Lecture Notes
Nonlinear Maxwell Equations

ROLAND SCHNAUBELT

These lecture notes are based on my course from winter semester 2024 /25,
though there are minor corrections and improvements as well as small changes
in the numbering of equations. Typically, the proofs and calculations in the
notes are a bit shorter than those given in the course. Many additional oral
remarks from the lectures are omitted here. It is assumed that the reader has a
solid background in functional analysis and Sobolev spaces. Occasionally I use
notation and definitions of my lecture notes Functional Analysis and Spectral
Theory without further notice.
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CHAPTER 1

The Maxwell system on R?

The Maxwell equations are the fundamental laws of electro-magnetism and
play an important role as building blocks of many coupled systems. They relate
the electric field E(t,z) € R3, the (electric) displacement field D(t,z) € R3,
the magnetic field B(t,x) € R and the magnetizing field H(t,z) € R? via the
Maxwell-Ampére and Maxwell-Faraday laws

oD = curl H — J,, 0B = —curl E, t>0, z€R3, (1.1)

where J.(t,7) € R3 is the current density. Here E and B can be measured in
experiments via the Lorentz force they exert on charges. (See e.g. [29] for the
background in physics.) On spatial domains G' # R? one has to add boundary
conditions to (1.1) as discussed in Chapter 2 of [44]. We use the standard
differential expressions

0 —83 82 (31
curlu = Vxu=| 03 0 =01 ||lu], divu= V-u=01u1+02us+03us,
*62 61 0 us

where the derivatives are interpreted in a weak sense if needed (cf. Section 2.1).
Roughly speaking, the Maxwell equations say that the electric field is changed
by a current or by magnetic vortices, and that the magnetic field is changed by
electric vortices in the opposite way.

We note that these fields have the SI units NC~! = Vm™! for E, Cm~2 for
D, tesla T = NA-'m~! for B, Am~! for H, and Am~2 for J., using the more
basic units newton N, volt V', coulomb C', and ampére A.

To complete the Maxwell system (1.1), we have to connect the fields via
material laws. They involve the polarization P = D—egFE and the magnetization
M = pug !B — H which describe the material response to the fields E and B,
namely the density of induced electric, respectively magnetic, dipole moments.
Here g9 ~ 8.854 - 10712 F'm~! is the vacuum permittivity and py ~ 1.257 -
1075 Hm™! the vacuum permeability, with the units farad F = CV ! and henry
H = Tm?A~'. In the following we ignore units and set €9 = 1 = yg so that the
speed of light in vacuum becomes ¢ = 1. Otherwise one has ¢ = (gopug) /2.

We collect some formulas. First let u € VVE)CI(U7 R3) and ¢ € Wli’cl(U, R),
where U C R3 is open. (We often omit the range spaces.) First, one obtains
diveurlu = 04 (Bng — 83u2) + 82(83111 — 81U3) + 83(611@ — 82u1) =0, (1.2)

0203 — 03020
curl VQO = 8381@ - 8183@ = 0. (13)
01020 — 02019



Because of (1.2), solutions to (1.1) fulfill Gaufs’ laws
t

pe(t) == div D(t) = div D(0) —/ div Je(s)ds, divB(t) =divB(0) (1.4)
0

for t > 0. The electric charge density p. (with unit Cm=3) is thus determined
by the initial charge and the current density. As there are no magnetic charges
and currents in physics, one typically requires div B(0) = 0. However, in the
analytic treatment such quantities often appear and will be included later on. A
control on the charges is crucial to counteract the large kernel of curl, cf. (1.3).

For u € WLP(U,R?) and ¢ € V[/li’f,(U, R) with p € [1, 00| we further have the
product formulas

div(pu) = 01(puy) + 02(pu2) + d3(vus) = Ve - u+ @ divu, (1.5)
Da(pus) — O3(puz) Dapuz — O3pus
curl(pu) = | 93(pur) — 01(pus) | = | dzpur — drpus | + pcurlu
91 (puz) — O2(pu1) O1puz — Dapuy
=V X u+ pcurlu. (1.6)
The dot denotes the scalar product in R™, and the cross product in R? is given by
asbs — azbsy a- él
axb= agbl—albg = a-b2
ajby — azb; a- b3

with b = (0, b3, —by), b2 = (—bs,0,b1), and b = (by, —b1,0). For u € Whe(U),
v e WY (U) and a (say, compact) Lipschitz boundary OU with outer unit
normal v, the divergence theorem yields

3 3
/curlu-vdx:Z/Wdivfﬁdsz(—/ ﬁj-ijdx—i—/ V~7ljvjda)
U = v U ouU

J=1

2/['&2831)1 — u30ov1 + uz01v2 — U103V — U013 + u182v3]dac +/ vxu-vdo
U oU

:/u-curlvdx—l—/ u- (v xwv)do. (1.7)
U

oUu

The boundary term disappears if U = R3, or if v or v have compact support.
Here we also used the first of the formulas (with a,b,c € R?)

a-(bxec)=b-(ecxa)=c-(axb), ax(bxc)=bla-c)—c(a-b). (1.8)

We briefly discuss material laws, see [1], [7], or [12] for a systematic treat-
ment in the context of nonlinear optics.

