various results from
Analysis 2 whose proofs were mostly omitted in the lectures. We start
with simple properties of norms and limits.

REMARK 1.3. Let || - || be a seminorm on a vector space X and (x,,)
be a sequence in X. The following facts are shown as in Analysis 2,
see e.g. Satz 2.2.

a) The vector 0 has the seminorm 0.

2



1.1. Basic properties of Banach and metric spaces 3

b) We have ||[z| = [ly|l| < lz =yl and [jz[| >0 forall z,y € X.
c) If (x,) converges, then it is a Cauchy sequence.
d) If (z,,) converges or is Cauchy, it is bounded; i.e., sup,,cy || zn || < 0.

e) If x, > zand y, — yin X as n — oo and «, 5 € F, then the
linear combinations ax,, + By, tend to azx + fy in X.

f) Limits are unique in the norm case: Let ||-|| be a norm. If z,, — x
and x, — y in X as n — oo for some z,y € X, then x = y. %

For our basic examples below and later use, we introduce some no-
tation. Let X be a vector space and S # () be a set. For maps
f,yg:S — X and numbers a € F one defines the functions

f49:8=X;(f+9)(s) = f(s) +9(s),
af 5= X; (af)(s) = af(s).
It is easily seen that the set {f : S — X} becomes a vector space en-

dowed with the above operations. Function spaces are always equipped
with this sum and scalar multiplication. Let X = [F. Here one puts

fg:8=F; (fg)(s) = f(s)g(s)-
Let «, B € R. We then write f > a (f > «, respectively) if f(s) > «
(f(s) > «, respectively) for all s € S. Similarly one defines o < f < 3,
f < g, and so on.

EXAMPLE 1.4. a) X = F™ is a Banach space for the norms

1
aof(Emry s
max{|z| |k =1,...,m}, p= o0,
where x = (z1,...,x,) € F™. Moreover, vectors v,, converge to x in F"™

as n — oo for each of these norms if and only if all components (v, )
tend to z; in F as n — oco. See Satz 2.4, 2.9 and 2.13 in Analysis 2.
We always equip X = F with the absolute value | - | which coincides
with each of the above norms.

b) Let (X, || - ||) be a Banach space and K a compact metric space.
Then the set

E=C(K,X)={f: K — X| [ is continuous}
endowed with the supremum norm

[ flloo = sup [ £(s)]
seK

is a Banach space. We equip E with this norm, unless something else
is specified.

Before proving the claim, we note that the above supremum is a
maximum and thus finite, cf. Theorem 1.45 or Analysis 2, and that
convergence in ||-||o is just uniform convergence from Analysis 1. In the
special case X = R, the norm || f — g|| is the maximal vertical distance
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between the graphs of f,g € E. If f > 0 describes the temperature in
K, for instance, then || f||« is the maximal temperature. Moreover, the
closed ball Bg(f,¢) around f of radius € > 0 consists of all functions
g in E whose graph belongs to an ‘e—tube’ around f.

PROOF. It is clear that E is a vector space. Let f,g € F and o € F.
Since || - || is a norm, we obtain

lfle=0 = VseK: f(s)=0 = [f=0,
oSl = sup (5] = sup ol 176)1 = lalsup 565 = o 1]

1f+ glloe = sup[If(s)+g(s)l| < sup([ ()l +lg()) < N Flloe + llglloe,

so that E is a normed vector space.
Take a Cauchy sequence (f,,) in E. For each € > 0 there is an index
N. € N with

[fn(8) = fm () <N fro = frmlloo < €

for all n,m > N. and s € K. By this estimate, (f,(s)), is a Cauchy
sequence in X. Since X is complete, there exists the limit f(s) :=
lim,, o0 fn(s) in X for each s € K. Let s € K and € > 0 be given.
Take the index N, from above and n > N.. We then estimate

1F(s) = fa(s)ll = Tim | fin(s) = fu(s)[] < fim sup [fm = fulloo < e

Because N, does not depend on s, we can take the supremum over
s € K and derive the inequality ||f — fu|lec < € for all n > N..

To see that f belongs to F, fix an integer N with || f—fn||cc < e. The
continuity of fy yields a radius § > 0 such that || fx(s) — fa(t)|| < e
for all s € By(t,d). For such s we deduce

1 (s) = SO < Nf ()= () I+ L (s) = fn @l + v (@) = O] < 3e;
i.e., f € E. Summing up, (f,) converges to f in E as required. O
c) Let X = C([0,1]). We set

17l = / £(s)] ds

for f € X. The number ||f — g||; yields the area between the graphs
of f,ge X (if F=R), and || f, — f]l1 — 0 is called convergence in the
mean. For a mass density f > 0 of a substance, the integral || f||; is
the total mass. We claim that || - ||; is an incomplete norm on X.

PRrROOF. Let a € F and f,g € X. If f # 0, then there are numbers
0<a<b<1andd > 0such that |f(s)] > 6 for all s € [a,b] since f
is continuous. It follows

b
1£1l1 z/ 1f(s)] ds > (b—a)d > 0.
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Using standard properties of the Riemann integral, we also derive

1
HOéflllz/0 el [f(s)l ds = |al [ f]]1,

1+l = / 1F(s) + g(s)] ds < / 1£()] + lg(s)) ds = [ £l + gl

As a result, || - ||; is a norm on X.!
To see its incompleteness, we consider the functions given by

0, 0<s<%—l,

- - n

1_ 1 1

fa(s)=qns—5+1, 5—=-<s<j3,
1, 1 <s <1,

for n € N with n > 2. For m > n > 2 we compute

1

I = fulli = [

2

a(s) = o)l ds <+ — 0

3=

as n — oo; i.e., (f,) is a Cauchy sequence for || - ||;. There thus exists a
limit f of (f,) in L'([0, 1]) and a subsequence (f,,); tends to f pointwise
a.e. by the Riesz—Fischer Theorem 5.5 in Analysis 3. On the other hand,
fn tends to the characteristic function 1y /9 pointwise as n — 0o, so
that f = 1j0,1/9 a.e. and no representative of f is continuous. Since
limits in (X, || - ||1) are unique, (f,,) does not converge in this space. O

d) Let X = C(R) and a < b in R. One checks as in part b) that
p(f) = suP,eiap |f(8)| defines a seminorm on X. Moreover, if p(f) = 0,
then f =0 on [a,b], but of course f does have to be the 0 function. ¢

The vector space X = C/([0, 1]) is infinite dimensional since the func-
tions p, € X given by p,(t) = t" are linearly independent for n € N.

Before discussing further examples, we study fundamental ‘topolog-
ical’ concepts in a general framework without vector space structure.

DEFINITION 1.5. A distance or metric d on a set M # () is a map
d: M x M — R satisfying
a) d(z,y) =0 <= z =y (definiteness),
b) d(z,y) = d(y, z) (symmetry),
¢) d(z,y) < d(z,2) +d(z,9) (triangle inequality)
for all x,y,z € M. The pair (M,d) (or just M) is called a metric
space. A sequence (x,) in M converges to a limit x € M if
Ve>0 dN.eN Vn>N.: d(z,z,) <e,

in which case we write x, — T asn — 00 or T = lim, oo x,. It i a
Cauchy sequence if

Ve>0 IN.eN Vnom>N.: d(zp,,z,) <e.

IThis part of the proof was omitted in the lectures.
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The space (M,d) (ord) is complete if each Cauchy sequence converges
in (M,d).

A metric d automatically takes values in [0, 00). Indeed, for x,y € M
the above properties yield

0=d(z,z) <d(z,y) +d(y,x) = 2d(x,y).

In a metric space (M,d) we write B(x,r) = By/(z,7) = Bq(z,7) =
{y € X |d(z,y) < r} for the open ball with center z € M and radius
r>0,and B(z,7) = {y € X |d(x,y) < r} for the closed ball. We start
with simple examples, cf. Beispiel 2.15 in Analysis 2.

EXAMPLE 1.6. a) Let X be a normed vector space. Set d(z,y) =
|lx — y|| for z,y € X. Then Definition 1.5a) follows from Defini-
tion 1.1c), 1.5b) from 1.1a) with @ = —1, and 1.5¢) from 1.1b). Con-
vergence in (X, || - ||) and in (X, d) are the same.

b) Let N C M and d be a metric on M. Then dy(z,y) = d(z,y)
for x,y € N defines the subspace metric dy on N. One often writes d
instead of dy. For instance, let M be a normed vector space and d be
given as in a). Here dy is not a norm unless N is a linear subspace.

¢) Let M # () be any set. One defines the discrete metric on M by
setting d(z,x) = 0 and d(z,y) = 1 for all x,y € M with z # y. It is
easy to check that d is indeed a metric on M and that a sequence (z,,)
converges to a point x € M in the discrete metric if and only if there
is an index m € N such that x, = x for all n > m.

The map ¢ : M? — [0,00); d(z,y) = 1, satisfies properties b) and c)
in Definition 1.5, but none of the implications in a); cf. Remark 1.3a).

d) Let (Miy,dy) and (Ms,d2) be metric spaces. On the product
space M = M; x M,, we obtain a metric by setting d((z,y), (u,v)) =
dy(z,u) + da(y,v). A sequence (x,,y,) in M tends to (x,y) € M with
respect to d if and only if x,, — = in M; and y,, — y in M5 as n — oc.

e) Let M be the unit sphere in R3. The length of the smaller great
circle through z,y € M defines a metric on M. O

We list basic properties of limits in metric spaces shown in Satz 2.16
of Analysis 2.

REMARK 1.7. Let M be a metric space and (x,) be a sequence in
M. Then the following assertions hold.

a) If x,, - xin M as n — oo, then (z,) is Cauchy.

b) If x, — = and z,, — y in M for some z,y € X, then = = y.

c) If (x,) converges or is Cauchy, then it is bounded; i.e., there exist
a point z € M and a radius R > 0 with z,, € B(z,R) for alln € N. §

The next result describes how to construct a distance from a given
sequence of seminorms. This procedure is often used in analysis.
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PROPOSITION 1.8. Let X be a vector space and p;, j € N, be semi-
norms on X such that for each x € X \ {0} there is an index k € N
with pr(x) > 0. Then

iz j—)a iL',yEX,

e 1+pj(xr —vy)

defines a metric on X such that d(x,,x) — 0 as n — oo if and only if
pi(x, —x) = 0 as n — oo for each j € N. For Cauchy sequences we
have an analogous characterization.

PROOF. Note that the function ¢(t) = t/(1 + t) increases strictly
for t > 0, ¢(0) =0, and ¢(t) € (0,1) for t > 0. In particular, the series
in the statement converges in [0, 00). Let z,y, 2,2, € X for n € N.

1) We have d(x,y) = 0 if and only if p;(zr —y) = 0 for all j € N
which is equivalent to z = y by the assumption. Moreover, the identity
d(z,y) = d(y, ) follows from p;(x —y) = p;(y — x) for each j € N.
Using the monotonicity of ¢, we further estimate

; p]( y) p](y )
d(z, 2) 22 [1+pg( — D) =) | L4 pya—y) + pi(y—2)
gd(az,y)—l—d(% z).

Thus, d is a metric on X.
2) Assume that d(z,,x) — 0 as n — oo. Fix any j € N and let
e €(0,1/2). Set n = 27Je. There is an index N, ; € N such that

277 p(@ = ) <d(x,z,) <n=27¢

1—|—pj(:c—mn)
pi(r —xn) <e(l+pij(z — 1)) <e+ §pi(r — 2),
pi(z —x,) <2

for all n > N_; ie., pj(z —z,) = 0 as n — oo.
3) Conversely, assume that p;(x —x,) — 0 as n — oo for each j € N.
Let € > 0. Fix a number J. € N with

[e.e]
Z 277 < e.
j=Je+1

We then find an index N, € N such that p;(z —z,) < e for all j €
{1,...,J.} and n > N.. It follows that

Je
d(w,xn)§22_jpj(x—a:n Z 27<6223+5<26
Jj=1 j=Je+1
for all n > N,. The final assertion is similarly shown. ]

We next see that the above approach fits to the ‘uniform convergence
on compact sets” known e.g. from complex analysis, which is used in
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several variants throughout analysis. In the following example we first
recall important facts about the distance to sets which were shown in
Corollary 2.52 of Analysis 2.

EXAMPLE 1.9. a) Let X be Banach space and A C X be non-empty.
For x € X we define its distance to A by

d(x, A) = inf{[lz — y|| |y € A},

We also put d(x, ) = co. The function dy : X — [0,00); x — d(z, A),
has the following properties.

1) The map d 4 is Lipschitz with constant 1. To check this claim, pick
z,y € X and z € A, where we may assume that d(z, A) > d(y, A). We
first note that d(x, A) < ||[z—z|| < ||z—y||+|ly—z]||. Taking the infimum
over z € A, we deduce the inequality d(z, A) < ||z — y|| + d(y, A) and
hence [d(z, 4) — d(y, A)| < |lz — y].

2) We have d(z,A) = 0 if = belongs to A (choose y = x in the
definition). If A is closed, then ds vanishes only on A. (Indeed, if
d(xz,A) = 0, then there are vectors y, in A with ||z — y,|| — 0 as
n — 00, so that x is contained in A by the closedness.)

3) Let A be closed and K C X be compact with ANK = (). Since dy4
is continuous, Theorem 1.45 (see also Analysis 2) then yields a point
ro € K with

dist(K, A) := inf d(z, A) = (0, 4) > 0,
S

where we also use part 2).
Let U C R™ be open. For j € N we set

Kj={seUlls|y <j, d(s,0U) = 1/j}.

(If U = R™, then K; = U N B(0,5).) Because of claim 1), these sets
are closed and bounded, and hence compact by Bolzano-Weiserstraf.
We also have the inclusions K; C K1 C U, and the union of all K is
U. Let K C U be compact. Then K is contained in K for all integers
§ > 1 with dist(K,0U) > 1/j and K C B(0, j), which exist by 3).

Let f € B := C(U). We define p;(f) = max.eg, |f(s)| for j € N.
As in Example 1.4d), every p; is a seminorm. Since Uj K; = U, only
f = 0 satisfies p;(f) = 0 for all j € N. Due to Proposition 1.8, the
space E thus possesses the metric

[e o]

B _; maxeer, | f(s) — g(s)]
d(f,g9) = ;2 T ek 1FG) = 96

Moreover, a sequence (f,) tends to f in (E,d) if and only if
maxgeg, | fu(s) — f(s)] — 0 as n — oo for each j € N. By the
above observations, this property is equivalent to the convergence
maxser | fn(s) — f(s)| = 0 as n — oo for every compact subset K C U.
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One can replace here the sets K; by the closures L; of any open
subsets O, C U such that Lj, C U is compact and | J, .y Or = U. (Note
that every compact subset K C U can be covered by finitely many of
the sets Oy, see Theorem 1.37 or Analysis 2.)

Finally, (X,d) is complete. In fact, let (f,) be Cauchy in (M,d).
Proposition 1.8 yields that the restrictions (f,|x,)n» are Cauchy in
C(K;) for each j € N. These sequences have limits Y in C(Kj)
by Example 1.4. Since f,|k, coincides with the restriction of f,|x,,,
to K, the function £ is the restriction of fU+ to K;. We can thus
define a continuous map f : U — F by setting f(s) = f“(s) for any
J € Nwith s € K;. Then (fy|k;)n tends to f|g, for each j € N, and
hence (f,) to fin (F,d).

b) Let Y = Cy(R) = {f € C(R)|f is bounded} and dy be the
subspace metric of d in part a). Then (Y, dy) is not complete. Indeed,
take the functions f,, € Y given by f,.(s) = |s| if |s| < n and f,(s) =n
otherwise. Then f, converges in (X,d) to the function f given by
f(s) = |s|. Therefore (f,) is a Cauchy sequence in (Y,dy). But it
cannot have a limit g in Y, since then g would be equal to f ¢ Y. ¢

The next definitions belong to the most basic ones in analysis; below
we characterize them in terms of sequences.

DEFINITION 1.10. Let M be a metric space. A subset O C M is
called open if for each x € O there is a radius r, > 0 with B(z,r,) C O.
Moreover, ) is open by definition. A subset N C M s a neighborhood
of a point xo € M if there is a radius ro > 0 with B(xg,m9) C N. A
subset A C M s called closed if its complement M \ A is open.

We first illustrate these concepts by simple examples.

ExXAMPLE 1.11. Let (M, d) be a metric space, z € M, and r > 0.
a) The ball B(xz,r) is open. In fact, for each point y € B(z,r) we
define the radius p = r — d(z,y) > 0. Let z € B(y, p). It follows
d(z,2) <d(z,9) +d(y, 2) < p+d(z,y) =75
i.e., z € B(x,r). This means that B(y, p) belongs to B(z, 1) as claimed.
b) The ball B(z,r) is closed.? Indeed, for any given y € M \ B(z,)
we set R =d(z,y) > r. Let z € B(y, R —r). We then estimate
R=d(z,y) <d(z,2) +d(5y) < d(z,2) + R,
and thus d(z,z) > r. By this fact, the ball B(y, R —r) is contained in
M\ B(z,r), so that M \ B(z,r) is open and B(z,r) is closed.

¢) The sets ) and M are both closed and open. As in part b) with
r = 0, we see that the set {z} is closed for every x € M.

2This proof was omitted in the lectures.
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d) We equip Z with the subspace metric d(k,[) = |k — | of R. Then
the open ball B(k, 1) is equal to the singleton {k} for each k € Z, which
is also closed by part c). O

PROPOSITION 1.12. Let (M,d) be a metric space and A,O C M.
Then we have the following characterizations.

a) The subset A is closed in M if and only if for each sequence (x,)
m A with x, — x i M as n — oo, the limit x belongs to A.

b) The subset O is open in M if there does not exist a sequence (xy,)
in M\ O converging to a point x € O.

PRrROOF.? By definition, O C M is open if and only if for each
x € O there is a radius r > 0 such that each y € M with d(z,y) < r
already belongs to O. This statement is equivalent to the fact that no
x € O can be the limit of a sequence in M \ O; i.e., assertion b) holds.
Part a) follows from b) by taking complements in M. O

The above characterization of closedness is often employed in these
lectures, for instance in the following useful fact.

COROLLARY 1.13. Let (M,d) be a complete metric space and A C
M. The set A is closed if and only if it is complete for the subspace
metric dy. In particular, if X is a Banach space and Y C X a linear
subspace, then Y s closed in X if and only if it is a Banach space for
the restriction || - ||y of the norm || - ||x to Y.

PRrOOF. First, let A be closed. Take a Cauchy sequence (x,,) in A
with respect to d4. Since (M, d) is complete, this sequence has a limit
x in M. The point z belongs to A by Proposition 1.12; i.e., (x,) tends
to x in (A4,da).

Second, let (A,d4) be complete. Take a sequence (z,) in A with
a limit x in (M,d). This sequence is Cauchy in (M,d) and hence in
(A,d4). By assumption, it then possesses a limit y in A which has to
be equal to x, so that z is contained in A. Proposition 1.12 thus yields
the closedness of A. The addendum is a direct consequence. O

We can now discuss several typical examples.

ExaMPLE 1.14. Let X = C(]0, 1]) be endowed with || - ||o.

a) In R the set S = (0, 1] is neither closed nor open. Indeed, the
points 1 + % do not belong to S, but tend to 1 as n — oo, and the
numbers % € S converge to 0 as n — oo. On the other hand, S is a
neighborhood of 1 since it contains the open interval (1, 32).

b) The subset Z is closed in R because it is the union of the closed
sets {k} for k € Z, see Example 1.11 and Proposition 1.15.

c) Let Y = {f € X|f(0) =0}. Clearly, Y is a linear subspace. Let
(fn) in Y tend to f in X. It follows that 0 = f,(0) — f(0) as n — oo,

3This proof was omitted in the lectures.
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hence f(0) = 0 and f € Y. Proposition 1.12 and Corollary 1.13 thus
imply that Y is closed and that Y is a Banach space for || - ||o.

d) i) The set O = {f € X |f > 0} is open in X. In fact, let f € O.
We then have mingep 1 f(s) = f(s0) =: 0 > 0 for some sy € [0, 1]. Take
g € X with [|f — gljec < . We now estimate

9(s) = f(s) +9(s) = f(s) 26 = If —glle > 0

for all s € [0,1], so that ¢ € Y. This means that the ball B(f,J) is
contained in O, and hence O is open.

ii) The set A = {f € X|f > 0} is closed in X. Indeed, take a
sequence (f,) in A with a limit f in X. For each s € [0, 1] the numbers
fu(s) > 0 converge to f(s) as n — oo, so that f > 0 and f € A.
Proposition 1.12 now yields the claim.

iii) The set C' = {f € X | f(0) > 0 and f(1) > 0} is neither open
nor closed in X. Again this fact follows from Proposition 1.12: The
functions f, = %]1 belong to C' and converge in X to 0 ¢ C' which
shows that C' is not closed. Moreover, the functions g, given by g,(s) =
1—(1+ 1)s do not belong to C, but they have the limit g(s) =1 — s
in X which is an element of C', so that C' is not open.

e)i) Let E=Cy(R) :={f € C(R)| f(s) = 0 as s — too}. Clearly,
E is a linear subspace of Cy(R) := {f € C(R)|f is bounded}. In
Exercise 2.1 it is checked that C,(R) is a Banach space for the supre-
mum norm, compare also Example 1.4. Let (f,) be a sequence in E
having a limit f in Cy(R). Take some ¢ > 0. Fix an index N with
IIf — fnllo < €. Since fy € E, there is a number s. > 0 such that
|fn(s)] < e for all s € R with |s| > s.. For such s, we then estimate

If(s)] < [f(s) = fn(s)| + [fn(s)] < 2e.

This means that f belongs to E, and hence E is a Banach space for
| - lo by Proposition 1.12 and Corollary 1.13.

ii) We can show that A = {f € E'| f > 0} is closed in F as in part d).
However, the set V = {f € E|f > 0} and also A are not open in E.
Indeed, we look at the function f € V C A given by f(s) = s72 for
|s] > 1 and f(s) = 1 for s € (—1,1). We take maps ¢, € E with
0<p, < % and ¢, (n) = % for 2 <n € N. Then f, := f — ¢, belongs
to £ but not to A 2 V because f,(n) < 0. Since also || f — fullec < =
for every n, Proposition 1.12 yields the claim.

f) Let £ > 0. Theset L = {f € X|Vt,s € [0,1] : |f(t) — f(s)] <
(|t — s|} of functions with Lipschitz constant less or equal ¢ is closed
in X, again because of Proposition 1.12: Even if functions f, € L
converge only pointwise to some f as n — 0o, we conclude

F(0) = ()] = Tim |u(t) = fuls)] < L]t — s

for all t, s € [0, 1], so that the limit f belongs to L.
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On the other hand, the set D = {f € C*([0,1]) | ||f'||loc < 1} is not
closed in X. To check this fact, we take the maps f, € D given by
fa(s) = ((s = 2)* + 1)/2 for n € N. They tend in X to the function
s+ f(s) = |s — |, which is not differentiable at 3. O

We recall the permanence properties of openness and closedness.

PROPOSITION 1.15. Let M be a metric space. Then the following
assertions hold.

a) The union of an arbitrary collection of open sets in M is open.
The intersection of finitely many open sets in M is open.

b) The intersection of an arbitrary collection of closed sets in M is
closed. The union of finitely many closed sets in M is closed.

PRrROOF.* Let be C be a collection of open sets O in M. Take
v €V :=Jpee O. Then there is a set O' € C containing . Since O’ is
open, we have a radius r > 0 with B(z,r) C O" C V. Therefore V is
open. Let O1,---,0,, C M beopenand x € D := O;N---N0O,,. Again,
there are radii r; > 0 such that B(x,r;) C O, for each j € {1,...,n}.
Setting p := min{ry,...,r,} > 0, we arrive at B(z, p) C D, so that D
is open. Assertion b) follows from a) by taking complements. O

The finiteness assumptions in the above result are needed, as seen
by easy examples: The sets (0,1 + %) are open in R for each n € N,
but their intersection (1, (0,14 +) = (0,1] is not open in R. The sets
[0,1—21] are closed in R for each n € N, but their union | J, [0, 1—1] =
[0,1) is not closed in R.

We now construct the ‘nearest’ open or closed set for a given N C M
in a canonical way.

DEFINITION 1.16. Let M be a metric space and N C M. We define

a) the interior N° =int N of N in M by N° = |J{O C M | O open
in M,O C N},

b) the closure N = cls N of N in M by N = (\{A C M| A closed
in M, AD N},

¢) the boundary ON of N in M by ON = N\ N° = NN (M \ N°).

The set N is called dense in M if N = M. An element x of N° is an
interior point of N, and z € N an adherent point. Moreover, x € M is
said to be an accumulation point of N if there is a sequence in N\ {z}
converging to x. If x € N is not an accumulation point of N, then it
is isolated in N.

The above concepts can be characterized in various ways, in partic-
ular using sequences or balls.

PROPOSITION 1.17. Let M be a metric space M and N C M. Then
the following assertions are true.

4This proof was omitted in the lectures.



1.1. Basic properties of Banach and metric spaces 13

a) i) N° in the largest open subset of N.

ii) N is open if and only if N = N°.

iii) N° ={x € M |3r >0 with B(z,r) C N} =1 N,

={r e M|H(z,) in M\ N with v, — x, n — 0o} =: Ny,

b) i) N in the smallest closed subset of M containing N.

it) N is closed if and only if N = N.

iii) N = ON UN°.

iww) N={x € M|3(z,) in N with , - x, n — oo} =: Nj.
c) i) ON is closed.

ii) ON ={xeM|Jz, €N, y, &N s.t. ©, > =, Y — T, N —> O}.
d) N is dense in M if and only if for each x € M there are x, € N

with x,, — * as n — 00.

PROOF.? a) The inclusion N° C N follows from the definition of
N°, and N° is open by Proposition 1.15. If N° C O C N for an open
set O, then O C N° due to Definition 1.16, so that O = N°. We have
shown claim i) which implies ii). In iii), we deduce N; C N° from the
definition of N°, and N° C N, is a consequence of Proposition 1.12
and the openness of N°. If x ¢ Ny, then there is a sequence (z,) in
M \ N converging to z; i.e., v ¢ No. Hence, assertion iii) holds.

b) Assertions i) and ii) can be shown as in part a), and Definition 1.16
yields iii). Part iii) in a) implies that N5 = M \ (M \ N)°, and thus Nj
is closed. Clearly, N is a subset of N3. From Proposition 1.12 and the
closedness of N, we infer the inclusion N3 C N. Assertion iv) is now a

consequence of 1).
c¢) and d) follow from parts a) and b) and the definition of ON. O

We note that N; and N3 are the most important descriptions of the
interior and the closure, respectively. We add a typical consequence.

COROLLARY 1.18. Let X be a normed vector space.
a) If Y C X is a linear subspace, then also'Y is a linear subspace.
b) If Y C X is conver, then also'Y is conver.

PROOF. Let Y be convex. Take x,y € Y and t € [0,1]. Proposi-
tion 1.17 yields vectors x,, and y, in Y with x,, - x and ¥, - y in X
as n — 00. By assumption, the convex combinations tz, + (1 — t)y,
belong to Y, and they converge to tx + (1 — t)y. Assertion b) then
follows from Proposition 1.17. Part a) is shown similarly. U

Let M be a metric space and f: M — X. The support of f is
supp f = suppy, f = clsu{s € M| f(s) # 0}.

We now illustrate the above concepts by a series of standard examples.

5This proof was omitted in the lectures.
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ExXAMPLE 1.19. a) Using the decimal representation of the reals, see
Example 3.18 of Analysis 1, one sees that QQ is dense in R and has
empty interior, so that 0Q = Q \ Q° = R.

By Example 1.14, the subset Z is closed in R. Moreover, every
intersection B(k,1) NZ is equal to {k}, so that each k € Z is isolated
in Z and 7Z has no interior points. If we equip Z with the subspace
metric, then the closed ball By(k,1) = {k—1,k, k+1} differs from the

closure By(k,1) = {k} of By(k,1) for each k € Z.

b) In R, the largest of open subset of (0,1] is (0,1) = (0,1]°, and
0,1] = (0, 1] is the smallest closed set containing (0,1]. Hence, {0,1}
is the boundary of (0, 1].

c¢) The set P of polynomials is dense in X = C([0, 1]) by Weierstraf’
approximation Theorem 5.14 from Analysis 3. Since P C C*([0,1]),
also the subspace C*([0,1]) is dense in C([0, 1]) for every k € N.

d) Let X be a normed vector space, x € X, and r > 0. We have
B(z,7) = B(z,r) and B(z,7) = 0B(z,7)={y € X| |z —y| =7} =: 5,
compare part a).

PROOF.% Proposition 1.17 and Example 1.11 show the relations
B(x,r)U0B(z,r) = B(z,r) C B(z,r). The boundaries 0B(z,r) and
OB(xz,r) are thus contained in S = B(z,r)\ B(z,r). Take y € S. Then
the vectors vy, =y — %(y — z) belong to B(z,r) and z, =y + %(y — )
to X \ B(x,r) for all n € N, and they converge to y as n — 0.
Consequently, y is an element of 9B (z,r) and dB(x,r) due to Propo-
sition 1.17. The assertions easily follow. O

e) Let X=C([0,1]) and N={f€X|f>00n0,1), f>0o0n [5,1]}.
We then have N° = {f € X |f >0} ==O, N={f € X|f >0} = 4,
and ON ={f e X|f >0, 3s €]0,1] with f(s) =0} =: R.

Proor. By Example 1.14, the set O is open and A is closed in X.
Proposition 1.17 thus yields the inclusions O C N° C N C N C A.
Take f € N\ O. There is a point s € [3,1] with f(sp) = 0. Choose
functions ¢,, in X satisfying 0 < ¢, < 1/n and ¢, (sq) > 0 for n € N.
The maps f, := f — ¢, then belong to X \ N and converge to f in
X as n — oo. Because of Proposition 1.17, the function f is thus
not contained in N° and hence O = N°. Next, let ¢ € A. The maps
Jn =g+ %Il are elements of NV and tend to g in X as n — oo, so that
g € N and A = N. Definition 1.16 now implies that ON = R. O

f) Let X = C([0,1]) and put C(0,1) := C((0,1)). The closure of
Ce(0,1):={feC(0,1)|30<ar <bs <1:suppf C [ay, bf]}
in X is given by
Co(0.1) = Co(0.1)) = {F € C(0.1) |3 fing F6) = 0 = lim S0}

t—1

6This proof was omitted in the lectures.
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We consider C.(0,1) and Cy(0, 1) as subspaces of X by extending func-
tions by 0 to [0,1]. In particular, Cy(0,1) is a Banach space for the
supremum norm by Corollary 1.13.

PROOF. Asin Example 1.14 we see that Cy(0, 1) is closed in X . Since

C.(0,1) C Cy(0,1), Proposition 1.17 yields the inclusion C.(0,1) C
Co(0,1). Let f € Cp(0,1). Choose functions ¢, € C.(0,1) such that
0§gpn§1andtpn(t):1for%§t§1—%andn22. The products
fn := @nf then belong to C.(0,1). We estimate

If = falle = sup  [1=—@u@®I[f(O<  sup  [f{)].
o<t<i1-l<t<a o<t<ii-l<e<a
The right hand side tends to 0 as n — oo because of f € Cy(0,1). As
a result, Cy(0,1) is a subset of C.(0,1) as needed. O

g) The sets L and D from Example 1.14 or C*([0, 1]) have no interior
points in X = C([0,1]). Indeed, take a function f from one of these
sets. We use the maps ¢, € X given by ¢,(s) = /s for s € [0, +) and
©n(s) = y/1/n for s € [%,1], which are not Lipschitz for ecach n € N
and tend to 0 in X as n — oco. The differences f, = f — ¢, then
converge to f in X and do not belong to L, D, resp. C*([0, 1]). O

Though subsets N C M can be equipped with the restriction of the
metric d in M, properties of S C N may change when passing form d
to dy as indicated in the next facts, see Bemerkung 2.25 in Analysis 2.

REMARK 1.20. Let (M, d) be a metric space and N € M be endowed
with the subspace metric dy. A set C C N is called relatively open
(resp., relatively closed) if it is open (resp., closed) in (N,dy), and
analogously for the other concepts introduced above.

a) The open balls in (IV,dy) are given by

By(z,r) ={y € N|r>dn(z,y) =d(z,y)} = B(z,r) N N.

b) A subset S C N is relatively open (resp., closed) if and only if
there is an open (resp., closed) subset S’ of M with S =S"N N.

¢) The set N is open (resp., closed) in M if and only if openness
(resp., closedness) in N and M coincide.

d) The open unit ball in N = R2 for |- |5 is given by By(0,1) =
{(z,y) eR? |2,y >0, 2> +y*> < 1}. O

After having discussed convergence and topological concepts, we now
study the class of functions which preserve these structures.

DEFINITION 1.21. Let (M,d) and (M',d") be metric spaces.

a) Let D C M, xg € M be an accumulation point of D, yo € M', and
f:D — M'. We say that f(x) converges to yy as x — xo if for every
sequence (x,) in D\{xzo} with limit xy in M we have f(x,) — yo in M’
as n — o0o. We then write yo = lim,_,,, f(x) or f(z) = yo as x — xy.
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b) Let f : M — M' and xo € M. The map f is called continuous
at xo if for every sequence (x,) in M with x, — xo in M, we have
f(zn) = f(zo) in M" as n — oo. If f is continuous at every xq € M,
it is said to be continuous (on M). We write C(M,M') = {f : M —
M'| f is continuous} and put C(M) = C(M,F). If f € C(M,M') is
bijective with f~1 € C(M', M), then f is an homeomorphism.

In other words, continuity means that f(x¢) = lim, ., f(x) if xg
is an accumulation point of M. (If zy is isolated in M, then f is
automatically continuous at xy since only eventually constant sequences
can converge to xy in M in this case.) We have formulated part a) in
the above definition a bit more general to admit functions which are not
everywhere defined or possess a limit different from f(zy). To define
continuity for functions f : D — M’ on a subset D C M, one has to
replace (M, d) by the metric space (D, dp), cf. Proposition 1.23 below.

We first discuss a couple of simple examples. In the next chapter we
investigate continuous linear maps in great detail.

ExXAMPLE 1.22. a) Every distance d : M x M — R is continuous,
where M x M is endowed with the metric from Example 1.6. In fact,
let (zn,yn) = (x,y) in M x M as n — oo. Using the inequalities

d(zn, yn) — d(z,y) < d(zn, ) + d(2, y5) — d(z,y)
< d(@p, ) + d(z, y) + d(y, yn) — d(z,y)
d<m7xn) d(y, yn),
d(z,y) = d(@n, yn) < d(z, 20) + A2, Yn) + A(Yns y) — AT, Yn)
= d(z,2,) + d(y, yn),

we deduce that |d(x,,y,) — d(z,y)| tends to 0 as n — c0.”

b) Let X be a normed vector space. Then the maps F x X — X;
(a,z) = az, and X x X — X; (z,y) — = +y, are continuous (cf. the
proof of Corollary 1.18).

¢) Let X = C([0,1]) and ¢ : F — F be Lipschitz on B(0,r) C F
with constant L, for every r > 0. Set (F(u))(s) = ¢(u(s)) for all
s €[0,1] and u € X. Since F'(u) belongs to X, we have defined a map
F: X — X. We claim that F'is Lipschitz on all balls of X and thus
continuous.

PROOF. Let u,v € Bx(0,7) for some r > 0. For each s € [0,1] we
then have |u(s)],|v(s)| < r and hence

[1F(u) = F(0)lloe = sup |p(u(s)) — @(v(s))] < sup Ly |u(s) —v(s)]

s€[0,1] s€[0,1]

=L, |[u — v co-

"This proof was omitted in the lectures.
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Let u, — win X. Then R := sup,,cy ||tn]|oo s finite and ||uljoc < R. It
follows

| F(u) — F(un)||oo < Lr ||t — tup|loe — 0, n — 00. O

We recall the permanence properties of continuity from Satz 2.30 in
Analysis 2.

ProprosITION 1.23. Let (M,d), (M',d") and (M",d") be metric
spaces and xog € M. Then the following assertions are true.

a) Let f: M — M’ continuous at xg and h : M' — M" at f(zg).
Then the composition ho f : M — M" is continuous at x.

b) Let D C M, zo € D and f : M — M’ be continuous at xg.
Then the restriction fijp : D — M' is continuous at xy. The converse
implication is true if D is open in M.

c) Let Y be a normed vector space, f,g : M — Y be continuous at
xg, and o, € F. Then the linear combination of + g : M — 'Y
is continuous at xo. If Y = F, then also the product fg : M — F is
continuous at xg.

The openness of D is needed in the second part of b), as seen by the
example M = R, D = [0,1], 20 = 0 and f = 1j1. One can nicely
characterize continuity in terms of open or closed sets.

PROPOSITION 1.24. Let (M,d) and (M’,d") be metric spaces, xq €
M, and f: M — M.
a) The following assertions are equivalent.
(i) The map f is continuous at .

(ii) Ve > 030 >0 Vo € M with d(z,x¢)<d : d'(f(x), f(zo)) < e.

(iii) If V' is a neighborhoood of f(xo) in M', then f=1(V') is a neigh-
borhood of xq¢ in M.

b) The following assertions are equivalent.

(i) The map f is continuous on M.
(i) If O C M’ is open, then f~1(O) is open in M.
(iii) If A C M’ is closed, then f~'(A) is closed in M.

PROOF.® a) Let (iii) be wrong. Then there exists a neighborhood
V of f(xo) in M’ and elements x,, of M \ f~!(V) converging to x( as
n — oo. Hence, f(z,) is not contained in V for all n € N so that
(f(xy,)) cannot tend to f(xg). Therefore assertion (i) is false.

Let (iii) be true. Set V = B(f(x¢),¢) for any given € > 0. Assump-
tion (iii) yields a radius 6 > 0 with B(zg,d) C f~!(V). For every point
x in B(xg,d), the image f(x) thus is an element of V = B(f(xy),¢),
which is the content of (ii).

