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CHAPTER 1

Semilinear evolution equations: the basic case

Throughout X,Y ̸= {0} are Banach spaces over the field F ∈ {R,C} with
norm ∥ · ∥. By the same symbol we denote the operator norm on the space of
continuous linear operators B(X,Y ), where we put B(X) := B(X,X). Some-
times we indicate the spaces as a subscript in the norms. For unexplained basic
notation we refer to the lectures notes [30], [33], and [32].

This course is devoted to semilinear evolution equations of the form

u′(t) = Au(t) + F (u(t)), t ∈ J, u(0) = u0, (1.1)

where A generates a C0-semigroup T (·) on X and the nonlinearity F is subor-
dinate to or of ‘lower order’ than A. In this chapter we start with the simplest
case that F : X → X is Lipschitz on bounded sets. This basic setting serves
as a model problem for the area. In particular, in the first section we extend
Picard–Lindelöf’s local wellposedness Theorem 4.9 in [31] to the present sit-
uation modulo certain regularity issues. In the second section we apply the
developed theory to the cubic semilinear wave equation on subsets of R3 and
discuss global existence and blowup. See also [7]. In later chapters we refine and
extend these results and methods to treat semilinear parabolic problems like
reaction-diffusion systems and the semilinear Schrödinger and wave equation
on Rm, where we allow for powers up to 5 in the case m = 3.

1.1. Local wellposedness

We study equation (1.1) under the assumptions

A generates the C0-semigroup T (·) on X, M0 := supt∈[0,1] ∥T (t)∥.
J ⊆ R is an interval with min J = 0, sup J > 0. F : X → X satisfies (1.2)

∀ r > 0 ∃L(r) ≥ 0 ∀x, y ∈ BX(0, r) : ∥F (x)− F (y)∥ ≤ L(r)∥x− y∥,
where the map r 7→ L(r) is non-decreasing.

If the estimate for F in (1.2) is true for some constants L̃(r) ≥ 0, we can replace

them by the larger numbers L(r) = sup0≤s≤r L̃(s) which do not decrease in r.
In essentially the same way one can also treat F which are only defined

on an open subset D ⊆ X or explicitely depend on t. Moreover, if T (·) is
even a C0-group one can also consider general time intervals J containing 0,
cf. Chapters 4 and 5. We first note that (1.2) is a rather strong condition for
substitution operators on Lp spaces with p ∈ [1,∞).

Example 1.1. Let X = Lp(µ) for a measure space (S,A, µ), p ∈ [1,∞),
and f : F → F be Lipschitz with constant L. Moreover, let either f(0) = 0

1



1.1. Local wellposedness 2

or µ(S) < ∞. Set (F (v))(s) = f(v(s)) for v ∈ X and s ∈ S. Then the map
F : X → X is (globally) Lipschitz.
Indeed, let v, w ∈ X and s ∈ S. We first note that F (v) belongs to X since

|F (v)(s)| ≤ |f(v(s))− f(0)|+ |f(0)| ≤ L|v(s)|+ |f(0)|
and |f(0)|1 ∈ X by the assumptions. We further estimate

|F (v)(s)− F (w)(s)| = |f(v(s))− f(w(s))| ≤ L|v(s)− w(s)|,
and then the claim follows by taking the p-norm.

Here one cannot allow for locally Lipschitz f , in general. Take S = (0, 1),
µ = λ, and f(z) = |z|α−1z for some α > 1 as an example. Fix β = 1/(αp). The

map v(s) = s−β then belongs to X, but |f(v(s))| = s−1/p does not. ♢

We stress that in (1.1) the existence interval J is part of the problem. Finite-
time blowup already occurs for the simple ordinary differential equation

u′(t) = u(t)2, t ≥ 0, u(0) = u0 > 0, (1.3)

whose solution u(t) = (u−1
0 − t)−1 only exists up to time 1/u0.

We first state a natural solution concept. There are several variants in the
literature (and we also introduce another notion below), so that we occasion-
ally add the adjective ‘classical’. Note that in some areas this word refers to
somewhat different solution concepts.

Definition 1.2. Let (1.2) be true and u0 ∈ X. A (classical) solution u of
(1.1) on J is a map u ∈ C1(J,X) satisfying u(t) ∈ D(A) and (1.1) for all t ∈ J .

We state a few simple properties of solutions. The fixed-point equation (1.4)
is the starting point of our approach to semilinear evolution equations.

Remark 1.3. Let (1.2) be true, u0 ∈ X, and u solve (1.1).
a) The initial value u0 then must belong to D(A). The assumptions imply

that F ◦ u : J0 → X is Lipschitz for all compact intervals J0 ⊆ J . Moreover,
the solution u is contained in C(J, [D(A)]) since (1.1) yields Au = u′ − F (u).

b) From Duhamel’s formula in Proposition 2.6 in [32] we deduce that

u(t) = T (t)u0 +

∫ t

0
T (t− s)F (u(s)) ds, t ∈ J. (1.4)

c) Let v ∈ C(J,X). Then also F ◦ v is an element of C(J,X). ♢

In view of Remark 1.3 c), equation (1.4) makes sense for any continuous
function u and can thus serve as a weaker solution concept for (1.1).

Definition 1.4. Let (1.2) be true and u0 ∈ X. A mild solution of (1.1) on
J is a function u ∈ C(J,X) satisfying (1.4).

Observe that a mild solution fulfills u(0) = u0. Notions and results from
the lecture Evolution Equations, see Section 2.2 of [32], allow us to interpret
mild solutions as classical solutions in the (larger) extrapolation space X−1 of
A. We recall that X−1 is the completion of X for the norm given by ∥x∥−1 =
∥R(ω,A)x∥X for some ω ∈ ρ(A), where X is considered as a linear subspace of
X−1. The operator A has the extension A−1 ∈ B(X,X−1) which is similar to
A and generates the C0-semigroup T−1(·) on X−1 given by extensions of T (t).
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Remark 1.5. Let (1.2) be true, u0 ∈ X, and u ∈ C(J,X). Since F (u) ∈
C(J,X), Propositions 2.6, 2.14, and 2.15 of [32] imply that u is a mild solution
of (1.1) if and only if u belongs to C1(J,X−1) ∩ C(J,X) and satisfies

u′(t) = A−1u(t) + F (u(t)), t ∈ J, u(0) = u0, (1.5)

in X−1. Then u is also called classical solution of (1.1) in X−1 on J . ♢

As a first step we solve (1.4) on [0, b] for small times b > 0 (only depending
∥u0∥, M0, and F ) and uniquely in certain balls of C([0, b], X). Here we proceed
as for ordinary differential equations, but now use semigroup theory to treat
the linear main part given by T (·). In view of more complicated problems, we
stress that one should be careful with the constants here. They must be under
control as b tends to 0, and one should specify how they depend on u0.

Lemma 1.6. Let (1.2) be true. Take any ρ > 0. Then there is a num-
ber b0(ρ) > 0 (given by (1.10) below) such that for each u0 ∈ BX(0, ρ) there
is a unique mild solution u ∈ C([0, b0(ρ)], X) of (1.1) on [0, b0(ρ)] satisfying
∥u(t)∥ ≤ 1+M0ρ =: r for all 0 ≤ t ≤ b0(ρ). For each b ∈ (0, b0(ρ)], the restric-
tion u↾[0,b] is also the unique mild solution of (1.1) on [0, b] with sup-norm less
or equal than r. Finally, the function b0 is non-increasing.

Proof. Let ρ > 0 and take u0 ∈ X with ∥u0∥ ≤ ρ. Fix r = 1 +M0ρ. For
b ∈ (0, 1] to be specified below, we define the closed ball

E(b) = E(b, r) =
{
v ∈ C([0, b], X)

∣∣ ∥v∥∞ := max
t∈[0,b]

∥v(t)∥X ≤ r
}
. (1.6)

It is a complete metric space for the metric induced by the sup-norm ∥ · ∥∞ on
C([0, b], X). To solve (1.4), we further introduce the map

[Φu0(v)](t) = Φ(v)(t) := T (t)u0 +

∫ t

0
T (t− s)F (v(s)) ds (1.7)

for t ∈ [0, b] and v ∈ E(b). The function Φ(v) belongs to C([0, b], X) by Re-
mark 1.3 c) and, e.g., dominated convergence as stated in Remark 1.15 of [32].
Each mild solution u∈E(b) of (1.1) is a fixed point of Φ in E(b), and vice versa.

Let v, w ∈ E(b) and t ∈ [0, b] ⊆ [0, 1]. Using (1.2) and that v(s), w(s) ∈
B(0, r), we estimate

∥Φ(v)(t)∥ ≤M0∥u0∥+
∫ t

0
M0

(
∥F (v(s))− F (0)∥+ ∥F (0)∥

)
ds

≤M0ρ+ tM0(L(r) max
s∈[0,t]

∥v(s)∥+ ∥F (0)∥)

≤M0ρ+ bM0(L(r)r + ∥F (0)∥), (1.8)

∥Φ(v)(t)−Φ(w)(t)∥ ≤
∫ t

0
M0∥F (v(s))−F (w(s))∥ ds ≤ bM0L(r)∥v−w∥∞. (1.9)

We choose a final time b ∈ (0, b0(ρ)], setting

b0(ρ) = min
{
1,
(
M0(L(r)r + ∥F (0)∥)

)−1
,
(
2M0L(r)

)−1} ∈ (0, 1]. (1.10)

It follows that ∥Φ(v)∥∞ ≤ r and that Φ : E(b) → E(b) is Lipschitz with constant
1
2 . Banach’s theorem then gives a unique fixed point ub = Φ(ub) ∈ E(b) for
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each b ∈ (0, b0(ρ)]. Since u := ub0(ρ) solves (1.4) also on [0, b] and the norm in
E(b) does not exceed that in E(b0(ρ)), uniqueness implies that u↾[0,b]= ub. □

The above lemma just gives conditional uniqueness among functions belong-
ing to a certain ball. To derive unconditional uniqueness (and further proper-
ties), we first note that we can glue and shift solutions. Shifted solutions mainly
occur since we state and use problems like (1.1) only for the initial time 0.

Remark 1.7. Let (1.2) be true and u0 ∈ X. Assume that u ∈ C([0, b1], X)
is a mild solution of (1.1) on [0, b1]. Then the following assertions hold.

a) Let β ∈ (0, b1). Then the shifted function u( · + β) ∈ C([0, b1 − β], X) is
a mild solution of (1.1) on [0, b1 − β] with the initial value u(β).

b) Let v ∈ C([0, b2], X) be a mild solution of (1.1) on [0, b2] with the initial
value u(b1). Then the concatenated function w ∈ C([0, b1 + b2], X) given by

w(t) =

{
u(t), 0 ≤ t ≤ b1,

v(t− b1), b1 < t ≤ b1 + b2,

solves (1.1) mildly on [0, b1 + b2] with the initial value u0.

Proof. By Remark 1.5, mild solutions in X coincide with classical ones in
X−1. Also note that the left- and right-hand derivatives of w in X−1 agree at
b1 because of (1.5) for u and v as well as v(0) = u(b1). Hence, w belongs to
C1([0, b1 + b2], X−1) and solves (1.5). The claims then follow easily. □

This lemma can also be shown without passing to extrapolation spaces. We
add this more complicated argument since it is of interest in other situations.1

In Remark 1.7 b), the function w is continuous and a mild solution of (1.1)
for t ∈ [0, b1] by its definition. Let t ∈ (b1, b1 + b2]. We use the definition of
w, (1.4) for u and v, and the semigroup property of T (·). Also substituting
r = b1 + s, we then calculate

w(t) = v(t− b1) = T (t− b1)u(b1) +

∫ t−b1

0
T (t− b1 − s)F (v(s)) ds

= T (t−b1)
[
T (b1)u0 +

∫ b1

0
T (b1−s)F (u(s)) ds

]
+

∫ t

b1

T (t− r)F (v(r−b1)) dr

= T (t)u0 +

∫ t

0
T (t− s)F (w(s)) ds.

To prove part a), set ũ(t) = u(t+ β) for t ∈ [0, b1 − β]. As above, we obtain

ũ(t) = u(t+ β) = T (t+ β)u0 +

∫ t+β

0
T (t+ β − s)F (u(s)) ds

= T (t)
[
T (β)u0 +

∫ β

0
T (β − s)F (u(s)) ds

]
+

∫ t

0
T (t− r)F (u(r + β)) dr

= T (t)u(β) +

∫ t

0
T (t− s)F (ũ(s)) ds.

1This alternative proof was not part of the lectures.
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In a second step we now establish unconditional uniqueness of all mild solu-
tions to (1.1). It is deduced from the uniqueness statement of Lemma 1.6.

Lemma 1.8. Let (1.2) be true and u0 ∈ X. Assume that u and v are mild
solutions of (1.1) on Ju respectively Jv. Then u = v on Ju ∩ Jv.

Proof. Set J = Ju ∩ Jv. Since u(0) = v(0), the number

τ := sup
{
b ∈ J

∣∣∀ t ∈ [0, b] : u(t) = v(t)
}

belongs to [0, sup J ]. We assume that u ̸= v on J . By continuity, it follows
τ < sup J and u(τ) = v(τ) =: u1. Hence, there are times tn ∈ J with tn → τ+

and u(tn) ̸= v(tn). Fix β0 > 0 with τ+β0 ∈ J . For every β ∈ (0, β0], Remark 1.7
shows that the functions ũ = u( · + τ) and ṽ = v( · + τ) are mild solutions of
(1.1) on [0, β] with initial value u1.
We now set ρ = ∥u1∥ and r = 1+M0ρ, and use the number b0(ρ) from (1.10).

For sufficiently small times 0 < β ≤ min{b0(ρ), β0}, the continuous maps ũ and
ṽ have sup-norms less or equal r on [0, β] because of ũ(0) = ṽ(0) = u1. The
uniqueness statement of Lemma 1.6 then shows that ũ(t) = ṽ(t) for t ∈ [0, β],
which contradicts the inequality u(tn) ̸= v(tn) for large n. □

In the above proof, after having fixed τ and β0 one can also proceed differently.
Let r1 be the maximum of the sup-norms of u and v on [τ, τ + β1], where
β1 := min{1, β0}. Equation (1.4) implies that

u(t)−v(t) =
∫ t

0
T (t−s)[F (u(s))−F (v(s))] ds =

∫ t

τ
T (t−s)[F (u(s))−F (v(s))] ds

for all t ∈ [τ, τ + β1]. As in (1.9), assumption (1.2) then leads to

∥u(t)− v(t)∥ ≤M0L(r1)

∫ t

τ
∥u(s)− v(s)∥ ds,

so that u = v on [τ, τ + β1] by Gronwall’s inequality, see Lemma 4.5 in [31].2

In a third step we can now extend solution as much as possible.

Definition 1.9. Let (1.2) be true. For each initial value u0 ∈ X we define
its maximal existence time

t+(u0) = sup
{
b > 0

∣∣∃ mild solution ub of (1.1) on [0, b]
}
.

The maximal existence interval is J+(u0) = [0, t+(u0)). A mild solution u of
(1.1) on J+(u0) is called maximal (mild) solution.

The above lemmas easily imply that there is a unique maximal solution.

Remark 1.10. Let (1.2) be true and u0 ∈ X.

a) Lemma 1.6 provides a mild solution u of (1.1) on [0, b0(∥u0∥)]. We can also
use this lemma to solve (1.1) with initial value u(b0(∥u0∥)). Remark 1.7 then
yields a concatenated solution of (1.1) on an interval larger than [0, b0(∥u0∥)],
so that t+(u0) belongs to (b0(∥u0∥),∞].

b) Let b ∈ (0, t+(u0)). By Definition 1.9, there is a mild solution ub of (1.1)
on [0, b]. Lemma 1.8 says that ub = ub′ on [0, b′] for 0 < b′ < b < t+(u0).

2This variant of the proof was not part of the lectures.
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We can thus define a maximal solution of (1.1) by setting u(t) = ub(t) for
t ∈ [0, b] ⊆ (0, t+(u0)). It is uniquely determined because of Lemma 1.8.

c) We note that the existence interval of this solution has to be right-open
due to Theorem 1.11 b) below. ♢

Local wellposedness means that one has for all (or sufficiently many) initial
values unique solutions of (1.1) that continuously depend on the initial values.
These properties are necessary to make a prediction of the future behavior
of the system that is robust under errors in the initial data and could thus
be tested by an experiment. In a fourth step, we now show the continuity
of u0 7→ u(t) near u0 for any compact subinterval of J+(u0). This fact is also
needed if an argument only works for a dense subset of ‘better’ initial values, cf.
Theorem 1.20. One should also prove continuous dependence on F or A. For F
we do this in the exercises and also in Proposition 3.6. The next theorem (and
its proof) is the prototype for all local wellposedness results in later chapters.

Theorem 1.11. Let (1.2) be true, u0 ∈ X, and b0 = b0(∥u0∥) > 0 be given
by (1.10). Then the following assertions hold.

a) There is a unique maximal mild solution u = φ( · , u0) ∈ C([0, t+(u0)), X)
of (1.1), where t+(u0) ∈ (b0(∥u0∥),∞].

b) If t+(u0) <∞, then limt→t+(u0)− ∥u(t)∥ = ∞.

c) Take any b ∈ (0, t+(u0)). Then there exists a radius δ = δ(u0, b) > 0 such
that t+(v0) > b for all v0 ∈ BX(u0, δ). Moreover, the map

BX(u0, δ) → C([0, b], X); v0 7→ φ( · , v0),
is Lipschitz continuous.

Proof. Assertion a) was shown in Remark 1.10. To establish b), let
t+(u0) < ∞. Assume that there were times tn → t+(u0) for n → ∞ with
tn ∈ [0, t+(u0)) and C := supn∈N ∥u(tn)∥ < ∞. We choose an index m ∈ N
such that tm + b0(C) > t+(u0), where b0(C) > 0 is given by (1.10). Lemma 1.6
yields a mild solution of (1.1) on [0, b0(C)] with initial value u(tm). By means
of Remark 1.7, we thus obtain a mild solution of (1.1) on [0, tm + b0(C)] which
contradicts the definition of t+(u0). So claim b) is shown. We prove part c) by
a basic step plus an induction argument in three more steps.

1) Let b ∈ (0, t+(u0)) and u = φ( · , u0). We fix a number b′ ∈ (b, t+(u0))
and use the radii ρ := 1 + max0≤t≤b′ ∥u(t)∥ and r := 1 +M0ρ. Let the time

b := b0(ρ) ∈ (0, 1] be given by (1.10) and the operator Φu0 by (1.7). Take
v0, w0 ∈ B(0, ρ). Part a) and the proof of Lemma 1.6 yield mild solutions
v = Φv0(v) = φ( · , v0) and w = Φw0(w) = φ( · , w0) of (1.1) on [0, b] with the
initial values v0 respectively w0, where v and w are contained in the space
E(b, r) from (1.6) endowed with the sup-norm ∥ · ∥∞ on [0, b]. Formulas (1.9),
(1.10) and (1.7) lead to the estimate

∥v − w∥∞ ≤ ∥Φv0(v)− Φv0(w)∥∞ + ∥Φv0(w)− Φw0(w)∥∞
≤ 1

2∥v − w∥∞ + ∥T (·)(v0 − w0)∥∞ ≤ 1
2∥v − w∥∞ +M0∥v0 − w0∥,

∥v − w∥∞ ≤ 2M0∥v0 − w0∥. (1.11)
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2) We next show t+(v0) > b inductively. For j ∈ N0 we set bj = jb. There
exists a minimal index N ∈ N with bN > b. If bN > b′, we redefine bN :=
b′ ∈ (b, t+(u0)). We choose δ = (2M0)

−N ∈ (0, 1). We inductively show that
for every v0 ∈ B(u0, δ) and j ∈ {0, . . . , N − 1} the maximal mild solution
v = φ( · , v0) exists at least on [0, bj+1] and that v(t) is an element of the ball

B(u(t), (2M0)
j+1−N ) for t ∈ [bj , bj+1], which belongs to B(0, ρ) by the definition

of ρ. This claim then yields t+(v0) > b.

3) We prove the claim. First let j = 0. Since δ ≤ 1, the vector v0 is contained
in B(0, ρ). From estimate (1.11) with w = u we deduce

∥v(t)− u(t)∥ ≤ 2M0∥v0 − u0∥ ≤ 2M0δ = (2M0)
1−N

for all t ∈ [0, b1], as asserted for j = 0.
Second, assume that the claim has been established for all k ∈ {0, . . . , j − 1}

and some j ∈ {1, . . . , N−1}. It follows ∥v(bj)∥ ≤ ρ. Lemma 1.6 and Remark 1.7
thus show that v exists at least on [0, bj+1]. Moreover, the inequality (1.11) can

be applied to v(t + bj) = φ(t, v(bj)) and u(t + bj) = φ(t, u(bj)) for t ∈ [0, b].
Using also the induction hypothesis, we infer the bound

∥v(t+ bj)− u(t+ bj)∥ ≤ 2M0∥v(bj)− u(bj)∥ ≤ (2M0)
1+j−N

for t ∈ [0, b]. So the claim is true.

4) It remains to prove the Lipschitz continuity asserted in c). Let j ∈
{0, . . . , N − 1} and t ∈ [0, b]. By the claim in 2), the vectors v(bj) and w(bj)

belong to B(0, ρ). As in step 3), inequality (1.11) implies

∥v(t+ bj)− w(t+ bj)∥ = ∥φ(t, v(bj))− φ(t, w(bj))∥ ≤ 2M0∥v(bj)− w(bj)∥
≤ · · · ≤ (2M0)

j+1∥v0 − w0∥ ≤ (2M0)
N∥v0 − w0∥. □

We add a simple example for Theorem 1.11, which is considerably improved
in Chapter 4. In Section 1.2 we discuss a more sophisticated application.

Example 1.12. Let X = L2(Rm) with F = C and A = i∆ with D(A) =
W 2,2(Rm). This operator generates a unitary C0-group on X by Example 3.9
in [32]. Let f : C → C be (globally) Lipschitz and f(0) = 0. Example 1.1 says
that F (v) = f ◦ v defines a Lipschitz map F : X → X. From Theorem 1.11 we
then deduce that for each u0 ∈ L2(Rm) the nonlinear Schrödinger equation

u′(t) = i∆u(t) + iF (u(t)), t ∈ J, u(0) = u0,

has a unique maximal mild solution u, which is locally Lipschitz in u0. ♢

A simple general condition for global existence is linear growth of F , as shown
next. It applies to Lipschitz F : X → X as in the above example since then

∥F (x)∥ ≤ ∥F (x)− F (0)∥+ ∥F (0)∥ ≤ max{L, ∥F (0)∥}(1 + ∥x∥), x ∈ X.

A more refined condition is given in the exercises. We also discuss this issue in
some detail for a specific problem in the next section, relying on the regularity
theory presented below.

Corollary 1.13. Let (1.2) be true. Assume that there is a constant c > 0
such that ∥F (x)∥ ≤ c(1 + ∥x∥) for all x ∈ X. We then obtain t+(u0) = ∞ for
every u0 ∈ X.
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Proof. One usually shows such results via contradiction to reduce the
argument to a bounded time interval. So assume that τ := t+(u0) < ∞ for
some u0 ∈ X. Then also the number K := supt∈[0,τ ] ∥T (t)∥ is finite. From (1.4)
and the assumption, we infer the inequality

∥u(t)∥ ≤ ∥T (t)u0∥+
∫ t

0
∥T (t− s)F (u(s))∥ ds ≤ K∥u0∥+

∫ t

0
Kc(1 + ∥u(s)∥) ds

≤ K(∥u0∥+ cτ) + cK

∫ t

0
∥u(s)∥ ds

for all t ∈ [0, τ). Gronwall’s Lemma 4.5 in [31] now yields the uniform bound
∥u(t)∥ ≤ K(∥u0∥+ cτ)ecKτ which contradicts Theorem 1.11 b). □

In a fifth step we will show that the mild solution is actually a classical one
on the same maximal existence interval provided that u0 ∈ D(A) and F is a
bit more regular. To this aim, we need some preparations. For the linear case
F = 0 the next result is clear since then u′ = Au = T (·)Au0 is locally bounded.

Lemma 1.14. Let (1.2) be true and u0 ∈ D(A). Then the maximal mild
solution u = φ( · , u0) : [0, t+(u0)) → X of (1.1) is locally Lipschitz continuous.

Proof. Take b ∈ [0, t+(u0)) and 0 ≤ t ≤ t+ h ≤ b. Equation (1.4) leads to

u(t+ h)− u(t) = T (t)(T (h)u0 − u0) +

∫ h

0
T (t+ h− s)F (u(s)) ds

+

∫ t+h

h
T (t+ h− s)F (u(s)) ds−

∫ t

0
T (t− τ)F (u(τ)) dτ

=

∫ h

0
T (t+ s)Au0 ds+

∫ h

0
T (t+ h− s)F (u(s)) ds

+

∫ t

0
T (t− τ)(F (u(τ + h))− F (u(τ))) dτ, (1.12)

where we have used Lemma 1.18 of [32] and subtituted τ = s−h. The quantities
r = sup0≤s≤b ∥u(s)∥, K = sup0≤s≤b ∥T (s)∥, and C = sup0≤s≤b ∥F (u(s))∥ are
finite. Formula (1.12) combined with (1.2) yields

∥u(t+ h)− u(t)∥ ≤ K∥Au0∥h+KCh+KL(r)

∫ t

0
∥u(s+ h)− u(s)∥ ds.

Gronwall’s inequality then implies the Lipschitz bound

∥u(t+ h)− u(t)∥ ≤ K(∥Au0∥+ C)eKL(r)bh. □

In our regularity theorem we will require that F is continuously differentiable,
where we have to use the more general concept of ‘real continuous differentia-
bility’ if F = C. To that purpose, we define

BR(X,Y ) :=
{
T : X → Y

∣∣T is R-linear and ∥T∥BR(X,Y ) := sup
∥x∥≤1

∥Tx∥ <∞
}
,

if F = C. (For F = R, one has BR(X,Y ) = B(X,Y ) of course.) As for B(X,Y )
one shows that BR(X,Y ) is a Banach space when endowed with ∥ · ∥BR(X,Y ).
Each map T in BR(X,Y ) is Lipschitz continuous. We clearly have B(X,Y ) ⊆
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BR(X,Y ), but the converse inclusion is false even for X = Y = C. As usual we
write BR(X) := BR(X,X).
Let ∅ ̸= D ⊆ X be open. A map F : D → Y is called real differentiable at

x0 ∈ D if there is an operator L ∈ BR(X,Y ) such that the limit

lim
h→0, h ̸=0,
x0+h∈D

1

∥h∥
∥F (x0 + h)− F (x0)− Lh∥ = 0

exists. We then set F ′(x0) := L and call F ′(x0) the derivative of F at x0. We
say that F is real continuously differentiable on D if F is real differentiable at
each point of D and the function

F ′ : D → BR(X,Y ); x 7→ F ′(x),

is continuous. In this case we write F ∈ C1
R(D,Y ). If the derivative is C-

linear, the map F is called differentiable, and we use the notation C1(D,Y ) ⊆
C1
R(D,Y ) if F ′ is also continuous. For F = R, real differentiability and differen-

tiability are of course the same. The usual rules of calculus (up to the implicit
function theorem) hold in these settings with analogous proofs and straightfor-
ward modifications. See Part 4 in [18]. We discuss examples in the next section
which also show the necessity to employ real differentiability.

If D is convex and F ∈ C1
R(D,Y ), the fundamental theorem of calculus (see

Remark 1.15 in [32]) and the chain rule yield the formula

F (z)−F (x) =

∫ 1

0

d
dt F (x+ t(z−x)) dt =

∫ 1

0
F ′(x+ t(z−x))(z−x) dt (1.13)

for all x, z ∈ D. In this situation we thus obtain the inequality

∥F (z)− F (x)∥ ≤ max
0≤t≤1

∥F ′(x+ t(z − x))∥ ∥z − x∥ (1.14)

for all z, x ∈ D. As a result, a function F ∈ C1
R(X,Y ) is Lipschitz on bounded

sets provided that its derivative is bounded on bounded sets. (Observe that
a continuous function on a Banach space does not need to be bounded on a
closed ball.) We establish a final prerequisite.

Lemma 1.15. Let u ∈ C([a, b), X) be differentiable from the right and d+

dt u =:

v be contained in C([a, b), X). Then u belongs to C1([a, b), X) and u′ = v.

Proof. Fix h ∈ (0, b − a) and t ∈ (a + h, b). The Hahn-Banach theorem
yields a functional x⋆h ∈ X⋆ with ∥x⋆h∥ = 1 and∣∣〈 1

h(u(t)− u(t− h))− v(t), x⋆h
〉∣∣ = ∥∥ 1

h(u(t)− u(t− h))− v(t)
∥∥ =: Dh(t).

By Corollary 2.1.2 of [23] and the assumption, the map φh := ⟨u, x⋆h⟩ : [a, b) → F
is continuously differentiable, so that φ′

h = d+

ds φh = ⟨v, x⋆h⟩. We then compute

Dh(t) =
∣∣ 1
h(φh(t)− φh(t− h))− φ′

h(t)
∣∣ = ∣∣∣1

h

∫ t

t−h
(φ′

h(τ)− φ′
h(t)) dτ

∣∣∣
=

∣∣∣1
h

∫ t

t−h
⟨v(τ)− v(t), x⋆h⟩ dτ

∣∣∣ ≤ h

h
max

t−h≤τ≤t
∥v(τ)− v(t)∥.

Since the right-hand side tends to 0 as h → 0, the map u is differentiable at
each t ∈ [a, b) with the (continuous) derivative v. □
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In the next proof we follow a standard strategy to prove additional regular-
ity of a given (e.g., mild) solution. (See also Propositions 4.18 and 4.23 for
somewhat different procedures.) Assume for a moment that the mild solu-
tion u of (1.1) would be contained in C1(J,X). Moreover, let u0 ∈ D(A) and
F ∈ C1

R(X,X). One can then differentiate (1.4) in X with respect to t, where
we use (1.4) in the form

u(t) = T (t)u0 +

∫ t

0
T (τ)F (u(t− τ)) dτ.

This leads to the linear (non-autonomous, integrated) evolution equation

v(t) := u′(t) = T (t)Au0 + T (t)F (u0) +

∫ t

0
T (τ)F (u(t− τ))u′(t− τ) dτ

= T (t)(F (u0) +Au0) +

∫ t

0
T (t− s)B(s)v′(s) ds, t ∈ J. (1.15)

(Alternatively one could differentiate (1.1) in X−1 and use Duhamel.) Since the
perturbations B(s) := F ′(u(s)) belong to BR(X), the above equation is easy to
solve. The solution v is a candidate for the time derivative of u. To verify the
differentiability of u and u′ = v, we will rewrite the difference quotient of u by
means of (1.4).
The theorem is used in the next section where it will be crucial that the

classical solutions inherits the existence interval of the mild one.

Theorem 1.16. Let (1.2) be true, u0 ∈ D(A), and F ∈ C1
R(X,X). Then the

mild solution u of (1.1) on J in fact solves (1.1) on J classically.

Proof. Let u0 ∈ D(A) and b ∈ (0, sup J). We have to show that u belongs
to C1([0, b), X), because then F ◦ u is an element of C1([0, b), X) and thus the
assertion will follow from Theorem 2.9 of [32]. Set K = sup0≤s≤b ∥T (s)∥ <∞.

1) We first prove a preliminary result. The operators B(s) := F ′(u(s)) ∈
BR(X) depend continuously on s ∈ [0, b] and L = sup0≤s≤b ∥B(s)∥ is finite. To
solve the (R-linear, non-autonomous) problem (1.15) as in Lemma 1.6, we set
α = 2KL and

(Φv)(t) = T (t)(F (u0) +Au0) +

∫ t

0
T (t− s)B(s)v(s) ds

for t ∈ [0, b] and v ∈ E = C([0, b], X). We endow E with the equivalent norm

∥v∥α = max
t∈[0,b]

e−αt∥v(t)∥.

Let v, w ∈ E. The map Φv clearly belongs to E. We estimate

∥Φv − Φw∥α ≤ max
t∈[0,b]

∥∥∥∫ t

0
e−α(t−s)T (t− s)B(s)e−αs(v(s)− w(s)) ds

∥∥∥
≤ KLmax

t∈[0,b]

∫ t

0
e−α(t−s)ds ∥v − w∥α ≤ KL

α
∥v − w∥α =

1

2
∥v − w∥α,

employing only real linearity of B(s). The contraction mapping principle hence
yields a unique solution v ∈ C([0, b], X) of (1.15).
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2) We now prove that the function v of step 1) is the derivative of u. Let
0 ≤ t < t+ h ≤ b. Equations (1.12) and (1.15) imply that

wh(t) :=
1
h(u(t+ h)− u(t))− v(t)

= T (t) 1h(T (h)− I)u0 − T (t)Au0

+
1

h
T (t)

∫ h

0
T (h− s)F (u(s)) ds− T (t)F (u0)

+

∫ t

0
T (t− s)

[
1
h(F (u(s+ h))− F (u(s)))− F ′(u(s))v(s)

]
ds

=: S1(h, t) + S2(h, t) + S3(h, t).

We first observe that

∥S1(h, t)∥ ≤ K
∥∥ 1
h(T (h)− I)u0 −Au0

∥∥ =: α1(h) −→ 0,

∥S2(h, t)∥ =
∥∥∥T (t) 1

h

∫ h

0
(T (h− s)F (u(s))− F (u0)) ds

∥∥∥
≤ hK

h
sup

0≤s≤h
∥T (h− s)F (u(s))− F (u0)∥ =: α2(h) −→ 0

as h → 0+, using u0 ∈ D(A) in the first limit and Lemma 1.12 of [32] for the
second one. We then write

S3(h, t) =

∫ t

0
T (t− s) 1h

[
F (u(s+ h))− F (u(s))− F ′(u(s))(u(s+ h)− u(s))

]
ds

+

∫ t

0
T (t− s)F ′(u(s))wh(s) ds =: S3,1(h, t) + S3,2(h, t).

Lemma 1.14 shows that u is Lipschitz on [0, b], say with constant ℓ. Using this
fact and (1.13), we estimate ∥S3,1(h, t)∥ by

Kb sup
0≤s≤b

0≤s+h≤b

1

h

∥∥∥∫ 1

0
[F ′(u(s) + τ(u(s+h)− u(s)))− F ′(u(s))](u(s+h)− u(s)) dτ

∥∥∥
≤ Kbℓh

h
sup

0≤s≤s+h≤b
0≤τ≤1

∥F ′(u(s) + τ(u(s+ h)− u(s)))− F ′(u(s))∥ =: α3(h).

Since F ′ is uniformly continuous on the compact set{
u(s) + τ(u(r)− u(s))

∣∣ 0 ≤ τ ≤ 1, 0 ≤ r, s ≤ b
}
,

the quantity α3(h) tends to 0 as h→ 0+. Altogether we arrive at the bound

∥wh(t)∥ ≤ α1(h) + α2(h) + α3(h) +KL

∫ t

0
∥wh(s)∥ ds.

Gronwall’s inequality (see Lemma 4.5 in [31]) then leads to

∥wh(t)∥ ≤ (α1(h) + α2(h) + α3(h))e
tKL

for all t ∈ [0, b). Letting h→ 0+, we derive that u is differentiable from the right
and that the right-hand side derivative coincides with v. Since v is continuous
on [0, b], Lemma 1.15 finally implies that u belongs to C1([0, b), X). □
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1.2. A semilinear wave equation

In this section we mainly study the cubic nonlinear wave equation on an open
subset of R3. As a preparation we first show the differentiability of substitu-
tion operators F (v) = φ ◦ v =: φ(v) on Lp-spaces, which are the prototypical
nonlinearities in many situations. Actually, later on we only need the case
φ(z) = |z|α−1z. We often work with complex Banach spaces in order to use
spectral theory, complex curve integrals, or the Fourier transform. Moreover,
in Chapter 4 we investigate the nonlinear Schrödinger equation which requires
complex scalars. On the other hand, our model nonlinearity F (v) = |v|α−1v is
only real, but not complex differentiable (for α > 1 and F = C). We thus iden-
tify C with R2 in the usual way and just require that φ belongs to C1(R2,R2)
and not that it is holomorphic as a function φ : C → C. To deal with the
resulting problems, we introduce a bit of notation.
Let z = x+ iy ∈ C. For φ = (φ1, φ2) : R2 → R2, we set

φ(x, y) =: φ(z) = φ1(z) + iφ2(z) ∈ C.

For ξ = (ξ1, ξ2) ∈ R2 and M =
(
ξ
η

)
∈ R2×2, the real scalar product and

matrix-vector product on R2 are written as

ξ · z = ξ1Re z + ξ2 Im z = Re((ξ1 + iξ2)z) ∈ R and Mz = ξ · z + iη · z ∈ C.

Observe that we do not have C-linearity in general, though we use complex
notation for convenience. If F = R, we let y = ξ2 = 0, φ2 = 0 and η = 0 here
and in analogous formulas below.
Depending on the growth of φ and φ′, we see that v 7→ F (v) = φ(v) maps Lp

into Lq with q < p. By Example 1.1, this loss of integrability cannot be avoided
for F (v) = |v|α−1v if α > 1. In Example 3.16 we see that substitution operators
are differentiable on Cb without growth restrictions on φ ∈ C1(R2,R2). If
F = R, one can drop the subscripts R below.

Lemma 1.17. Let φ ∈ C1(R,R) if F = R and φ ∈ C1(R2,R2) if F = C ∼= R2,
and assume that |φ(z)| ≤ c0|z|α and |φ′(z)| ≤ c1|z|α−1 for all z ∈ F and some
constants cj ≥ 0 and α > 1. Let p ∈ [α,∞) and (S,A, µ) be a measure space.
Then the following assertions hold.

a) The map F : Lp(µ) → Lp/α(µ); F (v) = φ(v) = φ1(v) + iφ2(v), belongs

to C1
R(L

p(µ), Lp/α(µ)). Its derivative at v ∈ Lp(µ) is given by

F ′(v)w = φ′(v)w = ∇φ1(v) · w + i∇φ2(v) · w (= φ′(v)w if F = R)

and it is bounded by ∥F ′(v)∥BR(Lp,Lp/α) ≤ c1∥v∥α−1
p , for all v, w ∈ Lp(µ).

b) Let φ be real-valued. The map Φ : Lα(µ) → R; Φ(v) =
∫
S φ(v) dµ, is

contained in C1
R(L

α(µ),R). Its derivative at v ∈ Lp(µ) is given by

Φ′(v)w =

∫
S
∇φ(v) · w dµ

(
=

∫
S
φ′(v)w dµ if F = R

)
and it is bounded by ∥Φ′(v)∥BR(Lα,R) ≤ c1∥v∥α−1

α , for all v, w ∈ Lα(µ).

Proof. Let Jg =
∫
S g dµ for g ∈ L1(µ). Since J ∈ BR(L

1(µ),R) and
Φ = J ◦ F , claim b) follows from a) with p = α by the chain rule and ∥J∥ = 1,
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To show part a), take v, w ∈ Lp(µ) and set q = p/(α− 1) ∈ [p′,∞). Because
of |φ(v)| ≤ c0|v|α and |φ′(v)| ≤ c1|v|α−1, the functions F (v) = φ(v) and φ′(v)

belong to Lp/α(µ) resp. Lq(µ). The map Lp(µ) → Lp/α(µ); w 7→ φ′(v)w, is
R-linear and bounded since Hölder’s inequality with α

p = 1
q +

1
p yields

∥φ′(v)w∥ p
α
≤c1∥|v|α−1∥q∥w∥p = c1∥w∥p

[ ∫
S
|v|pdµ

]α−1
p
= c1∥v∥α−1

p ∥w∥p. (1.16)

For the differentiablity we compute

D(w) := F (v + w)− F (v)− φ′(v)w =

∫ 1

0

d

dτ
φ(v + τw) dτ − φ′(v)w

=

∫ 1

0

(
φ′(v + τw)− φ′(v)

)
w dτ

a.e. on S. Set f(τ, w) = φ′(v + τw) − φ′(v). Note that τ 7→ f(τ, w)(s)w(s) is
continuous on [0, 1] for a.e. fixed s ∈ S and that we have the majorant

|f(τ, w)w| ≤ c1
(
(|v|+ |w|)α−1) + |v|α−1

)
|w| =: g

for all τ ∈ [0, 1] and a.e. s ∈ S. As above, g belongs to Lp/α(µ), and so the map

τ 7→ f(τ, w)w is continuous in Lp/α(µ) by dominated convergence. We now use
the Riemann-integral (see Remark 1.15 in [32]) and Hölder’s inequality to infer∥∥∥∫ 1

0
f(τ, w)w dτ

∥∥∥
p/α

≤
∫ 1

0
∥f(τ, w)w∥p/α dτ ≤ ∥w∥p

∫ 1

0
∥f(τ, w)∥q dτ.

Let I(w) denote the last integral. We have to establish I(w) → 0 as w → 0 in
Lp(µ). Due to a standard contradiction argument, for each null sequence (wn)
in Lp(µ) we have to find a subsequence (wnj )j such that I(wnj ) tends to 0 as
j → ∞. So let wn → 0. The Riesz-Fischer theorem then provides a subsequence
(wnj )j and a function g ∈ Lp(µ) such that wnj → 0 a.e. as j → ∞ and |wnj | ≤ g
a.e. for all j ∈ N. Take τ ∈ [0, 1]. Because of the continuity and the growth
of φ′, the maps f(τ, wnj ) tend to 0 a.e. as j → ∞ and are dominated by

|f(τ, wnj )| ≤ c1
(
(|v|+ g

)α−1
+ |v|α−1

)
=: h ∈ Lq(µ). By Lebesgue, (f(τ, wnj ))j

converges to 0 in Lq(µ) for each fixed τ . Since ∥f(τ, wnj )∥q ≤ ∥h∥q, dominated
convergence also yields the limit I(wnj ) → 0 as j → ∞. We thus have proven

that F : Lp(µ) → Lp/α(µ) is real differentiable with derivative F ′(v)w = φ′(v)w.
The asserted estimate of F ′ then follows from (1.16).

It remains to show the continuity of the map Lp(µ) → BR(L
p(µ), Lp/α(µ));

v 7→ F ′(v).3 As above, for each sequence vn → v in Lp(µ) we need a subsequence

such that F ′(vnj ) tends to F
′(v) in BR(L

p(µ), Lp/α(µ)) as j → ∞. Take vn →
v and w in Lp(µ). Proceeding as in the previous paragraph, we choose an
a.e. converging subsequence vnj with a majorant g in Lp(µ). The functions

φ′(vnj ) − φ′(v) tend to 0 a.e. and are bounded by c1(g
α−1 + |v|α−1) ∈ Lq(µ),

and hence converge to 0 in Lq(µ). Hölder’s inequality again yields the estimate

∥F ′(vnj )w − F ′(v)w∥p/α ≤ ∥φ′(vnj )− φ′(v)∥q ∥w∥p,
which implies the continuity in operator norm. □

3This part of the proof was omitted in the lectures.
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We will mostly use the following special case of the above result.

Corollary 1.18. Let α, β > 1, p ∈ [α,∞), and (S,A, µ) be a measure space.
Then the maps

F : Lp(µ) → Lp/α(µ); F (v) = |v|α−1v,

Φ : Lβ(µ) → R; Φ(v) =

∫
S
|v|β dµ,

are real continuously differentiable, and they are Lipschitz on every bounded set.
Their derivatives are given by

F ′(v)w = |v|α−1w + (α− 1)|v|α−3vRe(vw) for v, w ∈ Lp(µ),

Φ′(v)w = β

∫
S
|v|β−2Re(vw) dµ for v, w ∈ Lβ(µ).

Proof. We focus on the case F = C ∼= R2. For F = R one can take
s = 0 = σ below. For F we look at φ(z) = |z|α−1z and for Φ at ϕ(z) = |z|β,
where z ∈ C ∼= R2. Writing x = Re z and x = Im z, we compute

∇ϕ(z) =
(
∂x(x

2 + y2)
β
2 , ∂y(x

2 + y2)
β
2
)
= β

(
(x2 + y2)

β
2
−1x, (x2 + y2)

β
2
−1y

)
= β|z|β−2z,

φ′(z) =
(
∂x

(
(x2 + y2)

α−1
2
( x
y

))
, ∂y

(
(x2 + y2)

α−1
2
( x
y

)))
=

[
(x2+y2)

α−1
2 + (α−1)(x2+y2)

α−3
2 x2 (α−1)(x2+y2)

α−3
2 yx

(α−1)(x2+y2)
α−3
2 xy (x2+y2)

α−1
2 + (α−1)(x2+y2)

α−3
2 y2

]

=

(
|z|α−1 0

0 |z|α−1

)
+ (α− 1)|z|α−3

(
x

y

)(
x y

)
for z ̸= 0. For z = 0 the definition of the derivative directly leads to ϕ′(z) =
0 = φ′(z). For w ∈ C with ξ = Rew and η = Imw, it follows

∇ϕ(z) · w = β|z|β−2z · w = β|z|β−2Re(zw),

φ′(z)w = |z|α−1w + (α− 1)|z|α−3
(
x
y

)
(xξ + yη)

= |z|α−1w + (α− 1)|z|α−3zRe(zw).

It is easy to see that φ′ and ∇ϕ are continuous and that the growth assumptions
of Lemma 1.17 are satisfied. Combined with (1.14), the assertions follow. □

We now treat the basic semilinear wave equation on an open and bounded
set G ⊆ R3 with Lipschitz boundary. The Dirichlet–Laplacian ∆D in L2(G)

was introduced in Example 1.54 of [32]: A map v ∈W 1,2
0 (G) belongs to D(∆D)

if and only if

∃ f =: ∆Dv ∈ L2(G) ∀φ ∈W 1,2
0 (G) : (f |φ)L2 = −

∫
G
∇v · ∇φdx.

(The dot denotes the scalar product in Rm.) We often drop the subscript of

(·|·)L2 . Recall that W 1,2
0 (G) is the space of functions in W 1,2(G) whose trace

on ∂G vanishes, see Theorem 3.38 of [33]. It is equipped with the (Hilbertian)
norm given by ∥|∇v|2∥2 which is equivalent to ∥ · ∥1,2, cf. Theorem 3.36 in [33].
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The divergence theorem yields ∆Dv = ∆v if v ∈W 2,2(G)∩W 1,2
0 (G). As noted

after Example 1.53 of [32], the domain of ∆D is equal to W 2,2(G)∩W 1,2
0 (G) if

∂G is of class C2. The operator ∆D is invertible, dissipative and self-adjoint in
L2(G), and [D(∆D)] is continuously embedded into W 1,2

0 (G). It has a bounded

invertible extension ∆D :W 1,2
0 (G) →W−1,2(G) =:W 1,2

0 (G)⋆ acting as

∀φ ∈W 1,2
0 (G) : ⟨φ,∆Dv⟩W 1,2

0 (G)
= −

∫
G
∇v · ∇φdx.

Let a ∈ R and J be an interval with min J = 0 and supJ > 0. For given
w0 ∈W 1,2

0 (G) and w1 ∈ L2(G), we will solve the cubic semilinear wave equation

∂2tw(t) = ∆Dw(t)− a|w(t)|2w(t), t ∈ J, w(0) = w0, ∂tw(0) = w1. (1.17)

We look for a weak solution

w ∈ C2(J,W−1,2(G)) ∩ C1(J, L2(G)) ∩ C(J,W 1,2
0 (G))

of (1.17). If even w0 ∈ D(∆D) and w1 ∈W 1,2
0 (G), we expect a classical solution

w ∈ C2(J, L2(G)) ∩ C1(J,W 1,2
0 (G)) ∩ C(J, [D(∆D)]).

Requiring w(t) ∈W 1,2
0 (G), we impose Dirichlet boundary conditions in (1.17).

To treat the nonlinearity in (1.17), we set f(v) = −a|v|2v. Sobolev’s Theo-

rem 3.31 of [33] yields the embedding W 1,2
0 (G) ↪→ L6(G), since 1 − 3

2 = −3
6 .

Corollar 1.18 thus shows that

f ∈ C1
R(W

1,2
0 (G), L2(G)) and f ′ is bounded on balls. (1.18)

As in the linear case treated in [32], we pass to an equivalent problem which
is of first order in time. We introduce

Z =W 1,2
0 (G)× L2(G), A =

(
0 I

∆D 0

)
, and D(A) = D(∆D)×W 1,2

0 (G).

Example 1.55 of [32] says that A is skew-adjoint and thus generates a unitary
C0-group T (·) on Z. The extrapolation space for A is given by Z−1

∼= L2(G)×
W−1,2(G) and the extrapolated generator by

A−1 =

(
0 I

∆D 0

)
with ∆D :W 1,2

0 (G) →W−1,2(G),

see Example 2.17 of [32]. We next set

F (φ,ψ) =

(
0

f(φ)

)
.

This map belongs to C1
R(Z) and F ′ is bounded on balls due to (1.18), and

thus F is Lipschitz on bounded sets by (1.14), as required for the results of the
previous section. We stress that for f(z) = |z|α−1z with α > 3 the nonlinearity
F does not map Z into itself in three space dimensions.
Arguing as in Examples 2.4, 2.10 and 2.17 of [32], one can show that the

problem (1.17) is equivalent to

u′(t) = Au(t) + F (u(t)), t ∈ J, u(0) = u0 := (w0, w1), (1.19)
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for the above maps A and F . More precisely, u ∈ C1(J, Z) ∩ C(J, [D(∆D)])
solves (1.19) if and only if w is a classical solution of (1.17). Also, u ∈ C(J, Z)
solves (1.19) mildly (and thus satisfies (1.19) in Z−1

∼= L2(G) × W−1,2(G)
because of Remark 1.5) if and only if w is a weak solution of (1.17). In both
cases, we have u = (w, ∂tw). We can now show local wellposedness of (1.17).

Theorem 1.19. Let G ⊆ R3 be open and bounded with ∂G ∈ C1− and let
a ∈ R. Then the following assertions are true.

a) For each u0 = (w0, w1) ∈ Z = W 1,2
0 (G) × L2(G), there is a maximal

existence time t+(u0) > b0(∥u0∥Z) > 0 and a unique maximal weak solution
w = φ(· , u0) of (1.17) on [0, t+(u0)) = J+(u0).

b) Let t+(u0) <∞. Then limt→t+(u0) ∥|(∇w(t), ∂tw(t))|2∥L2 = ∞.

c) Let b ∈ (0, t+(u0)). Then there is a radius δ = δ(u0, b) > 0 such that
for all initial data ũ0 = (w̃0, w̃1) ∈ BZ(u0, δ) we have t+(ũ0) > b and the map
BZ(u0, δ) → C([0, b], Z); ũ0 7→ φ( · , ũ0), is Lipschitz.

d) Let u0 ∈ D(∆D)×W 1,2
0 (G). Then w solves (1.17) on J+(u0) classically.

Proof. By the remarks before the statement, we can apply Theorems 1.11
and 1.16 to (1.19). The resulting mild and classical solutions u of (1.19) for
u0 ∈ Z, respectively u0 ∈ D(A), yield weak and classical solutions w of the
semilinear wave equation (1.17) as observed above. □

Depending on the sign of the coefficient a ∈ R, we study global existence and
blowup of solutions w to (1.17). Our reasoning relies on the energy given by

E : Z → R; E(φ,ψ) =

∫
G

(
1
2 |ψ|

2 + 1
2 |∇φ|

2
2 +

a
4 |φ|

4
)
dx,

Ew(t) := E(w(t), ∂tw(t)) =

∫
G

(
1
2 |∂tw(t)|

2 + 1
2 |∇w(t)|

2
2 +

a
4 |w(t)|

4
)
dx (1.20)

= 1
2∥(w(t), ∂tw(t))∥

2
Z + a

4∥w(t)∥
4
4

for t ∈ J+(u0). Since W 1,2
0 (G) ↪→ L4(G) by Sobolev’s embedding and 1− 3

2 ≥
−3

4 , Corollary 1.18 shows that E belongs to C1
R(Z,R). Observe that E(φ,ψ)

controls the Z–norm of (φ,ψ) provided that a ≥ 0. (See Section 4.1 for the
physical meaning of the sign of a.)
We next show that E is constant along weak solutions of (1.17) so that

it is a natural quantity for the nonlinear wave equation. (It corresponds to
the physical energy where we ignore physical units.) This fact leads to global
existence of all solutions if a ≥ 0 and of all solutions with small initial values
for any a ∈ R, by means of the blow-up condition in Theorem 1.19.

However, one can only derive the preservation of energy for classical solutions
of (1.17) by a direct computation. Using the continuous dependence on data
and the density of D(A) in Z, we can then extend the energy equality to weak
solutions by approximation. Here it is crucial that a classical solution exists (in
D(A)) until its maximal existence time t+(w0, w1) as a weak solution. We thus
need the full power of the wellposedness theory of the previous section in the
next argument, which is protoypical for many nonlinear systems.
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Theorem 1.20. Let G ⊆ R3 be open and bounded with ∂G ∈ C1−, a ∈ R,
and w be maximal weak solution of (1.17) for some u0 = (w0, w1) ∈ Z =

W 1,2
0 (G)× L2(G). Then the following assertions are true.

a) Ew(t) = Ew(0) =
1
2∥(w0, w1)∥2Z + a

4∥w0∥44 for t ∈ J+(u0).

b) Let a ≥ 0. Then t+(w0, w1) = ∞ for all initial values (w0, w1) ∈ Z.

c) We have ε0 > 0 such that for each ε ∈ (0, ε0] there is a radius ρ = ρε > 0
with t+(u0) = ∞ and ∥w(t)∥21,2+∥∂tw(t)∥22 ≤ ε2 for all t ≥ 0 and u0 ∈ BZ(0, ρ).