1) In these notes we focus on instantaneous constitutive relations. At first we
look at the general case

(D,B) = 0(x, B, H) = (0.(2,u), 0 (z,u)) for §: U x RS — RS, (1.9)
Here we choose u = (F, H) as state which suits best to energy estimates. The

choice v = (D, B) is also possible since 0(x, ) is invertible under our assump-
tions, at least locally. This state fits better to (1.4) and is also used later on.
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Our main hypothesis will be that ag(z,u) = 9,0(x,u) belongs to the space
Rgff of symmetric real matrices with ag > nl for some number n > 0. In an
exercise, the typical autonomous linear case 0(x, E, H) = (¢(2)E, u(x)H) with
g, pu e LU, R?;f]?’) is studied. We discuss some basic nonlinear material laws.

ExAMPLE 1.1. A standard example in nonlinear optics is the Kerr law
D =eyn(2)E+k(z)|E*E,  H=B,
for bounded functions ey, k: U — R with ey, () > 2n > 0 for all z, see [1], 7],
or [20]. It is isotropic; i.e., D(t,x) and E(¢, ) have the same direction. The Kerr
law satisfies our assumption ag = ag > 5l for small E (and for all E if k > 0)
since Opfp(E) = (e + #|E|*)I +26EET. The assumption also holds for the
more general laws D = ey, (2) E+Be(x, |E|?)E and B = i () H+ B (x, |H|?)H
for coefficients ey, tin € Cy(U, R;éf’]) and f3;,0:6; € C(U x R,R) which are
bounded in z and satisfy 3;(z,0) = 0.1 O

A typical anisotropic relation is the following polynomial one.

EXAMPLE 1.2. Let 0(z, E, H) = (ciin(z)E + eni(x, E)E, uin(x)H). As above
we assume that ey, tin € Cp(U, R;ég), and we set
3 .
5nl<x7 E) = (Z kal(m)EJEk>

j7k“7l:]‘

il
for scalar coefficients H{kl € Cy(U), cf. |12]. Because of the triple sum, the tensor
(k! kl)il has to be symmetric in {j, k,{}. Using this symmetry, we compute

KA
3 .
050 (E) = ennl + 3(2 . /{gklEjEk)

J,R= il

which is symmetric if also Hgkl = IQ{ ki, i.e., we can only prescribe /{Zkl for, say,
1<i<j<k<I1<3. For|E|<r with a suitable r € (0,00] and all z, H € R3

we then obtain 0,0(x,u) > nl. O

2) In nonlinear optics, the material response is often descibed by a retardation
in time, see [1] or [12]. A rather general retarded material law is given by

D(t,2) = ey (@) E(t, 7) + / "t — ) B(r ) dr (1.10)

t t
—l—/ / ko(t — 11, t — 0, ) [E(T1,x), E(T2, )] dTidT2 + . . .

for tensor-valued kernels k,, € LI(R’;O, L>®(U, L, (R3,R?))). Instantaneous laws
as in Example 1.2 result as (formal) singular limits of such retarded ones. The
components of k; could be decaying exponentials times trigonometric polyno-
mials in basic cases, cf. Section 4.2.1 of [20].

3) In dynamical material laws the polarization or magnetization are given by
evolution equations coupled with the Maxwell systems, e.g., in the Maxwell-
Bloch, Maxwell-Lorentz or the Maxwell-Landau—Lifschitz systems, see Sec-
tion 4.2 of [20], Section 4a of [40] and also [18|.

IThe subscript b means that the functions and all occuring derivatives are bounded.



4) In many basic models, the current is described as the sum
Je=o(x,E,H)E+ Jy (1.11)

of a given external current density Jo: R>g x U — R? and a current induced
via Ohm’s law for a (possibly state-depending) conductivity o: U x RS — R3*3,
In several models J, is coupled to another evolution equation, e.g., in magne-
tohydrodynamics or the Maxwell-Schrodinger system. Such systems and the
dynamical laws from item 3) are not treated in these lectures.

Sometimes it is useful to pass to second-order versions of (1.1), i.e., to for-
mulations as wave systems. We first treat time-depending anisotropic linear
relations D = e(t,z)E and B = pu(t,x)H, before we discuss special cases. Non-
linear laws are treated similarly. We focus on the equation for the electric field
E, one can handle D, B, H analogously. Here, Ampeére’s equation in (1.1) yields

e E + c0F = 0y(¢E) = curl(u™'B) — J,.
Differentiating in ¢, we deduce
gafE = curl (,uflﬁtB) — curl (;fl@t,u;le) — 200 B — 8,52€E — OpJe.

Faraday’s equation in (1.1) and B = pH then lead to

RE+e tewrl(p tewrl B) = 71 (28t€8tE +07eE+curl (W 'Oy H) + BtJe>.
(1.12)

Observe that the equation is still coupled to H in first order. Besides E(0) = Ejy
one has the initial condition

O E(0) = e (curl Hy — 9;e(0)Ep — J.(0)).

invoking curl Hy. The second-order term in (1.12) is symmetric in the weighted
space L?(edx) if we impose the boundary condition E x v = 0 and enough
regularity, see (1.7). In the equations for H or B inhomogeneities as curl(e~1.J)
appear, so that F is present via J. = oF if one has nonzero conductivity.

If € and p do not depend on time, (1.12) simplifies considerably and the H
term diappears. But still the components of E are coupled in the term of highest
order. For scalar ¢ and pu, the product rule (1.6) further yields

epd?E + curl(curl E) = iVu x curl B — pdgJe.