Let (ii) be true. Let z,, =  as n — oco. Take € > 0. Due to (ii), we
have d'(f(z,), f(z0)) < ¢ for all sufficiently large n; i.e., f(x,) — f(z0)
as n — 00, and (i) has been shown.

8This proof was omitted in the lectures.
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b) Let (i) be valid. Take a closed subset A C M’. Choose a sequence
(z,) in f71(A) with a limit x in M. By continuity, the images f(z,)
in A tend to f(x). Since A is closed, f(z) is contained in A and hence
x in f~1(A). Proposition 1.12 now implies that f~'(A) is closed, and
so (iii) is true. Assertion (ii) follows from (iii) by taking complements.

Let (ii) hold. Choose any z € M. Take a neighborhood V' of f(x)
in M’. We thus have a radius r > 0 with B(x,r) C V. By (ii), the
preimage f~'(B(f(x),r)) is open in M. As it contains x and belongs
to f~1(V), the latter is a neighborhood of x in M. The continuity of
f at x is now a consequence of part a), and (i) has been proved. [

We recall variants of continuity from Analysis 2.

DEFINITION 1.25. In the framework of Proposition 1.2/, a function
f: M — M’ is called uniformly continuous if it fulfills statement (ii)
in b) for all o € M with a radius § = 6. > 0 not depending on x.

The map f is a called Lipschitz (continuous) if there is a constant
L >0 such that d'(f(x), f(y)) < Ld(x,y) for all z,y € M.

Bemerkung 2.35 in Analysis 2 says that Lipschitz continuity implies
uniform continuity which in turns yields continuity. Moreover, the
converses of these implications are wrong in general.

The above proposition can be used to show openness or closedness.

EXAMPLE 1.26. Let X = C([0,1]), s € [0,1], and ¢ : X — T;
vs(g) = g(s). The map @, is continuous since g,(s) — g¢(s) in F if
gn — g in X as n — oo. By Proposition 1.24, the preimage ¢, !(B) =
{9 € X |g(s) € B} is open (resp. closed) in X if B C F is open (resp.
closed). Using also Proposition 1.15, we see that

U={feX[3se[0,1]:f(s) € B} = |J v.'(B)
s€[0,1]
is open if all sets By, C I are open and that
A={feX|Vse[0,1]: f(s) € By = [ v, (B
s€[0,1]
is closed if all set B; C IF are closed. (Compare Example 1.14.) O

Quite often one has several norms on a vector space, so that one
needs concepts to compare them.

DEFINITION 1.27. Let || - || and ||| - ||| be norms on a vector space X.
If there is a constant C' > 0 such that ||z|| < C'l||z||| for all x € X, then
Il 1| ¢s called finer or stronger than ||-|| (and || -|| is coarser or weaker
than ||| - ||| ). In this case one says that the norms are comparable. If
there are constants ¢c,C > 0 such that

clllll < flell < C il

for all x € X, then the norms are called equivalent.
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The above notions are again characterized by means of sequences
and open or closed sets.

PROPOSITION 1.28. Let ||| and ||| -||| be norms on a vector space X .
a) The following assertions are equivalent.

(i) The norm || - || is coarser than ||| - |||
(ii) There is a constant C > 0 such that By (z,r/C) C By (z,7)
forall x € X and r > 0.
(iii) If (x,) in X converges for ||| - |||, then it converges for || - ||.
(iv) If a set A C X is closed for || - ||, then it is closed for ||| - ||
(v) If a set O C X is open for || - ||, then it is open for ||| - |||-
In this case the limits in (iii) are equall.

b) The norms are equivalent if and only if (iii), (iv) or (v) becomes an
equivalence, or if there are constants C,c > 0 such that By (z,r/C) C
By (z,r) C By (z,7/c) for all z € X and r > 0.

c) Let the norms be equivalent. Then (X, || - ||) is complete if and
only if (X, ||| - |ll) is complete.

PROOF. a) Let (i) be true. Let z € X, r > 0 and y € By (z,r/C),
where C' > 0 is taken from Definition 1.27. We then obtain the bound

[z =yl < Clllz =yl <,

so that y belongs to B (z,r). Therefore claim (ii) is valid.

The implication ‘(ii) = (iii)’ and the equality of the limits are a
consequence of the definition of convergence.

Let (iii) hold. Choose a set A C X which is closed for || - ||. Take
a sequence (z,) in A with a limit x € X for ||| - |||. Because of (iii),
the vectors z,, also converge for || - || so that x belongs to A by the
closedness. As result, A is also closed for ||| - |||. The implication ‘(iv)
= (v)’ follows by taking complements.

Let statement (v) be true. The ball By.(0,1) is then open for ||| - |,
too. We can thus find a radius » > 0 with B”HH(O,T) - BH.”(O, 1).
Take x € X \ {0}. (The case = 0 is clear.) The vector r(2|||z]||) "' =
belongs to Bjy.(0,7) and hence to By (0,1); ie., 1 > r(2||z|l|) " ||z
which yields (i) with C :=2/r.

The assertions b) und c) are shown similarly. U

We illustrate the above notions with a few typical examples.
They show in particular that on function spaces one may have non-
comparable (natural) norms and thus different notions of limits, which
is a first fundamental difference to the finite dimensional situation.

EXAMPLE 1.29. a) On a finite dimensional vector space X all norms
are equivalent by Satz 2.54 in Analysis 2. On X = F™ we have the
more precise result

2], < |al, < mr |2,
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forall z € F™ and 1 < p < ¢ < 00. (See Satz 2.8 in Analysis 2.)
b) Let X = C([0,1]) and 0 < w € X. We set || f|w := [[wf]leo on X.

As in Example 1.4 one checks that this defines a (weighted) norm on
X. Observe that ¢ := infycjo 1y w(s) > 0. We estimate

[f(s)] < w(s)[f(s)] < [lwlloo [£(5)]
for all f € X and s € [0,1]. Taking the supremum over s € [0, 1], we
deduce the equivalence of || - ||oc and || - |-

c) Let X = C([0,1]). Since ||f]l1 < ||f]|o for f € X, the supremum
norm is finer than the 1-norm on X. On the other hand, Example 1.4
and Proposition 1.28 show that these norms are not equivalent on X
because only || - ||« is complete. This fact can directly be checked using
the functions f, € X given by f,(s) = 1 —mns for 0 < s < % and
fa(s) =0for £ <s <1, since [|fullo =1 and || fu]l1 = 5 for all n € N.

d) The I-norm and the supremum norm on C.([0,00)) := {f €
C(]0,00)) | supp f is compact} are not comparable. Indeed, by means
of functions as f, in part c), one sees that || - [|; cannot be finer than
| - [|[oo- Conversely, take maps g, € C.([0,00)) with 0 < g, < 1 and
gn =1 on [0,n] for n € N. Then ||g,||lc = 1 and ||gn||1 > n for all n, so
that || - [« cannot be finer than || - ||;. Here one can replace the space

Ce([0,00)) by {f € Cy([0,00)) [[[f[l1 < o0} 0

1.2. More examples of Banach spaces

A) Sequence spaces. Let s = {z = (z;)|z; € Ffor all j € N}
be the space of all sequences in F. A distance on s is given by

o0

|z =yl
d(z,y) = E 27— = =(z;)€s, y=(y;) €s.
(z,y) — 1+ |z — vl v =(z;) €s, y=(y;) €s

For v, = (vy;); and x = (x;) in s, we have d(v,,z) = 0 as n — oo if
and only v,; — z; for each j € N, as n — oo. These facts follow from
Proposition 1.8 with p;(x) = |z;|. The completeness of (s,d) is proved
as in Example 1.9. For x € s, one defines the supremum norm

oo — 7 5
2|0 = sup|z;| € [0, 00]
jEN

and introduces by
0 ={x € s| ||zl < o0},
c={x€s|3limz;} C~,
J—00
co={res| limz; =0} Cg,
J—00
coo = {z € s|3m, € N such that z; =0 for all j > m,} C ¢

the spaces of bounded, converging, null and finite sequences, respec-
tively.  We note that ¢y is the linear hull of the unit sequences
en = (0kn)x for n € N, where 9, = 1 and 0y, = 0 for k # n.



1.2. More examples of Banach spaces 21

For 1 <p < oo and z € s, one further sets
o0 1

loll, = (D les )" €0,00]  and = {wes| ], < oo},
j=1

where oo? := oco. Observe that
lzk| < ||z, forall k€N, 1<p<oo, z=(x;)e®.  (L1)
We also put

o0, p=1,
=144 1<p<o,
1, p = 0.
For p, q € [1, 0], we have the properties
1 1
];Jr];:l; Pl=p p=2p=2 p<qe= <)

(1.2)

We stress that a sequence belongs to 7 if a well-defined quantity

is finite, whereas one has to establish convergence to obtain z € ¢

or x € ¢p. In this lecture we use sequence spaces mostly to illustrate

results by relatively simple examples. They further serve as state spaces
for systems which can be described by countably many numbers.

PROPOSITION 1.30. Let p € [1,00], z,y € /7 and z € (7. Then the
following assertions are true.

a) xzelt and ||lvzlli =372 |vjz| <|\2ll,ll2lly (Holder’s inequality).

b) x4y € P and ||z+yl, < |zll,+yll, (Minkowski’s inequality).

c) PP is a Banach space; ¢ and co are closed subspaces of (°°.

PROOF. Satz 2.4 of Analysis 2 yields

1

J J J
/ P
Slazl < (Xl ) (X lal”)” < liall =l
j=1 j=1 j=1

for J € Nif p € (1,00), and similarly for p € {1,00}. Assertion a)
then follows by taking the supremum over J € N. Part b) is proven
analogously.

=

¢) 1) One shows that ¢> is a Banach space as in Exercise 2.1 or
Example 1.4, and the closedness of ¢y as in Example 1.14e). Let v, =
(vnj); be sequences in ¢ which converge to v in (> as n — oco. Set
&, = lim;_, v,; in I for each n € N. Since |&, — &n| < ||vn — Uml|oo for
n,m € N, we have a limit £ of (§,), in F. The sequences v, — &,1 €
¢o then tend in £*° to v — &1 as n — oo, which thus belongs to cy.
Therefore, v has the limit £, and so ¢ is closed.

2) Let p € [1,00), x € ¢?, and a € F. Clearly, also the sequence ax
is an element of ¢ and it fulfills ||az||, = |a|||z|,. If ||z||, = 0, then
x; =0 for all j by (1.1). Hence, ¢ is a normed vector space in view of
assertion b).
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Let v, = (vy;); for n € N. Assume that (v,), is a Cauchy sequence
in ¢?. By (1.1) its components yield a Cauchy sequence (v,;), in F for
each j € N. Their limits in [F are denoted by z; for j € N, and we set
r = (z;) € s. Let € > 0. Take the index N, € N from Definition 1.2 of
a Cauchy sequence. For all J € N and n > N, it follows

J J
D Jong = al” = Tim > fon; = vmgl” < Jon — v} < €.

j=1
Letting J — oo, we deduce

o
D lony — P <&
j=1

for all n > N,. As a result, v, — z belongs to /’ and converges to 0 in
P asn — oo ie, r=x—v,+v, €L and v, — x in (7. O

Unless something else is said, we endow ¢F with the p—norm, and ¢y
with || - [|«. The sequence spaces are ordered with increasing p.

PROPOSITION 1.31. For exponents 1 < p < q < 0o and sequences
x € s, we have

o GOSlSUCaSe® and  |z)e < |ally < llzly < b,
ool =0 for 1<p< oo and ZaglHlle = ¢,

PROOF. It is clear that cgo G €' and €9 C ¢g G £ for all ¢ < oo.

Set yi, = k~». Then (yx) & P, but (yx) € £9N¢yfor all 1 < p < g < 0.
The sequence (z;) = (1/In(k + 1)) belongs to ¢q, but not to ¢ since

S8 1 0 dS 0 00
> - t %t dt > / t/th:
Z<1n<k+1>>q—/2 (In's)s / R >

k=1
for a constant ¢, > 0. (Use the transformation t = Ins.)

By Satz 2.8 of Analysis 2 the asserted inequalities are true for the
truncated sequences (z1,...,x;). They then follow by taking the sup-
remum over J € N. Hence, the first part is shown.

For the final claim, take z € (7 if p € [1,00) and = € ¢, if p = oc.

We use the finite sequences v, = (z1,...,%,,0,...). The remainder
x—v, = (0,...,0,2,41,...) tends to O in || - ||, as n — oo, showing
the asserted density. Il

B) Spaces of holomorphic functions. Let U € C be open. A
function f : U — C is called holomorphic if the limit

w—rz w — z
exists in C for each z € U. We denote the space of such functions by

H(U). We recall that a function is holomorphic on U if and only if at
each z € U it is given by a power series on a ball B(z,r,) C U. (See
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Satz 1.3 and Theorem 2.12 in Analysis 4.) We use holomorphic maps
only in very few peripherical results.

ExAMPLE 1.32. Let U C C be open. We equip H(U) with the metric
of uniform convergence on compact sets from Example 1.9, identifying
U with a subset of R? as usual. Let (f,) be a Cauchy sequence in
H(U). By Example 1.9 this sequence has a limit f in C(U,C). Weier-
straf’ approximation Theorem 2.20 of Analysis 4 now shows that f is
holomorphic, and so H(U) is complete.

We equip the set H*(U) = {f € H(U) | f bounded} with the supre-
mum norm. It is a linear subspace of Cy,(U, C), which is a Banach space
for || - [|s by Exercise 2.1. Let (g,,) be a sequence in H*(U) with limit
g in Cy(U,C). We see as above that g is holomorphic. Hence, H*(U)
is closed in Cy(U, C), and thus a Banach space by Corollary 1.13. We
note that H*(C) consists only of constant functions by Liouville’s The-
orem 2.16 of Analysis 4. O

C) LP spaces. We look for a Banach space of functions with re-
spect to the norm || f]|, = ([ |f[* dp)'/? for p > 1. In the following we
recall the relevant definitions and a few facts from Analysis 3.

1) A o-algebra A on a set S # ) is a collection of subsets A of S
satisfying the following properties.

a) ) € A.
b) If A € A, then its complement S \ A is contained in A.
c) If Aye Aforall k € N, then their union (J, .y Ax belongs to A.

Observe that the power set P(S) = {A| A C S} is a o—algebra over S.
Let M be a metric space and O(M) = {O C M |O is open}. The
smallest o—algebra on M that contains O(M) is given by

B(M):={AC M|A e A for each o-algebra A D O(M)}.

It is called the Borel c—algebra on M, and one says that O(M) generates
B(M). We write B, instead of B(R™) and endow C™ with Bs,. We
stress that B, is a strict subset of P(R™). For Borel sets B € B,, one
has B(B) ={Ae€ B, |ACB}={ANB|A €B,}.

On M = [0, 00] one considers the o—algebra generated B([0,00)) U
{oo}. It is the Borel o—algebra for a metric on [0, 00| discussed in the
exercises of Analysis 2. On [—o0, 00| one proceeds similarly.

2) Let A be a o—algebra on S. A (positive) measure p on A is a map
p: A —[0,00] such that p(@) = 0 and

,u( U Ak> = Z,u(Ak) for all pairwise disjoint A, € A, k € N.
kEN k=1
The tripel (S, A, ) is called a measure space. 1t is finite if u(S) < oo,
and o —finite if there are sets S in A such that p(Sy) < oo for all k € N
and (J,cy Sk = S. We present a few examples.
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i) Given s € S, we define §5(A) =1if s € A and §5(A) =1 if s ¢ A.
Then the point measure Js is a finite measure on P(.5).
ii) Let py € [0,00) for all k € N be given. For A C N, we set

M(A) = Zpk = Zpkfsk,
k=1

keA

which is a o—finite measure on P(N). It is finite if (py) belongs to ', If
pr = 1 for all k£ € N, then we obtain the counting measure ((A) = #A.

iii) On B, there is exactly one measure A = \,, such that A(J) is
the usual volumen for each interval J in R™. It is o—finite and called
Lebesgue measure. Let B € Bys. The restriction of A to B(B) is a 0—
finite measure, also called Lebesgue measure A\g = A. Unless otherwise
specified, we endow Borel sets B in R™ with B(B) and A.

iv) The collection £,, = {BUN |B € B,,, N C N’ for some N’ €
B,, with A(N’) = 0} is a o-algebra on R™, and A(BU N) := \(B)
defines a measure on L,,; the completion of the Lebesgue measure.

3) Let A and B be o—algebras on sets S and T, respectively. A map
f: 8 — Tis called measurable if f~'(B) € A for every B € B. Besides
the usual permance properties, the pointwise limit of measurable func-
tions is measurable (if T € {FF, [—o0, o0l}, say). An F"—valued function
is measurable if and only if all its components are measurable.

Let A C S. The characteristic function 14 : S — F is measurable
if and only if A belongs to A. Linear combinations of measurable
characteristic functions are called simple functions. If a function with
values in F or [—o0, 00| is measurable, then also its absolute value, its
real and imaginary part, and its positive f; = max{0, f} and negative
part f- = —max{0, —f} (if the range is not C) are measurable. For
A = B,, and B = B, measurability is a rather weak condition.

4) Let (S, A, 1) be a measure space. A non-negative simple function
f can be written as f = Zle yrla, for some y; > 0 and disjoint
A; € A. Tts integral is given by

k
/Sfdu = Zyku(flj)-

Next, let f : S — [0,00] be measurable. One can approximate f
monotonically by simple functions f, : S — [0, 00). This fact allows us
to define its integral by

/Sfduzsup/sfndu € [0, o0l

neN

The function f is called integrable if its integral is finite. We stress
that for non-negative measurable functions one obtains a convenient
integration theory (one only has to avoid negative factors) without
requiring integrability. For instance, the map f — [ f dp is monotone,
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additive and positive homogeneous. The integral is zero if and only if
u({f #0}) =0.

A measurable function f : S — F is integrable if the non-negative
measurable maps (Re f)+ and (Im f)1 are integrable, which is equiv-
alent to the integrability of |f|. So besides the measurability of f one
only has to check that the number [, |f|dgu is finite. In this case one
introduces the integral of f by setting

[ £an= [ reants) = [ (Rep)edu— [ Re)-
+i/s(1mf)+du—i/s(1mf)—du-

One writes dz instead of d\ or dA(z). (In this case, the above integral
coincides with the Riemann-integral if f is a piecewise continuous func-
tion on [a,b].) The integral is linear, monotone (for F = R), and satis-
fies the inequality | [ fdu| < [|f]dp. It vanishes if p({f # 0}) = 0.
Let f : S — F™ be measurable. The map |f|s is integrable if and
only if all components f : S — F are measurable. One then defines

its integral by
/fduz (/fkdu) :
s s k

It has similar properties as in the scalar-valued case.

5) Let p € [1,00). For measurable f : S — F, we define the quantity
D= fs |fI” dp € [0, 00] and the set

LP(n) = LP(S) = LP(S, A, ) = {f : S — F|measurable, |f]|, < co}.

Again, to show that f is contained in £P(u) one only has to check its
measurability and that an integral for a non-negative function is finite.
We note that || - ||, is a seminorm on the vector space £P(u). We list

again a few basic examples.

i) For every function f : S — F and s € S, we have [, fdd, = f(s).

ii) We have LP(N, P(N), )=/ and [ fd¢=3""", f(j).

iii) Let B € B,,. We usually write £P(B) instead of L(B,B(B), \),
where p € [1,00). A measurable function f : B — F is an element of
£P(B) if and only if its O-extension f belongs to £7(R™), and we have

/dea: ::/deAB:/mfdx.

6) It would be nice if £LP(p) was a Banach space, but unfortunately
one has ||Ly]|, = 0 if u(N) = 0. We are led to the following concept.

Let (S,A, ) be a measure space. A set N € A is called a null set if
u(N) = 0. A property which holds for all s € S\ N and a null set N
is said to hold almost everywhere (a.e.) are for almost all (a.a.) s.

A countable union of null sets is a null set, and M € A is a null set
if it is contained in a null set. Uncountable unions of null sets can even
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have measure oo; for instance, we have R = | J, g {z}. In (R™, B, \)
hyperplanes, countable subsets, or graphs of measurable functions are
null sets. On the other hand, @ is the only null set in (N,P(N),(),
whereas in (S, P(S),ds) with s € S the null sets are those A C S that
do not contain s.

We further introduce the set of null functions

N ={f:5—F|fis measurable, f =0 a.e.}

which is a linear subspace of £P(u) for every 1 < p < co. We can thus
define the vector space

LP() = 17(S) = IX(S, A, ) 1= LP(Gu)/N = {f = f+ N | f € £2()}.
To avoid that LP(u) = {0}, we always assume u(S) > 0. We set

1+ N =1 Flp resp. / fu = / fdu,

for each f € LP(u), resp. f € L'(u), and any representative f of f.
These definitions do not depend on the choice of the representative.
The Riesz-Fischer Theorem 5.5 in Analysis 3 says that (LP(u), || - ||,)
is a Banach space. Unless something else is said, we endow L”(u) with
the p—norm.

In LP(u), we write f>0if f > 0 a.e. for some representative f of f.
It then follows that g > 0 a.e. for all representatives g of f . Analogous
statements hold for the relations ‘=" or *>.’

One usually identifies f with any representative f and LP(u) with
LP(1), provided that one only deals with properties not depending on
the representative. For instance, by f + f(0) one can not define a
map on LP(R, By, ).

As noted in Example 1.4, the 1-norm of a mass density u > 0 repre-
sents the total mass of the corresponding object. Consider a velocity
field v : S — R? of a fluid with density p > 0. Then the kinetic energy
of the fluid is given by % [ p|v]3 dz. Other p-norms occur in the context
of energies for nonlinear material laws. We next illustrate the above
spaces as in Example 1.14.

EXAMPLE 1.33. a) Let p € [1,00), (S, A, 1) be a measure space, and
g€ LP(u). Thentheset E = {f € LP(u)| f > g a.e.} is closed in LP(p).

PROOF. 1) Let? (f,) converge to f in LP(x). Choose representatives
fn of fn, f of f , and g of g. Then there are null sets N,, such that
fn(s) > g(s) for all s € S\ N,, and n € N. Moreover, the Riesz—Fischer
Theorem 5.5 of Analysis 3 provides a subsequence and a null set NV such
that f,,(z) — f(s) for all s € S\ N as j — oo. Therefore f(s) > g(s)
for all s not contained in the nullset | J, NV, U N. This means that

f € F, and so F is closed. O

9As an exception we do not identify f and f in this proof.
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b) In part a) we take the measure space (B, B(B),\) for some B €
B,,. Then E possesses no interior points and thus £ = 0F in LP(B).

PROOF. Let f € E. There is an integer k € N such that By = {s €
B|0 < f(s)—g(s) < k}isnot anull set (since othewise f—g = oo a.e.).
Let (C})jen be a countable covering of R™ with closed cubes of volume
L which have disjoint interiors. Because 0 < A(By) = > AMBoNCY),
for each n € N there is an index 7, such that the measure of the set
A, = ByNC} is contained in (0, 1]. Put f, = f — (k+1)14,. The
maps f, then belong to LP(B) \ E and ||f — f,|l, < (k + 1)A(A,)YP <
(k+1)n=Y? for all n € N. Hence, f is not an interior point of E. O.

For a measure space (5,4, i), we further introduce the space
L) = L2(S) = L2(S, A, )
:={f:S — F| f is measurable and bounded a.e.}
Let f: S—T be measurable. Its essential supremum norm is given by

I flloc = ess sup|f(s)| :=inf{c > 0] |f(s)| < ¢ for a.e. s € S} € [0, 0.
seS

Of course, f belongs to £°(u) if and only if its essential supremum
norm is finite. For the Lebesgue measure on B € B,, this definition
coincides with the usual supremum norm if f is continuous and if A\(BN
B(z,r)) > 0 fir alle z € B und r > 0.

Indeed, suppose there was a point x € B with 0 = |f(x)| —
ess supg |f| > 0. Since f is continuous, there exists a radius r > 0
such that |f| > & + ess supg | f| on the set BN B(z,r) which has posi-
tive measure by assumption. This is impossible.

For B = [0,1] the map f = aly has the essential supremum norm
0 for all @ € [0,00]. If B = {0}U[1/2,1], the same is true, but here f is
continuous on B. Moreover, the function given by f(s) = L for s > 0

s

and f(0) = 0 is not essentially bounded on B = [0, 00). We also set
L=(p) = L2(w)/Nand [If + Nlloo = [[f]loe-

The importance of this space becomes clear later, see e.g. Theorem 5.4.

PROPOSITION 1.34. Let (S, A, u) be a measure space. Then L>(u)
endowed with || - ||« s a Banach space.

PRrROOF. Let fr € L>®(p) and oy € F for k € {1,2}. Then there
are numbers ¢; > 0 and null sets Ny such that |fi(s)] < ¢ for all
s € S\ Ng. We thus obtain |ay fi(s) + aafa(s)| < |ou|cr + |ag| eo for
every s ¢ NyUNy =: N, where N is a null set. The linear combination
aq f1+ s fo then belongs to £°(u) and £2°(p) is a vector space. Taking
the infimum over such ¢, we also see that || f1 4 f2lloo < ||f1]lco+ ] /2] 0o
It is clear that ||ay fi|leo = |1 f1]|ee- Moreover, N is a linear subspace

of £L>®(p) and we have || fi]lco = || f2]|oo if f1 = f2 a.e.. Therefore L>(u)
is a vector space, || f]|« is well defined, and it is a norm on L*(pu).
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Let (f,) be Cauchy in L (). Fix representatives f, of f,. For every
J € N there is an index k(j) € N such that [|f, — finllec < % for all
n,m > k(j). Hence, the set

Nomj ={s € S| |fu(s) = fm(s)| > 7}
has measure 0 for these integers, and so N := Unijk(
also a the null set. For s € S\ N, we then obtain

|fu(s) = fin(s8)] < 2/ for all n,m > k(j) and j € N.

There thus exists f(s) = lim,, oo fu(s) in F for all s € S\ N. We set
f(s) =0 for all s € N. Then the map f : S — F' is measurable. Let
e > 0 and take j > 1/e. It follows that

j)gen Nomj 18

R _ 9

[fn=Ffllo < sup [fuls) = f(s)] = sup lim [fi(s)— fm(s)] < - <2
s€S\N SES\N M7 J

if n > k(j). As a result, the equivalence class f = f, + f — f, belongs

to L>®(pu) and f, — f in L*®(u) as n — oo. d

We finally recall Holder’s inequality and an immediate consequence,
see Satz 5.1 and Korollar 5.2 of Analysis 3.

PROPOSITION 1.35. Let (S, A, 1) be a measure space, p € [1,00],
f € LP(u), and g € L¥ (). Then the following assertions hold.

&) We have fg € L(a) and [[fglh < 171 lolly-

b) If u(S) < oo and 1 <p < q < oo, then L (pu) C LP(u) and

1

151 = ([ 218 dn)” < NI TP = ()20
where r = q/p > 1 and r' = q/(q¢ —p) by (1.2).

The inclusion in Proposition 1.35b) is strict in general, as shown by
the function (0,1) 3 ¢t — f(t) = t~'/. Similarly, one checks that there
is no inclusion between LZ(R™) and LP(R™) if p # q.

1.3. Compactness and separability

Compactness is one of the most important concepts in analysis, as
one could already see in the Analysis lectures. We first define this
notion and some variants in a metric space.

DEFINITION 1.36. Let M be a metric space and K C M.

a) K is compact if every open covering C of K (i.e., a collection
C of open sets O C M with K C |J{O|O € C}) contains a finite
subcovering {O1,...,0p} CC with K CO1U---UO,,.

b) K is sequentially compact if every sequence (z,) in K possesses
a subsequence converging to some x € K.

¢) K is relatively compact if K is compact.

d) K is totally bounded if for each € > 0 there are a number m € N
and points 1, ..., xy, € M such that K C B(xy,e)U---U B(xy, ).
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We stress that sequential compactness gives some convergence for
free, and compactness provides finiteness (which often transfers into
uniformity). Clearly, compactness is just relatively compactness plus
closedness, and it implies total boundedness using the covering C =
{B(z,¢) |z € K}.

In the definition of total boundedness, one can equivalently require
that the centers z; belong to K. To show this, take ¢ > 0 and the
points z1,...,x, € M from Definition 1.36 with e replaced by /2.
If B(xj,e/2) N K is empty, we drop this element z;. Otherwise we
replace it by some y; in B(x;,¢/2) N K. Then B(xz;,¢/2) is contained
in B(y;,¢) so that also the balls B(y;,¢) cover K.

If K is totally bounded, then it is bounded as a subset of the ball
B(xy,r) with radius r = ¢ + maxjecq1,.my d(@1,2;), where z; are the
points from part d) of the above definition.

As in Satz 2.20 of Analysis 1 one sees that a sequence in a metric
space M has a subsequence converging to some x in M if and only if
x is an accumulation point of the sequence.

We first show that in metric spaces the seemingly unrelated con-
cepts of sequential compactness and compactness are equivalent. This
astonishing fact goes back to Heine, Borel, and others.

THEOREM 1.37. Let (M,d) be metric space and K C M. Then K
1s compact if and only if it sequentially compact.

PROOF. 1) Let K be compact. Suppose K was not sequentially
compact. There thus exists a sequence (x,,) in K without an accumu-
lation point in K. In other words, for each y € K there is a radius
ry, > 0 such that the open ball B(y,r,) contains only finitely many of
the members z,,. Since K C (J,cx B(y,r,) and K is compact, there
are centers yi, ..., Y, € K such that K C B(yy,ry, )U---UB(Ym,Ty,,)-
This inclusion is impossible because (x,) has infinitely many members,
and hence K must be sequentially compact.

2) Let K be sequentially compact and let C be an open covering of
K. We suppose that no finite subset of C covers K. Due to Lemma 1.38
below, for each n € N there are finitely many open balls of radius 1/n
covering K. For every n € N, we can find a ball B, = B(z,,1/n)
such that B, N K is not covered by finitely many sets from C (since we
would otherwise obtain a finite subcovering). Because K is sequentially
compact, there is an accumulation point ¥ € K of (z,). There further
exists an open set O € C with 7 € O, and hence B(%,¢) C O for some
e > 0. We then obtain an index N € N such that d(zy,Z) < £/2 and
N > 2/e. Each x € By thus satisfies the inequality

d(z,7) < d(z,zn) + d(zy,T) < % +5 <¢g
i.e., By C B(%,e) C O. By this contradiction, K is compact. O

We have isolated the following lemma from the above proof.
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LEMMA 1.38. Let (M,d) be a metric space, K C M, and each se-
quence in K have an accumulation point. Then K 1is totally bounded.

PROOF. Suppose that K was not totally bounded. There would
thus exist a number r» > 0 such that K cannot be covered by finitely
many balls of radius r. As a result, there exists a center z; € K such
that K ¢ B(xy,7). Take any point xo € K \ B(z1,7). We then have
d(zg,x1) > r. Since K cannot be contained in B(xy,r)U B(xo, 1), We
find an element x5 of K\ (B(z1,7)UB(x3,7)) implying that d(zs3, z1) >
r and d(z2, 1) > r. Inductively, we obtain a sequence (x,,) in K with
d(zy, ) > 7> 0 for all n > m. By assumption, this sequence has an
accumulation point z. This means that there are infinitely members x,,;
in B(x,r/2) and thus d(z,,, z,,) < r for all i # j. This is impossible,
so that K is totally bounded. U

We now show that total boundedness yields relative compactness if
the metric is complete. This fact is often used to check compactness,
see e.g. Proposition 1.46.

COROLLARY 1.39. Let (M,d) be a metric space and N C M. Then
the following assertions are equivalent.'

a) N is relatively compact.
b) Each sequence in N has an accumulation point (belonging to N ).
c) N is totally bounded and N is complete.

PrOOF. The implication “a)=b)” follows from Theorem 1.37 ap-
plied to N.

Let statement b) be true. Lemma 1.38 yields that N is totally
bounded. Take a Cauchy sequence (z,,) in N. There are points ,, € N
such that d(z,,Z,) < 1/n for every n € N. By b), there exists a sub-
sequence (Z,,); with a limit z in N. Let ¢ > 0. We can then find an
index j = j(e) such that n; > 1/¢, d(z,,;, z) < ¢ and d(x,, 7,,) < ¢ for
all n > n;. For such n, we estimate

d(zn, z) < d(2y, Tn;) + d(Tny, Tn,) + d(Ty,, ) < 3¢,

so that assertion c¢) has been shown.

Let N be totally bounded and N be complete. Take a sequence (x,,)
in N. We choose points Z, € N as in the previous paragraph. By
assumption, N is covered by finitely many balls le» in M of radius 1.
We can then find an index j; and a subsequence (Z,, k) in B}l. There
further exist finitely many balls sz in M of radius 1/2 which cover
N. Again, there is an index j, and a subsequence (Zy,(x))r of (Zv, 1))k
which belongs to B?Q. By induction, for every m € N we obtain a
subsequence (Z,,,(x))x Of (Z,,,_, ) that is contained in a ball B} of
radius 1/m. To define a diagonal sequence, we set n,, = v,,(m) for

1011 the lectures we showed a slightly weaker result.
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m € N. Note that the points z,, and 7,, are elements of B} for
p > m since n, and n,, are contained in v,,. Take ¢ > 0. Choose a
number m € N with m,n,, > 1/e. It follows that

A(@nps Tn,) < ATy Ty ) HA (T Ty ) 4Ty, Tny) < Gty < de

for all p > m. Because N is complete, the Cauchy sequence (zy,,)m
has a limit = in N. Statement c) is thus true by Theorem 1.37. g

We state two important necessary conditions for compactness.

COROLLARY 1.40. Let K be a compact subset of a metric space M.
Then K is closed and bounded.

ProoO¥F. The boundedness follows from Corollary 1.39 and the re-
marks after Definition 1.36. Let points x,, € K tend to some z in M as
n — 0o. Since K is sequentially compact, there is a subsequence (z,);
with a limit y in K. Hence, x = y belongs to K and K is closed. [J

We now discuss whether there is a converse of the above result.

EXAMPLE 1.41. a) A subset K of a finite dimensional normed vector
space X is compact if and only if K is closed and bounded, because
of Theorem 2.44 in Analysis 2 and Theorem 1.37. In particular, closed
balls are compact in finite dimensions.

b) Let X = ? and 1 < p < oco. We then have |e,||, = 1 and

llen — emll, = 25 if n # m, so that (e,) has no converging subsequence.
As a result, the closed (and bounded) unit ball in 7 is not compact.

c) Let X = C([0,1]). For n € N we define the functions f,, € X by
il —2 2 << 3o
falt) = 4—2m1 2.27n < p <27

0, otherwise.
Then || fullo = 1 and ||fn — finlloo = 1 for n # m, so that again the
closed unit ball is not compact. O

The next theorem shows that these simple examples are typical. This
fact is arguably the most important difference between finite and infi-
nite dimensional normed vector spaces, but see Theorem 1.50.

THEOREM 1.42. Let X be a normed vector space. The closed unit
ball B = B(0,1) in X is compact if and only if dim X < oo.

PrROOF. If dim X < oo, then B is compact by Example 1.41a). Let
dim X = co. Take any x; € X with ||1]] = 1. Set U; = lin{z;}. Since
U, is finite dimensional, U; is closed in X due to Lemma 1.43 below
and X # U; because of dim X = co. Lemma 1.44 thus yields a vector
z5 in X with [|z2]] =1 and [|z2 — 21| > 5. Then Uy = lin{ay, 20} # X
is also closed, and from Lemma 1.44 we obtain an element x5 of X with
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|2s]| =1, lag — x2]| > 3, and ||z — 241]| > 5. Inductively, we can now
construct a sequence (z,,) in B such that ||z, — z,,|| > 1 for all n # m;
i.e., B is not sequentially compact. O

We still have to prove two lemmas, the seond one is due to F. Riesz.

LEMMA 1.43. Let Y be a finite dimensional subspace of a normed
vector space X. Then'Y is closed in X.

PROOF. Choose a basis B = {by,...,b,} of Y. Let g =
(Y1,---,Ym) € F™ be the (uniquely determined) vector of coefficients
with respect to B for a given y € Y. Set ||g||| := ||y||. This gives a
norm on F™  which is complete by Satz 2.54 of Analysis 2. Let v, € Y
converge to some z in X. Then (7,) is a Cauchy sequence in F™, and

so there exists a limit 2 = (21,...,2,) € F™ of (0,) for ||| - [||. Set
z=z1by + -+ zpby € Y. It follows that ||v, — z|| = |0, — Z||| — O
as n — 00, and thus z = z belongs to Y; i.e.; Y is closed. O

LEMMA 1.44. Let X be a normed vector space, Y # X be a closed
linear subspace, and 6 € (0,1). Then there ezists a vector T € X with
|Z| =1 and |z —y|| >1—6 forally €Y.

ProOOF. Take any z € X \ Y. Since X \ Y is open, we have d :=
inf ey ||z — y|| > 0. Hence, d < d/(1 — ) and there is a vector y € Y
with ||z — 9]| < d/(1 = ). Set & = ——(z — ¢). Let y € Y. We then

llz—3ll
obtain ||Z|| = 1 and, using the above inequalities,
1 d
17 =yl = ———=llz = (G + llz = glly)|| = - >1=0 U
|l — 7 [l — 7

We recall a few important consequences of compactness.

THEOREM 1.45. Let X be a normed vector space, K be a compact
metric space, and f € C(K,X). Then f is uniformly continuous and
bounded. If X = R, then there are points ty in K such that f(t,) =

maxer f(t) and f(t-) = mingeg f(1).

PrOOF.™ 1) Let € > 0. Because f is continuous, for every t € K
there is a radius &; > 0 with || f(t) — f(s)|| < e for all s € B(t, d;). Since
K = ,cx B(t, % d;) and K is compact, there are points t1,...,t, € K
such that K C B(ty, % d)U---UB(tm, %(5m), where 0y, 1= d;,. Set § =
min{3 d1,...,30n} > 0. Take s,t € K with d(s,t) < é. Then there are
indices k,1 € {1,...,m} such that s € B(t,3d;) and t € B(t;,5 ),
where we may assume that d; > §;. We thus obtain

d(tk,tl) < d(tk, S) + d(S, t) + d(t,tl) < %&c + 0+ % (5[ < (Sk
so that ¢; € B(t, dx), and hence
1£(s) = FON < ([ (s) = fCE) I+ Lf () = fE + (1 (@) = FO < 3e.