Proof. a) We first show the equality for u0 ∈ (w0, w1) ∈ D(A) and the
corresponding classical solution w of (1.17). Let t ∈ [0, t+(u0)). Since the

map t 7→ ∂tw is differentiable in L2(G) and t 7→ w(t) in W 1,2
0 (G) ↪→ L6(G),

Corollary 1.18 and the chain rule show that Ew has the derivative

E′
w(t) = Re

∫
G

(
∂tw(t)∂

2
tw(t) +∇w(t)∇∂tw(t) + a|w(t)|2w(t)∂tw(t)

)
dx.

In the second summand of the integrand we can use the definition of the
Laplacian because of w(t) ∈ D(∆D) and ∂tw(t) ∈ W 1,2

0 (G). Employing also
Re z = Re z and the equation (1.17), we infer

E′
w(t) = Re

∫
G

(
∂2tw(t)−∆w(t) + a|w(t)|2w(t)

)
∂tw(t) dx = 0,

so that E(w(t), ∂tw(t)) = E(w0, w1). (This argument simplifies a bit if F = R.)
For given data u0 = (w0, w1) in Z we find a sequence (u0,n)n in D(A) con-

verging to u0 in Z. Let b ∈ (0, t+(u0)). Theorem 1.19 c) says that t+(u0,n) > b
for all sufficiently large n and that the corresponding solution (wn, ∂twn) tends
to (w, ∂tw) in Z uniformly in t ∈ [0, b] as n → ∞. We can apply the first part
of the proof to wn on [0, b] in view of Theorem 1.19 d). Part a) then follows
from the continuity of E : Z → R.

b) Statement a) yields ∥(w(t), ∂tw(t))∥2Z ≤ 2Ew(t) = 2Ew(0) if a ≥ 0. The
blow-up condition in Theorem 1.19 b) thus implies assertion b).

c) Sobolev’s and Poincaré’s estimates provide constants cS, cP>0 with ∥φ∥4≤
cS∥φ∥1,2 and ∥φ∥2 ≤ cP∥|∇φ|2∥2 for φ ∈W 1,2

0 (G), see Theorems 3.31 and 3.36
in [33]. The consequence ∥φ∥21,2≤(c2P+1)∥|∇φ|2∥2 is used several times.

We may let a ̸= 0. Fix ε0 =
(
(c2P + 1)c4S|a|

)− 1
2 . Given ε ∈ (0, ε0], we define

ρ = ρε > 0 by 2(c2P + 1)(2ρ2 + c4S|a|(c2P + 1)2ρ4) = ε2. Let u0 = (w0, w1) ∈
BZ(0, ρ) and w be the weak solution of (1.17). The number

β := sup
{
b ∈ [0, t+(u0))

∣∣∀ t ∈ [0, b] : ∥w(t)∥1,2 ≤ ε
}

belongs to (0, t+(u0)] because of ∥w0∥21,2 ≤ (c2P + 1)ρ2 < ε2.

We have to show β = ∞. Let t ∈ [0, β). The above estimates, the definition
of Ew and part a) lead to

∥w(t)∥21,2 + ∥∂tw(t)∥22 ≤ 2(c2P + 1)(Ew(t)− a
4∥w(t)∥

4
4)

≤ 2(c2P + 1)Ew(0) +
1
2(c

2
P + 1)c4S|a|∥w(t)∥21,2∥w(t)∥21,2

≤ 2(c2P + 1)Ew(0) +
1
2∥w(t)∥

2
1,2.
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We thus obtain the bound

∥w(t)∥21,2 + ∥∂tw(t)∥22 ≤ 4(c2P + 1)Ew(0) ≤ 2(c2P + 1)ρ2 + (c2P + 1)|a|∥w0∥44
≤ (c2P + 1)

(
2ρ2 + c4S|a|(c2P + 1)2ρ4

)
= 1

2ε
2.

Theorem 1.19 b) then yields t+(u0) > β unless ∞ = β = t+(u0). In the first
case, we infer ∥w(t)∥1,2 < ε for t ∈ [β, β+δ] and some δ > 0 by continuity. This
fact contradicts the definition of β so that β = ∞ and assertion c) are true. □

In the case a < 0 the reasoning in part b) fails since Ew(t) does not control
the norm of Z. To show blowup of solutions here, we first look at the case of
the ‘Neumann boundary condition’ ∂νw = 0 on ∂G (if ∂G ∈ C2, say). Spatially
constant functions w(t, x) = φ(t) satisfy this condition and belong to the kernel
of the Laplacian. Such a map w thus solves the Neumann-version of (1.17) if
and only if φ′′ = |a|φ3. For given φ(0) = c > 0 this equation has the solution

φc(t) =
c

1− c
√
|a|/2 t

with maximal existence time t+c =
√
2|a|−1c−2. Hence, an ‘ODE blowup’ as in

(1.3) is present in (1.17) with Neumann boundary conditions if a < 0. Here the

initial data w0 = c1 and w1 = c2
√

|a|/21 can be arbitrarily small in L2(G) in
contrast to the Dirichlet case in Theorem 1.20.
To establish blowup for Dirichlet conditions and a large class of initial values,

we will derive a differential inequality for the map ϕ(t) = ∥w(t)∥22/4 which
implies the desired explosion. We use the energy preservation and (1.17) to
control derivatives of w occuring the argument.

Proposition 1.21. Let G ⊆ R3 be open and bounded with ∂G ∈ C1− and
a < 0. Assume that the initial data u0 = (w0, w1) ∈ Z have real values,
nonpositive energy E(w0, w1) ≤ 0, i.e.,

|a|
4 ∥w0∥44 ≥ 1

2∥|∇w0|2∥22 + 1
2∥w1∥22 , (1.21)

and that the inequality ∫
G
w0w1 dx > 0 (1.22)

is true. Then t+(u0) <∞.

Let C = 4|a|/λ(G) and τ = 4
√
3/(

√
C ∥w0∥2). Assume in addition that∫

G
w0w1 dx ≥

√
C

4
√
3
∥w0∥32. (1.23)

We then have t+(u0) ≤ τ and ∥w(t)∥2 ≥
(
∥w0∥−1

2 −
√
C/48 t

)−1
for t < t+(u0).

Conditions (1.21) and (1.22) are satisfied if w1 ∈W 1,2
0 (G) is real and non-zero

and w0 = νw1 for large ν > 0. If w1 has compact support, we can increase λ(G)
to fulfill (1.23). Also, if the assumptions are true for u0 with strict inequalities,
then they hold on a ball in Z around u0. In accordance with Theorem 1.20 c),
the above blow-up data have a minimal size ∥w0∥26 ≥ κ > 0. Indeed, Sobolov’s
estimate, see (3.38) in [33], (1.21) and Hölder’s inequality imply

∥w0∥26 ≤ 16∥|∇w0|2∥22 ≤ 8|a|∥w0∥44 ≤ 8|a|λ(G)
1
3 ∥w0∥46 =: κ−1∥w0∥46.
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Proof. At first, we do not assume (1.23).
1) Theorem 1.19 provides a maximal weak real-valued solution

w ∈ C(J+,W 1,2
0 (G)) ∩ C1(J+, L2(G)) ∩ C2(J+,W−1,2(G))

of (1.17) for the data u0 as in the assertion. Let t ∈ J+ = J+(u0). We set
ϕ(t) = 1

4∥w(t)∥
2
2 =

1
4 (w(t)|w(t)) ≥ 0. This function has the derivative

ϕ′(t) =
1

2

∫
G
w(t)∂tw(t) dx =

1

2
⟨w(t), ∂tw(t)⟩W 1,2

0
.

Assumption (1.22) yields ϕ(0), ϕ′(0) > 0. We can differentiate again and obtain

ϕ′′(t) =
1

2

∫
G
|∂tw(t)|2 dx+

1

2
⟨w(t), ∂2tw(t)⟩W 1,2

0

=
1

2

∫
G
|∂tw(t)|2 dx+

1

2
⟨w(t),∆Dw(t)⟩W 1,2

0
− a

2

∫
G
|w(t)|4 dx

=
1

2

∫
G

(
|∂tw(t)|2 − |∇w(t)|22 − a|w(t)|4

)
dx

where we also insert (1.17) and use the definition of the extended Laplacian.
The conservation of energy from Theorem 1.20 a) and assumption (1.21) imply

ϕ′′(t) =

∫
G
|∂tw(t)|2 dx− a

4

∫
G
|w(t)|4 dx− E(w0, w1) ≥

|a|
4

∫
G
|w(t)|4 dx.

On the other hand, Hölder’s inequality leads to

ϕ(t)2 =
1

16

(∫
G
|w(t)|2 dx

)2
≤ λ(G)

16

∫
G
|w(t)|4 dx.

Together we derive

ϕ′′(t) ≥ 4|a|
λ(G)

ϕ(t)2 =: Cϕ(t)2.

Integrating twice, we see that

ϕ′(t) ≥ ϕ′(0) + C

∫ t

0
ϕ(s)2 ds ≥ ϕ′(0) > 0,

ϕ(t) ≥ ϕ(0) + tϕ′(0) > 0. (1.24)

Hence, ϕ (strictly) increases. We can now estimate

d
dt

1
2(ϕ

′(t))2 = ϕ′′(t)ϕ′(t) ≥ Cϕ(t)2ϕ′(t).

on J+. Two more integrations imply the inequality

ϕ′(t)2 ≥ ϕ′(0)2 + 2C

∫ t

0
ϕ′(s)ϕ(s)2 ds = 2C

3 ϕ(t)
3 − 2C

3 ϕ(0)
3 + ϕ′(0)2. (1.25)

2) We suppose that J+ = R≥0. Since ϕ
′(0) > 0, we can fix t0 ∈ R≥0 with(

ϕ(0) + t0ϕ
′(0)

)3 ≥ 2ϕ(0)3 − 3ϕ′(0)2/C. (1.26)

Let t ≥ t0. The lower estimate (1.24) leads to

ϕ(t)3 ≥ ϕ(t0)
3 ≥ (ϕ(0) + t0ϕ

′(0))3



1.2. A semilinear wave equation 20

From (1.25) and (1.26) it thus follows

ϕ′(t)2 ≥ C
3 ϕ(t)

3 + C
3 (ϕ(0) + t0ϕ

′(0))3 − 2C
3 ϕ(0)

3 + ϕ′(0)2 ≥ C
3 ϕ(t)

3.

As a result, ϕ satisfies the differential inequality

ϕ′(t) ≥
√
C/3ϕ(t)

3
2 , t ≥ t0, ϕ(t0) =

1
4∥w(t0)∥

2
2 > 0.

The corresponding equation

ψ′(t) =
√
C/3ψ(t)

3
2 , t ≥ 0, ψ(t0) =

1
4∥w(t0)∥

2
2,

has the blow-up solution ψ(t − t0) =
(
2∥w(t0)∥−1

2 −
√
C/12 (t − t0)

)−2
for

t0 ≤ t < t0+τ . As in Lemma 5.10 of [31] one can show that 1
4∥w(t)∥

2
2 = ϕ(t) ≥

ψ(t− t0) for t ∈ [t0, t0 + τ). This fact contradicts the assumption t+(u0) = ∞.

3) Let (1.23) be true. We can now take t0 = 0 in (1.26) since (1.23) yields

3

C
ϕ′(0)2 =

3

4C

(∫
S
w0w1 dx

)2
≥ 1

64

(∫
G
w2
0 dx

)3
= ϕ(0)3.

The calculations in step 2) then still work for t ∈ J+ and lead to ∥w(t)∥2 ≥
2ψ(t)

1
2 , which yields the second assertion. □

The results in this section can be extended to the nonlinearity −a|v|α−1v with
α ∈ (1, 3] by essentially the same arguments. The blow-up example actually
works for all α > 1 with some modifications. See the exercises, where also
further properties of the semilinear wave equation are discussed.



CHAPTER 2

Interpolation theory and regularity

Interpolation theory is an independent branch of functional analysis which
has important applications in many fields of mathematics. To explain the basic
idea in our context, we look at the spaces [D(A)] ↪→ X for a generator A of
an analytic C0-semigroup T (·). We want to construct ‘interpolation spaces’
[D(A)] ↪→ Y ↪→ X, which means that each operator T ∈ B(X) having a
bounded restriction T1 : [D(A)] → [D(A)] also leaves invariant Y and the
restriction TY : Y → Y is bounded. We use such spaces to establish norm
bounds on T (t) : X → Y for t > 0 using the known ones for T (t) : X → X and
T (t) : X → [D(A)]. This fact will be crucial for the treatment of a large class
of reaction-diffusion equations and other semilinear ‘parabolic’ problems in the
next chapter.
Among others, the monographs [5], [21] and [37] are devoted to interpolation

theory. The above indicated applications to parabolic evolution equations are
stressed in [20] and [21], for instance. We focus here on these applications and
do not develop the general theory explicitely, though it is hidden in some of the
proofs. In this sense the next section is similar to Section II.5 of [8] (which is
concerned with the spaces DA(α,∞) and DA(α) in our notation), but we are
closer to interpolation theory omitting certain other aspects investigated in [8].

2.1. Real interpolation spaces for semigroups

In this section we always work in the following setting, sometimes adding
more restrictions and assumptions.

Let A generate the C0-semigroup T (·) on X, M0 := supt∈[0,1] ∥T (t)∥,
α ∈ (0, 1), and q ∈ [1,∞]. (2.1)

Recall that T (·)x is continuous for x ∈ X and continuously differentiable for
x ∈ D(A). One can define the ‘real interpolation spaces’ between X and [D(A)]
by looking at x ∈ X such that T (·)x is Hölder continuous (or satisfies an Lq-
variant of this property). To that purpose, we define

φα,x(s) = s−α ∥T (s)x− x∥ for x ∈ X, s > 0.

If T (·) is a C0-group, we set φα,x(s) = |s|−α ∥T (s)x − x∥ for all s ̸= 0. We
further introduce the weighted space Lq∗(J) = Lq(J,ds/|s|) for any Borel set
J ⊆ R \ {0}, and abbreviate Lq∗ = Lq∗((0, 1]). Observe that L∞

∗ (J) = L∞(J)
and that Lq∗(J) is endowed with the norm given by

∥f∥q
Lq
∗(J)

=

∫
J
|f(s)|q ds

|s|
21
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if q ∈ [1,∞). Some special features of these spaces are discussed below. We
can now formulate the basic notions of this chapter.

Definition 2.1. Let (2.1) be true and x ∈ X. We define the quantities

[x]α,q = ∥φα,x∥Lq
∗
∈ [0,∞], ∥x∥α,q = ∥x∥+ [x]α,q.

The real interpolation space between X and [D(A)] of order α ∈ (0, 1) and
exponent q ∈ [1,∞] is given by

DA(α, q) =
{
x ∈ X

∣∣ [x]α,q <∞
}
,

and the continuous interpolation space by the closure DA(α) = D(A)
∥·∥α,∞

.

It is easy to see that DA(α, q) is a vector space with norm ∥ · ∥α,q and that
DA(α) is a closed subspace of DA(α,∞). Observe that DA(α, q) is defined just
by an estimate (and not by a limit such as the space of continuous functions).
In Example 2.3 below we see that DA(α) ̸= DA(α,∞), in general.

We first discuss slight variants of the above concepts, where x ∈ X. For
0 < a < b ≤ n ∈ N, an elementary estimate yields

∥x∥+∥φα,x∥Lq
∗((0,a])

≤ ∥x∥+∥φα,x∥Lq
∗((0,b])

≤ ∥x∥+∥φα,x∥Lq
∗((0,a])

+c0∥x∥, (2.2)
where for q ∈ [1,∞) the constant c0 = c0(a, b, α,M0) is given by

c0 := (Mn
0 + 1)

(∫ b

a
s−αq−1 ds

) 1
q ≤ Mn

0 + 1

(αq)1/qaα
≤ Mn

0 + 1

αaα
,

and by c0 = a−α(Mn
0 + 1) if q = ∞. In Definition 2.1 one can thus replace the

interval J = (0, 1] by any J = (0, τ ], just obtaining an equivalent norm.
To establish similar results for unbounded intervals, we have to impose

more conditions on the semigroup. First, let T (·) be bounded. Setting
M := supt≥0 ∥T (t)∥ <∞, we infer |φα,x(s)| ≤ s−α(1 +M)∥x∥ and thus

∥φα,x∥Lq
∗(1,∞) ≤ α−1/q(1 +M)∥x∥ ≤ α−1(1 +M)∥x∥ =: c1∥x∥.

This inequality yields the norm equivalence

∥x∥α,q ≤ ∥x∥+ ∥φα,x∥Lq
∗(R+) ≤ ∥x∥α,q + (1 + c1)∥x∥. (2.3)

Next, let T (·) be a C0-group bounded by M̃ on R. Using the inequality

φα,x(s) = (−s)−α∥T (s)(x− T (−s)x)∥ ≤ M̃φα,x(−s)
for s < 0 and the one before (2.3), we estimate

∥x∥α,q ≤ ∥x∥+ ∥φα,x∥Lq
∗(R\{0}) ≤ (1 + M̃)∥x∥α,q + c1(1 + M̃)∥x∥. (2.4)

We further check that also a rescaling of the semigroup leads to an equiv-
alent norm on the interpolation spaces. This fact will be useful in some
proofs. Let ω ∈ R and s ∈ (0, 1]. Recall that A − ωI generates the C0-
semigroup (e−ωtT (t))t≥0 by Lemma 1.17 of [32]. This ‘rescaled’ semigroup
decays exponentially and A − ωI is invertible, if ω is larger than the growth
bound ω0(A) of A, see Definition 1.5 and Proposition 1.20 of [32]. (We have
∥(A− ωI)−1∥ ≤M/(ω − ω) if ∥T (t)∥ ≤Meωt for t ≥ 0 and ω > ω.) By means
of the mean value theorem, we compute

φα,x(s) ≤ s−α∥eωs(e−ωsT (s)x− x)∥+ s−1|eωs − 1| s1−α∥x∥
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≤ eω+
(
|ω|∥x∥+ s−α∥e−ωsT (s)x− x∥

)
, (2.5)

s−α∥e−ωsT (s)x− x∥ ≤ s−αe−ωs∥T (s)x− x∥+ s−1|e−ωs − 1| s1−α∥x∥
≤ eω− (|ω|∥x∥+ φα,x(s)).

In the next proposition we collect basic properties of the real interpolation
spaces, which follow from their definition by elementary arguments and stan-
dard semigroup theory. Observe that they become smaller if α increases or if q
decreases. Moreover, spaces with larger α are smaller independent of q. In this
sense the parameter q provides a ‘fine tuning.’ As announced above, the space
DA(α,∞) consists of the vectors x with Hölder continuous orbits T (·)x.

Here and below, we write a ≲K b if a ≤ cb for all a, b ∈ R and a constant
c = c(K) > 0 depending on K, as well as a ≂K b if a ≲K b and b ≲K a.

Proposition 2.2. Let (2.1) be true, 0 < α < β < 1, 1 ≤ p ≤ q ≤ ∞, b > 0,
and x ∈ X. Then the following assertions hold.

a) DA(α, q) and DA(α) are Banach spaces for ∥·∥α,q and ∥·∥α,∞, respectively.

b) [D(A)] ↪→ DA(β,∞) ↪→ DA(α, 1) ↪→ X.

c) Let q <∞. Then D(A) is dense in DA(α, q).

d) Let q<∞. Then DA(α, 1) ↪→ DA(α, p) ↪→ DA(α, q) ↪→DA(α)⊆DA(α,∞).

e) x ∈ DA(α,∞) if and only if T (·)x ∈ Cα([0, b], X).

f) x ∈ DA(α) if and only if t−α (T (t)x− x) −→ 0 in X as t→ 0.

(In the proof are bounds on the norms of the embeddings. Note ∥x∥α,q ≤ ∥x∥β,q.
The continuous embeddings are given by the respective inclusion maps.)

Proof. Take s ∈ (0, 1] and let α, β, p, and q be given as in the statements.
We show each part of the proposition separately.
a) In view of the remarks after Definition 2.1, we only have to prove that

(DA(α, q), ∥ · ∥α,q) is complete. Let (xn) be a Cauchy sequence in DA(α, q). We
thus have cq := supn ∥xn∥α,q < ∞, and the vectors xn converge to some x in
X since X is a Banach space. Hence, φα,xn(s) tends to φα,x(s) as n → ∞. If
q = ∞, it follows that φα,x(s) ≤ lim supn φα,xn(s) ≤ c∞. For q < ∞, Fatou’s
Lemma yields

∥φα,x∥qLq
∗
=

∫ 1

0
lim
n→∞

φα,xn(s)
q ds

s
≤ lim inf

n→∞

∫ 1

0
φα,xn(s)

q ds

s
≤ cqq.

In both cases x belongs to DA(α, q).
Let ε > 0. There is an index Nε ∈ N such that [xm − xn]α,q ≤ ε for all

n,m ≥ Nε. Since φα,xm−xn tends pointwise to φα,x−xn as m → ∞, we obtain
as above the bound

[x− xn]α,q = ∥φα,x−xn∥Lq
∗
≤ lim sup

m→∞
∥φα,xm−xn∥Lq

∗
≤ ε

for all n ≥ Nε. As a consequence, xn converges to x in DA(α, q).

b) The last embedding in part b) is clear. To see the second, for x ∈ DA(β,∞)
we simply estimate

∥φα,x∥L1
∗
=

∫ 1

0
sβ−α−1s−β∥T (s)x− x∥ds ≤ 1

β − α
∥φβ,x∥L∞

∗ .
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Let x ∈ D(A). Lemma 1.18 of [32] then implies the inequality

φβ,x(s) = s1−β
∥∥∥1
s

∫ s

0
T (τ)Axdτ

∥∥∥ ≤M0∥Ax∥,

so that [D(A)] ↪→ DA(β,∞).

c) Let x ∈ DA(α, q), q < ∞, and ω0(A) < n ∈ N. We set xn = nR(n,A)x ∈
D(A) and c = supn>ω0(A) ∥nR(n,A)∥ <∞, see Lemma 1.22 of [32]. Note that

φα,x−xn(s) = s−α∥(T (s)− I)(x− xn)∥ −→ 0, as n→ ∞,

0 ≤ φα,x−xn(s) ≤ φα,x(s) + s−α∥nR(n,A)(T (s)− I)x∥ ≤ (1 + c)φα,x(s).

By dominated convergence, the functions φα,x−xn thus tend to 0 in Lq∗ as n→ ∞
which yields assertion c).

d) Let x ∈ DA(α, r) for r ∈ [1,∞). We compute

s−α∥T (s)x− x∥ =
(
2−αr + αr

∫ 2

s
τ−αr−1 dτ

) 1
r ∥T (s)x− x∥

≤ 2−α(M0 + 1)∥x∥+ (αr)
1
r

(∫ 2

s
τ−αr∥T (s)x− T (τ)x+ T (τ)x− x∥r dτ

τ

) 1
r

≤ (M0 + 1)∥x∥+ e1/e
(∫ 2

s
(τ − s)−αr∥T (s)(x− T (τ − s)x)∥r dτ

τ − s

) 1
r

+ e1/e
(∫ 2

s
τ−αr∥T (τ)x− x∥r dτ

τ

) 1
r

≤ e1/e(M0 + 1)
(
∥x∥+

(∫ 2

0
σ−αr∥T (σ)x− x∥r dσ

σ

) 1
r
)

≲M0,α ∥x∥α,r ,

where we substituted σ = τ − s and used (2.2). It follows that DA(α, r) ↪→
DA(α,∞). For x ∈ DA(α, q), part b) provides vectors xn ∈ D(A) converging
to x in DA(α, q), and hence in DA(α,∞). This means that DA(α, q) is even
embedded into DA(α). From DA(α, p) ↪→ DA(α,∞) we finally infer

∥φα,x∥Lq
∗
=

(∫ 1

0
|φα,x|p |φα,x|q−p

ds

s

) 1
q ≤ ∥φα,x∥

p
q

Lp
∗
∥φα,x∥

1− p
q

∞ ≲α,M0 ∥φα,x∥Lp
∗
,

establishing statement d).

e) The implication ‘⇐’ is clear. For the other implication, let x ∈ DA(α,∞),
0 ≤ s < t ≤ b, and K := supt∈[0,b] ∥T (t)∥, where we may assume that b ≥ 1. If

t− s ≥ 1, one trivially has (t− s)−α∥T (t)x− T (s)x∥ ≤ 2K∥x∥. For t− s ≤ 1,
the semigroup property yields

(t− s)−α∥T (t)x− T (s)x∥ ≤ K(t− s)−α∥T (t− s)x− x∥ ≤ K [x]α,∞.

f) For x ∈ DA(α) and ε > 0, there is a vector y ∈ D(A) such that ∥x−y∥α,∞ ≤
ε. We can thus estimate

lim
t→0

t−α∥T (t)x− x∥ ≤ [x− y]α,∞ + lim
t→0

t1−α t−1∥T (t)y − y∥ ≤ ε+ 0 ∥Ay∥ = ε,
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proving the ‘only if’ part. Conversely, assume that φα,x(s) tends to 0 as s→ 0.
Let ε > 0 and s, t ∈ (0, 1]. First, there thus exists δε ∈ (0, 1) with

s−α∥(T (s)− I)(T (t)x− x)∥ ≤ (1 +M0)s
−α∥T (s)x− x∥ ≤ ε

for all s ∈ (0, δε] and t ∈ (0, 1]. Second, we find a number η ∈ (0, 1) such that

s−α∥(T (s)− I)(T (t)x− x)∥ ≤ (1 +M0)δ
−α
ε ∥T (t)x− x∥ ≤ ε

for all s ∈ [δε, 1] and t ∈ (0, η]. This means that T (t)x tends to x in DA(α,∞)

as t→ 0 so that the vectors yn = n
∫ 1/n
0 T (t)x dt converge to x in DA(α,∞) as

n→ ∞. Hence, x belongs to DA(α) as yn ∈ D(A) by Lemma 1.18 in [32]. □

We now describe the interpolation spaces for the translation group.

Example 2.3. Let X = Lp(R) for some p ∈ [1,∞) or X = C0(R) for p = ∞.
We consider the (isometric) translation group onX given by T (t)f = f(·+t) for
f ∈ X and t ∈ R. It has the generator A = d/ds with domain D(A) =W 1,p(R)
respectively D(A) = C1

0 (R), cf. Examples 1.42 and 1.21 in [32]. Due to (2.4),
the interpolation norms are given by

∥f∥α,q ≂α ∥f∥p +
(∫

R
|t|−αq−1 ∥f(·+ t)− f∥qLp(R) dt

) 1
q

= ∥f∥p +
(∫

R

(∫
R

|f(s+ t)− f(s)|p

|t|αp+
p
q

ds
) q

p
dt
) 1

q
,

∥f∥α,∞ = ∥f∥∞ + sup
t∈R\{0}

(∫
R

|f(s+ t)− f(s)|p

|t|αp
ds

) 1
p

for p, q ∈ [1,∞), and for p = q = ∞ by the Hölder norm

∥f∥α,∞ = ∥f∥∞ + sup
t∈R\{0}, s∈R

|f(s+ t)− f(s)|
|t|α

.

For p <∞, the space DA(α, q) coincides with the Besov space Bα
pq(R), see [37]

and [38].1 In the special case p = q ∈ [1,∞), the space Bα
pp(R) =: Wα,p(R) is

called Slobodetskii space (or fractional Sobolev space) and has the simpler norm

∥f∥α,p ≂ ∥f∥p +
(∫

R

∫
R

|f(τ)− f(s)|p

|τ − s|αp+1
dτ ds

) 1
p
.

(Here one uses Fubini’s theorem and the substitution τ = s+ t.)
There are functions f in C0(R) with a finite Hölder norm ∥f∥α,∞ such that

f(s) = sα for s ∈ [0, 1], and thus t−α ∥T (t)f − f∥∞ ≥ t−α|f(t) − f(0)| = 1 for
all t ∈ (0, 1]. Proposition 2.2 then yields f ∈ DA(α,∞) \DA(α). ♢

We next see that T (·) behaves nicely on its interpolation spaces. But, in
general, it is not strongly continuous on DA(α,∞). E.g., consider the transla-
tion group on C0(R) in Example 2.3, and take a map f ∈ C0(R) ∩ Cαb (R) with
f(t) = |t− n|α if |t− n| ≤ 1

n and 2 ≤ n ∈ N. For gn = T ( 1n)f − f , it then holds∥∥T ( 1n)f − f
∥∥
Cα ≥ nα

∣∣gn(n)− gn(n− 1
n)
∣∣ = nα|f(n+ 1

n) + f(n− 1
n)| = 2

1To obtain the Besov spaces Bα
∞q(R) or Hölder spaces, one has to start with L∞(R) or

Cb(R) instead of C0(R), which is not possible in our setting, but see p.13 in [21] or [37], [38].
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for all 2 ≤ n ∈ N. Nevertheless one could also work on DA(α,∞), cf. Sec-
tion II.5 b) in [8] as well as Section 2.2 in [20] for analytic semigroups.

Proposition 2.4. Let (2.1) be true. Then the following assertions hold.

a) We have T (t)DA(α, q) ⊆ DA(α, q) and T (t)DA(α) ⊆ DA(α) for all t ≥ 0.
The norms of the restrictions Tα,q(t) := T (t)↾DA(α,q) and Tα(t) := T (t)↾DA(α)

are smaller or equal ∥T (t)∥B(X) for each t ≥ 0. The operator families Tα,q(·) if
q <∞ and Tα(·) are C0-semigroups on DA(α, q) and DA(α), respectively.

b) The generators of Tα,q(·) and Tα(·) are the restrictions (‘parts’) Aα,q (with
q <∞) and Aα of A in the respective spaces endowed with the domains

D(Aα,q) =
{
x ∈ D(A)

∣∣Ax ∈ DA(α, q)
}
=: DA(1 + α, q),

D(Aα) =
{
x ∈ D(A)

∣∣Ax ∈ DA(α)
}
=: DA(1 + α).

c) Let λ ∈ ρ(A). Then λ belongs to ρ(Aα,q) and ρ(Aα), with R(λ,Aα,q) =
R(λ,A)↾DA(α,q) if q <∞ and R(λ,Aα) = R(λ,A)↾DA(α). These resolvents have
norm smaller or equal ∥R(λ,A)∥B(X).

d) We have σ(A) = σ(Aα,q) = σ(Aα), where q <∞.

Proof. Let x ∈ X, t ≥ 0, and s ∈ (0, 1]. Observe that

φα,T (t)x(s) = s−α∥T (t)(T (s)x− x)∥ ≤ ∥T (t)∥φα,x(s).
Hence, the semigroups leave invariant the interpolation spaces and their restric-
tions have norms smaller or equal ∥T (t)∥. Of course, they are still semigroups
on these spaces. Let x ∈ D(A). Proposition 2.2 yields that

∥T (t)x− x∥α,q ≤ c∥T (t)x− x∥A −→ 0

as t→ 0. Since the restrictions are locally bounded, T (·) is strongly continuous
on DA(α) and, due to the density proved in Proposition 2.2, also on DA(α, q)
if q <∞. We have shown assertion a).

From now on we take q < ∞. Let B be the generator of Tα,q(·) and Aα,q
be defined as in the statement. Let x ∈ D(B) ⊆ DA(α, q). Then 1

t (T (t)x− x)
converges to Bx in DA(α, q), as t → 0. Since DA(α, q) ↪→ X, these vectors
also tend to Bx in X. This means that x belongs to D(A) and Ax = Bx to
DA(α, q); i.e., B ⊆ Aα,q.

Let λ ∈ ρ(A). We show that λ is contained in ρ(Aα,q), implying that ρ(B)
and ρ(Aα,q) both contain a right halfplane, and hence B = Aα,q by Lemma 1.23
of [32]. Let x ∈ DA(α, q). Then AR(λ,A)x = λR(λ,A)x−x is also an element
of DA(α, q), so that R(λ,A)x ∈ DA(α+ 1, q) and

(λI −Aα,q)R(λ,A)x = (λI −A)R(λ,A)x = x

because of the definition of Aα,q. For x ∈ DA(α+ 1, q), we further have

R(λ,A)(λI −Aα,q)x = R(λ,A)(λI −A)x = x.

It follows that λ belongs to ρ(Aα,q) and R(λ,Aα,q) = R(λ,A)|DA(α,q). The
estimate for R(λ,Aα,q) is then shown as for Tα,q(t). The results in b) and c)
for DA(α) are proved in the same way.

Statement d) now is a direct consequence of Proposition IV.2.17 in [8]. □

We extend Example 2.3 to second derivatives and several dimensions.
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Example 2.5. Let p = q ∈ [1,∞) for simplicity. We first look at X = Lp(R),
A = d/ds and D(A) =W 1,p(R) as in Example 2.3. One defines the space

W 1+α,p(R) :=
{
u ∈W 1,p(R)

∣∣u′ ∈Wα,p(R)
}
= DA(1 + α, p).

Based on somewhat deeper interpolation theory, Example 5.14 in [21] yields the
identityW 1+α,p(R) = DA2(12 +

α
2 , p) and alsoWα,p(R) = DA2(α2 , p). Here A

2 =

d2/ds2 has the domain D(A2) = {u ∈ W 1,p(R) |u′ ∈ W 1,p(R)} = W 2,p(R). It
generates a C0-semigroup, cf. Example 1.48 in [32].
One introduces the Slobodetskii spaces on Rm as for m = 1 by

Wα,p(Rm) =
{
u ∈ Lp(Rm)

∣∣∣ ∫
Rm

∫
Rm

|u(y)− u(x)|p

|y − x|αp+m
dx dy <∞

}
,

W 1+α,p(Rm) =
{
u ∈W 1,p(Rm)

∣∣∇u ∈Wα,p(Rm)m
}
.

Let p ∈ (1,∞). Example 2.30 in [32] says that ∆ with D(∆) = W 2,p(Rm)
generates an (analytic) C0-semigroup. Again employing more interpolation
theory, it can be shown that

Wα,p(Rm) = D∆(
α
2 , p) and W 1+α,p(Rm) = D∆(

1
2 + α

2 , p).

See Examples 5.15 and 5.16 (combined with Proposition 5.7) in [21], where also
the cases p ∈ {1,∞} are treated. ♢

Two equivalent definitions. We next characterize the interpolation
spaces in terms of the resolvent of A and, for analytic semigroups, by the time
derivative d

dtT (·) = AT (·).
In the proof of the first equivalence, we need the following facts which high-

light the role of the weight 1/t of the spaces Lq∗(J). The multiplicative group
R+ posseses the invariant measure dt/t; i.e., the equality∫ ∞

0
f(λs)

ds

s
=

∫ ∞

0
f(τ)

dτ

τ
(2.6)

holds for every measurable function f : R+ → R≥0 and each λ > 0, due to the
substitution τ = λs. Similarly, one obtains∫ ∞

0
f(s−1)

ds

s
=

∫ ∞

0
f(τ)

dτ

τ
. (2.7)

By means of these identities, as for the additive group R and the Lebesgue
measure one can prove Young’s inequality for the convolution integral

(f ∗ g)(t) :=
∫ ∞

0
f(ts−1)g(s)

ds

s
= (g ∗ f)(t), t > 0,

for f ∈ Lp∗(R+), g ∈ L1
∗(R+) and p ∈ [1,∞], namely

∥f ∗ g∥Lp
∗(R+) ≤ ∥f∥Lp

∗(R+) ∥g∥L1
∗(R+). (2.8)

To use the above results directly, we take the interval J = R+ in the next
result and thus assume that the semigroup is bounded byM := supt≥0 ∥T (t)∥ <
∞ and hence R+ ⊆ ρ(A) by Proposition 1.20 of [32]. This is always true if we
replace the given A in (2.1) by A − ωI for some ω > ω0(A). The constants
below would then depend on ω, too, see (2.5).
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For x ∈ X, α ∈ (0, 1) and λ > 0, we introduce the function

χα,x(λ) = ∥λαAR(λ,A)x∥ = ∥λα+1R(λ,A)x− λαx∥. (2.9)

Observe that χα,x is bounded for α = 0 and x ∈ X as well as for α = 1 and
x ∈ D(A) by the Hille–Yosida estimate ∥λR(λ,A)∥ ≤M from Proposition 2.20
in [32]. The result belows says that the interpolation spaces fill the gap between
these two extreme cases. Note that the limit s → 0 is replaced by λ → ∞
compared to Proposition 2.2 f). Besides (2.6)–(2.8), the proofs rely on basic
formulas from [32] relating generators with their resolvent and semigroup.

Proposition 2.6. Let (2.1) hold with M= supt≥0 ∥T (t)∥<∞. We then have

DA(α, q) = {x ∈ X |χα,x ∈ Lq∗(R+)},
and the norm ∥ · ∥α,q is equivalent to x 7→ ∥x∥ + ∥χα,x∥Lq

∗(R+). (In the proof

one finds estimates on the corresponding constants.) Moreover, a vector x ∈ X
belongs to DA(α) if and only if χα,x(λ) → 0 as λ→ ∞.

Proof. Let x ∈ X, α ∈ (0, 1), q ∈ [1,∞], and λ, s > 0.
1) Let x ∈ DA(α, q). The formula for R(λ,A) in Proposition 1.20 of [32] and

(2.6) imply

AR(λ,A)x = λR(λ,A)x− x =

∫ ∞

0
λe−λttαt−α(T (t)x− x) dt,

χα,x(λ) ≤
∫ ∞

0
(λt)1+αe−λtφα,x(t)

dt

t
=

∫ ∞

0
s1+αe−sφα,x(λ

−1s)
ds

s
. (2.10)

Setting φ̃α,x(τ) = φα,x(τ
−1), we infer from Young’s inequality (2.8) the bound

∥χα,x∥Lq
∗(R+) ≤ ∥φ̃α,x∥Lq

∗(R+)

∫ ∞

0
s1+αe−s

ds

s
= Γ(1 + α)∥φα,x∥Lq

∗(R+)

with the classical Gamma function and also using (2.7).
Let x ∈ DA(α). We then have φα,x(s/λ) ≤ c(α,M)∥x∥α,∞ and φα,x(s/λ) →

0 as λ → ∞ because of (2.3) respectively Proposition 2.2 f). By dominated
convergence, estimate (2.10) leads to χα,x(λ) → 0 as λ→ ∞.

2) For the converse, let χα,x belong to Lq∗(R+). We decompose x into a vector
in D(A) with a weight and one in X, writing

x = s−1R(s−1, A)x−AR(s−1, A)x =: x1 − x2.

Lemma 1.18 of [32] and (2.9) now yield

∥T (s)x1 − x1∥ ≤
∫ s

0
∥T (τ)Ax1∥dτ ≤ sM∥Ax1∥ = sαMχα,x(s

−1),

∥T (s)x2 − x2∥ ≤ (M + 1)∥x2∥ = (1 +M)sαχα,x(s
−1).

It follows that φα,x(s) ≤ (1 + 2M)χα,x(s
−1) and hence

∥φα,x∥Lq
∗(R+) ≤ (1 + 2M) ∥χα,x∥Lq

∗(R+)

by (2.7). In view of estimate (2.3), the first assertion is shown.
Let χα,x(λ) → 0 as λ → ∞. Then φα,x(s) tends to 0 as s → 0 by the above

pointwise inequality, and the second claim results from Proposition 2.2 f). □



2.1. Real interpolation spaces for semigroups 29

As a preparation for the next characterization, we prove an important esti-
mate for power-weighted Lp–norms called Hardy’s inquality.

Lemma 2.7. Let a ∈ (0,∞], α > 0, p ∈ [1,∞) and φ : (0, a) → R≥0 be
measurable. We then have∫ a

0
t−αp

(∫ t

0
φ(s)

ds

s

)p dt
t

≤ 1

αp

∫ a

0
s−αpφ(s)p

ds

s
.

Proof. We can assume that the right-hand side in the above inequality is
finite. We set f(τ, t) = (f(τ))(t) = t−αφ(τt) for t ∈ (0, a) and τ ∈ (0, 1]. The
substitution τ = s/t yields

N :=
(∫ a

0
t−αp

(∫ t

0
φ(s)

ds

s

)p dt
t

) 1
p
=

(∫ a

0

(∫ 1

0
(f(τ))(t)

dτ

τ

)p dt
t

) 1
p
.

Below we show that f : (0, 1] → Lq∗(0, a) is strongly measurable, compare the
discussion before Lemma 4.4 in [32]. We can thus rewrite the above formula
invoking a Bochner integral. Substituting also s = τt, it then follows

N =
∥∥∥∫ 1

0
f(τ)

dτ

τ

∥∥∥
Lp
∗(0,a)

≤
∫ 1

0
∥f(τ)∥Lp

∗(0,a)
dτ

τ
=

∫ 1

0

[ ∫ a

0
t−αpφ(τt)p

dt

t

] 1
p dτ

τ

=

∫ 1

0

(∫ aτ

0
ταps−αpφ(s)p

ds

s

) 1
p dτ

τ
≤

∫ 1

0
τα

(∫ a

0
s−αpφ(s)p

ds

s

) 1
p dτ

τ

=
1

α

(∫ a

0
s−αpφ(s)p

ds

s

) 1
p
.

We finally indicate a proof of the claimed strong measurability.2 Let 0 ≤ g ∈
Lp

′
∗ (0, a). Since the function (τ, t) 7→ f(τ, t)g(t) is measurable and non-negative,

Fubini’s theorem shows the measurability of the map

(0, 1] → R; τ 7→ ⟨f(τ), g⟩Lp
∗(0,a)

=

∫ a

0
f(τ, t)g(t)

dt

t
.

This fact is then true for all g ∈ Lp
′

∗ (0, a). Pettis’ measurability theorem now
yields that f is strongly measurable, see Theorem 1.1.6 in [14]. □

The next proposition describes the interpolation spaces of an analytic semi-
group in terms of its time derivative d

dt T (t) = AT (t). This result will be crucial
for our appplications to parabolic problems. To this aim, we define the quantity

ψα,x(s) = s1−α∥AT (s)x∥

for x ∈ X, α ∈ (0, 1), and s > 0. Observe that it becomes bounded (for
s ∈ (0, 1], say) if x ∈ D(A) and α = 1, as well as for x ∈ X and α = 0 by
Theorem 2.23 of [32]. (To use this result we take F = C.) Again we want
to interpolate between these two starting points. As in the previous result we
employ basic semigroup theory, but now also Hardy’s inequality.

2This part was omitted in the lectures. The above calculation can also be justified using
Minkowski’s inequality for integrals, see Theorem 2.4 in [19].
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Proposition 2.8. Let (2.1) hold, F = C, and T (·) be analytic. We then have

DA(α, q) = {x ∈ X |ψα,x ∈ Lq∗},

and the norm ∥ · ∥α,q is equivalent to x 7→ ∥x∥ + ∥ψα,x∥Lq
∗
. (In the proof one

finds estimates on the corresponding constants.) For q ∈ (1,∞), it follows

x ∈ DA(1− 1
q , q) ⇐⇒ AT (·)x ∈ Lq((0, 1], X).

Moreover, x belongs to DA(α) if and only if ψα,x(s) → 0 as s→ 0.

Proof. Let x ∈ X, α ∈ (0, 1), q ∈ [1,∞], and s ∈ (0, 1].
1) Using Lemma 1.18 of [32], we estimate

φα,x(s) = lim
ε→0

s−α∥T (s)x− T (ε)x∥ = lim
ε→0

s−α
∥∥∥∥∫ s

ε
τα−1τ1−αAT (τ)x dτ

∥∥∥∥
≤ lim sup

ε→0
s−α

∫ s

ε
τα−1ψα,x(τ) dτ ≤ 1

α
sup

0<τ≤s
ψα,x(τ).

This inequality yields the first half of the first assertion for q = ∞ and of
the last assertion because of Propsition 2.2 f). Let q ∈ [1,∞) and ψα,x ∈ Lq∗.
Proceeding as above, from Hardy’s Lemma 2.7 we infer the bound

∥φα,x∥qLq
∗
≤

∫ 1

0
s−αq

(∫ s

0
τ∥AT (τ)x∥ dτ

τ

)q ds
s

≤ 1

αq

∫ 1

0
τ−αqτ q∥AT (τ)x∥q dτ

τ
= α−q∥ψα,x∥qLq

∗
.

2) For the converse, we put M1 := sup0<s≤1 ∥sAT (s)∥. (See Theorem 2.25
and Remark 2.26 of [32].) Let x ∈ DA(α, q). Lemma 1.18 of [32] implies

s1−αAT (s)x = s−αT (s)(T (s)x− x)− s−αAT (s)

∫ s

0
τατ−α(T (τ)x− x) dτ,

ψα,x(s) ≤M0φα,x(s) +M1s
−1−α

∫ s

0
τα φα,x(τ) dτ.

In the case q = ∞, we derive

ψα,x(s) ≤M0φα,x(s) +
M1

1 + α
sup
τ∈(0,s]

φα,x(τ),

and deduce the asserted equivalence for q = ∞ and the final assertion. Let
q ∈ [1,∞). The previous estimate and Hardy’s inequality lead to

ψα,x(s) ≤M0φα,x(s) +M1s
−α

∫ s

0
τα φα,x(τ)

dτ

τ
,

∥ψα,x∥Lq
∗
≤M0∥φα,x∥Lq

∗
+
M1

α

[∫ 1

0
τ−αqταqφα,x(τ)

q dτ

τ

] 1
q
= (M0+

M1
α )∥φα,x∥Lq

∗
,

concluding the proof of the first assertion.
3) Let q ∈ (1,∞). The second claim then follows from the formula

∥ψ1−1/q,x∥
q
Lq
∗
=

∫ 1

0
sq(1−(1−1/q)) ∥AT (s)x∥q ds

s
=

∫ 1

0
∥AT (s)x∥q ds. □
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Let b > 0, where allow for b = ∞ if T (·) and s 7→ sAT (s) are bounded
on R+, cf. Theorem 2.25 of [32]. We set M ′

0 = sup0<s<b ∥T (s)∥ and M ′
1 =

sup0<s<b ∥sAT (s)∥. As in the above proof one shows that

∥ψα,x∥Lq
∗(0,b)

≤
(
M ′

0 +
M ′

1
α

)
∥φα,x∥Lq

∗(0,b)
. (2.11)

The next theorem shows that our spaces DA(α, q) and DA(α) are indeed
interpolation spaces in the usual sense of this concept. For an operator T ∈
B(X,Y ) mapping a subspace X0 ⊆ X into a subspace Y0 ⊆ Y , we denote the
restriction of T acting from X0 to Y0 by the same symbol. In the proof below
we implicitly use the standard definition of real interpolation spaces via the
‘k-functional,’ see Remark 2.11c).

Theorem 2.9. Assume that A and B generate C0-semigroups T (·) and S(·)
on X and Y , respectively, and that the operator V ∈ B(X,Y ) satisfies VD(A) ⊆
D(B) and V ∈ B(X1, Y1), where X1 := [D(A)] and Y1 := [D(B)]. Let 0 < α < 1
and 1 ≤ q ≤ ∞. Then V maps DA(α, q) into DB(α, q) and DA(α) into DB(α),
we have V ∈ B(DA(α, q), DB(α, q)) and V ∈ B(DA(α), DB(α)), and it holds

∥V ∥B(DA(α,q),DB(α,q)), ∥V ∥B(DA(α),DB(α)) ≤ c∥V ∥1−αB(X,Y ) ∥V ∥αB(X1,Y1)

for a constant only depending on α and the exponential growth bounds of T (·)
and S(·), as indicated in the proof.

Proof. In view of (2.5), after rescaling if necessary, we may assume that
the semigroups are exponentially stable. So let R≥0 ⊆ ρ(A) ∩ ρ(B) and the
semigroups be bounded.
Take x ∈ X, s ∈ (0, 1], and t > 0. Since the result is trivially true for V = 0,

we may assume that V ̸= 0. We set ∥V ∥0 = ∥V ∥B(X,Y ), ∥V ∥1 = ∥V ∥B(X1,Y1),
and N0 = sup0≤s≤1 ∥S(s)∥. Let x = x0 + x1 for some x0 ∈ X and x1 ∈ X1. As
V x1 ∈ Y1, Lemma 1.18 of [32] yields

∥S(s)V x− V x∥Y ≤ ∥S(s)V x0 − V x0∥Y + ∥S(s)V x1 − V x1∥Y

≤ (N0 + 1)∥V x0∥Y +

∫ s

0
∥S(τ)BV x1∥Y dτ

≤ (N0 + 1)∥V ∥0∥x0∥X + sN0∥V x1∥Y1
≤ (N0 + 1)∥V ∥0

(
∥x0∥X + s∥V ∥1 ∥V ∥−1

0 ∥x1∥X1

)
.

We now define the k-functional by

k(t, x) = inf
{
∥x0∥X + t∥x1∥X1

∣∣x = x0 + x1, x0 ∈ X, x1 ∈ X1

}
. (2.12)

Below we use the decomposition of x given in (2.13), which already appeared
in the proof of Proposition 2.8. However, our proof also requires the infimum
in (2.12) over all decompositions. Taking this infimum, we deduce

φBα,V x(s) ≤ (N0 + 1)∥V ∥0s−αk(s∥V ∥1∥V ∥−1
0 , x).

Here and below we use the superscript B in an obvious way. We have the
decomposition x = x0 + x1 with

x0 = −AR(t−1, A)x ∈ X and x1 = t−1R(t−1, A)x ∈ X1. (2.13)
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The k-functional can thus be dominated by

k(t, x) ≤ ∥AR(t−1, A)x∥X+t∥t−1R(t−1, A)x∥X1 ≤ (2+∥A−1∥)∥AR(t−1, A)x∥X .

Let q <∞. The substitution t = s∥V ∥1 ∥V ∥−1
0 , (2.6), and (2.7) then imply

[V x]Bα,q ≤ (N0 + 1)∥V ∥0
[∫ 1

0
s−αqk(s∥V ∥1 ∥V ∥−1

0 , x)q
ds

s

]1/q
≤ (N0 + 1)∥V ∥0

[∫ ∞

0
t−αq∥V ∥αq1 ∥V ∥−αq0 k(t, x)q

dt

t

]1/q
≤ (N0 + 1)(2 + ∥A−1∥)∥V ∥1−α0 ∥V ∥α1

[∫ ∞

0
t−αq∥AR(t−1, A)x∥qX

dt

t

]1/q
= (N0 + 1)(2 + ∥A−1∥)∥V ∥1−α0 ∥V ∥α1 ∥χα,q∥Lq

∗(R+) .

The norm of DB(α, q) also contains the term ∥y∥Y .3 To deal with it, let x =
x0 + x1 for some x0 ∈ X and x1 ∈ X1. We estimate

∥V x∥Y ≤ ∥V ∥0
(
∥x0∥X + ∥V ∥1 ∥V ∥−1

0 ∥x1∥X1

)
= ∥V ∥0k(∥V ∥1 ∥V ∥−1

0 , x)

≤ ∥V ∥0 sup
t>0

t−αk(t∥V ∥1 ∥V ∥−1
0 , x) = ∥V ∥0 sup

s>0
(s∥V ∥−1

1 ∥V ∥0)−αk(s, x)

= ∥V ∥1−α0 ∥V ∥α1 sup
s>0

(αq)
1
q

(∫ ∞

s
τ−αq−1k(s, x)q dτ

)1/q

≤ αe
1
e ∥V ∥1−α0 ∥V ∥α1

(∫ ∞

0
τ−αqk(τ, x)q

dτ

τ

)1/q

≤ e
1
e (1 + ∥A−1∥)∥V ∥1−α0 ∥V ∥α1 ∥χα,q∥Lq

∗(R+) ,

using that k(·, x) is non-decreasing and the above computation at the end.
Proposition 2.6 then yields the assertion for q <∞. The case q = ∞ can be

handled in a similar, but simpler way. The remaining result then follows from
V DA(α) = VD(A) ⊆ VD(A) ⊆ D(B) = DB(α) with closures in the (α,∞)
norms, employing the continuity of V . □

The above result implies the ‘interpolation estimate’ for the norms, which
can also be proved by elementary methods in many cases.

Corollary 2.10. Let (2.1) hold and x ∈ D(A). We then have the inequality

∥x∥α,q ≤ c∥x∥1−αX ∥x∥αA
for a constant c = c(A,α) > 0, which is given by the above proof.

Proof. For x ∈ D(A), we consider the map Vx : F → X1 given by Vxµ =
µx. On F we choose the semigroup R(·) = I generated by B = 0 with domain
F. Note that Vx has the norms ∥x∥X in B(F, X), ∥x∥α,q in B(F, DA(α, q)), and
∥x∥A in B(F, X1). The claim now follows from Theorem 2.9. □

Remark 2.11. a) We point out that the interpolation estimate in Corol-
lary 2.10 does not imply the interpolation property expressed by Theorem 2.9.

3The following argument was not given in the lectures.
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b) Let B ∈ B(DA(α, q), X) for some α ∈ (0, 1) and q ∈ [1,∞]. Let a > 0 and
x ∈ D(A). Corollary 2.10 and Young’s inequality with p = 1/α yield

∥Bx∥ ≤ ∥B∥∥x∥α,q ≤ c∥B∥(α/a)α∥x∥1−αX (a/α)α∥x∥αA
≤ a∥x∥A + (1− α)

(
c∥B∥(α/a)α

)1/(1−α)∥x∥X .
This estimate allows us to apply the perturbation theorems for analytic or
dissipative semigroups for suitable A and B, see Section 3.1 in [32].

c) LetX andX1 be Banach spaces which are linear subspaces of a vector space
Z whose addition and scalar multiplication are continuous for some metric on
Z and X,X1 ↪→ Z. One can then define the k–functional as in (2.12). Setting
κα,x(s) = s−αk(s, x) for s > 0, one now introduces the real interpolation space

(X,X1)α,q =
{
x ∈ X +X1

∣∣κα,x ∈ Lq∗(R+)
}

endowed with the norm ∥κα,x∥Lq
∗(R+). (See §2.2E) in [30] for the sum space.)