In addition let div(eEy) = 0 = div J. and thus the charges div(¢E) vanish by
(1.4). As curlcurl = Vdiv —AI, cf. (1.8), formula (1.5) implies

end; B = AE+ Vuxcurl E+1Ve-VE+1D* E—1Ve(1Ve-E)—pdyJ,. (1.13)

The dot term reads as ), Oxe 0;Ef. So in the time-independent, isotropic and
charge-free case, the terms of highest order form a decoupled wave equation
with coefficients, ingnoring boundary conditions. The coupling occurs in lower
order only. The system completely decouples into the standard wave equation
if £ and p are also constant.
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It is often convenient to rewrite (1.1) with (1.9) and (1.11) as a quasilinear
symmetric hyperbolic system. To this end, we first introduce the matrices

0 0 O 0 0 1 0 -1 0
Si=10 0 -1}, Sy={(0 0 0], S3=1|1 0 0], satisfying
01 0 -1 00 0 0 O

curl = S101 + S902 + 5303 and axb= (a151 + a9Sy + agsg)b
for vectors a,b € R3. We then define 8y = 9,

A§°=(50j _6%>, ag(u) = 8,0(-,w), d:(g), f:<—0Jo> (1.14)

for j € {1,2,3}. Note that the matrices AS° are symmetric.
Then the Maxwell system (1.1) with material laws (1.9) and (1.11) becomes

3
L(u)u = ag(u)dyu + Y ASOju+ d(u)u = f. (1.15)
7j=1
Our strategy to solve this problem originates from Kato [31]. One freezes a
function v from a suitable space £ in the nonlinearities, setting Ay = ag(v),
Aj = AY® and D = d(v). One next solves the resulting non-autonomous linear

problem L(v)u = Z?:o A;Oju+Du = f in the space £. On small time intervals
(0,T) one finds a fixed point of the map v + u which then solves (1.15) and
(1.1). The first linear step is more difficult; here it is crucial to control very well
how the constants in the estimates depend on the coefficients. We carry out
this program on R? in the following chapter.



CHAPTER 2

Local wellposedness in H?

In this chapter we develop a local wellposedness theory for the quasilinear
Maxwell equations on R3. Our approach is based on energy methods and a
fixed-point argument, which make use of the linear system with time-depending
coefficients. One has to work in Sobolev spaces H® with s > % in this context,
where we take s = 3 for simplicity. Actually we treat general symmetric hy-
perbolic systems on R3. In the first subsection we introduce Maxwell equations
and discuss some facts used throughout these notes. We then investigate the
linear case, first in L? and then in H3, also establishing the finite speed of prop-
agation. Our main tools are energy estimates, duality arguments for existence
in L?, approximation by mollifiers for regularity and uniqueness, and finally a
transformation from L? to H3. The non-linear problem is solved by means of
fixed-point arguments going back to Kato [31] at least, where the derivation
of blow-up conditions in W and the continuous dependence of data in H3
require significant additional efforts. Finally, for the isotropic Maxwell system,
we show the preservation of energy and construct a blow-up example in H!.

The wellposedness results on R? are due to Kato [32], but our proof differs
from Kato’s and instead uses (well known) energy methods from the theory of
symmetric hyperbolic PDE, see [5], [6], [13] or [38]. The corresponding problem
on domains can also be treated by means of energy methods, but this is much
harder. See [56], [57] and [58] for the core theory, [50] and [51] for different
boundary conditions, as well as my lecture notes [44| or the shorter version [45]
for the easier accessible halfspace case.

2.1. The linear problem in L?

We often omit range spaces as R® in the notation, and write L?X =LP(J, X)
for function spaces from an interval J to a Banach space X (also with subscript
T if J = (0,7)), as well as LP instead of LP(R™), etc. Chapter 1 of [26]
discusses the theory of X-valued LP-spaces. It is quite similar to the Lebesgue
case X = R, and we will highlight differences if they play a role below. Let
J = (0,T). We solve the linear problem in the space C(J, L*(R? R®)) = C5L?
for coefficients and data subject to the assumptions

Aj= Al e Wy™ = Wheo(J x R RO, j € {0,1,2,3}, Ag=A] >nl>0,

D e LT =L®J xR R*C) wye L? feLiL?=L*JxRR%. (2.1)
(See Proposition 1.2.4 of [26] for the last equality, which is an isomorphism
actually.) Then A;! belongs to W},’OO and Ayt = (Ag1H)T > || Aol 1.

6



2.1. The linear problem in L? 7

Compared to (1.15) we allow for D and f with non-zero ‘magnetic’ compo-
nents, as needed in our analysis. We also deal with general symmetric (¢, z)-
depending coefficients A1, As and As, and thus with linear symmetric hyperbolic
systems. Those occur in many applications, see [6], [31], [38] or the exercises;
and our reasoning would not differ much if we restricted to A; = AZ°. Moreover,
when treating the Maxwell system on domains by localization arguments, one
obtains z-depending coefficients. It is useful to see them first in an easier case.

Assuming (2.1), we look for a solution u € C(J, L?) of the system

3
Lu = ZAjaju +Du=f, t=>0, u(0) = o, (2.2)
=0

with dy = 0;. Here the derivatives are understood in a weak sense.

To explain this, we assume that the reader is familiar with Sobolev spaces
WHP(U) = WP for an open subset U of R™, k € Ny, and p € [1,00]. (See
[9] or |47|, for instance.) We work with real scalars in this chapter almost
entirely, endow W"P with the (complete) norm Hsz,p = 2 0<|a|<k [0%v||5 (ob-
vious modification for p = 00), and write H* := W*2 (which is a Hilbert space),
LP = WO and ||v|, = ||v]jo,p- By Wéf’p(U) we denote the closure of test func-
tions C°(U) in WHP(U). If OU is compact and C* (or Lipschitz if k& = 1), say,
then WéC P is the closed subspace in WP of functions whose (weak) derivatives
of order up to k — 1 have trace 0. One can check that Wg’p(Rm) = WkP(R™).