HThis proof was omitted in the lectures.
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2) Suppose there were points t,, in K with ||f(¢,)|| — oo as n — oc.
Since K is compact, there is a subsequence (tnj) j converging to some
t € K. The norms || f(t,,)| then tend to || f(t)|| as j — oo, due to the
continuity of ¢ — || f(¢)]|, which contradicts the limit || f(¢,)| — oc.

3) Let X = R. By part 2), the supremum z := sup,c f(t) belongs
to R. We can find elements r, of K with f(r,) — z as n — oco. The
compactness of K again gives a subsequence (r,,); converging to some
ty in K. Hence, f(t;) = limj_ f(rn;) = 2 since f is continuous. The
minimum is treated in the same way. U

Theorem 1.42 shows that in an infinite dimensional Banach space a
closed and bounded subset does not need to be compact. The next two
results give stronger sufficient conditions for (relative) compactness of
a set in 7 or C(K). Besides boundedness, one requires summability,
resp. continuity, uniformly for elements in the set. (It can be seen that
these conditions are in fact necessary.)

PROPOSITION 1.46. Let p € [1,00). A set K C (P is relatively
compact if it 1s bounded and fulfills

lim sup |z;|P = 0.
N—o0 (xj)eKj%;_l
PRroOF. Due to Corollary 1.39, it suffices to prove that K is totally
bounded. Let € > 0. By assumption, there is an index N € N with

o0

Z |z;|P <eP forall (z;) e K.
Jj=N+1
For z = (x;) € K, we put & = (1,...,2x5) € FN. Since 2], < ||z||,

the set K = {&|z € K} is bounded in F¥, and thus it is totally
bounded by Example 1.41 and Corollary 1.39. So we obtain vectors
D1, .., 0y € FY such that for all z € K there is an index ! € {1,...,m}
with |2 — v, < e. Set v, = (0, 0,...) € P for all k € {1,...,m}. The
total boundedness of K now follows from

lz = vl = |2 = ap+ > Jayl? < 20
J=N+1

We now establish one of the most important compactness results in
analysis going back to Arzela and Ascoli.

THEOREM 1.47. Let K be a compact metric space and F C C(K) be
bounded and equicontinuous; i.e.,

Ve>030.>0VfeFVsteK st d(s,t)<d.: |f(s)—f(t)] <e.

(1.3)

Then F is relatively compact. If F' is also closed, it is compact.
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PROOF. 1) For each ey := 1/N and N € N, we take the radius
dn = 0., from (1.3). Since K is compact, Corollary 1.39 gives points
tl,N; e 7tmN,N € K with K C B(tLN,éN) UJ---u B(tmN,NaéN)- We
relabel them as {s;|l € N} = {txy v |k =1,...,my; N € N}.

2) Take a sequence (f,) in F. Since F is bounded, we have
SUP,en | fu(51)] < supsep || fI| < oo. By Bolzano-Weierstra$, there ex-
ists a subsequence (f,,(x)(s1))r With a limit in F. Similarly, we obtain
a converging subsequence (fy,x)(52))k of (fu k) (s2))r . Note that the
points f,,x)(s1) still converge in F as & — oo. We iterate this procedure
and define the diagonal sequence (f,,); = (fy,(;));- The values f, (s;)
have a limit as j — oo for each fixed [ € N, since f,,,(s1) = fu,x;)(51)
for all j > [ and certain indices k; — oo (depending on [).

3) Let ¢ > 0. Fix a number N € N with ey = 1/N < e. Pick
the radius dy = J.,, > 0 from (1.3) and the points ¢,y from step 1).
Part 2) yields an index J. € N such that |f,, (txn) — fn, (txn)| < € for
all i,j > J. and k € {1,...,my}. Take t € K. There is an integer
le{l,...,my} with d(¢,t, n) < dn by part 1). We can thus estimate

[ (8) = fo, (£)]
< ’fm(Zf) - fni(tl,N)‘ + |fn¢(tl7N) - fnj<tl,N)| + |fn]~(tl,N) - fTLJ(t)’

<envt+e+teny <3

for all 4,7 > J. and all t € K. Since J. does not depend on the argu-
ment ¢, we have shown that the subsequence (f,,); is Cauchy in C(K).
This space is complete by Example 1.4 so that (f,,); converges in C(K).
The relative compactness of F' now follows from Corollary 1.39. The
addendum is clear. O

In the next result we see that the equicontinuity (1.3) is consequence
of a bit uniform extra regularity of the functions in . We state this
important fact in terms of a given sequence.

COROLLARY 1.48. Let a € (0,1] and K be a compact metric space.
Assume that the sequence (f,) is bounded in C(K) and uniformly
Holder continuous; i.e., there is a constant ¢ > 0 such that

[fa@) < ¢ and  [fu(t) = fu(s)] < cd(t,5) (1.4)

forallt,s € K and n € N. Then there exists a subsequence (fn;); with
a limit f in C(K) such that the function f also satisfies (1.4).

ProOOF. The first part follows from Theorem 1.47 with F =
{f.|n € N}, noting that (1.3) holds with 6, = (g/c)"/®. The last
claim can be shown as in Example 1.14f). i

Condition (1.4) with @ = 1 is true for bounded sequences in
C1(]0,1]), for instance. We first illustrate the above concepts and then
discuss in Example 1.49¢) a typical application of Arzela—Ascoli.
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EXAMPLE 1.49. a) The sequence (f,) in Example 1.41c) is not
equicontinuous since |f,(327") = f,(27")| = 1 for all n € N, but
%2*”—2*”—>Oasn—>oo.

b) The analogue of Arzela—Ascoli in Cy(R) or Cy(R) is wrong. For
instance, consider the sequence (f,,) in Cy(R) given by f,(t) = 0 for
|t —n| >1/2 and f,(t) =1— 2|t —n| for |t —n| < 1/2. It is bounded
and equicontinuous, but || f, — fil|lec = 1 for n 7& m.

c) Let k € C([0,1]*) and set T'f(t) fo s)ds for t € [0,1]
and f € X = C([0,1]). Then the set F' = {g = Tf | f € Bx(0,1)} is
relatively compact in X.

PROOF. Let f € Bx(0,1) and g = T'f. Korollar 2.48 in Analysis 2
shows that g belongs to X. Since ||Tf]looc < [|Elloo || flloo < [|E]|0o, the
set F'is bounded. Let € > 0. By the uniformy continuity of k, we find
a radius d > 0 such that |k(t,s) —k(t',s)| < e forall t,t' s € [0, 1] with
|t' —t| <. Arzela—Ascoli now implies the assertion because

96 =001 < [ 1Kt,5) = Kt )] 17(5)] s <

for all g € F'and t,t' € [0, 1] with [t/ —¢] < 6. O

In metric spaces which are not normed vector spaces, it is possible
that the closed balls are compact also in the infinite dimensional situ-
ation. The most prominent theorem in this direction is due to Montel
and deals with holomorphic functions, see Example 1.32.

THEOREM 1.50. Let U C C be open and F C H(U) be locally
bounded; i.e., for each point z € U there is a radius r, > 0 such
that B, := B(z,7.) C U and sup;cp Supyep. |f(w)] is finite. Then F
is relatively compact in H(U). In particular, all closed balls in H*(U)
are compact for the metric of H(U).

PROOF. Let (f,) be a sequence in F.

1) We first show that the sequence (f,) is uniformly Lipschitz on
certain balls. Take a point 2° € U and set r = r,0/2. Let w,z €
B(2°,r) and n € N. Cauchy’s integral formula (see Theorem 2.8 in
Analysis 4) then yields

) = fu2) =gz [ 002~ )

2ri —w  (—=z
1 w— 2z

_ 1 ; dc,
21 ‘C_ZO‘:Q,,«f(C) (C—U})(C—Z) C
dmr |z — vl

max | fu(Q)] = k(2°) |2 — w|

2 r?2 |¢—z0=2r

|[fn(w) = fu(z)] <

with £(z%) := 2r~' sup,.cy SUP¢es |fn(Q)] < 0.
2) As in Example 1.9 there are compact sets K; C Kjy C U for
J € N whose union is equal to U. Since every K; can be covered
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with finitely many of the balls B, the restrictions (f,)|x; are bounded
uniformly in n € N, for each fixed 7 € N.

Suppose the set I; = {(fn)|k, |7 € N} was not equicontinuous for
some j € N. There thus exist points w,, z, € K; and a number gy > 0
such that |w, — z,| — 0 as n — oo and |f,(w,) — fn(zn)| > €0 for all
n € N. Since K; is compact, there are subsequences (wy,); and (zy,,);
with limits w® and z° in K, respectively. It follows w® = 2°. Take the
radius r from part 1) for the point z°. There is an index L € N such
that w,, and z,, belong to B(z,r) for all [ > L. Step 1) then implies

0< €0 < ‘fnl(wnl) - fnl(znl>| < k<20) |wnz - an‘ — 07 [ — o0,

which is impossible. Hence, Fj is equicontinuous for each j € N.

3) Let j = 1. Theorem 1.47 now yields a subsequence ( f,, k) Which
converges in C'(K) to a function ¢V, Iteratively, for each m € N one
obtains subsequences ( f,,.))r of (fu,. . k) )r that converge on C'(K,,) to
a function g™ Let j < m in N. The restriction of g™ to K; coincides
with ¢ since the restrictions of Jom (k) t0 K converge to both functions
in C'(K;). We can thus define a continuous map g : U — C by setting
g(z) = g™ (z) for » € K,,. By construction, the diagonal sequence
(fam)m = (fun(m))m tends to g in H(U). Corollary 1.39 now says that
I is relatively compact.

4) To prove the addendum, take a sequence (g,) in a closed ball
B(f,r) of H®(U). Because its uniform boundedness, it has a subse-
quence (gn,); with a limit g in H(U). Moreover, g belongs to B(f,r)
since for every z € U we have the estimate

l9(z) = f(2)| = lim |gn;(2) = f(2)] <. O

We next derive the amazing convergence theorem of Vitali. To this
aim, we first recall a simple useful fact.

LEMMA 1.51. Let (z,) be a sequence in a metric space M and x €
M. Then (x,) tends to x if and only if each subsequence (z,,); has a
subsequence with limit x.

PROOF. If (z,) has the limit z, then the subsequence condition is
clearly satisfied. Let this condition be true. Assume that (z,) does
not tend to x. Then there exists a number § > 0 and a subsequence
such that d(z,,,2) > 0 for all j € N. But the assumption yields a
subsequence of (z,,); converging to x, which is a contradiction. O

THEOREM 1.52. Let U C C be open and pathwise connected, and
let the set A C U have an accumulation point in U. Assume that the
sequence (f,,) in H(U) is locally bounded and that it converges pointwise
on A to a function fo: A — C. Then fy has an extension f in H(U)
and (f,) tends to f in H(U).
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PrOOF. The set {f,|n € N} is relatively compact in H(U) by
Theorem 1.50. Each subsequence (f,(;)); thus has an accumulation
point ¥ in H(U). Because of the assumption, these functions coincide
on A. Theorem 2.21 of Analysis 4 then yields that all functions f* =: f
are equal on U, so that (f,) tends to f due to Lemma 1.51. OJ

We add another concept that will be needed later in the course.

DEFINITION 1.53. A metric space is called separable if it contains a
countable dense subset.

In Exercise 6.2 simple properties of this notion are established; for
instance, separability is preserved under homeomorphisms. Here we
only discuss standard examples based on the following auxiliary fact.

LEMMA 1.54. Let X be a normed vector space and Y C X be a
countable subset such that linY is dense in X. Then X 1s separable.

PROOF. The set

ling Y = {y:quyj

j=1

%GK%EQﬂJHQﬁF:C%mEN}

is countable, since Y is countable. Let x € X and € > 0. By assump-
tion, there exists a vector y = » 37" a;y; in linY with ||z —y| <,
where we may assume that all y; € Y are non-zero. We then choose
numbers ¢; € Q (or ¢; € Q +1Q) with |a; — ¢;| < e/(m]y;||) and set
z= 27:1 q; yj- The vector z then belongs to ling Y and satisfies

m
ly =2l <> laj — gl 1yl < e
j=1

Hence, ||z — z|| < 2e. O

EXAMPLE 1.55. a) The spaces #,1 < p < oo, and ¢y are separable
since cgp = lin{ex | k € N} is dense in all of them by Proposition 1.31.

b) The space C([0, 1]) is separable since lin{p,, | n € N} with p,(t) =
t™ is dense in C([0, 1]) by Weierstrafl’ Theorem 5.14 in Analysis 3.

¢) Let U CR™ be open and p € [1,00). The space LP(U) is separable
because Korollar VI.2.30 in [El] shows the density of the linear hull of
the functions 1 for intervals J = (a,b] with a,b € Q™ and J C U.

d) The space £ is not separable. In fact, the set Q of {0, 1}—valued
sequences is uncountable and two different elements in €2 have distance
1. Suppose that the set {vy | k € N} was dense in £>°. Then 2 belongs to
Uken B(vi, 1/4). As each ball B(vy, 1/4) contains at most one sequence
w € €2, the set 2 must be countable, which is wrong. O



CHAPTER 2

Continuous linear operators

2.1. Basic properties and examples of linear operators

The set of linear maps 7' : X — Y is designated by L(X,Y). From
Linear Algebra it is known that it is a vector space for the sum and
scalar multiplication defined before Example 1.4. Recall that 7°(0) = 0.
We usually write 7z instead of T'(z) and ST € L(X, Z) instead of SoT
forallz € X, T € L(X,Y), S € L(Y,Z), and vector spaces Z. One
often calls T' € L(X,Y’) an operator.

If dim X < oo and dimY < oo, each element T" of L(X,Y’) can be
represented by a matrix, and it is continuous. (See Bemerkung 2.36 in
Analysis 2 and the text preceding it.) However, in infinite dimensional
spaces there are discontinuous linear maps.

EXAMPLE 2.1. a) By T(xy) = (kxy) we define a linear map T :
coo — Coo- This operator is not continuous for any p—norm on cgp.
Indeed, take the finite sequences v,, = n-2e, forn € N , which satisfy
T(v,) = n2ey, ||[vall, =72 = 0, and ||T'(v,)]|, = n2 — 0o as n — .

b) The map T'f = f’ is linear from C*([0,1]) to C([0,1]), but not
continuous if both spaces are endowed with the supremum norm. To
check this claim, we consider the functions f,(t) = n~"/?sin(nt), and
note that || fullc <n~ and || £l > 1£,(0)] = n'/2.

On the other hand, T is continuous if we equip C*([0, 1]) with the
norm given by [|fller = [[fllee + [[/'llec and C([0,1]) with |[f[lec.

We first characterize the (Lipschitz) continuity of linear operators by
their boundedness.

LEMMA 2.2. Let X and Y be normed vector spaces and T : X —'Y
be linear. The following assertions are equivalent.

a) T is Lipschitz continuous.

b) T is continuous.

c) T is continuous at x = 0.

d) T is bounded; i.e, there is a constant ¢ > 0 with | Tx|y < c|z|x
for every x € X.

ProoOF. The implications ‘a) = b) = ¢)’ are clear.
Let ¢) be true. Since also 70 = 0, there exists a radius 6 > 0 such
that ||Tz|| < 1 for all vectors z € B(0,0). Let z € X \ {0}, and set z =
22 € B(0,0). Because T is linear, we deduce 1 > ||T'z|| > ﬁ”TCE”

ll=]]
and hence d) with ¢ =1/6. Of course, z = 0 fulfills assertion d).

38
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Let d) be true. The linearity of T" then yields ||Tz — Tz|| = ||T'(z —
2)|| <cllx—z| forall z,z € X. O

The above equivalence leads to the next definition.

DEFINITION 2.3. For normed vector spaces X andY , we set
B(X,Y)={T:X — Y|T is linear and continuous}'
and put B(X,X) = B(X). The dual space B(X,F) of X is denoted

by X*. An element x* € X* is called linear functional on X, and one
often writes (x,x*)x = (x,x*) instead of x*(x).
For maps T : X — Y the operator norm 1is given by

IT| =inf{c>0|VzeX:|Tx|ly <cl|z|x} € [0,o0].

The space B(X,Y) thus consists of all linear maps T : X — Y
with ||T]| < co. Unless something else is said, we endow B(X,Y’) with
|IT||8xyy := |T||. We next show a few basic facts.

REMARK 2.4. Let X,Y,Z be normed vector spaces, x € X, and
T € L(X,Y). Then the following assertions are true.

a) The space B(X,Y") does not change if we replace the norms on X
or Y by equivalent ones, though the norm ||T|| of T € B(X,Y) may

depend on the choice of || - ||x or || - ||v-
b) The identity I : X — X; [z = x, has norm II1]] = 1.
<)) z|| (2)
O 1T Y sup, 0 220 2 sup oy 1T 2 suppy_y T2 ] = 5.2

d) [|Tz|| < ||| [|=]-
e)Let T € B(X,Y)and S € B(Y, Z). Then their product ST belongs
to B(X, Z) with [|ST| < |IS|| IT]]-

PROOF. Assertions a) and b) are clear.
c¢) Let |T]| < oo. For every € > 0, Definition 2.3 yields || Tz| <
(IT]] + ) ||=||. Taking the infimum over € > 0, we obtain the relation
‘>"1in (1). Similarly, one treats the case ||T|| = co. We clearly have
‘>7in (2) and (3) for both cases. The remaining inequality ||T|| < s is
a consequence of the bound

[T
]

— HT Ty H <s for x #0.

Claim d) is true for z = 0, and follows for x # 0 from (1) in part c).
Assertion d) yields [|[STz|| < ||S||[|Tz| < [|SI|T||||x||, and thus e). O

PROPOSITION 2.5. Let X and Y be normed vector spaces. Then
B(X,Y) is a normed vector space with respect to the operator norm.
If Y is a Banach space, then B(X,Y) is also a Banach space. In
particular, X* is a Banach space.

10ne also uses the notation £(X,Y) for this space.
2In contrast to the lectures, we allow for ||T'|| = oo here.
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Proor. Clearly, B(X,Y) is a vector space. If | T|| = 0, then Tx =
0 for all z € X by Remark 2.4, and hence T'=0. Let T, S € B(X,Y),
x € X, and a € F. We then deduce from Remark 2.4 that

1T+ S|l = sup [[(T'+S)x|| < sup (| T[] + [|Sz]) < [T +[I5]],

[zl =1 [lz]]=1
[aT]| = sup laTz]| = sup o 1Tz} = o sup [Tl = |l |17-
Thus, B(X,Y) is a normed vector space for the operator norm.
Assume that Y is a Banach space. Take a Cauchy sequence (7},) in
B(X,Y). Let € > 0. There is an index N, € N such that ||T,,—T,,| < ¢
for all n,m > N.. Let x € X. Since T, — T,, belongs to B(X,Y),
Remark 2.4 yields

[ Toe = T|| < [T = Tl [} < el

for alln,m > N.. Hence, (T,,z) is a Cauchy sequence in Y and possesses
a unique limit y =: Tx € Y. Let o, € F and z,2z € X. We deduce
from the linearity of 7T,, that

T(ax + fz) = lim T,(azx + fz) = lim (aT,x + fT,z) = aTx + BTz,
n—o0 n—oo

Since (7},) is Cauchy, there is a constant ¢ > 0 with ||7,,|| < ¢ for all n,
whence || Tx| = lim, . ||Thx|| < c|lz||. As a result, T is contained in
B(X,Y). Let n > N.. The above displayed estimate implies

(T = T)ell = lim |[(T, — T)al| < = lo]|
ie., ||T—T,| < ¢ as required. O

We now discuss several important classes of bounded operators and
compute their norms, starting with the most simple one. (See also the
exercises.)

EXAMPLE 2.6 (Multiplication operators). a) Let K be a compact
metric space and X = C(K). We fix a function m in C'(K), and define
Tf=mf for every f € X.

1) The function T'f clearly belongs to X. We also have T'(a.f + 8g) =
amf+mg=aolf+pTgforall f,g € X and «a, 5 € F. The operator
T is thus contained in L(X).

2) For each f € X we estimate

17 flleo = sup fm(s)[ [ £ ()] < llmllec | flloc

so that 7" is an element of B(X) with norm ||T]| < ||m||s-

3) To show equality, we take the map f =1 in X. Since ||1]|, = 1,
Remark 2.4 yields the lower bound ||T|| > || 71| = ||m1]loc = [|m||c0,
and hence [|T|| = ||m||so-
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b) Let (S,.A, 1) be a o—finite measure space, 1 < p < oo, and X =
LP(1). Fix an element 7 of L®(R™). For f = f + N € X we define
Tf = mf + N for any representatives f € f and m € m.?

1) Take other functions f; € f and m; € m. Then there are null sets
N’ and N” such that f(s) = fi(s) for all s € S\ N’ and m(s) = m4(s)
for all s € S\ N”. We thus obtain m(s)f(s) = my(s)fi(s) for all s
outside the null set N’ U N”, so that the equivalence class T'f does not
depend on the representatives of f and m.

2) The product mf is measurable. Pick a number ¢ > ||m|.. We
then have a null set N such that |m(s)f(s)| < c|f(s)| for all s €
S\ N. Hence, the map mf belongs to £P(x) and satisfies |mf]|, <
M|l I fllp- (Take the infimum over ¢ > ||m||~.) We have thus shown
that 7" maps X into X and [[T'f|l, = [[mflly < [[7illec [|.f]lp-

3) For f,g € L(R™) and «, 8 € F we compute

T(af + 8§) = T(af + Bg+N) = amf + fmg + N = oT f + BT§.

Consequently, T" is an element of B(X) fulfilling ||7']| < ||M| -

4) We finally claim that ||T'|| = ||m||eo. This statement is true if 7 =
0. So let ||m||c = ||m|| > 0. By assumption, there are sets S,, € A for
n € N of finite measure whose union is equal to S. Take € € (0, ||m|~)
andn € N. Weput A, = {s € S, | |m(s)] > |m|e—c} € A We can
find an index k € N with p(A. %) € (0,00) since {|m| > ||m||« — €} is
not a null set. This fact allows us to define the map f. = |[1a_, ||, ' 14_,
belonging to £7(R™) with norm || f.||, = 1. Using Remark 2.4, we infer

- 1 1

70 2 12l = sl = [ [ Il duts)]” = .
” Ae,ka As,k

where we let p < co. In the limit ¢ — 0 is follows that ||T'|| = ||7]c-

The case p = oo is treated in the same way.

We next look at a crucial class of bounded operators. More sophisti-
cated examples for it are studied at the end of this section, for instance.

EXAMPLE 2.7 (Integral operators). Let X = C(]0,1]) and the kernel
k € C([0,1]?) be given. Let f € X. We define

(Tf)(t)z/o k(ts)f(s)ds,  tel0,1].

1) In Example 1.49 we have seen that T'f belongs to X. Basic prop-
erties of the Riemann integral imply that 7' : X — X is linear.
2) Set K = Sup;epo 1] fol |k(t,s)|ds < ||k]|- We then calculate

[T fllc = sup
t€(0,1]

/0 kit 5) () s| < s / k(t, )] £()] ds < ]l Il

tel0,1

3As an exception, here we explicitely take into acccount that LI = L9/N.
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The operator T thus belongs to B(X) and satisfies ||T']| < k.
3) By continuity, there is a number ¢, € [0, 1] with k = fol |k(to, s)| ds.
To show a lower bound for the norm, we introduce the functions

k(tg, s
Foe DR i) =
for n € N. Since f,, € X and || fu]| < 1, Remark 2.4 leads to
7 2 1T fulle 2 1Thtee) = [ D
o |k(to,s)| + =

as n — 0o, using e.g. Lebesgue’s theorem. It follows that ||T'|| = &.
Note that for £ > 0 one obtains this equality more easily as ||T'|| >
IT1]|s = & in this case. O

The following type of linear maps will be studied in great detail in
the penultimate chapter.

ExAMPLE 2.8 (Linear functionals). a) Let X = C(]0, 1]). For a fixed
to € [0,1] we define the point evaluation o(f) = f(to) for all f € X.
It is clear that ¢ : X — T is linear and that |¢(f)| < || f]l- Hence,
¢ belongs to X* with norm [|¢|| < 1. On the other hand, we have
[THlee = 1 and thus [|p]| > |¢(1)| = 1, implying [j¢|| = 1.

b) Let X = LP(u) for a measure space (S, A, ) and 1 < p < oo,
and let g € L¥ () be fixed. Holder’s inequality says that the integral
o(f) = [ fgdu € F exists for all f € X and that it is bounded by
() < I fllp llglly- Since linearity is clear, we see that ¢ is an element
of X* with ||| < |lg/ly. (Equality is shown in Proposition 5.1.)

¢) On X = C([0,1]) with || - ||, the linear form f — (f) = f(0) is
not continuous. For instance, the functions f,, given by f,(t) =1 —nt
for 0 <t < X and f,(t) = 0for £ <t < 1satisfy ||fulli = 55 — 0 as
n — oo, but ¢(f,) =1 for all n € N. O

In the following examples, we encounter another fundamental differ-
ence between the finite and the infinite dimensional situation. See also
Example 4.12 for related operators.

EXAMPLE 2.9 (Shift operators). Let X € {cp,c, 7|1 < p < oo}
The right and left shift operator on X are given by

Rz = (0,21, 29,...) and Lz = (9, x3,...)

for x € X. Clearly, R, L : X — X are linear maps satistying ||Rz||, =
llz||, and ||Lz|, < ||z||, for all z € X, as well as ||Les||, = 1. The
operators R and L thus belong to B(X) with norm 1. We stress that
LR =1, RLx = (0,x9,23,...), Le; = 0, and
e R is injective, but not surjective, and it has a left inverse, but
no right inverse;
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e [ is surjective, but not injective, and it has a right inverse, but
no left inverse.

Recall that in the case dim X < oo the injectivity and the surjectivity
of amap T' € L(X) are equivalent, and that here a right or left inverse
is automatically an inverse! O

We introduce several notions in the context of linear operators and
list related observations.

DEFINITION 2.10. LetT : X — Y be a linear map for normed vector
spaces X and Y .

a)We denote kernel and range of T by N(T) = {z € X |Tz = 0}
and R(T)=T(X)=TX ={y =Tz |z € X}, respectively.

b) An injective operator T € B(X,Y) is called an embedding, which
1s designated by X — Y.

c) A bijective operator T € B(X,Y') having a continuous inverse T~
1s called isomorphism or invertible. One then writes X ~ Y.

d) The map T is said to be isometric if ||Tz| = ||z| for all z € X,
and contractive if | T|| < 1.

REMARK 2.11. a) Let X and Y be normed vector spaces and J :
X — Y be an isomorphism. Let z, € X and y, := Jz, for n € N.
Hence, z, = J 'y, and so the sequence (x,) converges if and only if
(yn) converges. Proposition 1.12 and Theorem 1.37 then show that a
set C' C X is closed [open, resp. compact| if and only if the image
D = JC CY is closed [open, resp. compact]. Similarly, X is a Banach
space if and only if Y is a Banach space.

b) The kernel N(T) of a map T' € B(X,Y) is closed by Proposi-
tion 1.24. An isometry is contractive and injective, and a contraction
is continuous. In Example 2.9, the right shift R is an isometry, and the
left shift L has norm 1, but L is not an isometry.

c) Let T € B(X,Y) be an isometry. Then its inverse T~ : R(T) —
X is linear and isometric. In fact, for y = Tz in R(T) we compute
1T~ yll = [zl = 1T ]| = [lyll

d) Let X be a Banach space and let the operator T' € B(X,Y') satisfy
the lower bound ||Tx| > c||z|| for some ¢ > 0 and all x € X (e.g., if T
is isometric). Then its range R(T) is closed in Y.

PrOOF. Take a sequence (y,) = (Tx,) in R(T) with limit y in Y.
The assumption yields ||z, — zn|| < ¢ HYn — ym|| — 0 as n,m — oc.
By completeness, there exists x = lim,,_,o, x,,. The continuity of 7" then
implies that y = T'x belongs to R(T); i.e., R(T) is closed. O

e) Let Y be a linear subspace of (X, |- ||x) with its own norm || - ||y.
The identity I : (Y, || - |ly) = (X, || - ||x) is continuous (and thus an
embedding) if and only if ||y||x = [[{y||x < c|ly|ly for all y € Y and a
constant ¢ > 0 if and only if || - ||y is finer than || - ||x. We have the
examples 7 — (1 if 1 <p<qg<ooand C([0,1]) = C([0,1]). O
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We illustrate the above concepts by several important operators.

EXAMPLE 2.12. a) Let () # B € B,, with A\(B) < oo such that for
all z € B and r > 0 we have A(B N B(z,r)) > 0. For f € Cy(B) set
Jf = f+ N. This map is linear and bounded from Cy(B) to LP(B)
for p € [1,0c], since [Jfll, = £l < AB)Y? || for all f € Cy(B).
If Jf =0, then f = 0 a.e.. Take any x € B. The assumption gives
x, € B with f(x,) =0 and z,, - x as n — oo. It follows f(z) =0 by
continuity. As a result, J : Cy(B) — LP(B) is an embedding.

b) We define a map J on C([—1,1]) by setting

07 |t| 2 27
@+t f(—2-1), —2<t< -1,
TO=1 s, <1,

2-tf2-1t), 1<t<2,

for f € C([-1,1]). Clearly, the map Jf is contained in Cy(R) and J
is linear and isometric. Hence, J : C([—1,1]) < Cy(R) is an isometric
embedding. (One can also embed C'(K) into Cp(R™) for any compact
K C R™ using Tietze’s extension theorem, see Satz B.1.5 in [We].)

c) Let X = {f € C'(]0,1])| f(0) = 0} be endowed with the norm
given by ||f|l = || f'[|cc- Then the map D : X — C([0,1)); Df = f', is
an isometric isomorphism with inverse defined by D~'¢(t) = fot g(s)ds
for t € [0,1] and g € C([0, 1]). The Banach space structures of X and
C([0,1]) are thus the ‘same’ by Remark 2.11. But, the isomorphism D
destroys other properties such as non-negativity (e.g., f(t) = t(1 —t)
is non-negative on [0, 1], in contrast to Df(t) = f'(t) =1 — 2t).

d)* Each sequence m € (* induces the multiplication operator
T @ @+ mz on P for p € [1,00]. Example 2.6b) with (S, A, u) =
(N,P(N), () implies that the mapping ¢~ — B(?); m — T,,, is an
isometry which is also linear. By the previous remark, ¢ is thus
isomorphic to a closed subspace of B(¢?). From Example 1.55 and
Exercise 6.2 we then infer that B(¢?) is not separable. O

The next simple extension lemma is used thoughout mathematics.

LEMMA 2.13. Let X be a normed vector space, Y be a Banach space,
D C X be a dense linear subspace (endowed with the norm of X ), and
To € B(D,Y). Then there exists exactly one extension T € B(X,Y) of
To; i.e., Tox = Tx for all x € D. We further have ||To|| = ||T||, and T
1s isometric if Ty is isometric.

Proor. Let x € X. Choose vectors z,, € D such that z,, > zin X
as n — oo. Since || Toz, —Toxm|| < | 1ol ||2n —Tm||, the sequence (Tyz,,)
is Cauchy and thus converges to an element of Y denoted by Tx. Let
also (Z,,) in D tend to z. Because of || Tox,—ToZ,|| < ||To||l|zn—2Zx| — O

4This example was mentioned in the lectures at a different place.
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as n — 00, the vector T'z indeed does not depend on the approximating
sequence. It is clear that Tz = Tyz for z € D (take x,, = x).

Let x,z € D and «, 8 € F. Pick z,, 2, € D with z,, — x and z, — 2
as n — 0o. Because Ty is continuous and linear, we obtain

T(ax+pz) = lim Ty(ax,+Fz,) = lim (oToz,+Toz,) = aTz+ Tz,
n—oo n—oo

and hence T : X — Y is linear. Since

Tall = lim [Toz,l| < [T Jim [lzal] = [Zoll 2]

the operator T belongs to B(X,Y') with ||T'|| < ||Zo]|. (If Tp is isometric,
one sees that T is also isometric.) On the other hand, Remark 2.4 yields

1Tl = sup [Tl = sup |[Tox|| = ||To],

reX, [lzl|=1 zeD, ||z]|=1

so that ||To]] = |||
Let S € B(X,Y) satisfy Sx = Tyz for all x € D. Let z € X. Choose
T, € D with x,, = z as n — 0o. The uniqueness assertion follows from

Sz = lim Sz, = lim Tyz, =T=z. O

n—oo n—oo

Convolutions and Young’s inequality. In this subsection we
derive Young’s important inequality for convolutions. Their relevance
will become clear in Theorem 4.13 and Section 4.2. We first introduce
and discuss the convolution f % g of functions f € LP(R™) and g €
L9(R™) for suitable p,q € [1,00]. Note that the map

P R™ = [0,00);  ¢(z,y) = |f(z—y)gy)l,
is measurable as a combination of measurable maps.

Step 1). Let f,g € L'(R™). By means of Fubini’s Theorem 3.29 in
Analysis 3 and the transformation z =  — y, we derive

/RM @(xﬂy)d(l’vy):/m /mlf(x—y)|dx l9(y)ldy

= [ 15Gazlatlay = 171 lglh < oo

and thus the integrability of ¢ on R?™. Therefore Fubini’s theorem
shows that the convolution

(f*g)(z) = - flx —y)g(y)dy (2.1)

is defined in F for a.e. € R™ (where we set f * g = 0 on the null set)
and that it belongs to L'(R™) with

1f*gll < // (z —y)g(y)dyde = [[elly = [f ]l gl
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Step 2). Let ¢ € [1,00), f € LY(R™), and g € LIY(R™). Fubini’s
theorem again yields the existence of the integral

v@)i= [ 1@ newldy= [ Ife =¥ I -l o)l dy

m

in [0, oo] for all z € R™ and that 1 is measurable on R”. From Holder’s
inequality, we then deduce

q

ver < ([ 1e=vlan)” [ 1 nllaray
11 [ 1= )l lgtw)ldy,

also using ¢ = ¢/(¢ — 1) and the transformation z = x —y. Step 1)
now implies the estimate

11l :/R wide < I FIT A gl I < DLAIE IIle/]R g dz
< AT gl - (2.2)

This time we cannot directly deduce the measurability of f * g from
Fubini’s theorem since we integrated ¢ instead of ¢). To deal with this
problem, we use also Proposition 1.35 and compute

0l > [ v@ide =6, o) de =5 Lnow(@leley)d.y)
B(0,n) B(0,n) R2m

for a constant d,, > 0 and every n € N. Therefore, the function given
by ©n(x,y) = Lo (z)p(z,y) is integrable on R*™. Fubini’s theorem
thus shows that f x g is defined by (2.1) for a.e. x € B(0,n) and each
n € N (and hence for a.e. x € R™) and that the map Lp() [ * g is
measurable on R™. Letting n — oo, we see that the pointwise limit
f * g is measurable on R™. Estimate (2.2) finally yields

I+l = |
RmM

We have thus proved a part of the next result, see Theorem 4.33 in
[Br] for the remaining cases. A different proof for the full statement is
given at the end of Section 2.3.

q
dr < / wrdz < || F11¢ lglle.
Rm

- flz—y)g(y)dy

THEOREM 2.14. Let 1 < p,q,r < oo with 1 —i—% = %—i— %. Take
f € LP(R™) and g € LYR™). Then the convolution (f * g)(z) in (2.1)
is defined in F for a.e. x € R™ (where we set f+g =0 on the null set),
and it gives a function in L"(R™). We further have Young’s inequality

1f* gl < If Nl Ngllg-
Let p,q,r € [1, 0], 1+% = Z—lj—l—%, and g € LY(R™) be fixed. The above

theorem yields the bounded linear operator 7' : LP(R™) — L"(R™);
[ f* g, with norm || T[] < ||g[l,-
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2.2. Standard constructions

One can construct new normed vector spaces out of given ones in
various ways. The basic methods are treated below, see also Corol-
lary 1.13. These results are standard tools in analysis.

A) Product spaces. We start with the simplest case. Let X
and Y be normed vector spaces. The Cartesian product X x Y =
{(z,y) |z € X,y € Y} is a normed vector space for each of the norms

1z, y)|l, = max{||z| x, [[ylly}, »= o0,
’ B 1
P L lal +Hlyl) 7 p e (1, 00).

These norms are equivalent. We have (z,,,y,) — (z,y) in X x Y if and
only if z,, - z in X and v, — vy in Y, as n — co. Moreover, X x Y
is complete if X and Y are complete. These facts can be proved as in
Analysis 2 for the case R = X = Y. There are obvious modifications
for finite products.

B) Direct sums. We now discuss how to decompose X into closed
subspaces. Surprisingly, in a Banach space this procedure is equivalent
to the Cartesian product, see Remark 2.17.

DEFINITION 2.15. Let X; and X5 be closed linear subspaces of a
normed vector space X such that X1 + Xo = X and X; N Xy = {0},
We then say that X is the direct sum of Xy and X5 and that X5 is the
complement of Xy. In this case we write X = X1 ® X5. LetY be a
vector space. A map P € L(Y) is called projection if P* = P.

We first show that bounded projections yield direct sums.

LEMMA 2.16. Let X be a normed vector space and P € B(X) be a
projection. Then the operator I — P € B(X) is also a projection. We
have the equations

R(P)=N(I—P)=X,, N(P)=R(I-P)= X5, X=X, Xo.
Moreover, P satisfies |[P|| > 1 if P # 0.

PROOF. From P = P? we deduce (I — P)? =1—-2P+P?=1-P.
If y € R(P), then there is a vector x € X with y = Pz and thus
(I-P)y = Pr—P%r = 0;ie.y € N(I—P). Conversely, if (—P)z = 0,
then © = Pz € R(P). So we have shown the asserted equalities for X,
which yield those for X, since I — P is a projection and [ — (I —P) = P.
By Proposition 1.24 the subspaces X; and X5 are closed as kernels of
continuous maps. We can write z = Px+ (I — P)x € X; + X for each
re X. Ifxr € XyN Xy, then Px =0 and thus 0 = 2 — Px = . Hence,
X = X;®X,. The last assertion follows from ||P|| = || P?|| < ||P|*. O

We next construct a projection for a given direct sum.
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REMARK 2.17. a) Let X be a normed vector space with X = X;®X5.
For each x € X we then have unique vectors 1 € X; and zo € X5
with © = 1 + x5. Set Px = x1. Then P : X — X is the unique linear
projection with R(P) = X; and N(P) = X,.