Arguing as in the proof of Theorem 2.9, one sees that this space coincides with
our real interpolation space with equivalent norms if X1 is the domain of a
generator, see Proposition 5.7 in [21].
This fact tells us that DA(α, q) and DA(α) do not depend on the generator

itself, but only on the Banach spaces X and [D(A)].
Any spaces E and F satisfying the conclusion of Theorem 2.9 are called

interpolation spaces (of order α) between X and [D(A)] and between Y and
[D(B)], respectively. Another important class of such spaces are the ‘com-
plex interpolation spaces’ [X,X1]α of order α ∈ (0, 1). It can be shown that
[Lp(µ), Lq(µ)]α = Lr(µ) for 1

r = (1 − α)1p + α1
q and 1 ≤ p, q ≤ ∞, see e.g.

Example 2.11 in [21]. In this case the assertion of Corollary 2.10 is a standard
consequence of Hölder’s inequality. The real interpolation spaces between Lp(µ)
and Lq(µ) are the ‘Lorentz spaces’, see Example 1.27 in [21]. ♢

We next give a typical application of the interpolation property to the theory
of function spaces, which is the basis of our investigations in Chapter 3.

Example 2.12. Let G ⊆ Rm be bounded and open with ∂G ∈ C2, α ∈ (0, 1),

and p ∈ (1,∞). On Lp(G) we consider A = ∆ with D(A) =W 2,p(G)∩W 1,p
0 (G),

and on Lp(Rm) the operator B = ∆ with D(B) = W 2,p(Rm). These operators
generate (analytic) C0-semigroups and their graph norms are equivalent to the
norms of W 2,p(G) respectively W 2,p(Rm), cf. Example 2.30 in [32].

There is an (extension) operator E ∈ B(Lp(G), Lp(Rm)) whose restriction
belongs to B(W 2,p(G),W 2,p(Rm)) such that Ef = f on G for all f ∈ Lp(G),
see Theorem 3.28 in [33]. Theorem 2.9 then implies that E induces a map in
B(DA(α, q), DB(α, q)). Example 5.15 in [21] yields DB(α, p) = W 2α,p(Rm) if
α ̸= 1

2 , see also Example 2.5 above. Using the restriction operator Rg = g↾G on
Lp(Rm), we thus obtain the embedding

RE : DA(α, p) ↪→W 2α,p(G) :=
{
u ∈ Lp(G)

∣∣ ∃ v ∈W 2α,p(Rm) : v↾G= u
}
.

By the same reasoning, we have DC(α, q) ↪→W 2α,p(G) for any generator C on
Lp(G) such that D(C) ⊆W 2,p(G) and ∥ · ∥C ≂ ∥ · ∥2,p.
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In the above definition, the norm of u in W 2α,p(G) is given by the infimum
of all norms ∥v∥W 2α,p(Rm) with v↾G= u. However, W 2α,p(G) also possesses
an equivalent ‘intrinsic’ norm of the same type as those in Example 2.5, cf.
Theorem 4.4.2.2 in [37].
In the exceptional case α = 1/2, one again needs more interpolation theory.

In this case the above results are true with W 2α,p(G) replaced by the integer
Besov space B1

pp(G), see Example 5.14 of [21] or Theorem 4.3.1.2 and 4.4.2.2

of [37]. This space differs from W 1,p(G) if p ̸= 2.
The embeddingsDA(α, p) ↪→W 2α,p(G) andDA(

1
2 , p) ↪→ B1

pp(G) are sufficient
for later applications. But actually much more is known. We first note that
the trace operator tr maps W 2α,p(G) and B1

pp(G) continuously into Lp(∂G) if
α > 1/(2p) due to the fractional trace theorem, cf. Theorem 4.7.1 in [37]. Since
D(A) is dense in DA(α, q) by Proposition 2.2, we infer that

DA(α, p) ↪→

{{
u ∈W 2α,p(G)

∣∣ tru = 0
}
, 1

2p < α < 1, α ̸= 1
2 ,{

u ∈ B1
pp(G)

∣∣ tru = 0
}
, α = 1

2 .

With considerably more effort here one can establish equalities instead of em-
beddings, namely

DA(α, p) =


W 2α,p(G), 0 < α < 1

2p ,{
u ∈W 2α,p(G)

∣∣ tru = 0
}
, 1

2p < α < 1, α ̸= 1
2 ,{

u ∈ B1
pp(G)

∣∣ tru = 0
}
, α = 1

2 ,

see Theorem 4.3.3 in [37] and the references therein. ♢

Finally, we state a result on compact embeddings needed in the next chapter.
The proof requires more facts from interpolation theory not presented here. See
Corollary 3.8.2 of [5].

Proposition 2.13. Let (2.1) be true. Set X0 = X and X1 = [D(A)]. For
0 < α < β < 1 we consider Xα ∈ {DA(α, p), DA(α) | p ∈ [1,∞]} and Xβ ∈
{DA(β, q), DA(β) | q ∈ [1,∞]}. Assume that I : X1 → X0 is compact. Then
also the embeddings Xβ ↪→ Xα are compact for 0 ≤ α < β ≤ 1.

2.2. Regularity of analytic semigroups

In this section we treat basic regularity properties of linear parabolic evolution
equations complementing the results established in Theorems 2.23 and 2.31 of
[32]. We will first look at semigroup orbits and then at the inhomogeneous
problem. The term ‘parabolic’ means that we assume that A generates the
analytic C0-semigroup T (·) on X, and it is motivated by the applications to
diffusion-type equations. These examples will be discussed in the next chapter.
Recall that a C0-semigroup T (·) is analytic if and only if it mapsX into [D(A)]

with norm less or equal c/t for t ∈ (0, 1]. This property is also equivalent to a
resolvent estimate for the generator A (i.e., the sectoriality of angle φ > π/2 of
A− ωI for some ω ≥ 0). See Theorem 2.25 and Remark 2.26 of [32]. If ω = 0,
we have a bounded analytic semigroup with supt>0(∥T (t)∥+ ∥tAT (t)∥) <∞.
For convenience, we write Xα for any of the spaces DA(α, q) or DA(α) with

α ∈ (0, 1) and q ∈ [1,∞). We further let F = C and set X0 = X, X1 = [D(A)],
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and ∥x∥α = ∥x∥Xα for α ∈ [0, 1]. In Proposition 2.4 we have seen that the
‘parts’ Aα,q and Aα of A in DA(α, q) and DA(α) generate C0-semigroups in
these spaces, respectively, which are the restrictions of T (·) to the respective
space. For simplicity, we now use the symbols A and T (t) for all these objects.
We sometimes write C0(J,X) instead of C(J,X).

We first describe the regularizing effect of an analytic semigroup in the scale
of interpolation spaces. The main point is that the norm of T (t) : X → Xβ is

bounded by ct−β and thus integrable on (0, 1] for β < 1. Integrability fails if
β = 1, which was the only case studied in [32]. We also show ‘full’ regularity
of the orbits away from t = 0 even for initial values x ∈ X.

Theorem 2.14. Let A generate the analytic C0-semigroup T (·) on X with
F = C, α, β ∈ [0, 1], and b ≥ 1. Then the following assertions hold.

a) The restrictions of T (·) to Xα are also analytic C0-semigroups.

b) Let k ∈ {0, 1}, α ∈ [0, β] if k = 0, and x ∈ Xα. For t ∈ (0, b] we then
obtain ∥AkT (t)x∥β ≤ c(b, α, β,A)tα−β−k∥x∥α. If T (·) is bounded analytic and
A invertible, the constant does not depend on b ≥ 1.

c) Let x∈Xα and γ∈ [0,α]. Then T (·)x belongs to Cα−γ([0, b],Xγ). Let x ∈ X
and ε ∈ (0, b). Then T (·)x is an element of C1−γ([ε, b], Xγ) for all γ ∈ [0, 1].

Proof. a) Let α ∈ (0, 1). As a generator of an analytic C0-semigroup,
A − ωI is sectorial of angle φ > π/2 on X for some ω ≥ 0. This resolvent
estimate is transfered to Xα via Proposition 2.4 c). For α = 1 this fact simply
follows from the formula AR(λ,A) = R(λ,A)A on D(A) for λ ∈ ρ(A). The first
assertion is then a consequence of Theorem 2.25 and Remark 2.26 of [32].

b) Let x ∈ Xα and t ∈ (0, b]. We omit the dependence on A. The constants do
not depend on b if T (·) is bounded analytic and A invertible (use ∥x∥1 ≤ c∥Ax∥).
1) Let α = 0. In the first main step we interpolate between the estimates for

T (t) : X → X and T (t) : X → X1 using Corollary 2.10. Indeed, Theorem 2.25
and Remark 2.26 of [32] and Corollary 2.10 (if β ∈ (0, 1)) yield

∥AkT (t)x∥β ≲β ∥T (t/2)AkT (t/2)x∥β1 ∥T (t/2)AkT (t/2)x∥1−β0

≲b (t/2)
−β∥AkT (t/2)x∥0 ≲ t−β−k∥x∥0 .

2) Let α ∈ (0, 1); for α = 1 the proof is a bit simpler. From step 1), (2.11),
(2.2) (or (2.3) for bounded T (·)), and Proposition 2.2 we deduce

∥tAT (t)x∥β ≤ 2(t/2)α∥T (t/2)∥B(X,Xβ) ∥(t/2)
1−αAT (t/2)x∥0

≲α,β,b t
α−β∥x∥α,∞ ≲α t

α−β ∥x∥α.
3) Take α > 0 and k = 0. The case α = β follows from part a). Let 0 < α < β.

Recall that d
dtT (t) = AT (t). Steps 1) and 2) as well as Proposition 2.2 imply

∥T (t)x∥β =

∥∥∥∥T (b)x−
∫ b

t
AT (s)x ds

∥∥∥∥
β

≤ ∥T (b)x∥β +
∫ b

t
∥AT (s)x∥β ds

≲α,β,b b
−β∥x∥0 +

∫ b

t
sα−β−1∥x∥α ds ≲β−α (b−β − bα−β + tα−β)∥x∥α

≤ tα−β∥x∥α.
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(Here we use b ≥ 1. If b < 1, one could replace b by 1 in the above computation.)

c) The first part of assertion c) follows from part a) if α = γ, and from
Proposition 2.2 if γ = 0. So let γ ∈ (0, α), 0 ≤ s < t ≤ b, and x ∈ Xα.
Statement b) then yields

∥T (t)x− T (s)x∥γ = ∥(T (t− s)− I)T (s)x∥γ ≤
∫ t−s

0
∥AT (τ)T (s)x∥γ dτ

≲b,α,γ

∫ t−s

0
τα−γ−1 dτ ∥T (s)x∥α ≲b,α−γ (t− s)α−γ∥x∥α.

The last claim then follows from T (t)x − T (s)x = (T (t − ε) − T (s − ε))T (ε)x
and T (ε)x ∈ D(A). □

In Example 2.2.11 of [20] one can find an analytic semigroup which is un-
bounded in B(DA(α,∞), DA(α, q)) if q ∈ [1,∞) for t ∈ (0, 1]. So one also has
to pay a price if one only decreases the ‘fine tuning parameter’ q. By induction,
one can define the scale Xα to all α ≥ 0 and extend the above theorem to this
setting, see e.g. Proposition 2.2.9 in [20].

We turn our attention to the inhomogeneous problem

u′(t) = Au(t) + f(t), t ∈ J, u(0) = x, (2.14)

for J = (0, b], J ′ = [0, b], and given x ∈ X and f ∈ C(J ′, X). A (classical)
solution of (2.14) on J is a function u ∈ C(J ′, X) ∩ C1(J,X) such that u(t) ∈
D(A) for all t ∈ J and (2.14) holds. It is a solution on J ′ if we can replace here
J by J ′ throughout. If a solution of (2.14) on J exists, it is uniquely given by
the mild solution

u(t) = T (t)x+

∫ t

0
T (t− s)f(s) ds =: T (t)x+ v(t), t ∈ J ′, (2.15)

see Proposition 2.6 in [32]. The summand T (·)x has been studied above.
In the proof of Theorem 2.31 of [32] we have seen that v : J ′ → X is Hölder

continuous of any exponent less than 1 and that it is continuously differentiable
if f ∈ Cα(J ′, X) for some α > 0. Example 4.1.7 of [20] shows that one cannot
take α = 0, in general. We now improve the results from [32] by using inter-
polation spaces instead of X. By the next result, for f ∈ C(J ′, X) the orders
of space and time regularity of v sum up to 1, provided that none is zero. We
denote by B(M,Y ) the space of bounded functions from a setM to Y , endowed
with the supnorm ∥f∥∞,Y .

Theorem 2.15. Let A generate the analytic C0-semigroup T (·) on X, F = C,
f ∈ C(J ′, X), and v be given by (2.15). Then the following assertions hold.

a) Let either α ∈ (0, 1) and β ∈ [0, α] or α = 1 and β ∈ [0, 1). Then v belongs
to C1−α(J ′, Xβ) with norm bounded by c(α, b, A)∥f∥∞,X .

b) Let f ∈ Cα(J ′, X) or f ∈ B(J ′, Xα) for some α ∈ (0, 1). Then v solves
(2.14) on J ′ with x = 0, and the quantity ∥v′∥∞,X + ∥Av∥∞,X is bounded by
c(α, b, A)∥f∥Cα repectively c(α, b, A)∥f∥∞,Xα.

The constants do not depend on b if T (·) is bounded analytic and A is invertible.
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Proof. a) Let α ∈ (0, 1). It is enough to show v belongs to C1−α(J ′, Xα)
and the corresponding estimate since ∥x∥β,q ≤ ∥x∥α,q and ∥f∥∞ ≤ ∥f∥C1−β .

Let 0 < s < t ≤ b. The dependence of the constants on A is not indicated,
and they are independent of b if T (·) is bounded analytic and A is invertible.
Theorem 2.14 b) yields

∥v(t)∥α ≲b,α

∫ t

0
(t− τ)−α∥f(τ)∥0 dτ ≤ 1

1− α
t1−α∥f∥∞,X .

Using the differentiability of T (·) and this theorem, we further compute

v(t)− v(s) = lim
ε→0

∫ s−ε

0
(T (t− τ)− T (s− τ))f(τ) dτ +

∫ t

s
T (t− τ)f(τ) dτ

= lim
ε→0

∫ s−ε

0

∫ t−τ

s−τ
AT (σ)f(τ) dσ dτ +

∫ t

s
T (t− τ)f(τ) dτ,

∥v(t)− v(s)∥α ≲b,α lim sup
ε→0

∫ s−ε

0

∫ t−τ

s−τ
σ−1−α∥f∥∞ dσ dτ +

∫ t

s
(t− τ)−α∥f∥∞ dτ

≤
( 1

α

∫ s

0
((s− τ)−α − (t− τ)−α) dτ +

1

1− α
(t− s)1−α

)
∥f∥∞,X

≤ 2
α(1−α) (t− s)1−α∥f∥∞,X .

b) The case f ∈ Cα was shown in Theorem 2.31 of [32]. Let f ∈ B(J ′, Xα)
for α ∈ (0, 1). Take 0 < s < t ≤ b. Due to Theorem 2.14, the function given by
φ(s) = ∥AT (t− s)f(s)∥ ≲b,α (t− s)α−1∥f∥∞,Xα is integrable on [0, t]. Since A
is closed, we deduce that v(t) ∈ D(A). As in step a), we then obtain

∥Av(t)∥ ≤
∫ t

0
∥T (t− s)f(s)∥1 ds ≲b,α

∫ t

0
(t− s)α−1 ∥f∥∞,Xα ds

= 1
α t
α∥f∥∞,Xα ,

∥Av(t)−Av(s)∥ ≤ lim
ε→0

∫ s−ε

0

∫ t−τ

s−τ
∥AT (σ)f(τ)∥1 dσ dτ +

∫ t

s
∥T (t− τ)f(τ)∥1 dτ

≲b,α

∫ s

0

∫ t−τ

s−τ
σα−2∥f(τ)∥α dσ dτ +

∫ t

s
(t− τ)α−1∥f(τ)∥α dτ

≤
( 1

1− α

∫ s

0
((s− τ)α−1− (t− τ)α−1) dτ +

(t− s)α

α

)
∥f∥∞,Xα

≤ 2
α(1−α) (t− s)α∥f∥∞,Xα .

So Av belongs to C([0, b], X) as v(0)=0. The claim follows from v′ = Av+f . □

In part b) of the above proof we have even shown that Av ∈ Cα([0, b], X).
Actually, it can proved that the terms u′ and Au have the same regularity as
the given function f , if we work in DA(α,∞) and assume that x ∈ D(A) and
Ax+f(0) ∈ DA(α,∞) in the case f ∈ Cα(J ′, X), respectively x ∈ DA(α+1,∞)
if f ∈ C(J ′, X)∩B(J ′, DA(α,∞)). This property of ‘maximal regularity of type
Cα’ is shown in Theorem 4.3.1 and Corollary 4.3.9 of [20]. Chapter 4 of [20]
provides many variants and refinements of these results. See also the exercises.



CHAPTER 3

Semilinear parabolic problems

In this chapter we again study semilinear evolution equations of the form

u′(t) = Au(t) + F (u(t)), t ∈ J, u(0) = u0, (3.1)

but now requiring that A generates an analytic C0-semigroup T (·). Based on
the previous chapter, we allow for nonlinearities F mapping an interpolation
space of A into X. So they are still of ‘lower order’, but one is far less restricted
than in the first chapter where we could only treat the case F : X → X. Typical
examples are reaction-diffusion systems which we study below in some detail.
The wellposedness theory of semilinear parablic equations can be developed

similar as for ordinary differential equations since T (t) : X → Xα is bounded by
the integrable function t 7→ ct−α on (0, 1] due to Theorem 2.14. In the study of
the long-time behavior one has partly to assume that A has compact resolvent.
On the other hand, concrete applications may depend on detailed knowledge of
the properties of a differential operator A with boundary conditions which is
much harder to study than a matrix.
We state the setting of this chapter. Let F = C, X0 = X, X1 = [D(A)], and

Xα ∈ {DA(α, q), DA(α) | q ∈ [1,∞)} for α ∈ (0, 1),

as well as ∥x∥α=∥x∥Xα and Bα(x, r)=BXα(x, r) for α∈ [0, 1]. We assume that

A generates the analytic C0-semigroup T (·) on X, α ∈ [0, 1), u0 ∈ Xα,

M0 := supt∈[0,1] ∥T (t)∥B(Xα), M1 := supt∈[0,1] ∥tαT (t)∥B(X,Xα);

∅ ≠ J ⊆ R is an interval with inf J = 0 and 0 /∈ J, J ′ := J ∪ {0}; (3.2)

F : Xα → X satisfies ∀ r > 0 ∃L(r) > 0 ∀x, y ∈ Bα(0, r) :

∥F (x)− F (y)∥0 ≤ L(r)∥x− y∥α, where r 7→ L(r) is non-decreasing.

The numbers M0 ≥ 1 and M1 > 0 are finite because of Theorem 2.14. As after
(1.2) one sees that the last restriction in (3.2) is made without loss of generality.
In contrast to the first chapter, now the time interval J does not include 0.

3.1. Local wellposedness and global existence

A function u is called a (classical) solution of (3.1) on J if it belongs to
C(J ′, Xα) ∩ C1(J,X) ∩ C(J,X1) and satisfies (3.1). It is a (classical) solution
on J ′ if even u ∈ C1(J ′, X) ∩ C(J ′, X1) and (3.1) is true for t ∈ J ′. In both
cases, f = F (u) : J ′ → X is continuous by (3.2) so that Proposition 2.6 of [32]
says that u is a mild solution of (3.1); i.e., a function u ∈ C(J ′, Xα) fulfilling

38
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the fixed-point problem

u(t) = T (t)u0 +

∫ t

0
T (t− s)F (u(s)) ds =: T (t)u0 + v(t), t ∈ J ′. (3.3)

If the semigroup T (·) is not analytic, there is a significant difference between
mild and classical solutions, cf. Theorem 1.16. In the parabolic case, however,
from the regularity results of the previous section we can deduce that a mild
solution u immediately becomes regular; i.e., u(t) belongs toX1 for all t > 0 and
mild solutions coincide with classical ones on J . In Chapter 7 of the monograph
[20] one finds much more refined versions of the next fundamental lemma.

Lemma 3.1. Let (3.2) be true and u ∈ C(J ′, Xα) be a mild solution of (3.1).
Then u is a classical solution on J , and on J ′ if u0 ∈ X1.

Proof. Let v be given by (3.3), b ∈ J , and ε ∈ (0, b). Since T (·) is
analytic, the orbit T (·)u0 ∈ C(R+, X1) ∩ C1(R+, X) satisfies d/dt T (t)u0 =
AT (t)u0 for t > 0. Theorems 2.14 and 2.15 a) yield that T (·)u0 is an element
of C1−α([ε, b], Xα)∩C(R≥0, Xα) and v of C1−α([0, b], Xα), respectively. Hence,
u belongs to C1−α([ε, b], Xα), and thus F (u) to C1−α([ε, b], X) by (3.2). (If
α = 0, one has to replace C1−α by Cβ for any β ∈ (0, 1).) Using

v(t) =

∫ t

ε
T (t− s)F (u(s)) ds+ T (t− ε)

∫ ε

0
T (ε− s)F (u(s)) ds for t ≥ ε,

from Theorems 2.14 and 2.15 b) plus a time shift we infer that v belongs to
C1((ε, b], X) ∩ C((ε, b], X1). As 0 < ε < b are arbitrary, Lemma 2.8 in [32]
implies that v solves (3.1) with u0 = 0 on J . So the first claim follows from the
properties of T (·)u0.
Let u0 ∈ X1. Then T (·)u0 is even contained in C1−α([0, b], Xα) and we can

take ε = 0 in the above reasoning. (See Theorem 2.14.) □

The above result easily implies that one can shift and glue mild (or classical)
solutions as in Remark 1.7, which we will use below often without further notice.
We next solve the fixed-point problem (3.3) on a possibly small time interval

by means of the contraction mapping principle. We proceed as in Section 1.1,
but now exploit the (linear) regularity results from Theorems 2.14 and 2.15.

Lemma 3.2. Let (3.2) be true. Take any ρ > 0. Then there is a time b0(ρ) > 0
such that for every u0 ∈ Bα(0, ρ) there is a unique solution u of (3.1) on
(0, b0(ρ)] satisfying ∥u(t)∥α ≤ r := 1 +M0ρ for all t ∈ [0, b0(ρ)]. The map b0 is
defined in (3.7), and it is non-increasing.

Proof. Let b ∈ (0, 1], ρ > 0, and r = 1+M0ρ > ρ. We introduce the space

E(b) = E(b, r) =
{
v ∈ C([0, b], Xα)

∣∣ ∥v∥∞,α := sup
0≤t≤b

∥v(t)∥α ≤ r
}
. (3.4)

Note that E(b) is complete for the metric d(v, w) = ∥v − w∥∞,α. Let u0 ∈
Bα(0, ρ) be the initial value, v, w ∈ E(b), and t ∈ [0, b]. We define the map

[Φu0(v)](t) = Φ(v)(t) = T (t)u0 +

∫ t

0
T (t− s)F (v(s)) ds. (3.5)
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Clearly, a fixed point u = Φ(u) in E(b) is a solution of (3.3), and u then solves
(3.1) on (0, b] by Lemma 3.1. We will obtain such a fixed point for small b > 0.
Since F (v) ∈ C([0, b], X) and u0 ∈ Xα, Theorems 2.14 and 2.15 imply that

Φ(v) ∈ C([0, b], Xα). Using also (3.2), we estimate

∥Φ(v)(t)∥α ≤M0∥u0∥α +M1

∫ t

0
(t− s)−α ∥F (v(s))− F (0) + F (0)∥0 ds

≤M0ρ+M1

∫ t

0
(t− s)−α (L(r)∥v(s)− 0∥α + ∥F (0)∥0) ds

≤M0ρ+
M1

1− α
(rL(r) + ∥F (0)∥0) b1−α ≤ r,

where we choose times b ∈ (0, 1] with

b ≤ b1(ρ) :=
( 1− α

M1(rL(r) + ∥F (0)∥0)

) 1
1−α

.

In the same way, we compute

∥Φ(v)(t)− Φ(w)(t)∥α ≤M1

∫ t

0
(t− s)−α ∥F (v(s))− F (w(s))∥0 ds

≤M1

∫ t

0
(t− s)−αL(r)∥v(s)− w(s)∥α ds

≤ M1L(r)

1− α
b1−α ∥v − w∥∞,α ≤ 1

2
∥v − w∥∞,α (3.6)

for every final time

0 < b ≤ b0(ρ) := min
{
1, b1(ρ),

( 1− α

2M1L(r)

) 1
1−α

}
. (3.7)

As a result, the map Φ : E(b) → E(b) is a strict contraction and we obtain a
unique solution u = Φ(u) of (3.1) on (0, b] which belongs to E(b). □

Exactly as in Lemma 1.8 we next derive a uniqueness result without the con-
dition that the functions are bounded by r. One can it also prove as discussed
after that lemma, now using the singular Gronwall inequality (3.9) below.1

Lemma 3.3. Let (3.2) be true and u and v be solutions of (3.1) on Ju respec-
tively Jv. Then u and v coincide on Ju ∩ Jv.

Proof. Set J = Ju ∩ Jv. Since u(0) = v(0), the number

τ := sup
{
b ∈ J

∣∣∀ t ∈ [0, b] : u(t) = v(t)
}

belongs to [0, sup J ]. We assume that u ̸= v on J . By continuity, it follows
τ < sup J and u(τ) = v(τ) =: u1 ∈ Xα. There are times tn ∈ J with tn → τ+

and u(tn) ̸= v(tn). Fix β0 > 0 with τ + β0 ∈ J . For β ∈ (0, β0], the functions
ũ = u( · + τ) and ṽ = v( · + τ) solve (3.1) on (0, β] with initial value u1.

We now set ρ = ∥u1∥α and r = 1+M0ρ > ρ, and use the number b0(ρ) from
(3.7). For sufficiently small times 0 < β ≤ min{b0(ρ), β0}, the maps ũ and ṽ
have norms smaller or equal r in C([0, β], Xα) because of ũ(0) = ṽ(0) = u1. The

1The next proof was omitted in the lectures.
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uniqueness statement (in the proof) of Lemma 3.2 then shows that ũ(t) = ṽ(t)
for t ∈ [0, β], which contradicts the inequality u(tn) ̸= v(tn) for large n. □

Following the first chapter, we next introduce the maximal existence time

t+(u0) = sup
{
b > 0

∣∣ ∃ solution ub of (3.1) on (0, b]
}

of (3.1) still assuming (3.2). The maximal existence interval is

J+(u0) = (0, t+(u0)) or J ′
+(u0) = [0, t+(u0)).

Lemma 3.2 yields t+(u0) ≥ b0(∥u0∥α). We actually have t+(u0) > b0(∥u0∥α)
since we can restart (3.1) with initial value u(b0(∥u0∥α)). If b < β < t+(u0),
then ub = uβ on [0, b] by Lemma 3.3. This fact allows us to define a maximal
solution of (3.1) by setting u(t) = ub(t) for t ∈ [0, b] ⊆ [0, t+(u0)). It is uniquely
determined because of Lemma 3.3.
We can now show the local wellposedness of (3.1).2 Continuous dependence

on F is established in Proposition 3.6.

Theorem 3.4. Let (3.2) be true and b0 = b0(∥u0∥α) > 0 be given by (3.7).
Then the following assertions hold.

a) There is a unique maximal solution u = φ( · , u0) in C(J ′
+(u0), Xα) ∩

C1(J+(u0), X) ∩ C(J+(u0), X1) of (3.1), where t+(u0) ∈ (b0,∞]. If u0 ∈ X1,
we have u ∈ C1(J ′

+(u0), X) ∩ C(J ′
+(u0), X1).

b) Let t+(u0) <∞. Then we have limt→t+(u0)− ∥u(t)∥α = ∞.

c) Take any b ∈ J+(u0). Then there exists a radius δ = δ(u0, b) > 0 such that
t+(v0) > b for all v0 ∈ B(u0, δ). Moreover, the map

Bα(u0, δ) → C([0, b], Xα); v0 7→ φ( · , v0),
is Lipschitz continuous.

Proof. Assertion a) was shown above and in Lemma 3.1. To establish b),
let t+(u0) < ∞. Assume that there were times tn → t+(u0) for n → ∞ with
tn ∈ J ′

+(u0) and C := supn∈N ∥u(tn)∥α < ∞. We choose an index m ∈ N such
that tm+ b0(C) > t+(u0), where b0(C) > 0 is given by (3.7). Lemma 3.2 yields
a solution ũ of (3.1) on (0, b0(C)] with initial value u(tm). Glueing u and the
shifted ũ, we then obtain a solution of (3.1) on (0, tm+b0(C)] which contradicts
the definition of t+(u0). So assertion b) is shown. We next prove part c) by a
basic step plus an induction argument in three more steps.

1) Let b ∈ J+(u0) and u = φ( · , u0). We fix a number b′ ∈ (b, t+(u0)) and
use the radii ρ := 1+max0≤t≤b′ ∥u(t)∥α and r := 1+M0ρ. The uniform bound

by ρ will crucially be used below. Let the time b := b0(ρ) ∈ (0, 1] be given by
(3.7) and the operator Φu0 by (3.5). Take v0, w0 ∈ Bα(0, ρ). Lemma 3.2 and its
proof provide solutions v = Φv0(v) = φ( · , v0) and w = Φw0(w) = φ( · , w0) of
(3.1) on (0, b] with the initial values v0 respectively w0, where v and w belong
to the space E(b, r) from (3.4) endowed with the norm ∥ · ∥∞,α. Formulas (3.6)
and (3.5) lead to the contraction estimate

∥v − w∥∞,α ≤ ∥Φv0(v)− Φv0(w)∥∞,α + ∥Φv0(w)− Φw0(w)∥∞,α

2The next proof was omitted in the lectures as it is very close to that of Theorem 1.11.
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≤ 1
2∥v − w∥∞,α + ∥T (·)(v0 − w0)∥∞,α

≤ 1
2∥v − w∥∞,α +M0∥v0 − w0∥α,

∥v − w∥∞,α ≤ 2M0∥v0 − w0∥α. (3.8)

2) We next show t+(v0) > b by iteration. For j ∈ N0 we set bj = jb.
There exists a minimal index N ∈ N with bN > b. If bN > b′ we redefine
bN := b′ ∈ (b, t+(u0)). We fix the radius δ = (2M0)

−N ∈ (0, 1) for the initial
values. We inductively show that for every v0 ∈ Bα(u0, δ) and j ∈ {0, . . . , N−1}
the maximal solution v = φ( · , v0) exists at least on [0, bj+1] and that v(t) is

an element of the ball Bα(u(t), (2M0)
j+1−N ) for t ∈ [bj , bj+1], which belongs to

Bα(0, ρ) because of the basic bound ρ ≥ 1 + ∥u(t)∥α for t ∈ [0, bN ]. This claim
then yields t+(v0) > b.

3) We prove the claim. First let j = 0. Since δ < 1, the vector v0 is contained
in Bα(0, ρ). From estimate (3.8) with w = u we deduce

∥v(t)− u(t)∥α ≤ 2M0∥v0 − u0∥α ≤ 2M0δ = (2M0)
1−N

for all t ∈ [0, b1], as asserted for j = 0.
Second, assume that the claim has been established for all k ∈ {0, . . . , j − 1}

and some j ∈ {1, . . . , N − 1}. It follows ∥v(bj)∥α ≤ ρ. Lemma 3.2 thus shows
that v exists at least on [0, bj+1]. Moreover, the inequality (3.8) can be applied

to v(t+ bj) = φ(t, v(bj)) and u(t+ bj) = φ(t, u(bj)) for t ∈ [0, b]. Using also the
induction hypothesis, we infer the bound

∥v(t+ bj)− u(t+ bj)∥α ≤ 2M0∥v(bj)− u(bj)∥α ≤ (2M0)
j+1−N

for t ∈ [0, b]. So the claim is true.

4) It remains to prove the Lipschitz continuity asserted in c). Let j ∈
{0, . . . , N − 1} and t ∈ [0, b]. By the claim in 2), the vectors v(bj) and w(bj)

belong to Bα(0, ρ). As in step 3), inequality (3.8) implies

∥v(t+bj)− w(t+bj)∥α = ∥φ(t, v(bj))− φ(t, w(bj))∥α ≤ 2M0∥v(bj)− w(bj)∥α
≤ . . .≤ (2M0)

j+1∥v0−w0∥α ≤ (2M0)
N∥v0−w0∥α. □

We stress that Xα is the adequate norm to decribe the behavior of the so-
lutions to (3.1): They are continuous in the Xα–norm up to 0 and this norm
gives the Lipschitz continuity and blow-up condition in assertions b) and c).
We state an extra regularity´property provided by our setting

Remark 3.5. Let (3.2) be true, β ∈ [α, 1), and u0 ∈ Xβ. Proposition 2.2
yields the embedding Xβ ↪→ Xα, so that the assumptions of Theorem 3.4 also
hold for β. We thus obtain a solution uβ in Xβ on a maximal existence interval
J ′
+,β(u0). By uniqueness and Xα ↪→ Xβ, this solution coincides with u from the

theorem on J ′
+,β(u0) ⊆ J ′

+(u0). Since u ∈ C(J+(u0), X1), the blow-up condition

in Xβ finally implies that J ′
+,β(u0) = J ′

+(u0). Using Proposition 2.2 once more,

we have shown that u belongs to C(J ′
+(u0), Xκ) for all κ ∈ [0, β]. ♢

The regularity of mild and classical solutions to (3.1) is studied in great detail
in Chapter 7 of [20], also for u0 ∈ X under additional restrictions on F . The
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above proofs completely break down if α = 1; i.e., when the nonlinearity has
the same order as the linear part. Under certain additional assumptions, one
can also develop a theory on wellposedness and asymptotic behavior for such
problems, which is similar to the semilinear case discussed here. This is done in
Chapters 8 and 9 of [20] based on the results on maximal regularity mentioned
at the end of the previous chapter; see also the last chapter of this notes.

Since the data of equation (3.1) are not known exactly in applications, it is
very important to know that the solution depends continuously on the system
operators, where we restrict ourselves to F for simplicity. When discussing
the positivity of reaction diffusion systems we will actually use a very special
case of this continuous dependence (whose proof would not be much simpler).
For this and other purposes, we need the singular Gronwall inequality. Let
0 ≤ φ ∈ C(J ′), β ∈ [0, 1) and a, κ ≥ 0. Assume that

φ(t) ≤ a+ κ

∫ t

0
(t− s)−β φ(s) ds

holds for all t ∈ J ′. Then there is a constant c0 > 0 such that

φ(t) ≤ a+ aκc0t
1−β ec(β)κ

1/(1−β)t (3.9)

holds for all t ∈ J , where c(β) := 2Γ(1− β)
1

1−β , see Theorem II.3.3.1 in [2].

Proposition 3.6. Let (3.2) be true, v0 ∈ Xα, G : Xα → X be Lipschitz on
bounded sets. Let u solve (3.1) and v solve (3.1) with nonlinearity G and initial
value v0. Take any b ∈ (0, t+(u0, F )). Then there are constants δ0, ρ, c > 0
(depending on b and u0) with the following property: Let ∥u0 − v0∥α ≤ ρ and
∥F (u(t))−G(u(t))∥0 ≤ δ ≤ δ0 for t ∈ [0, b]. We then have t+(v0, G) > b and

∥u(t)− v(t)∥α ≤ c(δ + ∥u0 − v0∥α) for t ∈ [0, b].

Proof. Fix r > 0 and b ∈ (0, t+(u0, F )), and let L be the Lipschitz constant
of G on the bounded set

⋃{
Bα(u(t), r)

∣∣ t ∈ [0, b]
}
. Take ρ ∈ (0, r) and v0 ∈

Bα(u0, ρ). The numbers

N0 = sup
t∈[0,b]

∥T (t)∥B(Xα) and N1 = sup
t∈[0,b]

∥tα T (t)∥B(X,Xα)

are finite by Theorem 2.14. Let b∗ be the supremum of all times β ∈ (0, b] with
β < t+(v0, G) and ∥v(t)− u(t)∥α ≤ r for all t ∈ [0, β]. The continuity of u− v
yields b∗ > 0 and ∥v(b∗) − u(b∗)∥α ≤ r. Using the mild formulation of both
evolution equations, we obtain

u(t)− v(t) = T (t)(u0 − v0) +

∫ t

0
T (t− s)(F (u(s))−G(u(s))) ds

+

∫ t

0
T (t− s)(G(u(s))−G(v(s))) ds,

∥u(t)− v(t)∥α ≤ N0∥u0 − v0∥α +N1δ

∫ t

0

ds

(t− s)α
+N1L

∫ t

0

∥u(s)− v(s)∥α
(t− s)α

ds

≤ N0∥u0 − v0∥α +
δN1b

1−α

1− α
+N1L

∫ t

0
(t− s)−α∥u(s)− v(s)∥α ds
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for all t ∈ [0, b∗). The inequality (3.9) thus yields

∥u(t)− v(t)∥α ≤ c(δ + ∥u0 − v0∥α) ≤ c(δ + ρ), (3.10)

for all t ∈ [0, b∗), where c > 0 depends on b, L, Nj and α, but not on t, δ or ρ.
The blow-up condition then yields b∗ < t+(v0, G). Hence, by continuity (3.10)
with constant 2c is true for t ≤ b∗+ η and some η > 0. Fixing sufficiently small
δ0, ρ > 0, we infer ∥u(t)− v(t)∥α ≤ r/2 for all t ∈ [0, b∗ + η] and δ ≤ δ0. Hence,
b∗ equals b because of its definition, and so (3.10) holds for all t ∈ [0, b]. □

In the next example we give an introduction to the Lp-approach to reaction-
diffusion systems, whereas in Section 7.3 of [20] sup-norm setting is discussed.

Example 3.7. 1) We first recall reaction systems without diffusion. As a
simple example, we consider the chemical reaction A+2B ⇌ C, where one mol
of the substance A reacts with 2 mols of B to one mol of the product C, which
in turn can decompose into one mol of A and two mols of B.
Let a(t), b(t) and c(t) be the concentrations at time t ≥ 0 of the species

A, B and C, respectively. Roughly speaking, the two reactions take place
with a ‘probability’ proportional to the products of a(t) b(t) b(t) and c(t) of the
concentrations, where we denote the proportionality constants by k+ and k−,
respectively. Each concentration then increases and decreases according to the
two reactions, where the rate is given by the ‘probability’ times the number of
mols needed of the respective substance. We arrive at the system

a′(t) = −k+a(t)b(t)2 + k−c(t), t ≥ 0,

b′(t) = −2k+a(t)b(t)
2 + 2k−c(t), t ≥ 0,

c′(t) = k+a(t)b(t)
2 − k−c(t), t ≥ 0,

a(0) = a0, b(0) = b0, c(0) = c0,

with initial concentrations a0, b0, c0 ≥ 0.
This problem has a unique local non-negative solution due to the Picard–

Lindelöf Theorem 4.9 and the positivity criterion Satz 4.12 of [31]. Since a′ +
c′ = 0 and b′ +2c′ = 0, we have a(t) + c(t) = a0 + c0 and b(t) + 2c(t) = b0 +2c0
as long as the solutions exist. Thanks to the positivity, the solutions thus stay
bounded on their existence interval, so that they exist for all t ≥ 0. These facts
hold in much greater generality, see Section 8.7 of [29].

2) In a reaction–diffusion system one takes into account that the concen-
trations of the species may differ at different points of the container G which
is an open and bounded subset of Rm with ∂G ∈ C2 and outer unit nor-
mal ν. For given ℓ species we thus consider concentration densities u(t, x) =
(u1(t, x), . . . , uℓ(t, x)) at every time t ≥ 0 and spatial point x ∈ G.

We assume that at each x a reaction-convection term f(u(t, x),∇u(t, x)) acts.
Later we will focus on pure reaction terms f(u(t, x)) depending only on the
concentrations u(t, x) as in the ordinary differential equation above. If spatial
gradients of u(t, x) are involved, we also have (possibly nonlinear) convective
effects. The function f : Cℓ+mℓ → Cℓ (or later f : Cℓ → Cℓ) is given and
assumed to be locally Lipschitz.
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Moreover, the species shall move in the container driven by ‘homogeneous’
and ‘isotropic’ diffusion with constants a1, . . . , aℓ > 0, resulting in diffusion
terms aj∆uj(t, x). We require that the species do not move through the bound-
ary ∂G. It can be seen that this behaviour is decribed by the Neumann bound-
ary condition ∂νuj(t, x) = 0 saying that in normal direction at the boundary
the concentration does not change. Summing up, we arrive at the system

∂tuj(t, x) = aj∆uj(t, x) + fj(u(t, x),∇u(t, x)), t > 0, x ∈ G, j ∈ {1, . . . , ℓ},
∂νuj(t, x) = 0, t > 0, x ∈ ∂G, j ∈ {1, . . . , ℓ}, (3.11)

uj(0, x) = uj,0(x), x ∈ G, j ∈ {1, . . . , ℓ},
for given initial distributions uj,0 ≥ 0. One could also treat more complicated
diffusion phenomena. In the linear case, heterogeneous and anisotropic diffu-
sion is described by the term div(aj∇uj) for coefficient functions aj on G taking
values in the symmetric positive definite matrices, which could even depend on
time. If the diffusion coefficients aj = aj(x, u) depend on the solution u itself,
one has ‘quasilinear diffusion’ which can be treated by more sophisticated meth-
ods, see [20] or the last chapter. Moreover, interactions between the species
can lead to nondiagonal diffusion terms.

3) By Example 5.2 of [32], the Neumann Laplacian ∆N with domain
D(∆N ) = {v ∈ W 2,p(G) | ∂νv = 0} generates a contractive, positive, analytic
C0-semigroup S(·) on Lp(G) for p ∈ (1,∞). Here we let ∂νv =

∑m
k=1 νk tr ∂kv,

and positivity of an operator T on Lp(G) means that Tg ≥ 0 a.e. for every
0 ≤ g ∈ Lp(G). We now introduce E = Lp(G)ℓ, 0 ≤ u0 = (u1,0, . . . , uℓ,0) ∈ E,

A =


a1∆N 0 0 · · · 0

0 a2∆N 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · aℓ∆N

 , D(A) = D(∆N )
ℓ =: E1, (3.12)

and [F (v)](x) = f(v(x),∇v(x)) for v ∈W 1,p(G)ℓ and x ∈ G. We say that v ≥ 0
in E if all components of vk are non-negative. It is easy to see that A generates
the contractive, positive, analytic C0-semigroup

T (t) =


S(a1t) 0 0 · · · 0

0 S(a2t) 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · S(amt)

 , t ≥ 0,

on E. Set Eα = DA(α, p) for α ∈ (0, 1). By Proposition 2.4 and Theorem 2.14
the numbersN0 = supt≥0 ∥T (t)∥B(Eα) and N1 = supt≥0 ∥min{1, tα}T (t)∥B(E,Eα)

are finite. (Use T (1) = T (1)T (t− 1) for N1 if t ≥ 1.)
4) We look for a framework in which F becomes Lipschitz on bounded sets.

We first let v, w ∈ C1(G)ℓ with C1-norm less or equal r, where C1(G) contains
the C1–functions v on G such that v and ∇v have continuous extensions to ∂G.
Denoting by L0(r) the Lipschitz constant of f on B|·|∞(0, r), we estimate

|F (v)(x)− F (w)(x)|∞ ≤ L0(r)max{|v(x)− w(x)|∞, |∇v(x)−∇w(x)|∞}
≤ L0(r)∥v − w∥C1 for x ∈ G.
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This means that F : C1(G)ℓ → C(G)ℓ, and thus F : C1(G)ℓ → Lp(G)ℓ, are
Lipschitz on bounded sets. Let p > m and α ∈ (12 +

m
2p , 1), so that 2α− m

p > 1.

Example 2.12 and the fractional Sobolev embedding theorem (see Theorem 4.6.1
in [37]) then imply that

Eα ↪→W 2α,p(G)ℓ ↪→ C1(G)ℓ. (3.13)

As a result, F : Eα → E is Lipschitz on bounded sets. If we have a pure reaction
term f(u), then the same arguments show that F : Eα → E is Lipschitz on
bounded sets already if p > m/2 and α ∈ (m2p , 1).

5) We can thus write (3.11) as the semilinear parabolic problem (3.1) on
E, and apply Theorem 3.4. For u0 ∈ Eα it yields a unique solution u in
C(J ′

+(u0), Eα) ∩ C1(J+(u0), E) ∩ C(J+(u0), E1) of (3.1). By (3.13), u belongs

to C(J ′
+(u0), C

1(G)ℓ). Such a solution satisfies the first line of (3.11) for a.e.
x ∈ G and the second line for all x ∈ ∂G. If u0 ∈ D(A), we can include
t = 0 in these statements. By Remark 3.5 the regularity properties hold for all
α ∈ (12 +

m
2p , 1). Let q ∈ (p,∞) and note α ∈ (12 +

m
2q , 1). As in this remark, one

can show analogous properties for the restriction of u to Lq-based spaces. ♢

In the following we restrict ourselves to pure reaction equations with
F (u)(x) = f(u(x)) for a function f : Cℓ → Cℓ being locally Lipschitz. To study
positivity, we further need Hopf’s lemma. For functions w ∈ C2(B)∩C1(B), it
is a special case of the lemma in Section 6.4.2 in [9]. Our result is shown in the
same way using Proposition 3.1.10 of [20]. Sobolev’s embedding implies that
w ∈ C1(G) under the assumptions of the lemma.

Lemma 3.8. Let B = B(y, ρ) ⊆ Rm be an open ball and w belong to W 2,p(B)
for all p ∈ (1,∞) and satisfy 0 ≤ ∆w ∈ C(B). Assume that there is a point
x0 ∈ ∂B such that w(x0) > w(x) for all x ∈ B. Then ∂νw(x0) > 0 for the outer
normal ν(x) = ρ−1(x− y) of ∂B.

We show local wellposedness for the reaction-diffusion system (3.11) with
f(u). Besides basic properties already discussed in Example 3.7, the theorem
contains a much improved blow-up condition, a compactness result, and a pos-
itivity criterion analogous to the ODE case. These facts are the basis for later
studies of the long-term behavior of (3.11). Note that only non-negative solu-
tions are relevant here. A blow-up example for ℓ = 1 is given in the exercises.

Theorem 3.9. Consider the situation of Example 3.7 with a locally Lipschitz
map f : Cℓ → Cℓ. Let m < p < ∞, α ∈ (m2p , 1 −

m
2p), F (v) = f ◦ v, A be given

by (3.12), and u0 ∈ Eα = DA(α, q). Then the following assertions hold.

a) Problem (3.11) has a unique maximal solution u in C([0, t+(u0)), Eα) ∩
C1((0, t+(u0)), E) ∩ C((0, t+(u0)), E1). If u0 ∈ D(A), then we can replace the
interval (0, t+(u0)) by [0, t+(u0)). Assertion c) of Theorem 3.4 holds analo-
gously. Moreover, the maps ∂tu and ∆Nu belong to C((0, t+(u0))×G)ℓ and u
to C((0, t+(u0)),W

2,q(G)ℓ) for all q ∈ (1,∞).

b) Let t+(u0) <∞. Then we have lim supt→t+(u0)− ∥u(t)∥∞ = ∞.

c) Let t+(u0) = ∞ and u be bounded on R≥0×G. Then the orbit {u(t) | t ≥ 0}
is relatively compact in Eα.
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d) Let f(Rℓ) ⊆ Rℓ and u0 ≥ 0. Then u also takes real values. Let f also
satiesfy the positivity condition

fk(r1, . . . , rk−1, 0, rk+1, . . . , rℓ) ≥ 0 for all rj ≥ 0, j, k ∈ {1, · · · , ℓ}. (3.14)

Then u(t) is non-negative for all t ∈ [0, t+(u0)).

Proof. a) The first part follows from Theorem 3.4 and Example 3.7, except
for the additional regularity results. To prove them, take 0 < ε < b < t+(u0).
As in Lemma 3.1, Theorems 2.14 and 2.15 show that F (u) ∈ C1−α([ε, b], E).
Corollary 4.3.6 of [20] then implies that u′ = ∂tu : [ε, b] → DA(1 − α,∞) is
bounded. Let 0 < ε ≤ s ≤ t ≤ b and β ∈ (m2p , 1− α). Corollary 1.24 in [21] and

Corollary 2.10 yield

∥u′(t)−u′(s)∥β ≲ ∥u′(t)−u′(s)∥
β

1−α

1−α ∥u′(t)−u′(s)∥
1− β

1−α

0 ≲ ∥u′(t)−u′(s)∥
1− β

1−α

0 ,

where the right-hand side tends to 0 as t−s→ 0. We deduce that ∂tu belongs to
C([ε, b]), Eβ) ↪→ C([ε, b], C(G)ℓ), using also the fractional Sobolev embedding
Theorem 4.6.1 in [37], Example 2.12 and 2β − m

p > 0, cf. (3.13). Hence, ∂tu is

contained in C((0, t+(u0))×G)ℓ and the same holds for ∆Nu because of (3.11)
and F (u) ∈ C([0, t0(u0))×G)ℓ.

In particular, uj and ∆Nuj are continuous with values in Lq(G) for all q <
∞. Since D(∆N , L

q(G)) ⊆ W 2,q(G) and I − ∆N is invertible in Lq(G) by
Example 5.2 in [32], we obtain that u is an element of C((0, t+(u0)),W

2,q(G)ℓ).

b) Let t+ = t+(u0) <∞ and |u(t, x)|∞ ≤ R on [0, t+)×G. It follows that

|f(u(t, x))|∞ ≤ |f(u(t, x))− f(0)|∞ + |f(0)|∞ ≤ L0(R)|u(t, x)|∞ + |f(0)|∞
≤ RL0(R) + |f(0)|∞

for all (t, x) ∈ [0, t+(u0))×G and the Lipschitz constant L0(R) of f , and thus

∥F (u(t))∥E ≤ vol(G)
1
p (RL0(R) + |f(0)|∞) =: C.

Employing Example 3.7, we can then control u via the mild formula (3.3) by

∥u(t)∥α ≤ ∥T (t)u0∥α +

∫ t

0
∥T (t− s)∥B(E,Eα)∥F (u(s))∥0 ds

≤ N0∥u0∥α + CN1

(∫ t

(t−1)+

ds

(t− s)α
+ (t− 1)+

)
≤ N0∥u0∥α +

CN1

1− α
max{1, t+}

for all t ∈ [0, t+). This bound contradicts the blow-up condition in Theorem 3.4,
and thus either t+ = ∞ or u is unbounded as t→ t+.

c) Let t+(u0) = ∞ and u be bounded by R̃ on R≥0 × G. First note that
{u(t) | t ∈ [0, 1]} is compact in Eα by continuity. Let β ∈ (α, 1). Then Eβ is
compactly embedded into Eα by Proposition 2.13 since E1 ↪→ E is compact by
Theorem 3.34 in [33]. Using that u solves (3.1) on [t− 1,∞) with initial value
u(t− 1), we conclude as in part b) that

∥u(t)∥β ≤ ∥T (1)u(t− 1)∥β +
∫ t

t−1
∥T (t− s)∥B(E,Eβ) ∥F (u(s))∥0 ds
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≤ Ñ1∥u(t− 1)∥0 + C̃Ñ1
1−β ≤ Ñ1R̃ vol(G)

1
p + C̃Ñ1

1−β

for some constants C̃, Ñ1 > 0 and for all t ≥ 1. Hence, the set {u(t) | t ≥ 1} is
compact in Eα and part c) is true.

d) Let f be real and u0 ≥ 0. When discussing (3.11), one can then replace
throughout the scalar field C by R, and thus obtain a real-valued solution. (We
use C only to construct the analytic semigroup S(·) generated by ∆N . But since
it is positive, it leaves invariant real-valued functions. See also Remark 3.15.)
Let ε > 0 and b ∈ (0, t+(u0)). We set u0,ε = u0 + ε1 > 0 and Fε(v) =

F (v) + ε1. Let uε solve (3.11) for u0,ε and Fε. Proposition 3.6 yields a number
ε0(b) > 0 such that uε(t) exists for all t ∈ [0, b] and ε ∈ (0, ε0(b)] and such that
uε(t) tends to u(t) in Eα ↪→ C(G)ℓ as ε → 0 uniformly for t ∈ [0, b]. It thus
suffices to show that uε(t) > 0 for all t ∈ [0, b] and ε ∈ (0, ε0(b)].
Suppose that this was not the case. Since uε(0) > 0, there would exist

ε ∈ (0, ε0(b)], t0 > 0, x0 ∈ G, and k ∈ {1, . . . , ℓ} such that v(t0, x0) = 0,
uε(t, x) > 0 and uε(t0, x) ≥ 0 for all t ∈ [0, t0) and x ∈ G, where we put
v = (uε)k. Hence, ∂tv(t0, x0) ≤ 0 and v(t0, x0) is a minimum of the function
x 7→ v(t0, x) on G. Moreover, the condition (3.14) shows that fk(uε(t0, x0)) ≥ 0.
Thus the differential equation in (3.11) implies that

ak∆v(t0, x0) = ∂tv(t0, x0)− fk(uε(t0, x0))− ε ≤ −ε < 0.

Note that then ∆v(t0, x) ≤ 0 for x ∈ G which are close to x0, as ∆v(t0) is
continuous on G by part a).

If x0 ∈ G, Proposition 3.1.10 of [20] yields that ∆v(t0, x0) ≥ 0 which is
impossible. We can thus assume that x0 ∈ ∂G and v(t0, x) > 0 for all x ∈ G.
Since ∂G ∈ C2, there a ball B ⊆ G with x0 ∈ ∂B, ν(x0) = νB(x0), and
∆v(t0) ≤ 0 on B. We apply Hopf’s Lemma 3.8 for w = −v(t0) obtaining
∂νv(t0, x0) < 0, which contradicts the boundary condition in (3.11). It follows
uε(t) > 0 for all t ∈ [0, b] and ε ∈ (0, ε0(b)], as needed. (The extra regularity
from step a) is needed to apply Proposition 3.1.10 of [20] and Lemma 3.8.) □

We next show the weak maximum parabolic principle in our regularity frame-
work. This result and slight variants are used in examples below to obtain
sup-norm estimates on solutions.