Let H~*(U) be the dual space H§ (U)*, where we restrict ourselves to p = 2 for
simplicity. Since HE(U) < L?*(U) with dense range, the space L?(U) = L*(U)*
(and thus C2°(U)) is densely embedded into H~*(U), where ¢ € L?(U) acts as
o(v) = [pvdz on v € HE(U). One also has H¥(U) — H~Y(U) for k <l € N.

For o € L2(U), j € {1,...,m} and v € H{(U), we define the weak derivative
djp € H™1(U) by setting

0jp)(v) = (v, 0;0)31 = —{Djv, ¥) L2

(The brackets (-, -)x designate the duality pairing between a Banach space X
and its dual X*.) Since |(9;v, p)| < ||v1,2[|¢ll2, the linear map 9;: L*(U) —
H~Y(U) is bounded. Iteratively, one obtains bounded maps 9;: H~*(U) —
H~*=1(U), and analogously 8*: H~*(U) — H~*~1el(U) for multi-indices o €
Ni* and k£ € Ng. The definitions imply that these derivatives commute.

For a € Wh*°(U) and ¢ € H~1(U), we next define the map ap € H~1(U) by

(ap)(v) = (v.ag)ps = (v, Phys, v € HH(U).

Because of [|av|12 S |lall1,00 [[V]l1,2, We see as above that the multiplication
operator M, : ¢ — agp is bounded on H~1(U). (Here and below A <, B stands
for A < ¢B for a generic constant ¢ = ¢(a) which is non-decreasing in each
component of a € RZ.) These facts easily extend to R'-valued functions.

We infer that Lu € H™1(J x R?) if u € L2L% Let Lu = f be contained in
L%2L?. We stress that a summand A;d;u may only belong to L*(R3, H~1(J))
if j = 0 and to L?(J x R?,H~1(R)) otherwise. More precisely, for the time



2.1. The linear problem in L? 8

derivative we obtain

deu= Ay f — Z A A;0u — Ag'Du € LAH, (2.3)

and so u is an element of HYH ™1 — C(J,H™1). (See the beginning of Sec-
tion 4.5 of [46] for Banach space valued Sobolev spaces.) Accordingly, the
initial condition in (2.2) is understood in H 1.

We will first show the basic energy (or apriori) estimate. Here we use the
temporal weights e_-(t) == e 7 for v > 0 and ¢ € J (or t € R) and the weighted
spaces L2 ;X = L3(J, X) (= L2 X if J=(0,T)) of functions with finite norm

1
_ 2
Jollze = el = ([ & oo a)
v J

We have the equivalence e?|v|[r2 x < [|vllzzx < e|v]| 2 x i J = (a,b) is
g s

bounded. Taking large ~ in these norms, we can produce small constants in
front of the contribution of f in the inequality below. This fact will be used
to absorb error terms by the left-hand side, for instance. The estimate and the
precise form of the constants is also crucial for the nonlinear problem. We write
divA = Z?:o 0;A; and use || - ||oc for the sup-norm in (¢, z).

LEMMA 2.1. Assume that (2.1) is true and u € H'(J x R?) solves (2.2). Let
C:=1divA—D, v >~)(L) = max{1,4n7||C|w}, and t € J. We then obtain

Plullzz 2 + e u®)llze < 311 40(O) ]l luollzz + 537 11172 12
PROOF. Set v = e_ u and g = e_ f for v > 0. We have yAgv + Lv = g.

Using the symmetry of A;, we derive

3
(9,v) = v(Aov, v) -I-ZA@vv (Dv,v)
7=0

3
1
Y{Agv,v) + 5 Z / Ajv-v)deds — <8jAjv,v>) + (Dv,v),

Jj=

where we drop the subscript L?L? of the brackets and denote the scalar product
in RS by a dot. Integration yields

v{Aov,v) + 3(Ao(t)v(t), v(1)) 12 = 5(A0(0)v(0),v(0)) 2 + (Cv,v) + (g, ).

We now replace v = e_u, g = e_~f as well as u(0) = up, and use (2.1) and
v > 7y(L). It follows

yillull e ,z2 + Fe” lu®)IZ:
< 3140(0) [z lluollzz + ICloollullZz 2 + lull gz g2 fllp2 e
< 31 40(0) Iz~ fluollz + (3 + B lullZz 12 + 535 1172 2

which implies the assertion. ]



2.1. The linear problem in L? 9

Below we use the above estimate for

v > q0(r,n) = max{1,12r/n} > v(L) (2.4)

where ||0;Aj|loo, || D|jos < r. For v = 0 its proof yields the energy equality

t
Ao(t)u(t)-u(t)de = [ Ao(0)ug-updz+2 // (C(s)u(s)+f(s))-u(s) dzds.
3 3
R 0J/R (2.5)
In the term with C = 2 divA — D we have damping effects (if D = DT Z 0)
and extra errors terms coming from the ¢- or z-dependence of A;.

Lemma 2.1 yields uniqueness of H!-solutions to (2.2). However, we need
uniqueness (and the energy estimate) for solutions in C'(J, L?). This fundamen-
tal gap can be closed by a crucial regularization argument based on mollifiers.
We recall the definition and basic properties of this core tools, see e.g. [9].