ProOOF. By assumption, for each z € X exists vectors x; € X; and
Ty € Xy with ©x = x1 4+ 2. If also 7, € X, satisfy x = 1 + 2, then
the differences x; — #; = T2 — x2 belong to X; N Xy, = {0}, so that the
components x € X of x are unique.

The definition of P easily yields the identities P? = P, R(P) = X,
and N(P) = X,. Let x,y € X and «,8 € F. There are vectors
Tk, Y € X such that © = x1 + x5 and y = y; + y». We then compute

P(ax+By) = P((ax1+ By1) + (ax2 + By2)) = awr+ By = aPr+ Py,

so that P is linear.

Let also Q € L(X) satisfy Q* = @, R(Q) = X; and N(Q) = Xo.
Take x € X and write x = x1 + 25 as above. We then have z; = Qy
for some y € X, and so Qr = Q1 + Qo = Q*y = Qy =2, = Px. O

b) Let X be a Banach space. Proposition 4.32 says that the projec-
tion P in part a) is continuous and that X; & Xo = X; x Xo. O

We illustrate the above concepts with simple examples.

EXAMPLE 2.18. a) Let X = R?* t € R, and P = (/). Then P is
a projection with R(P) = R x {0}, N(P) = {(—tr,r)|r € R}, and
1P|l =1+ [t| for |- |;.

b) Let X = LP(R), p € [1,00], and Pf = 1y, f for f € X. Clearly,
I1Pfll, < |Ifll, and P? = P, so that P € B(X) is a projection with
| P|l = 1. We further have (I — P)f = I(_oqf. To express the direct
sum X = R(P) @ N(P) more conveniently, we introduce the isometric
isomorphism J : R(P) — LP(R.); Jf = f|r,, whose inverse is given
by J7'g =gon R, and J-'g = 0 on (—00,0]. On R_ one proceeds
similarly. We can thus identify X with LP(R,) & LP(R_), considering
LP(R.) as subspaces of LP(R) by extending functions by 0.

¢) The closed subspace ¢y has no complement in ¢, see Satz IV.6.5
in [We]. O

C) Quotient spaces. Let X be a normed vector space, Y a linear
subspace and
XY ={z=x+Y |z e X}
be the quotient space. The quotient map
Q:X—->X/Y, Qx=t,

is linear and surjective with N(Q) = Y. (See Linear Algebra.) One
sets codimY = dim X/Y. We define the quotient norm ¢ by

q(z) = ||2]| = |Qz| := inf ||z — y[| = d(z,Y).
yey
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fort=2+Y e X/Y. lf 2+Y =2 +Y, then Z — z belongs to Y and
thus d(z,Y) = d(z,Y); i.e., || 2| does not depend on the representative
of z. For a # 0, we have

N 1 _ . _ _ ~
lol| = inf fla(z — gy)ll = lof inf Jlo — 2] = |of |2l

Let 21,29 € X. Take ¢ > 0. There are y, € Y mit ||zr —yel| < ||Zx]|+¢
for k € {1,2}. We then obtain

|21 +2s|| = ;g |z1+zo—y|| < ||lz14+z2—(y1 + y2)|| < &1 ||+ Z2]| +2¢.

Since € > 0 is arbitrary, the quotient norm is a seminorm. Because of
|Qz|| = ||Z|| < ||z]|, the quotient map @ has norm ||Q|| < 1.°

Now, let Y be closed. If ||Z]| = 0 for some & € X/Y, then there
exist y, € Y with ||z — y,|| — 0 as n — oo. From the closedness of
Y it follows that x belongs to Y, and hence £ = 0. So far we have
established that X/Y is a normed vector space for the quotient norm.
Moreover, for each 6 € (0,1), Lemma 1.44 gives a vector z € X with
|Z|| = 1 and

QI = [[Qz] = inf [z —yl[ =1 0.
yey
Letting 6 — 1, we deduce that ||Q|| = 1.

PROPOSITION 2.19. Let X be a normed vector space and Y be a
linear subspace.

a) Then X/Y is vector space with seminorm q : x +Y — d(z,Y).
The map Q : X — X/Y; Qv = x + Y, is linear and surjective with
N(Q) =Y and Q]| < 1.

b) Let Y be closed. Then q is a norm and ||Q] = 1.

c) Let X be a Banach space and 'Y be closed. Then XY is complete.

PROOF.® It remains to show the completeness of X/Y. Let ()
be a Cauchy sequence in X/Y. We find a subsequence such that

|2 — B, || < 27F for all m > ny. (2.3)

Hence, there are vectors y,, € Y with Hﬂltnk+1 — T, — Yn, || < 2- 2k
for every k € N. Set 2z = xp, ., — T, — Yn, and vy = 2, + Z,]CVZI Zk.
Since X is a Banach space and ), ||zx|| < oo, there exists the limit
x = limy_0o vn in X. (See Lemma 4.23.) We further have

N N

UN = Tpyyy — Zynk and Zynk ey,
k=1 k=1

so that Oy = Zp,,,. As @ is continuous, the difference 2, B — & =
Q(vy —x) tends to 0in X/Y as N — oo. For € > 0 we thus obtain an

SHere we use the operator norm also for semi-normed spaces.
6This proof was omitted in the lectures.
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index N = N, € N such that 27" < ¢ and ||# — Z,, || < &. Using also
inequality (2.3), we deduce

12 = Znll S |2 = Ty || + 120y — Emll < 26
for all m > ny. O

We complement the examples of the preceding subsection.

EXAMPLE 2.20. a) Let X =Y @ Z for a Banach space X. Then
the map J : Z — X/Y; Jz = 2 = 2+ Y, is linear and continuous. If
Jz =0, then z € Y and thus 2z =0. Let 2 =2+ Y € X/Y. There are
vectors y € Y and z € Z with x = y + 2, so that £+ = Z = Jz. Hence,
J is bijective. The continuity of J~! follows from the open mapping
theorem 4.28 below. As a result, Z ~ X/Y via J. In Example 2.18b)
we thus obtain LP(R)/LP(Ry) ~ LP(R_) for p € [1, 00].

b) The quotient construction is more general than the direct sum.

For instance, ¢ /cy exists, though ¢y has no complement in ¢> by
Example 2.18c¢). O

D) Completion. On a Banach space one occasionally considers
another weaker incomplete norm. One then wants to pass to a ‘larger’
Banach space with this norm. This is made precise in the following
result. It possesses another much shorter proof which is indicated after
Proposition 5.24, see also Korollar 1I1.3.2 in [We|. We provide the
more constructive proof below since it is useful in certain situations
and it is similar to Cantor’s construction of R out of Q.

PROPOSITION 2.21. Let X be a normed vector space. Then there is
a Banach space X and a linear isometry J : X — X such that JX is
dense in X. Any other Banach space with this property is isometrically
1somorphic to X.

PROOF.” Let E be the vector space of all Cauchy sequences v =
(Zp)nen in X. Note that for (z,) € E the sequence (||x,]||) is Cauchy
in R and thus the number p(v) := lim, . ||z, || exists in R. It is easy
to check that p is a seminorm on E and that its kernel is given by the
linear subspace ¢o(X) of all null sequences in X. We now define the
vector space X = F/co(X) and put |||5]|| = p(v) for any representative
ve FEof v e X. Ifwe E is another representative of 7, then v — w €
co(X) and we thus obtain p(v) < p(v —w) + p(w) = p(w) as well as
p(w) < p(v). Hence, |||9]| is well defined and it gives a norm on X. We
further introduce the map

J:X > X, z—(z,2,...) +co(X),

which is linear and isometric. Let & € X and ¢ > 0. Choose a represen-
tative v = (z3) € E. Thereis anindex N = N, € Nwith |[zy—zn]| < e

"This proof was only sketched in the lectures.
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for all k > N. It follows |||0 — Jxy||| = limg_eo ||z — zn]|| < &, and
hence the range of .J is dense in X.

Let (9,,) be a Cauchy sequence in X with representives v,, =
(xm,j); € E. For each m € N, we can find an index j,, such that
jm+1 > ]m and

1 L
|Zmj — T || < p” for all j > j,..

We define the diagonal sequence w = (Y )m = (Tmj,)m. The above
inequality then yields

1 = Yrnll = 1780 = Tl < 1175 = Bl = 1= T ]+ 12— T
=l (20, = Tl + 150 = Gl + 0 5 = o
1 1

< = 5= B =
n m

so that w € E. Let ¢ > 0. Using the above extimate and that (7,,) is a

Cauchy sequence in X, we find an index N. € Nsuch that ||y, —yn|| <€
and 1/N. < e for all n,m > N.. We can thus estimate

@ = oIl < Wl = Tym Il + Il Typm — O

= lim Hyn - ymH + hm me,jm - xm,j” <2
n—o00 Jj—o0

for all m > N., so that X is complete.

It remains to prove uniqueness. Let X’ be a Banach space and
J': X — X' be isometric and linear with dense range J'X in X'.
Remark 2.11 shows that the operator Ty = Jo(J')™' : J'X — X, is well
defined and isometric. It has the dense range JX. Using Lemma 2.13
and the completeness of X, we can extend Ty to an isometric linear
map T : X' — X still having a dense range. Remark 2.11 and the
completeness of X’ yield the closedness of the range of T', which is thus
equal to X. Consequently, T is the required isometric isomorphism. [

REMARK 2.22. Usually one identifies X with the subspace JX of
X (as one does with Q and R). Note that an equivalent norm on X
yields the same extrapolation space with an equivalent norm. Let Y be
a Banach space. Every T" € B(X,Y) can uniquely be extended to an
operator T' € B(X,Y) by means of Lemma 2.13. Also, T is isometric
if T is isometric. O

EXAMPLE 2.23. Let p € [1,00). The map J : (C([0,1]),] - |l,) —
LP(0,1); f — [+ N, is isometric. Theorem 5.9 of Analysis yields
that J has dense range. Using the above remark, we obtain a linear
isometric map J : (C([0,1]),] - [l,)~ — LP(0,1) with dense range.
By Remark 2.11, the range of J is closed and thus J is an isometric
isomorphism. In this way one can view LP(0,1) as the completion of
C([0,1]) with respect to the p—norm. O
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E) Sum of Banach spaces. Let® X and Y be Banach spaces
which are linear subspaces of a vector space Z that possesses a metric
d which for addition and scalar multiplication of Z are continuous. (We
call such a metric compatible.) We assume that the inclusion maps from
X to Z and from Y to Z are continuous. We then define the sum

X+Y={z=z+ylzeX, yeY}

which is a linear subspace of Z. We can consider X and Y as linear
subspaces of X +Y. A typical example is LP(u)+ L(p) for p,q € [1, 0]
and a measure space (5,4, 1), where we may take Z as the space of
measurable functions modulo null functions, endowed with the metric
describing local convergence in measure. This space will be used in
Section 2.3.

We point out that the sum X + Y does not need to be direct, i.e.,
for a given z € X + Y there may be many pairs (z,y) € X x Y such
that 2 = x + y. Moreover, the norm in X does not need to be finer or
coarser than that of Y. We endow X + Y with the sum norm

12l x4y = inf{{[z]lx + lylly [z =2 +y, 2 € X, y €V}

which turns out to be coarser those of X and of Y. Thus, X +Y can
serve as a space where we can compare the convergence in X with that
in Y. We will further need the linear subspace D = {(u, —u)|u €
XNY}of X xY.

PROPOSITION 2.24. Let X andY be Banach spaces which are linear
subspaces of a vector space Z endowed with a compatible metric. We
assume that the inclusion maps from X to Z and from Y to Z are
continuous. Then (X +Y, |- ||x+y) is a Banach space which is isomet-
rically isomorphic to the quotient space (X X Y)/D, where X XY is
endowed with the norm ||x||x + ||y|ly. Moreover, ||z||x < ||z||xs+y for
z e X and |lylly < |lyllxsy foryeY.

PROOF. Let z € X +Y and a € F. Note that ||z| x4y exists in
[0,00). If ||z||x+y = 0, then there are z, € X and y, € Y such that
z = x, +yp for all n € N and ||a,||x + [|ynlly — 0 as n — oco. By
continuity, z,, and y,, both tend to 0 in Z, and so z = 0 since the metric
is compatible. We further have

lezlxqy = inf{{laz|x+aylly [ z=2+y, € X, yeV} = [a [[2] x4y

Let 21,20 € X +Y. For any € > 0, we can choose z; € X and y; € YV
such that z; = z; +y; and ||z || x +||y;lly < ||zjl|x+y +¢€ for j € {1,2}.
Since z1 + z2 = (x1 + 22) + (y1 + ¥2), we conclude

|21 + 22l x+v < ||zt + 22|l x + |ly1 + velly < ||21llx4y + [|22]| x4y + 2¢.

8This subsection was not containd in the lectures.
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As aresult, X +Y is a normed vector space. The last assertion is clear.
We next show that

J (X xY)/D X +Y; J((r,y)+ D) =a+y,

is a linear, isometric and surjective map and that D is closed in X x Y.
In view of Remark 2.11 and Proposition 2.19, these facts imply that J
is an isometric isomorphism and that X + Y is a Banach space.

First, let v, = (x,, —x,) € D converge to v in X x Y. Then z,, tends
to some x in X and —x, to some y in Y. Since both sequences also
converge in Z, we obtain y = —x € X NY and z € D; i.e., D is closed
in X xY.

We next treat J. If (z,y) + D = (2/,y') + D in (X x Y)/D, then
(x — 2,y —y) € D and thus x — 2/ = 3y’ — y. This means that
J((x,y)+ D) =x+y=2+y = J((2/,y) + D), and J is in fact a
map. It is clear that J is linear and surjective. Let (x,y) € X x Y and
set F = (X xY)/D. The operator J is isometric since

I(z,y) + D||lg = inf{[[(z + u,y — u)[[xxv[u€XNY}
=inf{||z +ullx + |y —ully |[lue X NY}
= inf{||2'lx +[[ylly 2" € X, y €Y, 2’ + ¢ =z +y}
= ||z +yllx4v
where we take u =2’ —x =y — /. O
PROPOSITION 2.25. Let X; and Y; (with j € {0,1}) be Banach
spaces which are linear subspaces of vector spaces V. and W with com-
patible metrics, respectively. Moreover, these inclusion maps are con-
tinuous. Let Ty € B(Xo,Yy) and Ty € B(X1,Y1) be operators such that

Tou=Tiu=:Tu for all u € XoN Xy, Then T has a unique extension
T € B(Xo+X1,Yo+Y1) with Tx; = Tjx; for allz; € X, and j € {0,1}.

PROOF. Let o = zp + x; for x; € X;. We then define
fl’ = T()ZE() +T1l‘1 S }/0 +)/1

If 2 =z + 2 for 2 € X, we obtain u := x5 — o = 21 — 27 € XN X.
It follows that

Toxy + Thay = Toxo + Tou + Thay — Thu = Tx+Tu—Tu=Tr,

and thus 7 : Xo+ X1 — Yy + Y] is a map. Clearly, ij = Tz  for
all ; € Xj and j € {0,1}. Take any 2 € X; and o, € F. Set
x' = xf + o). We then compute
T(ox 4 Ba') = To(axo + Bxh) + Ti(axy + f2))
= a(Tyzo + Tvay) + B(Toxl + Tywy) = oTx + BT,
so that T is linear. Moreover,

T2 vorva < [[Towolly, + [ITiwsllvy < max{{[Toll, [ T3l1} ([lzoll + [y [))-



2.3. The interpolation theorem of Riesz and Thorin 54

Taking the infimum over all decompositions x = xo + x1 in Xy + X7,
we derive that T is bounded. Let S € B(X, + X, Yy + Y1) be another
extension of Ty and T;. Then Sx = Szg + Sz; = Toxy + Tz, = Tx,
and T is unique. Il

2.3. The interpolation theorem of Riesz and Thorin

Interpolation? theory is an important branch of functional analysis
which treats the following problem. Let X; and Y; (with j € {0,1})
be Banach spaces which are linear subspaces of vector spaces W and Z
with compatible metrics, respectively. Assume that Ty : Xg — Y, and
T1 : X1 — Y; are bounded linear operators such that Tyu = Tiu =: T'u
for all u € Xo N X;. Due to Paragraph 2.2E), we can extend T to a

bounded linear operator T : Xy + X; — Yy + Y7 where the sum space
X+Y={z=z+ylzeX, yeY}
is endowed with the complete norm
[zllxey = inf{{lzlx + llylly [z =2 +y, z€ X, ye Y}

One now wants to find Banach spaces X between XM X; and Xo+ X3
and Y between Yy NY; and Y + Y7 such that T can be restricted to a
bounded linear map from X to Y which also extends Ty. We refer to the
lecture notes [Lu] for an introduction to this area and its applications.
Here we restrict ourselves to one of the seminal results in this subject
due to Riesz and Thorin, which deals with LP—spaces.

Let (Q,A,p) and (A,B,v) be o-finite measure spaces and take
Dos P1, o, q1 € [1,00]. Set U = LPo(u)NLP*(p) and V = L (v)N L4 (v).
Take 6 € [0,1] and define

1 1-6 0 1 1-6 40
+— and -= + —.
p Po b1 q do 0

Observe that every p € [po, p1] if po < p1 and every p € [p1, po] if po > p1
can be written in this way. The exponent g between ¢y and ¢, is then
fixed via @ € [0,1]. It is possible that the spaces L () and LP*(u) are
not included in each other. We thus use the sum space L () + LP* (1)
to express that operators on L (u) and on LP'(u) are restrictions of
common operator.

As seen in Analysis 3, Holder’s inequality shows that U C LP(u) and
V' C L9(v) with the norm bounds

Fllp < 11y " 115, and gl < llgllg” llglly, — (24)

for all f € U and g € V. We recall from Theorem 5.9 of Analysis 3
that the space of simple functions

E(A)=1lin{l4]|A e A, u(A) < oo}

9This section was not containd in the lectures.
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with a support of finite measure is dense in L"(u) if r € [1,00). The
proof given there also shows that the space of simple functions

Eo(A) =lin{14| A € A}

is dense in L*>°(u). Moreover, for f € U with pyg # p; we can find a
sequence (f,) in E(A) such that f, — f in LP°(u) and in LP*(u), and
thus also in LP(u) by (2.4).

We want to show that LP(u) with p as above is embedded into
LPo(p) + LP'(p). Let po < pr. (The other case is treated analogously.)

For f € LP(u) \ {0}, we set f = | f]l,* f so that ||pr = 1. Because
of f € LP(u) the set {f > 1} has finite measure (if p < 00), and thus
the function fo = 1,7, f belongs to LPo (1), cf. Proposition 1.35. The

function f; = ﬂ{f<1}fis contained in L*(u) and hence in LP'(p), see

(2.4). The maps f = fo+ fi and f thus belong to L () + LP*(1).
Using || f]l, = 1, we further compute

1 moquyson ey = ILF o 1l vy ooy < N1l (1 follpo + 111l

_ flPo 0 fP1 4 Z
Hf||p( /{f>1}|f| u) +Hf||p( /{f<1}|f| u)

174 Po 174 pll
S!Ipr( /{m\f\ u) +Hpr( /{mm u)

< 2{[fllp

so that LP(u) < LPo(p)+ LP*(p). Similarly, one verifies the embedding
Li(v) — L®(v) + L (v).

THEOREM 2.26 (Riesz-Thorin). Let (Q, A, u) and (A, B,v) be o-
finite measure spaces, F = C, and pg, p1,q0, ¢1 € [1,00]. Take 6 € [0, 1]
and define p,q € [1,00] via

1 1-6 6 1 1-6 40
= +— and -—-=
p Po b1 q 4o a1
Assume there are operators T; € B(LPi(p), L% (v)) such that Tou =
Tiu =: Tu for all w € U = LP(u) N LP*(u). Then T has a unique
extension Ty € B(LP(u), L1(v)). Moreover, Ty is the restriction of T €
B(LPo(p) + LP (p), L (v) 4+ L (v)) which is the unique extension of Ty
and Ty to this space (see Proposition 2.25), and we have

1ol 5ze .29 < 1 Toll5 00,2000 1T NBLR Gy .21 ) -

We note that the theorem is also true for F = R with an additional
multiplicative constant in the estimate, see Satz 11.4.2 in [We].

PROOF. The result trivially holds if § € {0,1}. So we can take
0 € (0,1). First let pg = py; i.e,, po = p. Let f € LP(u). The
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assumptions then yield T'f € V' = L% (v)N L% (v) and, using also (2.4),
ITFlly < 1 Tofllgg " T3 fllg, < WTo I = A1~ I Tl 1 A1
= 1Tl 1T 1 £ 11

so that the theorem has been shown in this case.
Next, let pg # p1. In this case, we have p < oo, and thus E(A) is
dense in LP(u). We consider simple functions

f=Y ajla € E(A) CU = L*(u) N L (),
j=1

where we may assume that the sets A; are pairwise disjoint and have
finite measure. The assumptions again yield T'f € V. By equation
(5.5) we have

ITflg = sup (2.5)

9eE(B), |9l <1

/A(Tf)gdv

if ¢ < o0. If ¢ = o0 (i.e., ¢ = 1 which is equivalent to (g0, q1) = (1,1)),
then (2.5) is valid with E(B) replaced by E.(B). Further, take g =
Y i br 1p, € E(B) with ||g|ly < 1 where we may assume that the sets
By, are pairwise disjoint and have finite measure. (If ¢ = oo, we allow
for p(Bg) = 00.) Let z € §:={( € C| Re( € [0,1]}. We then define
the function F(z) by

z

(FE) ) = )P U557 fw)
for w € Q with f(w) # 0, and by (F(2))(w) = 0 if f(w) = 0. For
q < oo, we set

GO = g L) g
0

for A € A with g(\) # 0, and put (G(2))(\) = 0 if g(A) = 0. If
¢ = oo, we simply take G(z) = g. We write p(z) = p(lp;oz +2)-1
and q(z) = q’(lq;éz + %) — 1. Observe that F(0) = f and G(0) = g,
as well as F(z) € E(A), G(z) € E(B) if ¢ < 0o and G(2) € Ew(B) if
¢ = oo. The assumptions lead to TF(z) € V. We further introduce
the function

o(2) :/ T(F(2)) G(z)dv :Z Z ajla; [P bk|bk|q(z)/(TILAj) Ig, dv
A j=1 k=1 A
for z € S. Observe that ¢ € C'(S) is holomorphic on S°.
We want to apply the Three-Lines-Theorem, see Satz 11.4.3 in [We],
and thus check the estimates assumed in this result. Writing z =
s+it € S with s € [0,1] and ¢t € R, we compute

1 1=s
+

PO = fPE), 160w =g (F) @)
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for all s € [0,1], t € R, w € Q and A € A. The right hand sides are
bounded in z € S for fixed w and A. In the same way one sees that ¢
is bounded on S. The Three-Lines-Theorem then yields

‘ /A(Tf)g dv

Holder’s inequality, the assumptions and estimate (2.6) with s = 0
further imply

— le0)] < (suplot)l)  (suplet+i0)) @7)

o (it)] < 1 ToF (it)]| g I\G(it)llq0 < ol 1 GE) o HG(it)

— 1l [ 1% du) (/ PES du)

= |l 171 lglly

where we also used that ||g||, < 1. Similarly one sees that

Hq6

S SN

< [Tl 171

[p(L+ i) < [TVF (L +it) g [G(L +it)]|g
< NTAHIEQ 418, G+ it)llqg

_ ||T1||( / |f|mdu) ( ks du) 1

= [T Mgl < Il 1713

Formulas (2.5) and (2.7) now lead to

58 -Q‘»Q
~ 2y

T Flly < Tl =0 WA P N 1B = 1Tl I T3]l ||f|(|p )
2.8

for all f € E(A). Let f € U. As observed above the theorem, we can
approximate f by f, € E(A) in LP(u), in LP(p) and in LP(u). By
the assumptions, also T'f,, tends to T'f in L%(v) and in L% (v), and
hence in Li(v) due to (2.4). Inequality (2.8) thus holds for all f € U.
Lemma 2.13 then allows to extend T uniquely from its domain U to an
operator Ty € B(LP(u), L(;1)) with norm less or equal ||Tp||*~ ||T1]|°.
As observed before the theorem, we have LP(p) < LPo(u)+ LP*(u) and
similarly for the range spaces. Hence, T'f, = T Jn tends both to Tpf
and T'f in L%(v) + L7 (v) so that Ty is an restriction of T'. O

We next use the Riesz—Thorin theorem to give a different proof of
Young’s inequality for convolutions from Theorem 2.14.

la) Recall the definition (2.1) of the convolution f x g for f,g €
LY(R™) and that ¢(z,y) = |f(z — y)g(y)|. There we have shown that

1 glly < llelly = 1 £1lx gl
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1b) In a second step, we take f € L'(R™) and g € L>=(R™). We
compute

/B(O,n)degp<x7y) d(&l,y) < /B(O,n) /m |f($ - y)‘ ||g||oo dy dx
ol [ [ W azar = 5B 171 gl

Fubini’s theorem now yields that (fxg)(x) is defined for a.e. x € B(0,n)
and gives a measurable function on B(0,n). Letting n — oo, the
same holds on R™. Replacing in the above estimate the integral over
x € B(0,n) by a supremum in z € R™, we further obtain

1 * gllee < 1111 N9l
lc) Fix any f € LY(R™). We define Tyg = f x g for g € LY(R™)
and Tog = f* g for g € L*°(R™). We have shown that that 7, €
B(L"(R™)) with ||T|| < ||f]l1 for » € {1,00}. We can now extend
the convolution to an operator Tg = fx g := f x (g1 + goo) for g =
g1+ goo € LY(R™) + L®(R™). Let q € (1,00). Set § = 1/¢" € (0,1),
so that %1 = % + &. The Riesz—Thorin theorem allows us to restrict
T to a bounded operator T, € B(LY(R™)) with |T,|| < ||f]/1. For all
f € LYR™), g € LY(R™) and ¢ € [1,00], we have thus shown that
f*ge LY(R™) and
1+ gllg < W f11x llglly-
2a) We fix g € LY(R™) and ¢ € [1,00], and vary f. For fe€ L'(R™),
step 1c) yields the bounded linear operator S; : L'(R™) — L(R™);
Sif = f * g, with norm ||S;|| < |lgll,- Let now f € L7 (R™). Due to
Holder’s estimate, the map y — f(z — y)g(y) is integrable on R™ and

fx=y)gy) dy| < [If(z =)l Nglly = 171l lglly

for each © € R™. One sees as above that f x g =: Sy f is a measurable
function and

‘ Rm

IS¢ flloo = 1S * glloe < 1F Nl lgllg:
i.e., Sy belongs to B(LY (R™), L>(R™)) with norm less or equal ||g|,-
We can thus define the convolution Sf = f * g for all ¢ € LI(R™),
f e LYR™) 4 LY (R™) and ¢ € [1,q].
2b) Finally, take p € [1,¢'] and r € [1, 00] with 1+ 1 = %—I—%. Choose
0 =q/p’ €0,1]. Observe that

1 1-6 6 1 1-6 0

- =——+— and -=-——+—.

P 1 q r q 00
By means of the Riesz—Thorin theorem we then restrict S to an opera-
tor S, € B(LP(R™), L"(R™)) with norm less or equal ||g||,. In this way

we have proved Theorem 2.14.



CHAPTER 3

Hilbert spaces

So far we can only treat lengths of vectors or their distance by means
of the norm. In F™ one also uses orthogonality (or angles) in a crucial
way. The relevant concepts are introduced below in our setting. We
will see that the resulting ‘Hilbert spaces’ inherit much more structure
of the finite dimensional case as a general Banach space.

3.1. Basic properties and orthogonality

DEFINITION 3.1. A scalar product on a vector space X is a map
(:|") : X? — F possessing the properties

a) (ox + fzly) = a(zly) + B (z[y),

b) (zly) = (y|z),

c) (z|x) >0, (z]z) =0 <= =0,
forall x,y,z € X and o, 8 € F. The map is called a sesquilinear form
if it fulfills a) and b), as well as positive definite if ¢) is valid. The
pair (X, (-])), or simply X, is said to be a Pre-Hilbert space.? We set
lz|| = v/ (z|z), and call it a Hilbert norm.

We start with several simple observations which will often be used.

REMARK 3.2. Let (X, (:]-)) be a Pre-Hilbert space.
a) Properties a) and b) in Definition 3.1 easily yield the relations
(Oly) = 0, (2|0) =0, (z[x) € R, and
(zlay + B2) = (ay + Bzlz) = a (ylz) + B (z[x) = a (z]y) + B (z]2)
for all o, 5 € F and x,y,z € X.
b) We have the Cauchy-Schwarz inequality
ly)l < el lyll - for all z,y € X. (CS)

Here one obtains equality if and only if x and y are linearly dependent.
See Linear Algebra or Satz V.1.2 in [We].

c¢) The Hilbert norm in Definition 3.1 is indeed a norm on X.
PROOF. Let 2,y € X and a € F. Definition 3.1 and (CS) yield

||| =0 <= (z|z) =0 < z =0,

loz| = aa(zlz) = |of 2],
lz + yll* = (= +yle +y) = l|=l* + (2ly) + (ylo) + [yl

10ne also uses the notions ‘inner product’ and ‘inner product space’.

59
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= llzl* + 2Re (zly) + [ly[l* (3.1)
< ll® + 212l yll + lyll* = =l + v ])*. =
d) The scalar product (-|-) : X? — F is Lipschitz on each ball of X?
and thus continuous.
ProOF. Using (CS), we estimate
|(@1]y1) = (waly2)| < [(21 = zafyn)| + |(22ly1 — v2)]
< rlley = @l + rllyn — g2l
<V2r (@1, 1) — (@2, 92|

for all zy, ye € X with || (ze, y)|| := (Jaxl|? + |ly]|?)z < r. O
e) From (3.1) we deduce the parallelogramm identity

lz+yl1* + lz—ylI* = 2] +2Re (z|y) +y[I* + [l2]* 2 Re (z|y) + [[y|*
=2 ||z[* + 2 Iyl (3.2)

for all z,y € X.
f) In view of Definition 3.1, a linear subspace of a Pre-Hilbert space
is a Pre-Hilbert space with the restricted scalar product. O

For the deeper properties of (X, (+|-)) we need completeness.

DEFINITION 3.3. Let (+]-) be a scalar product on X. If the Hilbert
norm || - || is complete, then (X, (-|-)) is called a Hilbert space.

We discuss the basic examples of Hilbert spaces, see also Section 4.2
and the exercises.

EXAMPLE 3.4. a) On X = F™ we have the Euclidean scalar product

(z|y) = Zxkgk with norm  ||z[|3 = Z Nk

k=1 k=1

for z,y € F™. The pair (F™,(-|-)) is a Hilbert space by Example 1.4.
Note that | - |, on F™ is not induced by a scalar product if m > 2

and p # 2, since |e1 +eo|2 + |e1 — ea|2 = 227 +2%/P £ 2(|ey 2+ |e2]2) = 4

contradicting (3.2).

m m

b) Similarly, X = ¢? is a Hilbert space with the scalar product

oo o0
(z|y) = Zxkgjk and the norm  ||z||3 = Z ETEE
k=1 k=1

cf. Proposition 1.30. Note that the first series converges absolutely
because of Holder’s inequality with p = p’ = 2.

c) Let (S, A, 1) be a measure space. Holder’s inequality with p = p’ =
2 and basic properties of the integral imply that the space X = L?(u)



3.1. Basic properties and orthogonality 61

possesses the scalar product

(Flo) = [ gz withmorm 15 = [ 17 de

It is a Hilbert space by Theorem 5.5 in Analysis 3. O

In Pre-Hilbert spaces one can define angles, where we restrict our-
selves to the angle 7/2.

DEFINITION 3.5. Two elements x and y of a Pre-Hilbert space X are
called orthogonal if (z|y) = 0. Two non-empty subsets A, B C X are
called orthogonal if (a|b) =0 for alla € A and b € B. One then writes
x Ly respectively A L B, and also x L A instead of {z} L A. The
orthogonal complement of A is given by

={x e X|z La forevery a € A}.
A projection P € L(X) is called orthogonal if R(P) L N(P).

We discuss a few typical examples for orthogonal vectors.

ExXAMPLE 3.6. a) Let (S, A, 1) be a measure space. Functions f, g €
L2(/L) with disjoint support (up to null sets) are orthogonal since then

(fl9) = Js fgdp = 0.
b) Set f,.(s) = e for s € [0,2n] and n € Z. If n # m the functions
fn and f,, are orthogonal in L?(0,27) because of

21
(fn|fm) — / elMSe=ims g —
0

Here the orthogonality is caused by oscillations and not by a disjoint
support as in a). (Compare (1,0) L (0,1) and (1,—1) L (1,1) in R?.)
c) Let f € L?(R) be even and g € L*(R) be odd. Then f L g since

(f19) = /f Sas+ [ s
=Atmﬂmw&+ztmm@m=a

where we substituted s = —t in the first integral. O

1 . 27
el(n—m)s =0.

i(n —m) 0

We now collect various properties of orthogonality which are often
employed in these lectures.

REMARK 3.7. Let X be a Pre-Hilbert space, A,B C X be non-
empty, and x,y € X. The next assertions follow mostly from the
above definitions.

a) We have # | z if and only if z = 0; and thus X+ = {0}. Moreover,
x L y is equivalent to y L x. Observe that {0}+ = X

b) Let x L y. Then equation (3.1) yields Pythagoras’ identity
I+ yll* = ll=l* + [yl
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c) Part a) implies the relations ANA+ C {0} and A C (A1)+ = AL

d) It is easy to see that At is a linear subspace of X. It is also closed.

In fact, let (z,) in A+ tend to 2 in X. Since the scalar product is
continuous (see Remark 3.2), we obtain (z|a) = lim,_, (2,]a) = 0 for
all @ € A. Hence, v 1. A and At is closed.

e) If A C B, then Bt C A1, As in d) one sees that At = (lin A)*.
f) If (z|2) = (y|z) for some z,y € X and all z from a dense subset

D C X, then x = y. Indeed, there are vectors z, in D converging to
x —y in X. The continuity of the scalar product then yields

lz = yl* = (z = ylo —y) = lim (z - y|z,) =0. 0

Many of the special properties of Hilbert spaces rely on the following
projection theorem.

THEOREM 3.8. Let X be a Hilbert space andY C X be a closed linear

subspace. Then there is a unique orthogonal projection P € B(X) with
R(P)=Y and N(P) =Y. It satisfies |P| =1 if Y # {0} and

|z — Px|| = inf ||z — y|| for every x € X.
yey

We have the decomposition X =Y @Y+ withY+=Y and X/Y =Y+
In particular, a linear subspace Z of X is dense if and only if Z+ = {0}.

Given z € X, the vector Px has the minimal distance to x within
elements of Y, and the difference + — Px € N(P) is orthogonal to Y.
Hilbert spaces thus inherit these basic geometric facts from F™.

PROOF. 1) Due to Remark 3.7, Y1 is a closed linear subspace of X
and Y NY+ = {0}. Let x € X. To construct Pz, we look for a vector
Y. in Y satisfying ||z — y.|| = inf ey ||z — y|]| =: §. There are elements
Yn of Y with ||z — y,|| = & as n — co. From (3.2) and 3 (y, +ym) €Y
we deduce the limit

0< ||%(yn - ym)HQ - H%(yn - :E) - %(ym - :)3)”2
= g — I + 2l — I ~ 13 + ) —
<y — 2P+ ym —2* =6 — 0 asn,m — oco.

Since X is complete and Y is closed, there exists the point y, =

lim, 00 ¥, in Y, and we obtain ||y, — x| = lim, s ||y, — z|| = 0.
2) Set z, := x —y,. We want to show that z, L Y. Take w € Y\ {0}
and put o = ||w||7?(z;|w). The linear combination aw + y, belongs to

Y. We thus infer

0" <l = (aw + y)|I* = |20 — aw|]®

= ||22]|? = 2Re@(zp|w) + |oo? |w|? = 62 —
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using (3.1) as well as the definition of z, and a. It follows that (z,|w) =
0 and thus z, 1L Y. Taking into account = = y, + 2., we have shown
the equality Y + Y+ = X, and hence X =Y @ Y. The last assertion
is a consequence of this decomposition because of Z+ = 7"

3) Remark 2.17 gives a unique operator P = P? € L(X) with R(P) =
Y and N(P) = Y, where Px = y,. Pythagoras further implies that
[1Pz[I” < [lyzl* + 2] = llz|* since y, L 2z ie, P € B(X) and
|P|| < 1. Lemma 2.16 then yields ||P|| = 1 if Y # {0}.

The inclusion ¥ C Y+ follows from Remark 3.7. Let x L Y.
We then compute 0 = (2|2,) = (Y2 + 22]22) = ||22||* employing step 2).
Hence, the vector = = 7, belongs to Y so that Y = Y*++. Example 2.20
further implies the isomorphy Y+ = X /Y. U

We illustrate the above theorem by a few basic examples.