Proposition 3.10. Let G ⊆ Rm be bounded and open with ∂G ∈ C2, a > 0,
and let the real-valued function v belong to C([0, T ] × G) ∩ C1((0, T ], C(G)) ∩
C((0, T ],W 2,p(G)) for all p ∈ (1,∞) and satisfy ∆v ∈ C((0, T ] × G). Assume
that ∂tv − a∆v ≤ 0 on (0, T ]×G and ∂νv ≤ 0 on (0, T ]× ∂G. We then have

max
(t,x)∈[0,T ]×G

v(t, x) ≤ max
x∈G

v(0, x).

Proof. We first observe that the maxima in the assertion exist. Let
vε(t, x) = v(t, x)− εt for ε > 0 and (t, x) ∈ [0, T ]×G. The maps vε satisfy the
same assumptions with ∂tvε − a∆vε ≤ −ε < 0 on (0, T ]×G.

Suppose there were ε > 0, t0 ∈ (0, T ] and x0 ∈ G such that M := vε(t0, x0) >
maxG v(0). We define

t1 = sup
{
t ∈ (0, T ]

∣∣maxx∈G vε(s, x) < M for all s ∈ [0, t]
}

∈ (0, t0].
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Note that there is a point x1 ∈ G with vε(t1, x1) = M . Hence, ∂tvε(t1, x1) ≥ 0
and vε(t1, x1) is a maximum of vε(t1, ·) on G. As in the proof of Theorem 3.9 d),
these facts lead to a contradiction implying the assertion. □

In Example 3.7 we have indicated that many (ordinary) reaction equations
are globally solvable under reasonable assumptions. If combined with diffusion,
the situation is much more complicated as discussed in the survey article [24].
To give a flavor of this topic, we investigate a simple example.

Example 3.11. In the framework of Example 3.7, we let p > m, p > 3/2 if
m = 1, ℓ = 2 with the (different) species u and v, and f(u, v) = (ujvk,−ujvk)
for some j, k ∈ N0. We show global existence for all data 0 ≤ (u0, v0) ∈ Eα.

Theorem 3.9 yields a unique nonnegative maximal solution (u, v) on (0, t+)
since (3.14) holds. We suppose that t+ < ∞. We first proceed as in the ODE
system in Example 3.7 and deduce that

∂t(u+ v) = a1∆N (u+ v) +
a2 − a1
a1

a1∆Nv + ujvk − ujvk,

u(t) + v(t) = S(a1t)(u0 + v0) +
a2 − a1
a1

a1∆N

∫ t

0
S(a1(t− s))v(s) ds

for t ∈ [0, t+). Observe that a1 ̸= a2 as we have two different species. Therefore
the sum u+ v satisfies an equation with the inhomogeneity g = (a2 − a1)∆Nv
which has probably not a fixed sign. In the second equation above we see that
the first summand is bounded on R+×G since the semigroup S(·) generated by
∆N is bounded on Lp(G), and thus on D∆N

(α, p) ↪→ C(G), see Example 3.7.
The second term is defined by Theorem 2.15 since v takes values in an interpo-
lation space of ∆N . However, the norm of v in these spaces could blow up as
t→ t+. Which uniform bounds do we know for v?

Since ∂tv−a2∆Nv = −ujvk ≤ 0 by (3.11), Proposition 3.10 and Theorem 3.9
show that ∥v∥∞ ≤ ∥v0∥∞ and hence

∥v∥Lq([0,t+),Lq(G)) ≤ t
1/q
+ vol(G)

1
q ∥v0∥∞.

for all q ∈ (1,∞). Unfortunately, the theory presented so far does not allow to
use this global bound due to the presence of a1∆N in front of the integral.
Here the deeper theory of maximal regularity of type Lq helps. It says that

for certain classes of Banach spaces X and generators B of analytic semigroups
R(·) on X (including ∆N on Lr(G) for all r ∈ (1,∞)) the function w(t) =∫ t
0 R(t− s)g(s) ds takes values in D(B) for a.e. t ≥ 0 and that

∥Bw∥Lq([0,b],X) ≲b,q ∥g∥Lq([0,b],X)

for every g ∈ Lq([0, b], X). (See Theorem 6.3.2 in [28] and Section 7 in [17] for
this result. We refer to these two works, Chapter 17 in [15], and our last chapter
for a treatment of this theory.) We further recall that ∥BR(·)x∥ ≲b,q ∥x∥1−1/q,q

by Proposition 2.8. To use this result, we restrict to t > δ and thus replace
(u0, v0) by (u(δ), v(δ)) for some δ > 0 which is contained in W 2,q(G)2 for all
q ∈ (1,∞) by Theorem 3.9,a).

With B = a1∆N and X = Lq(G) these facts imply that u + v, and thus
u due to positivity, belong to Lq([0, t+), L

q(G)) for every q ∈ (1,∞). Taking
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q = jp and using that v is uniformly bounded, we deduce that ujvk belongs to
Lp([0, t+), L

p(G)). We next employ the equation ∂tu = a1∆Nu+u
jvk and again

maximal regularity to conclude that ∆Nu is an element of Lp([0, t+), L
p(G)).

The equation then implies that ∂tu ∈ Lp([0, t+), L
p(G)). Finally, we employ

the interpolative embedding

Lp
(
(0, t+), [D(∆N )]

)
∩W 1,p

(
(0, t+), L

p(G)
)

↪→ Cb
(
[0, t+), D∆N

(1− 1
p , p)

)
↪→ Cb

(
[0, t+),W

2− 2
p
,p
(G)

)
↪→ Cb

(
[0, t+), C(G)

)
,

see Theorem III.4.10.2 in [2] or the exercises, Example 2.12, and the fractional
Sobolev embedding Theorem 4.6.1 in [37] with 2 − 2

p >
m
p .

3 Here we use that

p > 3/2 if m = 1. Summing up, the solution (u, v) is bounded on [0, t+)×G so
that Theorem 3.9 b) yields that t+ = ∞.
One can show global existence of (3.11) for reactions A + B ⇌ C with a

refined version of the above Lp-approach, see [27]. The more general case
A+B ⇌ C +D was settled recently by different methods in [10]. ♢

3.2. Convergence to equilibria

Quite often one is particularly interested in certain classes of special solutions
u∗. Here we only look at the simplest case of equilibria; a different one would be
time-periodic solutions. We first characterize the stationary solutions of (3.1).

Lemma 3.12. Let (3.2) be true. Then u∗∈X is a time-independent solution
(equilibrium) of (3.1) with u0=u∗ if and only if u∗∈D(A) and Au∗ = −F (u∗).

Proof. If u∗ ∈ D(A) and Au∗ = −F (u∗), then the function u(t) = u∗
clearly solves (3.1) for all t ≥ 0. Conversely, if (3.1) has a stationary solution
u(t) = u∗ for t ≥ 0, then the mild formula (3.3) yields

1

t
(T (t)u∗ − u∗) = −1

t

∫ t

0
T (t− s)F (u∗) ds −→ −F (u∗)

as t→ 0 by strong continuity, and hence u∗ ∈ D(A) with Au∗ = −F (u∗). □

At least some equilibria of (3.11) are easy to obtain.

Remark 3.13. The reaction diffusion system (3.11) possesses the spatially
constant equilibrium u∗ = r∗1 if there is a vector r∗ ∈ Rℓ with f(r∗) = 0; i.e.,
(3.11) inherits the equilibria of the correspondig ordinary differential equation
y′ = f(y). (This works since we have chosen Neumann boundary conditions.)
The construction of other, spatially heterogeneous equilibria is part of the the-
ory of semilinear elliptic equation, not treated here.
More generally, for every constant initial value u0 = r01 the system (3.11)

has the solution u(t) = r(t)1 where r′ = f(r) and r(0) = r0 ∈ Rℓ, so that the
reaction ODE is contained in the reaction-diffusion system (3.11). ♢

3W 1,q(I,X) is the space of functions g ∈ Lq(I,X) with ∂tg ∈ Lq(I,X) for q ∈ [1,∞] and
an open interval I ⊆ R. Here the weak derivative is defined as for X = F and has the same
properties as in Theorem 3.22 in [33].
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In the applications one cannot exactly prescribe an equilibrium u∗ as an
initial value. Thus it is important whether small deviations of the initial value
lead to small deviations of the solution for all t ≥ 0. This property is called
stability. In this section we treat the slightly different, but closely related, topic
of convergence to u∗. We consider two basic results, both due to Lyapunov in
the ODE case: a local one using the spectrum of the linearization and a global
one using Lyapunov functions, cf. [31] for ordinary differential equation.
The first result is called principle of linearized stability, and it is based on

the idea that near an equilibrium u∗ the problem u′(t) = Au(t) + F (u(t)) is
very close to the linearized equation w′(t) = Aw(t) + F ′(u∗)w(t). We show
that the exponential stability of the latter problem implies the ‘local exponential
stability’ of u∗ for (3.1). Recall that the spectral bound s(B) of a closed operator
is the supremum of the real parts of all λ ∈ σ(A).

Theorem 3.14. Let (3.2) be true. Assume that u∗ is an equilibrium of (3.1),
F is differentiable at u∗, and s(A+F ′(u∗)) < 0. Take κ ∈ (0,−s(A+F ′(u∗))).
Then there are constants c, ρ > 0 such that for each u0 ∈ Bα(u∗, ρ) we have
t+(u0) = ∞ and

∥u(t)− u∗∥α ≤ ce−κt∥u0 − u∗∥α
for all t ≥ 0, where u solves (3.1).

Proof. Since F ′(u∗)∈B(Xα, X), the sumB := A+F ′(u∗) on D(B) = D(A)
generates an analytic C0-semigroup S(·) on X by Theorem 3.10 of [32] and
Remark 2.11. Corollary 4.17 in [32] and the assumption thus yield ω0(B) =

s(B) < −κ < 0, and hence ∥S(t)∥ ≤Me−δ
′t for someM ≥ 1 and δ′ ∈ (κ,−s(B))

and all t ≥ 0. We write XB
α for the interpolation spaces of B and take δ ∈

(κ, δ′). Proposition 2.4 implies ∥S(t)∥B(XB
α ) ≤Me−δ

′t ≤Me−δt for t ≥ 0. From

Theorem 2.14 we infer ∥S(t)∥B(X,XB
α )≤ct−α≤ceδt−αe−δt for t∈(0,1], as well as

∥S(t)∥B(X,XB
α ) ≤ ∥S(1)∥B(X,XB

α ) ∥S(t− 1)∥ ≤ ce−δ
′t ≤ ct−αe−δt

for t ≥ 1. To transfer these estimates to Xα, we note that I : [D(A)] → [D(B)]
is an isomorphism by Theorem 3.10 in [32]. Interpolation (see Theorem 2.9)
then shows that I : Xα → XB

α is also isomorphic, resulting in

∥S(t)∥B(Xα) ≤M0 e
−δt and ∥S(t)∥B(X,Xα) ≤M1t

−αe−δt (3.15)

for all t > 0 and some constants M0,M1 ≥ 1.
Since Au∗ = −F (u∗), the function v := u − u∗ with initial value v(0) =

u0 − u∗ =: v0 satisfies the equation

v′(t) = u′(t) = Au(t) + F (u(t))−Au∗ − F (u∗)

= Bv(t) + F (u∗ + v(t))− F (u∗)− F ′(u∗)v(t) =: Bv(t) +G(v(t)) (3.16)

for all t ∈ [0, t+(u0)). We can fix a number ε > 0 with

c0M1εt
1−α exp(c(α)M

1
1−α

1 ε
1

1−α t) e(κ−δ)t ≤ 1

2

for all t ≥ 0, where the constants c0 and c(α) are taken from (3.9). Because F
is differentiable at u∗, there is a radius r > 0 such that

∀ x ∈ Bα(r) : ∥G(x)∥α ≤ ε∥x∥α. (3.17)
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To use this estimate, we have to restrict ourselves to times t ≥ 0 such that
∥v(t)∥α ≤ r. Set ρ = (2M0)

−1r ∈ (0, r) and take u0 ∈ Bα(u∗, ρ) so that
∥v0∥α ≤ ρ < r. We introduce the number

τ = sup
{
t ∈ (0, t+(u0))

∣∣ ∥v(s)∥α ≤ r for all s ∈ [0, t]
}

∈ (0, t+(u0)].

Equation (3.16) and estimates (3.15) and (3.17) now yield

∥v(t)∥α ≤ ∥S(t)v0∥α +

∫ t

0
∥S(t− s)G(v(s))∥α ds

≤M0e
−δt∥v0∥α + εM1

∫ t

0
(t− s)−αe−δ(t−s)∥v(s)∥α ds,

eδt∥v(t)∥α ≤M0∥v0∥α + εM1

∫ t

0
(t− s)−α eδs∥v(s)∥α ds

for all t ∈ [0, τ). The singular Gronwall inequality (3.9) then leads to

eδt∥v(t)∥α ≤M0∥v0∥α
[
1 + c0M1εt

1−α exp
(
c(α)M

1
1−α

1 ε
1

1−α t
)]
,

∥v(t)∥α ≤M0e
−κt∥v0∥α

[
1 + c0M1εt

1−α exp
(
c(α)M

1
1−α

1 ε
1

1−α t
)
e(κ−δ)t

]
≤ 3

2M0e
−κt∥v0∥α ≤ 3

4r,

for all t ∈ [0, τ), due to our choice of ε and ρ. If τ < t+(u0), we would obtain
∥v(τ)∥α ≤ 3r/4 < r by continuity, contradicting the definition of τ . Hence,
τ = t+(u0) so that ∥v(t)∥α is bounded on [0, t+(u0)). Theorem 3.4 thus yields

t+(u0) = ∞. The claim with c := 3M0
2 now follows from the above estimate. □

There are refinements of Theorem 3.14 that describe the neighborhood of an
equilibrium depending on σ(A+ F ′(u∗)), see e.g. Chapter 9 of [20].
In Theorem 3.14 we have employed C–linear derivatives. As we have seen

in Corollary 1.18, there are many important nonlinearities which are only real
differentiable. On the other hand, we have used complex scalars for spectral
theory or to construct and study analytic semigroups. In the next remark we
indicate how to pass from real to complex scalars in our setting.

Remark 3.15. Let X be a real Banach space. We define its complexification

XC = X ⊕ iX =
{
z = x+ iy

∣∣x, y ∈ X
}
,

and write x = Re z and y = Im z. It is straightforward to check that XC is a
complex vector space for the scalar multiplication

(α+ iβ)(x+ iy) := (αx− βy) + i(βx+ αy)

for α, β ∈ R and x, y ∈ X. Moreover, XC is a Banach space when endowed with

∥z∥XC = sup
θ∈[0,2π]

∥Re(eiθz)∥X .

Note that ∥z∥XC is equivalent to ∥Re z∥X + ∥Im z∥X . Typical examples are
the real-valued function spaces Lp(µ) or C(K) whose complexifications are the
corresponding C–valued spaces. (Compare Appendix B.4 of [14].)
For a real-linear operator B on X, one sets D(BC) = D(B) ⊕ iD(B) and

BCz = Bx + iBy. Routine calculations show that BC is C-linear and closed
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if B is closed. In addition, if B is bounded, then BC has the same norm. We
define analytic C0-semigroups as in Theorem 2.25 d) of [32] if F = R.
We assume that A and F satisfy (3.2) on a real Banach space X, that

u∗ ∈ D(A) is a stationary solution for (3.1) with A and F , and that F is real dif-
ferentiable at u∗. One then verifies that AC generates the analytic C0-semigroup
(T (t)C)t≥0 and that DAC(α, p) and DAC(α) are isomorphic to the complexifica-
tions of DA(α, p) and DA(α), respectively. Setting FC(z) = F (Re z)+iF (Im z),
we obtain that FC fulfills (3.2) on XC. Moreover, u∗ + iu∗ is an equilibrium for
AC and FC, and FC possesses the C-derivative F ′(u∗)C at u∗ + iu∗.
We also assume that s(AC + F ′(u∗)C) < 0. We can now apply Theorem 3.14

to the solution u of (3.1). Let u0 ∈ Xα be real. Since ReAC(z) = A(Re z) and
ReFC(z) = F (Re z), the map Reu solves (3.1) with A, F , and initial value u0,
and it fulfills the conclusions of Theorem 3.14 with the same exponent.
Let F (0) = 0 and w = Im z. Take b > 0 and set r = max0≤t≤b ∥w(t)∥α. Since

w solves (3.1) with w(0) = 0, by means of the properties of T (·) we estimate

∥w(t)∥α ≤ c(b)L(r)
∫ t
0 (t − s)−α∥w(s)∥α ds for t ∈ [0, b]. Gronwall’s inequality

(3.9) then yields w = 0. Consequently, u = Reu is real if F (0) = 0. ♢

As a simple application of the principle of linearized stability, we discuss spa-
tially constant equilibria of reaction-diffusion systems with two species. The
treatment of general equilibria requires deeper investigations of spectral prop-
erties of elliptic systems with space-depending (heterogeneous) coefficients.

Example 3.16. We continue to work in the framework of Example 3.7 with
ℓ = 2, m = 3, p ≥ 2, f ∈ C1(R2,R2), and f(0, 0) = 0. We assume that
f(r∗, s∗) = 0 for some (r∗, s∗) ∈ R2

≥0, and consider the equilibrium (u∗, v∗) =

(r∗, s∗)1. We write

f ′(r∗, s∗) =

(
c11 c12
c21 c22

)
=: C.

To check that F is real differentiable, let (u, v), (û, v̂) ∈ C(G)2 be real and
x ∈ G. We compute

D(u,v)(x) := F (û+ u, v̂ + v)(x)− F (û, v̂)(x)− f ′(û(x), v̂(x))(u(x), v(x))

=

∫ 1

0

[
f ′(û(x)+τu(x), v̂(x)+τv(x))− f ′(û(x), v̂(x))

]
(u(x), v(x)) dτ,

∥D(u,v)∥∞ ≤ ∥(u,v)∥∞ max
|r|,|s|≤∥(u,v)∥∞

max
x∈G

|f ′(û(x)+r, v̂(x)+s)− f ′(û(x),v̂(x))|.

Since f ′, û and v̂ are uniformly continuous on G, the map F : C(G,R2) →
C(G,R2) has the (real) derivative given by

[F ′(û, v̂)(u, v)](x) = f ′(û(x), v̂(x))(u(x), v(x)).

One can show in a similar way that F ′ : C(G,R2) → B(C(G,R2)) is continuous.
Because Eα ↪→ C(G)2 by (3.13) and C(G)2 ↪→ E = Lp(G)2, we conclude that
F also belongs to C1

R(Eα, E) with the same formula for F ′(û, v̂), and hence

B(u, v) := [A+ F ′((u∗, v∗))](u, v) =

(
a1∆N + c11I c12I

c21I a2∆N + c22I

)(
u
v

)
.



3.2. Convergence to equilibria 54

Here we pass to F = C as in Remark 3.15. If s(B) < 0, then this remark and
Theorem 3.14 show that all real solutions starting close to (u∗, v∗) converge to
(u∗, v∗) in Eα exponentially as t→ ∞.

It remains to study s(B). The domain D(B) = {(u, v) ∈ W 2,p(G)2 | ∂νu =
∂νv = 0 on ∂G} is compactly embedded into E by the Rellich–Kondrachov
Theorem 3.34 in [33]. Thus, B has pure point spectrum without accumula-
tion points by Remark 2.13 and Theorem 2.15 of [33]. To use the powerful
L2–theory, we consider the restriction B2 of B to L2(G)2 with the analogous
domain. As for B, one obtains σ(B2) = σp(B2). We check that σp(B2) = σ(B).
From p ≥ 2 it follows D(B) ⊆ D(B2) and hence each eigenvector of B is

one of B2 for the same eigenvalue; i.e., σ(B) ⊆ σp(B2). Conversely, let w =
(u1, u2) ∈ D(B2) satisfy λw = B2w. By Sobolev’s embedding Theorem 3.31 of
[33], the eigenfunction w belongs to C(G)2 ↪→ Lp(G)2 because of 2− 3/2 > 0.
We further have ∂νuj = 0 on ∂G and

∆uj − uj = a−1
j (λuj − cj1u1 − cj2u2)− uj =: φj ∈ Lp(G)

for j ∈ {1, 2}. Since ∆N − I is bijective on Lp(G) by Example 5.2 of [32], there
is a function vj ∈ W 2,p(G) ⊆ W 2,2(G) such that ∂νvj = 0 and ∆vj − vj = φj .
The injectivity of ∆N −I on L2(G) implies that uj = vj for j ∈ {1, 2}, and so w
is an eigenfunction of B for the eigenvalue λ. We have shown σ(B) = σp(B2).

4

Arguing as in Example 4.8 of [33] for the Dirichlet–Laplacian, we see that
∆N is self-adjoint on L2(G). The spectral theorem in the compact case (see
Theorem 4.15 in [33]) thus yields an orthonormal basis of eigenfunctions en for
the eigenvalues µn ≤ 0 of ∆N , where µn → −∞ as n→ ∞. Let (u, v) ∈ D(B2).
We use the orthonormal series u =

∑
n≥0 αnen and v =

∑
n≥0 βnen with the

coefficients αn = (u|en) and βn = (v|en). It further holds ∆Nu =
∑

n≥0 αnµnen
and ∆Nv =

∑
n≥0 βnµnen. Hence, the equation B2(u, v) = λ(u, v) for some

λ ∈ C is equivalent to
∞∑
n=0

[(
a1µnαnen
a2µnβnen

)
+

(
c11αnen + c12βnen
c21αnen + c22βnen

)]
=

∞∑
n=0

(
λαnen
λβnen

)
.

Since the functions en are orthonormal, this identity is true if and only if

Mn

(
αn
βn

)
:=

(
a1µn + c11 c12

c21 a2µn + c22

)(
αn
βn

)
= λ

(
αn
βn

)
for every n ∈ N0.

This means that an eigenvalue λ of some Mk with eigenvector (αk, βk) is an
eigenvalue of B2 with eigenfunction (αkek, βkek) ∈ D(B2). Conversely, every
eigenfunction w = (u, v) for an eigenvalue of B2 gives an eigenvalue of Mn for
those n such that (αn, βn) ̸= 0. The spectrum of B is thus given by

σ(B) = σp(B2) =
⋃

n∈N0

σ(Mn).

Since B is sectorial and has compact resolvent, the set σ(B) ∩ {λ ∈ C |Reλ ≥
s(B)− 1} contains only finitely many points so that

s(B) < 0 ⇐⇒ ∀n ∈ N0 : s(Mn) < 0 ⇐⇒ ∀n ∈ N0 : trMn < 0, detMn > 0.

4The spectrum of restrictions of generators to subspaces is studied in §IV.2.b of [8].
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With these equivalences the stability problem is reduced to a finite family of
inequalities involving the coefficients aj and cjk and the Neumann eigenvalues
µn. We discuss this result a bit. As µ0 = 0, we have M0 = C = f ′(r∗, s∗)
so that s(C) < 0 is a necessary condition for the local exponential stability of
the reaction-diffusion equation; i.e., (r∗, s∗) must be locally exponential stable
for the ODE describing the pure reaction. If this is the case, we have trC =
c11 + c22 < 0 and hence trMn = (a1 + a2)µn + c11 + c12 < 0 since µn ≤ 0 for
all n ∈ N0. The limit µn → −∞ yields detMn > 0 for all large n. However, for
small n ≥ 1 it can happen that

0 > detMn = a1a2µ
2
n + µn(a1c22 + a2c11) + detC

despite detC > 0 and a1a2µ
2
n > 0, as µn < 0. For instance, this behaviour can

occur if detC is close to 0, a1 is small, and c11 ≫ a1|µ1|. (Typically, diffusion
coefficients are small.) Here one has ‘diffusion induced instability’ s(B) > 0. ♢

It would be nice to know that the solutions converge to u∗ for a ‘larger’ set
of initial values than in Theorem 3.14 (e.g., all positive ones). To obtain sucxh
results, we need two more tools: Lyapunov functions and omega limit sets.

Definition 3.17. Let (3.2) be true and ∅ ̸= D ⊆ Xα. A map Φ ∈ C(D,R)
is called Lyapunov function for (3.1) on D if the function ψu(t) = Φ(u(t)) does
not increase for each solution u of (3.1) with u(J ′) ⊆ D. It is strict if u(t)
equals an equilibrium for t ≥ t0 if ψu(t1) = ψu(t0) for some t1 > t0 ≥ 0.

(Note that we do not have backward uniqueness in general.) As we will see
below, the existence of a Lyapunov function has a significant impact on the
qualitative behavior of the system (3.1). So it is no surprise that there is not
general recipe to find them. Often, Lyapunov functions are related to physical
quantities such as energy or entropy for systems arising in sciences.
We first show that a Lyapunov function Φ allows to detect invariant sets for

(3.1) and global solutions, if Φ blows up at ∂D and for large ∥x∥α, respectively.
Proposition 3.18. Let (3.2) be true, D ⊆ Xα be open, and Φ ∈ C(D,R) be

a Lyapunov function for (3.1). Then the following assertions hold.

a) Let D ̸= Xα and Φ(x) → ∞ as x→ ∂D in Xα. Then D is invariant; i.e.,
for every u0 ∈ D we have φ(t, u0) ∈ D for all t ∈ [0, t+(u0)).

b) Let D be invariant and Φ(x) → ∞ as ∥x∥α → ∞ for x ∈ D. Then
t+(u0) = ∞ for all u0 ∈ D.

Proof. Let u0 ∈ D. The states u(t) := φ(t, u0) then belong to the set
{x ∈ D |Φ(x) ≤ Φ(u0)} as long as they stay in D and t ∈ [0, t+(u0)).

a) Let Φ(x) → ∞ as x→ ∂D inXα. Suppose there was a time t1 ∈ (0, t+(u0))
with u(t1) /∈ D. Then the number

τ := sup
{
t ∈ [0, t1)

∣∣ ∀ s ∈ [0, t] : u(s) ∈ D
}

is contained in (0, t1]. Since D is open and u ∈ C(J ′
+(u0), Xα), we have u(τ) /∈

D. For t ∈ [0, τ) the vectors u(t) are elements of D and converge to u(τ) in Xα

as t→ τ . So Φ(u(t)) tends to infinity, contradicting the initial observation.

b) Similarly, the conditions in b) imply that ∥u(t)∥α is bounded on [0, t+(u0))
so that t+(u0) = ∞ due to Theorem 3.4. □
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One can use Lyapunov functions to detect (asymptotic) stability, see The-
orem 4.1.4 in [13]. We omit such results and focus on global convergence
properties. To this end, we establish the basic properties of omega limit sets;
i.e., the sets of accumulation points of solutions as t→ ∞.
We need the concept of connectedness in a metric space M . A set C ⊆M is

disconnected if it decomposes into C = C1∪C2 for relatively open, disjoint, and
non-empty subsets Cj . A subset is called connected if it is not disconnected.
We note some basic properties of connected sets, see Section III.4 of [3]. The

space M is connected if and only if only ∅ and M are the only open and closed
subsets of M . For open subsets of a normed vector space, connectedness and
pathwise connectedness coincide. Let N be a metric space, f : M → N be
continuous, and C ⊆M be connected. Then the range f(C) is connected.

Proposition 3.19. Let (3.2) be true. Let u = φ( · , u0) be a solution of (3.1)
on R+ such that the orbit γ(u0) := {u(t) | t ≥ 0} is relatively compact in Xα.
Then the following assertions hold.

a) The omega limit set

ω(u0) :=
{
x ∈ Xα

∣∣ ∃ R≥0 ∋ tn → ∞ : u(tn) → x in Xα as n→ ∞
}

is non-empty, compact and connected in Xα, and it is invariant for (3.1).

b) We have dα(u(t), ω(u0)) := distXα(u(t), ω(u0)) → 0 as t→ ∞.

c) Let v0 ∈ ω(u0). Then t+(v0) = ∞ and there is a solution v of (3.1) on R
with v(0) = v0 and v(t) ∈ ω(u0) for all t ∈ R. In particular, v0 ∈ D(A).

Proof. 1) The set ω(u0) is not empty, since γ(u0) has a compact closure in
Xα. Let xn ∈ ω(u0) converge to x in Xα as n→ ∞. For each n ∈ N we choose
tn ≥ n such that ∥u(tn)− xn∥α ≤ 1/n. Hence, ∥x− u(tn)∥α ≤ ∥x− xn∥α+1/n
tends to 0 as n→ ∞. The vector x thus belongs to ω(u0), and ω(u0) is closed

in Xα. This fact also yields the compactness of ω(u0) ⊆ γ(u0)
α
.

2) Suppose dα(u(tn), ω(u0)) ≥ η > 0 for a sequence tn → ∞. Then there is a
subsequence (u(tnj ))j with a limit x ∈ ω(u0) in Xα, which is a contradiction.

3) To show the connectedness of ω(u0), we assume that there were non-empty
disjoint subsets ωj of ω(u0) such that ωj = Oj ∩ ω(u0) for open sets Oj ⊆ Xα

for j ∈ {1, 2} and ω1∪ω2 = ω(u0). Writing ωj = ω(u0)∩ (Xα \Oi) for i ̸= j, we
see that ωj is closed, hence compact, in Xα. It follows that ∥x1 − x2∥α ≥ δ > 0
for some δ > 0 and all xj ∈ ωj .
Take some x ∈ ω1 and y ∈ ω2. There are times sn, tn → ∞ such that

sn < tn < sn+1, ∥u(sn)− x∥α < δ/3 and ∥v(tn)− y∥α < δ/3 for all n ∈ N. By
continuity, we can then find a time rn ∈ (sn, tn) such that dα(u(rn), ω1) = δ/3
and thus dα(u(rn), ω2) ≥ 2δ/3. But for a subsequence the states u(rnj ) tend to
some z ∈ ω(u0) in Xα as j → ∞, which is impossible. Thus, ω(u0) is connected.

4) It remains to show the last part of a) and assertion c). Let v0 ∈ ω(u0).
Then there are tn → ∞ such that u(tn) → v0 inXα as n→ ∞. By Theorem 3.4,
the continuous dependence on initial data and the uniqueness of (3.1) imply

v(t) := φ(t, v0) = lim
n→∞

φ(t, φ(tn, u0)) = lim
n→∞

φ(t+ tn, u0)
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in Xα for t ∈ J+(v0). Hence, v(t) belongs to ω(u0) and ω(u0) is invariant. As a
compact set, ω(u0) is bounded in Xα. Theorem 3.4 c) now yields t+(v0) = ∞.
Inductively, for all j ∈ {1, . . . ,m} and m ∈ N we obtain vectors vj ∈ ω(u0)

and subsequences (tνm(k))k of (tνm−1(k))k such that φ(tνm(k) − j, u0) tends to vj
in Xα as k → ∞ (with v0 and tν0(n) = tn from above). Set vm = φ( · , vm) on
R≥0 for m ∈ N0. For t ≥ −j ≥ −m we compute

vm(t+m) = lim
k→∞

φ(t+m,φ(tνm(k) −m,u0)) = lim
k→∞

φ(t+ tνm(k), u0)

= lim
k→∞

φ(t+ j, φ(tνm(k) − j, u0)) = vj(t+ j).

For j = 0 this means vm(t+m) = v(t) if t ≥ 0. So we can extend v to a solution
of (3.1) on R by setting v(t) = vm(t+m) for t ≥ −m and m ∈ N. In particular,
v0 = v(0) is an element of D(A). Since v(−m) = vm ∈ ω(u0) for all m ∈ N0,
the invariance of ω(u0) implies that v(t) belongs to ω(u0) for each t ∈ R. □

These results (except for the very last assertion) hold in a much more general
setting, see Chapter 4 of [13]. The proof of the above proposition indicates
again that one should describe the behavior of (3.1) in the norm of Xα. The
compactness assumption in the above proposition is crucial, of course, as seen
by the solution et of the ODE u′(t) = u(t).

The above result only says that the solution tends to its omega limit set. In
our next convergence theorem we can describe ω(u0) in better way and then
deduce that the solution has a limit. It is based on the above proposition and
the observation that ω(u0) only contains equlibria if the problem possesses a
strict Lyapunov function.

Theorem 3.20. Let (3.2) be true, D ⊆ Xα, and Φ ∈ C(D,R) be a strict
Lyapunov function for (3.1). Assume that u0 ∈ D satisfies t+(u0) = ∞ and

that γ(u0)
α
is compact in Xα and contained in D.

Then the omega limit set ω(u0) belongs to ED and dα(u(t), ED) tends to 0 as
t→ ∞, where ED = {u∗ ∈ D ∩D(A) |Au∗ = −F (u∗)} is the set of equilibria in
D. If ED is discrete, then u even converges to a vector u∗ ∈ ED.

Proof. Since ψu = Φ◦u does not increase and Φ is bounded on the compact

set γ(u0)
α
, the function ψu(t) converges to some ℓ ∈ R. Take any x ∈ ω(u0)

and tn → ∞ with u(tn) → x in Xα. The vector x then belongs to D and
Φ(x) = limn→∞ ψu(tn) = ℓ which means that Φ is constant on ω(u0). Since
φ(t, x) stays in ω(u0) ⊆ D by Proposition 3.19 for all t ∈ R, the vector x belongs
to ED because Φ is strict. The assertions now follow from Proposition 3.19.
(Note that a discrete, connected, non-empty set has to be a singleton.) □

There is a variant of this theorem without the strictness assumption, called
LaSalle’s invariance principle, see Theorem 4.3.4 of [13]. If ED is not discrete,
the solution does not tend to an equilibrium, in general; though in some situ-
ations one can still show convergence using more tools. See Sections 8.8 and
10.4 in [29] for such results in an ODE setting.
Despite its surprisingly elementary proof, the above theorem is very powerful

in applications. For the reaction-diffusion system (3.11), Theorem 3.9 shows
that uniform boundedness already implies compactness of the orbit. For (strict)
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Lyapunov functions there are at least some candidates as the one used in the
next example treating a predator-prey model. (Compare Beispiel 6.17 of [31].)

Example 3.21. Again we work in the framework of Example 3.7 with ℓ = 2,
now assuming that G is connected. We consider the ‘reaction term’

f(u, v) =

(
(1− λ1u− v)u
(µ− λ2v + u)v

)
with λ1, λ2 > 0 and µ ∈ R, describing the (normalized) interaction between
the prey species u and the predators v. Let 0 ≤ u0, v0 ∈ Eα ↪→ C(G)2.
Since the positivity condition (3.14) holds, there is a unique maximal solution
(u(t), v(t)) ≥ 0 of (3.1) with the above f on [0, t+) by Theorem 3.9.

1) We first show that u ≤ κ := max{∥u0∥∞, 1/λ1}. Suppose that there were
(t0, x0) ∈ (0, t+)×G and δ > 0 such that u(t0, x0) ≥ δ + κ. Set

t1 := sup
{
t ∈ (0, t0]

∣∣∀ s ∈ [0, t], x ∈ G : u(s, x) < δ + κ
}

∈ (0, t0].

There thus exists a point x1 ∈ G with u(t1, x1) = δ + κ. Then u(t1, x1) is a
maximum of u(t1, ·) on G and ∂tu(t1, x1) ≥ 0. We further have

∂tu(t1, x1)− a1∆u(t1, x1) ≤ u(t1, x1)− λ1u(t1, x1)
2 < 0

since u(t1, x1) > 1/λ1 and v ≥ 0. As in the proof of the parabolic maximum
principle Proposition 3.10, we obtain a contradiction so that u ≤ κ.

2) Step 1) implies the inequality (µ− λ2v + u)v ≤ (µ+ κ)v − λ2v
2. We can

now proceed as in 1) and show that v ≤ max{(µ+κ)/λ2, ∥v0∥∞}. Theorem 3.9
thus yields that t+ = ∞ and that the orbit is relatively compact in Eα.

3) From now, let u0 ̸= 0 and v0 ̸= 0. Below we need the positivity of the
solution. To this aim, set ω = λ1∥u∥∞ + ∥v∥∞ − 1 for the given solution. By
(3.11), the rescaled function φ(t) = eωtu(t) then satisfies the inequality

∂tφ− a1∆φ = φ(ω + 1− λ1u− v) ≥ 0

on R≥0×G. If u(t0, x0) = 0 for some (t0, x0) ∈ R+×G, then φ = 0 on [0, t0]×G
due to the above inequality and the strong parabolic maximum principle (see
Theorems 3.5 and 3.6 in [26]5), contradicting u0 ̸= 0. In the same way one
treats v. We have shown that u, v > 0 on R+ ×G.

4) We only consider strictly positive equilibria. It is easy to see that f has a
strictly positive zero (r∗, s∗) if and only if λ2 > µ > −1/λ1, and then

(r∗, s∗) =
1

1 + λ1λ2
(λ2 − µ, 1 + µλ1).

This condition means that the internal reproduction coefficient µ of the preda-
tors is neither too negative nor bigger than the internal ‘damping’ coefficient λ2
reflecting the competion between the predators. We thus study the equilibrium
(u∗, v∗) = (r∗, s∗)1 of (3.11), assuming λ2 > µ > −1/λ1.

5) We introduce the set D = {w ∈ Eα |w > 0 on G} and the functional

Φ(w) =

∫
G

(
(w1 − u∗ lnw1) + (w2 − v∗ lnw2)

)
dx =

∫
G
Ψ(w) dx,

5Here one needs the connectness of G. The proofs in [26] can be extended to our situation.
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recalling that wk is strictly positive on G. (See Beispiel 6.13 of [31] for a deriva-
tion in the ODE setting.) As in Example 3.16, one sees that Ψ ∈ C1

R(D,C(G))
with derivative Ψ′(w)[w̃] = (1 − u∗/w1)w̃1 + (1 − v∗/w2)w̃2 for all w̃ ∈ Eα.
The integral is just a linear functional on C(G) so that Φ ∈ C1

R(D,R). Since
(u(t), v(t)) ∈ D for all t > 0, the chain rule and (3.11) yield

d

dt
Φ(u, v) =

∫
G

((
1− u∗

u

)
∂tu+

(
1− v∗

v

)
∂tv

)
dx

=

∫
G

((
1− u∗

u

)
a1∆u+

(
1− v∗

v

)
a2∆v

)
dx

+

∫
G

(
(u− u∗)(1− λ1u− v) + (v − v∗)(µ− λ2v + u)

)
dx,

omitting the variables (t, x) ∈ R+ ×G. We denote the integrals in the last two
lines by J1 and J2, respectively. An integration by parts shows that

J1 = −
∫
G

(a1u∗|∇u|2
u2

+
a2u∗|∇v|2

v2

)
dx ≤ 0.

Using 1 = λ1r∗ + s∗ and µ = λ2s∗ − r∗, we compute

J2 =

∫
G

(
(u− u∗)(λ1u∗ + v∗ − λ1u− v) + (v − v∗)(λ2v∗ − u∗ − λ2v + u)

)
dx

= −
∫
G

(
λ1(u− u∗)

2 + λ2(v − v∗)
2
)
dx ≤ 0.

Summing up, we arrive at

Φ(u(t), v(t)) ≤ Φ(u(s), v(s))−
∫ t

s

∫
G

(
λ1(u(τ)− u∗)

2 + λ2(v(τ)− v∗)
2
)
dx dτ.

for all t ≥ s > 0. As a consequence, Φ(u, v) does not increase along each
orbit with nonzero, non-negative initial data. If it is constant on [s, t] for some
t > s > 0, we infer u = u∗ and v = v∗ on [s, t], and thus on [s,∞). In particular,
(u∗, v∗) is the only equilibrium in D and Φ is a strict Lyapunov function on D.

6) To apply Theorem 3.20, we have to check that the closure of γ((u0, v0)) is
contained in D. Let ŵ0 = (û0, v̂0) ∈ ω((u0, v0)). We have ŵ0 ≥ 0 as a uniform
limit of (u(tn), v(tn)) ≥ 0. Observe that Ψ(u, v) ≥ c∗ for a number c∗ ∈ R and
all u, v ≥ 0. A variant of Fatou’s lemma thus implies that

Φ(ŵ0) ≤ lim inf
n→∞

Φ(u(tn), v(tn)) ≤ Φ(u(1), v(1)) <∞

so that û0(x) > 0 and v̂0(x) > 0 must hold for a.e. x ∈ G. Recall from
Proposition 3.19, that ŵ0 = ŵ(0) for a solution ŵ of (3.1) on R belonging to
ω((u0, v0)). In particular, û(−1)(x) > 0 and v̂(−1)(x) > 0 for a.e. x ∈ G, and

hence ŵ0 > 0 on G by step 3); i.e, γ((u0, v0))
α ⊆ D.

7) Theorem 3.20 now implies that the solution (u(t), v(t)) converges to (u∗, v∗)
in Eα as t → ∞ if λ2 > µ > −1/λ1 and 0 ≤ (u0, v0) ∈ Eα with u0 ̸= 0 and
v0 ̸= 0. (Observe that the decay of the L1-type quantity Φ(u(t), v(t)) already
implies the convergence of (u(t), v(t)) to the equilibrium in all norms ∥ · ∥α.) ♢



CHAPTER 4

The nonlinear Schrödinger equation

In this chapter we investigate the nonlinear Schrödinger equation

i∂tu(t, x) = −∆u(t, x) + µ|u(t, x)|α−1u(t, x), t ∈ J, x ∈ Rm,
u(0, x) = u0(x), x ∈ Rm.

(4.1)

Equivalently, one can write

∂tu(t, x) = i∆u(t, x)− iµ|u(t, x)|α−1u(t, x).

Most of the time, it is assumed that

µ ∈ {−1, 1}, 1 < α <
m+ 2

(m− 2)+
=: αc, 0 ∈ J is an interval, J◦ ̸= ∅. (4.2)

(We also allow for negative times.) Note that αc = ∞ for m ∈ {1, 2}, αc = 5
for m = 3, αc = 3 for m = 4, and αc ↘ 1 as m→ ∞. The results below can be
extended to more general nonlinearities, see [6], but the model equation (4.1)
already gives a very good insight in the field. In some cases we also treat the
critical exponent α = m+2

m−2 for m ≥ 3, which is harder to study. An extended

survey is given in [35]. If µ = 1 one has the (in some respects easier) defocusing
case and for µ = −1 the focusing case.
The nonlinear Schrödinger equation is one of the prototypical systems ex-

hibiting ‘dispersive behavior’, and much recent research has concentrated on it.
Variants of it appear in quantum field theory; e.g., in the study of so called
Bose–Einstein condensates. It is also used to describe (approximately) the am-
plitudes of wave packages in nonlinear optics, see [22]. Natural numbers α play
a significant role when nonlinear material laws are given by power series. Due
to symmetry constraints one then often considers odd α.
In this chapter we write W k,q = W k,p(Rm) for k ∈ N0 and q ∈ [1,∞],

Hk = W k,2, and similarly for other function spaces on Rm, where W 0,q = Lq.
We usually drop the domain Rm in integrals over Rm. The norm on W k,q is
denoted by ∥v∥k,q and we set ∥v∥0,q = ∥v∥q.

4.1. Preparations

We start with a few (more or less explicit) special solutions of the differential
equation in (4.1), which illustrate some phenomena occuring in the nonlinear
Schrödinger equation. In the exercises we discuss symmetries and scaling prop-
erties of (4.1) which allow to construct new solutions out of a given one.

Example 4.1. We want to construct plane waves. For a given vector ξ ∈
Rm\{0}, we look for a function ϕ : R → C such that the map wξ(t, x) := ϕ(t)eiξ·x

solves (4.1). We compute ∂twξ(t, x) = ϕ′(t)eiξ·x, ∂ku(t, x) = iξkwξ(t, x), and

60
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∆wξ(t, x) = −|ξ|22wξ(t, x) for (t, x) ∈ R1+m. Since |wξ| = |ϕ|, the map wξ
satisfies (4.1) if and only if

ϕ′(t) = −i(|ξ|22 + µ|ϕ(t)|α−1)ϕ(t).

This ordinary differential equation can be solved leading to the plane wave

wξ(t, x) = aeiξ·xe−i|ξ|22te−iµ|a|α−1t, (t, x) ∈ R1+m.

Here a := ϕ(0), |a| = |wξ| is the amplitude, ξ is the wave vector, and ω =
|ξ|22 + µ|a|α−1 is proportional to the (temporal) frequency. Observe that the
summand |ξ|22 in ω comes from −∆, whereas µ|a|α−1 is the contribution of the
nonlinear part which depends on |a|. For µ = 1 these two terms add up and so
the nonlinearity increases the frequency and thus the time oscillation, whereas
for µ = −1 the oscillations partly cancel. We further have

wξ(t, x) = a ⇐⇒ 1

|ξ|2
ξ · x =

(
|ξ|2 + µ

|a|µ−1

|ξ|2

)
t =: v(ξ)t.

This plane moves along its unit normal vector 1
|ξ|2 ξ with the phase velocity v(ξ)

which depends on the length of the wave vector.
This behavior is called dispersion. Dispersion causes plane waves with differ-

ent wave vectors ξj (even if they have the same direction 1
|ξj |2 ξj) to spread out in

space as time evolves. This effect will be stronger in the defocusing case µ = 1,
since again the nonlinear effect adds to the linear one. In the case µ = −1
the waves exhibit less dispersion, they longer stay focused. This explains the
terminology of the two cases. ♢

In focusing case one can construct standing waves, which is not possible in
the defocusing case, see Theorem 7.3.1 in [6]. In the latter situation dispersion
destroys such persistent patterns.

Example 4.2. We look for a standing wave for (4.1); i.e., a solution given by

uω(t, x) = eiωtφω(x), (t, x) ∈ R1+m,

for a frequency ω ∈ R and a wave profile φω ∈ H2 \ {0}. Such a function uω
solves (4.1) if and only if

i∂tuω(t, x) = −ωeiωtφω(x) = −eiωt∆φω(x) + µ|φω(x)|α−1eiωtφω(x),

−∆φω + ωφω = −µ|φω|α−1φω (4.3)

on Rm. The resulting semilinear elliptic problem for φω can be solved in H2 in
the focusing case µ = −1 if ω > 0 and 1 < α < αc. One can even prove that
φω and ∇φω decay exponentially and find radial, decreasing solutions φω > 0.
(See §8.1 of [6] and the references given there.)
For m = 1, ω = 1 and µ = −1 we have the explicit solution

φ1(x) =

( √
β + 1

cosh(βx)

)1
β

, x ∈ R,

where we set β = α−1
2 . For α = 3, one has β = 1 and φ1 =

√
2

cosh . ♢
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In the next example, these standing waves lead to blow-up solutions in the
focusing case µ = −1 with α = 1 + 4

m . Blow up actually occurs for all α ∈
[1 + 4

m , αc) as shown in Theorem 6.5.10 of [6]. (The basic idea of its proof is
similar to that of Proposition 1.21.) On the other hand, Theorem 4.19 below
yields global existence if µ = 1 and α < αc and if µ = −1 and α < 1 + 4

m .
Hence, stronger dispersion or weaker nonlinear effects prevent blow up.

Example 4.3. Let µ = −1, α = 1 + 4
m < αc, ω > 0, and take 0 < φω ∈ H2

as in Example 4.2. For t ∈ [0, 1) and x ∈ Rm we define

u(t, x) = (i(t− 1))−
m
2 e

i
|x|2

4(t−1) e
−i ω

(t−1)φω
(

1
t−1x

)
.

One can directly (and tediously) check that u solves (4.1), cf. p.116 in [35].
Moreover, the substition y = 1

t−1x yields

∥u(t)∥22 =
∫
Rm

|t− 1|−m|φω
(

1
t−1x

)
|2 dx = ∥φω∥22,

∥|∇u(t)|2∥22 =
∫
Rm

|t− 1|−m
∣∣∣ i
2(t−1)φω

(
1
t−1x

)
x+ 1

t−1∇φω
(

1
t−1x

)∣∣∣2
2
dx

≥
∫
Rm

|t− 1|−m−2
∣∣∇φω( 1

t−1x
)∣∣2

2
dx = |t− 1|−2∥|∇φω|2∥22.

As a result, this solution explodes in H1 as t→ 1− though it stays bounded in
L2 and the initial value u(0) belongs to H2 by the properties of φω mentioned
in Example 4.2. ♢

As we will see below, solutions of (4.1) preserve the L2-norm (interpreted
as ‘mass’) and the ‘energy’. These conservation laws are the basic tools to
study the longterm properties of solutions and in particular to understand the
blow-up behavior. To define the energy, we need some preparations.
Let α ∈ (1, αc] if m ̸= 2 and α ∈ (1, αc) if m = 2. Sobolev’s embedding shows

H1 ↪→ L1+α, ∥v∥1+α ≤ CSo∥v∥1,2,
H2 ↪→ L2α, ∥w∥2α ≤ CSo∥w∥2,2,

(4.4)

for all v ∈ H1 and w ∈ H2. See Theorem 3.31 in [33] and observe that, e.g.,

m ≥ 3 : 1 + αc = 1 +
m+ 2

m− 2
=

2m

m− 2
=⇒ 1− m

2
=

2−m

2
≥ − m

1 + α
,

m ≥ 4 : 2αc <
2m

m− 4
=⇒ 2− m

2
=

4−m

2
> −m

2α
.

For the above α, we can define the ‘energy’ E : H1 → R by

E(v) = 1

2

∫
Rm

|∇v|22 dx+
µ

α+ 1

∫
Rm

|v|α+1 dx (4.5)

for v ∈ H1 ↪→ L1+α. We stress that 2E(v)+∥v∥22 ≥ ∥v∥21,2 in the defocusing case
µ = 1, but that the energy may become negative if µ = −1. These properties
lead to global existence in the first case and the occurence of blow up in the
second one (if α ≥ 1 + 4

m), as noted above.
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The embedding (4.4), the chain rule and Corollary 1.18 yield E ∈ C1
R(H

1,R)
with derivative

E ′(v)w = Re

∫
Rm

(
∇v · ∇w + µ|v|α−1vw

)
dx for v, w ∈ H1. (4.6)

We next show that regular solutions preserve the L2-norm and the energy.

Remark 4.4. Let u ∈ C(J,H2) ∩ C1(J, L2) solve (4.1) on J . Let t ∈ J .

a) From equation (4.1) and an integration by parts we infer

∂t∥u(t)∥22 = 2Re

∫
∂tu(t)u(t) dx = 2Re i

∫
(∆u(t)− µ|u(t)|α−1u(t))u(t) dx

= 2 Im

∫
(|∇u(t)|22 + µ|u(t)|α+1) dx = 0,

∥u(t)∥2 = ∥u0∥2.

b) We cannot directly treat d
dtE(u(t)) by the chain rule and (4.6) as u may

not belong to C1(J,H1). To regularize, we use the Yosida approximations Rn=
nR(n,∆) which tend to I strongly in L2 and H2 ↪→ L2α (and hence uniformly
on compact sets) as n → ∞, see Lemma 1.22 of [32], Lemma 4.5, and (4.4).
Since Rnu ∈ C1(J,H2), formula (4.6) and an integration by parts imply

d

dt
E(Rnu(t)) = Re

∫ (
∇Rnu(t)·∇∂tRnu(t) + µ|Rnu(t)|α−1Rnu(t)∂tRnu(t)

)
dx

= Re

∫ (
−∆Rnu(t) + µ|Rnu(t)|α−1Rnu(t)

)
Rn∂tu(t) dx.

Using the above mentioned properties of Rn and Hölder’s inequality, one can let
n→ ∞ locally uniformly in t on the right-hand side. Hence, E(u) is continuously
differentiable with

d

dt
E(u(t)) = Re

∫ (
µ|u(t)|α−1u(t)−∆u(t)

)
∂tu(t)dx = Re

∫
i∂tu(t)∂tu(t)dx = 0,

E(u(t)) = E(u0),

where we also employed (4.1). ♢

The above results indicate that one can control the H1-norm of solutions at
least in the defocusing case. We also note that there are no conservation laws
involving second space derivatives, in general. Aiming at global existence, we
are thus looking for a local wellposedness theory for the nonlinear Schrödinger
equation (4.1) in which we can derive a blow-up condition involving only the
H1-norm. For such a theory it is reasonable to consider solutions which are
continuous with values in H1 (for which one must then also show the above
conservation laws). Hence, one has to extend the Laplacian from H2 to H1.
We first develop the necessary functional analytic framework.
To that purpose, we define the negative Sobolev spaces on Rm by

W−k,r =W−k,r(Rm) :=W k,r′(Rm)⋆, H−k := (Hk)⋆

for k ∈ N and r ∈ (1,∞]. (The norms in W 1,r depend on the norm | · |s
chosen on Rm, but they are equivalent with constants c(m). This fact is mostly
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ignored below and we usually omit the subscript s.) The norm of the Banach
space W−k,r is given by ∥φ∥−k,r = sup∥v∥k,r′=1 |φ(v)|. If r ∈ (1,∞), then

W−k,r is separable and reflexive with a dual space isomorphic to W k,r′ . (See
Propositions 4.19 and 5.28 of [30].)

Let α ∈ (1, αc] if m ≥ 3 and α ∈ (1, αc) if m ∈ {1, 2}. We set q = α+ 1. By
(4.4) and Proposition 4.13 of [30], the inclusion I : H1 → Lq is continuous and
injective with dense range. Proposition 5.46 of [30] thus yields that

I⋆ : Lq
′ → H−1 is continuous and injective with dense range. (4.7)

(Here we can also allow for α = 1.) In this context we note that

q = α+ 1, q′ =
q

q − 1
=
q

α
= 1 +

1

α
≥ 1 +

1

αc
(> if m ≤ 2). (4.8)

Here and below, for r ∈ [1,∞) we identify Lr
′
with (Lr)⋆ via

∀ f ∈ Lr, g ∈ Lr
′
: ⟨f, g⟩Lr×(Lr)⋆ =

∫
fg dx.