RS

m

We set g-(z) = e ™g(e71x) for any function g on R™, ¢ > 0, and € R™.
Take 0 < p € C2°(R™) with [ pda = 1, support supp p in the closed unit ball
B(0,1), and p(z) = p(—=x) for x € R™. Note that |pc||; = 1. For & > 0 and
v € L (R™), we define the mollifiers R. by

loc

Rev(z) = pe # v(x) = / pe(z —yp(y)dy, =z ER™

m

One can check that R.v € C®(R™), supp R.v C suppv + B(0,¢), and
d“R.v = R.0% for v € WI*P(R™). Young’s inequality for convolutions yields
|Rev|lkp < ||v]|kp for p € [1,00] and k € Ny. Using this estimate, one derives
that Rov — v in WFP(R™) for v € WFP(R™) as ¢ — 0 if p < oo, since this
limit is true for test functions v. Differentiating p.(z —y) in x, one also obtains
the smoothing estimate || Rev||kp Sek [|v]p-

Finally, for ¢ € H=*(R™), v € H¥(R™) and k € N, we set

(Rep)(v) = (v, Re)gqr = (R0, 0)qyn -

This definition is consistent with the symmetry R* = R. on L?*(R™) which
follows from the symmetry of p and Fubini’s theorem. By means of its properties
in H*(R™), one can show that R. is contractive on H~{(R™) and that it maps
this space into H*(R™) for all I € N. Moreover, it commutes with 9.

Hence, the commutator [R., My] == R-M, — M,R. tends to 0 strongly in L?
if a € L*° (and is bounded uniformly in € > 0). It even gains a derivative if
a € W which is crucial for our analysis.

PROPOSITION 2.2. Let a€ Wh*(R™), o€ L2(R™), j€{1,...,m}, and e >0.
Set Cop == R.(a0;p) — a0j(Rzp). Then there is a constant ¢ = c(p) such that

ICepll2 < cllallioollll and  Cep—0 in L* as € — 0.
PROOF. Let v € H'(R™). Using the above indicated facts, we compute

(v, Cep)yr = (aR:v, 0j)31 — (av, ReOjp) 31 = (0j(R:(av) — aRev), @) 2.



2.1. The linear problem in L? 10

We set Cv = 9j(R.(av) — aR.v) and R! for the convolution with (195p])e. For
a.e. x € R™, dlfferentlatlon and |z — y| < e yield

Clo(z) =/ eT™M@ip) (e H(a —y)) e aly) —a(@))v(y) dy — dja(z) Rev(x),
B(z,e)

|Cev(z)] < (RZv|(z) + |Rev()]).

(Recall that W%°°(R™) is isomorphically isomorpic to the space of bounded
Lipschitz functions by Proposition 9.3 in [9].) Young’s inequality now implies
the first assertion. The second one is true for v in the dense subspace H!(R™)
and thus on L?(R™) by the uniform estimate. O

With this tool we can extend Lemma 2.1 to all solutions of (2.2) in C(J, L?).

PROPOSITION 2.3. Let (2.1) hold and u € C(J,L?) solve (2.2). Then the
statement of Lemma 2.1 and (2.5) are also valid for u. Hence, (2.2) has at most
one solution in C(J, L?).

PROOF. We note that R.u belongs to C(J,H¥) for all ¢ > 0 and k € N.
Moreover, R.u tends to u in C(J,L?) as ¢ — 0 since u(J) is compact and
R. — I strongly in L?. As ||R.f(t)|l2 < ||f(t)|l2, dominated convergence also
yields R.f — f in L¥L?. Using Lu = f and (2.3), we compute

3
LR.u= R.f+[D,R.] ZAJ,R 10ju + [Ag, Re]Ou (2.6)

3
= Ref + D, ReJu + [Ao, RJAG ' (f — Du) +) _([45, Re] — [Ao, RJAy " A;) 0u
j=1

Proposition 2.2 shows that the right-hand side belongs to LQJL2 with uniform
bounds. Hence, R.u is also contained ’H},L2 by (2.3). Arguing as above, we
further see that the commutator terms tend to 0 in L%L2 and thus in Lg% JLQ.
Lemma 2.1 and (2.5) for R.u now lead to the first assertion letting € — 0. The
second one follows from linearity. O

Combining the energy estimate with a clever duality argument, one can also
deduce the existence of a solution. As a starting point, we note that a closed
operator C from X to Y with dense domain is surjective if its adjoint C* is
bounded from below, i.e., ||[C*y*|| > c|ly*|| for some ¢ > 0 and all y* € D(C*).
See Theorem 2.20 in [9]. Below we avoid to invoke the adjoint explicitly.

THEOREM 2.4. Let (2.1) be true. Then there is a unique map u in C(J, L?)
solving (2.2). It satisfies the estimate in Lemma 2.1 and (2.5).