EXAMPLE 3.9. a) Let X = F?and Y = F x {0}. Then Y+ = {0} xF
and P = (}9), see Example 2.18.

b) Let X=L*R) and Y = {f € X|f =0ae onR_} = L*(R,).
With Theorem 3.8 and Example 2.18 we obtain the isomorphies Y+ =
X)Y=2{feX|f=0ae onR;}=L*R_), using Pf = 1g, f.

c) Let X = L*(R) and Y = {f € X | f(s) = f(—s) for a.e. s € R}
be the set of even functions in X. As in Example 1.33 one sees that the
linear subspace Y is closed in X. Let f € X, and set Pf(s) = 5 (f(s)+
f(—s)) for a.e. s € R. The map Pf belongs to Y, ||Pf|l2 < ||f||2, and
we have Pf = fif f € Y. As a result, P € B(X) is a projection
with ||P|| =1 and R(P) =Y. Its kernel N(P) = {f € L*(R)| f(s) =
—f(—s) for a.e. s € R} is the space of odd functions in X, so that the
projection P is orthogonal by Example 3.6.

d) Let A # () be a subset of a Hilbert space X. Set Y = lin A.
Remark 3.7 and Theorem 3.8 yield the identity A+ =Y+ =Y. ¢

Let X be a Hilbert space. For each fixed y € X we define the function
O(y): X = F;, zw— (z|y). (3.3)

The map ®(y) is linear and satisfies |®(y)(x)| < ||z ||y|| by (CS) for
all z,y € X. Hence, ®(y) is an element of X* with || ®(y)|x+ < ||yl x-
The next important representation theorem by F. Riesz says that the
resulting operator ®x = ® : X — X* is isometric and bijective. This
seemingly very abstract fact is a very powerful tool to solve (linear)
partial differential equations.

THEOREM 3.10. Let X be a Hilbert space and define the map ®x =
®: X — X* by (3.3). Then @ is bijective, isometric and antilinear.”
Let 2* € X*. Then y = ®~(z*) is the unique element of X fulfilling
(x,x*) = (x|y) for all x € X, and we have ||y||x = ||x*]|x+-

2This means that ®(ax + By) = ad(y) + P (y) for all a, f € F and z,y € X.
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PROOF. Equation (3.3) and Remark 3.2 imply that ® is antilinear.
Let y € X \ {0}, and set = = ﬁy. Then ||z|| = 1, and we thus obtain

[ x> [z, B ()| = @ (ul) = Iyl

Hence, |®(y)||x+ = ||y|lx and thus ® is isometric and injective.

To show surjectivity, fix ¢ € X*\ {0}. Then Z := N(p) # X is
a closed linear subspace of X. Theorem 3.8 yields that Z+ # {0}.
We take any yo € Z+ \ {0} and set y; = @(yo) 'yo € Z+\ {0}. Let
x € X. We calculate p(x — p(z)y1) = p(x) — p(x)e(y1) = 0 using that
©(y1) = 1. As a result, x — p(z)y; belongs to Z leading to

0= (z — (@)yly) = (zly1) — () lyal?,
(@) = (| ||ly] "%y for all =z € X.

We have shown that ¢ € R(®) and so @ is bijective. The other asser-
tions easily follow. O

Usually, one identifies a Hilbert space X with its dual X*; i.e., one
omits the Riesz isomorphism ®x in the notation. We stress that this
can only be done for one Hilbert space at the same time.

3.2. Orthonormal bases

In this section we extend the concept of the Euclidean basis in F™
to the setting of (separable) Hilbert spaces X. We only have to use
series instead of finite sums if dim X = oo. Except for the definition,
we restrict ourselves to countable bases to simplify the presentation a
bit. This will lead to additional separability assumptions at the end of
the section. Actually, it is not difficult to remove these restrictions, see
Section V.4 in [We].

DEFINITION 3.11. Let X be a Pre-Hilbert space. A non-empty subset
S of X is an orthonormal system if ||v|| = 1 and (vjw) = 0 for all
v,w € S with v # w. Let B be a orthonormal system. It is called
orthonormal basis if it is mazimal; i.e., if S is another orthonormal
system in X with B C S, then we already have B = S.

We first state the most basic examples.

EXAMPLE 3.12. a) The set S = {e, |n € N} is orthonormal in ¢2.

b) Let X = L?(0,27) with F = C. We put vi(s) = \/127 el*s for
s € [0,27] and k € Z. The set S = {v |k € Z} is orthonormal by
Example 3.6 and [|vg[|3 = = 2” lds = 1.

c) In X = L?(0,27) the set S = {W fcos( n-), \/Lgsin(n-) |n e
N} is orthonormal, cf. Korollar 5.16 in Analysis 3. O
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We recall the Gram—Schmidt procedure from Linear Algebra which al-
lows us to construct a orthonormal system with the same linear span as

a given linearly independent, at most countable subset. (See Satz V.4.2
of [We] for a proof.)

LEMMA 3.13. Let X be a Pre-Hilbert space and ¥ = {x;|j € J} be a
linearly independent subset of X with J ={1,...,N} or J =N. Then
there is an orthonormal system S = {v;|j € J} with lin¥ = lin S,

which is inductively given by vy = ||z1|| ‘21 and
n
1
Ynt1 = Tni1 — Z($n+1|%‘> Uy, Un+1 = 71 Yn+1-
[

In the next result we collect the most important properties of an
orthonormal system S. In particular, it provides the formula for the
orthogonal projection onto lin S. In the proof one uses arguments from
Linear Algebra, as well as Pythagoras’ identity to show convergence.

PROPOSITION 3.14. Let S = {v,, |n € N} be an orthonormal system
in a Hilbert space X and x € X. Then the following assertions are true.

a) 30 [(x]v)]? < |z (Bessel’s inequality)

b) The series Px :=Y ", (x|v,) v, converges in X. It defines a map
P € B(X) which is the orthogonal projection onto linS. We further
have the identities | Pz||> = 3.°°, |(z]v,)]* < ||#||* and X = Tin S@S*.

¢) Let numbers o, € F satisfy Px =Y~ a,v,. Then these coeffi-
cients are given by a,, = (z|v,) for all n € N.

PROOF. Let x € X and N, M € N.
a) We set oy = — 21]::1 (x|vg) v. Orthonormality yields

N
(xn|vn) = (z|v,) — Z zlvg) (vglvn) = (z|v,) — (z]v,) =0
k=1
for all n € {1,..., N}. Using also (vg|v,) = 0 for k # n, Pythagoras’
formula and ||vg|| = 1, we deduce the lower bound

N

N N
ol = o I+ 32 Neluudeel? = e+ 3 Il = 3 el
k=1 k=1

Assertion a) follows taking the supremum over N € N.
b) Let N > M. As in a), we obtain

N , N
H Z(m|vk)ka = Z |(zv)? — 0 as M, N — oo,
k=M k=M

since the sequence (|(z|vg)|?)s is summable by a). Because X is com-
plete, there exists the series Pz := > .~ (z|vg)vxy in X. The map
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P : X — X is linear. With M =1 the above equality implies that

N 9 N
|Pz||? = lim HZ(xm)ka = lim 3 (o)
N—o0 N—o0 1
[o¢]

Z (lon)* < [l=[I%, (3-4)

where we also employed part a). The operator P thus belongs to B(X)
with || P|| < 1. Since the scalar product is sesquilinear and continuous,
we further obtain

o0 o0 o0 (o)
Pz = Z (Z(x|vm U, vn) Z Z z|vm) (Vm|vn) vp,
n=1 m=1 n=1 m=1

= Z(m|vn)vn = Pux;
n=1

i.e., P is a projection. Observe that S C R(P) C linS. By
Lemma 2.16, R(P) is a closed linear subspace so that R(P) = lin S.
Formula (3.4) implies that y € N(P) if and only if y L v, for ev-
ery n € N which is equivalent to y € S+ = ml, see Remark 3.7.
Lemma 2.16 thus yields the last claim in statement b), too.
¢) Let Pz =) o,v, and m € N. By means of b), we compute
(x|vm) = Z(x]vn) (Un|vm) = (Pz|vy,) = Zan Un|om) = ap. O
n=1
Let {v, | n € N} an orthonormal basis in a Hilbert space X. The next
theorem says that we can write each vector x € X uniquely as a series
of the basis vectors times the coefficients (x|v,). Moreover, the norm
of x is equal to the />-norm of the coefficients’ sequence. We can thus
work as in ™ except for additional limits. According to statement c),
we need a density result to check that a given orthonormal system is a
basis. A different way to construct a basis is given by Theorem 6.7.

THEOREM 3.15. Let S = {v,, |n € N} be a orthonormal system in a
Hilbert space X. Then the following assertions are equivalent.

a) S is a orthonormal basis.

b) S+ ={0}.

¢) X =linS.

d) For all x € X we have x =73 (x|v,) v, with a limit in X.

e) For all z,y € X we have (z|ly) =", (z|v,) (va|y).

f) Forallz € X we have ||z)|>=320", |(x|v,)]?. (Parseval’s equality)

The coefficients in d) are uniquely determined.

Let X be separable with dim X = oco. Then X possesses a (countable)
orthonormal basis, and for every orthonormal system S there exists an
orthonormal basis B containing S.
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PROOF. 1) Let statement a) be true. Suppose there would exist a
non-zero vector y € St. Then the set S’ = S U{ﬁy} is an orthonormal

system, contradicting the maximality of S. So b) is shown.

Part b) and the projection theorem, more precisely Example 3.9d),
yield that lin S = S*++ = X.

From Proposition 3.14 we deduce the implication ‘c)=-d)’ and the
first addendum.

Assertion d) implies e) taking the scalar product with y, and part f)
follows from e) with x = y.

Let S fulfill property f). Suppose that S was not an orthonormal
basis. There thus exists an orthonormal system S’ O S with S" # S,
and hence a vector z € X with ||z|]| = 1 and x L S. Statement f)
would thus yield the wrong identity 0 = 32°° | (z|v,)|* = ||=]|* = 1.

2) Let ¥ = {z,,|n € N} be dense in X. Put y; = z,, where z,,
is the first non-zero element xz,,. Iteratively, we define y,; as the first
vector x, with n > n; which does not belong to the linear span of y; =
Tpy,...,Y; = Tp,. By induction one sees that the set I' = {y; | j € N}
is linearly independent and has the span D := lin X, which is dense in
X. Using Lemma 3.13, out of I" we construct an orthonormal system
S = {w;|j € N} whose linear hull is equal to D. The implication
‘c)=>a)’ then shows that S is a orthonormal basis.

3) Let X be separable and S be orthonormal system in X. Step 2)
then yields an orthonormal basis By of the space (linS)t, which is
separable as a subset of X by Exercise 6.2. Then B = S U By is an
orthonormal basis of X since B+ = {0}. O

REMARK 3.16. Let S = {v, |n € N} be an orthonormal system in a
Hilbert space X.
a) Theorem 3.15 implies that S is an orthonormal basis in lin S.

b) It can happen that > >~ ||(z|v,) va|l = D02, |(x]vs)| = oo for
some z € lin S, see Example 3.17b); i.e, the series x = > (x|v,) v, does
not converge absolutely and the sequence ((z|v,)), of the coefficients
does not belong to . (It is contained in ¢* by Bessel’s inequality in
Proposition 3.14.)

However, the series always converges unconditionally: For every bi-
jection m : N — N and each z € X, the series >, (2|r(n)) Vr(n)
converges to x in X. See Satz V.4.8 in [We].

We discuss simple examples mainly based on Weierstrafl’ approxi-
mation theorem.

ExAMPLE 3.17. a) Example 3.12 and Theorem 3.15 imply that the
set B = {e,|n € N} is an orthonormal basis in ¢* because its linear
hull ¢y is dense in £2 by Proposition 1.31.

b) Let X = L*(0,2r) with F = C and v,(t) = e for n € Z.
Weierstral” Theorem 5.14 in Analysis 3 implies that the linear hull
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lin{v, |n € Z} is dense in C([0,27]), and hence in X by Exam-
ple 2.12a). Using Example 3.12 and a variant of Theorem 3.15 for
the index set Z, we see that {v, |n € Z} is an orthonormal basis in X.
Let f € X. We define its Fourier coefficients by

1 2T )
e = (flon) = = / f(t)e at.

Theorem 3.15 now yields the convergence of the Fourier series

f= i CnUn,

n=—oo

in L?(0,27) and the identity

[ a= > | [ roeea,

cf. Theorem 5.15 in Analysis 3.
Let f = Ljo,-. We then we obtain ¢y = /m/2 and, for n # 0,

1 /’r —int gy 1 ( inr 1) 0, n even,
_— e = — (& — =
V2 Jo inv2m iﬁ?’ n odd.

Hence, the sequence (c¢,) is not summable.

Ch =

¢) Similarly, the set S = {W f cos(n-), f sin(n-); n € N} is an
orthonormal basis in X = L?(0,27). See Korollar 5.16 in Analysis 3.

d) Let X = L*(—1,1) and p,(t) = t" for n € Ny and ¢ € [-1,1].
The set D = lin{p,|n € N} of polynomials is dense in C([—1,1])
by Theorem 5.14 in Analysis 3, and thus in X due to Example 2.12.
Lemma 3.13 gives us an orthonormal system {v, |n € N} (multiples
of the so—called Legendre polynomials) with the dense linear hull D.
Theorem 3.15 now shows that {v, |n € N} is an orthonormal basis. ¢

Each m-dimensional vector space is isomorphic to F™ after fixing a
basis. This result is now extended to separable Hilbert spaces and ¢2.

THEOREM 3.18. Every separable Hilbert space X with dim X = oo
is 1sometrically isomorphic to (? via J : X — (*; Jx = ((x|v,))n, and
J (o)) = 3200 avy, for any fized orthonormal basis {v, | n € N}.

PROOF. The map J is isometric due to Parseval’s equality in Theo-

rem 3.15. Its linearity is clear. Let (av,) € ¢2. For N > M, Pythagoras’
identity and ||v,|| = 1 yield

N 2
| >
n=M

The series z := ) o,v, thus converges since X is a Hilbert space.
Proposition 3.14 now shows that «,, = (x|v,) for all n € N so that J is
surjective. The theorem then follows from Remark 2.11. U

N
= Z|O‘"|2 — 0 as M,N — oc.

n—




CHAPTER 4

Two main theorems on bounded linear operators

We discuss two fundamental results of functional analysis, the prin-
ciple of uniform boundedness and the open mapping theorem, which
both rely on a corollary to Baire’s theorem.

4.1. The principle of uniform boundedness and strong
convergence

We start with a very helpful result by Baire.

THEOREM 4.1. Let M be a complete metric space and O, C M be
open and dense for each n € N. Then their intersection D = (), oy On
15 dense in M.

PROOF. For every zyp € M and 6 > 0 we must find a vector = in
By N D, where we put By = B(zg,0). So let g € M and § > 0.
Since O; is open and dense, there is an element x; of O; N By and
a radius &, € (0, 36] with B(z1,6) € O N By. Iteratively, one finds
Ty € O, N B,_1, 0, € (0, %571—1] and B,, = B(z,, d,) such that

B,C0,NB, 1C0,N(0, 1NB,3)C--C(0,N...N0;)N By.

Since 6,, < 270, the vector x,, belongs to B, C B(x,,,27™J) for all
n > m. Hence, (z,) is a Cauchy sequence. Its limit x is contained in
each set B,,, and thus in D N By by the above inclusions. O

The set R? \ R is open and dense in R?, for instance. A countable
intersection D of open and dense sets is called residual. A property is
generic if it is satisfied by all elements of such a set.

COROLLARY 4.2. Let M be a complete metric space and M =
UneN A, for closed subsets A,, C M. Then there exists an index N € N
with A% # 0.

PROOF. Suppose that AS =) for all n € N. Then O, = M \ A, is
open and dense. Theorem 4.1 implies that (), . Oy is dense in M. This
fact contradicts the assumption since (), O, = M \ |, 4, = 0. O

EXAMPLE 4.3. One needs the completeness of M in the above corol-
lary. For instance, take (co, || - ||,) with p € [1,00] and A, = {z =
(X1,...,2,,0,...) |z; € F}. These sets are closed for all n € N by
Lemma 1.43, and {J,, A, = coo. But, each A, has empty interior since
for z € A,, the vectors y,, = + % eni1 & A, tend to x as m — oo, O

69
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The following principle of uniform boundedness is one of the four
most fundamental theorems of linear functional analysis treated in this
course. It says that completeness provides uniformity for free in some
cases. Using the full power of Baire’s theorem instead of Corollary 4.2,
one can considerably strengthen the result, see Section I1.4 of [Yo].

THEOREM 4.4. Let X be a Banach space, Y be a normed vector
space, and T C B(X,Y). If the set of operators T is pointwise bounded
(ie., Vx € X ¢, >0VT € T : | Tx|| < ¢;), then T is uniformly
bounded (i.e., 3¢ >0VT € T : ||T|| < ¢).!

ProoOF. We put 4, = {z € X|||Tz|| < nforall T € T}. By
asssumption, each vector x € X belongs to every set A, with n > ¢,;
ie., Upen An = X. Let (x3) in A, converge to x in X. We then have
|ITx|| = limg_yoo || Txx|| < n for all T € T so that A, is closed for each
n € N. Corollary 4.2 now yields an index N € N, a point x5 € Ay and
a radius € > 0 with B(zg,e) C Ay. Let z € B(0,¢). The vectors x9=+ z
then belong to B(xg,¢) C Ay, and hence

ITz[| = |1 T'(5(2 + @) + 5(2 = @0))|| < 5[IT(2 +@0)|| + 5 [T (0 — 2))l
<JT+I=N.

Finally, let © € X with ||Jz|| < 1. Set z = ex € B(0,¢). It follows
N > |Tz| = ¢||Tz| and thus |T|| < & forall T € T. O

The above result is often used in the next simpler version called
Banach—Steinhaus theorem.

COROLLARY 4.5. Let X be a Banach space, Y be a normed vector
space, and T,, belong to B(X,Y") for every n € N. Assume that (T,x),
converges in Y for each x € X. Then sup,cy || 15| < oo.

ProoOF. The assumpotion shows that ¢, := sup,, |75,z is finite for
each x € X, so that the result follows from Theorem 4.4. U

We again note that we really need completeness here.

EXAMPLE 4.6. Let X = ¢oo and Y = ¢y be endowed with || - |-
Set Th,x = (x1,2x9,...,n2,,0,...) for n € N and x € X. Then T,
belongs to B(X,Y') with ||T,,|| = n since | T,z ||c < n||2|s and ||T,,|| >
|Thenlloo = n for all n € N and z € X. Hence, the sequence (7,)
is unbounded. However, (T,x), converges for each x € X because
there is an index m = m, € N with z; = 0 if £ > m and thus
Tox = (21,229, ...,mxy,0,...) for all n > m. O

The principle of uniform boundedness is often used to establish the
existence of interesting objects which are difficult to construct explic-
itly. As a typical example we look at pointwise divergent Fourier series.

1Uniform boundedness is equivalent to 3¢ > 0VT € T,z € B(0,1) : ||Tz| < c.
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EXAMPLE 4.7. We endow X = {f € C([-m,7])| f(—7) = f(n)}
with the supremum norm and let f € X. As in Korollar 5.16 of Anal-
ysis 3 one can find coefficients ag, by, € F such that the Fourier sum

a n
Su(f,t) = 50 +> (ay cos(kt) + bysin(kt)), t € [-7, 7],
k=1
converges to f in L*(—m,7) as n — oo. We claim that there is a
function f € X whose Fourier series diverges at ¢t = 0.
PrOOF. The fomulas for a; and by from Analysis 3 and simple
manipulations yield the representation

/fs+t (s)ds

for t € [—m, 7|, see p. 146 of [We]. Here f has been extended to a
2n—periodic function on R and we use the ‘Dirichlet kernel’

sin(n+%)t .
= {2 1<e

n+%, t=0.

In view of our claim, we define the map ¢ : X — F; ¢, (f) = S,.(f,0),
which clearly belongs to X* for each n € N. Similar as in Example 2.7,
one can compute

1 ™
= — D, (t)] dt.
leall =5 [ 1Dut0)

It is straightforward to show that this integral tends to oo as n — oo,
see the proof of Satz IV.2.10 in [We]. Corollary 4.5 then implies that
©n(f) cannot converge for all f € X, as asserted.? O

The convergence used in Corollary 4.5 plays an important role in
analysis so that we discuss it a bit.

DEFINITION 4.8. Let X and Y be normed vector spaces and T,,T €
B(X,Y) forn € N. We say that (T,,) converges strongly to T if T,,x —
Tz in'Y asn — oo for each x € X. One then writes T, — T.

Observe that it is not clear at the moment whether this type of con-
vergence can be described by a metric, cf. Remark 5.35. Nevertheless
its basic properties are easy to show.

REMARK 4.9. Let X and Y be normed vector spaces and T,,, T, .S,,,
and S belong to B(X,Y) for n € N. Then the following assertions hold.

a) If (7,,) tends to T" and S strongly, then S = T by the uniqueness
of limits in Y.

b) Let (7},) have the limit 7" in operator norm. Then (7},) converges
to T strongly since |1,z — Tz| < ||T,, — T ||=| for all x € X. The

2A more or less concrete example of a pointwise divergent Fourier series is given
in Section 18 of [Ko].
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converse is wrong in general. As an example, consider the operators
given by P,z = (z1,...,%,,0,...) on X =Y = ¢* which converge
strongly to I but ||P, — I|| > ||(P, — I)ens1]|2 = 1 for all n € N.

c¢) Let the operators T,, tend strongly to T', S, tend strongly to S,
and «, 8 € F. Then the vectors (o1, + 8S,,)x converge to (a1 + 8S)x
as n — 00, so that (a7, + (5,) has the strong limit o1 + 55S. O

The next result is an important tool in analysis. It allows to con-
struct bounded linear operators as strong limits on a dense set of ‘good’
vectors, provided one has a uniform bound.

LEMMA 4.10. Let X be a normed vector space, Y be a Banach space,
T, € B(X,Y) for alln € N, and S C X be a subset whose span
D =1linS is dense in X. Assume that sup,cy ||T] =@ M < oo and
that (T,x), converges for every x € S as n — oo. Then there is a
unique operator T € B(X,Y) such that (T,) converges strongly to T
and ||T]| < liminf,  ||T] =: Mo. If D = X, these assertions are
also true if Y is a mormed vector space.

PROOF. By linearity, the limit Tox := lim,, o, T2 exists for every
x € D. As in the proof of Proposition 2.5 one checks that T, : D — Y
is linear. Choose a subsequence with My = lim;_ ,o ||15,,]|. We then
obtain ||Toz|| = lim; o || Ty, 2| < Mo |[|z|| for each x € D, and hence
To belongs to B(D,Y') with ||T5]] < M. So far we have not used that
Y is Banach space, and the addendum is thus proved if D = X. In the
general case, Lemma 2.13 yields a unique extension 7' € B(X,Y) of Tj
with ||T']| = ||Tb]] < Mo, since Y is a Banach space and D is dense.
Let ¢ > 0 and 2 € X. Fix a vector z € D with ||z — z|| <e. Then
there exists an index N, € N such that ||Thz — T),z|| < ¢ for all n > N..
We estimate

T2 — Tox|| < |T(z — 2)|| + 1Tz — Tozl| + | Tz — 2)||
< Mope + e+ Me

for n > N¢, so that (T},) tends strongly to 7" also if D # X. O

We first illustrate by standard examples that one cannot omit the
uniform bound in the above lemma and that the operator norm is not
‘continuous’ for the strong limit in general.

EXAMPLE 4.11. a) Let X = Y = ¢, D = ¢y and T,z =
(21,229, ...,n2,,0,...) for all x € ¢y and n € N. As in Example 4.6
we see that T, € B(X) satisfies ||T,,|| = n — oo. The operators T,
thus do not have a strong limit by Corollary 4.5. However, for each
x € ¢y the vectors T,z tend to (x1,...,mx,,0,...) as n — oo where
m = m, € N is given by Example 4.6.

b) Let X =Y = ¢y and T,z = z,e, for all z € ¢y and n € N. Since
|7 ]| = |2n| — 0 as n — oo, the operators T), have the strong limit
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T := 0. However, [T .|l > 1 and ||T,,2|lc0 < [|2]|oo for all n € N and
x € X. Here the limit lim,,_,, ||T,,|| = 1 exists, but it is strictly larger
than ||7'|] = 0, despite the strong convergence. O

We now look at two important examples of bounded operators which
exhibit strong convergence, starting with left translations. Recall Ex-
ample 2.9 for a discrete version.

EXAMPLE 4.12. Let X € LP(R) for some 1 < p < oco. For every
t € R we define (T'(t)f)(s) = f(s+t) for s € Rand f € X. It is clear
that T'(t) : X — X is linear,

IT @)l = / s+ 0P ds=[ ]2,

and T'(t) has the inverse T'(—t). Hence, T'(t) € B(X) is an isometric
isomorphism. (This assertion can similarly be shown for p = 00.) For
all b > a and t € R we have

1, a—t<s<b-t
(T(t)ﬂ[ayb})(s) = ]l[ayb}(s —+ t) = {0, otherwise } = IL[aft,bft](s)
for all s € R; i.e., T'(t) really is a left translation if ¢ > 0.

Setting f = t~Y/Plyy for t > 0 we further obtain | f||, = 1 and
IT(t)f — fllz = t~* [, 17 ds = 2. Therefore the map R — B(X); t —
T(t), is not continuous with respect to the operator norm. We claim
that it is strongly continuous; i.e., the functions R — X; ¢ — T(¢t)f,
are continuous for every f € X.

By Lemma 4.10, we only have to consider f € C.(R) since ||T'(¢)|| = 1
for all t € R and C.(R) is dense in X by Theorem 5.9 in Analysis 3. Let
to € Rand t € [to—1,to+ 1]. Since f € C.(R) is uniformly continuous,
we derive
[T(t)f =T (o) fllo =sup|f(s+1) = f(s+t)| — 0 as t =t

seR

There is a compact interval J C R with supp(7'(¢)f — T'(to)f) € J for
t € [to — 1,t0 + 1]. We then obtain

IT@)f = T(to)flly < MNPIT@)f = T(to) flloo —>0  as t = to.
This result remains valid for X = Cy(R) with an analogous proof. ¢

As a second example, we study mollifiers which are essential tools
in analysis. Let U C R™ be open. We define the space of test functions
on U by C*(U) = {p € C>®(U) | supp ¢ is compact}. The map

1
_1—\z|2
pol@) =4 B <l
07 |.’L’|2217

belongs to C°(R™), for instance. Take any test function ¢ on R™
with support B(0,1) which is positive on B(0,1). Set k& = ||¢|l; ¢
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and k.(z) = e k(2 z) for all 2 € R and € > 0. The function k. is
contained in C®°(R™) with supp k. = B(0,¢), k. > 0, and

kel = / k(L e) dr = / k(y)dy = 1

for all € > 0, where we have used the transformation y = %x

Let p € [1,00]. The space L} (U) contains all measurable maps
f : U — F (modulo null functions) such that f|x belongs to LP(K)
for each compact set K C U. Proposition 1.35 yields the inclusion of
the ‘locally integrable functions’ Li. (U) in Lt (U). A sequence (f,)
has a limit f in Lj (U) if the restrictions to each compact set K C U
converge in LP(K). (As in Example 1.9 one can construct a distance
on Lj (U) corresponding to this convergence.)

The extension of f by 0 to R™ is denoted by f. Let f:U = F be
measurable and f belong to LL (R™). We define the mollifier G. by

loc

GNe) = hs No) = [ k@-pfwdy @D

_ / k(- y)f)dy
UNB(z,)

for all z € U or z € R™. (This integral exists since f is integrable
on B(r,¢) and k. is bounded.) The next result says that we can use
the operators G. to approximate locally integrable functions by smooth
ones. In particular, test functions are dense in LP(U) if p < co. As the
proof indicates, mollifiers are often used in combination with cut-off
arguments. We improve this proposition in the next section. Note that
for U = R™ the number &y is equal to oo since JR™ = ().*> This special
case is considerably simpler.

PROPOSITION 4.13. Let U C R™ be open, f: U — F be measurable
with f € LL (R™), e >0, and 1 < p < oo. Define G, by (4.1). Then
the following assertions hold.

a) The map G.f is an element of C*°(R™). If there is a compact set
K CU with f(x) =0 for a.e. v € U\ K, then G.f € C*(U) for all
e € (0,g9) with gy := dist(K,0U).

b) The restriction G. to LP(U) belongs to B(LP(U)) with ||Ge|| < 1.
Let 1 <p<ooand f € LP(U). Then G.f — f in LP(U) ase — 0.

c) Let 1 <p <oo. Then C*(U) is dense in LP(U). More precisely,
if f € LP(U)N LYU) for some 1 < p,q < oo then there are functions
fn € C(U) converging to f in LP(U) and in LY(U).

PROOF. a) Let ¢ > 0 and f € Ll _(R™). Fix a point 2y € R™ and

loc

aradius r > 0. Let x € B(xg,r) and j € {1,...,m}. We then estimate
100, e (2 = 1) F(W)] < 1102, kelloo Lpgag ryey W) [F ()] = hly)

3Concerning &g, the result presented in the lectures was slightly weaker.
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for all y € R™. The function A is integrable on R™. The differentiation
theorem 3.18 of Analysis 3 now yields that k. x f is partially differen-
tiable at xy. Iterating this argument, one concludes that G.f belongs
to C°(R™).

Let K C U be compact such that f(x) = 0 for a.e. x € U \ K.
Since K N OU = ) and K is compact, the number g4 = dist(K, dU) is
positive by Example 1.9. Take € € (0,2¢). The set S. := K + B(0,¢)
then belongs to U. Let 2z, = x, +y, € S: for n € N with z,, € K
and y, € B(0,¢). By compactness of both sets, (x,) and (y,) have
subsequences with limits # € K and y € B(0,¢), respectively; i.e., S.
is compact. On the other hand, equation (4.1) yields supp(G.f) C S..

b) Let f € LP(U). Young’s inequality Theorem 2.14 implies that
Gef € LP(U) and |G fll, < [[kll1[[fll, = [Ifllp- As a result, G.
induces an element of B(LP(U)) with ||G.|| <1 for all € > 0.

Let p € [1,00). To show that G. — I strongly on LP(U), it suffices
to consider g € C.(U) due to Lemma 4.10 since ||G.|| < 1 and C.(U)
is dense in LP(U) by Theorem 5.9 in Analysis 3. Let g € C.(U),
K := supp(g), and € € (0,&0). Again, S. = K + B(0,¢) C U is
compact and K, supp G.g C S. for € € (0,gq). We then derive

[ e =iy = [ ke =y ota)

m

sup |G.g(x) — g(x)| = sup
xelU €S,

sup / ez — ) [3(y) — 9(2) dy

rE€Se B(JE,E)

<|lkellp  sup  |g(y) —g(z)] — O

ZEESEJI_:U‘SE

IA

as € — 0, using that ||k.||; = 1 and that § is uniformly continuous. We
fix some index € € (0, &) and let € € (0,Z]. The distance ||G.g —g]|, <
AMS2)YP[|Gog — gllo then tends to 0 as e — 0.

c) Let f e LP(U) N LYU) for some 1 < p,q < co. By Example 1.9
there are open and bounded sets U, for n € N with U, € U whose
union is equal U. Using assertion a), for each n € N we can choose a
number ¢, € (0,1/n] such that the function f, = G.,(1y, f) belongs
to C°(U). Since 1y, f — f pointwise as n — oo and |1y, f| < |f] for
all n, Lebesgue’s theorem yields the limits 1y, f — f in LP(U) and in
L9(U). Employing ||G., || <1 and part b), we then derive

Gz, (Lo, f) = fllr S NGe,ll o, f = flle +[1Ge f = flle — 0O
as n — oo, where r € {p, q}. O

4.2. Sobolev spaces

The classical (partial) derivative does not fit well to LP spaces since
it is defined via a pointwise limit. For a treatment of partial differential
equations in an L? or LP context one needs the more general concept of
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‘weak derivatives’. Here we restrict ourselves to basic results focusing
on simple properties of the function spaces and a bit of calculus. The
mollifiers from Proposition 4.13 are the crucial tool in this theory. For
an introduction to this area we refer to the books [Br| or [Do], and
also to the lecture notes [ST].

Throughout in this section, let U C R™ be open and non-empty. To
motivate the definition below, we consider f € C'(U) and m > 2. Take
any test function p € C®(U). Let g € C'(R™) be the 0-extension
of the product g := fp € CHU). There is a number a > 0 with
suppp C (—a,a)™. Set C' = (—a,a)™ '. Using the product rule and
the fundamental theorem of calculus, we obtain

/goalfdx:—/ff)lgodx—i-/@lgdx
U U U
:—/‘falgodflj‘—l—/\/ 81§(x1,;1:’)dx1dx'
U CJ—-a

- /U Fonp da + /C (5(a,2") — §(—a,2')) Az’
= —/Ufﬁ)lgoda:, (4.2)

since g(a,z’) = g(—a,z’) = 0. Other partial derivatives can be treated
in the same way. The following definition now relies on the observation
that the right hand side of (4.2) is defined for all locally integrable f.
It can thus serve as the definition of 0; f on the left hand side of (4.2).

DEFINITION 4.14. Let U C R™ be open, f,g € LL.(U), j €
{1,...,m}, and 1 < p < co. Assume that

/Ug@dx = —/Ufajgpdx (4.3)

for all o € CX(U). Then g =: 0;f is called weak derivative of f. We
write D;(U) for the space of such f. One further defines the Sobolev
spaces (of first order) by

W (U) = {feLP(U)| f€D,;(U), 8,f € L'(U) for all j€{1,...,m}}

and endows them with

) (ufuzZHajfuz) | | <p< ool
||f||17p — j=1
2 {|fllos 1 F s - [ fllc s p = 0.

As usually, the spaces D;(U) and W'P(U) are spaces of equivalence
classes modulo the space of null functions /. The above definition can
be extended to derivatives of higher order in a straigthforward way.
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We first have to settle the basic question whether the weak derivative
is uniquely determined by (4.3). This is done via the fundamental
lemma of calculus of variations.

LEMMA 4.15. Let g € LL (U) satisfy

loc

/ gpdr =0 for all ¢ € CZ°(U).

Then g = 0 a.e.. Hence, a function f € D;(U) has exactly one j—th
weak derivative.

PROOF. Assume that g # 0 on a Borel set B C U with A\(B) >
0. Theorem 1.26 of Analysis 3 yields a compact set K C B with
A(K) > 0. We fix a positive number § < dist(K,0U). The sum
S = K + B(0,6) C U is also compact. Proposition 4.13 then shows
that ¢ = Gslg belongs to C°(U). For all x € K, we compute

o = [ kse— o) Ls)dy= [ kslo-p)dy=1
B(z,0) B(z,d)
using the definition (4.1) of G.. Since pg € L'(U), the functions G.(¢g)
converge to ¢g in L'(U) as ¢ — 0 by Proposition 4.13. There thus
exist a nullset N and a subsequence ¢; — 0 such that (G, (¢g))(z) —
o(x)g(z) = g(x) # 0 as j — oo for each x € K\N. Fix any z € K\N.
For every j € N, we further deduce

(Ge,(pg))(x) = /U ke, (x —y)e(y)g(y)dy =0

from the assumption, since the function y + k., (x —y)p(y) belongs to
C*(U). This contradiction implies the assertions. O

We next collect simple properties of the spaces D;(U) and WP(U).

REMARK 4.16. Let 1 <p<ocand j € {1,...,m}.

a) Formula (4.2) yields the inclusion C*(U) + N C D;(U) and that
weak and classical derivatives coincide for f € C'(U). This fact justifies
to use the same notation for both of them.

b) From Definition 4.14 one easily deduces that D;(U) is a vector
space and 9; : D;(U) — Li.(U) is linear.

loc

c) It is straightforward to check that (W'*(U), || - |l1,) is a normed
vector space. Moreover, a sequence (f,) converges in WHP(U) if and
only if (f,) and (0, f,) converge in LP(U) for all j € {1,...,m}.

d) The map
is a linear isometry, where LP(U)'*™™ is endowed with the norm
|1 Nl 101 s - - - ||8mf||p)|p. We see in the proof of Proposition 4.19
that W'P(U) is isometrically isomorphic to a closed subspace of
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LP(U)Y*™. Since the p—norm and the 1-norm on R*™ are equivalent,
there are constants C, ¢ > 0 with

(Il + D 1051 ) < Ml < C(IF 1+ 1051
j=1 j=1

for all f € WhP(U). O

The next lemma first gives a convergence result in L (U) for weak
derivatives which is analogous to that from Analysis 1 for uniform limits
and the classical derivative. Second, it makes clear that the mollifiers
fit perfectly well to weak derivatives except for some trouble near OU.

We use the following fact. Let (S,.A, ) be a measure space and
p € [1,00]. As in Remark 3.2d), we deduce from Hélder’s inequality

the continuity of — LP(u) x L' (u) = F;  (f,g) — / fgdu. (4.4)
S

LEMMA 4.17. Let 1 <p<oc and j € {1,...,m}.
a) Let f, € D;(U) and f,g € LL.(U) such that f,, = f and 0 f, — g
in L, .(U) asn — oco. Then f € D;(U) and 0;f = g. If these limits
exist in LP(U) for all j, then f belongs to Wt (U).

b) Let p < oo, f € D;(U), f,@fELIOC(U),:EEU, and 0 < € <
d(xz,0U). We then have 0;(G.f)(x) = G.(0;f)(x). Moreover, G.f

tendstofand@Gfto@meloc( ) as e — 0.

PROOF. a) Let ¢ € C*(U). By assumption a), the functions ¢ 0, f,,
converge to ¢ g and f, 9;¢ to fd;p in LY(U). Using (4.4) and Defini-
tion 4.14, we compute

/goﬁjfdx: lim/goﬁjfn xr= lim — fn djpdr = /fajgoda:.

n—oo

The first claim in a) has been shown, the second one directly follows.

b) 1) Let f € D;(U), z € U, and 0 < ¢ < d(x,0U) =: §. Take n €
(0,4(6—¢)). Choose a point zg € B(z,n). The function y — ¢. ,(y) :=
k.(x — y) belongs to C=°(U) and has the support B(z,¢) C B(x, e +
n) C U. Observe that |0;¢. .| is bounded by the integrable function
[05kell oo 15 (4g ey The differentiation theorem 3.18 of Analysis 3 and
Deﬁnltlon 4.14 now imply

(0,G..1)(x / O kel — ) fly) dy = — / (0y002) (W) () dy
- / oew(y) 0,1 (y) dy = (G.0,1)(2).