(We do not identify H1 with (H1)⋆ = H−1.) In this way a map g ∈ Lr
′
with

r′ ∈ [1 + 1
αc
, 2] (r′ ∈ (1 + 1

αc
, 2] if m ≤ 2) induces a functional φg = I⋆g acting

on H1 via

∀ v ∈ H1 : ⟨v, φg⟩H1×H−1 = ⟨Iv, g⟩Lr×(Lr)⋆ =

∫
vg dx.

We set F (v) = −iµ|v|α−1v for v ∈ H1. Lemma 1.17, Corollary 1.18, (4.4),
(4.7) and (4.8) yield that

F ∈ C1
R(L

α+1, L
α+1
α ) ∩ C1

R(H
1, H−1), ∥F ′(v)∥

B(Lα+1,L
α+1
α )

≤ α∥v∥α−1
α+1, (4.9)

F ∈ C1
R(H

2, L2), ∥F ′(w)∥B(H2,L2) ≤ αCα−1
So ∥w∥α−1

2,2 , (4.10)

for all v ∈ Lα+1 and w ∈ H2. In particular, the derivatives of F are bounded
on bounded sets of H1, respectively H2.

We now turn our attention to the Laplacian. We first extend the partial
derivative ∂j : H

1 → L2 to a bounded map ∂j : L
2 → H−1 via

∀ v ∈ H1 : ⟨v, ∂ju⟩H1×H−1 := −
∫
∂jv udx

for j ∈ {1, . . . ,m} and u ∈ L2. In this way we obtain bounded extensions
∂jk,∆ : H1 → H−1. As in Example 1.54 of [32] one shows the invertibility of
I −∆ : H1 → H−1 using the sesquilinear form

a(u, v) =

∫
(uv +∇u · ∇v) dx for u, v ∈ H1.

For u ∈ H1 we then compute

∥(I −∆)u∥−1,2 = sup
∥v∥1,2=1

∣∣⟨v, u−∆u⟩H1

∣∣ = sup
∥v∥1,2=1

∣∣∣ ∫ (uv +∇u · ∇v) dx
∣∣∣

= sup
∥v∥1,2=1

∣∣(u|v)H1

∣∣ = ∥u∥1,2, (4.11)
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so that I−∆ : H1 → H−1 is also isometric and thus unitary by Proposition 5.52
in [30]. Hence, H−1 is a Hilbert space with the scalar product (φ|ψ)H−1 =(
(I −∆)−1φ

∣∣(I −∆)−1ψ
)
H1 .

By Example 1.45 of [32] the Laplace operator ∆ with domain H2 is self-
adjoint in L2, and hence i∆ is skew-adjoint in L2. Stone’s Theorem 1.44 in
[32] thus shows that i∆ generates a unitary C0-group T (·) on L2, which is
called the free Schrödinger group. By the next result, this group looks like
the diffusion semigroup with ‘imaginary time’ it. The resulting representation
formula implies that T (t)v ∈ C∞(Rm) if v ∈ L2 has compact support. However,
there is no smoothing effect in the full space L2 since T (t) is bijective. We
further extend T (·) to H−1 and show further regularity properties. Extensions
and restrictions of T (·) and ∆ are denoted by the same symbols.1

Lemma 4.5. a) For k ∈ Z with k ≥ −1, the operator ∆ with D(∆) = Hk+2

is self-adjoint and dissipative in Hk. The unitary group generated by i∆ on Hk

is an extension, respectively restriction, of T (·) on L2. Moreover, ∂jT (t)u =
T (t)∂ju in H−1 for all u ∈ L2 and j ∈ {1, . . . ,m}.
b) For v ∈ L1 ∩ L2, t ∈ R \ {0}, and x ∈ Rm we have

T (t)v(x) =
1

(4πit)m/2

∫
Rm

ei
|x−y|2

4t v(y) dy. (4.12)

Proof. 1) Let k ∈ N0 and F : L2 → L2; Fu = û, be the (unitary)
Fourier transform. Theorem 3.25 in [33] yields the characterization Hk =
{u ∈ L2 | |ξ|k û ∈ L2}. As in Example 1.45 of [32] one can then check that ∆
with D(∆) = Hk+2 is self-adjoint and dissipative in Hk, so that i∆ generates
a unitary C0-group on Hk by Theorem 1.44 in [32]. The uniqueness of the
Cauchy problem implies that the groups on Hk extend each other.
2) For λ > 0 the operators (I − ∆)−1 and R(λ, i∆) commute on Hk. The

resolvent approximation in Corollary 3.24 of [32] then shows that also (I−∆)−1

and T (t) commute on Hk for t ∈ R. Using the isomorphism I−∆ : H1 → H−1,
see (4.11), we can thus extend T (·) to a unitary C0-group on H−1 which is
generated by i∆ with domain H1. Theorem 1.44 of [32] now yields that ∆
is self-adjoint in H−1. For self-adjoint operators A, dissipativity means that
σ(A) ⊆ R≤0, cf. Corollary 2.28 of [32]. Hence the dissipativity of ∆ on H1

implies that on H−1.
3) Using ∂j∆ = ∆∂j on H

3, we compute ∂jR(λ, i∆) = R(λ, i∆)∂j on H
1 for

j ∈ {1, . . . ,m} and λ > 0. As in step 2) one concludes that ∂jT (t) = T (t)∂j on
H1 for t ∈ R. The last part of assertion a) then follows by approximation.

4) The right-hand side of (4.12) defines a bounded map from L1 to L∞ for
t ̸= 0. Moreover, C∞

c is dense in L1∩L2 with respect to the sum norm ∥·∥1+∥·∥2
by Proposition 4.13 of [30]. It thus suffices to show (4.12) for v ∈ C∞

c .
By Theorem 3.25 in [33], we have F(∆φ) = −|ξ|2Fφ for φ ∈ H2. Let t ∈ R

and x ∈ Rm. For v ∈ C∞
c , the map u = T (·)v belongs to C(R, H2) ∩C1(R, L2)

and satisfies u′(t) = i∆u(t). It is then easy to check that û ∈ C1(R, L2) and

d
dt û(t) = F(i∆u(t)) = −i|ξ|2û(t), û(0) = v̂.

1The following proof was only sketched in the lectures.
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Solving this ordinary differential equation for fixed ξ ∈ Rm, we arrive at

û(t, ξ) = e−it|ξ|2 v̂(ξ) = γit(ξ)v̂(ξ),

where γz(ξ) := e−z|ξ|
2
for ξ ∈ Rm and z ∈ C. Since γit is bounded, we deduce

u(t) = F−1(γitv̂).
5) As γit is not the Fourier transform of an L1-function, we cannot directly

apply the convolution formulas in Theorem 3.11 of [33]. Instead we employ the
regularization mε(t) = γit+ε ∈ L1 ∩ L2 for ε > 0. Using the inversion formula
for F from this theorem, we first compute

[F−1mε(t)](x) = (2π)−
m
2

∫
eix·ξe−it|ξ|2e−ε|ξ|

2
dξ =

m∏
k=1

1√
2π

∫
R
eixkξk−(it+ε)ξ2k dξk.

By means of complex contour integrals, we establish in step 6) the identity∫
R
e−(it+ε)s2eixks ds =

√
π

it+ ε
e

−x2k
4(it+ε) (4.13)

for t ̸= 0. Hence, F−1mε belongs to L
1.

We can thus apply Theorem 3.11 of [33] to mεv̂. Since |mε| ≤ 1 and mε(t)
tends pointwise to γit, Lebesgue’s theorem and the continuity of F−1 now yield

u(t) = F−1(γitv̂) = lim
ε→0

F−1(mε(t)v̂) = lim
ε→0

(2π)−
m
2 (F−1mε(t)) ∗ v,

u(t, x) =
1

(4π)
m
2

lim
ε→0

∫
1

(it+ ε)
m
2

e
− |x−y|2

4(it+ε) v(y) dy.

For fixed t ̸= 0 and x ∈ Rm, Lebesgue’s theorem allows to let ε → 0 in the
integral since v ∈ C∞

c , and hence (4.12) holds.

6) It remains to check (4.13), where x := xk ∈ R, t ̸= 0 and ε > 0 are fixed.
We set ζ = ix

2(it+ε) and compute∫
R
e−(it+ε)s2eixs ds = e

− x2

4(it+ε)

∫
R
e−(it+ε)(s−ζ)2 ds = e

− x2

4(it+ε)

∫
R−ζ

e−(it+ε)z2 dz.

Writing f(z) = e−(it+ε)z2 and I =
∫
R−ζ f dz, we have to prove I =

(
π

it+ε

)1/2
.

To this purpose, we consider the counterclockwise oriented curve Γn = Γb
n ∪

Γr
n ∪ (−Γt

n) ∪ (−Γl
n), where

Γb
n = {z = τn− ζ | − 1 ≤ τ ≤ 1}, Γr

n = {z = n+ τζ | − 1 ≤ τ ≤ 0},

Γt
n = [−n, n], Γl

n = {z = −n+ τζ | − 1 ≤ τ ≤ 0},

and n ∈ N. Cauchy’s theorem shows
∫
Γn
f dz = 0. There is a constant c =

c(ε, t, x) > 0 such that

sup
z∈Γr

n∪Γl
n

|e−(it+ε)z2 | ≤ e−εn
2
ecn,

and hence
∫
Γj
n
f dz → 0 as n→ ∞ for j ∈ {l, r}. By a similar estimate one sees

that
∫
Γb
n
f dz tends to I. Letting n→ ∞, we then deduce that I = 2

∫∞
0 f(s) ds.
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Let t > 0 and set β = 1
2 arg(it+ ε) ∈ (0, π4 ). Since |

√
it+ ε| eiβ =

√
it+ ε, the

substitution τ =
√
it+ ε s yields

I =
2√
it+ ε

∫
eiβR≥0

e−τ
2
dτ.

To evaluate this integral, we use the curve

Γ′
n = [0, n] ∪ {neiσ | 0 ≤ σ ≤ β} ∪ (−eiβ[0, n])

with positive orientation. Since |e−n2e2iσ | ≤ e−n
2 cos 2β for σ ∈ [0, β], Cauchy’s

theorem now implies

I =
2√
it+ ε

∫ ∞

0
e−s

2
ds =

√
π√

it+ ε
,

as asserted. The case t < 0 is treated in the same way. □

This representation formula allows to describe the dispersive behavior of T (t)
in quantitative way. The next corollary says that T (t) flattens initial data in
L1∩L2 which become bounded immediately and then tend to 0 in all Lp–norms
for p > 2 as t → ∞. Since the L2–norm is preserved, local concentrations of
T (t)v must be pushed towards infinity in Rm.

Corollary 4.6. Let q ∈ [2,∞]. Then T (t) extends from L1 ∩ L2 to an

operator in B(Lq′ , Lq) for all t ∈ R\{0}, with norm less or equal (4π|t|)m( 1
q
− 1

2
)
.

Proof. By (4.12), T (t) maps (L1∩L2, ∥·∥1) into L∞ with norm less or equal

(4π|t|)−m/2. Moreover, it has norm 1 as an operator on L2. Let q ∈ (2,∞).
The Riesz–Thorin interpolation theorem then shows that we can extend T (t)

to an operator from Lq
′
to Lq with norm less or equal (4π|t|)−m/2(1−2/q) =

(4π|t|)m/q−m/2. See Theorem 2.26 in [30] with θ := 2/q ∈ (0, 1) and

1

q′
=

1− θ

1
+
θ

2
,

1

q
=

1− θ

∞
+
θ

2
. □

4.2. Strichartz estimates

We first introduce our solution concepts. Recall that F (v) = −iµ|v|α−1v
induces a map F ∈ C1

R(H
1, H−1)∩C1

R(H
2, L2) by (4.9) and (4.10), and that i∆

generates the unitary C0-semigroup T (·) on Hk with k ≥ −1 by Lemma 4.5.

Definition 4.7. Let k ∈ {1, 2} and (4.2) be true, where we also allow that
α = αc if m ≥ 3. A function u ∈ C(J,Hk) ∩ C1(J,Hk−2) satisfying (4.1) in
Hk−2 is called Hk-solution (on J).

Since F is only defined on subspaces of H−1 or L2, we cannot use the results
of the first chapter to solve the nonlinear Schrödinger equation (4.1). We still
want to follow the approach based on mild solutions and Duhamel’s formula

u(t) = T (t)u0 − iµ

∫ t

0
T (t− s)(|u(s)|α−1u(s)) ds, t ∈ J. (4.14)

In Chapter 3, this was possible since an analytic semigroup maps into interpo-
lation spaces of its generator on which F was defined. As the free Schrödinger
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group is bijective, this does not work here. On the other hand, in (4.14) we do
not need regularization of T (t− s) to treat the integral, it only has to improve
integrability to counteract the power nonlinearity.
Corollary 4.6 already says that T (t) improves integrability, though the cor-

responding norms blow up as t → 0. Using also Lp-spaces in time, one can
describe this dispersive behavior in a more convenient way, and it is possible
to deal also with inhomogeneities as needed in (4.14). The resulting Strichartz
estimates in Theorem 4.10 are crucial for the following sections.

Before proving the Strichartz estimates, we collect some tools needed to state
and prove them. We refer to pp.94–95 of [32] for a few remarks about Banach
space valued integration and Bochner–Lebesgue spaces. The basic results (up
to Fubini’s theorem) are analogous to the scalar-valued case. Using these facts
and Lemma 4.5, for f ∈ L1

loc(J,H
−1) we can define the one-sided convolution

(T ∗+ f)(t) =
∫ t

0
T (t− s)f(s) ds, t ∈ J,

in H−1. Let J ⊆ R be any interval for a moment. We have the duality

Lp(J,W k,q)⋆ = Lp
′
(J,W−k,q′) via ⟨f, g⟩Lp

JW
k,q =

∫
J
⟨f(t), g(t)⟩Wk,q dt (4.15)

for k ∈ Z, 1 ≤ p < ∞, 1 < q < ∞, f ∈ Lp(J,W k,q) = LpJW
k,q and g ∈

Lp
′
(J,W−k,q′), see Corollary 1.3.22 in [14]. Moreover, the space Lp(J,W k,q) is

reflexive for p, q ∈ (1,∞). By means of the density of simple u : J →W k,q, one
can show that Lp(J,W k,q) is separable if p, q ∈ [1,∞), cf. Proposition 1.2.29 in
[14]. We need a density result for Bochner spaces.2 (Recall that W l,r ∩W k,q is
a Banach space when endowed with the norm given by ∥v∥l,r + ∥v∥k,q.)

Lemma 4.8. Let J ⊆ R be open, k ∈ N0, and 1 ≤ p, q < ∞. Then all spaces
C∞
c (J,W l,r ∩W k,q) with l ∈ N0 and r ∈ [1,∞] are dense in Lp(J,W k,q).

Proof. Fix f ∈ Lp(J,W k,q), l ∈ N0 and r ∈ [1,∞]. Take ε > 0.
1) The standard mollifiers G1/n with n ∈ N are uniformly bounded in W k,q

and tend strongly to I as n→ ∞. The same is true for the cut-off map v 7→ ϕjv
where ϕj(x) = ϕ(|x|/j) for j ∈ N and ϕ ∈ C∞(R) with 0 ≤ ϕ ≤ 1, ϕ = 1 on
[−1, 1] and suppϕ ⊆ (−2, 2). Using dominated convergence, we can thus fix
indices n, j ∈ N and a function g = G1/n(ϕjf) in L

p(J,W l,r ∩W k,q) such that
∥f − g∥Lp(J,Wk,q) ≤ ε, cf. Theorem 4.21 in [30]. (Actually, g(t) ∈ C∞

c .)

2) Let Jn ⊆ Jn ⊆ Jn+1 ⊆ J be open bounded intervals whose union is J .
Pick maps ψn ∈ Cc(J) with 0 ≤ ψn ≤ 1, ψn = 1 on Jn, and suppψn ⊆ Jn+1.
Lebesgue’s theorem gives an index N ∈ N with ∥g − ψNg∥Lp(J,W l,r) ≤ ε. Using
that ψNg has compact support in J and mollifiers on R, we then find a function
h in C∞

c (J,W l,r∩W k,q) satisfying ∥g−h∥Lp(J,W l,r) ≤ 2ε. (The usual properties

of mollifiers also work in the Banach space valued case.) □

We state the Hardy–Littlewood–Sobolev inequality, see Theorem 4.3 in [19].
The conditions in the lemma are sharp, see Section 1.2 in [12].

2The next proof was omitted in the lectures.
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Lemma 4.9. Let 1 < r < s <∞ and 0 < λ < n satisfy 1 + 1
s = λ

n + 1
r . Then

there is a constant c > 0 such that(∫
Rn

[∫
Rn

|f(y)|
|x− y|λ

dy
]s

dx
) 1

s ≤ c∥f∥r for all f ∈ Lr(Rn).

This result resembles Young’s convolution estimate from Theorem 2.14 in
[30] applied to f ∗ φλ with φλ(x) = |x|−λ for x ∈ Rn \ {0} and φλ(0) = 0.

However, to apply Young one would need that φλ belonged to Ln/λ(Rn); i.e.,∫
Rn |x|−n dx < ∞, which is not quite true. The Hardy–Littlewood–Sobolev

inequality still yields ∥f ∗ φλ∥s ≤ c∥f∥r for 1 + 1
s = λ

n + 1
r and non-negative f .

Strichartz estimates bound the two summands T (·)φ and T ∗∗ f of (4.14) in
the space E = Lp(R, Lq) for (Schrödinger)-admissible exponents (p, q); i.e.,

2 ≤ p, q ≤ ∞,
2

p
+
m

q
=
m

2
and (p, q) ̸= (2,∞) if m = 2. (4.16)

The ‘critical endpoint’ (2, 2m
m−2) = (2, 1+αc) form ≥ 3 and the ‘trivial endpoint’

(∞, 2) are admissible. The inverses (1p ,
1
q ) of admissible exponents (p, q) belong

to the line from (0, 12) to (12 ,
(m−2)+

2m ) if m ≥ 2, excluding the latter point if

m = 2. So we have the embedding Lq
′
↪→ H−1 for admissible (p, q) due to (4.7)

and (4.8). This means that the convolution T ∗+ f is well-defined in H−1 for

f ∈ Lp
′
(J, Lq

′
) as T (·) is a C0-group on H−1.

We explain admissibility by a scaling argument. Let the map φ 7→ u = T (·)φ
be bounded from L2 to E. For λ > 0 we set uλ(t, x) = u(λ2t, λx) and φλ(x) =
φ(λx) for t ∈ R and x ∈ Rm. Then also uλ solves ∂tuλ = i∆uλ and thus
uλ = T (·)φλ. Let φ ∈ L2 \ {0}. Substituting y = λx and t = λ2s, we compute

∥φλ∥2 =
(∫

|φ(λx)|2 dx
) 1

2
= λ−

m
2 ∥φ∥2,

∥uλ∥pE =
(∫

R

(∫
|u(λ2s, λx)|q dx

) p
q
ds

) 1
p
= λ

−m
q λ

− 2
p ∥u∥E .

As a result, the claimed boundedness implies that λ
−m

q λ
− 2

p ∥u∥E ≤ Cλ−
m
2 ∥φ∥2

for all λ > 0, and hence (p, q) must satisfy the equality in (4.16).
We now come to the main theorem of this section, containing the homoge-

neous Strichartz’ estimate a) and the inhomogeneous estimate b).

Theorem 4.10. Let (p, q) and (p, q) be admissible as in (4.16), k ∈ N0,

φ ∈ Hk, J ⊆ R be an interval containing 0, and f ∈ Lp
′
(J,W k,q′) =: E

′
k(J).

Then the maps T (·)φ and T ∗+ f belong to Lp(J,W k,q) =: Ek(J), and there is
a constant CSt ≥ 1 (independent of φ, f and J) such that

a) ∥T (·)φ∥Ek(J) ≤ CSt∥φ∥k,2,
b) ∥T ∗+ f∥Ek(J) ≤ CSt∥f∥E′

k(J)
.

If p = ∞ and q = 2, we can replace L∞(J,W k,q) by Cb(J,W
k,q). If p = p > 2,

the integral T ∗+ f(t) exists in W k,q for a.e. t ∈ J ,

(We will use the constant CSt also for finitely many admissible pairs at the
same time.) Compared to the L2–setting, one gains space integrability from



4.2. Strichartz estimates 70

q = 2 to q > 2 and one looses time integrability from p = ∞ to p < ∞ (but
gains some decay as t→ ∞). Moreover, in b) the exponents on the right-hand
side are smaller than 2, whereas they are larger than 2 on the left-hand side.
We point out that (p, q) can be chosen independently of (p, q) in assertion b).
Part a) is wrong for non-admissible (p, q) as seen above and in Section 2.4 of

[6], whereas part b) is true for some non-admissible exponents, cf. Section 2.4
of [6] and the exercises. The theorem and variants for the wave equation were
proved by several authors in the case p > 2 and p > 2 starting with Strichartz
in 1977, see Section 2.3 of [6]. The much more difficult endpoint case p = 2 or
p = 2 was established by Keel and Tao in [16].

We will prove Theorem 4.10 only for p, p > 2 and either for (p, q) = (p, q)
or for (p, q) = (∞, 2) and any admissible (p, q), since we mostly work with
these cases later on. In this situation the results follow from Corollary 4.6 and
Lemma 4.9 in a nice way without deeper difficulties.
Exponents (p, q) ̸= (p, q) can be used to treat (4.1) with more general non-

linearities, for instance. This case can be handled in an additional step using
also the ‘Christ–Kiselev’ lemma, see Section 2.3 in [35]. A somehow different
approach is employed in Theorem 2.3.3 in [6]. The endpoint case (2, 2m

m−2) for

m ≥ 3 is needed to study (4.1) in the critical case α = αc, see Theorem 4.17.

Proof of Theorem 4.10. As noted above we restrict ourselves to the
cases p, p > 2 and either (p, q) = (p, q) or (p, q) = (∞, 2). Lemma 4.5 says
that ∂jT (t) = T (t)∂j in H−1, and ∂j is closed in H−1 on its maximal domain
(which can be used to take it out of integrals). Hence it is enough to show the
result for k = 0. We will prove the assertions for J = R. The case of general
J can be reduced to J = R by extending f by 0 to R and by restricting T (·)φ
and T ∗+ f from R to J . We write E = E0(R), E

′
= E

′
0(R), and note that

E⋆ = Lp
′
(R, Lq′) by (4.15).

1) Let (p, q) = (p, q) be admissible, 2 < q < 1 + αc, φ ∈ L2, and f ∈ E⋆. We
first prove estimate b). Corollary 4.6 and Lemma 4.9 (with λ = m

2 − m
q , n = 1,

r = p′, s = p) imply the crucial estimate

I1 :=
[∫

R

[∫ t

0
∥T (t− s)f(s)∥q ds

]p
dt
] 1

p ≤
[∫

R

[∫
R

∥f(s)∥q′
(4π|t− s|)

m
2
−m

q

ds
]p
dt
] 1

p

≤ C0

[∫
R
∥f(s)∥p

′

q′ ds
] 1

p′
= C0∥f∥E⋆ , (4.17)

where C0 only depends on m, p and q. The conditions of Lemma 4.9 hold since
(p, q) is admissible and 2 < q < 1 + αc. (The measurability of the integrand of
I1 is verified below.)

From this estimate assertion b) will follow by means of Fubini’s theorem, but
the details concerning integrability are a bit tricky. To this aim, take l ∈ N
with l ≥ m

2 − m
q so that H l ↪→ Lq by Sobolev’s embedding Theorem 3.31

in [33]. Lemma 4.8 yields functions gn ∈ Cc(R, H l ∩ Lq
′
) that converge to

f in E⋆ as n → ∞. The map ψn : R2 → Lq; (t, s) 7→ T (t − s)gn(s), is
continuous for each n ∈ N, since it is continuous in H l by Lemma 4.5. There is
a subsequence such that the functions gnj (s) converge in Lq

′
to f(s) as j → ∞
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for a.e. s ∈ R. Corollary 4.6 says that T (t − s) maps Lq
′
continuously into Lq

for t ̸= s. Therefore (t, s) 7→ T (t− s)f(s) is strongly measurable in Lq outside
a set of measure. Hence, the integral I1 is defined. Similarly, one sees that
T (·)φ : R → Lq is strongly measurable if φ ∈ L2 ∩ Lq′ .
It now follows from Fubini’s theorem and (4.17) that the integral (T ∗+ f)(t)

exists in Lq for a.e. t ∈ R and that T ∗+ f : R → Lq is strongly measurable.
Since ∥T ∗+ f∥E ≤ I1, assertion b) is shown in our case.
In the same way one derives ∥T ∗ f∥E ≤ C0∥f∥E⋆ for the usual convolution.

2) Keeping the assumptions of 1), we show part a) by a duality argument.

Let g ∈ Cc(R, L2 ∩ Lq′). Using step 1), we compute

I2 :=

∫
R

∫ (∫
R
T (t− s)g(s) ds

)
g(t) dx dt = ⟨T ∗ g, g⟩E ,

|I2| ≤ ∥T ∗ g∥E∥g∥E⋆ ≤ C0∥g∥2E⋆ .

The continuity of the scalar product and the unitarity of T (·) on L2 yield

I2 =

∫
R

∫
R
(T (t− s)g(s)|g(t))L2 ds dt =

∫
R

∫
R
(T (−s)g(s)|T (−t)g(t))L2 ds dt

=
(∫

R
T (−s)g(s) ds

∣∣∣ ∫
R
T (−t)g(t) dt

)
L2

=
∥∥∥∫

R
T (−t)g(t) dt

∥∥∥2
2
,

where all integrals are C- or L2-valued Riemann integrals. We have thus shown∥∥∥∫
R
T (−t)g(t) dt

∥∥∥
2
≤

√
C0∥g∥E⋆ . (4.18)

(If (p, q) = (2,∞), this fact can directly be proven with C0 = 1.) Let φ ∈
L2 ∩Lq′ . Observe that the scalar function t 7→ ⟨T (t)φ, g(t)⟩Lq = (T (t)φ|g(t))L2

is continuous. Estimate (4.18) leads to∣∣∣∫
R
⟨T (t)φ, g(t)⟩Lq dt

∣∣∣ = ∣∣∣∫
R
(T (t)φ|g(t))L2 dt

∣∣∣ = ∣∣∣∫
R
(φ|T (−t)g(t))L2 dt

∣∣∣
=

∣∣∣(φ ∣∣∣ ∫
R
T (−t)g(t) dt

)
L2

∣∣∣ ≤ √
C0 ∥φ∥2∥g∥E⋆ .

Since Cc(R, L2 ∩ Lq′) is dense in E⋆ = Lp
′
(R, Lq′) by Lemma 4.8, we infer

∥T (·)φ∥E = sup∥g∥E⋆≤1 |⟨T (·)φ, g⟩E | ≤
√
C0 ∥φ∥2.

In particular, T (·)φ belongs to (E⋆)⋆ = E = Lp(R, Lq), see (4.15). The asser-
tions are shown for (p, q) = (p, q) and 2 < q < 1 + αc.

3) Let (p, q) = (∞, 2) and (p, q) be admissible with p > 2. Then part a)
is true with Cb instead of L∞ since T (·) is a unitary C0-group on L2. To
prove b), we set ft = 1[0,t]f for t ≥ 0 and ft = 1[t,0]f for t < 0. We write (p, q)

instead of (p, q). First, let f ∈ Cc(R, L2 ∩ Lp′). Using also (4.18), we obtain
T ∗+ f ∈ Cb(R, L2) and

∥T ∗+ f∥Cb(R,L2) = sup
t∈R

∥∥∥∫ t

0
T (t)T (−s)ft(s) ds

∥∥∥
2
= sup

t∈R

∥∥∥∫
R
T (−s)ft(s) ds

∥∥∥
2

≤ sup
t∈R

√
C0 ∥ft∥E⋆ =

√
C0 ∥f∥E⋆ .
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We approximate the given inhomogeneity f in E⋆ by fn ∈ Cc(R, L2 ∩ Lq
′
),

The above estimate then shows that (T ∗+ fn)n converges to a function u in
Cb(R, L2). On the other hand, by step 1) for a subsequence the functions
(T ∗+ fnj )(t) tend to (T ∗+ f)(t) in Lq for a.e. t ∈ R. Hence, T ∗+ f = u belongs

to Cb(R, L2) and assertion b) is true in the present case. □

Before we solve (4.1) in the next section, we briefly explain why one calls the
case α = αc (energy)-critical, wherem ≥ 3. Let u be anH1-solution of (4.1) and

λ > 0. As in the exercises, the rescaled function uλ(t, x) := λ2/(α−1)u(λ2t, λx)

also solves (4.1) with initial value λ2/(α−1)u0(λ ···). Observe that

∥|∇uλ(t)|∥2 = λ
2

α−1λ1−
m
2 ∥|∇u(λ2t)|∥2 and α ≷ αc ⇐⇒ 2

α− 1
+1−m

2
≶ 0.

In the energy-supercritical case α > αc the possibly ‘bad’ behavior of a so-
lution u at a time t0 ≈ 1 with ∥|∇u(0)|∥2 ≈ 1 is transfered to uλ at small
times t = λ−2t0 for large λ, and one even has small ∇uλ(0). This makes it
hard to prove wellposedness. In the energy-critical case α = αc we obtain
∥|∇uλ(t)|∥2 = ∥|∇u(λ2t)|∥2 but ∥uλ(t)∥2 = λ−1∥u(λ2t)∥2, so that the above
effect is weaker, and there is hope for some wellposedness. In the energy-
subcritical case α < αc, the behavior is reversed: Good properties for small
∇u(0) should lead to good properties for large data at small times.

One can discuss in a similar way mass-criticality dropping the derivatives
above. This leads to the alternative

α ≷ α0
c ⇐⇒ 2

α− 1
− m

2
≶ 0 with α0

c := 1 +
4

m
.

(See pp.118–120 of [35] for more details.)

4.3. Local wellposedness

In this section we establish the local wellposedness theory of the semilinear
problem (4.1). The strategy of the proofs goes back to T. Kato. It is similar to
the approach in Section 3.1 in the parabolic case. However, the smoothing effect
of analytic semigroups is now replaced by Strichartz estimates, and many of the
arguments are more sophisticated. In the critical case we restrict ourselves to
the case m = 3 (where α = 5) in Theorem 4.17. Here one obtains a much less
convenient blow-up condition, and one needs the endpoint case of Strichartz
estimates. We start with some preparations.
We again reformulate (4.1) as fixed-point problem for the operator

Φ(u)(t) = [Φu0(u)](t) := T (t)u0 +

∫ t

0
T (t− s)F (u(s)) ds, t ∈ J, (4.19)

for a given initial value u0 ∈ H1 and F (v) = −iµ|v|α−1v. Still assuming (4.2),
we recall from (4.8) and (4.16) our assumptions and definitions

q = α+1 ∈ (2,αc+1), αc =
m+ 2

(m−2)+
, q′ =

α+1

α
=
q

α
,

2

p
=
m

2
−m
q
, (4.20)

in the subcritical case. Moreover, F belongs to C1
R(H

1, H−1) ∩ C1
R(L

q, Lq
′
) by

(4.9). The Strichartz estimates from Theorem 4.10 will compensate the loss of
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integrability caused by F in (4.19). For k ∈ N0 we introduce the spaces

Ek(J) = Lp(J,W k,q), E′
k(J) = Lp

′
(J,W k,q′), Gk(J) = L∞(J,Hk),

Fk(J) = Ek(J) ∩Gk(J) endowed with 9v9k,J = max
{
∥v∥Ek(J), ∥v∥Gk(J)

}
.

(For J = [−b, b] we replace J by b.) We first collect the mapping properties of
F needed below.

Lemma 4.11. Let (4.20) be true (with α ≤ αc if m ≥ 3) and J be an interval
of length a > 0. Take u, v ∈ G1(J) ↪→ E0(J), w ∈ F1(J), φ,ψ ∈ Lq, and
χ ∈W 1,q. Set r = ess sup

{
∥u(t)∥1,2, ∥v(t)∥1,2, ∥w(t)∥1,2

∣∣ t ∈ J
}
. Then we have

F (φ) ∈ Lq
′
, F (χ) ∈W 1,q′, F (u) ∈ E′

0(J), F (w) ∈ E′
1(J), and the inequalities

a) ∥F (φ)− F (ψ)∥q′ ≤ CF
(
∥φ∥α−1

q + ∥ψ∥α−1
q

)
∥φ− ψ∥q ,

b) ∥F (u)− F (v)∥E′
0(J)

≤ CF r
α−1a

1
p′−

1
p ∥u− v∥E0(J),

c) ∥|∇F (χ)|∥q′ ≤ CF ∥χ∥α−1
q ∥|∇χ|∥q ,

d) ∥|∇F (w)|∥E′
0(J)

≤ CF r
α−1a

1
p′−

1
p ∥|∇w|∥E0(J),

e) ∥F (w)∥E′
1(J)

≤ CF r
α−1a

1
p′−

1
p ∥w∥E1(J)

for a constant CF only depending on α and m.

Proof. From (4.9) and (4.20) we deduce

∥F (φ)− F (ψ)∥q′ =
∥∥∥∫ 1

0
F ′(ψ + τ(φ− ψ))(φ− ψ) dτ

∥∥∥
q′

≤
∫ 1

0
∥F ′(ψ + τ(φ− ψ))∥B(Lq ,Lq′ )∥φ− ψ∥q dτ

≤ α sup
τ∈[0,1]

∥(1− τ)ψ + τφ∥α−1
q ∥φ− ψ∥q

≤ cα
(
∥φ∥α−1

q + ∥ψ∥α−1
q

)
∥φ− ψ∥q.

In this estimate we insert u(t) and v(t), and take the p-norm in time. Using
Sobolev’s embedding (4.4) and ∥u(t)∥1,2, ∥v(t)∥1,2 ≤ r, we arrive at

∥F (u)− F (v)∥Lp(J,Lq′ ) ≤ cα

(∫
J

(
∥u(t)∥α−1

q + ∥v(t)∥α−1
q

)p∥u(t)− v(t)∥pq dt
) 1

p

≤ 2cαC
α−1
So rα−1∥u− v∥E0(J).

With 1
p′ =

1
p +

1
p′ −

1
p and p ≥ 2 ≥ p′, Hölder’s inequality then yields

∥F (u)− F (v)∥E′(J) ≤ a
1
p′−

1
p ∥F (u)− F (v)∥Lp(J,Lq′ ) ≤ crα−1a

1
p′−

1
p ∥u− v∥E0(J).

For c), we let ϕ(z) = −iµ|z|α−1z and j ∈ {1, . . . ,m}. There are functions
χn ∈ C∞

c converging to χ in W 1,q as n→ ∞ by Theorem 3.27 in [33]. Hölder’s
inequality with exponents 1

q′ =
α−1
q + 1

q yields

∥∂jF (χn)∥q′ = ∥ϕ′(χn)∂jχn∥q′ ≤ α∥|χn|α−1∂jχn∥q′ ≤ α∥χn∥α−1
q ∥∂jχn∥q.
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Lemma 1.17 and Hölder’s inequality show that the maps ∂jF (χn) = ϕ′(χn)∂jχn
tend to ϕ′(χ)∂jχ and F (χn) to F (χ) in Lq

′
as n → ∞. From Lemma 3.16 in

[33] we then deduce that F (χ) ∈W 1,q′ , and so inequality c) is true.
The estimates d) and e) follow as above (using also b) with v = 0 for e)). □

Observe that the above estimates are uniform on a ball in H1, which is often
used below. Lemma 4.11 and the Strichartz estimates from Theorem 4.10 show
that the operator Φ from (4.19) maps F1(b) into itself and that it is Lipschitz on
bounded sets of F1(b), but only with respect to the metric of F0(b). Fortunately,
these properties still allow one to apply Banach’s fixed point theorem, as seen
in the next lemma. It relies on the Banach–Alaoglu theorem.

Lemma 4.12. Let (4.20) be true, r > 0, and J ⊆ R be an interval. Then
the ball Σ(J, r) = {v ∈ F1(J) |9v91,J ≤ r} is a complete metric space when
endowed with the metric induced by 9 · 90,J .

Proof. Let (un)n be a Cauchy sequence in Σ(J, r) for 9 · 90,J . Since
F0(J) is a Banach space, (un)n converges in F0(J) to a function u ∈ F0(J) as
n→ ∞. We have to show that u ∈ Σ(J, r). As indicated after (4.15), the space

G1(J) is the dual of L
1(J,H−1) and E1(J) is reflexive with dual Lp

′
(J,W−1,q′).

Moreover, L1(J,H−1) is separable. The Banach–Alaoglu theorem thus pro-
vides a subsequence (unj )j which converges weakly in E1(J) to some v with
∥v∥E1(J) ≤ r and weakly* in G1(J) to some w with ∥w∥G1(J) ≤ r as j → ∞.

Since E0(J)
⋆ ↪→ E1(J)

⋆ and L1(J, L2) ↪→ L1(J,H−1), the functions unj also
tend weakly in E0(J) to v and weak* in G0(J) to w. On the other hand, (unj )j
has the limit u in both E0(J) and G0(J) so that u = v and u = w by the
uniqueness of weak and weak* limits; i.e., u is an element Σ(J, r). □

As Remark 1.7 b) one can concatenate Hk-solutions.

Remark 4.13. Let (4.20) be true (with α ≤ αc if m ≥ 3), k ∈ {1, 2}, and
u and v be Hk-solutions of (4.1) on [a, b] and [b, c], respectively. Assume that
u(b) = v(b). Then the function w given by w(t) = u(t) for t ∈ [a, b] and
w(t) = v(t) for t ∈ (b, c] is an Hk-solution of (4.1) with w(a) = u(a). ♢

As a first part of local wellposedness, we show uniqueness of H1-solutions
which easily follows from Strichartz estimates and Lemma 4.11 if α < αc.

Lemma 4.14. Let (4.20) be true and u0 ∈ H1. Let u and v be H1-solutions of
(4.1) on intervals Ju and Jv containing 0, respectively. Then u = v on Ju ∩ Jv.

Proof. We can assume that Ju∩Jv has positive length. If the assumption
was not true, there would exist τ̃ ≤ 0 ≤ τ in Ju∩Jv such that u = v on [τ̃ , τ ] and
u(tn) ̸= v(tn) for certain tn ∈ Ju ∩ Jv with, say, tn → τ+ as n→ ∞. (The case
that tn → τ̃− is treated similarly.) Take δ0 > 0 with J0 := [τ, τ + δ0] ⊆ Ju ∩ Jv.
Let r = max

{
∥u(t)∥1,2, ∥v(t)∥1,2

∣∣ t ∈ J0
}
. Because u and v are H1-solutions of

(4.1), the maps F (u) and F (v) belong to C(J0, H
−1) by (4.9). Proposition 2.6

of [32] and Lemma 4.5 thus imply the mild formulas

u(t+ τ) = T (t)u(τ) +

∫ t

0
T (t− s)F (u(s+ τ)) ds,
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v(t+ τ) = T (t)u(τ) +

∫ t

0
T (t− s)F (v(s+ τ)) ds

for all t ∈ [0, δ0]. Take any interval J = [τ, τ + δ] ⊆ J0. After a time shift, the
Strichartz inequality from Theorem 4.10 and Lemma 4.11 then yield

∥u− v∥E0(J) ≤ CSt∥F (u)− F (v)∥E′
0(J)

≤ CStCF r
α−1δ

1
p′−

1
p ∥u− v∥E0(J).

Since p′ < p, for small δ ∈ (0, δ0] the right-hand side is less than 1
2∥u− v∥E0(J).

As u, v ∈ E0(J) by (4.4), we infer u = v on [τ, τ+δ] contradicting tn → τ+. □

We can now establish the basic existence result for (4.1) employing the same
tools as in the previous lemma and the fixed point space of Lemma 4.12.

Lemma 4.15. Let (4.20) be true and ρ > 0. Then there is a number
b0(ρ) > 0 (see (4.22) below) such that for each initial value u0 ∈ BH1(0, ρ)
there is a unique H1-solution u in F1(b0(ρ)) of (4.1) on the time interval
[−b0(ρ), b0(ρ)] =: J0. Moreover, 9u91,J0 ≤ r := 1 + CStρ, where CSt ≥ 1 is
taken from Theorem 4.10. We further have u = Φu0(u) on J0, cf. (4.19).

Proof. Let ρ > 0 and u0 ∈ H1 with ∥u0∥1,2 ≤ ρ. Take b > 0 to be
specified below. Fix r = 1 + CStρ. Lemma 4.12 provides the complete metric
space Σ(b, r) with the metric 9u−v90,b. Let Φ(u) = Φu0(u) be defined by (4.19)
for u ∈ Σ(b, r). Combining the Strichartz inequalities from Theorem 4.10 and
the mapping properties of F in Lemma 4.11, we estimate

9Φ(u)91,b ≤ CSt(∥u0∥1,2+∥F (u)∥E′
1(b)

) ≤ CStρ+CStCF r
α(2b)

1
p′−

1
p , (4.21)

9Φ(u)− Φ(v)90,b ≤ CSt∥F (u)− F (v)∥E′
0(b)

≤ CStCF r
α−1(2b)

1
p′−

1
p ∥u− v∥E0(b)

for u, v ∈ Σ(b, r), using that p > 2 > p′ by (4.20) and α < αc. We now define

b0 = b0(ρ) =
1
2 min

{(
CStCF r

α
) p′p

p′−p ,
(
2CStCF r

α−1
) p′p

p′−p

}
> 0. (4.22)

Let b0(ρ) and J0 = [−b0(ρ), b0(ρ)]. It follows that Φ(u) ∈ Σ(b0, r) and 9Φ(u)−
Φ(v)90,J0 ≤ 1

29u − v90,J0 . The contraction mapping principle then yields a
unique fixed point u = Φ(u) in Σ(b0, r).
Theorem 4.10 further shows that u belongs to C(J0, H

1), and hence f := F (u)
to C(J0, H

−1) by (4.9). Since u ∈ C(J0, H
1) is a mild solution of u′ = i∆u+ f

in H−1 with u(0) = u0, Lemma 2.8 of [32] and Lemma 4.5 imply that u is an
H1-solution of (4.1) on J0. Uniqueness follows from Lemma 4.14. □

The above proof acually yields solutions in Σ(b, r) for each b ∈ (0, b0(ρ)]. For
the local wellposedness theorem, we define the maximal existence times

t+(u0) = sup
{
b > 0

∣∣ ∃ H1-solution ub ∈ C([0, b], H1) of (4.1)
}
,

t−(u0) = inf
{
b < 0

∣∣∃ H1-solution ub ∈ C([b, 0], H1) of (4.1)
}
.

Lemma 4.15 implies that −t−(u0) and t+(u0) belong to [b0(∥u0∥1,2),∞]. Using
also Remark 4.13 we can restart the system with initial value u(t±(u0)) and
thus obtain −t−(u0), t+(u0) > b0(∥u0∥1,2). As in Remark 1.10, Lemma 4.14
allows us to define H1-solutions of (4.1) on (t−(u0), 0] and [0, t+(u0)), and thus
on J(u0) := (t−(u0), t

+(u0)) by Remark 4.13. The H1-solution u of (4.1) on
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J(u0) is called maximal. (In view of Theorem 4.16 c), we have to take an open
time interval here.) It is unique by Lemma 4.14.
Our local wellposedness theorem follows the pattern of Theorem 1.11 though

the underlying function spaces are adapted to the Strichartz estimates. More-
over, we only show the continuity of the solution map u0 7→ φ( · , u0) and not
its Lipschitz continuity on balls as in Theorems 1.11 and 3.4. One obtains such
a Lipschitz property if α ∈ (2, αc), see the exercises, or in weaker norms, cf.
(4.24). We stress that we obtain a blow-up condition in H1 which is the space
of the initial values (as in Theorems 1.11 and 3.4).

Theorem 4.16. Let (4.20) be true, ρ > 0, u0 ∈ H1 with ∥u0∥1,2 ≤ ρ, and
b0(ρ) be defined by (4.22). Then the following assertions hold.

a) There are numbers 0 < b0(ρ) < ±t±(u0) ≤ ∞ and a unique maximal
H1-solution u = φ( · , u0) of (4.1) on J(u0) = (t−(u0), t

+(u0)).

b) Let [a, b] ⊆ J(u0). Then u belongs to Lp([a, b],W 1,q).

c) Let ±t±(u0) <∞. We then have limt→t±(u0) ∥u(t)∥1,2 = ∞.

d) Let J ⊆ J(u0) be a compact interval with 0 ∈ J . Then there is a radius
δ = δ(J, u0) > 0 such that for v0 ∈ BH1(u0, δ) we have J ⊆ J(v0) and the map

BH1(u0, δ) → C(J,H1) ∩ Lp(J,W 1,q), v0 7→ φ( · , v0),

is continuous.

Proof. 1) Part a) was proved before the theorem. Let τ ∈ J(u0).
Lemma 4.15 yields a time β(τ) > 0 and an H1-solution v of (4.1) with
v(0) = u(τ) belonging to F1(β(τ)). By the uniqueness Lemma 4.14, v is a
restriction of u(τ + · ) and thus u belongs to Lp([τ − β(τ), τ + β(τ)],W 1,q). A
compactness argument then yields assertion b).
Suppose that t+(u0) < ∞ and there were times tn → t+(u0)

− with
supn ∥u(tn)∥1,2 =: C < ∞. Take an index with tN + b0(C) > t+(u0). Us-
ing Lemma 4.15 and Remark 4.13, we can extend the given H1-solution to
[0, tN + b0(C)] by considering (4.1) with initial value u(tN ). This fact con-
tradicts the definition of t+(u0). One treats t−(u0) in the same way. Hence,
claim c) holds.

2) Fix J = [T0, T1] ⊆ J(u0) with 0 ∈ J . We show that every sequence (ψn)n
with limit u0 in H1 as n→ ∞ has a subsequence (ψnj )j such that J ⊆ J(ψnj )
for all j and the solutions unj = φ( · , ψnj ) tend to u in F1(J) as j → ∞.
By a straightforward contradiction argument, this fact implies the first part of
assertion d) and the continuity of v0 7→ φ( · , v0) at u0.
So let (ψn)n converge to u0 in H1 and set un = u( · , ψn). The uniform bound

ρ := 1 + maxt∈J ∥u(t)∥1,2 < ∞ will be crucial for our reasoning. There is an
index n0 ∈ N such that ∥ψn∥1,2 ≤ ρ for all n ≥ n0. Lemma 4.15 then implies
that −t−(ψn), t+(ψn) > b0(ρ) =: b0 for all n ≥ n0. Let n ≥ n0. By Lemma 4.14,
the restrictions of u and un to J0 := [−b0, b0] coincide with the solutions from
Lemma 4.15 for the initial value u0 and ψn, respectively. We thus have the
equations u = Φu0(u) and un = Φψn(un) on J0, and the core bound

9u91,b0 , 9un91,b0 ≤ r := 1 + CStρ. (4.23)
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Due to (4.21) and the choice of b0 in (4.22), the operator Φu0 is Lipschitz
on Σ(b0, r) = BF1(b0)(0, r) for the metric induced by 9 · 90,b0 with a constant

bounded by 1
2 . Combining these facts with the Strichartz estimates of Theo-

rem 4.10, we derive the basic 0-order Lipschitz inequality

9u− un90,b0 ≤ 9Φu0(u)− Φu0(un) 90,b0 +9Φu0(un)− Φψn(un)90,b0

≤ 1
29u− un 90,b0 +9T (·)(u0 − ψn)90,b0

≤ 1
29u− un 90,b0 +CSt∥u0 − ψn∥2,

9u− un90,b0 ≤ 2CSt∥u0 − ψn∥2 (4.24)

for all n ≥ n0. Unfortunately, this argument does not give the desired continuity
of v0 7→ u( · , v0) from H1 to F1(b0), so that we need a more sophisticated
analysis than in Theorems 1.11 and 3.4.

3) The inequality (4.24) shows that, after passing to a subsequence (uk)k, the
functions uk(t) tend to u(t) in Lq as k → ∞, for a.e. t ∈ J . Recall that

uk − u = T (·)(ψk − u0) + T ∗+ (F (uk)− F (u)) on J0.

Let b ∈ (0, b0] and k ≥ n0. Theorem 4.10 and Lemma 4.11 yield

9uk − u91,b ≤ CSt

(
∥ψk − u0∥1,2 + ∥F (uk)− F (u)∥E′

1(b)

)
. (4.25)

Let ϕ(z) = −iµ|z|α−1z for z ∈ R2 and j ∈ {1, . . . ,m}. To bound the F -term,
as in the proof of Lemma 4.11 we compute

∥∂jF (uk(t))− ∂jF (u(t))∥q′
≤ ∥ϕ′(uk(t))[∂juk(t)− ∂ju(t)]∥q′ + ∥[ϕ′(uk(t))− ϕ′(u(t))]∂ju(t)∥q′

≤ α∥uk(t)∥α−1
q ∥∂juk(t)− ∂ju(t)∥q + ∥[ϕ′(uk(t))− ϕ′(u(t))]∂ju(t)∥q′

≤ αCα−1
So rα−1∥uk(t)− u(t)∥1,q + ∥[ϕ′(uk(t))− ϕ′(u(t))]∂ju(t)∥q′ ,

for t ∈ J0 by Hölder, Sobolev’s embedding (4.4) and estimate (4.23). Taking

the norm in Lp
′
([−b, b]), Lemma 4.11 b) and Hölder’s inequality then lead to

∥F (uk)−F (u)∥E′
1(b)

≤ c1r
α−1b

1
p′−

1
p ∥uk−u∥E1(b)+ c2∥(ϕ′(uk)−ϕ′(u))|∇u|∥E′

0(b)
.

Here and below, cj > 0 are constants only depending on m and α. We fix

b = b(ρ) := min
{
b0,

(
2c1CStr

α−1
) p′p

p′−p
}

(4.26)

and insert the above inequality into (4.25), arriving at

9uk − u91,b ≤ CSt∥ψk − u0∥1,2 + 1
2∥uk − u∥E1(b)

+ c2CSt∥(ϕ′(uk)− ϕ′(u))|∇u|∥E′
0(b)

,

9uk − u91,b ≤ 2CSt∥ψk − u0∥1,2 + 2c2CSt∥(ϕ′(uk)− ϕ′(u))|∇u|∥E′
0(b)

. (4.27)

It remains to control

∥(ϕ′(uk)− ϕ′(u))|∇u|∥p
′

E′
0(b)

v =

∫ b

−b
∥(ϕ′(uk(t))− ϕ′(u(t)))|∇u(t)|∥p

′

q′ dt.

Lemma 1.17 and Hölder with 1
q′ = α−1

q + 1
q imply that the functions

ϕ′(uk(t))|∇u(t)| tend to ϕ′(u(t))|∇u(t)| in Lq
′
as k → ∞ for a.e. t ∈ [−b, b],



4.3. Local wellposedness 78

since uk(t) → u(t) in Lq. Combining Lemma 1.17 with (4.20), (4.4) and (4.23),
we further estimate

∥(ϕ′(uk(t))− ϕ′(u(t)))|∇u(t)|∥q′ ≤ c3(∥uk(t)∥α−1
q + ∥u(t)∥α−1

q )∥|∇u(t)|∥q
≤ 2c3C

α−1
So rα−1∥u(t)∥1,q.

Since p′ ≤ p, the function u belongs to Lp
′
([−b, b],W 1,q). Due to dominated

convergence, the last term in (4.27) thus tends to 0 as k → ∞. As a result, (uk)
converges to u in F1(b), and we can fix an index k1 such that ∥uk(±b)∥1,2 ≤ ρ

for all k ≥ k1. (Here we use that u, uk ∈ C([−b, b], H1).)

4) Let T0 < −b or T1 > b. As ∥uk(±b)∥1,2 ≤ ρ for k ≥ k1, we can repeat

the above argument with initial time −b or b, passing to further subsequences.
This can be done with the step size b from (4.26) which only depends on ρ,
m and α. In finitely many steps, we thus construct a subsequence (ψnj )j with
J ⊆ J(ψnj ) for j ∈ N and unj → u in F1(J) as j → ∞.

As noted in step 2, the above fact yields a radius δ > 0 with J ⊆ J(v0) if
v0 ∈ BH1(u0, δ). Replacing u0 by v0 in steps 2)-4), we derive the continuity of
the map w0 7→ φ( · , w0) from BH1(u0, δ) to F1(J), and thus claim d) holds. □

The above arguments fail in the critical case α = αc and m ≥ 3, where

p = p′ = 2 and the factor b
1
p′−

1
p = 1 does not vanish as b → 0+. To treat

this case, one uses the structure of the power nonlinearity in a more clever
way. By Hölder and Sobelev inqualities one can bound a part of F (v) in the
Ls((−b, b), Ls)-norm for suitable s > 1. This space-time norm can be made
small without restricting the size of v in G1(b) and hence of u0 in H1. This
approach requires a more sophisticated fixed-point space (involving a smallness
condition). Form = 3, it leads to a lower bound on the existence time depending
on the behavior of T (·)u0 in L10(R, L10) besides ∥u0∥1,2, and to a blow-up
condition in terms of the norm of u in L10([0, t+), L10), which is much harder
to control than the H1-norm of u(t). Moreover, ‘unconditional uniqueness’ of
H1-solutions is far more difficult to prove than for α < αc.

We establish local wellposedness form = 3 and α = 5. Dimensionsm ∈ {4, 5}
can be handled similarly. See [36] and Theorem 4.5.1 in [6] for the general case.