PROOF. 1) We need the (formal) adjoint L°® = — Z?’:o A;0;+ D° of L with
D° = D" —divA. Let V = {v € H(J x R}, R%) | v(T) = 0}, v € V, and
L°v = h. We introduce o(t) = v(T' —t) and f(t) = h(T' — 1) for t € J and
the operator L with coefficients Ag(t) = Ao(T — t), flj(t) = —A;(T —t) for
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j €{1,2,3} and D(t) = D°(T —t). Note that Lt = f and #(0) = 0. Applied at
time T'— s to L, 0 and v = yo(r,n) from (2.4), Lemma 2.1 yields the estimate

) ~ ) 2e2'y(T—s) T—t o )
HM@M:HMT—$MSn2m/A e ITW(T — )| dr
e T (T INTEIE,
< / I |Edr,  se(0,T),
[ollzaie < VT LV pape,  #i= e, 2.7)

Hence, L°: V — L%(J x R3)0 is injective. We can thus define the functional
bo: LV Ry o(L70) = (v, f) gz 2 + (0(0), Ao(0)uo) 2
The Cauchy—Schwarz inequality and estimate (2.7) imply
[o(L°0)| < (Ifllz3 22 + [ A0(0)uoll2) & (VT + 1) | L]l g2 2

By the Hahn-Banach theorem, ¢y has an extension ¢ in (L%L?)* which can be
represented by a function u € L2L? & L2(J x R3) via

(v, f) 22+ (0(0), Ao(0)uo) 2 = €(L°v) = (L0, u) 2 po (2.8)
3 T
= (v, Du) —]ZO/O R38j(Ajv)~udmdt Vv eV).

2) To evaluate (2.8), we first take v € HS(J x R?). The definition of weak
derivatives then leads to (v,f>L3L2 = (v, Lu)yy; ie., Lu = f in HL(J x R3).
Hence, u belongs to H1H ™! because of (2.3) and f € L4L?. For v € V, we can

now integrate by parts the summand in (2.8) with j = 0 in % ~!; the others are
treated as before. As v(T") = 0, it follows

(v, F)pz 2 + (0(0), Ao(0)uo) 12 = (v, Lugyy + (Ao(0)0(0), u(0)) 2 -

Since Ap(0) is symmetric and Lu = f, we have also shown that u(0) = ug.

3) We next use (2.6) for wy ;m = Ry /pu — Ry/pu. As in the proof of Proposi-
tion 2.3, Proposition 2.2 implies that wy, ,, is contained in H!(J xR3) and satisfes
Lwpm — 0 in L3L? and wy,,(0) — 0 in L? as n,m — oo. So (Ry,u) is a
Cauchy sequence in C'jL2 by Lemma 2.1, and it converges to u in L?]LQ. Thus,
u belongs to CjLz. The other assertions were proven in Proposition 2.3. U

There are blow-up solutions even for the wave equation on R with Holder
continuous and z-independent coefficients, as shown in [15].

As indicated in Chapter 1 and described in the next example, the above result
can easily be applied to the linear Maxwell system

0i(eFE) = curl H — o E — J, Op(pH) = —curl B, t>0, z € R, (2.9)
which is (1.1) with the material laws D = (¢, ) E and B = u(t,x)H.
EXAMPLE 2.5. Let &,y € WHoo(J x R3,R?;f73) for some n > 0, o € L*(J x

R3, R3*3), Ey, Hy € L*(R3R3) and Jy € L*(J x R3 R3). As in (1.14), we
set Ag = diag(e, ), A; = Aj° for j = {1,2,3}, D = diag(o + 0e,0p), f =
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(—=Jo,0), and up = (Ep, Hp). Theorem 2.4 then yields a unique solution (E, H) €
C(J, L?) of (2.9) with E(0) = Ey and H(0) = Hy. It satisfies the energy equality

le(®)2 E(6)|3 + | ()7 H(t)[|3 = ||£(0)2 Eol|3 + |}12(0) 2 Ho|13

t
—// ((20E+8t€E+2J0)~E—i—@tuH-H)dxds.
0 JRr3

In the autonomous case it suffices that e, u € LOO(RS,RSZE‘%), see the exercises
and also Theorem 5.2.5 in [2] or §7.8 in [20]. 0.

One of the key features of hyperbolic systems is the finite propagation speed
of their solutions. As a simple example, we first look at the standard wave
equation 02u = c>9?u on R for the wave speed ¢ > 0 equipped with the initial
conditions u(0) = ug € C?(R) and d;u(0) = vy € C*(R). (To pass to the above
first-order framework, use the state (0yu, \/cOyu) and Ajv = —y/c(va,v1).) The
pointwise solution of this wave problem is given by d’Alembert’s formula

T+ct
u(t,z) = $(uo(z + ct) + up(z — ct)) + 210/ vo(s)ds, t>0, z€R.
T—ct

Hence, the solution at (¢, z) only depends on the initial data on [z — ct, x + ct];
for instance, u(t,z) = 0 if ug and vy vanish on [z — ct, z + ct]. Conversely, the
value of ug and vg at y influences u at most for (¢,z) with | — y| < ¢t; i.e., on
a triangle with vertex (y,0) and lateral sides of slope :I:%. In this sense, c is the
speed of propagation.

We extend these observations to the system (2.2), assuming (2.1). In the
statement we use the backward ‘light’ cone

[(zo, R, K) = {(t,2) € R3o x R | |z — 2| < R — Kt}
with base B(zg, R) at t = 0 and apex (%,xo), where zg € R and R, K > 0. Set
ko = [l Aull3 + [[A2ll% + || A3l

with the operator norm for | - |5 on R®*®. Note that kg = v/3 in Example 2.5.

Below we see (for f = 0) that u vanishes on I'(xg, R, ko/n) if up = 0 on
B(xo, R). Hence, if two initial functions ug and g coincide on B(z, R) then the
corresponding solutions u and 4 are equal on I'(zg, R, ko/n) by linearity. In other
words, the values of uy outside B(zg, R) influence u(t) only off I'(xq, R, ko/n),
that is, with maximal speed kq/n. Our proof is based on energy estimates with
an exponential weight, and the arguments are taken from §4.2.2 of [5].