2) Let also f,0;f € LY .(U). Fix a compact set K C U and € €
(0, dist (K, 0U)). Take e € (0,g] and x € K. The integrand y — k.(z —
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y)f(y) in (4.1) then has support in the compact set S = K + B(0,2) C
U. From Proposition 4.13 and Example 2.6b) we deduce the limit

1Ge(f) = 1xGe(1sf) — Ixlsf=1kf, =0,
in LP(U) since 1gf € LP(U). This means that the restrictions of
G.f tend to f|x in LP(K). Step 1) also yields that 1x0;G.(f) =
1xG.(0;f). As above we then infer that 0,G.(f) — 0;f in LP(K) as
e — 0. Assertion b) is shown because K was arbitrary. U

The above convergence result is a crucial tool when extending prop-
erties from classical to weak derivatives, see Proposition 4.20 below. We
first use it to compute weak derivatives and to show the completeness
of Sobolev spaces.

EXAMPLE 4.18. a) Let f € C(R) be such that fi := fijg, belong to
C'(R.). Then f is an element of D;(R) with weak derivative

— fjr on Ry, —.
a1f - { f/, on R, =.g.
For f(x) = |x|, we thus obtain 81f =1g, — Ilp_.
PROOF. For every ¢ € C2°(R), integration by parts yields

/fso ds—/ f- so’ds+/ fry'd

[ reassr —/ fpds+ fog
—00 —© 0

- / gpds,
R

since f,(0) = f_(0) by the continuity of f. O
b) The function f = 1g, does not belong to D;(RR).
PROOF. Assume there would exist the weak derivative ¢ = O f €
(R). For every ¢ € C°(R) we then obtain

/ggpds:_/ ILR_,_(P/dSI_/ (p/dszgo“)).
R R 0

Taking ¢ with supp ¢ C (0, 00), we deduce from Lemma 4.15 that g = 0
n (0,00). Similarly, it follows that ¢ = 0 on (—00,0). Hence, g = 0
in Li (R) and so ¢(0) = 0 for all ¢ € C°(R) by the above identity in
display. This statement is wrong. O
c) Let U = B(0,1) € R™, p € [1,00) and 3 € (1 — =, 1]. Set
flx) = |z|5 for 0 < |z|; < 1 and g;(z) = Ba;lzly 2 for 0 < |zf, < 1
and j € {1,...,m}, as well as and f(0) = ¢;(0) = 0. Then f €
W'?(B(0,1)) and 9;f = g;. Observe that f is unbounded and has no
continuous extension at x = 0 if § < 0 (which is admitted if m > p).
PROOF. The functions r 7“67’7" m=1and r s rB=YPrm=1 are in-
tegrable on (0,1) since § > 1 — ™. Using polar coordinates, we infer

Ll

loc
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that f,g; € LP(B(0,1)) for j € {1,...,m}, see Beispiel 5.3 in Analy-
sis 3. We introduce the regularized functions f,(z) = (n=2 + |z|3)%/2
for n € N and z € B(0,1). Then f, € C{(B(0,1)) — W'r(B(0,1))
and 0;f,(z) = Bx;(n™* + z[2)2~1. Observe that f,(z) and 0j fn(x)
tend to f(z) and g;(x) for x # 0 as n — oo, respectively. Moreover,
| ful < max{|f],2%/?} and |0, f,| < |g;] a.e. on B(0,1) for all n and j.
Dominated convergence then yields the limits f, — f and 0;f, — g,
in L?(B(0,1)) as n — oo. The claim thus follows from Lemma 4.17.0

PROPOSITION 4.19. Let 1 < p < oo and U C R™ be open. Then
WYP(U) is a Banach space. It is separable if 1 < p < co. Moreover,
Wh2(U) =: HY(U) is a Hilbert space endowed with the scalar product

Hlone= [ s3ae+Y" [ 05754
U = Jrm

PROOF. Let (f,) be a Cauchy sequence in W'P(U). The sequences
(fn) and (0; f,,) thus are Cauchy in LP(U) for every j € {1,...,m}, and
hence have limits f and g; in LP(U), respectively. Lemma 4.17 now im-
plies that f € W'P(U) and g; = 0; f for all j; i.e., W'?(U) is a Banach
space. Using Remark 2.11, we then deduce from Remark 4.16d) that
W1P(U) is isometrically isomorphic to a closed subspace of LP(U)*™
so that the separability for p < oo follows from Example 1.55 and
Exercise 6.2. The last assertion is clear. U

Under suitable regularity and integrability assumptions, weak deriva-
tives also satisfy the product and substitution rules. Here we only
present the basic version of the product rule that is needed below.

PROPOSITION 4.20. Let p € [1,00], U C R™ be open, f € WP(U),
and g € WH'(U). Then the product fg belongs to WHH(U) and satisfies
0;(f9) = (9;f)g + [0;g for every j € {1,....,m}.

Proor. Holder’s inequality implies that fg, (0;f)g, and f0;g be-
long to L' (U) for all j € {1,...,m}. Let p € C°(U) and K := supp ¢
Set fo, = Gijnf € C®(U)NLP(U) and g, = Gy/ng € C=(U) N LP (V)
for n € N. We let 1/n < dist(K,0U).

1) Let p € (1,00) so that p' € (1,00). By Proposition 4.13 the
functions f, converge to f in LP(U) and g, to g in L (U) as n — ooc.
Lemma 4.17 further yields the limits 0;f, — 0;f and 0,9, — 0,¢ in
LP(K) as n — oo. Using (4.4), (4.2) and the product rule for C'-
functions, we now conclude that

/ f90,0de = lim / Fogn D0 dr = — lim / (03 )gn -+ Fadgn) o da

— [ (@519 + 10i9) o
U
Hence, fg has the weak derivative 0;(fg) = ¢0,f + f0;g.
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2) Let p = 1. The above used convergence in LP (UU) may now fail
since p’ = oo. The functions f, and 0;f, still converge to f and
0;f in L*(U). Passing to a subsequence, we can thus assume that
they converge pointwise a.e. and that |f,|,|0;f.] < h a.e. for some
h € LY(U) and all n € N and j € {1,...,m}. Proposition 4.13 and
Lemma 417 imply that [|ga e < [[gllee and 5up,crc [350n] < [956]]uc-
Since L>*(U) C L, .(U), we deduce from Lemma 4.17 that after passing
to subsequences (g,) and (0;g,) tend pointwise a.e. on K to g respec-
tively 0;g. Based on dominated convergence we can now show the

assertion as in step 1). The case p = oo is treated analogously. U

We now establish an important density result. In the proof we first
use a cut-off argument to obtain a compact support and then perform
a mollification. The cut-off must be chosen so that the extra terms
caused by the WP-norm vanish in the limit.

THEOREM 4.21. Let p,q € [1,00). The space C°(R™) is dense in
WP (R™) and also in WhHP(R™)NWH(R™) endowed with ||-||1 p+]|-||1.4-

PROOF. 1) Let f € W'(R™). Take a map ¢ € C*°(R) with 0 <
¢ <1,¢=1o0nl01], and ¢ = 0 on [2,00). Set p,(z) = ¢ (Z|z[,)
for n € N and 2 € R™. We then have ¢, € C*(R™), 0 < ¢, <1
and [|0j¢n]l0 < ||¢/]lox for all n € N, as well as ¢, (z) — 1 for all
x € R™ as n — oo. So the functions ¢, f converge to f in LP(R™)
as n — oo by Lebesgue’s convergence theorem with majorant |f|. Let
j €{1,...,m}. Proposition 4.20 further implies that

10;(enf = o = 1(n0; f = 05 ) + (Di0n) fI
< Nln0;f = 0ifllp + 316 e | 1l
Again by Lebesgue, the right hand side tends to 0 as n — oco. Given

€ > 0, we can thus fix an index N € N such that ||pnf — f|1, <e.
2) Proposition 4.13 implies that the maps Gi(pnyf) belong to

C>*(R™) for n € N and that G1(pnf) = onf in ip(Rm) as n — oo.
From Lemma 4.17 we deduce that 0;G1(enf) = G10j(pnf) for all
e>0,neN/andj e {l,...,m}, so thatnajG;(goNf) tends to 9;(enf)
in LP(R™) as n — oo. For all sufficiently largg n we finally estimate

1G1(onf) = fllip S NG2(onf) —onfllip + llonf = fllip < 2.
If feWhP(R™)NWH4(R™), we obtain density even in ||| ,+][[14- O

4.3. The open mapping theorem and invertibility

The invertibility of 7' € B(X,Y) means that for each y € Y there
is a unique solution z = T~ 'y of the equation Tz = y which depends
continuously on y. We start with a few simple properties of invertible
operators and then establish the automatic continuity of 7! in Banach
spaces.
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LEMMA 4.22. Let X, Y, and Z be normed vector spaces, T € B(X,Y)
and S € B(Y,Z) be invertible. Then ST € B(X, Z) is invertible with
the inverse T-1S™ € B(Z, X).

PROOF. The operators ST and T~1S~! are continuous and linear.
Moreover, T-'S~'ST = Ix and STT-'S~! = I,. ]

LEMMA 4.23. Let Z be a Banach space and z; € Z, j € Ny, satisfy
s:= 3 2y l2ll < oo. Then the partial sums S, = >7_z; converge in
Z asn — oo. Their limit is denoted by Z;io zj and has norm less or
equal s.

PROOF. Let n > m in No. Then [|S, — S|l < 377, ., [l25]] tends
to 0 as n,m — oo. Since Z is Banach space, the sequence (S,,) has a
limit S with ||S] = lim,—e0 [|Sn]] < s O

We next show that small perturbations T+ of an invertible operator
T are again invertible and that the inverse is given by the Neumann
series. The smallness condition below is sharp as shown by the example
T =1 and S = —I. The basic idea is the formula T+ S = (I +ST-1)T
which suggests to proceed as in the case of the geometric series.

PROPOSITION 4.24. Let X be Banach space, Y be a normed vector
space and T, S € B(X,Y'). Assume that T is invertible and that ||S| <
|T||~t. Then S+ T is invertible and

o0

(S+T) "' = Z(—T”S)"T’1 (convergence in B(Y, X)),
n=0
T
T < — :
I(5+ 7)) < 2

In particular, the set of invertible operators is open in B(X,Y).

PROOF. We have ¢ := ||[T'S]|x) < 1 by assumption, and hence
S NT1S)"| < 1/(1 — ¢). Proposition 2.5 says that B(X) is a
Banach space, and so Lemma 4.23 yields the convergence of

R:=) (-T'S)"T'=> T '(-ST')"
n=0 n=0
in B(Y, X) with norm |R|| < [|T7]|/(1 — q). Moreover,

oo

R(S+T)=)Y (-T7'Sy(T'S+1)

=— i(—TlS)j + i(—TlS)" =1,
(S+T)R = i(ST‘l + D) (=STHr =1. O

n=0
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The next example shows that in general the inverse of a bijective
bounded operator is not continuous.

EXAMPLE 4.25. Let X = ¢go with || - ||, and T2 = (kK 'ay). The
operator T belongs to B(X) and is bijective with inverse T~y = (kyz).
But 77! : cyo — cyo is not continuous by Example 2.1. O

The following concept is useful in this context.

DEFINITION 4.26. Let M and M' be metric spaces. A map f: M —
M’ is called open if the image f(O) is open in M’ for each open O C M.

REMARK 4.27. a) A bijective map f: M — M’ is open if and only
if f(O)={ye M |f*y) €O0}=(f1)"YO) is open in M’ for each
open O C M if and only if f~! is continuous. (See Proposition 1.24.)

b) In Example 4.25 the maps T, T~ : coo — cgo are bijective and lin-

ear, T is continuous but not open, and 7! is open but not continuous,
due to part a). Observe that cq is not a Banach space. O

We now prove the open mapping theorem which is the second funda-
mental principle of functional analysis. In Banach spaces it gives the
continuity of an inverse for free. This is a very useful fact in many
situations since often one does not have a formula for the inverse.

THEOREM 4.28. Let X andY be Banach spaces and T € B(X,Y') be
surjective. Then T is open. If T is even bijective, then it is invertible.

PRrROOF. The second assertion is a consequence of the first one
because of Remark 4.27. So let T be surjective. We abbreviate
U, = Bx(0,7) and V, = By (0, r) for every r > 0.

Claim A). There is a radius € > 0 with V. C TUs,.

Assume that claim A) has been shown. Let O C X be open, z € O,
and y = Tz be an arbitrary element of T'0O. Then there is a number
r > 0 with Bx(z,7) C O. From A) and the linearity of 7" we deduce

By(y, ) =y+LV. CTa+LTU, = {T(x + £2) |z € Us}
=TBx(x,r) CTO;

i.e., T is open.
Proof of A). The surjectivity of T' yields Y = |J -, TU,. Since Y is
complete, Corollary 4.2 gives N € N, yo € Y and r > 0 such that

By (yo,7) € TUy = (2N)TU, = 2N T,

where we also use the linearity of 7" and the characterization of closures
from Proposition 1.17. Setting 2z = ﬁyo and € = 5%, we deduce

BY(’Z(ng) = ﬁ{yo tw | w e ‘/7’} = ﬁBY(y()’T) c TU%
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Observe that TU% is convex and TU% = —TU%. By approximation,
these facts also hold for TU 1 cf. Corollary 1.18. It follows

V. = By(20,¢) — 2z C T_U%—T_U%: {z+y=20Ez+iy)|z,y € T_U%}
C 2TU% =TU;.
For later use, we note that the above inclusion yields
Ve =aV. CaTU, =TU, for all o > 0. (4.5)

Claim A) and thus the theorem then follow from the next assertion.

Claim B). We have TU, C TU,.

Proof of B) Let y € TU,. There is a vector x; € U, with ||y —Tz;|| <
e/2ie, y—Txy € V. and soy —Tay € TU,j; due to (4.5). Similarly,
we obtain a point

xo € Uyyo with y_T(fljl—i_xQ):y—T:Ul—Ta:QEV% CcCTU

Ll

Inductively, we find elements z,, of Usi-» satisfying
y—T(x 1+ +x,) € Vign (4.6)

for each n € N. Since X is a Banach space and >~ [lz,] < 2, by
Lemma 4.23 there exists the limit z := ) | ,, in Us. Letting n — oo
in (4.6), we thus obtain

o0
y=>» Tz,=Tzx € TU, O
n=1
We collect important consequences of the open mapping theorem.
COROLLARY 4.29. Let ||-|| and |||-||| be complete norms on the vector

space X such that ||x|| < c|||z||| for some ¢ > 0 and all x € X. Then
these norms are equivalent.

PrOOF. The map I : (X, [|[ - [[) = (X, ]| - []) is continuous by as-
sumption, and it is linear and bijective. Due to the completeness and
Theorem 4.28, the map I~ : (X, ||-]|) — (X,]|| - |||) is also continuous.
The assertion now follows from 'z = x. O

We add a simple example showing that one needs completeness here.

ExaMPLE 4.30. On X = C'([0,1]) we have the complete norm

LA = N1 flloo 411/ lloo and the non complete norm || f[| = [|f]lse < [I[f[ll
which are not equivalent. For instance, the functions f,(t) = sin(nt)
satisfy [[follee < 1, but [[|fulll = [/(0)] = n. 0

The next result will be improved at the end of the next chapter.

COROLLARY 4.31. Let X andY be Banach spaces and T € B(X,Y)
be injective. The following assertions are equivalent.

a) The operator T~ : R(T) — X is continuous.

b) There is a constant ¢ > 0 with ||Tx| > c||z| for every z € X.



4.3. The open mapping theorem and invertibility 85

c¢) The range R(T') is closed.

PROOF. Let statement a) be true. For all z € X we then compute
l|z|| = ||T7'Tz| < ||T7Y| ||Tx||, so that b) is shown.
The implication ‘b)=-c)’ was proved in Remark 2.11.
Let ¢) hold. Corollary 1.13 then says that (R(7T), ] - ||y) is Banach
space. Since T' : X — R(T) is bounded and bijective, assertion a)
follows from Theorem 4.28. U

PROPOSITION 4.32. Let X be a Banach space and X =Y & Z. Then
the following assertions hold.

a) X 2Y x Z.

b) The projection P with R(P) =Y and N(P) = Z is continuous
(cf. Remark 2.17).

PROOF. a) Since Y and Z are Banach spaces, their product Y x 7 is
a Banach space for the norm ||(y, 2)|| = ||y||+]|z||, see Paragraph 2.2A).
Further, the map T : Y x Z — X; T(y, z) = y+ z, is linear, continuous
(since IIT(y, 2)[| < Ilgll + 2| = Iy, 2)])) and bijective (since X —
Y @& Z). Theorem 4.28 now yields part a).
b) Let t =y+ 2 €Y @& Z. Then Px =y. The operator T from a)
satisfies (y,2) = T~ 'z. Assertion a) now implies

1Pz]| = iyl < llyll + Izl = 1T zllysz < 177 ] m

We have thus shown that in Banach spaces direct sums and Cartesian
products are essentially the same.



CHAPTER 5

Duality

Let X be a normed vector space. We then have the Banach space
X* = B(X,F) and the ‘duality pairing’

X xX*—=TF; (z,2")— 2"(x) = (r,2") = (z,2") x. (5.1)

This map is linear in both components, and it is continuous since
|(z,2*)| < ||z|x ||#*]|x+, cf. Remark 3.2d). To some extent, it replaces
the scalar product in non-Hilbertian Banach spaces, though the quality
of this replacement depends on the properties of the space.

We first determine the dual space X* if X = LP(u) for p € [1,00),
which is of course crucial to apply the theory below. In the main part of
the chapter, we establish the third and fourth fundamental principle of
functional analysis and discuss their consequences. In the last section
we use duality theory for a better understanding of mapping properties
of linear operators.

5.1. The duals of sequence and Lebesgue spaces

We first look at the simpler case of the sequence spaces. Set X, = ¢*
for 1 < p < o0 and X, = ¢ for p = oco. By (1.2) the exponent
p € [1,00] is given by %—I—]% = 1. Given y € 7, we define the function

Dp(y) : Xp = F; Pp(y)(z) = Zxkyk-
k=1

Holder’s inequality shows that this series converges absolutely and
[D,(y)(2)| < [lzllp [yl Since @,(y) is linear, it is contained in X3
with [|®,(y)|lx; < ||lyll,>- As a result, the mapping

D, P — X5 (2, ®p(y)) = Zxkyk VzeX, yelt), (52)
k=1

is contractive, and it is clearly linear. Since ®,(y)(ex) = yi for all
k € N, the operator ®, is injective.

PROPOSITION 5.1. Equation (5.2) defines an isometric isomorphism
®,: 7 — Xy for all p € [1,00]. We thus obtain for each functional
r* € X eractly one sequence y € 7" such that (z,r*) = >k Tryk for
all z € X, where ||yl = ||2*||x;. Via this isomorphism,

=t (Y =2, and (P =P for 1< p< oo
86
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PrROOF. In view of the above considerations it remains to show the
surjectivity of @, and that ||®,y[|x; > ||yl for all y € 7. We restrict
ourselves to the case p = 1, where p’ = co. (The remainder can be
proved similarly, see Theorem 5.4 and Exercise 11.3.)

Let 2* € (¢Y)*. We define y, = z*(e;,) for every k € N, and set
y = (yg). Since |yx| < ||=*|| |lex]s = ||z*|| for all & € N, the sequence
y belongs to (> and ||y|ls < [|2*]|. Equation (5.2) also implies that
Oy (y)(er) = yr = x*(ex). Since z* and P4(y) are linear, we arrive at
Oy (y)(x) = a*(z) for all x € ¢oo. Using continuity and the density of
coo in £1, see Proposition 1.31, we conclude that ®;(y) = 2* and so @, is
bijective. It also follows that ||y||e < [|*]| = ||®1y]| for all y € ¢°. O

We will see in Example 5.15 that the dual of /°° is not isomorphic to
¢*. Observe that the right hand side in (5.2) does not depend on p and
that it coincides with the scalar product in ¢? except for the complex
conjugation. The same is true in the next, more general case.

Let (S, A, 1) be a measure space and p € [1,00). We define the map
Dy(g): (1) > F; by / fodu. (5.3)

for each fixed g € L” (i1). Holder’s inequality yields that

®y(9) € LP(u)"  and [ @p(g)]lx+ < llglly,

cf. Example 2.8. Consequently, ®, : L¥ (1) — LP(u)* is linear and
contractive. To show that ®, is in fact an isometric isomorphism, we
need further preparations.

A map v : A — F is called an F-valued measure® if

3 iy(An):V(QAn) in F

for all pairwise disjoint sets A, in A for n € N. Since then v(()) =
v(QUPU...) =" (D) in F, we obtain that v(0)) = 0. A measure u
in the sense of Paragraph 1.2C) is also called positive measure. (It is an
F-valued measure if and only if it is finite.) An F-valued measure v is
called p—continuous if one has v(A) =0 for all A € A with u(A) = 0.
One then writes v < pu.

EXAMPLE 5.2. Let p be a positive measure on A and p € L' (u). For
all A € A we define

V(A)Z/ﬂApduz/pdu-
S A

Then v is an F-valued measure on A with v < p. It is denoted by
dv = pdu, and one calls p the density of v with respect to pu.

'One usually says signed measure instead of ‘R-valued measure’. The dual
of C(K) for a compact metric space can be identifieed with a space of F—valued
measures, see Satz I1.2.5 in [We] or Appendix C of [Co].
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We also assume that p > 0. In this case v is a positive measure. Let
f S — F be measurable with f > 0 or pf € L'(u). We then obtain
the equality [ fdv = [ fpdu, where f € L*(v) in the second case.

PROOF. 1) Let p > 0. Then v is a positive measure by Korollar 2.23
in Analysis 3, and it is finite since p is integrable. The definition of
v here means that characteristic functions f satisfy [ fdv = [ fpdp.
By linearity this equation extends to simple functions f, and then by
dominated or monotone convergence to integrable or non-negative ones.

2) A map p € L'(u) can be written as p = p; — pa + ips — ipy for
integrable p; > 0, Using part 1) one now easily checks that v is an
F—valued measure. The definition of v then implies its y—continuity. O

The Radon—Nikodym theorem is a converse to the above example
which is one of the fundamental results of measure theory: The seem-
ingly very weak assumption of py—continuity of v already implies that
v has a density with respect to p and is thus a very special F—valued
measure. We give a proof based on Riesz” Theorem 3.10, where we
restrict ourselves to the main special case.

THEOREM 5.3. Let A be a o—algebra on S, p be a o—finite positive
measure on A, and v be an F-valued measure on A with v < . Then
there is a unique density w € L'(u) such that dv = wdp. If v is a
positive measure, then w > 0.

PROOF.? We show the theorem if ;2 and v are positive and bounded.
For the general case we refer to Satz VII.2.3 in [El] if F = R and to
Theorem C.7 in [Co] if F = C.

1) Consider the finite positive measure 7 = p+v on A. Observe that
1(A),v(A) < 7(A) for all A € A. For simple functions f = > | a; 14,
with an index m € N, values a; € F and sets A; € A (which are pairwise
disjoint, without loss of generality), we deduce

122 = D las? (Ay) < lagP 7(A)) = |1 220)-
j=1 j=1

Holder’s inequality further yields

1Fllergy < m(S) 2 N fle2wy < 1(S)2 1 flle2er)s

see Proposition 1.35. If ¢ = 0 a.e. for 7, then also for u. It thus
follows || fllz1() < 1(S)Y? || f|lr2(r for all simple functions f in L*(7).
By approximation, each element f of L?(7) belongs to L'(x) and is
bounded by || flz1¢ < 1(S)? | fll12(r). We can then define the linear
and continuous map

p: L*(1) = F; so(f)—/sfdu-

2This proof was omitted in the lectures.
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2) Theorem 3.10 now yields a function g € L?(7) < L'(7) such that

0<ul4) = [ tadi= 0 = [1igar= [ gar
S A

S

for all A € A; i.e, du = gdr. To show that g > 0, we set A,, = {g <
—%} € A for n € N. The above inequality implies that

0 S/ gdr < —T<An),
An

and hence 7(A4,,) = 0 for all n € N. We deduce that {g < 0} =, 4,
is 7—null set, thus a p—null set. Similarly, one sees that g is real-valued
a.e.; and hence g > 0 a.e.. In the same way, one obtains a function
h >0 in L'(7) with dv = hdr.

3) Set N = {g = 0}. Since u(N) = [, gdr = 0, the assumption
v < yields that v(IN) = 0. We now define the function

h(s)
OSM(S): {g(s)7 SES\N,

0, s € N,

which is clearly measurable. For every A € A, we then compute

V(A):V(AQNC):/ thz/ wgdr:/ wd,u:/wd,u,
ANNe ANNe ANNe A

using step 2) and Example 5.2. This means that dv = w du. Moreover,
|wlly = [ywdp =v(S) is finite.

To show uniqueness, take another density w € L'(u) with v(A) =
fACDdu for all A € A. Arguing as for g, one sees that w > 0. Set
B, ={@ >w+ 2} for n € N. Because of

0= (B~ v(By) = [ (w-@)auz 0,

n

we deduce the inequality @ < w p—a.e. as in step 2). One analogously
obtains w < @ p-a.e., and so w = @ in L'(p). O

We now represent the dual of LP(u1) for p € [1,00) by L¥ (11) via (5.3).
This result is due to F. Riesz for p>1 and to Steinhaus for p=1.

THEOREM 54. Let 1 < p < oo and (S, A, ) be a measure space
which is o-finite if p = 1. Then the map ®, : L¥ () — LP(u)* from
(5.3) is an isometric isomorphism, and thus LP(p)* = L¥' (1) via

Yo e DP(u) Mg el (u) Yfe L) (fehw = / fodu.

PROOF. Set X = LP(y). It remains to prove that ®, is surjective
and || ®,(g)|lx > |lglly for all g € L¥ (1). We assume that u(S) < oo
and that 1 < p < oo and hence p’ = 25 € (1,00). (The general case is
treated in Satz VIL.3.2 of [El] for F = R and in Appendix B of [Co].)



5.1. The duals of sequence and Lebesgue spaces 90

1) Let ¢ € LP(p)*. Since p(S) < oo, the characteristic function 14
belongs to LP(u) for each A € A. We define v(A) = ¢(14).

Take sets A; € A with A; N A, =0 for all j,k € N with j # k. We
put A= )72, 4; € Aand B, = Jj_,; A; € Afor all n € N. Observe
that 1p, — 14 pointwise as n — oo and 0 < 1p, < 14 € LP(u) for
all n € N. Hence, 1p, tends to 14 in LP(u) as n — oo by the theorem
of dominated convergence. We also have 1p, =14, +---+ 14, for all
n € N due to disjointness. Using the continuity and linearity of ¢, we
then conclude that

v(A) = p(1a) = lim (1p,) = lim Y (1) =Y v(4).
k=1 k=1

As a result, v is an F-valued measure. If y(A) = 0, then 14 = 0 in
LP(p) and so v(A) = p(14) = 0; ie., v < L.
The Radon—Nikodym Theorem 5.3 thus gives a map g € L'(u) with

gp(]lA)zl/(A):/]lAgdu for all A€ A.
s

The linearity of ¢ yields

o(f) = / fgdu  for every simple function f:S — F. (5.4)
S

Since we only know that g € L'(u), at first we can extend this
equation to f € L*(A) only. Indeed, by Satz 2.13 of Analysis 3 there
are simple functions f,, : S — F converging to f uniformly as n — oo.
The integrals [ f,gdu then tend to [ fgdu as n — oo by (4.4). On
the other hand, since p(S) < oo Proposition 1.35 implies that f, — f
in LP(u), and hence ¢(f,) — ©(f) as n — oco. As a result, (5.4) is
satisfied by all functions f in L*>(u).

2) To show g € LP'(A), we set
IS LN g(s) =0,
(s) = lg(s)|” (s) # 0
gs) 0 Y '
Then h is measurable and
|B? = |gP" =Y = |g|” = gh.

Let A, = {|g| < n} € A for n € N. The functions 14,¢ then belong
to L=(u) — LY (p) and 14, h to L=(p) < LP(u), again owing to
w1(S) < oo. Employing (5.4) for f = 14,h, we can now compute

/ L, |g” du = / Lo, hgdu = o(La, ) < llollxe |La, A,
S S

~ o [ ta ] = e [ L lol ]
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1

[ v 1ol au]” < el
S

As n — oo, Fatou’s lemma yields that g € L (1) and ||g]|,y < |||l x+-

3) Let f € LP(u). There are simple functions f, converging to f
in LP(u) by Theorem 5.9 in Analysis 3. Using the continuity of ¢,
g € L” (i) and (4.4), we conclude that f fulfills (5.4). This means that
®,(g) = ¢ and @, is surjective. The lower estimate ||g||, < ||¢|x- =
|, (9)|lx+ was shown in step 2). O

Usually one identifies L” (y1) with LP(p)* for 1 < p < co and writes
(f,g) = [ fgdp for the duality, and analogously for the sequence
spaces.

5.2. The extension theorem of Hahn-Banach

Many of the non-trivial properties of duality rely on the Hahn-
Banach theorem proved below. By means of an extension process it
produces ‘tailor-made’ continuous functionals. We start with the basic
order theoretic version which will also yield a third variant of Hahn—
Banach at the end of the section.

Let X be a vector space. A map p: X — R is called sublinear if

p(Az) = Ap(z) and p(z+y) < p(z)+p(y)
for all z;y € X and XA > 0. A typical example is a seminorm.

THEOREM 5.5. Let X be a vector space with F =R, p: X — R be
sublinear, Y C X be a linear subspace, and ¢y : Y — R be linear with
wo(y) < ply) for ally € Y. Then there exists a linear map ¢ : X — R
satisfying p(y) = @o(y) for ally € Y and o(x) < p(z) for allx € X.

PROOF. 1) We define the set
M ={(Z,v)|Z C X is a linear subspace, ¢ : Z — R is linear with

Y CZ, Yy = o, ¥ <plz}

which contains (Y, ¢p). On M we set (Z,¢) < (Z',¢') it Z C Z' and
'z = 1. Straightforward calculations show that this relation is a
partial order on M (i.e.; it is reflexive, antisymmetric and transitive).

Let IC be a totally ordered non-empty subset of M, which means that
for (Z,¢),(Z',¢'") € K we have (Z,v¢) < (Z',¢') or (Z',¢") < (Z,%).
We want to check that U = (J{Z | (Z,¢) € K} is a linear subspace of
X, that by setting f(z) := ¢(x) for every x € U and any (Z,¢) € K
with © € Z we define a linear map f : U — R, and that (U, f) belongs
to M and is an upper bound for K.

Take 2 € U. There is a pair (Z, 1) in K with z € Z. If x also belongs
to Z for some (Z,1) € K, then we have (Z,1) < (Z,1), for instance,
and thus &(x) = ¢(x). Hence, f : U — R is a well defined map. Next,
pick y € U and a, 8 € R. Choose (Z',¢') € K with y € Z'" and, say,
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(Z,4) < (Z',). The linear combination ax + [y is then an element
of Z/ C U and the linearity of ¢’ yields

flax + By) = ¢/ (ax + By) = o' (z) + B/ (y) = af(z) + Bf(y).
Therefore f is a linear map on the subspace U. Similarly one checks the
properties fly = o and f < p|y so that the pair (U, f) is an element
of M. By construction, we obtain (Z,¢) < (U, f) for all (Z,¢) € K.

Zorn’s Lemma (see Theorem 1.2.7 of [DS]) now gives a maximal
element (V) ) in M. We next show that V' = X; i.e., the linear form
© has the required properties.

2) We suppose that V' # X and fix a vector g € X \ V. We use the
linear subspace V = V + lin{z}. Since V Nlin{ze} = {0}, for each
z € V we have unique elements v € V and t € R with = = v + ta,.
We will construct a linear map ¢ : V — R with (V,¢) < (V,¢) € M.
Since (V, @) # (V, @), this fact contradicts the maximality of (V, @), so
that V' = X and the theorem is shown. Let u,w € V. We compute

p(u) + p(w) = p(u+w) < p(u+w) < pu+ z0) + plw — ),
p(w) — p(w — x0) < p(u+ x0) — P(u).

There thus exists a number

a € |sup(p(w) = p(w — o)), nf(p(u+x0) —(u))| .
weV ueV
We next introduce the linear map ¢ : V — R; @(x) = p(v) + at, using
the decomposition = = v + tzg € V.

For y € Y C V, the definitions yield ¢(y) = ©(y) = ¢o(y). To
show ¢ < ply, take x = v 4t € V. For t = 0 and = v, we have
o(v) = ¢(v) < p(v) = p(v). By means of the definition of « and the
sublinearity of p, we estimate

P(z) = p(v) + ta < (v) + t(p(2v + m9) — 9(3v)) = p(v + tzg) = p(x)

for t > 0 and inserting u = %v. For ¢t < 0, we similarly compute
p(2) = p(v)+ta < p(v) +t(p(—v) —p(—Fv—120)) = p(v+two) = p(z)
with w = —fv. As a result, we have shown that ¢(z) < p(z) for z € v,

and hence (V, @) belongs to M as needed. d

As a preparation for later results we describe how to pass from C-
linear functionals to R-linear ones, and vice versa.

LEMMA 5.6. Let X be a normed vector space with F = C.

a) Let x* € X*. Set £&*(x) = Rea*(x) for all x € X. Then the map
£ 1 X — R is R-linear with ||£*]| := sup, <1 [§*(z)] = [|2*]|.

b) Let £ : X — R be continuous and R-linear. Set x*(x) = £*(x) —
i¢*(ix) for allz € X. Then the functional z* belongs to X* and satisfies
[l = I€¥]l and Rex* = &*.
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PROOF. The R-linearity of £* in part a) can be shown in a straight-
forward way. Define z* as in assertion b). Take x € X and «, 8 € R.
Using the R-linearity of £*, we then compute

(o +1f)z) = & (o +ifx) — 1" ((law — fi)

= o () + &7 (ir) — iag” (i) +iBE" (x)

= (a+1i8)z*(x).
Since its additivity is clear, the functional z* in b) thus is C-linear. In
part b) we also have the identity £* = Rex*. It implies the inequality
I€*]] < ||=*]| in statements a) and b).

To show the converse, pick x € X with [|z]] = 1. We set o = 1 if

z*(z) = 0 and a = 2*(z)/ |x*(x)| otherwise. Since ||a !z| = 1, the
C-linearity of z* yields

0 < [a*(2)] = 2*(32) = & (52) < €71,
Taking the supremum over x with ||z|| = 1, we obtain ||z*|| < ||£*]| in
a) and b). O

We can now establish the main version of the Hahn—Banach theorem.
It allows to extend every bounded linear functional on a subspace to
the full normed vector space X keeping its norm. Such a result is wrong
for operators in general. For instance, an extension P € B({>, ¢q) of
the identity I : ¢g — ¢o would be a bounded projection onto ¢y in £°°,
which does not exist by Example 2.18.

In Hilbert spaces even an operator version of the Hahn-Banach the-
orem follows from the projection Theorem 3.8. Let X and Z be Hilbert
spaces, Y C X be a linear subspace, and Ty belong B(Y,Z). By
Lemma 2.13, the operator Tj has a linear extension T} to Y with the
same norm. Let P be the orthogonal projection onto Y. Then the
operator T'=T\ P € B(X, Z) extends T and has the same norm.

We also point out that the proof of Hahn-Banach is highly non-
conconstructive. Nevertheless under certain assumptions on X* one
obtains uniqueness in the next result, see Exercise 12.1.

THEOREM 5.7. Let X be a normed vector space, Y C X be a linear
subspace (endowed with the norm of X), and y* € Y*. Then there
exists a functional x* € X* such that (y,x*) = (y,y*) for ally € Y
and [|z*]| = [ly*|.

PrOOF. 1) Let F = R. Set p(z) = ||y*]| ||z| for all z € X. The
map p is sublinear and y*(y) < p(y) for all y € Y. Theorem 5.5 yields
a linear functional z* : X — R with 2*|y = y* and z*(x) < p(z) for all
x € X. We further have

—2*(x) = 2*(~x) < p(-2) = p(x)

so that |2*(z)| < p(z) = ||y*]| ||| for all z € X. As a result, * belongs
to X* with ||z*]| < ||y*]|. The equality ||2*|| = ||y*|| now follows from
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the estimate

el = sup [y, 2")[ = sup [y, ") = lly"|.
lyll=1.yeY lyll=1.yeY

2) Let F = C. We consider X as a normed vector space Xg over
R by restricting the scalar multiplication to real scalars; i.e., to the
map R x X — X (a,z) — ax. Lemma 5.6a) first shows that the real
part n* = Rey* belongs to Y§ and ||n*|| = ||y*||. Due to step 1), the
functional n* then has an extension &* € (Xg)* with ||£*]| = [|n*] =
lly*||. From Lemma 5.6b) we finally obtain a map a* € X* satisfying
o] = [1€4] = lly*] and

v*(y) = & (y) —ig"(iy) = Rey™(y) —iRey"(iy)
= Rey"(y) —iRe(iy"(y)) = 4" ()
for all y € Y, where we used the C-linearity of y*. U

EXAMPLE 5.8. Let Y = ¢ C X = (> and y*(y) = lim,_00 yn for
y € Y. Clearly, y* belongs to Y* and has norm 1. The Hahn-Banach
theorem yields an extension z* € (¢*°)* of y* with norm 1. Note that
x*(y) = y*(y) = 0 for y € ¢g. The functional z* cannot be represented

by a sequence z € (! as in (5.2) since otherwise it would follow both
z # 0 and

0= (en, ") = Zénjzj = Zn for all n € N. O
=1

The next result allows to distinguish between a closed linear subspace
Y and a vector xy ¢ Y. This fact will lead to the main corollaries of
the Hahn-Banach theorem below.

PROPOSITION 5.9. Let X be a normed vector space, Y & X be a
closed linear subspace, and xy € X \'Y. Then there exists a functional
x* € X* such that x*(y) = 0 for ally € Y, x*(xo) = d(z0,Y) =
inf ey ||xo —y|| > 0, and ||2*]| = 1.