Theorem 4.17. Let µ ∈ {−1, 1}, m = 3, α = 5 = αc, and u0 ∈ H1. Then
the following assertions hold.

a) There is a unique maximal H1-solution u of (4.1) on (t−(u0), t
+(u0)) =

J(u0). It belongs to Lploc(J(u0),W
1,q). The numbers ±t±(u0) are larger than

b(u0, ε) given by (4.30) and (4.33).

b) If t+(u0) <∞, then ∥u∥L10([0,t+(u0))×R3) = ∞; and analogously for t−(u0).

c)3 Let J ⊆ J(u0) be a compact interval with 0 ∈ J . Then there is δ(J, u0) =
δ > 0 such that for v0 ∈ BH1(u0,δ) we have J ⊆ J(v0) and the Lipschitz
continuity of

BH1(u0, δ) → C(J,H1) ∩ Lp(J,W 1,q), v0 7→ φ( · , v0).

3The continuous dependence on data was not treated in the lectures.
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Proof. 1) We first discuss the basic spaces and estimates needed in the
proof. As before we use the Strichartz pairs (∞, 2) and (2, 6), where 6 =
αc + 1 = q. In addition we involve the pair (10, r) with r = 30

13 > 2 noting that
2
10 + 39

30 = 3
2 . Since 1− 3

r = − 3
10 we have the Sobolev embedding

W 1,r ↪→ L10, and hence L10(J,W 1,r) ↪→ L10(J, L10) (4.28)

with a constant C ′
So independent of the interval J . We can thus control the norm

of L10(J, L10) by the (Strichartz) norm of L10(J,W 1,r). This fact shall be used

to bound the nonlinearity in the (dual Strichartz) norm of L2(J,W k, 6
5 ) = E′

k(J),

where 6
5 = 6′. To this aim, let v ∈ L10(J, L10) and w ∈ L10(J, Lr). Using

Hölder’s inequality with 5
6 = 2

5 + 1
r and with 1

2 = 2
5 + 1

10 , we estimate

∥|v|4w∥E′
0(J)

≤
(∫

J

[( ∫
R3

|v(t)|
4·5
2 dx

) 2·2
5·2

(∫
R3

|w(t)|r dx
) 1

r
]2

dt

) 1
2

(4.29)

=
(∫

J

(
∥v(t)∥410∥w(t)∥r

)2
dt
) 1

2

≤
[ ∫

J
∥v(t)∥1010 dt

] 2
5
[∫

J
∥w(t)∥10r dt

] 1
10

= ∥v∥4L10
J L10∥w∥L10

J Lr ,

writing L10
J L

r instead L10(J, Lr) and b instead of J = [0, b] etc. We now define

Vk(J) = Cb(J,H
k) ∩ L2(J,W k,6) ∩ L10(J,W k,r)

for k ∈ {0, 1}, and put Vk(J) = Vk(b) if J = [0, b]. They are Banach spaces
with the norm 8v8k,b where we let 8v80,b be the sum of the norms in Cb(J, L

2),

L2(J, L6) and L10(J, Lr), and we set 8v81,b = 8v80,b+ 8|∇v|180,b. (Accordingly,
we use the equivalent norm ∥φ∥W 1,r = ∥φ∥r + ∥|∇φ|1∥r on W 1,r.)
Let u0 ∈ H1 and ρ ≥ ∥u0∥1,2. Fix R := 2CStρ+1 with CSt from Theorem 4.10.

For a time b > 0 and a radius ε > 0 we introduce the fixed-point space

Σ(b, R, ε) =
{
v ∈ V1(b)

∣∣ 8v81,b ≤ R, ∥v∥L10
b L10) ≤ ε

}
.

and endow it with the complete metric 8v−w81,b. convergence a.e. of a subse-

quence.) For v ∈ V1(b) we further define the fixed-point operator

Φ(v)(t) = T (t)u0 − iµ

∫ t

0
T (t− s)(|v(s)|4v(s)) ds, t ∈ [0, b].

2) We show that Φ is a strict contraction on Σ(b, R, ε) for small b, ε > 0. The
Strichartz estimate in Theorem 4.10 a) and inequality (4.28) imply that T (·)u0
belongs to L10

b W
1,r ↪→ L10

b L
10. We can thus fix a time b = b(u0, ε) > 0 with

∥T (·)u0∥L10
b L10 ≤ ε

2 . (4.30)

Let v ∈ V1(b). From Theorem 4.10 and (4.29) we deduce the inequalities

8Φ(v)80,b ≤ CSt(∥u0∥2 + ∥|v|4v∥E′
0(b)

) ≤ CStρ+ CStε
4R,

8|∇Φ(v)|80,b ≤ CSt(∥u0∥1,2 + ∥|∇(|v|4v)|∥E′
0(b)

) ≤ CStρ+ 5CSt∥|v|4|∇v|∥E′
0(b)

≤ CStρ+ 5CStε
4R. (4.31)
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For 0 < ε ≤ ε0 := (6CStR)
−1/4, the definition of R thus leads to

8Φv81,b ≤ 2CStρ+ 6CStε
4R ≤ R.

Using also (4.30) and (4.28), we further estimate

∥Φ(v)∥L10
b L10 ≤ ε

2 + C ′
So∥T ∗+ (|v|4v)∥L10

b W 1,r

≤ ε
2 + C ′

SoCSt

(
∥|v|4v∥E0(b)′ + 5∥|v|4|∇v|∥E0(b)′

)
≤ ε

2 + C ′
SoCSt(ε

3R+ 5ε3R)ε ≤ ε

provided that 0 < ε ≤ ε1 := min{ε0, (12RC ′
SoCSt)

−1/3}. For such ε and fixed
R = R(ρ) and b = b(u0, ε) > 0, the operator Φ thus maps Σ(b, R, ε) into itself.

Let w ∈ Σ(b, R, ε). By means of Young’s inequality, we can write

|v|4v − |w|4w = (v − w)|v|4 + w(v − w)|v|2v + |w|2(v − w)|v|2

+ |w|2w(v − w)v + |w|4(v − w),∣∣|v|4v − |w|4w
∣∣ ≤ 5

2(|v|
4 + |w|4)|v − w|,∣∣∇(|v|4v−|w|4w)

∣∣ ≤ |∇(v − w)| 52(|v|
4 + |w|4) + |v − w|

[
|∇v|

(
4|v|3 + 3|v|2|w|

+2|v||w|2+|w|3
)
+ |∇w|

(
|v|3+2|v|2|w|+3|v||w|2+4|w|3

)]
≤ 5

2 |∇[v−w]|(|v|4+|w|4) + 10|v−w|(|∇v|+|∇w|)[|v|3+|w|3].

The Strichartz estimate in Theorem 4.10 b) and (4.29) now yield

8Φ(v)−Φ(w)80,b ≤ CSt∥|v|4v−|w|4w∥E′
0(b)

≤ 5
2CSt∥(|v|4+|w|4)|v−w|∥E′

0(b)

≤ 5CStε
48v − w80,b ≤

1
28v − w80,b,

8∇(Φ(v)−Φ(w))80,b ≤ CSt∥∇(|v|4v − |w|4w)∥E′
0(b)

≤ 5CStε
4∥|∇(v − w)|∥L10

b Lr + 10CSt

(
∥v − w∥L10

b L10

· ∥|∇v|+ |∇w|∥L10
b Lr ∥|v|3 + |w|3∥

L
10
3

b L
10
3

)
≤ 1

28|∇(v − w)|80,b + 40CStRε
38v − w80,b

≤ 1
28|∇(v − w)|80,b +

1
48v − w80,b, (4.32)

where we let ε ∈ (0, ε2) and the number

ε2 = ε2(ρ) := min{ε1, (10CSt)
−1/4, (160CStR)

−1/3} (4.33)

is independent of b. For the gradient term we have also employed Hölder’s
inequality with 5

6 = 1
10 + 1

r +
3
10 in space and with 1

2 = 1
10 + 1

10 + 3
10 in time.

So there is a (unique) fixed point u of Φ in Σ(b, R, ε) with ε = ε2, which an
H1-solution of (4.1) on [0, b] due to Lemma 2.8 of [32] and Lemma 4.5.

3) Let u and v be H1-solutions of (4.1) on Ju and Jv, respectively, such that
J := Ju ∩ Jv contains more points than 0. If 0 ̸= max J , we set

τ = sup{t ∈ J ∩ R≥0 | ∀ s ∈ [0, t] : u(s) = v(s)}.
We suppose τ < sup J. Then there are times tn > τ in J with tn → τ as n→ ∞
and u(tn) ̸= v(tn) for all n ∈ N. The continuity of u and v implies the equality
u(τ) = v(τ) =: φ ∈ H1.
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Fix a time δ′ > 0 with τ + δ′ ∈ J and δ′ ≤ b(φ, ε′), where ε′ = ε2(ρ
′) and

b(φ, ε′) =: b′ are chosen as in step 2) for ρ′ := ∥φ∥1,2. Set R′ = 2CSt∥φ∥1,2 + 1.
This step yields a solution z̃ ∈ Σ(δ′, R′, ε′) of (4.1) with z̃(0) = φ. Set z =
z̃(···+τ). It suffices to show that u = z and v = z on [τ, τ+δ] for some δ ∈ (0, δ′]
to obtain a contradiction. We can thus assume that v = z on [τ, τ + δ′]; i.e.,
vτ := v(··· − τ) is contained in Σ(δ′, R′, ε′).

We set w = u(··· − τ)− v(··· − τ) on J ′ = [0, δ′]. This function satisfies

∂tw = i∆w + F (w + vτ )− F (vτ ) =: i∆w + f, t ∈ J ′, w(0) = 0.

Moreover, w belongs to C(J ′, H1) and thus to C(J ′, L6). These properties are
not enough to use directly the estimates of step 2). But we can exploit the
better behavior of vτ ∈ V1(δ

′). In particular, we need smallness of w and vτ to
absorb the error term f . Here we have for any given η > 0 (fixed below) a time
δ = δ(η) ∈ (0, δ′] such that ∥w(t)∥1,2 ≤ η for all t ∈ [0, δ] and ∥vτ∥L10

δ L10 ≤ η.

Writing |w + vτ |4 = (w + vτ )
2(w + vτ )

2, we can expand f = f1 + · · · + f5,
where f5 = −iµ|w|4w and the other summands fj are linear combinations of
product containing j factors from {w,w} and 5− j factors from {vτ , vτ}. The
Strichartz estimate in Theorem 4.10 b) thus implies the bound

∥w∥L2([0,δ],L6) ≤ CSt

5∑
j=1

∥fj∥
L
p′
j ([0,δ],L

q′
j )

≤ c0

5∑
j=1

∥|w|j |vτ |5−j∥
L
p′
j ([0,δ],L

q′
j )

for a constant c0 > 0 and the Strichartz pairs

(p1, q1) = (10, r) =
(
10, 3013

)
, (p2, q2) =

(
5, 3011

)
, (p3, q3) =

(
10
3 ,

10
3

)
,

(p4, q4) =
(
5
2 ,

30
7

)
, (p5, q5) = (2, 6).

Similar as in (4.29), on each product |w|j |vτ |5−j we apply Hölder’s inequality
first in space and then in time with the exponent

j = 1 :
1

q′1
=

17

30
=

1

6
+

4

10
,

1

p′1
=

9

10
=

1

2
+

4

10
,

j = 2 :
1

q′2
=

19

30
=

1

6
+

1

6
+

3

10
,

1

p′2
=

4

5
=

1

2
+

1

∞
+

3

10
,

j = 3 :
1

q′3
=

7

10
=

1

6
+

2

6
+

2

10
,

1

p′3
=

7

10
=

1

2
+

2

∞
+

2

10
,

j = 4 :
1

q′4
=

23

30
=

1

6
+

3

6
+

1

10
,

1

p′4
=

3

5
=

1

2
+

3

∞
+

1

10
,

j = 5 :
1

q′5
=

5

6
=

1

6
+

4

6
,

1

p′5
=

1

2
=

1

2
+

4

∞
.

We thus obtain

∥w∥L2
δL

6 ≤ c0
(
∥w∥L2

δL
6∥vτ∥4L10

δ L10 + ∥w∥L2
δL

6∥w∥L∞
δ L6∥vτ∥3L10

δ L10

+ ∥w∥L2
δL

6∥w∥2L∞
δ L6∥vτ∥2L10

δ L10 + ∥w∥L2
δL

6∥w∥3L∞
δ L6∥vτ∥L10

δ L10

+ ∥w∥L2
δL

6∥w∥4L∞
δ L6

)
≤ 5c0η

4∥w∥L2
δL

6 .
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We recall that w is an element of C(J ′, L6) and thus the norm ∥w∥L2
δL

6 is finite.

Fixing η = (10c0)
−1/4 and consequently δ = δ(η), we conclude that w(t) = 0

for every t ∈ [0, δ] and hence u(t) = v(t) for t ∈ [τ, τ + δ]. This is the desired
contradiction. Here and in step 2), negative times are treated analogously.4

4) Again, we define t+(u0) > 0 as the supremum of those b > 0 for which
we have an H1-solution ub of (4.1) on [0, b]. Step 3) then allows us to con-
struct a unique H1-solution u on [0, t+(u0)). Analogously one argues for t < 0
and, using also Remark 4.13, we obtain a unique maximal H1-solution u on
J(u0) = (t−(u0), t

+(u0)). As in Theorem 4.16 one can show that u belongs to
Lploc(J(u0),W

1,q). So part a) is shown.

We suppose that t+(u0) =: t
+ and ∥u∥L10

t+
L10 =: M are finite. Take κ > 0 to

be fixed below. Since M is finite and [0, t+] is compact, there are times t0 =
0 < t1 < · · · < tN = t+ with ∥u∥L10(Jk,L10) ≤ κ for all intervals Jk = [tk, tk+1].
Using this bound, as in (4.31) we find a constant C > 0 such that

8u81,Jk ≤ C(∥u(tk)∥1,2 + κ4∥u∥E1(b)) ≤ C(∥u(tk)∥1,2 + κ48u81,Jk)

for all k ∈ {0, 1, . . . , N − 1}. With κ = (2C)−1/4 it follows

8u81,Jk ≤ 2C∥u(tk)∥1,2 ≤ 2C8u81,Jk−1
≤ · · · ≤ (2C)N−18u81,J0 ≤ (2C)N∥u0∥1,2

for all k ≤ N − 1. Recall that ∥u0∥1,2 ≤ ρ. As a result, ∥u(t)∥1,2 is bounded by

ρ := (2C)Nρ for all t ∈ [0, t+) and thus 8u81,t+ by 2CNρ. Set R = 2CStρ + 1.

We define the number ε > 0 corresponding to R as ε2 in step 2).
Let Jτ := [τ, t+) ⊆ R≥0. Theorem 4.10 and estimates (4.28) and (4.29) yield

∥u− T (··· − τ)u(τ)∥L10
Jτ
L10 = ∥T ∗+ F (u)∥L10

Jτ
L10 ≤ C ′

So∥T ∗+ F (u)∥L10
Jτ
W 1,r

≤ C ′
SoCSt

(
∥|u|5∥E′

0(Jτ )
+ 5∥|u|4|∇u|∥E′

0(Jτ )

)
≤ 6C ′

SoCSt∥u∥4L10
Jτ
L10∥u∥L10

Jτ
W 1,r

≤ 12C ′
SoCStCNρ ∥u∥4L10

Jτ
L10 −→ 0

as τ → (t+)−, because ∥u∥L10
Jτ
L10 tends to 0. So we can fix an initial time τ < t+

with ∥T (···−τ)u(τ)∥L10
Jτ
L10 ≤ ε/4. Since T (···−τ)u(τ) belongs to L10(R,W 1,r) ↪→

L10(R, L10) by Theorem 4.10 and (4.28), there is a time step β > 0 with

∥T (··· − τ)u(τ)∥L10([τ,t++β],L10) ≤ ε/2.

Step 2) now allows us to solve (4.1) on [τ, t++β] with intial value u(τ), giving a
solution of (4.1) on [0, t++β]. This fact contradicts the definition of t+(u0) = t+,
and the blow-up criterion is proved. Negative times are treated analogously.

5) To show c), we take a compact interval J ⊆ J(u0) with 0 = min J . Let

v0 ∈ H1 with ∥u0−v0∥1,2 ≤ δ′ ≤ 1 so that ∥v0∥1,2 ≤ ρ+1 =: ρ̃. Set R̃ = 2CStρ̃+1
and ε̃ = ε2(ρ̃) as in step 2). For the iteration of the initial estimate, we need a
variant of (4.30) along the compact set u(J) in H1. By Theorem 4.10 the map

4Some parts of this step were only sketched in the lectures.
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φ 7→ 1[0,b]T (·)φ tends 0 in V1(R) strongly on H1, hence uniformly on u(J). We

can thus fix a time b̃ > 0 with

∥T (·)u(t)∥L10
b̃
L10 ≤ ε̃

8 ≤ ε̃
4 , (4.34)

for all t ∈ J . Set t̃k = kb̃ for k ∈ {0, 1, . . . ,K}, where t̃K is redefined as

max J if Kb̃ > max J and (K − 1)b̃ < max J . Let J̃k = [t̃k, t̃k+1]. For j = 0,
Theorem 4.10 and inequalities (4.28) and (4.34) yield

∥T (·)v0∥L10
b̃
L10 ≤ ∥T (·)(v0 − u0)∥L10

b̃
L10 + ∥T (·)u0∥L10

b̃
L10 ≤ CStC

′
Soδ

′ + ε̃
4 ≤ ε̃

2

for 0 ≤ δ′ ≤ δ0 := min{1, ε̃/(8CStC
′
So)}. (The extra factor 1

2 is needed below.)

Step 2) now provides a solution v = Φv0(v) ∈ Σ(b̃, R̃, ε̃) of (4.1) on [0, b̃]. To
iterate the argument we let ∥u0 − v0∥1,2 ≤ (4CSt)

−Kδ0 =: 2δ. Using (4.32) and
the definition of Φ, we compute

8u− v81,b̃ ≤ 8Φu0(u)− Φu0(v)81,b̃ + 8Φu0(v)− Φv0(v)81,b̃
≤ 3

48u− v81,b̃ + 8T (·)(u0 − v0)81,b̃ ≤
3
48u− v81,b̃ + CSt∥u0 − v0∥1,2,

8u− v81,b̃ ≤ 4CSt∥u0 − v0∥1,2 ≤ (4CSt)
1−Kδ0,

and hence ∥u(t̃1)− v(t̃1)∥1,2 ≤ (4CSt)
1−Kδ0 ≤ δ0. We deduce

∥T (·)v(t̃1)∥L10
b̃
L10 ≤ C ′

SoCSt∥u(t̃1)− v(t̃1)∥1,2 + ε̃
4 ≤ ε̃

2 .

As in Theorem 1.11, based on (4.34) we can repeat the above estimate K−1
times so that J⊆J(v0) and
8u− v81,J̃k ≤ 4CSt∥u(t̃k)− v(t̃k)∥1,2 ≤ · · · ≤ (4CSt)

K∥u0 − v0∥1,2 ≤ δ0 (4.35)

for all k ∈ {0, 1, . . . ,K − 1}. It follows 8u − v81,J ≤ K(4CSt)
K∥u0 − v0∥1,2 by

the triangle inequality.
Finally, we replace in this argument u0 by any initial map w0 ∈ BH1(u0, δ),

noting that J ⊆ J(w0). By (4.35) with w instead of v we obtain ∥u(t̃k) −
w(t̃k)∥1,2 ≤ δ0. As above, Sobolev’s and Strichartz’ inequalies and (4.34) imply

∥T (·)w(t̃k)∥L10
b̃
L10 ≤ ∥T (·)(w(t̃k)− u(t̃k))∥L10

b̃
L10 + ∥T (·)u(t̃k)∥L10

b̃
L10

≤ CStC
′
Soδ0 +

ε̃
8 ≤ ε̃

4 .

for all k ∈ {0, 1, · · · ,K− 1}. Since ∥w0− v0∥1,2 ≤ 2δ, the same reasoning as for
u and v yields 8w − v81,J ≤ K(4CSt)

K∥w0 − v0∥1,2 and thus claim c). □

There are illposedness results for the supercritical case α > αc, but for µ = 1
and e.g. α ∈ (5, 6) and m = 3 one has existence (not uniqueness) of solutions
in L∞(J,H1), see Section 3.8 respectively Exercise 3.56 in [35].

4.4. Asymptotic behavior

In this section we show global existence of solutions for 1 < α < αc =
m+2

(m−2)+
in the defocusing case, and in the focusing case if either α or u0 are small.
Moreover, we state a result on asymptotic stability in the defocusing case. A
main ingredient of the proofs is the preservation of the L2-norm and of the
energy E for solutions to (4.1).
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So far these conservation laws have been shown only for H2-solutions in
Remark 4.4. For such solutions one can expect a blow-up condition in H2

which does not fit to the energy bound. We thus have to extend these laws
to H1-solutions. This seems to be feasible since E ∈ C1

R(H
1,R), H2 is dense

in H1, and the solutions depend continuously on data in H1 by Theorem 4.16.
However, if we approximate a given initial value u0 in H

1 by functions ψn ∈ H2,
we do not yet know whether the solutions un = φ( · , ψn) belong to C(J,H2)
for an n-independent interval. (Theorem 4.16 only shows that un ∈ C(J,H1),
for any compact J ⊆ J(u0) and large n.)
Fortunately, one can show that for v0 ∈ H2 the corresponding maximal H1-

solution v of (4.1) actually belongs to C(J(v0), H
2) ∩ C1(J(v0), L

2), where
J(v0) is the maximal existence interval as an H1-solution from Theorem 4.16.
We show this fact here only for α > 2. By means of a different approach,
this restriction is removed in Proposition 4.23 treated in an appendix. We
have established such a regularity result already in Theorem 1.16 for general
semilinear evolution equations based on difference quotients in time. Since we
now study a partial differential equation on Rm, we can instead use differences
in space exploiting the characterization

v ∈ Lr belongs to W 1,r ⇐⇒ C := sup
h∈Rm\{0}

|h|−1∥v(·+ h)− v∥r <∞ (4.36)

for r ∈ (1,∞], where C = ∥|∇v|∥r. See Theorems 5.8.3 and 5.8.4 in [9]. For
r = 1 the implication ‘⇐’ is wrong, and for r = ∞ one cannot get v ∈ C1 in
this way (which was our aim in Theorem 1.16 for the X-valued solution).

Proposition 4.18. Let (4.20) be true, α > 2, and u0 ∈ H2. Then the
maximal solution u of (4.1) from Theorem 4.16 is an H2-solution on J(u0).

Proof. We fix b ∈ (0, t+(u0)) and set r = ∥u∥F1(0,b) and ρ = ∥u0∥2,2.
Let t ∈ [0, b] and h ∈ Rm \ {0}. We define uh(t) = u(t, ··· + h) and vh =
|h|−1(uh − u). Observe that ∥uh(t)∥q = ∥u(t)∥q and ∥|∇uh(t)|∥q = ∥|∇u(t)|∥q.
Since uh fulfills (4.1) with initial value u0(···+h), the difference quotient satisfies
the new equation

∂tvh(t) = i∆vh(t) + |h|−1
(
F (uh(t))− F (u(t))

)
= i∆vh(t) +

∫ 1

0
ϕ′(u(t) + τ(uh(t)− u(t)) dτ vh(t) (4.37)

and vh(0) = |h|−1(u0(··· + h) − u0), where ϕ(z) = −iµ|z|α−1z. We abbreviate
uτ,h = u+ τ(uh − u) and denote the integral by gh(u(t)). Because of α > 2, we
can differentiate

∇(gh(u)vh) = gh(u)∇vh +
∫ 1

0
ϕ′′(uτ,h)[∇uτ,h, vh] dτ

omitting the variable t. Hölder’s inequality with 1
q′ = α−k

q + k
q for k ∈ {1, 2}

and Sobolev’s embedding H1 ↪→ Lq from (4.4) yield

∥gh(u)vh∥q′ ≤ c∥uτ,h∥α−1
q ∥vh∥q ≤ crα−1∥vh∥q,

∥|∇(gh(u)vh)| ∥q′ ≤ c
(
∥uτ,h∥α−1

q ∥|∇vh|∥q + ∥uτ,h∥α−2
q ∥|∇uτ,h|∥q∥vh∥q

)
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≤ c
(
rα−1∥vh∥1,q + rα−2∥vh∥1,2∥u∥1,q

)
.

for some constants c > 0. Let β ∈ (0, b]. Applying the Lp
′
-norm and Hölder in

time, we infer

∥gh(u)vh∥E′
1(0,β)

≤ c
(
rα−1∥vh∥Lp′

β W
1,q+ rα−2∥vh∥L∞

β H1∥u∥
Lp′
β W

1,q

)
≤ crα−1β

1
p′−

1
p 9vh91,β .

We now set β = min{b, (2CStcr
α−1)−γ} with γ = p′p

p−p′ . Equation (4.37), the

Strichartz estimates from Theorem 4.10, and (4.36) then imply

9vh91,β ≤ CSt

(
∥vh(0)∥1,2 + ∥gh(u)vh∥E′

1(0,β)

)
≤ cCStρ+

1
29vh91,β,

and hence ∥|∇vh|∥C([0,β],L2) ≤ 9vh91,β ≤ 2cCStρ. From the characterization

(4.36) we deduce ∥u(t)∥2,2 ≤ ĉρ for t ∈ [0, β]. Since ĉ and β only depend on α,
m and r, we can iterate this argument to obtain boundedness of u : [0, b] → H2.

Moreover, u : [0, b] → H2 is strongly measurable by (Pettis’) Theorem 1.1.6
of [14], since H2 is separable and t 7→ (u(t)|φ)L2 is continuous for φ ∈ L2. To
obtain continuity in H2, we note that ∂jkF (v) is a linear combination of terms
of the form like F1(v) = |v|α−1∂jkv and F2(v) = |v|α−2∂jv∂kv. As above we

can estimate F2(v) in L
q′ by ∥v∥α−2

q ∥|∇v|∥2q ≤ c∥v∥α2,2. For the other term, we

remark that m ≤ 5 because of 2 ≤ α < αc. Sobolev’s Theorem 3.31 in [33]
yields H2 ↪→ Lr for all r ∈ [2,∞] if m ≤ 3, all r ∈ [2,∞) if m = 4 and for
r ∈ [2, 10] if m = 5. In the first two cases, we easily obtain ∥F1(v)∥q′ ≤ c∥v∥α2,2.
For m = 5 we use Hölder with 1

q′ = α
1+α = α−1

2(α+1) +
1
2 . Since α < 7

3 , the

exponent r = 2(α + 1) < 20
3 is in the admissible range [2, 10], and we infer

again ∥F1(v)∥q′ ≤ c∥v∥α2,2. Hence, ∂jkF (u) belongs to L∞([0, b], Lq
′
) for j, k ∈

{1, · · · ,m}. Note that w := ∂jku satisfies

w(t) = T (t)∂jku0 +

∫ t

0
T (t− s)∂jkF (u(s)) ds, t ∈ [0, b],

in H−1. Theorem 4.10 then yields w ∈ C([0, b], L2) and thus the desired conti-
nuity of u : [0, b] → H2. Negative times are treated in the same way. □

Based on the above result we can show global existence in the defocusing and
in the focusing case if α < 1 + 4

m or u0 is small in H1. We stress that there is

blow up if α ∈ [1+ 4
m , αc) and µ = −1 by Theorem 6.5.10 in [6]. As noted after

Proposition 1.21, the focusing semilinear wave equation admits blow up for all
α > 1. This striking difference relies on the possible growth of the L2-norm of
solutions in the wave case.

Theorem 4.19. Let (4.20) be true, u0 ∈ H1, and u be the maximal H1-
solution of (4.1) on J(u0). Then the following assertions are true.

a) We have ∥u(t)∥2 = ∥u0∥2 and E(u(t)) = E(u0) for all t ∈ J(u0).

b) Let µ = 1. Then J(u0) = R for all u0 ∈ H1.

c) Let µ = −1 and α < 1 + 4
m . Then J(u0) = R for all u0 ∈ H1.
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d) Let µ ∈ {−1, 1} and α ∈ (1, αc). Then there is a constant ε0 > 0 with the
following property: For all ε ∈ (0, ε0] there is a radius ρ = ρ(ε) > 0 such that
for all u0 ∈ BH1(0, ρ) we have J(u0) = R and ∥u(t)∥1,2 ≤ ε for all t ∈ R.

In all three cases the nonlinearity is relatively tame so that it does not destroy
the global existence that we have in the linear case: In b) we have the good sign
µ = 1. In c) the nonlinearity does not grow too much. In d) the solution u is
small initially which leads to an even smaller nonlinearity |u|α−1u. Moreover,
the trivial fixed point u∗ = 0 is stable in all cases. As we will see in the proof,
in these situations the mass and energy of a solution control its H1-norm, so
that the blow-up condition implies global existence.
These results and their proofs are typical for evolution equations possessing

• a ‘full’ local wellposedness theory as in Theorem 4.16,
• a conserved quantity which dominates the norm of the blow-up con-
dition (directly or under a smallness condition) at least for a class of
‘good solutions’,

• and a regularity result which shows that these good solutions exist as
long as those from the local wellposedness theorem.

Proof of Theorem 4.19. a) The assertion is true for H2-solutions by
Remark 4.4. There are functions ψn ∈ H2 tending to u0 in H1 as n→ ∞. Set
un = φ( · , ψn). Proposition 4.23 says that un is an H2-solution on the maximal
interval J(ψn) from Theorem 4.16. Take any compact interval J ⊆ J(u0). Due
to Theorem 4.16, there is an index NJ ∈ N such that J ⊆ J(ψn) for n ≥ NJ

and un(t) converges to u(t) in H
1 as n→ ∞, uniformly for t ∈ J . Assertion a)

then follows by approximation since E ∈ C(H1,R), cf. (4.6).
b) Let µ = 1. In this case, from step a) and (4.5) we derive

∥u(t)∥21,2 ≤ 2E(u(t)) + ∥u(t)∥22 = E(u0) + ∥u0∥22
for all t ∈ J(u0). The blow-up criterion in Theorem 4.16 now yields J(u0) = R.
c) Let 1 < α < 1 + 4

m and µ = −1. We consider m ≥ 3, the proof for
m ∈ {1, 2} is similar. Observe that

1

α+ 1
=

1− θ

2
+ θ

m− 2

2m
for θ =

m

2
− m

α+ 1
∈ (0, 1).

The interpolation and Sobolev inequalities (see (3.38) in [33]) thus imply the
‘Gagliardo–Nirenberg’ inequality

∥v∥α+1
α+1 ≤

(
∥v∥1−θ2 ∥v∥θ2m

m−2

)α+1
≤ c∥v∥α+1−m(α−1)/2

2 ∥|∇v|∥m(α−1)/2
2

for all v ∈ H1. We have β := 4
m(α−1) > 1 by our assumption. Young’s inequality

with β and β′ leads to

1

α+ 1
∥v∥α+1

α+1 ≤
1

4
∥|∇v|∥22 + c∥v∥β

′(α+1−m(α−1)/2)
2

for a constant only depending on α and m. Denoting the last summand by
k(∥v∥2), we infer from step a) that

E(u0) = E(u(t)) = 1

2
∥|∇u(t)|∥22 −

1

α+ 1
∥u(t)∥α+1

α+1
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≥ 1

4
∥|∇u(t)|∥22 − k(∥u(t)∥2) =

1

4
∥|∇u(t)|∥22 − k(∥u0∥2)

for all t ∈ J(u0). Hence, ∥u(t)∥21,2 ≤ 4E(u0)+4k(∥u0∥2)+∥u0∥22 for all t ∈ J(u0),

and again it follows that J(u0) = R.
d) Definition (4.5), part a), and Sobolev’s embedding (4.4) yield

1

2
∥u(t)∥21,2 =

1

2
∥u(t)∥22 + E(u(t))− µ

α+ 1
∥u(t)∥α+1

α+1

≤ 1

2
∥u0∥22 + E(u0) + c0∥u(t)∥α−1

1,2 ∥u(t)∥21,2 (4.38)

for all t ∈ J(u0) and with c0 = Cα+1
So /(α + 1). We set ε0 = (4c0)

1/(1−α) and
take any 0 < ρ < ε ≤ ε0. Let ∥u0∥1,2 ≤ ρ. We now define

τ = sup
{
t ∈ (0, t+(u0))

∣∣ ∥u(s)∥1,2 ≤ ε for all s ∈ [0, t]
}

and observe that τ ∈ (0, t+(u0)]. Estimates (4.38) and (4.4) then lead to

1

2
∥u(t)∥21,2 ≤

1

2
∥u0∥22 + E(u0) +

1

4
∥u(t)∥21,2,

∥u(t)∥21,2 ≤ 2∥u0∥21,2 +
4

α+ 1
∥u0∥α+1

α+1 ≤ c1(ρ
2 + ρα+1) (4.39)

for all t ∈ [0, τ) and a constant c1 ≥ 1 depending only on m. We finally choose
ρ = ρ(ε) ∈ (0, ε) such that c1(ρ

2 + ρα+1) ≤ ε2/4. Estimate (4.39) then implies
∥u(t)∥21,2 ≤ ε2/4 for t < τ . If τ < t+(u0), we would obtain the contradiction

∥u(τ)∥1,2 = ε/2 by continuity. Hence, τ = t+(u0) and so Theorem 4.16 d) and
gives t+(u0) = ∞ and the asserted bound for t ≥ 0 follows. Similarly one treats
negative times, possibly decreasing ρ. □

Global existence holds in the defocusing case also if α = αc and m ≥ 3. This
deep result is far beyond the scope of these lectures, see Chapter 5 of [35] for
an extended survey.
The next result is a direct consequence of the (hard to prove) ‘pseudo-

confomal’ conservation law for (4.1), Theorem 7.2.1 in [6]. The proposition
says that solutions decay to 0 as |t| → ∞ in the defocusing case.

Proposition 4.20. Let 1 + 4/m ≤ α < αc, µ = 1 and u0 ∈ H1 with |x|u0 ∈
L2, and u be the corresponding H1-solution of (4.1) on R. Then there is a
constant c > 0 such that

∥u(t)∥α+1 ≤ c|t|−
2

α+1 ∥|x|u0∥
2

α+1

2 for t ∈ R.

Proof. Let t ∈ J(u0) = R. Theorem 7.2.1 in [6] yields

∥(x+2it∇)u(t)∥22+
8t2

α+ 1
∥u(t)∥α+1

α+1 = ∥xu0∥22+4
m+ 4− αm

α+ 1

∫ t

0
s∥u(s)∥α+1

α+1 ds.

Since the last summand is non-positive, the assertion follows. □

A more precise version of this result is given in Theorem 7.3.1 of [6]. It covers
the full range α ∈ (1, αc) and estimates ∥u(t)∥r for r ∈ (2, 1+αc] (r ∈ (2, 1+αc)

if m = 2). In many cases one obtains the decay c|t|
m
r
−m

2 as in Corollary 4.6.
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In the setting of the proposition scattering can be shown; i.e., there are maps
u± ∈ H1 with |x|u± ∈ L2 such T (−t)u(t) → u± as t → ±∞ in the norm
∥v∥1,2 + ∥|x|v∥2. See Theorem 7.4.1 of [6]. In Sections 7.7 and 7.8 in [6] one
can find variants of these results in H1 without weights.
In the focusing case, the qualitative behavior is completey different. In Exam-

ple 4.2 we have seen that (4.1) admits standing waves if µ = −1 and α ∈ (1, αc),
see Section 8.1 of [6]. Because of symmetries, these standing waves form a finite
dimensional manifold in H1. It is unstable in H1 (due to blowup) if α ≥ 1+ 4

m ,

and stable if α < 1 + 4
m by Sections 8.2 and 8.3 of [6].

4.5. An improved version of Proposition 4.18

In5 this section we establish Proposition 4.18 without the restriction α > 2
(and thus m ≤ 5) by means of a different approach. To this aim, we modify the
proof of Lemma 4.15 involving extra time regularity. In this argument we use
the vector-valued Sobolev space W 1,r(J,X) for r ∈ [1,∞], an open interval J ⊂
R and a Banach space X. A function u belongs to W 1,r(J,X) if u ∈ Lr(J,X)
and there is a map v ∈ Lr(J,X) with

u(t) = u(a) +

∫ t

a
v(s) ds (4.40)

for a.e. t, a ∈ J . (Section 2.5 in [14] provides a more thorough treatment of
this topic.) One can then fix a number a ∈ J (and thus a representative of u)
such that (4.40) is valid for a.e. t ∈ J , see Proposition 2.5.9 in [14]. Hence, u is
continuous on J and has a continuous extension to J by dominated convergence,
and so (4.40) holds for all t, a ∈ J . We set u′ = v.
We discuss a few properties of these spaces needed later on. The space

W 1,r(J,X) is a Banach space when equipped with the norm given by

∥u∥1,r =

{(
∥u∥rr + ∥u′∥rr

) 1
r , if 1 ≤ r <∞,

max{∥u∥∞, ∥u′∥∞}, if r = ∞,

where ∥ · ∥r is the norm on Lr(J,X). Moreover W 1,r(J,X) is isometrically
isomorphic to a closed subspace of Lr(J,X)2 via the map u 7→ (u, u′). The
remarks after (4.15) and standard results from functional analysis then yield
parts a) and b) of the next result.

Remark 4.21. a) Let 1 ≤ r < ∞ and X is separable. Then W 1,r(J,X) is
separable.

b) Let 1 < r <∞ and X is reflexive. Then W 1,r(J,X) is reflexive.

c) Let X be reflexive. Then W 1,∞(J,X) is isometrically isomorphic to the
space of bounded Lipschitz functions u : J → X, cf. Theorem 2.5.12 in [14].

d) Let a < b < c and r ∈ [1,∞). Let u ∈ W 1,r((a, b), X) and v ∈
W 1.r((b, c), X) satisfy u(b) = v(b). Define w(t) = u(t) for t ∈ (a, b), w(b) = u(b)
and w(t) = v(t) for t ∈ (b, c). Set g(t) = u′(t) for t ∈ (a, b) and g(t) = v′(t)
for t ∈ (b, c). It is then straightforward to check that g ∈ Lr((a, c), X) is the
derivative of w. The concatenation w thus belongs to W 1,r((a, c), X). ♢

5This section was not part of the lectures.
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We further need a simple density and embedding result for W 1,r(J,X).

Lemma 4.22. Let J ⊆ R be an open and bounded interval.

a) Let 1 ≤ r <∞. Then C1(J,X) is dense in W 1,r(J,X).

b) Let 1 ≤ r ≤ ∞. Then W 1,r(J,X) is continuously embedded into C(J,X).

Proof. Let u ∈ W 1,r(J,X). As noted after (4.40), we can fix a represen-
tative in C(J,X). Part b) is shown as in Remark 1.41 of [32].
Let 1 ≤ r < ∞ and J = [a, b]. We can approximate u′ in Lr(J,X) by

vn ∈ Cc(J,X), n ∈ N, as in the proof of Lemma 4.8. Setting

un(t) = u(a) +

∫ t

a
vn(s) ds, t ∈ J, n ∈ N,

we obtain functions un ∈ C1(J,X) with u′n = vn → u′ in Lr(J,X). Hölder’s
inequality further yields

∥un(t)− u(t)∥rX ≤
(∫ t

a
∥vn(s)− u′(s)∥X ds

)r
≤ |J |

r
r′

∫
J
∥vn(s)− u′(s)∥rX ds,

∥un − u∥r ≤ |J | ∥vn − u′∥r −→ 0

as n→ ∞, where |J | is the length of J . Assertion a) has been shown. □

We can now show the improved version of Proposition 4.18.

Proposition 4.23. Let (4.20) be true and u0 ∈ H2. Then the maximal
solution u obtained in Theorem 4.16 is an H2-solution on J(u0). Moreover, u
belongs to W 1,p((a, b), Lq) for all intervals [a, b] ⊆ J(u0).

Proof. Let u0 ∈ H2 and let u be the maximal H1-solution of (4.1) ob-
tained in Theorem 4.16. Take any compact interval J0 ⊆ J(u0) containing 0.
We have to show that u is an H2-solution on J0 with u ∈ W 1,p(J◦

0 , L
q). By

a refinement of the fixed-point argument in the proof of Lemma 4.15, we first
prove this claim on an interval J1 = [−b1, b1]. It turns out that this time b1 > 0
only depends on α, m, and the size

ρ := max
t∈J0

∥u(t)∥1,2

of u in H1. We can thus repeat the argument for the initial values u(±b1)
with the same time step b1 and deduce the assertion in finitely many iterations.
Throughout we use the setting and the notation of the proof of Lemma 4.15
and Theorem 4.16, e.g., the spaces Fk(b) and their norm 9v9k,b.
1) We fix r := 1 + CStρ. Lemma 4.15 and its proof say that the H1-solution

u is a fixed point of the operator Φ (see (4.19)) in the set Σ(b, r) = BF1(b)(0, r),
where 0 < b ≤ b0(ρ), see (4.22). Set J = (−b, b). We will show that u is also a
fixed point in a subset of more regular functions, using that u0 ∈ H2. To this
aim, for R ≥ CSt∥∆u0∥2 =: R0 (to be fixed below) we define the spaces

Z(b) = F1(b) ∩W 1,p(J, Lq) ∩W 1,∞(J, L2),

Θ = Θ(b, R) =
{
v ∈ Z(b)

∣∣ v(0) = u0, 9v91,b ≤ r,9v′90,b ≤ R
}
.
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The set Θ is non-empty since the Strichartz estimate in Theorem 4.10 a) yields
9T (·)u091,b ≤ CStρ ≤ r and 9 d

dtT (·)u090,b = 9T (·)∆u090,b ≤ CSt∥∆u0∥2 ≤ R.
We endow Θ(b, R) with the metric given by 9v − w90,b.
We recall from Remark 4.21 that W 1,∞(J, L2) is isometrically isomorphic

to the space of Lipschitz functions f : J → L2. We first claim that Θ(b, R)
is complete. In fact, take a Cauchy sequence (vn)n in Θ(b, R). Lemma 4.12
yields that (vn)n tends in F0(b) to a function v ∈ F1(b) with 9v91,b ≤ r as
n → ∞. Since the maps vn : J → L2 converge in L∞(J, L2) to v and have the
uniform Lipschitz bound R, we conclude that vn → v in C(J, L2) as n → ∞,
v(0) = u0, and v : J → L2 is Lipschitz with bound R. By Remark 4.21, the limit
v belongs to W 1,∞(J, L2) with ∥v′∥L∞(J,L2) ≤ R. Further, after passing to a

subsequence, (vnj )j has a weak limit w inW 1,p(J, Lq) with ∥w′∥E0(J) ≤ R. Since

E0(J)
⋆ = Lp(J, Lq)⋆ ↪→W 1,p(J, Lq)⋆ and d

dt :W
1,p(J, Lq) → E0(J) is linear and

bounded, vnj and v′nj
converge weakly in E0(J) to w and w′, respectively. It

follows v = w, v ∈ Z(b), and 9v′90,b ≤ R; i.e., Θ(b, R) is complete.

2) Let t∈J and v, w ∈ Θ(b, R) for R≥R0 and b ∈ (0, b0(ρ)]. We rewrite Φ as

Φ(v)(t) = T (t)u0 +

∫ t

0
T (t− s)F (v(s)) ds = T (t)u0 +

∫ t

0
T (s)F (v(t− s)) ds.

We want to choose R and b so that Φ : Θ(b, R) → Θ(b, R) becomes a strict
contraction. In Lemma 4.15, by (4.21) and (4.22) we have already shown that
Φ(v) belongs to F1(b) ∩ C(J,H1) and satisfies

9Φ(v)− Φ(w)90,b ≤ 1
29v − w 90,b and 9Φ(v)91,b ≤ r. (4.41)

3) To treat d
dtΦ(v) in the next step, we first differentiate the convolution term

with respect to t. This is done via an approximation argument. Corollary 1.18
and (4.20) show that F : Lq → Lq

′
is real continuously differentiable with

derivative given by F ′(φ)ψ = ϕ′(φ)ψ for φ,ψ ∈ Lq and ϕ(z) = −iµ|z|α−1z for
z ∈ R2. Moreover,

∥F ′(φ)ψ∥q′ ≤ c1∥φ∥α−1
q ∥ψ∥q. (4.42)

Here and below cj > 0 is a constant only depending on α and m.

Lemma 4.22 allows us to approximate v in W 1,p(J, Lq) by wn ∈ C1(J, Lq).
Passing to a subsequence if necessary, the maps w′

n(t) converge in L
q as n→ ∞

and ∥w′
n(t)∥p ≤ h(t) for all n ∈ N, a.e. t ∈ J , and a function h ∈ Lp(J) ↪→

Lp
′
(J), where we note that p′ < 2 < p. Lemma 4.22 b) and its proof yield that

wn(0) = v(0) = u0 and the sequence (wn)n converges to v in C(J, Lq). It is thus
bounded by a constant c in this space. By the properties of F , the functions
F ′(wn(t))w

′
n(t) tend to F ′(v(t))v′(t) in Lq

′
as n→ ∞ and satisfy

sup
n∈N

∥F ′(wn(t))w
′
n(t)∥q′ ≤ sup

s∈J,n∈N
c1∥wn(s)∥α−1

q ∥w′
n(t)∥q ≤ c1c

α−1h(t).

From dominated convergence we deduce that the maps F ′(wn)w
′
n have the limit

to F ′(v)v′ in Lp
′
(J, Lq

′
) as n→ ∞.
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Because Lq
′
↪→ H−1 by (4.7), the function F (wn) : J → H−1 is continuously

differentiable and so the derivative

d

dt

∫ t

0
T (s)F (wn(t− s)) ds = T (t)F (wn(0)) +

∫ t

0
T (s)F ′(wn(t− s))w′

n(t− s) ds

= T (t)F (u0) +

∫ t

0
T (t− s)F ′(wn(s))w

′
n(s) ds

exists in H−1. (In this calculation we identify C with R2.) Observe that F (u0)
belongs to L2 since u0 ∈ H2 and F ∈ C1(H2, L2), see (4.10). The Strichartz
estimate in Theorem 4.10 b) thus implies that the right-hand side of the above
identity is continuous in L2 and converges to

T (t)F (u0) +

∫ t

0
T (t− s)F ′(v(s))v′(s) ds

in L2 uniformly in t as n → ∞. Similarly, the integral on the left-hand side
tends to T ∗+ F (v)(t) in L2 uniformly in t. We can thus differentiate T ∗+ F (v)
in L2 and obtain

d

dt

∫ t

0
T (s)F (v(t− s)) ds = T (t)F (u0) +

∫ t

0
T (t− s)F ′(v(s))v′(s) ds,

d

dt
Φ(v)(t) = T (t)(i∆u0 + F (u0)) +

∫ t

0
T (t− s)F ′(v(s))v′(s) ds. (4.43)

4) In this step we prove that d
dtΦ(v) is an element of F0(b) with 9 d

dtΦ(v)90,b ≤
R. It is crucial that R will enter only linearly. Using inequality (4.42), Sobolev’s
embedding (4.4) and ∥v(s)∥1,2 ≤ r, we derive

∥F ′(v(s))v′(s)∥q′ ≤ c1C
α−1
So rα−1∥v′(s)∥q

for all s ∈ J . The inhomogeneous Strichartz estimate and Hölder’s inequality
now allow us to bound the F0(b)-norm of the integral term in (4.43) by

CSt∥F ′(v)v′∥E′
0(b)

≤ CStc1C
α−1
So rα−1∥v′∥Lp′ (J,Lq) ≤ c2r

α−1b
1
p′−

1
p ∥v′∥E0(b)

≤ c2r
α−1b

1
p′−

1
pR, (4.44)

using v ∈ Θ(R, b). By Sobolev’s embedding (4.4), we haveH2 ↪→ L2α and hence
∥F (u0)∥2 = ∥u0∥α2α ≤ c3∥u0∥α2,2. Equation (4.43), the Strichartz estimates and

estimate (4.44) thus yield that

9 d
dtΦ(v)90,b ≤ CSt(∥∆u0∥2 + c3∥u0∥α2,2) + c2r

α−1b
1
p′−

1
pR (4.45)

and that d
dtΦ(v) belongs to C(J, L

2). We fix

R1 = 2CSt(∥∆u0∥2 + c3∥u0∥α2,2) ≥ R0 and b1 = min
{
b0(ρ), (2c2r

α−1)
p′−p
p′p

}
.

Since r = 1+CStρ, the number b1 only depends on ρ, α and m. The inequalities
(4.41) and (4.45) show that Φ : Θ(b1, R1) → Θ(b1, R1) is a strict contraction.
We thus obtain a fixed point v∗ = Φ(v∗) in Θ(b1, R1) contained in C(J1, H

1)∩
C1(J1, L

2) ∩ W 1,q(J◦
1 , L

q), where J1 = [−b1, b1]. The function v∗ is an H1-
solution of (4.1) on J1 by Lemma 2.8 of [32]. Hence, u = v∗ by the uniqueness
of (4.1).
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5) We still have to show that u ∈ C(J1, H
2). To prove this fact, we use a

‘boot-strapping’ argument based on the invertibility of I −∆ : W 2,r → Lr for
all r ∈ (1,∞), see Example 2.30 in [32]. If φ ∈ C∞

c , then there is a unique
solution v ∈

⋂
rW

2,r of v −∆v = φ, see (1.25) in [32]. By density, we see tha
the inverses (I −∆)−1 coincide on Lr ∩ Ls for r, s ∈ (1,∞).
As a starting point, we rewrite (4.1) as

u−∆u = u+ iu′ − iF (u) = f + g,

where f := u + iu′ belongs to C(J1, L
2) and g := −iF (u) to C(J1, L

q/α) since
u ∈ C1(J1, L

2(Rd)) ∩ C(J1, Lq). We have q
α = q′ ∈ (1, 2) by (4.20). It follows

that (I − ∆)−1f ∈ C(J1, H
2) and (I − ∆)−1g ∈ C(J1,W

2,q/α). Because of
2− m

2 > 2− mα
q , Sobolev’s embedding Theorem 3.31 of [33] yields

u = (I −∆)−1(f + g) ∈ C(J1, L
r1)

for r1 = m
mα−2q q =: γq > q if mα > 2q and for any r1 ∈ (2,∞) otherwise (e.g.

if m ∈ {1, 2}). Observe that γ > 1 if mα > 2q since q = α+ 1 and α < m+2
m−2 .

This extra integrability of u implies that g is an element of C(J1, L
r1/α), by

(4.9). If r1 ≥ 2α, the function g belongs to C(J1, L
2) since then Lq/α∩Lr1/α ↪→

L2 by Hölder’s inequality. As a result, u = (I − ∆)−1(f + g) is contained in
C(J1, H

2) in this case.
If r1 < 2α, as above we infer that u ∈ C(J1, L

r2) for r2 =
mr1

mα−2r1
≥ γr1 = γ2q

if mα > 2r1 and for any r2 ∈ (2,∞) if mα ≤ 2r1. Since γ > 1, in finitely many
steps we arrive at rN ≥ γNq ≥ 2α, and hence u ∈ C(J1, H

2).

6) We can now finish the proof. If J0 ⊆ J1 we are done. If not, assume that
max J0 > b1. Since u(b1) ∈ H2, we can repeat steps 2) – 5) with initial value
u(b1) and the same time step b1. We then obtain an H2-solution u1 of (4.1)
on [b1, 2b1] with u1(b1) = u(b1). Remark 4.13 allows us to glue together these
functions to an H2-solution v on [−b1, 2b1] with v ∈ W 1,p((−b1, 2b1), Lq). The
uniqueness of H1-solutions yields that v = u on [−b1, 2b1]. The assertion now
follows in finitely many iterations. □



CHAPTER 5

The semilinear wave equation

In this chapter we treat the semilinear wave equation

∂2t u = ∆u−µ|u|α−1u, u(0) = u0, ∂tu(0) = u1, x ∈ Rm, t ∈ J, (5.1)

now on Rm, for µ ∈ {−1, 1}, an interval J of positive length containing 0, and
initial functions u0, u1 : Rm → C. We focus on the case m = 3 and α ∈ [3, 5]
for conciseness, though several preliminary facts are stated for all m ∈ N or for
m ≥ 2. In Section 1.2 the case α = 3 = m was already studied on a bounded
domain G with Dirichlet boundary conditions, using only L2-based estimates
and Sobolev embeddings. This approach can be extended to α ∈ (1, 3) and R3.
However, for α ∈ (3, 5] and m = 3 we again need Strichartz estimates of the
inhomogeneous linear problem

∂2t u = ∆u+ f, u(0) = u0, ∂tu(0) = u1, x ∈ Rm, t ∈ J, (5.2)

for a given forcing f : J × Rm → C. To avoid a case distinction, below we do
not consider the much easier range α ∈ (1, 3).
Let w = (u, ∂tu). As in Theorem 1.20, one can show the energy equality

Ew(w(t)) :=
∫
Rm

(1
2
|∂tu(t)|2 +

1

2
|∇u(t)|2 + µ

1 + α
|u|α+1

)
dx = Ew(w(0)) (5.3)

at least for regular solutions. In contrast to W 1,2
0 (G) in Section 1.2, now the

energy does not control the norm of L2(Rm) which is an obstacle for the inves-
tigation of the long-term behavior. To deal with this difficulty, we introduce a
new class of Sobolev spaces below. Semigroup methods do not work well in the
resulting setting, but we can replace them by the Fourier transform. Anyway,
the latter is the most natural tool to solve a linear PDE on Rm with constant
coefficients like (5.2). The needed concepts and results are discussed in the next
preparatory section, where we take F = C. We still write Lq for Lq(Rm) etc.