THEOREM 2.6. Let (2.1) be true. Assume that ug =0 on B(xg, R) and f =0
on I'(zo, R, ko/n) for some R > 0 and xo € R3. Then the solution u € C(J, L?)
of (2.2) also vanishes on I'(zo, R, ko/n).

PROOF. 1) Let §, R > 0 and 9 € R? be given. There is a function ¢ €
C>®(R3) with |[V¢| < n/ko (for the euclidean norm) and

—28 +nkg H(R— |z —x0]) < h(x) < =3 +nky (R~ |z —x0]), =z €R3 (2.10)

We construct ¢ as in Theorem 6.1 of [56]. Take x(s) = —36 + nky ' (R — |s|)
for s € R. This function is Lipschitz with constant n/kg. The same is true for
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the mollified map x. = Rex as Vxe = R-Vx. Also, x. tends uniformly to x as
€ — 0 since

xe(s) - x(8)] < /R el p(e ) x(s — 1) — x(s)| dr < gy te / p(0)o] do

We fix a small ¢ > 0 such that y. satisfies (2.10) with s instead of |x — x|
and 5/3 instead of 2. Then ¢ (x) = x<((62 + |= — x0|?)!/?) does the job, where
do = /{0(5(377)_1.

Set ¢(t,z) = (x) —t and u, = e"®u for 7 > 0. Inequality (2.10) yields
Y(x) < =5+ tif |z — xo| > R — kot/n (ie., (t,x) ¢ T'(xo, R, ko/n)), so that
e™® < e 7 < 1 off (2o, R, ko/n) and €7 is bounded on J x R3. We further
have Ve™ = 7¢™V1 and 0™ = —7e™®. As a result, u, is an element of
C(J, L?) and the right-hand side of

Lu, =e™f — T(A(] — ijl Ajé?jdj) Uy

belongs to LZJLQ. The matrix in parentheses is denoted by M.
2) For ¢ € R® we have M¢- & > (n— ko|VY|)[€]* > 0. Set C = 1divA—D
and k = [|C]|co. By Theorem 2.4, the function wu, satisfies the energy equality

140(8)2ur ()32 = [ A0 (0) 217 ()22 + 2((C = TM)ur + €™ fLu7) 12 2.

Using Cauchy—Schwarz, the above inequalities and Gronwall, we estimate
t
nllur (@72 < [140(0) |z le™uollZ2 + ™ F172 2 + (26 + 1)/0 lur(s)]72 ds,

le™u®liZs St leuols + |7 1125 1o

The right-hand side tends to 0 as 7 — oo since up and f vanish on I'(zo, R, ko/n)
and e™® — 0 uniformly off T'(zq, R, ko/n). Hence, u(t) has to be 0 on {¢ >
0y = {¢ > t+0}. By (2.10), this set includes points (¢,z) with |z — zg| <
R—kon~1(t+36). Since § > 0 is arbitrary here, u equals 0 on I'(zg, R, ko/n). O

2.2. The linear problem in #3

As noted in Chapter 1, to solve the nonlinear problem (1.15) we will set
Ay = ap(v) for functions v having the same regularity as the desired solution
u. Since Ag has to be Lipschitz in Theorem 2.4, the same must be true for v.
Working in H* spaces, we thus need solutions in Lf}o’H?’ N VV}’OO’H2 at least. We
want to reduce the problem in H? to that in L? by means of a transformation.
(One could also perform the proof of Theorem 2.4 in H? instead of L?, see e.g.
[6] or [13], which would require more work in our context.)

To this end, we define the operator A = F~1(1 + |£>)'/2F via the Fourier
transform F on tempered distributions at first. Using standard properties of
F, one sees that A = (I — A)'/2 can be restricted to isomorphisms H* — #+~1
for k € Z with inverse given by A™' = (I — A)~Y2 = F~1(1 + |¢]?)"Y/2F and
that it commutes with derivatives. Powers of A behave analogously. See also
Section 3.1. Moreover, A~! is a convolution operator with positive kernel by
Proposition 1.2.5 in [24], so that A = (I — A)A™! leaves invariant real-valued
functions.
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Our analysis relies on a commutator estimate for A® and M, : ¢ — ap which
gains a derivative. We use the proof of Lemma A2 in [31], which works for real
k> +1 on R™. More results can be found in e.g. [65] or in Proposition 3.9.

PROPOSITION 2.7. Let k € N and a € WH*°(R3) with Aa € L3(R3) if k = 2
and Va € HFY(R3) if k > 3. Then the commutator [A¥, M,] = A*M, —
My AR HFH(R3) — L2(R3) is bounded.