PrOOF. We define the linear subspace Z =Y + lin{zo} of X and
the linear map z* : Z — F by 2*(y + tzg) = td(zo,Y) for all y € Y
and t € F, using that Y N lin{zg} = {0}. Clearly, 2*|y = 0 and
2*(x9) = d(zo,Y). We further compute

|2 = sup [t[inf lwo — gl < sup |tz +yll <1,
ly+taoll<t YEY lly+taol|<1
where we have chosen y = —%y assuming that ¢t # 0 without loss of

generality. Recall that d(zg,Y) > 0 by Example 1.9 since Y is closed.
Take vectors y, € Y with ||z¢ — y,|| = d(z0,Y). The properties of z*
now yield the limit

. 1 . d(z0,Y) =0
2 r|z'<f<xo—yn>,z> _de) =0
o — yn| lzo — ynll
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as n — 00, so that ||z*|| = 1. The Hahn—-Banach extension of z* is the
required map z* € X*. Il

The next easy consequence is used very often in analysis.

COROLLARY 5.10. Let X be a normed vector space, x,x1,19 € X,
and D, C X* be dense. Then the following assertions hold.

a) Let © # 0. Then there ezists a functional x* € X* with (z,z*) =
]| and [|2*]] = 1.

b) Let x1 # xo. Then there is a map x* € X* with x*(x1) # x*(x2).

¢) ||zl = maxyex for) o<1 (2, 2] = SUDgeep, v puzr [ 2]

PROOF. Assertion a) is a consequence of Proposition 5.9 with

Y = {0}, and a) implies b) taking z = x; — z5. For z in X we
have sup,. <1 [(z, 2*)| < [|z||, and so assertion c) follows from a) and
an approximation argument. O

Interestingly, one has a precise formula for the functional in part a)
above in some cases.

EXAMPLE 5.11. Let 1 p < oo and (S, A, ) be a measure
space, which is o—finite if p = 1. Given f € LP(u) \ {0}, we set
g = ||f||11fpf|f|p72 Lipzoy (e, g = mf for p = 2). One can then
check that g € L¥ (u) with ||g|l,, = 1 and (f,g) = ||fll,- Let D be a
dense subset of L¥ (11). Corollary 5.10 and Theorem 5.4 further yield

/S Fodul (5.5)

<
p

£l = sSup
9€D |lglly <1
We next combine the Hahn-Banach theorem with the principle of
uniform boundedness.

COROLLARY 5.12. Let X be a normed vector space and M C X.
Then set M is bounded in X if and only if the sets x*(M) are bounded
in I for each x* € X*.

PrRoOOF. The implication “=" is clear. To show the converse, set
T, (x*) = (x,x*) for each fixed x € M and all z* € X*. By assumption,
the functionals 7, € B(X™*,F) are pointwise bounded by |T,(z*)| <
c(z*) = sup,ep |2*(2)| < oo for all ¥ € X* and x € M. Since X* is
a Banach space, Theorem 4.4 yields a constant C' such that
C> |l = sup [{z,27)] =[]

[lz+]I<1
for all x € M, where we have used Corollary 5.10c). u
Density is often checked by means of the following result.

COROLLARY 5.13. Let X be a normed vector space andY C X be a

linear subspace. ThenY is not dense in X if and only if there exists a
functional x* € X* \ {0} with (y,z*) =0 for ally €Y.
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PROOF. The implication “=" follows from Proposition 5.9. If Y is
dense and z* € X* vanishes on Y, then * must be 0 by continuity. U

The next consequence of Hahn-Banach says that X* is at least as
large as X in terms of separability.

COROLLARY 5.14. Let X be a normed vector space and X* be sepa-
rable. Then X is separable.

PROOF. By assumption and Exercise 6.2, we have a dense subset
{z¥ |n € N} in 0Bx+(0,1). There are vectors vy, € X with ||y,|| = 1
and |(y,, z3)| > 3 for every n € N. Set Y = lin{y, |n € N}. Suppose
that Y # X. Corollary 5.13 then yields a functional #* € X* such that
|lz*]] = 1 and (y,2*) = 0 for all y € Y. There exists an index j € N
with [J2* — 2%|| < 1. We then deduce the contradiction

. U

A~ =

< Ny, 25| = (yj, 25 — )| <

N | —

EXAMPLE 5.15. The spaces ¢g and ¢! = ¢ are separable, whereas
(> = ({Y)* is not separable, see Example 1.55. (Since separability is
preserved under isomorphisms by Exercise 6.2, we can omit here the
isomorphisms from Proposition 5.1.) The above result implies that also
(£>°)* is not separable. In particular, /! cannot be isomorphic to (£>°)*,
cf. Proposition 5.1. O

So far we do not know whether there are non-zero bounded linear
maps between two normed vector spaces X # Y. (If X =Y, the
identity belongs to B(X).) We now can at least construct operators of
finite rank.

ExAMPLE 5.16. Let X and Y be normed vector spaces with dim X >
n, the vectors xy,...,x, € X be linearly independent, and y1,...,y, €
Y. Foreach k € {1,...,n}, weput Z, = lin{zy,..., 2 1, Tps1,---,Tn}
if n > 2 and Z; = {0} if n = 1. Proposition 5.9 provides us with a
functional 27 € X* such that z}|z, = 0 and x}(xy) = 1; ie., (z;,2}) =
O for g,k e {1,...,n}. We now define

T = Z(x, zp)yy € lin{yr, ...yt =Y
k=1
for all z € X. Clearly, T € B(X,Y) with [|T|| < >>7_, [|lz}]||yll- Since
also Tx; = y;, we have R(T) =Y. If X =Y and z, = y;, for all k, we
further deduce the identity

Tr = Z Z(x, ) (n, v5); = T, O

j=1 k=1

We now show that closed subspaces of finite dimension or co-
dimension have a complement, which is needed in Spectral Theory.
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PROPOSITION 5.17. For a normed vector space X the following as-
sertions hold.

a) Let U C X be a finite dimensional linear subspace. Then U is
closed and there exists a closed linear subspace Z with X = U & Z.

b) Let Y be a closed linear subspace with finite codimension dim X /Y .
Then there exists a closed linear subspace V with dimV = dim X/Y
and X =Y e V.

PROOF. a) Let {xy,...,z,} be a basis of U. We define T as in
Example 5.16 with x; = yx. Then T' € B(X) is a projection with range
U and thus Lemma 2.16 implies assertion a).

b) Let @ : X — X/Y; Qx = x4+ Y, be the quotient map (see
Proposition 2.19) and let B = {by,...,b,} be a basis of X/Y. Since
@ is surjective, there are vectors xp € X with Qxp = b,. Set V =
lin{xy,...,z,}.

If >0 agxy, = 0 for some ay € F, then > 7 apby = Q0 = 0, and
hence ap = 0 for all & € {1,...,n} because B is a basis. The set
{z1,...,x,} is thus linearly independent and dimV = dim X/Y. By
part a), the space V is closed.

Ifz e YNV, thenz =Y ;_, Brxy for some By € Fsince z € V. From
z € Y we infer Qv = 0 which yields 0 = >"}'_, Siby and thus 5 = 0
for all k£ € {1,...,n}. As a result, x = 0. Take z € X. There are
coefficients oy, € F with Qx = a6y + - - + apb,. Set v = a1+ -+ +
anz, € V. We then obtain Q(z —v) = > 7, ag(by — Qzy) = 0, and
hencer—veY andr =z—v+veY+V. Itfollows X =Y aV. U

Geometric version of Hahn—Banach. Let X be a normed vec-
tor space, A, B C X, ANB =0 and A, B # (. A functional z* € X*
separates the sets A and B if

Vae A, be B Re(a,z*) < Re(b, z*),
and it separates A and B strictly if

sa :=sup Re(a,z*) < ip := inf Re(b, z*).
acA beB
Observe that N(2*) is a closed linear subspace with codimension 1 (cf.
Linear Algebra). Hence, Hy = xo+ N(x*) is a closed affine hyperplane.
Let F = R, z* separate A and B, and xy € X satisfy v := (xg,2*) €
[s4,ip]. Then A and B are contained in the different halfspaces Hy :=
{z € X|z*(x) E v} separated by Hy, since 2*[4 < s4 < 2*|g, =7 <
iB S JI*|B.
Let A C X. As a crucial tool we define the Minkowski functional

pa:X —[0,00]; pa(z) =inf{\ > 0|1z € A},

where inf ) = co. Note that pp(o1)(z) = ||z||. We show several of the
basic properties of this map below, using the following observations.
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REMARK 5.18. If A, B C X are convex and a € F, then also aA and
A+ B are convex. To check the second assertion, take a, € A, b, € B,
and t € [0, 1] for k € {1,2}. We then have t(a; +b1)+ (1 —t)(az+by) =
(ta; + (1 — t)az) + (tby + (1 — t)by) which belongs to A + B by the
convexity of A and B. The first assertion is shown similarly. O

LEMMA 5.19. Let X be a normed vector space and A C X convex
with 0 € A°. (There thus ewists a radius 6 > 0 with B(0,0) C A.)
Then the following assertions hold.

a) We have pa(x) < 3||z|| for all z € X.

b) The map pa is sublinear.

c) If A is also open, we have A = p;*([0,1)).

PROOF. a) The assumption implies that the vector H%”x belongs to
A for each = € X \ {0}, so that pa(z) < 3|z|.
b) Let t > 0, x,y € X, and € > 0. The definition of p, yields the
equalities p4(0z) = Opa(x) and

pa(te) =inf{A > 0| fz € A} = inf{ty > 0| ix € A} =tpa(x).

Further, there are numbers 0 < A < pu(z) + ¢ and 0 < u < pa(y) + ¢
with %x, %y € A. Since A is convex, the vector

1 A1 uo1
Aﬂb( Y) . y

is contained in A, so that pa(z +y) < X+ p < pa(x) +paly) +2¢. In
the limit € — 0, we deduce assertion b).

c) Let A be open. First, take an element x € X with pa(z) < 1.
Then there exists a number A € (0,1) with 2 € A. The convexity
of A yields that z = A2 + (1 — X\)0 € A. Conversely, pick = with
pa(z) > 1. The product 2 is then contained in X \ A for all A < 1.
Since X \ A is closed, we obtain z € X \ A letting A — 1. O

We now establish the separation theorems which are geometric ver-
sions of Hahn-Banach. Simple examples in R? show that one needs
convexity for separation and also compactness for strict separation.

THEOREM 5.20. Let X be a normed vector space, A,B C X be
convez and non-empty, and AN B = (. The following assertions hold.
a) Let A and B be open. We have z* € X* separating A and B.

b) Let A be closed and B be compact. There is a functional x* € X*
separating A and B strictly.

Proor. Welet F = R. The case F = C then follows by Lemma 5.6.
a) Let A and B be open. Fix a vector xy € A — B and put

C:A—B—xOZUA—b—a:O.

beB
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The set C is open because of Proposition 1.15, it is convex by Re-
mark 5.18, 0 belongs to C, and yy := —z9 ¢ C (since 0 ¢ A — B).
Thanks to Lemma 5.19, the Minkowski functional p¢ is thus sublinear
and satisfies po(yo) > 1. We define y*(tyo) = tpc(yo) for all t € R.
The map y* : lin{yo} — R is linear and y*(y) < pc(y) for all y = tyo.
(If t < 0, we have pc(y) > 0 > tpc(yo).) Theorem 5.5 now gives a
linear functional z* : X — R with 2*(z) < pe(x) for all z € X and
*(y0) = ¥*(¥o) = pc(yo) > 1. For x € X, Lemma 5.19a) implies that

|2*(2)| = max{z*(z), 2*(—2)} < max{pc(z), pc(—2)} < 52|
for some 6 > 0, and hence x* belongs to X*. Let a € A and b € B.

Then the vector x = a — b — x¢ is an element of C'. Since yg = —uy,
Lemma 5.19¢) yields

1> po(x) > (x,2%) = (a, %) — (b,x*) + (yo, z*).

Using (yo, z*) > 1, we deduce that (a,z*) < (b,2*), and thus part a).

b) Let A be closed and B be compact. The number & :=
%dist(A, B) > 0 is positive by Example 1.9. The sets A, = A +
B(0,e) = Uyea Bla,e) and B, = B + B(0,¢) are thus disjoint and, as
above, open and convex. From step a) we obtain a functional z* € X*
satisfying

(a+z,2*) < (b+y,z")

foralla € A, b € B and x,y € B(0,¢e). For y = 0 and z = +ez with
z € B(0,1), it follows € |(z,2*)| < (b — a,x*). Taking the supremum
over z € B(0,1), we derive the inequality 0 < ¢||z*|| < (b — a, 2*) for
all a € A and b € B which implies assertion b). O

A typical application of the above result is given in Theorem 5.36.
We first discuss another consequence based on new concepts which we
will used in Section 5.4 to describe the mapping properties of operators.

Let X be a normed vector space, A C X and B, C X* be non-empty.
The annihilators of A and B, are defined by

At ={2* € X*|Va € A wehave (a,7*) =0} C X*,
1B, ={r € X|Vb* € B, wehave (r,b*) =0} C X.

In view of Riesz” Theorem 3.10, in a Hilbert space X = X* these two
sets are isomorphic to the orthogonal complement. We first collect their
simple properties which follow from the corollaries to Hahn—Banach.

(5.6)

REMARK 5.21. Let X be a normed space, A C X, and B, C X*.

a) As in Remark 3.7, but now using (5.1), one verifies that A+ and
LB, are closed linear subspaces of X* and X, respectively, and that
linA C +(A1), (lin A)* = AL and +(lin B,) = 1 B,.

b) Corollary 5.13 shows that A+ = {0} if and only if lin A = X.
From Corollary 5.10 we deduce that A+ = X* if and only if A = {0}.
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¢) By definition, we have +B, = X if and only if B, = {0}. Due to
Corollary 5.10, lin B, = X* implies that + B, = {0}.

d) The converse implication in part c¢) is wrong in general. For
instance, let X = ¢! and B, = {e, |n € N} C X* = ¢*. We then have
lin B, = ¢y, but B, = {0} since all y € ¢! satisfy (y,e,)pn = yy. O

In Hilbert spaces the next result follows from the projection theorem,
see Example 3.9d). We now need the separation theorem to show it.

PROPOSITION 5.22. Let X be a normed vector space X and be A C X
non-empty. We then have lin A = +(A1).

PROOF. Remark 5.21 yields the inclusion lin A C +(A*+). Suppose
there was a vector o in +(A%) \ lin A. Theorem 5.20b) with B = {z}
then gives a separating functional z* € X* satisfying

s:= sup Re(x,z*) < Re(zy, z%).
z€lin A

Suppose 1 := Re(x, x*) # 0 for some z € lin A. For t € R we then infer

as t — 00, if >0,

Re(tz,x*) = tr — oo { ,
as t— —oo, if r<O0.

This contradicts the above estimate for s, and thus Re(x,z*) = 0 for

all z € lin A. Hence, s = 0. Using it instead of ¢, we similarly obtain

Im(x,z*) = 0 for all z € lin A so that * belongs to A+. We arrive at

the contradiction 0 = s < Re(xg, z*) = 0 since xq € +(A1). d

On a dual space one can interchange the order of the annihilators,
but one does not have an analogue of the above result in general. As
an example, let X = (' and B, = {e,|n € N} C X* = (>*. In
Remark 5.21d), we have seen that lin B, = ¢y and that +B, = {0},
hence (+B,)* = X* = (> # lin B,. See Theorem 4.7 in [Ru] for more
information.

PROPOSITION 5.23. Let X be a normed vector space and Y C X be
a closed linear subspace. Then the maps

T:X*)Y+t = Y* T +Y1h) =¥y,
S (X)Y)* =Y Sp=po0Q,
are isometric isomorphisms, where Q : X — X/Y; Qr =x+Y.

See Exercise 12.3 for a proof. This result is used in Spectral Theory.
In a Hilbert space X it is a part of the projection theorem 3.8.
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5.3. Reflexivity and weak convergence

Let X be a normed vector space. The bidual of X is X** := (X™*)*.
For each z € X we define the map

Ix(z): X* = F; (2%, Jx(2))x = (x,2%) x. (5.7)
Clearly, Jx(z) is linear in * and we have |Jx(z)(z*)| < ||z [|z*||, so
that Jx(z) belongs to X**. Moreover, the operator Jx is linear in z,
and by means of Corollary 5.10 and equation (5.7) we obtain

lzllx = Sup {2, 27) = (| x (@) |-

We state these obeservations in a proposition.

PROPOSITION 5.24. Let X be a normed vector space. Then equation
(5.7) defines a linear isometry Jx : X — X**. O

This result leads to a quick proof of the existence part of Proposi-
tion 2.21: The closure X of the range Jx (X) in X** is a Banach space;
i.e., X is isometrically isomorphic to a dense subspace of a Banach
space. We next introduce an interesting class of Banach spaces.

DEFINITION 5.25. A normed vector space X is called reflexive if the
isometry Jx from (5.7) is surjective.

REMARK 5.26. a) Let X be reflexive. Then X 2 X** since also Jy'
is isometric, and hence X is a Banach space. However, there are non-
reflexive Banach spaces which are isomorphic to their biduals (with an
isomorphism different from Jx), see Example 1.d.2 in [LT].

b) If X reflexive and B, C X*, then B = Jx(+B,) by (5.7). Here
(and in similar points below) reflexive Banach spaces share some prop-
erties of Hilbert spaces, which are not true in a general Banach space.

¢) In Corollary 5.51 we will show that reflexivity is preserved under
isomorphisms.

d) One usually identifies the space X with the range R(Jx) in X**
and a reflexive space X with its bidual X™**. O

We next discuss the basic exampels of reflexive spaces.

EXAMPLE 5.27. a) Hilbert spaces X are reflexive.

Proor. For a Hilbert space Z we have the antilinear bijection ¢ :
Z = 7% (v, P4(2))z = (v]2)z, for all v € Z (see Theorem 3.10). It
is straightforward to check that the dual space X* of X is a Hilbert
space equipped with the scalar product (v*|y*)x = (P " P 7*)x
for z*,y* € X*. Take any z** € X**. Set 2* = ® Lz € X* and
r = ® o € X. Using the above definitions, we compute

(" o) = (|2 x = (XM PX'y ) x = (2, y")x

for every y* € X*; ie., Jx(x) = 2™ as asserted. O
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b) Let 1 < p < oo and (5, A, u) be a measure space. Then X = LP(u)
is reflexive. (An example is X = (7.)

PROOF. Let r € (1,00). Theorem 5.4 yields the isomorphism &, :
L7 () = L7 ()5 (@, @ () pr = [ oo dp, for all p € L7(n) and ¢ €
L™ (). Take ¢ € X**. The map ¢ o ®, then belongs to L¥ (11)*. Since
p” = p, we have a function f € LP(u) satisfying ®,(f) = ¢ o @,,. Let
®,(g) with g € L” (1) be an arbitrary element of X*. We now calculate

<q)p(g)7¢>X* = QS((PP(Q)) = (g, q)p’(f»Lp’ = /ngd/l = <fa (I)p(g)>Lp.

Hence, ¢ = Jx(f) as asserted. O

¢) The space ¢y is not reflexive. Indeed, its bidual ¢§* is isomorphic to
(> by Proposition 5.1. From Example 1.55 we know that ¢ is separable
and ¢*° not, so that they cannot be isomorphic. Remark 5.26a) thus
yields the claim. O

In the above example and also below, we use that separability is
preserved under isomorphisms by Exercise 6.2. We show permanence
properties of reflexivity needed later on.

PROPOSITION 5.28. Let X be a normed vector space.

a) Let X be reflexive and Y be a closed linear subspace of X. Then
(Y|l - llx) is reflexive.

b) The space X is reflexive if and only if X* is reflexive.

c) Let X be reflexive. Then is X separable if and only if X* separable.

PROOF. a) Let Y C X be a closed linear subspace. Take y** €
Y**. For each z* € X*, the restriction z*|y belongs to Y* with
la*]y]ly+ < ||2*]|x+. We define the linear map ™ : X* — F by
o (2*) = (a*]y, y™* )y« for all z* € X*. As |27 (2%)| < ||| x|y ||y,
the functional z** is an element of X**. By the reflexivity of X, there
exists a vector y € X such that

(@ |y, g )y = (&%, 27 ) x» = (y,2%) x for all z* € X™.

Suppose that y ¢ Y. Since Y is closed, Proposition 5.9 yields a map
T* € X* satisfying 7*|y = 0 and (y,Z*)x # 0. This fact contradicts
the above equation in display, and y is thus contained in Y.

Take any y* € Y*. Let 2* € X* be a Hahn-Banach extension of

y*. We then obtain (y,y*)y = (y,z*)x = (y*,y**)y~ by the above
considerations, and therefore Jy (y) = y**.

b) Let X be reflexive. Take a functional z** € X***. We set 2*(x) =
(Jx(z),27*) xs for all z € X. Clearly, 2* belongs to X*. Let ™ €
X**. By assumption, there is a vector x € X with z** = Jx(z). It
follows (z*, ) x+ = (x,2%) x» = (&**, 2%*) x+». Hence, X* is reflexive.

Conversely, assume that X is not reflexive. Proposition 5.9 then
yields a map z*** € X**\ {0} satisfying (Jx(z), 2**)x+ = 0 for all
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x € X. Suppose that X* was reflexive. There thus exists a functional
x* € X* with 7 = Jyx«(x*). We infer that

0= (Jx(x), Jx«(x*)) xor = (2", Ix (1)) x+ = (x,2%) x for all =z € X,
which means that * = 0, contradicting x** # 0.

¢) The implication “<” was shown in Corollary 5.14. If X is sep-
arable, then X** = X is also separable. Hence, X™* is separable by
Corollary 5.14. O

We can now treat further main examples.

EXAMPLE 5.29. a) The space X = ¢! is not reflexive, because it is
separable and its dual X* = ¢* is not. Since ¢; is not reflexive by
Example 5.27 and it is a closed subspace of £°°, also the space ¢ fails
to be reflexive.

b) The spaces C([0,1]), L>=(0,1), and L'(0,1) are not reflexive by
Exercise 13.2.

c) Let U € R™ be open and p € (1,00). By Remark 4.16d),
the Sobolev space W'P(U) is isomorphic to a closed subspace F of
LP(U)*™. As in Example 5.27 one sees that LP(U)"*™ is reflexive,
and hence also F' by Proposition 5.28. Corollary 5.51 thus shows that
WP(U) is reflexive. O

In order to obtain fundamental compactness results below, we intro-
duce new convergence concepts.

DEFINITION 5.30. Let X be a normed vector space.
a) A sequence (x,) in X converges weakly to x € X if

Var e X* 1 (zg,2") = (r,2") as n — 0.

*
n

b) A sequence (z) in X* converges weakly* to x* € X* if

Vee X: (v,z)) = (r,2") as n— 0.
. ag . .
We then write x, — x or x, — x or o-lim, . x, = x, respectively,
* o* .
xy — 2" or xy — x* or o*-lim,_, ), = x*. One often replaces here

n

the letter ‘o’ by ‘w’.

We first collect simple, but important properties of weak and weak*
convergence, see also the exercises.

REMARK 5.31. Let X be a normed vector space, x,,z,y € X,
xy,x* € X*, and n — oo.

a) The weak* convergence in X* = B(X,F) is just the strong conver-
gence of a sequence of operators in B(X,F) as discussed in Section 4.1.

Let the sequence ((z,z})), be Cauchy in F for each z € X.

Lemma 4.10 then yields a functional z* € X™* satisfying zj Ty g
as n — 00. In this sense, X* is ‘weakly* sequentially complete’.

b) Weak and weak* convergence are linear in view of Definition 5.30.
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¢) If 2, — 2 in the norm of X, then z,, = x (since |(z, — z,2*)| <
|z, — 2| ||z*||). If 27 — x* in the norm of X*, then z7 2y 2*. In
X = ™ weak or weak* convergence are equivalent to componentwise
convergence (take x = ey or * = e;), and thus to convergence in norm.

d) The weak and weak* limits are unique.

PrROOF. Let z, = z and z, = y with # # y. Corollary 5.10
then yields a functional z* € X* satisfying (z,2*) # (y,2*). This is
impossible since (x,,z*) converges to both (z,2*) and (y,2*). The
second assertion follows from part a). O

e) For x € X we have (z,2*)x = (z*, Jx(x))x+ so that the o-
convergence on X* implies the o*-convergence. If X is reflexive, then
the two types of convergence on X™* coincide. Reflexive spaces thus are
‘weakly sequentially complete’ due to statement a). O

For weak or weak* convergence several properties can fail which one
might hope to be true. These examples are of great importance. See
also the exercises.

REMARK 5.32. Let n — oo.

a) For weakly or weakly* convergent sequences each subsequence may
diverge in norm. The norm of a weak or weak* limit may be strictly
smaller than the limes inferior of the norms of the sequence.

PROOF. In X = ¢* we have (e,,x) = x, — 0 for all z € /. This

means that e, = 0 and e, 2% 0. But each subsequence of (e,,) diverges
in (2 since |le, — em|l2 = 2'/2 for all n # m. Moreover, |le,|| = 1 and
the weak limit 0 has a strictly smaller norm. O

b) A weakly* convergent sequence in a non-reflexive space may not
possess a weakly converging subsequence.

PROOF. In X* = (! = ¢} we have (z,¢€,)¢ = T, — 0 for each x € ¢
so that e, 74 (). Take any subsequence (ey,);. For k € N, we set y; =
(=1)7 if k = n; and y, = 0 otherwise, and put y = (y;) € (= = (¢1)*.
Then (en;,y)en = yn, does not converge as j — o0. O

c¢) There are (non-reflexive) spaces which are not ‘weakly sequentially
complete’.

ProoOF. Let X = ¢y and v, = e+ -+ e, € ¢g C £*°. For each
y € (1, we have

<Umy>co = <y,Un>zl = Zyk — Zyk = <y, ]l)gl as n — o0.
k=1 k=1

This means that v, <> 1 in ¢ and that ((Un, Y) ey )n 1 a Cauchy
sequence in F for every y € ¢'. If (v,) had a weak limit z in ¢, then
x would also be the weak* limit of (v,) in £*° and thus x = 1 by the
uniqueness of weak* limits, which is impossible. O

We state a useful characterization of weak and weak* convergence.
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PROPOSITION 5.33. Let X be a normed vector space, x,,x € X and
xr,x* € X* forn eN, D, C X* with linD, = X*, and D C X with
lin D = X. Then the following equivalences are true.

a) x, = x asn — oo if and only if sup,, ||[z.l|x < 0o and (x,,y*) —
(x,y*) as n — oo for all y* € D,.

b) Let X be complete. Then x, Ty 2 asn — 00 if and only if
sup,, ||z || x+ < oo and (y,xr) — (y,2*) as n — oo for ally € D.

If a) is valid, then ||z|| < lim,_, ||z.||; and if b) holds, then ||z*| <
lim, , ||lzx||. Moreover, in equivalence b) the implication ‘<= is true
for all normed vector spaces X.

PRrROOF. For the implications ‘=’ we use Corollary 4.5, whereas
‘<=’ and the addendum follow from Lemma 4.10. In part a) one has to
apply these results to the vectors Jx(x,) € X** = B(X*,F). O

In the following examples we use the above characterization to de-
scribe weak convergence in sequence and Lebesgue spaces quite well,
whose duals were described in Proposition 5.1 and Theorem 5.4.

EXAMPLE 5.34. a) Let X = ¢y oder X = (7 for 1 < p < o0, (v,,) in
X be bounded, and z € X. Proposition 5.33 with D, = {e, |n € N}
then yields the equivalence

Uy B = YEEN: ()= (Un,er) = (z,e1) = 13

as n — 00, since ¢y = lin D, is dense in X*. (On the right-hand side
one has ‘componentwise convergence’.)

For sequences in ! or £ one obtains an analogous result for the
o*-convergence taking D = {e, |n € N} in ¢y, respectively ¢'.

b) The implication ‘<=’ fails in a) for p = 1. In fact, the sequence (e,)
converges componentwise to 0, but it is bounded and diverges weakly
in /' by the proof of Remark 5.32b).

¢) The assumption of boundedness cannot be omitted in Proposi-
tion 5.33. For instance, the sequence (ne,) in £ converges compenen-
twise to 0, but is unbounded and thus cannot converge weakly.

d) Let (S, A, p) be a measure space, X = LP(u), 1 < p < oo, and
(fn) be bounded in X. We then deduce the equivalence

fnsf = /fndu—>/fdu forall Ae A with u(A) < oo
A A

as n — oo from Proposition 5.33 and Theorem 5.9 of Analysis 3 (saying
that the subspace of simple functions is dense in L* (u)).

The weak* convergence in L*(u) can be characterized analogously
if the measure space is o—finite.

e) The sequence given by f,(s) = sin(ns) tends weakly to 0 in
L?(0,1), though || f,||3 — % as n — co. This weak limit can be checked
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using part d) or integrating by parts. For each ¢ € C2°(0,1) we have

L[ , 16/ 100
(frio)] = \5/0 cos(ns)(s) s < 1=, g

as n — oo, and thus f, = f by Proposition 5.33 and the density result
Proposition 4.13. Here oscillations lead to weak convergenee.3 O

Weak convergence in a bounded subset is often given by a metric.

REMARK 5.35. If X* is separable, then the weak sequential conver-
gence in a bounded subset M of X is given by the metric

[e.9]

R St

j=1

for z,y € M, where D, = {z}|j € N} is dense in X*. This result
follows from Propositions 5.33 and 1.8 using the seminorms p;(z) =
|(z, x;>| Observe that for each z € X \ {0} there is an index k € N
such that (x,z%) # 0 due to Corollary 5.10 and the density of D,.
Similarly, if X is separable then the weak* sequential convergence in a
bounded subset of X* is given by an analogous metric. O

The next theorem by Mazur says that closed convex sets are ‘weakly
sequentially closed’. It is a consequence of the separation theorem and
often used in combination with Theorem 5.40.

THEOREM 5.36. Let X be a normed vector space, C' C X be closed
and convezx, and let (x,) in C' converge weakly to some x € X. Then
x belongs to C. Moreover, a sequence (yn) of convex combinations of
the vectors {x, |n > N} tends to x in norm as N — 0o.

PROOF. 1) Suppose that z was not contained in C'. Theorem 5.20b)
with A = C and B = {z} then gives a functional z* € X* with
sup,, Re(z,,, 2*) < Re(x,z*). But this inequality cannot hold since
(xn, x*) converges to (x,z*) as n — oco. Hence, z belongs to C.

2) Let N € N. It is straightforward to check that the set

Cy = {y = Zm:tjxj

J=N

meN, m>N, t; >0, tN+---+tm:1}

is convex, and it contains all x,, for n> N. Its closure Cy is also convex
by Corollary 1.18. Step 1) then shows that x belongs to every C. So
we can choose points yy € Cy with ||z —yy|| < + foreach N e N. O

We note that one needs convexity in Mazur’s theorem and that it
may fail for the weak* convergence.

3This example was omitted in the lectures.
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REMARK 5.37. a) The vectors e, in the closed unit sphere S of (2
converge weakly in £2 to 0 ¢ S.

b) The elements e, tend weakly* to 0 in X* = ¢!, and they belong
to the closed affine subspace A= {y € ¢*|(y,1) =1}, but 0 ¢ A. O

We now prove a simplified version of the Banach—Alaoglu theorem.
It extends the Bolzano—Weierstrafl theorem to Banach spaces which
are adjoints of a separable space and says that the balls Bx«(0,7)
are ‘weakly* sequentially compact’ (instead being compact as in finite
dimensions). This fact is the fourth of the fundamental principles of
linear functional analysis. At the end of this section we give one of its
many applications.

THEOREM 5.38. Let X be a separable normed vector space. Let (z7)
be a bounded sequence in X*. Then there is a functional z* € X*
and a subsequence (x;j)j converging weakly* to x* as j — 0o, where
llz*|| < lim, . |lz%||. Hence, each sequence in a ball Bx-(0,7) has a
weak* accumulation point.

PROOF. There are vectors whose norms ||z, || tend to lim, , ||z} ||

as [ — oo. We replace x by this subsequence without relabelling it.
Let {zx |k € N} be dense in X. Since ({z1,x}))nen is bounded
in I, there exists a subsequence ((z1,z}, ;)); with a limit in F.
Since also ({22, 27, ;))); is bounded, there is a converging subsequence
((z2,},(;)));- For each k € N we iteratively obtain subsequences
(@,(5)); of (x},_ (;); such that ((zy,x} ;))); converges. We define
Ym =, for each m € N. Then the sequence ({z,y;,))m has a limit
for every k € N since for each m > k there is an index j,, = jn(k) > m
with v,,,(m) = v (jm). Since {xy |k € N} is dense and the subsequence
(y2,) of (x}) is also bounded, Proposition 5.33 implies the assertion. [

REMARK 5.39. a) The above version of the theorem of Banach—
Alaoglu can fail if X is not separable. As the simplest example we
consider X = ¢*°, where X* is already a rather unpleasant space, cf.
Theorem IV.5.1 in [DS]. The maps ¢, : X — F; ¢,(z) = x,, belong
to X* with ||p,|| = 1 for all n € N. Take any subsequence (¢,,;);. As
in Remark 5.32b) we find a sequence x € £ such that (z, ;) = n,
diverges and hence (i,,) has no weakly* convergent subsequence.

b) The theorem of Banach—Alaoglu can fail for the weak convergence.
For instance, look at e, € ¢* = X for n € N. Take any subsequence
(en,); and choose as above an element y in £>° = (¢')* such that (yn,);
diverges. Then (e,, ,y) = yn, does not converge. O

4In Theorem V.3.1 in [Co] one can find the full version of the Banach-Alaoglu
theorem without the separability assumption.
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In a reflexive space we can derive a version of the Banach-Alaoglu
theorem with weak convergence, cf. Remark 5.31. A standard trick
even allows us to get rid of the separability assumption,

THEOREM 5.40. Let X be a reflexive Banach space. Let (x,) be a
bounded sequence in X . Then there is a vector x € X and a subsequence
(2n;); converging weakly to x as j — oo, where ||z|| < lim,, , ||z,

PROOF. Let Y = lin{z,|n € N} be endowed with the norm of
X. By Proposition 5.28, the space Y is reflexive, and it is separable
by Lemma 1.54. Proposition 5.28 then shows that Y™* is separable.
Theorem 5.38 now yields a subsequence (Jy(xy,)); of (Jy(zn)), with
weak* limit 4™ in Y**. Since Y is reflexive, there exists a vector x € Y
such that Jy (x) = y*™* and

(Tny, ¥ )y = W5 Iy (Tn)))yve — (47, Iy (@)y = (z,¥")y
for all y* € Y*, as j — oco. We further obtain
]| = l[Jy (@) < lm,, o[ Sy (2n)]] = Limy, o[l
using also Proposition 5.24. Let z* € X*. The restriction z*|y then
belongs to Y*. As a result,
(xnj,$*>x = <$nj,1’*|y>y — <$;I*’Y>Y = <13,$*>X;
which means that sz as j — oo. U

We next use the Banach-Alaoglu theorem and results about Sobolev
spaces to solve a basic problem about static electric fields.

EXAMPLE 5.41. Let D C R3 open and bounded with a C'-boundary.
The trace theorem shows that the mapping W?(D) N C(D) —
L*(0D,0); u — ulgp, has a unique continuous linear extension tr :
W'23(D) — L*(0D, ), where o is the surface measure from Analysis 3.
The kernel of tr is equal to the closure Wy *(D) of the test functions
in W'2(D). (See Theorem 3.38 in [ST].) We fix a map g € C'/2(9D)

and define the closed affine subspace
A={ueW?(D)| tru =g}

of Wh?(D). We are looking for the potential u of the electric field
E = Vu in the vacuum D which is generated by the charge density g
at the boundary. (We ignore the physical units and related constants.)
A general principle in physics says that this potential u© € A has to
minimize the ‘electrical energy’

o(u) == / |Vul? dz
D
among all functions in A. We now show that such a minimizer exists.’

50ne can also prove its uniqueness.
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PROOF. A more sopisticated version of the trace theorem yields a
function uy € A so that this set is non-empty. (See Theorem 2.5.7
in [Ne].) There thus exists the number u := inf,cs@(u) > 0. We
fix a sequence (u,) in A with ¢(u,) — p as n — oo. The functions
{in = U, — ug belong to Wy*(D) = N(tr). On Wy (D) the quantity
vl = ¢(v)*/? defines a norm which is equivalent to || -||; 2 as discussed
at the end of Secton V.3 in [We|. We thus obtain the inequalities

tnllie < ||tnl|12 + |luollre < cllltn]l] +[luoll12

< e((un)"? + (uo) ) ||uol|1.2

for all n; i.e., (u,) is bounded in W'2?(D). This space is reflexive by
Example 5.29. Theorem 5.40 thus yields a a subsequence (uy,,); with
a weak limit u in W12?(D). Due to Exercise 13.4, also the continuous
images tru,, = g converge to tru as j — 00 S0 that tru = ¢g and u
is contained in A. We recall the isometric map J : W'2(?) — L2(D)*;
v +— (v, 01v, 09, v, 03v) from Remark 4.16d). Using again Exercise 13.4,
we then deduce that the partial derivatives (Jpun,); tend weakly in
L?(D) to dyu. Proposition 5.33 now imples that

3 3
plu) =Y [|opul3 < lijrgglf; 10ktn, |15 < 12,

k=1

and hence p(u) = u by the definition of p.° O

5.4. Adjoint operators

In this section we introduce the notions which allow to connect du-
ality theory with linear operators.

Let X and Y be normed vector spaces and T' € B(X,Y). For each
y* € Y* we define a map ¢, : X — [ by setting ¢y« (z) = (T'z,y*)y.
It is clear that ¢y« is linear in # € X and that |y« (x)] < [T [|y*]|
if [|z|| < 1. So we obtain ¢« € X* with ||p,«|| < [T ||y*]|. Observe
that ¢y« is uniquely determined by y* for a given T". We now introduce
T*y* := ¢p,» € X*. we have thus defined a map

T°:Y*" - X% (2,T"y")x = (Tz,y")y (Vrxe X,y e€Y”), (58)

which is called the adjoint of T.
If X and Y are Hilbert spaces, analogously we introduce the Hilbert
space adjoint T" of T by

T:Y = X; (2|Ty)y = (Tzly)y (VzxeX, yeY). (5.9)

Here we have T = &' T*®y for the Riesz isomorphisms from Theo-
rem 3.10.