5.1. Fourier transform and fractional Sobolev spaces

The approach of this section is based on Schwartz space

S = Sm =
{
v ∈ C∞(Rm)

∣∣ ∀ k ∈ N0, α ∈ Nm0 : pk,α(v) := ∥|x|k∂αv∥∞ <∞
}

(|x| stands for the map x 7→ |x| etc.). A sequence (vn) converges to v in S if
pk,α(vn − v) → 0 as n→ ∞ for all k ∈ N0 and α ∈ Nm0 . This limit concept can
be expressed by a complete metric. (See Section 3.1 in [33] for proofs omitted
here and more information.) For further definitions, let a > 0, x, y, ξ ∈ Rm,

93
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eiy(x) = eiy·x, and v, w ∈ S. We define translations, dilations, reflection, Fourier
transform, and convolution on S by

τyv(x) = v(x+ y), σav(x) = v(ax), Rv(x) = v(−x),

Fv(ξ) = v̂(ξ) = (2π)−
m
2

∫
Rm

e−iξ·xv(x) dx, (v ∗ w)(x) =
∫
Rm

v(x− y)w(y) dy.

Extensions of these operators are denoted by the same symbols. We collect
their basic properties.

Remark 5.1. Under the avove conditions, the maps τy, σa, R : S → S and
∗ : S × S → S are continuous. The same is true for the derivative ∂α : S → S
and the multiplication Mg : S → S; v 7→ gv, if g belongs to

E = Em :=
{
h ∈ C∞(Rm)

∣∣∀α ∈ Nm0 ∃nα ∈ N0 : sup|x|≥1 ||x|−nαh| <∞
}

Moreover, the Fourier transform F : S → S is a homeomorphism satisfying

F−1 = RF = F3, R = F2,

∫
vŵ dx =

∫
v̂w dx,

F(τyv) = eiyv̂, F(eiyv) = τ−yv̂, F(σav) = a−mσ1/av̂,

∂αv̂ = (−i)|α|F(xαv), F(∂αv) = i|α|ξαv̂,

F(v ∗ w) = (2π)
m
2 v̂ŵ, F(vw) = (2π)−

m
2 v̂ ∗ ŵ.

Finally, F extends to a unitary operator on L2 (Plancherel’s theorem). ♢

As in previous chapters we also need Sobolev spaces of negative order. So
far they were defined via duality. On Rm one can introduce such spaces also by
means of the Fourier transform and (if p = 2) Plancherel in a convenient way.
This is described now, even with a regularity parameter s ∈ R. We only treat
L2-based spaces; see [4], [12] or [38] for the case p ̸= 2.

These Sobolev spaces are contained in the space of tempered distributions

S⋆ = S⋆m :=
{
u : Sm → C

∣∣u linear, continuous
}
.

We write ⟨v, φ⟩S = φ(v) for φ ∈ S⋆ and v ∈ S. It is clear that S⋆ is a
vector space. It is equipped with the weak⋆ convergence φn → φ, meaning
that φn(v) → φ(v) as n → ∞ for each v ∈ S. (For missing proofs and more
information concerning S⋆, we refer to Section 3.6 in [33]. )
We mention two (simple) types of elements of S. First, regular tempered

distributions are given by φg : S → C; φg(v) =
∫
gv dx, for a function g

satisfying
∫
j≤|x|≤j+1 |g| dx ≤ cjκ for some constants c, κ ≥ 0 and all j ∈ N0.

For instance, g could be polynomially bounded. One usually writes g instead
of φg. Second, the Dirac distributions δαy : v 7→ ∂αv(y) also belong to S⋆ for

every α ∈ Nm0 and y ∈ Rm, where we set δy = δ
(0)
y .

To extend the operators from Remark 5.1 to S⋆, let a > 0, α ∈ Nm0 x ∈ Rm,
g ∈ E , φ ∈ S⋆, and v ∈ S. We set

Mgφ(v) = (gφ)(v) = φ(gv), ∂αφ(v) = (−1)|α|φ(∂αv), σaφ(v) = a−mφ(σ 1
a
v),

(Fφ)(v) = φ̂(v) = φ(v̂), Rφ(v) = φ(Rv), (v ∗ φ)(x) = φ(τ−xRv).

Note that τ−xRv(y) = v(x− y). These maps behave on S⋆ similar as in S.
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Remark 5.2. In the above setting, the operators Mg, ∂
α, σa, R : S⋆ → S⋆

and ∗ : S ×S⋆ → S⋆ are continuous with v ∗φ ∈ E . Also, the Fourier transform
F : S⋆ → S⋆ is a homeomorphism satisfying

F−1 = RF = F3, R = F2, Fδy = (2π)−
m
2 e−iy, Feiy = (2π)

m
2 δy,

F(σaφ) = a−mσ1/aφ̂, ∂αφ̂ = (−i)|α|F(xαv), F(∂αφ) = i|α|ξαφ̂,

∂α(v∗φ) = ∂αv∗φ = v∗∂αφ, F(v∗φ) = (2π)
m
2 v̂φ̂, F(vφ) = (2π)−

m
2 v̂∗φ̂. ♢

As weight function on Rm we will use powers of ⟨ξ⟩ = (1 + |ξ|22)
1
2 . For s ∈ R

we define the fractional Sobolev spaces

Hs = Hs(Rm) =
{
v ∈ S⋆m

∣∣ ⟨ξ⟩s v̂ ∈ L2(Rm)
}
, ∥v∥Hs = ∥v∥s,2 = ∥⟨ξ⟩s v̂∥L2 .

Note that v̂ belongs to L2
loc(Rm) if v ∈ Hs and that F : Hs → L2(⟨ξ⟩sλ) =: L2

s

is an isometric isomorphism. Hence, Hs is a Hilbert space for the scalar product

(v|w)Hs = (v|w)s =
∫
Rm

⟨ξ⟩2s v̂ŵ dξ.

It is clear that Ht ↪→ Hs for t ≥ s and that H0 = L2 by Plancherel. Moreover,
we have Hk = W k,2 for k ∈ N by Theorem 3.25 in [33]. We show important
properties of these spaces.

Proposition 5.3. Let s ∈ R. Then S is dense in Hs. Moreover, (Hs)⋆ is
isomorphic to H−s via the map ℓ 7→ φ given by ℓ(v) =

∫
φv dx for v ∈ Hs.

Proof. 1) Take φ ∈ Hs with 0 = (v|φ)s =
∫
⟨ξ⟩2s v̂φ̂dξ for all v ∈ S. Let

χ ∈ C∞
c . Choosing v := F−1(⟨ξ⟩−2sχ) ∈ S, we see that

∫
χφ̂dξ = 0, and hence

φ̂ = 0 by Lemma 4.15 in [30]. Since then φ = 0, the density of S in Hs follows
from the Projection Theorem 3.8 of [30].

2) For v, w ∈ S, Remark 5.1 and Hölder’ inequality yield∣∣∣ ∫ vw dx
∣∣∣ = ∣∣∣ ∫ vFF−1w dξ

∣∣∣ = ∣∣∣ ∫ v̂ Rŵ dξ
∣∣∣ = ∣∣∣ ∫ ⟨ξ⟩sv̂(ξ) ⟨−ξ⟩−sŵ(−ξ) dξ

∣∣∣
≤ ∥v∥Hs∥w∥H−s .

By step 1) we can extend (v, w) →
∫
vw dx to a bilinear and contractive map

from Hs ×H−s to C so that H−s ↪→ (Hs)⋆.

Conversely, let ℓ ∈ (Hs)⋆. To reduce to L2, we define ℓ̃ : L2 → C via

ℓ̃(v) = ℓ
(
F−1(⟨ξ⟩−sv)

)
. Since F−1⟨ξ⟩−s : L2 → Hs is an isometric isomorphism,

the norm of ℓ̃ in (L2)⋆ is equal to ∥ℓ∥(Hs)⋆ . Riesz’ Theorem 3.10 in [30] then

provides a function g ∈ L2 with ∥g∥2 = ∥ℓ̃∥(L2)⋆ and ℓ̃(v) =
∫
vg dx for all

v ∈ L2. Observe that φ := F(⟨ξ⟩sg) = F−1R(⟨ξ⟩sg) belongs to H−s with norm
∥g∥2 = ∥ℓ∥(Hs)⋆ . Computing

⟨w,φ⟩S = ⟨ŵ, ⟨ξ⟩sg⟩S =

∫
⟨ξ⟩sŵg dξ = ℓ̃(⟨ξ⟩sŵ) = ℓ(w)

for every w ∈ S, we derive ℓ = φ and the second assertion. □
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As indicated above, we need a variant of Hs that does not contain L2 for
s > 0. For s ∈ R, we thus define the homogeneous fractional Sobolev space

Ḣs = Ḣs(Rm) =
{
v ∈ S⋆m

∣∣ v̂ ∈L1
loc(Rm), |ξ|sv̂ ∈L2(Rm)

}
, ∥v∥Ḣs = ∥|ξ|sv̂∥L2 .

Clearly, Ḣs is a normed vector space. Observe that we have v̂ ∈ L2
loc for s ≤ 0

if the above norm is finite, but not for s > 0. In the latter case v̂ may develop
singularities at ξ = 0 if v ∈ Ḣs; which are restricted by the extra condition in
the definition, though. For v this leads to reduced decay at infinity, as quantified
in Remark 5.4 f). (Also compare F1 = (2π)

m
2 δ0.) To the contrary, for s < 0

the Fourier transform v̂ has to be small near ξ = 0 providing spatial decay.
We have Ḣ0 = L2 by Plancherel, as well as L2 ∩ Ḣs = Hs (hence Hs ↪→ Ḣs)

if s ≥ 0 since here ⟨ξ⟩s ≂ max{1, |ξ|s}. It can be seen that there is no inclusion

between Ḣs and Ḣt if s ̸= t. (There are radial functions u(x) = ϕ(|x|) such

that ψs(r) := r2s+m−1|ϕ̂(r)|2 is integrable on R+, but not ψt near ∞ (if t > s)
or near 0 (if t < s).) We again collect basic properties, see Section 1.3 of [4] for

missing details and more information. We set L̇2
s = L2(|ξ|sλ).

Remark 5.4. a) For s0 < s < s1, Hölder’s inequality yields Ḣs0∩Ḣs1 ↪→ Ḣs.

b) Let s < m
2 . Then F : Ḣs → L̇2

s is isometric and surjective. Indeed, take

ψ ∈ L̇2
s. Since |ξ|−s ∈ L2(B(0, 1)) by assumption, ψ = |ξ|−s|ξ|sψ belongs to

L1
loc and thus to S⋆. So we can set φ = F−1ψ ∈ Ḣs which shows surjectivity.

Isometry is clear by definition of Ḣs.

c) Part b) implies that Ḣs is a Hilbert space if s < m
2 . (Conversely, if Ḣs is

complete, one can deduce s < m
2 .)

d) Using claim c), like in Proposition 5.3 one can show that S0 = {v ∈ S | v̂ =

0 near 0} is dense in Ḣs if s < m
2 . For s > −m

2 , also S belongs to Ḣs since

then |ξ|s is contained in L2
loc. Hence, S is dense in Ḣs if |s| < m

2 .

e) Let |s| < m
2 . Then Ḣ

−s is isomorphic to (Ḣs)⋆ as in Proposition 5.3.

f) Let s ∈ [0, m2 ). Then Ḣs is embedded into Lp for p = 2m
m−2s ; i.e., s−

m
2 =

−m
p . An example for this sharp Sobolev embedding is Ḣ1(R3) ↪→ L6(R3). (By

Remark 3.30 in[33], Ḣ1 does not embed into Lq for q ∈ [2, 2m
m−2) and m ≥ 3.)

Proof. Let v ∈ S0. Set w = F−1(|ξ|sv̂). Proposition 1.29 in [4] implies
v = F−1(|ξ|−sŵ) = c(s,m)|ξ|s−m ∗w. Using Lemma 4.9 with 1+ 1

p = m−s
m + 1

2 ,

we deduce ∥v∥p ≤ c∥w∥2 = c∥v∥Ḣs . The claim now follows by property d). □

Below we (mostly) restrict to the Hilbert space range s < m
2 when using

Ḣs. There are Lp-variants Hs,p and Ḣs,p of these spaces, often called Bessel
potential spaces, see [4], [12], [38] or [39]. The definitions of the homogeneous
spaces differ in the literature, at least for large s.

In this chapter we heavily use Fourier multipliers a(D) with symbol a. Let
a : Rm → C be measurable and bounded by |a| ≤ c⟨ξ⟩α for some α ∈ R. Then
a(D)v := F−1(av̂) maps S into S⋆ and satisfies

∥a(D)v∥2Hs−α =

∫
⟨ξ⟩2s−2α|a|2|v̂|2 dξ ≤ c

∫
⟨ξ⟩2s|v̂|2 dξ = c∥v∥2Hs
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for v ∈ Hs and s ∈ R. Hence, a(D) : Hs → Hs−α is bounded. Observe the
special case of bounded a where α = 0. A core example is a(ξ) = ξα yielding

a(D) = (−i)|α|∂α by Remark 5.1. In homogeneous spaces, for α > 0 the product
|ξ|−2α⟨ξ⟩2α is not bounded anymore. But for α ≤ 0 and s−α < m

2 , one obtains

as above the boundedness of a(D) : Ḣs → Ḣs−α. These operators commute.
For a(ξ) = ⟨ξ⟩α and α ∈ R, we set a(D) = ⟨∇⟩α. This map is an isometric

isomorphism from Hs to Hs−α for each s ∈ R with inverse ⟨∇⟩−α. The symbol

a(ξ) = |ξ|α is better suited to Ḣs. We write here a(D) = |∇|α. Let α ≥ 0.
Then |∇|α belongs to B(Hs, Hs−α) by the above observations. Moreover, with

v̂ also |ξ|α v̂ is locally integrable, and we can then check that |∇|α : Ḣs → Ḣs−α

is isometric. On the other hand, |ξ|−αv̂ = |ξ|−α−s|ξ|sv̂ is locally integrable if

v ∈ Ḣs and α+ s < m
2 . In this case |∇|−α : Ḣs → Ḣs+α is the bounded inverse

of |∇|α : Ḣs+α → Ḣs. We will use |∇|−1 : L2(R3) → Ḣ1(R3) with inverse |∇|.1
In contrast to ⟨∇⟩α, the operator |∇|α has good scaling properties. Let a > 0,

α < m
2 and v ∈ Ḣα. As expected for α ∈ N, Remark 5.2 yields

|∇|α(σav) = a−mF−1(|ξ|ασ 1
a
v̂) = a−mF−1

(
σ 1

a
(aα|ξ|αv̂)

)
= aασa|∇|αv. (5.4)

We can now solve the linear problem (5.2), using the following concepts and
the bounded operators

C(t) = F−1 cos(t|ξ|)F , S(t) = F−1 sin(t|ξ|)F , Sc(t) = F−1 sinc(t|ξ|)F

on Hs or Ḣs. (The map sinc(r) = 1
r sin r is bounded by 1.)

Definition 5.5. Let s ∈ R, u0 ∈ Hs, u1 ∈ Hs−1, and f ∈ L1(J,Hs−1). An
Hs-solution of (5.2) on J is a map u in C(J,Hs)∩C1(J,Hs−1)∩C2(J,Hs−2)
satisfying (5.2).

Let s < m
2 , u0 ∈ Ḣs, u1 ∈ Ḣs−1, and f ∈ L1(J, Ḣs−1). We say that u ∈

C(J, Ḣs) is a Ḣs-solution of (5.2) on J if it fulfills (5.2) in Ḣs−1+ Ḣs−2 ⊆ S⋆
and has derivatives ∂tu ∈ C(J, Ḣs−1) and ∂2t u ∈ C(J, Ḣs−1 + Ḣs−2).

We refer to Section 2.2E) in [30] for the sum space. For Ḣs-solutions, the
time derivatives are defined in S⋆, see also the next proof.

Proposition 5.6. Let s ∈ R, u0 ∈ Hs, u1 ∈ Hs−1, and f ∈ L1(J,Hs−1).
Then the unique Hs-solution u of (5.2) is given by

u(t) = C(t)u0 + tSc(t)u1 +

∫ t

0
(t− τ)Sc(t− τ)f(τ) dτ, t ∈ J. (5.5)

We further have

|∇|u(t) = C(t)|∇|u0 + S(t)u1 +

∫ t

0
S(t− τ)f(τ) dτ, t ∈ J,

∂tu(t) = −S(t)|∇|u0 + C(t)u1 +

∫ t

0
C(t− τ)f(τ) dτ, t ∈ J.

(5.6)

If s < m
2 one can replace Hr by Ḣr throughout.

1The Lp-theory of Fourier multipliers is more difficult and treated in harmonic analysis.
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Proof. 1) Let u be an Hs-solution and t ∈ J . Since F ∈ B(Hr, L2
r), we

obtain F∂tv = ∂tFv for v ∈ C1(J,Hr). Setting û(t, ξ) = (Fu(t))(ξ), we infer
from (5.2) the ordinary differential equation

∂2t û(t, ξ) + |ξ|2û(t, ξ) = f̂(t, ξ), û(0, ξ) = û0(ξ), ∂tû(0, ξ) = û1(ξ),

for (a.e.) fixed ξ ∈ Rm. (The equation actually holds in L2
s−2.) We thus obtain

û(t, ξ) = cos(t|ξ|)û0(ξ)+ sin(t|ξ|) 1
|ξ| û1(ξ)+

∫ t

0
sin((t− τ)|ξ|) 1

|ξ| f̂(τ, ξ) dτ. (5.7)

Applying F−1 ∈ B(L2
s−1, H

s−1), we derive (5.5).
Conversely, we can differentiate (5.7) in t and the derivative has the majorant

⟨ξ⟩s−1
(
|ξ||û0(ξ)|+ |û1(ξ)|+

∫
J
|f̂(τ, ξ)| dτ

)
in L2. (The weighted L2-norm can be taken in the time integral.) By Lebesgue
the t-derivative exists in L2

s−1 (and ∂2t û in L2
s−2). Similarly one sees that the

derivatives are continuous in t. Applying again F−1, we infer that u from (5.5)
satisfies (5.6) and that ∂tu and ∂2t u are continuous Hs−1, repectively Hs−2.
Since |∇|2 = F−1|ξ|2F = −∆, we see that u satisfies (5.2). Finally, the first line
of (5.6) shows that besides u also |∇|u is continuous in Hs−1, i.e., u ∈ C(J,Hs).

2)2 One proceeds similarly for Ḣs if s < m
2 , so that we only highlight the

differences. To deduce (5.7), we now take the Fourier transform in S⋆. If one

differentiates this formula in t, it is enough to look at the symbol eit|ξ| instead of
sin and cos, see (5.12). For gh(ξ) = h−1(ei(t+h)|ξ|φ̂(ξ)− eit|ξ|)φ̂(ξ)− i|ξ|eit|ξ|φ̂(ξ)
with h ̸= 0 in L̇2

s−1, we use the majorant

|ξ|s−1
(
|h|−1(eih|ξ|−1)−i|ξ|

)
|φ̂(ξ)| ≤ 1

|h|

∫ |h|

0
|eiτ |ξ|−1| dτ |ξ|s|φ̂(ξ)| ≤ 2|ξ|s|φ̂(ξ)|.

Since gh → 0 pointwise, dominated convergence yields gh → 0 in L̇2
s−1 as h→ 0.

Using Plancherel, we can differentiate (5.5) in Ḣs−1 to obtain the second line in

(5.6). The first two terms of this equation can be treated analogously in Ḣs−2.
The difference quotient of integral is decomposed into

1

h

∫ t+h

t
C(t+ h− τ)f(τ) dτ +

∫ t

0

1

h
(C(t+ h− τ)− C(t, τ))f(τ) dτ

(where h > 0, say). The first summand tends to f(t) in Ḣs−1, and the second

one to −
∫ t
0 S(t− τ)|∇|f(τ) dτ in Ḣs−2 (arguing as above). □

Since |ξk| ≤ |ξ|, we obtain ∥∂kv∥Hs ≤ ∥|∇|v∥Hs and also ∥∂kv∥Ḣs ≤
∥|∇|v∥Ḣs . Hence Proposition 5.6 implies the basic linear energy estimate.

Corollary 5.7. Let u0 ∈ H1, u1 ∈ L2, and f ∈ L1(J, L2). Then the H1-
solution u of (5.2) from (5.5) satisfies

∥(u(t), ∂tu(t))∥H1×L2 ≤ c
(
∥u0∥1,2 + (1 + |t|)∥u1∥2 + (1 + |t|)∥f∥L1

tL
2

)
,

∥|∇t,xu(t)|∥2 ≤ c
(
∥(|∇|u0, u1)∥2 + ∥f∥L1

tL
2

)
2This part was not treated in the lectures
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for t ∈ J . The second estimate is also true if u0 ∈ Ḣ1 (and m ≥ 3).

(Here and below c denotes a m-depending constant.) We stress that only the

inequality in Ḣ1 is uniform in t. Moreover, the map (u0, u1) 7→ u just keeps the
regularity, but in f 7→ u we gain a derivative and boundedness in time.

5.2. Strichartz estimates

We again use Strichartz estimates to deal with a stronger nonlinearity in
the semilinear wave equation (5.1), namely, α ∈ (3, 5] if m = 3. Compared to
Section 4.2, in the wave case they contain new features and their proof requires
more tools and is more demanding (though the basic strategy stays the same).
Besides the time and space exponents p, q ∈ [2,∞] we now also need a reg-

ularity parameter γ ∈ R. Such numbers form an admissible triple (for m = 3
and the wave equation) if

1

p
+

1

q
≤ 1

2
,

1

p
+

3

q
=

3

2
− γ, (p, q, γ) ̸= (2,∞, 1). (5.8)

We call a triple sharp if the first relation in (5.8) is an equality. In this case we
obtain 1

p = γ
2 ,

1
q = 1

2 − γ
2 , and γ ∈ [0, 1). In general one has larger γ ∈ [2p ,

3
2 ].

The ‘trivial endpoint’ (∞, 2, 0) is the only triple with γ = 0. In view of (5.10)
it corresponds to the energy estimate. Below we use the non-sharp triples
(pα, 3(α− 1), 1) with α ∈ [3, 5] and pα = 2α−1

α−3 , which gives (4, 12, 1) for α = 5.

For other3 m ≥ 2 (and the wave equation), a triple is called admissible if

2

p
+
m− 1

q
≤ m− 1

2
,

1

p
+
m

q
=
m

2
− γ. (5.9)

Note that m+1
p(m−1) ≤ γ ≤ m

2 . For m > 3, one has the ‘critical endpoint’ p = 2,

q = 2m−1
m−3 and γ = m+1

2(m−1) < 1. Compared to Schrödinger pairs in (4.16), the

dimensionm is replaced bym−1 (which are the numbers of non-zero curvatures
of the ‘light cones’ −τ = |ξ|2, respectively ±τ = |ξ|, in R1+m \ {0}. Moreover
the somewhat different form of the dispersive estimate for the wave equation
(see (III.1.18’) in [34] and also [16]), allows one to use non-sharp triples.

The parameter γ coresponds to a loss in regularity for the map (u0, u1) 7→ u
in (5.10) and to a reduced gain of 1−γ derivatives in the map f 7→ u compared
to the energy estimate from Corollary 5.7. Thus the Strichartz estimates below
trade regularity and time integrability to improve spatial integrability (and to
obtain some decay as |t| → ∞).

Theorem 5.8. Let (p, q, γ) satisfy (5.9), m ≥ 2, u0 ∈ Ḣ1, u1 ∈ L2, and

f ∈ L1(R, L2). Then the Ḣ1-solution u of (5.2) satisfies

∥|∇|−γ∇t,xu∥Lp
RL

q ≤ CSt

(
∥(|∇|u0, u1)∥L2 + ∥f∥L1

RL
2

)
(5.10)

for a constant CSt ≥ 1. If |∇|u0, u1 ∈ Ḣγ and f ∈ L1(R, Ḣγ), we obtain

∥|∇t,xu|∥Lp
RL

q ≤ CSt

(
∥(|∇|u0, u1)∥Ḣγ + ∥f∥L1

RḢ
γ

)
. (5.11)

3For m = 1 the wave equation has no dispersive behavior since, e.g., u(t, x) = 1
2
(u0(x +

t) + u0(x− t)) is a solution of (5.2) with u1 = 0 and f = 0.
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As in the Schrödinger case, such estimates were proven by several authors,
starting with Strichartz in 1977 and culminating in the Keel–Tao paper [16]
which settled the critical endpoint case. In the theorem one can replace the
(dual) admissible triple (1, 2, 0) for f by any other one. Moreover, we prove
this result only for m = 3 for simplification. The general case is shown in
[16] or in Corollary IV.1.2 of the monograph [34]. The estimate (5.10) is used
in the local wellposedness theory below, and it has the advantage to require
less derivatives. However, its direct proof would involve Lq-based homogeneous
Sobolev spaces, which we by-pass via (5.11). We discuss the theorem.

Remark 5.9. a) For q = 2 we obtain p = ∞ and γ = 0 so that (5.10) becomes

the energy inequality (in Ḣ1) from Corollary 5.7. As we see already there, we
need homogeneous spaces in a global estimate for (5.2). We let q > 2 below.

b) For q = ∞ one has to replace L∞ by the Besov space Ḃ0
∞,2. For simplicity

we assume q <∞ below, which entails γ < m
2 fitting to our approach to Ḣs.

c) Since ψk(ξ) := ξk/|ξ| is 0-homogeneous and smooth on the unit sphere,

ψk satisfies the ‘Mikhlin condition’ supξ ̸=0 |ξ||α||∂αψk| < ∞ for each α ∈ Nm0 .

Hence, the ‘Riesz transform’ ∂k |∇|−1 is bounded on Lq by Theorem 6.2.7 in
[11]. It is thus enough to show (5.10) and (5.11) with |∇| instead of ∇x.

d) The equalities in (5.8) and (5.9) are needed for the homogeneous Strichartz
estimate. As in the Schrödinger case, this can be seen by a scaling argument.
Let u solve (5.2) with f = 0. Then also uλ(t, x) = u(λt, λx) is a solution with
non-zero initial values σλu0 and λσλu1, for λ > 0. Let (5.11) hold for (p, q, γ)
and set E = Lq(R, Lq). By the transformation rule and (5.4), we conclude

λ
1− 1

p
−m

q ∥∇t,xu∥E = λ∥(∇t,xu)(λ·, λ·)∥E = ∥∇t,xuλ∥E
≤ CSt∥(|∇|1+γσλu0, λ|∇|γσλu1)∥2 = CStλ

1+γ∥σλ(|∇|1+γu0, |∇|γu1)∥2
= CStλ

1+γ−m
2 ∥(|∇|1+γu0, |∇|γu1)∥2.

Letting λ→ 0 and λ→ ∞, we infer 1
p +

m
q = m

2 − γ.

e) The inequalities in (5.8) and (5.9) are necesssary for Theorem 5.8 because
of Knapp’s example, which we present for m = 3: Let ε ∈ (0, 1], Rε = [1, 2] ×
[−ε, ε]2, and φ = F−1

1Rε (which belongs to Hk for all k ∈ N). The H2-solution
of (5.2) with u0 = φ, u1 = −i|∇|φ and f = 0 is given by

u(t, x) = (2π)−
3
2

∫
Rε

eix·ξe−i|ξ|t dξ = F−1(e−i|ξ|t
1Rε),

cf. (5.12). By means of Plancherel, we first estimate (with |ξ| = |ξ|2)

∥|∇|φ∥22 =
∫
Rε

|ξ|2 dξ ≤ 6λ(Rε) = 24ε2.

To obtain a lower bound for u, we fix κ = 1
4 arccos

1
2 > 0 and define

Sε =
{
(t, x) ∈ R4

∣∣ 2|t| ≤ κε−2, |x1 − t| ≤ κ, |x2|+ |x3| ≤ κε−1
}
.

Let (t, x) ∈ Sε and ξ ∈ Rε. We aim at the inequality

1
2 ≤ Re ei(x·ξ−|ξ|t) = cos

[
(x1 − t)ξ1 + x2ξ2 + x3ξ3 + tξ1(1− |ξ|/ξ1)

]
.
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This lower bound is true since the definitions of Sε and Rε imply

|[. . . ]| ≤ 2κ+
κ

ε
ε+

κ

2ε2
2
(√

1 + (ξ22 + ξ23)ξ
−2
1 − 1

)
≤ 4κ

by a standard estimate for the square root. We infer

∥|∇|1−γu∥E = ∥F−1(|ξ|1−γe−i|ξ|t
1Rε)∥E = c

∥∥∥∣∣∣ ∫
Rε

|ξ|1−γei(x·ξ−|ξ|t) dξ
∣∣∣∥∥∥
Lp
tL

q
x

≥ c
∥∥∥∫

Rε

Re ei(x·ξ−|ξ|t) dξ
∥∥∥
Lp
tL

q
x(Sε)

≥ c
2λ(Rε)∥1Sε∥Lp

RL
q = cε2ε

− 2
q ε

− 2
p .

If (5.10) holds, it implies ∥|∇|1−γu∥E ≤ cε for all ε ∈ (0, 1] so that 1− 2
p−

2
q ≥ 0.

f) The last condition in (5.8) is needed due to an example by Stein, see
Exercise 2.44 in [35]. The inequality in (5.8) already implies that p, q ≥ 2, and
similarly for q in (5.9). For m > 3 the condition p ≥ 2 can be justified by a
more complicated argument, see [16]. ♢

We prove Theorem 5.8 in a series of reduction steps formulated as lemmas,
which partly need additional facts from harmonic analysis. The proof of the
theorem is then given at the end of the section.
The analysis will be reduced to the half-wave group given by G(t) = eit|∇| for

t ∈ R. These are unitary operators on Hs and Ḣs forming a group. The map
t 7→ |ξ|seit|ξ|v̂(ξ) is bounded by |ξ|s|v̂| and C1 in t for fixed ξ ̸= 0 with derivative

i|ξ|s+1eit|ξ|v̂(ξ), which is bounded by |ξ|s+1|v̂|. Dominated convergence and

Plancherel then imply that t 7→ G(t) is strongly continuous in Ḣs and that

t 7→ G(t)v has the derivative i|∇|G(t)v in Ḣs if v ∈ Ḣs+1 ∩ Ḣs. Here one
can omit the dots. Similarly, G(·) is a unitary C0-group on Hs for s ∈ R with
generator i|∇| defiend on Hs−1. (Note that this operator has the resolvent
F−1(λ− i|ξ|)F ∈ B(Hs) for λ /∈ iR.)
The half-wave group is closely tied to the wave equation since

C(t) = 1
2(G(t) +G(−t)), S(t) = 1

2i(G(t)−G(−t)), t ∈ R. (5.12)

Formulas (5.6), Remark 5.9 c) and the transformation t 7→ −t then yield the
first simplification, where we get rid of the extra derivatives in (5.10) and (5.11).

Lemma 5.10. In the setting of Theorem 5.8, estimate (5.10) follows from the
inequalities

∥|∇|−γG(·)φ∥Lp
RL

q ≤ c∥φ∥L2 , ∥|∇|−γG ∗+ f∥Lp
RL

q ≤ c∥f∥L1
RL

2 (5.13)

for φ ∈ L2 and f ∈ L1(R, L2). Moreover, (5.11) is a consequence of

∥G(·)φ∥Lp
RL

q ≤ c∥φ∥Ḣγ , ∥G ∗+ f∥Lp
RL

q ≤ c∥f∥L1
RḢ

γ (5.14)

for φ ∈ Ḣγ and f ∈ L1(R, Ḣγ).

As we have already noted, in our approach it is more convenient to prove
(5.14). We thus show that these inequalities imply (5.13).

Lemma 5.11. In the setting of Lemma 5.10, formula (5.14) implies (5.13).
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Proof. Let (5.14) be valid. Take φ∈L2 and f ∈L1
RL

2. Set ψ= |∇|−γφ∈Ḣγ

and g = |∇|−γf ∈ L1(R, Ḣγ). Since the Fourier multipliers commute and |∇|−γ
belongs to B(L2, Ḣγ), we obtain |∇|−γG(t)φ = G(t)ψ and |∇|−γG ∗+ f(t) =

G ∗+ g(t) in Ḣγ ⊆ S⋆ for t ∈ R. The estimates (5.14) then imply

∥|∇|−γG(·)φ∥Lp
RL

q ≤ c∥ψ∥Ḣγ = c∥φ∥2,

∥|∇|−γG ∗+ f∥Lp
RL

q ≤ c∥g∥L1
RḢ

γ = c∥f∥L1L2 . □

Our main argument only works for sharp triples. Fortunately, the general
case then follows by Sobolev’s inequality.

Lemma 5.12. Let (5.14) hold for sharp admissible triples (p̃, q̃, γ̃). Then it is
true for all admissible tripes (p, q, γ).

Proof. Let (p, q, γ) be non-sharp admissible. The numbers

1

q̃
:=

1

2
− 2

p(m− 1)
>

1

q
, γ̃ :=

m

2
− 1

p
− m

q̃
< γ,

yield a sharp admissible triple (p, q̃, γ̃). (Note that p > 2 if m = 3.) By
admissibility we have s := γ−γ̃ = m

q̃ −
m
q > 0 and s+γ̃ = γ < m

2 . Theorem 1.2.3

in [12] and (5.14) with (p, q̃, γ̃) then imply

∥G ∗+ f∥Lp
RL

q = ∥|∇|−s|∇|sG ∗+ f∥Lp
RL

q ≤ cSo∥|∇|sG ∗+ f∥Lp
RL

q̃

≤ cSoCSt∥|∇|γ̃ |∇|γ−γ̃f∥L1
RL

2 = cSoCSt∥f∥L1
RḢ

γ .

Here we commute the operators as above. The homogeneous estimate is treated
in the same way. □

We next reduce the inhomogeneous to the homogeneous case, by reversing
the order of the duality argument in the proof of Theorem 4.10.

Lemma 5.13. Let (p, q, γ) be sharp admissible. Then the first part of (5.14)
implies the second one.

Proof. Set E = Lp(R, Lq). The first part of (5.14) yields the boundedness
of the orbit map T : Ḣγ → E; φ 7→ G(·)φ, and hence of its adjoint T ⋆ : E⋆ →
Ḣ−γ . Let φ ∈ Hγ ↪→ Ḣγ and g ∈ Cc(R,S) =: F , where F ⊆ Cc(R, Ḣ−γ) by
Remark 5.4. Using this regularity and the continuity of the scalar product, we
compute T ⋆ via

⟨φ, T ⋆g⟩Ḣγ = ⟨Tφ, g⟩E =

∫
R

(
G(t)φ

∣∣ g(t))
L2 dt =

(
φ
∣∣∣ ∫

R
G(−t)g(t) dt

)
L2

=
〈
φ,

∫
R
G(−t)g(t) dt

〉
Ḣγ
.

By density (see Remark 5.4 and the proof of Lemma 4.8), we obtain T ⋆g =∫
RG(−t)g(t) dt on E

⋆ = Lp
′
(R, Lq′).

We next take f ∈ L1(R, H
3
p ) which belongs to L1(R, Ḣγ) as 3

p >
2
p = γ. Then

G ∗+ f(t) is defined in H
3
p and contained in Cb(R, H

3
p ) and thus in Cb(R, Lq)
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due to Sobolev’s theorem and admissibility 3
p − m

2 = γ + 1
p − m

2 = −m
q . Let

g ∈ F . By means of Fubini, as above we compute

Γ := ⟨G ∗+ f, g⟩E =

∫
R
(G ∗+ f(t)|g(t))L2dt =

∫
R

∫ t

−∞
(G(t− τ)f(τ)|g(t))L2dτ dt

=

∫
R

∫ ∞

τ
(f(τ)|G(τ − t)g(t))L2 dtdτ =

∫
R

〈
f(τ)

∣∣∣ ∫ ∞

τ
G(τ)G(−t)g(t) dt

〉
Ḣγ

dτ.

We can now estimate

|Γ| ≤ ∥f∥L1
RḢ

γ sup
τ∈R

∥G(τ)T ∗(1[τ,∞)g)∥Ḣ−γ ≤ ∥f∥L1
RḢ

γ∥T ∗∥ sup
τ∈R

∥1[τ,∞)g∥E⋆

= ∥T ∗∥∥g∥E⋆∥f∥L1
RḢ

γ .

Because of density, this estimate holds for all g ∈ E⋆. Hence, the Duhamel term
G ∗+ f belongs to E = E⋆⋆ with norm bounded by ∥T ∗∥∥f∥L1

RḢ
γ . Moreover,

L1(R, H
3
p ) is dense in L1(R, Ḣγ) as can be see by approximation of simple

functions using Remark 5.4. So f 7→ G∗+f has an extension G : L1(R, Ḣγ) → E

with the same norm bound, where G is given by the Duhamel integral in Ḣγ . □

To show the first inequality in (5.14) we need the Littlewood–Paley decom-

position of Lq and of Ḣγ . (This core result from harmonic analysis holds in
greater generality, see Sections 6.1 and 6.2 of [11] and Section 1.3 of [12].) To
this aim, we work on Rm and fix a radial function χ ∈ S such that χ ≥ 0,
suppχ ⊆ {6

7 ≤ |ξ| ≤ 2}, χ = 1 on {1 ≤ |ξ| ≤ 12
7 }, and χ(ξ) + χ(12ξ) = 1 for

1 ≤ |ξ| ≤ 24
7 , see §1.3.2 in [12]. Set χj = σ2−jχ. One obtains

∑
j∈Z χj(ξ) = 1

for all ξ ̸= 0. We define the Littlewood–Paley operators Pj = F−1χjF . We
stress that χj v̂ has support in the annulus with radii 2j−1 and 2j+1.

Having a bounded symbol, each Pj maps each of the spaces S, S∗, Hs and Ḣs

in itself, and it is bounded by 1 on the latter two. For q ∈ (1,∞) they are also
bounded on Lq uniformly in j ∈ Z by the Mikhlin–Hörmander Theorem 6.2.7
in [11]. (For each α ∈ Nm0 , the functions ξα∂αχj(ξ) = ξα2−j |α|(∂αχ)(2−jξ) are
bounded on Rm uniformly in j ∈ Z by the support of χ.)

We also have Pj = (Pj−1+Pj+Pj+1)Pj =: P̃jPj , where χ̃j := χj−1+χj+χj+1.
In this sense these operators are almost projections. Remark 5.2 implies the
representation Pjv = (2π)−

m
2 2mjψ(2j ·) ∗ v as a convolution, with ψ = F−1χ.

These operators allow us to reduce our analysis to frequency-localized func-
tions. They yield an ‘almost orthogonal’ decomposition of Lq, as expressed by
the Littlewood–Paley Theorem 1.3.8 in [12]: Let q ∈ (1,∞). If v ∈ Lq, we have

∥v∥q ≤ c
∥∥∥(∑

j∈Z
|Pjv|2

) 1
2
∥∥∥
q
=: c∥v∥∗q .

Conversely, if v ∈ S∗ satisfies ∥v∥∗q <∞, then v belongs to Lq and ∥v∥∗q ≤ c∥v∥q.
These results are also true for P̃j with different constants.

For L2 or Ḣs the Littlewood–Paley characterization can be shown in a rather
elementary way by means of Plancherel. We present this argument assuming
s < m

2 . Let v ∈ S0. Then χj v̂ vanishes for all j ≤ jv and an index jv ∈ Z, and
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for j > jv Plancherel yields ∥Pjv∥s = ∥χj v̂∥2 ≤ c(v, s)2−2sj since v̂ ∈ S. Using
the properties of χj and Plancherel, we compute

∥v∥2
Ḣs =

∫ ∣∣∣∑
j∈Z

χj |ξ|s v̂
∣∣∣2dξ ≂s

∫ ∣∣∣∑
j∈Z

2jsχj v̂
∣∣∣2dξ = ∑

j,k∈Z

∫
2js2ksχjχk |v̂|2 dξ

≲s

∑
j∈Z

22js
∫
χj(χj−1 + χj + χj+1)|v̂|2 dξ ≤

∑
j∈Z

22js
∫

|χ̃j v̂|2 dξ

=
∑
j∈Z

22js
∫

|P̃jv|2 dx ≲s

∫ ∑
k∈Z

22ks|Pkv|2 dx.

Here we inserted P̃j = Pj−1 + Pj + Pj+1, and the final L2ℓ2-norm is finite due
the observations above. The converse inequality is shown similarly. We obtain
the equivalence

∥v∥Ḣs ≂
∥∥∥(∑

j∈Z
22js|Pjv|2

) 1
2
∥∥∥
2

(5.15)

for v ∈ S0. By density, it can be extended to v ∈ Ḣs, see Remark 5.4 and also
Theorem 1.3.8 in [12]. One can replace Pk by P̃k modifying the constants.

In the next step, the Littlewood–Paley decomposition leads to the crucial
reduction to frequency localized estimates. The argument also works for other
m ≥ 2 if q <∞, but from now on we let m = 3.

Lemma 5.14. Let m = 3, (p, q, γ) be sharp admissible, and q > 2. Assume
there exists a constant C > 0 with

∥PjG(·)φ∥Lp
RL

q ≤ C2jγ ∥P̃jφ∥L2 (5.16)

for all j ∈ Z and φ ∈ Ḣγ. Then the first part of (5.14) and thus Theorem 5.8
are true.

Proof. We have p, q < ∞ by (5.8) and the assumptions. Let φ ∈ H2

and J be a compact interval. Then G(t)φ belongs to H2 ↪→ Lq by Sobolev’s
embedding. The Littlewood–Paley decomposition yields

∥G(·)φ∥2Lp
JL

q ≲
∥∥∥∥∥∥(∑

j∈Z
|PjG(·)v|2

) 1
2
∥∥∥
q

∥∥∥2
Lp
J

=
∥∥∥∥∥∥∥∥(|PjG(·)v|2)j∥∥ℓ1∥∥∥ q

2

∥∥∥
L

p
2
J

.

For fixed t, we interpret the inner terms as the norm in L
q
2 (R3) of the L

q
2 -valued

sum
∑

j |PjG(t)φ|2. We can take this norm in the sum since q ≥ 2, obtaining

∥G(·)φ∥2Lp
JL

q ≲
∥∥∥∑

j∈Z
∥PjG(·)v∥2q

∥∥∥
L

p
2
J

.

This procedure also works for the t-integral so that

∥G(·)φ∥2Lp
JL

q ≲
∑
j∈Z

∥PjG(·)φ∥2Lp
JL

q

Estimates (5.16) and (5.15) now yield

∥G(·)φ∥2Lp
JL

q ≤ cC2
∑
j∈Z

22jγ∥P̃jφ∥2L2 = cC2
∥∥∥∑

j∈Z
22jγ |P̃jφ|2

∥∥∥2
2
≲ ∥φ∥2

Ḣγ .
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Fatou’s lemma allows us to replace J by R. The first claim then follows from
the density of H2 in Ḣγ . The second one is consequence of Remark 5.9 and
Lemmas 5.10–5.13. □

It is even enough to show (5.16) at unit frequencies j = 0 thanks to a scaling

argument and admissibility. Observe that ∥σav∥r = a−
m
r ∥v∥r by the transfor-

mation rule. The next proof directly extends to m ≥ 2.

Lemma 5.15. Under the assumptions of Lemma 5.14, estimate (5.16) holds
for all j ∈ Z if it is true for j = 0.

Proof. Again it is enough to show the result for φ ∈ H2 and compact J .
Remark 5.2 and the assumption imply

∥PjG(·)φ∥Lp
JL

q = 2
− j

p 2
− 3j

q
∥∥σ2−jF−1

(
σ2−j (χ)F(G(2−j ·)φ)

)
∥Lp

JL
q

= 2
− j

p
− 3j

q 23j
∥∥F−1

(
χσ2jF(G(2−j ·)φ)

)∥∥
Lp
JL

q

= 2
− j

p
− 3j

q
∥∥F−1

(
χF(σ2−jF−1[ei2

−jt|ξ|φ̂])
)∥∥
Lp
JL

q

= 2
− j

p
− 3j

q
∥∥P0F−1(ei2

−jt|2jξ|F(σ2−jφ)
∥∥
Lp
JL

q = 2
− j

p
− 3j

q
∥∥P0G(·)σ2−jφ

∥∥
Lp
JL

q

≤ C2
− j

p
− 3j

q
∥∥F−1(χ̃Fσ2−jφ)

∥∥
2
= C2

− j
p
− 3j

q 23j
∥∥F−1(χ̃σ2j φ̂)

∥∥
2

= C2
− j

p
− 3j

q
∥∥σ2−jF−1(σ2−j (χ̃)φ̂)

∥∥
2
= C2

− j
p
− 3j

q 2
3j
2 ∥P̃jφ∥2 = C2γj∥P̃jφ∥2,

where we used admissibility at the end. □

We prove (5.16) for j = 0 in a similar way as the homogeneous Strichartz
estimate for the Schrödinger equation in Theorem 4.10 a). Again we start with
a dispersive estimate for fixed t. Observe that

P0G(t)φ(x) = (2π)−
3
2

∫
R3

ei(x·ξ+t|ξ|)χ(ξ)φ̂(ξ) dξ

= (2π)−
3
2F−1(eit|ξ|χ) ∗ φ (x) (5.17)

for x ∈ R3. If |t| and |x| differ much, we can rewrite this integral as, e.g.,

P0G(t)φ(x) = (2π)−
3
2

∫
|ξ|≂1

|ξ|
i(x1|ξ|+ tξ1)

∂ξ1e
i(x·ξ+t|ξ|)χ(ξ)φ̂(ξ) dξ.

After integrating by parts, one can estimate |P0G(t)φ(x)| ≤ c(|t| + |x|)−1. By
iteration one obtains strong decay in space and time. Near the ‘light cone’
{t = ±|x|} this reasoning fails. In general one needs deeper tools from harmonic
analysis at this point, but for m = 3 we can argue in a quite elementary way.
We first record an auxiliary result (which requires the cut-off χ), see (III.1.18’)
in [34] for an improved version.

Lemma 5.16. Let m = 3. We then have ∥F−1(eit|ξ|χ)∥L∞ ≤ c|t|−1 for alle
t ̸= 0 and a constant c > 0.

Taking this inequality for granted, we can prove the Strichartz estimate for
the wave equation.
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Proof of Theorem 5.8. Let m = 3 and q > 2. By Lemmas 5.14 and
5.15 we have to show the boundedness of P0G(·) : Ḣγ → E = Lp(R, Lq). Let
φ ∈ L1 ∩ L2. Lemma 5.16 and (5.17) yield the basic (frequency-localized)
dispersive estimate

∥P0G(t)φ∥∞ ≤ c|t|−1∥φ∥1.
Interpolating with ∥P0G(t)∥B(L2) ≤ 1 as in Corollary 4.6 with m = 2, we derive

∥P0G(t)φ∥q ≤ c|t|
2
q
−1∥φ∥q′ .

Since 1 + 1
p = 1− 2

q +
1
p′ by strict admissibility, Lemma 4.9 implies

∥P0G ∗ f∥E ≤ c
∥∥|t| 2q−1 ∗ ∥f(·)∥q′

∥∥
Lp
R
≤ c∥f∥E⋆ (5.18)

for f ∈ E⋆ = Lp
′
(R, Lq′). Here we also need 2

q ∈ (0, 1) which follows from the

assumption and (5.8).
We now conclude the proof of (5.16) for j = 0 by a duality argument as

in Theorem 4.10 a). Set S : E⋆ → L2; Sf =
∫
R P0G(−t)f(t) dt. Let f ∈

Cc(L
2 ∩ Lq′). Using (5.18), we compute

∥Sf∥22 =
∫
R

∫
R

(
G(−t)P0f(t)

∣∣P0G(−τ)f(τ)
)
L2 dτ dt

=

∫
R

(
P0f(t)

∣∣∣ ∫
R
P0G(t− τ)f(τ) dτ

)
L2

dt

= ⟨P0f, P0G ∗ f⟩E⋆ ≤ c∥f∥2E⋆

By density, S and thus the adjoint S∗ : L2 → E are bounded. As in the proof
of Lemma 5.13, we see that S∗φ = P0G(·)φ = P0G(·)P̃0φ. □

It only remains to show the above lemma.4

Proof of Lemma 5.16. By rotation, it is enough to look at x = x3e3 ̸= 0.
Using polar coordinates and the radiality of χ, we calculate

J :=

∫
R3

ei(x3ξ3+t|ξ|)χ(ξ) dξ =

∫ ∞

0

∫ π

−π

∫ π/2

−π/2
eix3r sin θ cos θ dθ dφ r2χ(r)eirt dr.

In the θ-integral we substitute τ = sin θ and obtain∫ π/2

−π/2
eix3r sin θ cos θ dθ =

∫ 1

−1
eix3rτ dτ =

2 sin(rx3)

rx3
.

Integration by parts then yields

J = 4π

∫ 2

6/7
r2χ(r) sinc(rx3) (it)

−1∂re
irt dr

=
4πi

t

∫ 2

6/7
eirt

[(
2rχ(r) + r2χ′(r)

)
sinc(rx3) + rχ(r)

(
cos(rx3)− sinc(rx3)

)]
dr.

The result follows from the boundedness of the integrand. □

4The next proof was omitted in the lectures.
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5.3. Local wellposedness and global existence

We now study the semilinear wave equation

∂2t u = ∆u− µ|u|α−1u, u(0) = u0, ∂tu(0) = u1, x ∈ R3, t ∈ J, (5.19)

for µ ∈ {−1, 1}, α ∈ [3, 5], an interval J of positive length containing 0, and
initial maps u0, u1 : R3 → C. We focus on the ‘physical’ case m = 3 for con-
ciseness, and use the Strichartz estimates from Theorem 5.8 for the admissible
triple (pα, 3(α− 1), 1) with pα = 2α−1

α−3 , besides the energy triple (∞, 2, 0).

We introduce H1- and Ḣ1-solutions u of (5.19) on J as in Definition 5.5,

but require in addition u ∈ Eloc(J); i.e., u ∈ E(J0) := Lpα(J0, L
3(α−1)) for

every compact J0 ⊆ J . Below we show that then ϕ(u) = −µ|u|α−1u belongs to
L1
loc(J, L

2) as needed for Proposition 5.6.

Let X = H1×L2, Ẋ = Ḣ1×L2, G(J) = C1(J, L2)∩C(J,H1), Ġ(J) =
{
v ∈

C(J, Ḣ1)
∣∣∃ ∂tu ∈ C(J, L2)

}
, Ḟ(J) = Ġ(J) ∩ E(J), Ḟloc(J) = Ġ(J) ∩ Eloc(J),

F(J) = G(J) ∩E(J), and Floc(J) = G(J) ∩Eloc(J). In the definition of Ġ the

time derivative is at first understood in Z := L2+L6 using that Ḣ1 ↪→ L6 ↪→ Z
and L2 ↪→ Z, see Section 2.2 E) in [30] and Remark 5.4. These embeddings can

be also used to show that Ġ(J) is complete for its natural norm if J is compact.
We write w = (u, ∂tu), w0 = (u0, u1), and E(b) if J = [−b, b] etc.
We first state the local wellposedness result in the energy-subcritical case

α < 5. The Ẋ-norm will give the blow-up condition so that it is natural to look
for Ḣ1-solutions. The Ḣs-norms are also needed for the long-time behavior,
cf. Theorem 5.18 and Remark 5.19. The proofs follow the pattern of those
in Sections 4.3 and 4.4, but the function spaces are partly different since now
the energy estimate gains a derivative, which is lost in the Strichartz estimate
with γ = 1. The proof of continuous dependence is easier since the fixed-point
space is a closed ball in Ḟ(b) endowed with the metric of Ḟ(b) itself. We only

show conditional uniqueness of Ḣ1-solutions belonging also to E(J). In [25]
uniqueness is shown without such extra conditions for α ∈ [3, 5) and also in
critical cases in higher dimensions. We will omit or sketch parts of the proofs
below which are straightforward modifications of previous arguments.5

Theorem 5.17. Let m = 3, α ∈ [3, 5), w0 = (u0, u1) ∈ Ẋ with ∥u0∥Ḣ1 +
∥u1∥2 ≤ ρ, and (pα, 3(α− 1), 1) be admissible. The following assertions hold.

a) There is a unique maximal Ḣ1-solution u = φ( · , w0) in Ḟloc(J(w0) of
(5.19) on J(w0) = (t−(w0), t

+(w0)), where [−b0(ρ), b0(ρ)] ⊆ J(w0), see (5.23).

b) If t+(w0) <∞, then ∥w(t)∥Ẋ → ∞ as t→ t+(w0); analogously for t−(w0).

c) Let J ⊆ J(w0) be compact. Then there is a radius δ = δ(w0, J) > 0 such
that for all w̃0 ∈ BẊ(w0, δ) we have J ⊆ J(w̃0) and the map BẊ(w0, δ) →
Ḟ(J); w̃0 → φ( · , w̃0), is Lipschitz continuous.

d) Let u0 and u1 be real-valued. Then the same is true for u.

e) Let u0∈H1. Then u = φ( · , w0) is an H
1-solution. Claim c) is true in X.

5In the lectures further parts of the proofs in this section were omitted.
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Proof. 1) Let b > 0, set r = CStρ + 1, and equip Ḟ(b) with the norm
9v9b = max{∥v∥L∞

b Ḣ1 , ∥∂tv∥L∞
b L2 , ∥v∥E(b)}. The fixed-point space is Σ(b, r) =

BḞ(b)(0, r) with the metric 9v − ṽ9b. Take v, ṽ ∈ Σ(b, r) and t ∈ [−b, b]. We

use the fixed-point operator

Φ(v)(t) = [Φw0(v)](t) = C(t)u0 + S(t)|∇|−1u1 +

∫ t

0
S(t− τ)|∇|−1ϕ(v(τ)) dτ.

(5.20)
As in (5.6), it follows

|∇|Φ(v)(t) = C(t)|∇|u0 + S(t)u1 +

∫ t

0
S(t− τ)ϕ(v(τ)) dτ,

∂tΦ(v)(t) = −S(t)|∇|u0 + C(t)u1 +

∫ t

0
C(t− τ)ϕ(v(τ)) dτ.

The Strichartz estimate in Theorem 5.8 bounds ∥Φ(v)∥Ġ(b) via the (energy)

triple (p, q, γ) = (∞, 2, 0) and ∥Φ(v)∥E(b) = ∥|∇|−1|∇|Φ(v)∥E(b) via (pα, 3(α −
1), 1). Using also Hölder’s inequality with 1

2 = 1
3 +

1
6 and Sobolev’s embedding

Ḣ1 ↪→ L6, we derive

9Φ(v)9b ≤ CStρ+ CSt

∫ b

−b
∥|v(τ)|α−1v(τ)∥2 dτ

≤ CStρ+ CSt

∫ b

−b
∥v(τ)∥α−1

3(α−1) ∥v(τ)∥6 dτ

≤ CStρ+ rCStCSo

∫ b

−b
∥v(τ)∥α−1

3(α−1) dτ.