60ne can check that all partial derivatives dju belong to W2 (D) and that

loc

Au = (011 + Oa2 + J33)u = 0 on D, see Theorems 8.2.4 and 8.3.1 in [Ev].
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PROPOSITION 5.42. Let X, Y and Z be normed vector spaces, S, T €
B(X,Y), Re B(Y,Z), and o« € F. The following assertions hold.

a) T* € B(Y*, X*) with |T*|| = ||T|.

b) (T + Sy =T+ S5*, (aT)* = aT*, and (RT)* = T*R*.

The analogous assertions (with (oT) =a&T") and T = (T") =: T"
are true for Hilbert spaces and the Hilbert space adjoints.

PROOF. Let a, f € F, z € X, y*,u* € Y* and z* € Z*. For a), we
compute
(x, T (ay” + pu*)) = (Tx,ay* + pu*) = o(Tx,y*) + B(Tx,u")
= oz, T*y*) + B(x, T*u*) = (z,aT*y* + ST u*).
Since z € X is arbitrary, this means that T*(ay* + fux) = oT*y* +
BT*u* and thus T™* is linear. Moreover, Corollary 5.10 yields

1Tl = sup [T = sup  [(Tz,y")[= sup |(z,T"y")]
Jall <1 Jall <L ly* <1 Jall <Ly <1
= sup [Ty} = [[T™],
v <1

and assertion a) is shown. We further calculate
(x,(RT)z*) = (RTx,2*) = (Tx, R*2*) = (x, T*R*2")

so that (RT)* = T*R*. The remaing parts of b) and the Hilbert space
variants of a) and b) are shown similarly. In the Hilbert setting, we
finally compute

(T'zly) = (2[T"y) = (T"yl|z) = (y|T"z) = (T"zy)
for all y € X;ie., T =T". (Note that 7" exists due to a).) d

In view of the above result, each operator T € B(X,Y’) possesses
its bi-adjoint T = (T*)* € B(X*™, Y*) with ||T']| = ||T*]. We
introduce important concepts in the Hilbert space setting.

DEFINITION 5.43. Let X and Y be Hilbert spaces and T € B(X,Y).
The operator T is called unitary if T'T = Ix and TT = Iy (i.e.,
it exists T~ = T'). Let X =Y. Then T is called self-adjoint if
(Tzly) = (z|Ty) for all x,y € X (i.e., T =T").

We compute adjoints for basic classes of operators, cf. the exercises.

EXAMPLE 5.44. a) For X = F™ and a matrix T' = [ay], the adjoint
T* is given by [a;] and T” by [a]. (See Linear Algebra.)

b) On X = ¢y or X = (7 with 1 < p < oo (and also on () we
consider the shift operators Lz = (z,41), and Rz = (0,21, 22,...).
Take x € X and y € X*. Using Proposition 5.1, we calculate

(w, L*y) = (La,y) = > Zrsate = D Tolnr = (x, Ry).
k=1 n=2
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Since x and y are arbitrary, we first obtain L*y = Ry and then L* = R.
Similarly one derives that R* = L and, for p =2, L’ = R and R’ = L.

¢) Let X = L*(R) and (T'(¢)f)(s) = f(s+1t) for f € X and s,t € R,
see Example 4.12. For f,g € X we compute

(T(t)flg) = / f(s + )g(s) ds = / f()glr — B dr = (fIT(~t)g).

As in part b), it follows that T'(¢) (—t) = T(t) I and hence T'(t)
is unitary. Analogously one sees that T(t)* = T(—t) on LP(R) for
p € [1,00) and t € R, employing Theorem 5.4.

d) Let A€ B,,, 1 <p<oo,and k: Ax A — F be measurable with

p/p’ 1/p
= / (/ |k(z, )" dy) dz < 00, if p>1,
A \Ja

K1 = €ss sup/ |k(x,y)|dz < oo, if p=1.
yeA A

For p = 2 this means that k € L?(A x A). Let p € (1,00), f € LP(A)

and g € LP(A). The function (z,y) — o(z,y) = k(z,y)f(y)g(r) is

measurable on A x A as a product of measurable functions. Using

Fubini’s Theorem 3.29 in Analysis 3 and Hélder’s inequality (first in

the y— and then in the z—integral), we deduce

| dlaan = [ [ kallrwldsla)a

< [([wora)” ([ 110ra) o)

1
7/

< w1l ([ Lo da)” =, 1l ol < .

Since ¢ is integrable on A x A, by Fubini’s theorem the integral

o) = / k(z,y) £(y) g(x) dy = g(x) / ke,y) Fy) dy

exists for x ¢ Ny, and a null set Ny, and h, is measurable on A (after
setting hy(xz) = 0 for all € Nyy). We now take g, = Lanp(,n) for
every n € N and define the null set Ny = J, Nyg,. In this way we see
that the function

' / y)dy, =€ A\ Ny,
Tf(z):= {01,4 re N, (5.10)

exists and that it is measurable. Note that this definition does not
depend on the representative of f.
Using again Holder’s inequality in the y—integral, we further estimate

sl = [ | [ ke s af @
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< [ ([ e an)” ([ rwpran) o

= rp [LFI15
so that T'f belongs to LP(A). The linearity of T is clear, and hence T'

is an element of B(LP(A)) with norm less or equal k.
Since ¢ is integrable, Fubini’s theorem finally implies

(Tf,q) // (x,y)f(y)dy g(x dx—//f () dxdy
- [ 1) / Kz, 1)9(2) dudy = (f,T"g).

As before, for each g € L” (A) his equality means that

T*g(y) = /Ak:(x,y)g(x) dx for a.e. y € A. (5.11)

For p = 2 one derives analogously

T'g(y) = /A k(z,y)g(r)dr

for every g € L?(A) and a.e. y € A. Hence, T is self adjoint if k(z,y) =
k(y,x) for a.a. x,y € A (which is equivalent to ‘for a.a. y € A we have
k(z,y) = k(y,z) for a.a. x € A" by Korollar 3.25 in Analysis 3).

Let p = 1. We first deduce from Fubini’s theorem the inequality

7= /AXA\k(:U,y) (y)| d(z,y) = //Umy |z [f(y)l dy < w1 ([ f]]

for all f € L'(A). The function (z,y) — k(z,y)f(y) thus is integrable
on A% By Fubini’s theorem, formula (5.10) now defines a function T'f
in L'(A) satisfying ||Tf|l1 < 7 < ky||f||1 for each f € L'(A). As a
result, T' belongs to B(L'(A)) with || T]| < k1. As above one can also
check that T* € B(L>®(A)) is given as in (5.11).7 O

We now relate T** to T" also in non-Hilbertian Banach spaces.

PROPOSITION 5.45. For normed vector spaces X and'Y , the follow-

ing assertions hold.
a) For T € B(X,Y) we have T o Jx = Jy oT.
b) If Y is reflexive, then T = J,'T**Jx.

PROOF. Let z € X and y* € Y*. Using (5.8) and (5.7), we compute
(" T Jx(x))y- = (I"y", Ix(2))x+ = (2, T"y")x = (Tz,y")y
= (y*, Jy (Tz))y«.
These equalities yields assertion a) which implies assertion b). U

One usually identifies 7" and 7T™* if X and Y are reflexive.

"In the lectures we have only sketched the case p > 1.
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Range and kernel of bounded linear operators. Let T €
B(X,Y). Then the kernel N(T') is closed, but R(7T) need not to be
closed. An example is the Volterra operator given by

/f

for f € X =C([0,1]) and t € [0, 1]. It is straightforward to check that
T belongs to B(X) with R(T) = {g € C'([0,1]) | g(0) = 0} This space
is different from R(T) = {g € X | ¢(0) = 0}.

Leaving aside this difficulty for a moment, we now describe range
and kernel of T' by means of its adjoint and the annihilators from (5.6).

PROPOSITION 5.46. Let X and Y be normed vector spaces and T €
B(X,Y). Then the following assertions hold.

a) R(T)* = N(T*).

b) R(T) = - N(T*). Thus, R(T) is dense if and only if T* is injective.

c) N(T) =+R(T*). Hence, T is injective if R(T*) is dense.

d) R(T*) C N(T)*.

e) Let X be reflexive. Then R(T*) = N(T):. Hence, R(T*) is dense
if and only if T is injective.

PROOF. a) Let y* € Y*. The functional y* belongs to R(T)* if
and only if for all z € X we have 0 = (T'z,y*) = (x, T*y*), which is
equivalent to y* € N(T™).

b) Proposition 5.22 and part a) show that R(T) = “(R(T)*:) =
LN(T*). The addendum now follows from Remark 5.21.

¢) Let x € X. Due Corollary 5.10, the vector z is contained in N (7')
if and only if for all y* € Y* we have 0 = (T'z,y*) = (x, T*y*), which
is equivalent to z € L R(T™*). Remark 5.21 yields the second part.

d) Proposition 5.22 and step a) imply that R(T*) = L(R(T*)*) =
LN(T*). We thus have to prove the inclusion * N (T**) C N(T)*. Let
y* € LN(T*) and take any # € N(T). Proposition 5.45 then yields
the equality T**Jxz = JyTx = 0 so that Jxx is an element of N(7™*).
We now infer (z,y*) = (y*, Jxz) = 0; i.e., y* belongs to N(T)*.

e) Let X be reflexive. It remains to show that N(T)+ C +N(T*)
in view of step d). So let y* € N(T)* and take any x** € N(T*).
Because X is reflexive, there exists a vector x € X with Jyz = o=**
Proposition 5.45 yields that JyTx = T**Jxx = 0. Since Jy is injective
by Proposition 5.24, the vector = is contained in N(T'), and hence
(y*, 2*) = (z,y*) = 0 so that y* is an element of LN (T*). d

REMARK 5.47. In parts ¢) and d) of the above result, the converse
implication and inclusion, respectively, do not hold in general. In fact,
let X = ¢y and T' = I — L for the left shift L. If Tox = 0 then
Ty = Tpyq for all n € N and thus N(T') = {0}. We have T* = — R
by Example 5.44. In Example 1.25 of [ST] it is shown that the range
of I — R in X* = (' is not dense, hence R(T*) # X* = N(T)*. O
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We next state an easy consequence of Proposition 5.46b). The lecture
Spectral Theory will elaborate on this and the following results.

COROLLARY 5.48. Let X and Y be normed vector spaces, y € Y,
and let T € B(X,Y) have closed range. Then the equation Tz =y has
a solution xy € X if and only if we have (y,y*) =0 for all y* € N(T*).
Every other solution is given by x = xo + z for any z € N(T). Hence,
T is surjective if and only if R(T') is closed and T* is injective.

Using also the results of Chapter 4, we can now characterize the
invertibility of T" by injectivity properties of T" and T™*. We stress that
usually injectivity is easier to check than surjectivity, but of course one
must know the adjoint to apply the result.

COROLLARY 5.49. Let X andY be Banach spaces and T € B(X,Y').
The operator T is invertible if and only if

a) T* injective and

b) there is a constant ¢ > 0 such that ||Tz|| > c||z|| for allz € X.

PROOF. Statement b) clearly implies the injectivity of T. From
Corollary 4.31 we then deduce that b) is true if and only if T is injective
and R(T) is closed. Corollary 5.48 thus yields that the validity of a)
and b) is equivalent to the bijectivity of 7', and hence to its invertibility
by Theorem 4.28. Il

We can now prove that invertibility is preserved when taking ad-
joints. In contrast, by Proposition 5.46 injectivity and the density of
the range are exchanged when passing to 7™ at least in reflexive spaces.

THEOREM 5.50. Let X and Y be Banach spaces and T € B(X,Y).
The operator T is invertible if and only if T* € B(Y™*, X*) is invertible.
In this case we have (T~1)* = (T*)~1.

PROOF. 1) Let T be invertible. Since Ix =TT, we obtain Ix. =
(Ix)* = T*(T~)* by Proposition 5.42. Similarly, it follows Iy« =
(T~1)*T*. Hence, T* has the inverse (T~1)* € B(X*,Y™*).

2) Let T be invertible, and thus injective. By step 1), T** is invert-
ible. Let x € X. Propositions 5.24 and 5.45 imply the lower bound

]l = | Txall = |[(T) T Txal| < [(T) | ITTx ()]
= (@) Iy Tl = (T) I T
From Corollary 5.49 we now deduce the invertibility of 7. U

The next corollary was already stated in Remark 5.26, but only used
in examples.

COROLLARY 5.51. Let X be reflexive and ® : X — Y be an iso-
mophism. Then'Y 1is reflexive.
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PROOF. Let y*™* € Y**. Set y = ®J' (&)~ 'y*™ € Y, using the
easy part of the above theorem. Take y* € Y*. By means of (5.8) and
(5.7), we compute

<y,y*>Y — <®J)—(1(CD**)71y**’ y*>Y — <J)}l<(1)**)71y**7 q)*y*>X
— <<I>*y*, (q)**)ily**>X* — <y*’ (I)**((I)**)ily*’vy* — <y*7y**>Y*7
so that Jyy = y**. O

We add a couple of results in Hilbert spaces which are used in the
next chapter. The first one says that unitary operators preserve the
full structure of Hilbert spaces.

PROPOSITION 5.52. Let X andY be Hilbert spaces and T € B(X,Y).
Then equivalences are true.

a) T is a isometry if and only if we have (Tx|Tz)y = (x|2)x for all
r,z € X.

b) T is unitary if and only if T is bijective and isometric if and only
if T is bijective and preserves the scalar product.

PROOF. a) The implication ‘<=’ is shown by setting z = z. To
verify ‘=’ take o € {1,i} and z,z € X. Using (3.1) the isometry of T’
and |a| = 1, we calculate

|Tx + aT2)||* = || Tx||* + 2Re (Tz|aT2) + ||aTz|?
= [|2]* + 2Rea (Tz|T=z) +|2]%,
IT(z + az2)|* = [lo + az||* = |lz||* + 2Re a (z]2) + ||2*.

It follows Rea (T'xz|T2) = Re @ (x|z) and thus assertion a).

b) The second equivalence is a consequence of step a). To show the
first equivalence, take z,z € X. If T' is unitary, we obtain (Tz|Tz) =
(x|T'Tz) = (x|z) so that T is isometric by assertion a). If T"is isometric,
part a) yields (1T'Tz|z) = (Tz|Tz) = (z|z). Since z € X is arbitrary,
we conclude that T"T'x = x for all x € X and hence T"T" = I. Now,
the bijectivity of T" implies that 7" = T~!. O

In the next two results we see that the numerical range {(Tx|z) |z €
0B(0,1)} plays an important role for self-adjoint operators.

PROPOSITION 5.53. Let X be a Hilbert space with F = C and T €
B(X). ThenT is self-adjoint if and only if (T'z|x) € R for everyz € X.

PRrOOF. The implication ‘=’ follows from (Tz|z) = (z|Tz) =
(Tx|z). To show the implication "<’ take o € {1, —i} and z,y € X.
By means of |a] = 1 and the assumption, we calculate

a:= (T(z + ay)lz + ay) = (Tzlr) + a (Tzly) + a (Tylz) + (Tyly)

a= (Tz|z) + o (y|Tz) + a(z(Ty) + (Tyly) -
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Since a = @ by assumption, we obtain
(Tly) + (Tyle) = (y|Tx) + (2[Ty)  (taking a =1),
1(Tz|ly) —i(Ty|lz) = —i(y|Tx) +1i(x|Ty) (taking a = —1i).
These equations imply that (Tz|y) = (z|Ty); i.e., T is self adjoint. O

PROPOSITION 5.54. A self-adjoint operator T € B(X) on a Hilbert
space X satisfies
1T = sup [(Tz[z)| = M.
llzll<1
PROOF. The inequality “>" is clear. Let z,y € 0B(0,1). Employ-
ing 7" =T, we compute
(T(x+y)lr+y) — (T(x —y)lz—y)

=2(Tzxly) +2(Tylx) =2 (Txly) + 2(Tz|y) = 4Re (Tz|y) .
Observe that |(Tz|z)| < M||z||? for all z € X. The above equation and
(3.2) thus yield

ARe (Taly) < Mz +y|I* + Mllz — y||* = 2M ([l2]* + [ly[|*) = 4.

If Tx # 0, we can replace y by 4 := ||Tx||~* Tz in this inequality. We
then obtain | Tz|| < M for all x € X with ||z|| = 1. (This fact trivially
holds if Tx = 0.) As a result, ||T]| < M. O

We illustrate the above results by matrix examples.

REMARK 5.55. The non self-adjoint matrix 7" = (% ) satisfies
(Tx|x) = 0 for all x € R?, so that we need F = C in the implication
‘=" of Proposition 5.53 and the self-adjointness in Proposition 5.54.
For X = C? consider the non self-adjoint matrix 7" = (99). Then
(Tz|z)] < 3|z[3 for all z € C?, but ||T| > [Tes|s = 1, which again
shows that we need the self-adjointness in Proposition 5.54. O

PROPOSITION 5.56. Let X be a Hilbert space and P = P? € B(X)
be orthogonal. We then have ||P|| = 1 (if P # 0), P = P', and
(Pz|z) = ||Px||* >0 for all z € X.

PROOF. The first assertion was shown in Theorem 3.8. For z,y €
X te vector y — Py belongs to N(P) L R(P) and thus
(Pzly) = (Pz|Py+ (I — P)y) = (Px|Py),

and similarly (z|Py) = (Pz|Py). Therefore, P = P’. This fact further
yields that (Px|z) = (PPx|z) = | Pz|. O

In fact the above properties of a projection on a Hilbert space are
all equivalent, see Satz V.5.9 in [We].



CHAPTER 6

The spectral theorem for compact self-adjoint
operators

In the lecture Spectral Theory one establishes a diagonalization the-
orem for self-adjoint operators generalizing the corresponding result for
hermitian matrices. Moreover, many of the properties related to the
Jordan normal form will be extended to so-called compact operators.
These theorems play a crucial role in mathematics and its applications.
Their quite sophisticated proofs are out of reach in the present course.
However, for compact and self-adjoint maps we can show them by our
means below. Fortunately, this special case is sufficient for many ex-
amples. We first discuss the basic properties of compact operators.

6.1. Compact operators

Throughout X, Y and Z are Banach spaces. We study operators
which provide compactness, using concepts from Section 1.3 freely.

DEFINITION 6.1. A linear map T : X — Y is called compact if

TB(0,1) is relatively compact in' Y. The set of all compact operators
is denoted by By(X,Y). We put Bo(X) = Bo(X, X).

We start with some simple observations.
REMARK 6.2. a) Let T be compact. Then the set TB(0,1) is
bounded so that 7" is continuous; i.e., Bo(X,Y) C B(X,Y).
b) The space of operators of finite rank is defined by
Boo(X,Y) ={T € B(X,Y) | dimTX < oo},
cf. Example 5.16. For T in By (X,Y), the set TB(0,1) is relatively
compact by Example 1.41, and hence By (X,Y) C By(X,Y).
c¢) The identity I : X — X is compact if and only if B(0,1) is
compact in X which is equivalent to dim X < oo by Theorem 1.42.
d) For T € L(X,Y) the following assertions are equivalent.
(i) T is compact.
(ii) T maps bounded sets in X into relatively compact sets in Y.

(iii) For every bounded sequence (z,,),, in X there exists a convergent
subsequence (T'z,;); in Y.

PROOF. Let statement (i) be true. Take a bounded sequence (x,,) in
X. Set r = sup,, ||z,||. The images Tz, then belong to the relatively

117
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compact set TB(0,7) = rTB(0,1). Corollary 1.39 now implies asser-
tion (iii). This corollary also yields the implication (iii)=-(ii)’, whereas
‘(ii)=(1)" is clear. O

The next result yields the very useful fact that By(X,Y) is a closed
‘two-sided ideal” in B(X,Y).

PROPOSITION 6.3. The set By(X,Y) is a closed linear subspace of
B(X,Y). Let T € B(X,Y) and S € B(Y,Z). If one of the operators T
or S is compact, then ST is compact.

PRrOOF. Take vectors zj, € X, k€N, satisfying ¢ := sup,, ||zx|| <oo.

1) Let T, R € By(X,Y) and a € F. We then have converging subse-
quences (T'xy;); and (Rxyy, ). Hence also (aTwy;); and (T + R)x, )i
have a limit, so that By(X,Y) is a vector space.

2) Let T,, € By(X,Y) tend in B(X,Y) to an operator T" as n —
0o. As in step 1), for each n € N we find a subsequence (z,,(;)); of
(24, _,(j)); such that (T,z,,;)); converges. Set wp, = Xy, (m) for m € N.
By construction, for every n € N the sequence (T, u,,), has a limit.
Let £ > 0. Fix an index N = N, € N such that ||[Ty — T'|| < e. Take
m,k > N in N. We then estimate

| Tt — Tug|| < |[(T = Tn)tm || + [T (v — w) || + (T — T)ug|
< 2ec+ || Ty (um — ug)||-

Therefore (T'u,,) is a Cauchy sequence and thus has a limit. We have
shown that 7" is compact and so By(X,Y') is closed.

3) Let S € By(X,Y). Since (T'z), is bounded, there is a converging
subsequence (ST'xy,);; i.e., ST is compact. Let T' € By(X,Y’). We then
have a subsequence (T'xy,); with a limit, and thus (ST'xy,); converges.
Again, ST is compact. O

In the next examples we first note that strong limits may lose com-
pactness. The typical examples of compact operators are integral op-
erators on bounded sets. To ensure compactness on unbounded sets,
the kernels have to decay at infinity sufficiently fast.

EXAMPLE 6.4. a) Strong limits of compact operators may fail to be
compact. Consider, e.g., X = (2 and T,z = (21,...,2,,0,0,...) for all
x € X and n € N. We have seen in Remark 4.9 that T,, — I strongly
as n — oo. By Remark 6.2, each T}, belongs Byy(X) C By(X) but [ is
not compact.

b) Let X € {C([0,1]), L*([0,1]) |1 < p < oo}, k € C([0,1]%), and

Tf(t) = /01 k(t,7)f(r)dr

for f € X and t € [0,1]. As in Examples 1.49 and 2.7 one checks
that 7" belongs to By(X,C([0,1])), using the Arzela—Ascoli Theorem.
The map J : C([0,1]) — L*(0,1); f — f+ N, is linear and bounded



6.1. Compact operators 119

by Example 2.12. Proposition 6.3 now shows that S = JT belongs to
Bo(X,C([0,1])). Note that S is given as T if one ignores null functions.

c) Let A€ B,,, E=L*(A) and k € L*(A x A). For f € E, we set

15@) = [ ey wea

By Example 5.44, this defines an operator T' € B(FE). We claim that
T is compact.

PrOOF. We first extend k by 0 to a function & in L2(R?™), and
analogously for f. As above, this kernel induces an operator T  in
B(L*(R™)). For f € E we have Tf = Tf on A. The compactness of
T thus follows from that of 7. Hence, we restrict ourselves to the case
A =R™ and drop the tilde.

Theorem 5.9 of Analysis 3 yields maps k,, € C.(R*") that tend to k
in £. Let T,, be the corresponding integral operators in B(FE). There
is a closed ball B,, C R™ such that suppk, C B, x B,. We then have

0, r € R™\ B,,
T.f(x) =
) {an koo )f @) dy, @ € B,

for f € Fandn € N. Let R, f = f|p,. Fix n € N and take a bounded
sequence (fy) in E. Arguing as in part b), one finds a subsequence such
that the functions R,T,, fi, have a limit g in C(B,) as j — oo. Since
B, has finite measure, this sequence converges also in L*(B,). The
maps 7T}, fi, thus tend in £ to the O-extension g of g as j — oo, and so
T, is compact. Since T — T,, is an integral operator on E with kernel
k—k, € L*(R*"), Example 5.44 shows the bound [|T—T,|| < ||k — k]2
for all n € N. The operators T,, thus converge to 7" in B(E) so that T’
is compact by Proposition 6.3. O

d) Let X = L*(R). For f € X, we define

Tf(t) = /Re_t_5|f(s) ds, teR.

Theorem 2.14 yields that T € B(X). The map T is not compact.’
PROOF. For f, =1}, 41 and n>m in N we compute || f,|2 = 1 and

n+1 m+1
/ e tds — / et ds
n m

n+2

= / e % (en+1 —e—emtl em)2 dt
n+1

Z %(e—Qn—Z o e—2n—4)(en—|—1 o 2671)2

= %(e_Q —e He—2)2>0.

2

dt

n+2

T — Thall2 > /

n+1

Hence, (T'f,,) has no converging subsequence. O

IThis proof and the next example were omitted in the lectures.
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e) The right shift R on ¢y or ¢ with p € [1,00] is not compact
since the sequence (Re,) = (e,+1) has no converging subsequence (cf.
Example 2.9). Similarly, one shows the non-compactness of the left
shift L or of the translation T'(¢), t € R, on LP(R), see Example 4.12.0

We show that a compact operator improves weak to strong limits.?

PROPOSITION 6.5. Let T' € By(X,Y) and (z,,) tend weakly to x in
X. Then the images Tz, converge to Tx in'Y as n — oo.

Proor. We have (Tz,, — Tz,y*) = (v, — z, T*y*) — 0 as n — oo
for each y* € Y* and hence Tz, = Tx. Take any subsequence (7,);-
It is bounded by Proposition 5.33. The compactness of 1" thus yields a
subsubsequence (Ta:njl)l converging to some y in Y. There thus exist

the weak limits T'xy, % Tz and T'xy, % y as | — oo, and hence
y = Tx. Lemma 1.51 now implies that (T'z,) tends to Tz in Y. d

The following theorem by Schauder nicely connects duality with
compactness. It will be used in Spectral Theory.

THEOREM 6.6. An operator T € B(X,Y) is compact if and only if
its adjoint T* € B(Y™*, X*) is compact.

PROOF. 1) Let T be compact and take y € Y* with sup,,cy [|y5|| =:

c < oo. The set K = TBx(0,1) is a compact metric space for the
distance induced by || - ||y. We use the restrictions f, = y|x € C(K)
for n € N. Putting ¢; := maxyecx ||y|| < 0o, we obtain the bound

1 Falloo = max [{y, y)] < cex

for every n € N. Moreover, (f,)nen is equicontinuous since

[fay) = fu(2) = [{y — 2, um)| < clly — 2]
for all n € N and y, z € K. Arzela—Ascoli’s Theorem 1.47 thus yields
a subsequence (f,;); with a limit in C(K). We deduce that

17", = Ty llxe = sup (e, T (i, = v )| = sup (T, =03

=<1 [l=f|<1

= sup ‘fw(y) - fnz<y)|

yeK

tends to 0 as j,! — oo. This means that (T*y:bj) ; converges and so T™
is compact.

2) Let T* be compact. By step 1), the bi-adjoint 7** is compact.
Let Jx : X — X* be the isometry from Proposition 5.24. Propo-
sition 5.45 says that T"*Jx = JyT, and hence JyT is compact by
Proposition 6.3. If (z,,) is bounded in X, we thus obtain a converging
subsequence (JyT'zy,); which is Cauchy. Since Jy is isometric, also
(T'zy,); is Cauchy and thus has a limit; i.e., T' is compact. O

2The following two proofs were omitted in the lectures.
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6.2. The spectral theorem

In this section we extend the diagonalization theorem for hermitian
matrices to compact self-adjoint operators in a Hilbert space. We first
introduce a few basic concepts and state simple facts.

Let T € B(X). A number A € F is called eigenvalue of T with
eigenvector v € X if v # 0 and Tv = \v. We write

Ex=N\ —T)

for the correspoding eigenspace. It is a closed linear subspace of X.
(These and related concepts are intensively treated in Spectral Theory.)

Let now X be a Hilbert space. We denote by P, the orthogonal
projection onto E) for an eigenvalue A of T' € B(X), see Theorem 3.8.
Assume that T is self-adjoint. Let A\ # u be eigenvalues of T" with
eigenvectors v and w, respectively. We then obtain

A EeR, since A |[v]|? = (Av|v) = (Tw|v) = (v|Tv) = X|[v]|*; (6.1)
E\ 1L E,, since (A—p)(vjw) = (Mv|w) — (v|pw) (6.2)
= (Tw|w) = (v|Tw) = 0,

using the self-adjointness and in (6.2) also that p is real. Since T'=T"
and X is reflexive, Proposition 5.46 yields

R(T)*=N(T) and  R(T)= N(T)" (6.3)

The following basic version of the spectral theorem says that a com-
pact and self-adjoint operator largely behaves like a hermitian ma-
trix. It possesses at most countably many eigenvalues and the non-
zero ones have finite dimensional eigenspaces. The eigenvectors yield
an orthonormal basis B of X, in which T" becomes an infinite diagonal
matrix. The diagonal elements are the eigenvalues listed according to
their multiplicity. See the comments below the theorem. Equivalently,
one can write the image T'z as the series (6.4) over the basis vectors
where T' is represented by its eigenvalues. Since the non-zero eigenval-
ues form a null sequence (if there are infinitely many), one can often
neglect all but finitely many and thus work on a finite dimensional
subspace spanned by eigenvectors.

THEOREM 6.7. Let X be a Hilbert space with dim X = oo, and T €
B(X) be compact and self-adjoint. Then T has at most countably many
eigenvalues. The pairwise different non-zero eigenvalues of T are de-
noted by \; for j € J and an index set J € {O,N,{1,...,N} | N € N}.
We write P; = Py, and Ej = E\; for j € J, as well as By for the or-
thogonal projection onto N(T'). Let \g = 0 and Jy = JU{0}. Moreover,
the following assertions hold.

a) vj :=dimE; < oo for j € J, as well as TP; = P;T and P;P, =
P.P; =0 forj#kin Jy.

b) Let J=N. Then \; =0 asj— oo.
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¢) Let J #N. Then dim N(T') = occ.

4) 1T]) = sup,e, I\

e) T =3 ;c; NP with convergence in B(X).

f) We write (pu)rex with K C N for the eigenvalues \; repeated v;
times for each j € J. The space N(T)* = m has an orthonormal
basis B consisting of eigenvectors by, k € K. For each x € X we obtain

Ta =Yy (x]b)by (6.4)
keK
We can extend the basis B of N(T)* in part f) to an orthonormal
basis B = {b;|i € I} of X by means of Theorem 3.15, assuming® that
X is separable if dim N(T") = co and taking an index set I C Z. In the
possibly two-sided sequence (El)le ; we start with the basis vectors for
N(T). We obtain a sequence (fi;);e; by adding dim N(T')-many zeros
before the eigenvalues (p)rer. Theorem 3.18 provides the isometric
isomorphism .
J: X = 2();  Jv = ((z|b))ier
with inverse J ' (a;); = >, a;b;. Tt is then easy to see that T is iso-
morphic to the inifinite diagonal matrix

.0 0
JIJ =10 [ 0
0 0

acting on the sequence space €*(I) = {(a;))ier | D;es li* < oo}

PROOF OF THEOREM 6.7. 1) Let A be an eigenvalue of 7" and v be
a corresponding eigenvector. Note that A is real by (6.1) and that the
image Tv = \v belongs to E\. For y € E{ we have (Ty|v) = (y|Tv) =
(y| ) = 0, and hence T leaves also Ey invariant. We then compute
TP)\x = P)\TP)\ZL’ = P)\T(P)\ - I)x + P)\TI = P)\TI
for x € X, using that Py, = [ on Ey and P, =0 on B} = (P, — I)X.
Formula (6.2) easily yields the last part of assertion a).
Let dim F, = co. By Lemma 3.13, we obtain an orthonormal system

{vn,|n € N} in E,. Compactness provides a converging subsequence
(T'wy,, ). Pythagoras’ formula and orthonormality now imply

1T 00, = Ton|* = [[Avn, = M [I* = A ([fvn, I* + [loa, I7) = 2X°.
Since the left-hand side tends to 0 as k,l — oo, the eigenvalue A has
to be 0. So statement a) is shown.

2) The main step is the claim: |T|| or —||T"]| is an eigenvalue of T'.

If T'= 0, then the claim and the theorem with J = () are true. So let
T # 0. Since T' = T", Proposition 5.54 provides vectors x,, € X with
|z,]] = 1 such that the numbers |(T'z,|z,)| tend to ||T']| as n — oo.

3As noted in Section 3.2 this assumption can be avoided.
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Note that (T'x,|z,) is real by Proposition 5.53. There thus exists a
subsequence ((T'x,,|zy,)); with a limit A in R and || = ||T]| # 0. From
formula (3.1) we then deduce

||T$nz _/\xnz||2 = HT‘TTL1H2 - 2Re<Txnl’)\xnl) + >‘2 Hxnzl|2
< 2Nz, |12 = 2N (T2, |T0,) = 202 —2XN(Tw,|70,) — O

as [ — oo, and hence (Tx,, — Azy,,); is a null sequence. Since 7' is
compact, another subsequence (Txnlk) r tends to a vector y in X. This
fact yields the convergence

Tpy, = %(()\I — T)xnlk + Txnlk) — Ay

as k — oo. In particular, y is nonzero as [z, || = 1. Using the
continuity of T', we further infer

_ 1 _ )1
y= lim Ta,, =A""Ty,

so that A =: Ay is an eigenvalue and the claim is established.

3) We next iterate step 2, starting from the the closed subspaces
X, = E) and X, := Xi of X. By part 1), the operator T leaves
invariant X, and we can thus define the restriction Ty := T'|x, € B(X3).
It is straightforward to check that T5 is again self-adjoint and compact.
If Ty # 0, we set J = {1} and stop the iteration. Otherwise, T; has an
eigenvalue Ay # 0 with [Ao| = || T3] < ||T'|| = |A1] due to the claim in 2).
Observe that Ay # A\ since Xy N By = {0} and eigenvectors of Ty are
also eigenvectors of T'. Statement (6.2) thus shows that all eigenvectors
of T for Ay belong to Xo; ie., N(Aof —T5) = N(Aol —T) = Es.

We now iterate this procedure obtaining the restriction T; = T'|x; to
the orthogonal complement X; = (Ey & ---® E;_1)*. If Ty = 0 for
some N € N, we stop and take J = {1,..., N}. With arguments as
below one can finish the proof in this simpler case.

We focus on the other alternative that J = N. Here we obtain a
sequence (\;) ey of non-zero eigenvalues with ||7}|| = |A\;| > |Aj41] for
all 7 € N. In this case the absolute values |);| tend to a number o > 0
as j — 00. Moreover, assertion d) has been shown.

4) To check that o = 0, we take a unit vector v, € E,, for each n € N,
The vectors are pairwise orthogonal by (6.2). Compactness yields a
converging subsequence (T'v,,);. Employing Pythagoras’ identity, we
calculate

HTUTM_TUﬂkHQ = H)\nlvnl_)\nkvnk“z = )\ilHUmH2+>\ikank”2 = )‘il+>‘721k

as k,l — oo, the left-hand side tends to 0 and the right-hand side to
202 so that o = 0 and statement b) is true.
Let x € X and n € N. Set ), = P, +---+ P,. Since the projections

P; onto E, are orthogonal to each other and have the kernels E;,
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@, is a projection with range X, and kernel X, so that it is also
orthogonal. Using the equations \;P; = T'P; = P;T, we compute

T:I:—Z)\ P:E—T:c—ZTPa:— (I—Q,)z.
Assertion b) then implies that

|-

w1 = @nll = [Anpa| — 0

as n — oo and hence part e) is valid.

5) The Gram—-Schmidt Lemma 3.13 yields a orthonormal basis of
eigenvectors in each eigenspace £; = P; X whose union B forms a or-
thonormal system because of (6.2). The subspace L = lin{Pjz |z €
X, j € N} is contained in R(T) and R(T) in L because of assertion e),
so that R(T) = L. Theorem 3.15 now implies that B is a orthonormal
basis of R(T). The operator T' does not have another non-zero eigen-

value, since its eigenvector would belong to R(T') and be orthogonal to
B by (6.2). Assertion e) and Theorem 3.15 yield

keK keK

and the other parts of assertion f), using also 6.3. Finally, if J # N, for-
mula 6.3 implies statement c¢) since the spaces Ej are finite dimensional
and dim X = oo. U

We next sketch a standard application of the above result to bound-
ary value problems for ordinary differential equations. This class of
problems is the source for many orthonormal bases used in mathemat-
ics and other sciences. We follow Section II1.6 of [Co].

EXAMPLE 6.8. Let g€ C([0,1],R) and aj, 5; € R with o + 57 >0 for
j€4{0,1}. In X = L?(0,1) we define the linear map A : D(A) — X by
Au = —u" + qu,

D(A) = {u € W*(0,1) | aju(j) + Bju'(j) = 0 for j € {0,1}}.
(Note that the boundary conditions are included in the domain.) Here
we write v/ instead of dyu, W22%(0,1) is the space of u € W2(0,1)
with v/ € W12(0,1), and we use that W2(0,1) < C([0,1]), see Re-
mark 3.33 in [ST|. We assume that A is injective.

As in Satz 4.17 of Analysis 4 one can check that for each f € X
there is a unique function u € D(A) fulfilling Au = f and given by

u(t) = / ot $)f(s)ds = (TH)(H),  te0.1],
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for a continuous map g : [0,1]> — R. Lemma I1.6.8 of [Co| shows
that g(t,s) = g(s,t) for all ¢, s € [0,1]. The linear operator 7' : X —
X is compact and self-adjoint by Examples 5.44 and 6.4. It satisfies
R(T) = D(A), ATf = f for f € X, and TAu = u for u € D(A), see
Theorem I1.6.9 in [Co]. Finally, for all eigenvalues A # 0 of T', the
eigenspace N (Al — T') is one-dimensional by Lemma I1.6.11 of [Co].
The Spectral Theorem 6.7 and some calculations then provide eigen-
values p, € R\ {0} with |u,| — oo as n € N and an orthonormal basis
of X consisting of eigenvectors v, € D(A) \ {0} with Av,, = p,v, for
n € N, Let f € X. We obtain the Fredholm alternative:
a) Let p # p, for all n € N. Then there is a unique solution
u € D(A) of the equation Au — pu = f.
b) Let u = pu, for some n € N. Then there is solution u € D(A)
of Au — pu = f if and only if (f|v,) = 0. Each other solution
is of the form u + aw,, for some a € F.

See Theorem 11.6.12 in [Co]. O
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