We then employ Hölder in time with 1
α−1 = 1

pα
+ 5−α

2(α−1) , obtaining

9Φ(v)9b≤ CStρ+rCStCSo(2b)
5−α
2 ∥v∥α−1

E(b) ≤ CStρ+r
αCStCSo(2b)

5−α
2 ≤ r (5.21)

for 0 < b ≤ b1(ρ) := 1
2

(
CStCSor

α
) 2

α−5 . (This argument fails if α ≥ 5.) In

particular, ϕ(v) belongs to L1
bL

2 as noted above (also for α = 5).

We again use ϕ(v)− ϕ(ṽ) =
∫ 1
0 ϕ

′(σv+ (1− σ)ṽ
)
(v− ṽ) dσ. In a similar way

as in (5.21) we then estimate

9Φ(v)− Φ(ṽ)9b ≤ CSt

∫ b

−b
∥ϕ(v(τ))− ϕ(ṽ(τ))∥2 dτ

≤ αCSt

∫ b

−b

∥∥(|v(τ)|+ |ṽ(τ)|)α−1(v(τ)− ṽ(τ))
∥∥
2
dτ

≤ αCStCSo

∫ b

−b
∥|v(τ)|+ |ṽ(τ)|∥α−1

3(α−1)∥v(τ)− ṽ(τ)∥Ḣ1 dτ

≤ αCStCSo(2b)
5−α
2
(
∥v∥E(b) + ∥ṽ∥E(b)

)α−1 ∥v − ṽ∥L∞
b Ḣ1

≤ α2
α−3
2 CStCSor

α−1b
5−α
2 9v − ṽ9b ≤

1
29v − ṽ9b (5.22)
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if 0 < b ≤ b0(ρ) with

b0 = b0(ρ) := min
{
b1(ρ),

(
α21+

α−3
2 CStCSor

α−1
) 2

α−5
}
. (5.23)

We thus obtain a unique fixed point u = Φ(u) in Σ(b, r), which is a Ḣ1-solution
of (5.19) by Proposition 5.6.

2) For the Lipschitz continuity, we take w̃0 ∈ Ẋ with ∥w̃0∥Ẋ ≤ ρ. Step 1)

provides a Ḣ1-solution ũ ∈ Σ(b0, r) of (5.19) with initial value w̃0 given by
ũ = Φw̃0(ũ). Using (5.22), (5.20) and Theorem 5.8, we estimate

9u− ũ9b0 ≤ 9Φw0(u)− Φw0(ũ)9b0 + 9Φw0(ũ)− Φw̃0(ũ)9b0
≤ 1

29u− ũ9b0 + 9C(·)(w0 − w̃0) + S(·)|∇|−1(w0 − w̃0)9b0 ,
9u− ũ9b0 ≤ 2CSt∥w0 − w̃0∥Ẋ . (5.24)

3) Based on step 1), uniqueness in Ḟ(J) can be shown following the reasoning
in Lemma 1.8. A maximal solution u = φ( · , w0) on J(w0) is constructed as be-

fore Theorem 1.11, but now using solutions in Ḟ([0, b]) and Ḟ([−b, 0]), so that u

belongs to Ḟloc(J(w0)). Claims b) and c) are shown as in Theorem 1.11 starting
from step 1) and (5.24), respectively. (See also the proof of Theorem 5.18 c).)
Let u0 and u1 be real-valued. Fix a compact interval J ⊆ J(w0) with 0 ∈ J◦

and put R = 9u9J . Set v = Imu. It follows v(0) = 0 = ∂tv(0) and ∂2t v =
∆v − µ|u|α−1v. Using Strichartz’ Theorem 5.8 as in (5.21), we estimate

9v9b ≤ CSt

∫ b

−b
∥|u(τ)|α−1v(τ)∥2 dτ ≤ CStCSoR

α−1(2b)
5−α
2 ∥v∥L∞

b Ḣ1

for b > 0 with [−b, b] ⊆ J . For small b, we infer 9v9b = 0 and thus v = 0 on
[−b, b]. As v(±b) = 0 = ∂tv(±b), an iteration yields v = 0.

Finally, let u0 ∈ H1. Since u(t) = u0+
∫ t
0 ∂tu(τ) dτ , the solution then belongs

to C(J(w0), H
1). This equation also implies

∥u− ũ∥L∞
J L2 ≤ ∥u0 − ũ0∥2 + λ(J)∥∂tu− ∂tũ∥L∞

J L2 ≤ (1 + λ(J)L)∥w0 − w̃0∥X ,

where L is the Lipschitz constant from part c). □

Various authors contributed to the above and the next theorems, references
can be found in [34] and [35]. In Theorem 5.18 we treat the critical case α = 5.
As in Theorem 4.17, the smallness condition for the contraction argument is
incorporated in the fixed-point space via a resctriction on a certain Bochner
norm, and not by choosing small time intervals. Again this approach leads to
more complicated conditions on blowup and the minimal existence time. In
contrast to Theorem 4.17 we directly use a Strichartz norm, and not a norm
controlled via the Strichartz and Sobolev inequalities. One has ill-posedness
results if α > 5 and µ = −1, cf. Exercise 3.64 in [35]. In part f) we show global
existence for small data by the basic fixed-point argument on R (and not just
on a small interval). This convenient argument requires a global estimate for
the linear part as our Strichartz inequality.

Theorem 5.18. Let m = 3, α = 5, and w0 = (u0, u1) ∈ Ẋ with ∥u0∥Ḣ1 +
∥u1∥2 ≤ ρ. Then the following assertions are true.
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a) There is a unique maximal Ḣ1-solution u = φ( · , w0) in Ḟloc(J(w0))
of (5.19) on J(w0) = (t−(w0), t

+(w0)). There is a number b0(w0) > 0 with
[−b0(w0), b0(w0)] ⊆ J(w0), see (5.25) and (5.29).

b) If t+(w0) <∞, then ∥u∥E([0,t+(w0))) = ∞; and analogously for t−(w0).

c) Let J ⊆ J(w0) be compact. Then there is a radius δ = δ(w0, J) > 0 such
that for all w̃0 ∈ BẊ(w0, δ) we have J ⊆ J(w̃0) and the map BẊ(w0, δ) →
Ḟ(J); w̃0 → φ( · , w̃0), is Lipschitz continuous.

d) Let u0 and u1 be real-valued. Then the same is true for u.

e) Let u0∈H1. Then u = φ( · , w0) is an H
1-solution. Claim c) is true in X.

f) There is a radius ρ > 0 such that J(w0) = R if ∥u0∥Ḣ1 + ∥u1∥2 ≤ ρ.

Proof. 1) We use the admissible triple (4, 12, 1) and write E(b) =
L4([−b, b], L12). To obtain smallness in e.g. (5.21), we will require small
Strichartz norms in the fixed-point space. Set r = CStρ+ 1. Take ε ∈ (0, r] to
be fixed below. Set u0 = C(·)u0 + S(·)|∇|−1u1 which solves (5.2) with f = 0.
Because of Theorem 5.8 with γ = 1, the map u0 belongs to E(R) with norm
bounded by CStρ. Hence, there is a time b′ = b0(w0, ε) ∈ (0,∞] with

∥u0∥E(b′) ≤ ε
2 . (5.25)

The fixed-point space

Σc(b
′, r, ε) =

{
v ∈ Σ(b′, r)

∣∣ ∥v∥E(b′) ≤ ε
}

is endowed with the metric of Ḟ(b′). Let v, ṽ ∈ Σc(b
′, r, ε). As in (5.21) and

(5.22), using also (5.25) we obtain

9Φ(v)9b′ ≤ CStρ+ CSt

∫ b′

−b′
∥|v|4v∥2 dτ ≤ CStρ+ rCStCSo

∫ b′

−b′
∥v∥412 dτ

≤ CStρ+ rCStCSoε
4 ≤ CStρ+ 1, (5.26)

∥Φ(v)∥E(b′) ≤ ∥u0∥E(b′)+ CSt

∫ b′

−b′
∥|v|4v∥2 dτ ≤ ε

2
+ rCStCSoε

4 ≤ ε, (5.27)

9Φ(v)− Φ(ṽ)9b′ ≤ CSt∥|v|4v − |ṽ|4ṽ∥L1
b′L

2 ≤ 5CSt

∫ b′

−b′
∥|v|+ |ṽ|∥412 ∥v − ṽ∥6 dτ

≤ 5CStCSo

(
∥v∥E(b′) + ∥ṽ∥E(b′)

)4 ∥v − ṽ∥L∞
b′ Ḣ

1

≤ 80CStCSoε
49v − ṽ9b′ ≤

1
29v − ṽ9b′ , (5.28)

where we fix ε = ε′ = ε0(ρ) given by

ε0(ρ) = min
{(
rCStCSo

)− 1
4 ,
(
2rCStCSo

)− 1
3 ,
(
160CStCSo

)− 1
4
}
. (5.29)

Hence, Φ is a strict contraction on Σc(b
′, r, ε′) and there thus exists a unique

fixed point u = Φ(u) in Σc(b
′, r, ε′). It is a Ḣ1 solution of (5.19) on [−b′, b′] by

Proposition 5.6.

2) For claim f), take ρ ∈ (0, 1] and set r = CSt + 1 as well as ε = ε0(1). Let
∥w0∥Ẋ ≤ ρ. From Theorem 5.8 we obtain

∥u0∥E(R) = ∥|∇|−1|∇|u0∥E(R) ≤ CStρ ≤ ε
2



5.3. Local wellposedness and global existence 111

fixing ρ = min{1, ε/(2CSt)}. Step 1) then yields a solution u of (5.19) on R.
To show uniqueness, let u ∈ Ḟloc(J) and ũ ∈ Ḟloc(J̃) solve (5.19) on J and J̃ ,

respectively, where J∗ := J∩J̃ contains more points than 0. Suppose that u ̸= ũ
on J∗. Then there is a number τ ∈ J∗, say τ ≥ 0 such that u(τ) = ũ(τ) =: u∗0
and ∂tu(τ) = ∂tũ(τ) =: u

∗
1, as well as times τ < tn in J∗ with tn → τ as n→ ∞

and u(tn) ̸= ũ(tn) for all n. The numbers ρ∗, r∗, b∗0 and ε
∗
0 are defined for u∗0 and

u∗1 as in step 1). There exists a time β ∈ (0, b∗] with Jβ := [τ, τ + β] ⊆ J∗ and
9u9Jβ ,9ũ9Jβ ≤ ε∗. Hence, u↾|Jβ and ũ↾|Jβ have to coincide with the unique

solution produced in step 1) which contradicts u(tn) ̸= ũ(tn) for large n.
One can now define a unique maximal solution = φ( · , w0) as asserted in

statement a), proceeding as in Theorem 5.17.

Let u0 and u1 be real. Take a compact subinterval J ⊆ J(w0) with 0 ∈ J◦.

Set v = Imu and fix κ = (2CStCSo)
− 1

4 . We can decompose J into intervals
J1, · · · , JN with ∥u∥E(Jk) ≤ κ for all k, where 0 ∈ J1. Combing step 3) of the
previous proof and (5.26), we estimate

9v9J1 ≤ CSt

∫
J1

∥|u(τ)|4v(τ)∥2 dτ ≤ CStCSoκ
4∥v∥L∞

J1
Ḣ1 ≤ 1

2
9v9J1 ,

which yields v = 0 on J1. This procedure can be iterated, implying claim d).

3) To show part b), we suppose t+ = t+(w0) <∞ and u ∈ L4(J+, L12) with
J+ = [0, t+). We use κ > 0 from the previous step and decompose J+ into
intervals Jk = [tk, tk+1] with 0 = t0 < t1 < · · · < tK = maxJ and ∥u∥E(Jk) ≤ κ
for all k. Using w = (u, ∂tu), we argue as above to deduce

9u9Jk ≤ CSt∥w(tk)∥Ẋ + CStCSoκ
4∥u∥L∞

Jk
Ḣ1 ≤ CSt∥w(tk)∥Ẋ + 1

29v9Jk

and hence 9u9Jk ≤ 2CSt∥w(tk)∥Ẋ . This inequality can iterated to

9u9Jk ≤ 2CSt9u9Jk−1
≤ (2CSt)

2∥w(tk−1)∥Ẋ ≤ · · · ≤ (2CSt)
K∥w0∥Ẋ =: ρ̂

for all k ∈ {0, · · · ,K − 1}, so that ∥w(t)∥Ẋ ≤ ρ̂ for t ∈ J . Define r̂ = CStρ̂+ 1
and ε̂ = ε0(ρ̂) as in step 1). Set Jτ = [τ, t+) ⊆ R≥0. As in (5.26) we estimate

∥u−u0∥E(Jτ ) = ∥|∇|−1S ∗+ ϕ(u)∥E(Jτ ) ≤ CSt∥|u|4u∥L1
Jτ
L2 ≤ CStCSoρ̂∥u∥4L4

Jτ
L12

which tends to 0 as τ → t+. We can thus fix τ ∈ [0, t+) with ∥u0∥E(Jτ ) ≤ ε̂/4.

Since u0 belongs to E(R), there is a time β > 0 such that ∥u0∥E(Jβ) ≤ ε̂/2

for Jβ = [τ, t+ + β]. Step 1 now yields a solution v ∈ Ḟ(Jβ) of (5.19) with
v(τ) = u(τ), which contradicts the assumption. Negative times are treated
analoguously, so that statement b) is shown.

4) For c), fix a compact interval J ⊂ J(w0) with 0 = min J . Take w̃0 =
(ũ0, ũ1) ∈ BẊ(w0, δ

′) for some δ′ ∈ (0, 1]. We then have ∥w̃0∥Ẋ ≤ ρ+1 =: ρ̃. Set

r̃ = CStρ̃+1, ε̃ = ε0(ρ̃), see (5.29), ũ = φ( · , w̃0), T (φ,ψ) = C(·)φ+S(·)|∇|−1ψ

for (φ,ψ) ∈ Ẋ, and ũ0 = T w̃0. We need the smallness condition (5.25) not only
at time 0, but also along the given solution w to iterate the estimates. To this
aim, we note that maps Tb(φ,ψ) = 1[0,b]T (φ,ψ) tend to 0 in E(R) as b → 0

for each (φ,ψ) ∈ Ẋ so that ∥T w(t)∥E(0,b) converges to 0 for each t ∈ J by the
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compactness of the orbit {w(t) | t ∈ J} in Ẋ. We can thus fix a time step b̃ > 0
such that

∥T w(t)∥E(b̃) ≤
ε̃
4 , j ∈ {0, . . . ,M − 1}. (5.30)

form all t ∈ J . There is a number M ∈ N with (M − 1)b̃ < max J ≤ Mb̃ and

we set t̃j = jb̃ for j ∈ {0, . . . ,M − 1}, t̃M = max J , and J̃j = [t̃j , t̃j+1].

We start with J̃0. Using again Strichartz’ Theorem 5.8 with γ = 1, we deduce

∥ũ0∥E(J̃0)
≤ ∥ũ0 − u0∥E(J̃0)

+ ∥u0∥E(J̃0)
≤ CSt∥w0 − w̃0∥Ẋ + ε̃

4 ≤ ε̃
2

if ∥w0 − w̃0∥Ẋ ≤ δ0 := min{1, ε̃/(4CSt)}. So step 1) yields a solution in

Σc(J̃0, r̃, ε̃) of (5.19) with w̃(0) = w̃0 on J̃0 given as a fixed point. By unique-

ness, it follows ũ = Φw̃0(ũ) on J̃0.
Let ∥w0−w̃0∥Ẋ ≤ (2CSt)

−Mδ0 =: δ. By means of an obvious variant of (5.28)
and Theorem 5.8, we estimate

9u− ũ9J̃0 ≤ 9Φw0(u)− Φw0(ũ)9J̃0 + 9Φw0(ũ)− Φw̃0(ũ)9J̃0
≤ 1

29u− ũ9J̃0 + 9u0 − ũ09J̃0 ≤ 1
29u− ũ9J̃0 + CSt∥w0 − w̃0∥Ẋ ,

9u− ũ9J̃0 ≤ 2CSt∥w0 − w̃0∥Ẋ ≤ (2CSt)
1−Mδ0.

As in Theorem 4.17, based on (5.30) the above procedure can now be iterated
M − 1 times, obtaining J ⊆ J(w̃0) and 9u − ũ9J ≤ M(2CSt)

M ∥w0 − w̃0∥Ẋ .
Negative times can be treated in the same way. Here one can replace w0 by v0 ∈
BẊ(w0, δ) to obtain c), slightly modifying some constants (cf. Theorem 4.17).
The remaining claim e) can now be shown as in the previous theorem. □

Remark 5.19. Let α ∈ [3, 5) and m = 3. Then there is a number ρα > 0

such that J(w0) = R whenever w0 ∈ Ẋ satisfies ∥u0∥Ḣθ + ∥u1∥Ḣθ−1 ≤ ρα with

θ = θα := 3
2 − 2

α−1 ∈ [12 , 1). See Theorem IV.3.1 in [34].

Using the preservation of the energy, we finally show global existence in the
defocusing case if α ∈ [3, 5). The arguments are similar to those in Section 4.4,
but a bit simpler. We need the continuity of the energy, and thus work in
H1 exploiting H1 ↪→ Lα+1. (One can reduce the extra assumption u0 ∈ L2,
see Theorem 8.41 in [4].) One has blowup in the focusing case µ = −1, see
Exercise 3.9 in [35]. In the critical case α = 5, global existence for µ = 1 was
shown by Shatah–Struwe and Kapitanski in 1994, see Section 5.1 in [35].

Theorem 5.20. Let m = 3, α ∈ [3, 5), w0 = (u0, u1) ∈ X, and w = φ( · , w0)
be the maximal H1-solution of (5.19) from Theorem 5.17. We then have
Ew(w(t)) = Ew(w0) for all t ∈ J(w0). If µ = 1, we obtain J(w0) = R.

Proof. 1) For H2-solutions u one can show Ew(w(t)) = Ew(w0) as in The-
orem 1.20. Let u0 ∈ H2 and u1 ∈ H1 with ∥u0∥2,2 + ∥u1∥1,2 ≤ ρ. We have to
show that the H1-solution u from Theorem 5.17 is an H2-solution on J(w0). To
this aim, as in Proposition 4.18 we set uh(t) = u(t, ·+ h) and vh = (uh− u)/|h|
for h ∈ R3 \ {0}. Fix a compact interval J ⊆ J(w0), set r = 9u9J and
Jb = J ∩ [−b, b] for b > 0. Because of (5.19), the difference quotient satisfies

∂2t vh = ∆vh + |h|−1(ϕ(uh)− ϕ(u)) = ∆vh +

∫ 1

0
ϕ′(u+ τ(uh − u))vh dτ.
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Using Theorem 5.8 and (4.36), we then estimate as in (5.21)

∥vh∥Ġ(Jb)
≤ CSt

(
∥vh(0)∥1,2 + ∥∂tvh(0)∥2 + α

∥∥(|uh|+ |u|)α−1vh
∥∥
L1
Jb
L2

)
≤ CSt

(
∥u0∥2,2 + ∥u1∥1,2 + αCSo(2b)

5−α
2 (2∥u∥E(Jb))

α−1∥vh∥L∞
Jb
Ḣ1

)
≤ CStρ+ αCStCSo(2b)

5−α
2 (2r)α−1∥vh∥Ġ(Jb)

.

Choosing a small b = b(r), we can absorb the last term obtaining

∥vh∥Ġ(Jb)
≤ 2CStρ.

In finitely many iterations we infer that vh is uniformly bounded in Ġ(J). The
characterization (4.36) then yields the boundedness of w = (u, ∂tu) : J → H2×
H1. As in Proposition 4.18 we see that w belongs to L∞(J,H2×H1), and hence
∇u to L∞(J, L6) by Sobolev’s embedding. Note that |∂kϕ(u)| = α|u|α−1|∂ku|.
Since u ∈ E(J) by Theorem 5.17, Hölder’s inequality with 1

2 = 1
3 + 1

6 implies

that ∂kϕ(u) is an element of L1(J, L2). Moreover, we have

∂jku(t) = C(t)∂jku0 + S(t)∂j |∇|−1∂ku1 +

∫ t

0
S(t− τ)∂j |∇|−1∂kϕ(u(τ)) dτ.

for t ∈ J so that u : J → H2 is continuous as u0 ∈ H2 and u1 ∈ H1. Sim-
ilarly one obtains the continuity of ∂tu : J → H1. Equation (5.19) yields
u ∈ C2(J, L2) since ϕ(u) ∈ C(J, L2) as H2 ↪→ L∞ by Sobolev’s embedding.

2) Let w0 = (u0, u1) ∈ X. There are functions w0,n = (u0,n, u1,n) ∈ H2 ×H1

converging to w0 in X as n → ∞. Let J ⊆ J(w0) be compact. Theorem 5.17
shows that J ⊆ J(w0,n) for all large n and that the solutions wn(t) tend to w(t)
in X as n → ∞ for t ∈ J . By step 1), wn satisfies Ew(wn(t)) = Ew(w0,n) for
t ∈ J which then also holds for w due to the continuity of Ew : X → R. Hence,
the first asertion is shown.
Let µ = 1. Then the energy preservation yields ∥w(t)∥Ẋ ≤ 2Ew(w(t)) =

2Ew(w0) for t ∈ J(w0) so that J(w0) = R by the blow-up condition in Theo-
rem 5.17. □



CHAPTER 6

Quasilinear parabolic problems

So1 far we have investigated semilinear problems in which a generator was
perturbed by a nonlinear term of ‘lower order’. In a quasilinear problem the lin-
ear operator itself depends nonlinearly on the solution though this dependence
is again of ‘lower order’.
In this short chapter we prove the local wellposedness of a basic class of such

systems in the parabolic case. We study the equation

u′(t) = A(u(t))u(t) + F (u(t)), t ∈ J, u(0) = u0. (6.1)

Here A(v) with fixed domain X1 is a sectorial operator in X of angle φ >
π/2 depending on vectors v ∈ Xγ := (X,X1)1− 1

p
,p for a fixed p ∈ (1,∞), cf.

Section 2.1. We assume that the mappings A : Xγ → B(X1, X) and F : Xγ →
X are Lipschitz on balls, that u0 ∈ Xγ , and that J ⊆ R is a non-empty open
interval with 0 = inf J . We start with a prototypical example.

Example 6.1. Let G ⊆ Rm be an open and bounded set with a C2-boundary
and let a ∈ C2(R,Rm×m) satisfy a = a⊤ ≥ ηI for a number η > 0. Fixing an
exponent p ∈ (m + 2,∞), we set X = Lp(G) and X1 = W 2,p(G) ∩W 1,p(G).

As explained in Example 2.12, one has the embedding Xγ ↪→W
2− 2

p
,p
(G). The

fractional Sobolev embedding theorem then implies that Xγ ↪→ C1(G) since
2 − 2

p − m
p > 0, cf. Theorem 4.6.1 in [37]. We define the operator A(v) by

A(v)u = div(a(v)∇u) for u ∈ X1 and v ∈ Xγ , and let F (v) = f(v,∇v) be a
reaction-convection term as in Example 3.7.
In this case the quasilinear problem (6.1) becomes the reaction-diffusion equa-

tion with state-depending anisotropic diffusion coefficients

∂tu(t, x) =
m∑

j,k=1

∂j
(
ajk(u(t, x)∂ku(t, x)

)
+ f(u(t, x),∇u(t, x)), t > 0, x ∈ G,

u(t, x) = 0, t > 0, x ∈ ∂G, (6.2)

u(0, x) = u0(x), x ∈ G.

We come back to this equation in Example 6.8. One can also treat analogous
systems. Neumann-type boundary conditions are not covered by our setting
since then the domain of A(v) contains the condition tr(ν · a(v)∇u) = 0 and
thus depends on v.2 See also the comments after Theorem 6.7. ♢

1This chapter was not part of the lectures.
2The domain becomes v-independent, however, if one replaces X1 by W 1,q(G) and passes

to a weak formulation.
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We want to solve (6.1) by a fixed-point procedure again. For a solution
u ∈ C(J,X1) we write

u′(t) = A(u0)u(t) + (A(u(t))−A(u0))u(t) + F (u(t)). (6.3)

One now replaces u in the last two summands by a given function v in our fixed-
point space, say v ∈ C(J,X1). Using the analytic C0-semigroup T (·) generated
by A(u0), Duhamel’s formula then yields

u(t) = T (t)u0 +

∫ t

0
T (t− s)

(
((A(v(s))−A(u0))v(s) + F (v(s))

)
ds =: Φ(v).

In a fixed-point procedure, the image Φ(v) must also belong to C(J,X1). How-
ever, the inhomogeneity f = (A(v) − A(u0))v + F (v) is just an element of
C(J,X) so that

T ∗+ f(t) =
∫ t

0
T (t− s)f(s) ds

is not contained in X1, in general, since T (t−s) has norm c/(t−s) in B(X,X1).
See Example 4.1.7 in [20].
To overcome this problem, one can pass to classes of more regular functions,

e.g., v being Hölder continuous in time or taking values in interpolation spaces
smaller than X1. This is done in [1], [20] or [40] in various ways.

Here we follow a different route by reducing the regularity level a bit. For
this we have to introduce a new concept and discuss its basic properties. Let
A be a closed, densely defined operator in X, where X1 = [D(A)]. We say that
A has maximal regularity of type Lp on J if for all f ∈ Lp(J,X) =: E0(J) there
exists a unique function u ∈W 1,p(J,X) ∩ Lp(J,X1) =: E1(J) solving

3

u′(t) = Au(t) + f(t), a.e. t ∈ J, u(0) = 0. (6.4)

We then write A ∈ MRp(J).
Let S : E0(J) → E1(J); f 7→ u, be the solution operator of (6.4). Let fn → 0

in E0(J) and un = Sfn → u in E1(J) as n→ ∞. Then u solves (6.4) with f = 0
and it thus must be equal to 0 by uniqueness. The closed graph theorem now
shows that ∥u∥E1(J) ≤ Cp∥f∥E0(J) for a constant Cp > 0 and all f ∈ E0(J).
We next collect other basic facts about these spaces and this concept; many

of them are employed in the proof of the local wellposedness result below.

Remark 6.2. We use the notation and definions introduced above.
a) We have the embeddings E1(J) ↪→ C(J,Xγ) and E1(R+) ↪→ C0(R≥0, Xγ).

See Theorem III.4.10.2 in [2] or the exercises. The initial condition of (6.4) is
understood in this sense. Moreover, the constant c(J) of the embeddings can be
bounded uniformly for intervals J whose length b is larger than a fixed number
b0 > 0. As b→ 0 the constant c(b) will blow up e.g. for functions t 7→ v(t) = v0
with v0 ∈ X1 \ {0}, which is a severe obstacle in a fixed point argument. On a
subspace of E1(J) this does not happen:
Let b > 0 and v ∈ E1(b) with v(0) = 0. We reflect v at b and extend the

resulting function by 0 for t > 2b. This yields an extension ṽ ∈ E1(R+) with

3We write Ek(b) if J = (0, b).
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norm less or equal 2∥v∥E1(b). We then obtain the uniform bound

∥v∥C([0,b],Xγ) = ∥ṽ∥C0(R≥0,Xγ) ≤ c(R+)∥ṽ∥E1(R+) ≤ 2c(R+)∥v∥E1(b).

b) Let A ∈ MRp(J) for an interval J and some p ∈ (1,∞). Then there
is a number ω ≥ 0 such that A is sectorial of angle φ > π/2. In the case
J = R+ one can choose ω = 0, and A is invertible. See Theorem 17.2.25 in
[15] or Proposition 3.5.2 in [28]. The proof implies that ω and the sectoriality
constants (K,ϕ) of A are bounded by constants only depending on J , p, and Cp
above. In turn, Lemma 2.22 of [32] gives an exponential bound of the semigroup
in terms of ω, K and ϕ.

The solution of (6.4) is thus given by u = T ∗+f for the analytic C0-semigroup
T (·) generated by A due to an Lp-variant of Proposition 2.6 of [32]. If one
includes an initial value u0 ̸= 0 in (6.4), we have the solution u = T (·)u0+T ∗+f .
In the next item we treat the orbit T (·)u0.

c) Let A generate an analytic C0-semigroup T (·) and p ∈ (1,∞). By Theo-
rem 2.14, T (·) induces an analytic C0-semigroup on Xγ by restriction. Propo-
sition 2.8 says that a vector u0 belongs to Xγ if and only if the orbit T (·)u0
is an element of E1(1). In this case one has ∥T (·)u0∥E1(1) ≤ c∥u0∥Xγ for some
constant c > 0. It follows that ∥T (·)u0∥E1(b) ≤ c∥u0∥Xγ for b ∈ (0, 1). We
further estimate

∥T (·)u0∥E1(1,2) = ∥T (·)T (1)u0∥E1(1) ≤ c∥T (1)∥B(Xγ)∥u0∥Xγ .

Iteratively we obtain that ∥T (·)∥E1(b) ≤ c(b0)∥u0∥Xγ for b ∈ (0, b0] and any
given b0 > 0. If ω0(A) < 0, one finds a uniform constant for all b > 0 by this
argument.

d) Let A ∈ MRp(J). Let J0 ⊆ J = (0, b) be an open subinterval with

inf J0 = 0. We extend f ∈ E0(J0) by 0 to a function f̃ ∈ E0(J). Then one has

T ∗+ f = T ∗+ f̃ on J0 and hence

∥u∥E1(J0) ≤ ∥u∥E1(J) ≤ c(J)∥f̃∥E0(J) = c(J)∥f∥E0(J0)

for the solution u of (6.4). Let f ∈ E0(2b). For t ∈ (b, 2b) we compute∫ t

0
T (t− s)f(s) ds =

∫ t

b
T (t− s)f(s) ds+ T (t− b)

∫ b

0
T (b− s)f(s) ds

=

∫ t−b

0
T (t− b− r)f(r + b) dr + T (t− b)

∫ b

0
T (b− s)f(s) ds.

The first term can be estimated in E1((b, 2b)) by the maximal regularity on
(0, b). Part a) implies that the norm in Xγ of the last integral is bounded by
∥f∥E0(b). Hence, the second summand is controlled in E1(b, 2b) using part c).
Summing up, we have maximal regularity on (0, 2b). This procedure can be
iterated, so that A ∈ MRp(b

′) for all b′ > 0. This argument also yields that A
has maximal regularity on R+ if T (·) is exponentially stable, in addition.

e) It is easy to check that A has maximal regularity on a bounded interval J
if and only A− ωI ∈ MRp(J), since the later operator generates e−ωtT (t). For
ω > ω0(A), the operator A−ωI then has maximal regularity on R+ by part d).
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f) If an operator has maximal regularity of type Lp for some p ∈ (1,∞), it
has this property for all p ∈ (1,∞). See Theorem 17.2.31 in [15]. (This result
requires some harmonic analysis.)

g) There exist quite explicit examples of sectorial operators of angle φ >
π/2 on spaces L1(µ) or C(K) without maximal regularity of type Lp. On Lq

spaces with q ̸= 2 such examples also exist, but they are not very explicit. See
Section 17.4.a and b in [15]. ♢

We describe two classes of operators having maximal regularity of type Lp.
The first one says that this property comes for free on Hilbert spaces, and the
second one suffices for our Example 6.1.

Example 6.3. Let X be a Hilbert space and A be sectorial of angle φ > π/2
on X. Then A has maximal regularity of type Lp.

Proof. By Remark 6.2 it is enough to consider the case p = 2, and one can
assume that ω0(A) < 0 and J = R+. We extend f ∈ E0(R+) and T (·) by 0 to
t < 0 so that T ∗+ f(t) = T ∗ f(t) for t ≥ 0.

First take f ∈ Lp(R+, X1). Since X is a Hilbert space, Plancherel’s theorem
is valid for the Fourier transform F on L2(R, X), see Theorem 2.4.9 in [14]. On
further has the usual convolution theorem for F by Lemma 2.4.8 there. Using
also the resolvent formula (4.2) from [32], we compute

∥T ∗+ f∥L2(R+,X1) ≤ ∥T ∗ f∥L2(R,X) + ∥AT ∗ f∥L2(R,X)

= ∥F(T ∗ f)∥L2(R,X) + ∥F(T ∗Af)∥L2(R,X)

=
√
2π

(
∥T̂ f̂∥L2(R,X) + ∥T̂Af̂∥L2(R,X)

)
= ∥R(i ···, A)f̂∥L2(R,X) + ∥AR(i ···, A)f̂∥L2(R,X)

≤ c∥f̂∥L2(R,X) = c∥f∥L2(R+,X).

Note that the operators R(iτ,A) and AR(iτ,A) = iτR(iτ,A) − I are uni-
formly bounded for τ ∈ R as A generates an exponentially stable analytic
C0-semigroup. By approximation the result then follows. □

Example 6.4. Let A generate an analytic C0-semigroup T (·) on L2(µ) for
a measure space (S,A, µ). Assume that there is a constant ω ≥ 0 such that
∥e−ωtT (t)f∥q ≤ ∥f∥q for all f ∈ L2(µ) ∩ Lq(µ), q ∈ [1,∞], and t ≥ 0. Then A
has maximal regularity of type Lp, see Note 1.13 in [17].

Moreover, one has maximal regularity for each generator A of a positive
and contractive analytic C0-semigroup on Lq(µ) for some q ∈ (1,∞) by Corol-
lary 17.3.9 in [15]. These results rely on deeper tools from operator theory and
harmonic analysis. ♢

In view of the above example, it should be noted that semigroups generated
by elliptic systems often fail to be contractive. Fortunately there is a quite
convenient characterization of maximal regularity in ‘good’ Banach spaces due
to Lutz Weis (2001). We present it now without giving many details.
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We first describe the relevant class of Banach spaces. Let f ∈ C1
c (R, X). By

p. 374 of [14] the limit

Hf(t) = lim
ε→0+,r→∞

∫
ε<|s|<r

f(s)

π(t− s)
ds

exist for all t ∈ R. One calls Hf the Hilbert transform of f . We call X a
UMD space4 if H has a continuous extension to Lp(R, X) for some (and then
all) p ∈ (1,∞), cf. Theorem 5.1.1 in [14]. The spaces needed in our examples
belong to this class.

Example 6.5. The spaces X = Lq(µ) for a measure space (S,A, µ) and
q ∈ (1,∞) are of class UMD by Proposition 4.2.15 of [14]. Proposition 4.2.17
of this monograph further shows that Cartesian products, closed subspaces,
quotient spaces, duals, isomorphic images, and real (and complex) interpolation
spaces with exponent r ∈ (1,∞) of UMD spaces have the same property. Hence,
(closed subspaces of) Sobolev–Slobodetski Wα,q(G) and Besov spaces Bα

q,r(G)
are UMD if α ≥ 0 and 1 < q, r <∞, cf. Example 2.3 and 2.5. ♢

We also need a stronger sectoriality concept. Let εn : Ω → {−1, 1} be mea-
surable functions on a probability space which are (stochastically) independent
and have expectation 0 for n ∈ N. An example are the Rademacher func-
tions rn(t) = sign sin(2nπt) on Ω = (0, 1) with the Lebesgue measure. A set
T ⊆ B(X) is called R-bounded if there is a constant C > 0 such that

∀N ∈ N, xn ∈ X, Tn ∈ T :
∥∥∥ N∑
n=1

εnTnxn

∥∥∥
L2(Ω;X)

≤ C
∥∥∥ N∑
n=1

εnxn

∥∥∥
L2(Ω;X)

.

See Paragraph 1.9 and Remark 2.6 of [17]. Roughly speaking, this means
that we can estimate the operators Tn in sums with random signs if we take
averages. Uniform boundedness follows from R-boundedness (take N = 1), and
these notions are equivalent in a Hilbert space X, see Paragraph 1.9 of [17].
A closed and densely defined operator A is called R-sectorial of angle ϕ ∈

(0, π] if the set T = {AR(λ,A) |λ ∈ Σϕ} is R-bounded.
We state Weis’ result, see Theorem 17.3.1 of [15] or Theorem 4.4.4 of [28].

Theorem 6.6. Let X be an UMD space. A closed and densely defined oper-
ator A on X has maximal regularity of type Lp if and only if it is R-sectorial
of angle ϕ > π/2.

In Hilbert spaces X one already knows this characterization in view of the
above remarks and Example 6.3. Remark 6.2 g) shows that one needs a stronger
condition than sectoriality even on Lq with q ∈ (1,∞) \ {2}. Theorem 17.4.1 of
[17] also indicates that the UMD property is crucial here.
Since R-boundedness is a complicated property, one wonders whether R-

sectoriality can be checked in examples. Fortunately, a powerful theory is avail-
able to deal with this concept. First, there are more accessible sufficient condi-
tions for it (like the properties mentioned in Example 6.4). Moreover, one has

4UMD stands for ‘uniform martingal difference’ which refers to the standard definition of
UMD spaces in the literature, see Definition 4.2.1 in [14].
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developed a machinery that allows to show R-sectoriality based on standard
techniques for the proof of sectoriality of elliptic operators with boundary con-
ditions on Lq(G). The monographs [15], [17] and [28] give an introduction to
this theory and its applications.

We now come to a local wellposedness result for the quasilinear parabolic
problem (6.1). In contrast to earlier sections we allow for nonlinearities defined
only on an open subset Vγ ⊆ Xγ . By a solution of (6.1) on J we mean a

function u ∈ E1(J) ↪→ C(J,Xγ) with values in Vγ and u(0) = u0 which solves
the differential equation (6.1) pointwise a.e. inX. Then all terms in (6.1) belong
to Lp(J,X). In quasilinear problems local boundedness is not enough to ensure
global existence even if Xγ = Vγ . Below we require uniform continuity in Xγ ,
compare Theorem 4.17 for a different condition. The subscript γ refers to the
norm of Xγ .

Theorem 6.7. Let X1 be densely embdded into X, Xγ = (X,X1)1− 1
p
,p for

some p ∈ (1,∞), Vγ ⊆ Xγ be open and nonempty. Assume that the maps
A : Vγ → B(X1, X) and F : Vγ → X are Lipschitz on bounded subsets of Vγ
and that A(v) has maximal regularity of type Lq for each v ∈ Vγ. Let u0 ∈ Vγ .
Then the following assertions are true.

a) There is a radius ρ = ρ(u0) > 0 and a time b = b(u0) > 0 such that for all
u0 ∈ Bγ(u0, ρ) ⊆ Vγ we have a unique solution u = φ( ··· , u0) ∈ E1(b) of (6.1).
These solutions satisfy

∥φ( ··· , u0)− φ( ··· , v0)∥E1(b) ≤ c∥u0 − v0∥γ (6.5)

for a constant c = c(u0) > 0 and all u0, v0 ∈ Bγ(u0, ρ).

b) We can extend u from a) to a unique solution u = φ( ··· , u0) ∈ E1(t
+(u0)) of

(6.1) on the maximal existence interval J(u0) = [0, t+(u0)). Here t+(u0) < ∞
implies that u : J(u0) → Xγ is not uniformly continuous or that the distance
distγ(u(t), ∂Vγ) tends to 0 as t→ t+(u0)

−.

c) Assume that the constants of maximal regularity of A(v) are uniformly
bounded for v ∈ Vγ. Let b ∈ J(u0). Then there is a radius δ = δ(u0, b) > 0 such

that for all u0, v0 ∈ Bγ(u0, δ) ⊆ Vγ we have t+(u0), t
+(v0) > b and the estimate

(6.5) is true for t ∈ [0, b].

In contrast to Theorem 3.4 the above result does not provide a pointwise
regularization of the solution. This can be achieved by an extension of our
approach using weights in time, see Theorem 5.1.1 of [28]. In this way one can
also obtain compactness in Xγ of bounded orbits if X1 is compactly embedded
into X as shown in Theorem 5.7.1 of [28] combined with Proposition 2.13.

In Theorem 6.7 all operators A(v) have the same domain. One can show
variants of it without this assumption using ‘maximal regularity of type Cα,’
roughly speaking. We refer to [1], [20] or [40] for such results. In the context of
quasilinear parabolic partial differential equations results of this type have been
achieved since the sixties, also employing maximal regularity proved directly for
a specific class of PDEs. The methods discussed here can also be extended to
such PDE with nonlinear boundary conditions or with moving interfaces as
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presented in [28]. Actually, such applications were a main motivation for this
line of research.

Proof of Theorem 6.7. 1) We first collect auxiliary facts and prove the
basic estimates. Let b ∈ (0, 1] and denote by T (·) the semigroup generated
by A(u0). Remark 6.2 yields the following inequalities with constants ≥ 1 not
depending on b, where Mγ , CMR and C0

MR are functions of u0. We write L∞
b Xγ

for L∞((0, b), Xγ) etc.

∀ v ∈ E1(b) with v(0) = 0 : v ∈ C([0, b], Xγ), ∥v∥L∞
b Xγ ≤ Cγ∥v∥E1(b), (6.6)

∀ v0 ∈ Xγ : T (·)v0 ∈ C([0, b], Xγ) ∩ E1(b), ∥T (·)v0∥L∞
b Xγ ≤Mγ∥v0∥γ , (6.7)

∥T (·)v0∥E1(b) ≤ C0
MR∥v0∥γ , (6.8)

∀ f ∈ E0(b) : T ∗+ f ∈ E1(b), ∥T ∗+ f∥E1(b) ≤ CMR∥f∥E0(b). (6.9)

Fix a radius ρ0 > 0 with B0 := Bγ(u0, ρ0) ⊆ Vγ . Take ρ ∈ (0, ρ0] and u0 ∈
Bγ(u0, ρ). We set u∗ = T (·)u0 and u∗ = T (·)u0. To obtain smallness below, we
need the limit

κ0(b) := max
t∈[0,b]

∥u∗(t)− u0∥γ −→ 0, b→ 0.

The estimate (6.6) is only uniform as b→ 0 for functions vanishing at 0. For
this reason, we incorporate the initial condition v(0) = v0 in our fixed point
space and substract u∗ from v. The other constants are tied to u0 and we will
thus linearize the equation at u0 (and not at the initial value u0 as in (6.3)).
So the difference v − u0 appears naturally. Let v ∈ E1(b) with v(0) = u0 and
∥v − u∗∥E1(b) ≤ r for some r > 0. Using (6.6), (6.7) and (6.8), we estimate

∥v − u0∥L∞
b Xγ ≤ ∥v − u∗∥L∞

b Xγ + ∥T (·)(u0 − u0)∥L∞
b Xγ + ∥u∗ − u0∥L∞

b Xγ

≤ Cγ∥v − u∗∥E1(b) +Mγ∥u0 − u0∥γ + κ0(b)

≤ Cγ∥v − u∗∥E1(b) + Cγ∥T (·)(u0 − u0)∥E1(b) +Mγρ+ κ0(b)

≤ Cγr + CγC
0
MRρ+Mγρ+ κ0(b)

≤ Cγr +
r

3
+
r

3
≤ ρ0, (6.10)

where we take r ∈ (0, r0], ρ ∈ (0, ρ1] and b ∈ (0, b0] with b0 ≤ 1,

r0 =
ρ0
3Cγ

≤ ρ0, ρ1 =
r

3(CγC0
MR +Mγ)

≤ ρ0, κ0(b0) ≤
r

3
. (6.11)

Observe that the numbers r0, ρ1 = ρ1(r) and b0 = b0(r) only depend on u0, ρ0,
and r. As in the above computation, we infer

∥u∗ − u∗∥E1(b) ≤ C0
MR∥u0 − u0∥γ ≤ C0

MRρ ≤ r/3. (6.12)

2) For ρ, b and r as above, we take u0 ∈ Bγ(u0, ρ) and define

Σ(b, r) := {v ∈ E1(b) | v(0) = u0, ∥v − u∗∥E1(b) ≤ r}.

This set contains u∗ due to (6.12). It is complete for the metric ∥v − w∥E1(b)

because of (6.6). Let v, w ∈ Σ(b, r). Inequality (6.10) shows that v(t) ⊆ B0 ⊆
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Vγ for all t ∈ [0, b]. Let L0 be the maximum of the Lipschitz constants of A and
F on B0. We set

G(v) = (A(v)−A(u0))v + F (v) ∈ E0(b).

The assumption and Remark 6.2 provide a solution u =: Φ(v) = Φu0(v) ∈ E1(b)
of the linear problem

u′(t) = Au(t) +G(v(t)), t ∈ (0, b), u(0) = u0. (6.13)

It is given by u = T (·)u0 + T ∗+ G(v).
We set κ1(b) = ∥u∗∥E1(b) and note that this number tends to 0 as b→ 0. The

inequalities (6.8), (6.9), (6.10), and (6.12) imply

∥Φ(v)− u∗∥E1(b) ≤ ∥u∗ − u∗∥E1(b) + ∥T ∗+ G(v)∥E1(b)

≤ C0
MR∥u0 − u0∥γ + CMR∥(A(v)−A(u0))v∥E0(b) + CMR∥F (v)∓ F (u0)∥E0(b)

≤ C0
MRρ+ CMRL0∥v − u0∥L∞

b Xγ ∥v − u∗ + u∗∥E1(b)

+ CMRb
1
p (L0∥v − u0∥L∞

b Xγ + ∥F (u0)∥γ)

≤ r
3 ++CMRL0r(Cγ +

2
3)(r + κ1(b)) + CMRb

1
p (L0ρ0 + ∥F (u0)∥γ)

≤ r
3 + r

3 + r
3 = r. (6.14)

Here we fix r = r1 and ρ = ρ1(r1) and take b ∈ (0, b2] with

r1 = min{r0, (6ĉ)−1}, ĉ = CMRL0(Cγ +
2
3), κ1(b1) ≤ r,

b2 = min
{
b0, b1, r

p
(
3CMR(L0ρ0 + ∥F (u0)∥γ)

)−p}
.

(6.15)

Similarly, using estimates (6.9), (6.10), (6.6), (6.14), (6.15) and (v−w)(0) = 0,
we compute

∥Φ(v)− Φ(w)∥E1(b) ≤ CMR∥G(v)−G(w)∥E0(b)

≤ CMR

(
∥(A(v)−A(u0))(v − w)∥E0(b) + ∥(A(v)−A(w))w∥E0(b)

+ ∥F (v)− F (w)∥E0(b)

)
≤ CMRL0

(
∥v − u0∥L∞

b Xγ ∥v − w∥Lp
bX1

+ ∥v − w∥L∞
b Xγ ∥w − u∗ + u∗∥Lp

bX1

+ ∥v − w∥Lp
bXγ

)
≤

(
ĉr + CMRL0Cγ(r + κ1(b)) + CMRL0b

1
p cγ

)
∥v − w∥E1(b)

≤ (16 + 1
3 + 1

6)∥v − w∥E1(b) =
2
3∥v − w∥E1(b), (6.16)

Here cγ is the norm of the embedding Xγ ↪→ X1 from Proposition 2.2, and we
have taken

0 < b ≤ b3 := min{b2, (6CMRL0cγ)
−p}. (6.17)

As a consequence, Φ = Φu0 : Σ(r1, b) → Σ(r1, b) is a strict contraction for
each initial value u0 ∈ Bγ(u0, ρ1(r1)). The fixed point u ∈ Σ(r1, b) solves (6.1)
on [0, b] uniquely in Σ(r1, b).

3) Let u ∈ E1(Ju) and v ∈ E1(Jv) solve (6.1) on open intervals Ju and
Jv, respectively. We suppose that u ̸= v on J = Ju ∩ Jv. Then there are
times tn in J with limit τ ∈ J ∪ {0} such that u = v on [0, τ ], tn > τ , and
u(tn) ̸= v(tn) for all n ∈ N. We replace in steps 1) and 2) the vector u0 ∈ Vγ by
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u′0 = u(τ) = v(τ) ∈ Vγ , where we fix a radius ρ′0 > 0 such that Bγ(u
′
0, ρ

′
0) ⊆ Vγ .

This leads to numbers r′1 and b
′
3 as in (6.11), (6.15), and (6.17). We thus have a

unique fixed point wb ∈ Σ(r′1, b) of (6.1) with initial value u′0 on (0, b) for each
b ∈ (0, b′3].
On the other hand, there is a number β ∈ (0, b′3] such that τ + β ∈ J ,

∥u(··· − τ) − T (·)u′0∥E1(β) ≤ r′1, and ∥v(··· − τ) − T (·)u′0∥E1(β) ≤ r′1. This means
that u(··· − τ) and v(··· − τ) both belong to Σ(r′1, β) and thus have to coincide.
This contradiction shows that u = v on Ju ∩ Jv.

4) Let u and v solve (6.1) on [0, b3] = [0, b] for initial data u0, v0 ∈
B(u0, ρ1(r1)) as found in step 2). We thus have u = Φu0(u) and v = Φv0(v).
Observing that Φu0(u)−Φv0(u) = T (·)(u0−v0), we derive from (6.8) and (6.16)
the bound

∥u− v∥E1(b) ≤ ∥T (·)(u0 − v0)∥E1(b) + ∥Φv0(u)− Φv0(v)∥E1(b)

≤ C0
MR∥u0 − v0∥γ + 2

3∥u− v∥E1(b),

∥u− v∥E1(b) ≤ 3C0
MR∥u0 − v0∥γ . (6.18)

We thus have shown assertion a).

5) Let u0 ∈ Vγ . Based on step 3), we obtain as usual a unique solution
φ(··· , u0) of (6.1) on J(u0) = [0, t+(u0)) with

t+(u0) = sup{b > 0 | ∃ub ∈ E1(b) solving (6.1) on (0, b)}.

Note that t+(u0) ≥ b3(u0) for the number b3 from (6.17) if one replaces u0 by u0
as in step 3). One can also restart the problem at b3(u0) and obtains a solution
on a larger interval so that t+(u0) > b3(u0).
Suppose that t+(u0) < ∞ and that u : J(u0) → Xγ is uniformly continuous

and distγ(u(t), ∂Vγ) ≥ δ > 0 for all t ∈ [0, t+(u0)). Then the limit u(t) → u1
as t→ t+(u0) exists in Xγ and u1 still belongs to Vγ . One can thus extend the
solution as above and obtains a contradiction, so that b) holds.

6) Take b ∈ (0, t+(u0)) and fix b′ ∈ (b, t+(u0)). We write u(t) = φ(t, u0)
and note that the orbit Γ = {u(t) | t ∈ [0, b′]} is compact in Vγ . It thus has a
positive distance to ∂Vγ , and we can redefine ρ0 > 0 from step 1) such that
distγ(Γ, ∂Vγ) > ρ0. In parts 1) and 2) we replace u0 by v ∈ Γ in the definition
of all constants and of κj keeping the notation. By the assumption in c), the
constants C0

MR and CMR are then uniformly bounded v ∈ Γ. The same is true
for Mγ by Remark 6.2 and Proposition 2.4. Moreover, the functions κj(b) tend
to 0 as b → 0 uniformly for v ∈ Γ by the compactness of Γ and (6.8). As a
result, the numbers r = r1, ρ = ρ1(r1) ≤ ρ0, and b = b3 in (6.15) and (6.17)
can be chosen uniformly for the vectors u(t) with t ∈ [0, b′] instead of u0.

Let tk = kb and Jk = [tk−1, tk] for k ∈ N and N be the first integer with
tN > b. If Nb > b′, we redefine TN = b′. We set C = 3CγC

0
MR ≥ 1 and

δ = C−Nρ. Let u0 ∈ Bγ(u0, δ). Estimates (6.18) and (6.6) imply that

∥u(b)− u(b)∥γ ≤ Cγ∥u− u∥E1(b) ≤ 3CγC
0
MR∥u0 − u0∥γ ≤ Cδ ≤ ρ.

We can thus extend u to [0, t2] by step 1) and deduce

∥u(t2)− u(t2)∥γ ≤ C∥u(t1)− u(t1)∥γ ≤ C2δ ≤ ρ.
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Iteratively we see that u exists on [0, bN ]; i.e., t
+(u0) > b.

Let also v0 ∈ Bγ(u0, δ). We can now replace in the above argument u by v,
obtaining

∥u− v∥E1(Jk) ≤ 3C0
MR∥u(tk−1)− v(tk−1)∥γ ≤ 3C0

MRC
N−1∥u0 − v0∥γ

for all k ∈ {1, . . . , N}. So assertion c) follows by the triangle inequality. □

One can apply Theorem 6.7 to the quasilinear reaction-diffusion problem (6.1)
in Example 6.1 as we briefly sketch.

Example 6.8. In the setting of Example 6.1, let Vγ = Xγ and write
∂j(ajk(u)∂ku) = ajk(u)∂jku + ∂kajk(u)∂ku. (One would employ sets of the

form Vγ = {v ∈ Xγ | a(v) > αI > 0} if one only assumes that a = a⊤ > 0.) Us-

ing Xγ ↪→ C1(G), one can the check that A : Vγ → B(X1, X) and F : Vγ → X
are Lipschitz on bounded subsets of Xγ similar as in Example 3.7. The maximal
regularity of A(v) can de deduced from Example 6.3 above and Theorem 7.3.6
of [23], where positivity is shown as in Example 5.2 of [32].

As in Theorem 3.9 global existence here follows again from uniform bounded-
ness if F (v) = f(v). See Theorem 5.2 of [1], where even certain elliptic systems
were studied in a somewhat different setting. ♢

The asymptotic behavior of problems such as (6.1) was investigated e.g. in
[20], [27] or [28].
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