PROOF. The result for £k = 1 requires more work and is a special case of
Proposition 4.1.A in [65] or of Proposition 3.9. For k = 2, we have —[A?%, M,]v =
Aav+ 2Va - Vv so that the result easily follows from Holder and Sobolev. To
simplify a bit, we now restrict ourselves to k = 3. By Plancherel, we have to
show that T = F[A3, M,JA~2F ! is bounded on L?(R3). Observe that T is the
integral operator with kernel

R(6,0) = @m) 2 [(L+162)2 — (1 +|¢?)2]aE — O+ |¢D)
with &, ¢ € R3. We can bound

1< [ ot e ric - O ar < Ble = I+ 16 + 1+ 6P

Njw

Hence, « is dominated by || < cok1 + coke with ¢ = %(2%)7 and

r1(6,0) = (1H[EP)DE=OA+[CD) T ka(&,¢) =b(E—C), b= |¢a| =|F(Va)l,
so that we need the L?-boundedness of the corresponding integral operators.
Again by Plancherel, it thus suffices to show that T} = A2M,A~2 and Th = M,
are bounded on L2, where b = F~1b. Since we have

Ib]13 2 < C/Rs(l +[E%)?[b(6)? A€ < | Vall3

for some constants, Lemma 2.8 below and Sobolev’s embedding indeed yield

[Trell2 <
IT2pllz < [Ibllo [l@ll2 <

Guided by Proposition 2.7 and (2.1), we introduce the space
FHT) = FHT) = {A e Whe(JxR3 RO) | (V,0,)A € LYH* '},  keN,

for the coeﬂiments, endowed with its natural norm. We will usually take k = 3.
We employ the same notation for vector- or scalar-valued functions of the same
regularity. The subscript sym will refer to symmetric matrices and > 7 to those
with A = AT > nI. We state the hypotheses of the present section:

Age F2,(J), n>0, Ay Ay AseFo(J), DeF(J), (2.11)

up € 12 = H3(R3,RY), fez23(J)=23T) = L*(J, 1) nH (J, H?).
Set |’fH2Z§(J): He_7f||%2ﬂ‘k+ He—Vatin?,kal for v > 0 and k € N. We also use

e L2 O

HY = {ve L®R) | Vo e HF 1Y, GF(T) =GM(T) = C(J, H")nCH (T, 1)
with their natural norms, as well as HUHQ’“(J) le—v||? Leogrt He—w@thLoon_l-
J

(Such spaces will also be considered on time intervals dlfferent from J = (0,7).)
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We state product and inversion rules which are often used in this chapter, cf.
[58]. Here one can replace R? by all Lipschitz domains. In the proof and also
later on, we employ Sobolev embeddings such as H? < LP for p € [2,00] and
H' — L4 for q € [2,6] on (Lipschitz domains in) R3.

LEMMA 2.8. Let k,j € No with k > max{j,2} and [ € N.

a) For v € H* and w € HI we have |vw|ys < ||vllyrllwllqy- Here one can
replace HF by H*, as well as H7 and H* by GI(T) and G*(J) (or F*(J)), or by
FI(J) and F*(J), taking j > 1 if G7(J) or Fi(J) is involved.

b) Let A € 7:[l>n Then A=1 belongs to 7:[l># with norm bounded by c(u, k)(1+
[All)' = Al and i = [IAlIS

PROOF. a) For the first claim, by the product rule (and interpolative in-
equalities) we have to control 9Pvd* Py for multi-indices 0 < B < a with
la| = j. Observe that d%v € H*¥~1#l and 9*Pw € HIPl. This product can be
estimated in L2, as needed, if k — |8] > 2 or |8] > 2 since then 9%v or 9% Pw
are bounded, respectively. As k > 2, only the case |3| = 1 remains. Here 0%v
and 9* Pw belong to #' < L* and thus the product to L2. The other variants
are proved analogously.

b) We take [ = 3, the other cases are similar. Observe that 93A~! is a linear
conbination of terms like

AT193AA7L AT192AA19AATY, ATL9AATIOAATI9AAL,

(Here and below we occasionally use somewhat informal notation in such ex-
pressions.) These terms satisfy the asserted estimate as in part a), since
A7 oo < 1/n. The lower-order ones are treated in the same way. O

We look for a solution u € G3(J) of (2.2) assuming (2.11). The basic idea is to
solve a modified problem for w = A3u in C(J, L?). Since the commutator result
Proposition 2.7 only improves space regularity, we first replace the equation
Lu=fby Lu= f = Ao_lf where L has the coefficients Ay = I, /1]- = AalAj
and D = AalD. We then obtain

3
Lw = A*f + > [A;, A*|0ju + [D, A*u,
j=1

3
Lw = AgA*f + )~ Ao[Aj, A*0ju + Ao[D, A*Ju =: g(f, u). (2.12)
j=1

We now replace in g the unknown u by a given map v € C(J, H3). Theorem 2.4
provides a solution w € C(J, L?) of Lw = g(f,v) with w(0) = A3ug. The energy
estimate from Lemma 2.1 (with a large ) then implies that ®: v +— A 3w is a
strict contraction on LZ° JHS. This fact will lead to the desired regularity result.
Let A be the maximum of HAkHB(Hk7L2) and ||A_k||B(L27'Hk) for k € {2,3}. It
will be important in the fixed-point argument for the nonlinear problem that
the constant ¢y in (2.13) only depends on r¢ (and 7), but not on .
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THEOREM 2.9. Let (2.11) be true with [[A;(0)|;2,[[D(0)[z2 < 7m0 and
I A5l 73¢0), 1 Dllpssy < 7 for j € {0,1,2,3}. Then there exists a unique so-
lution u of (2.2) in C(J,H3) N CYJ,H?). Fort € J and v > vi(r,n) =
max {’yo(r, 7), \/a}, see (2.4), it satisfies

Al + 2 (lut) 3 + 10()]132)
< collluolids + IFOB) + & 1F12s0  (213)

for constants co = co(ro,m) and c¢; = ¢1(r,n) described in the proof.

PROOF. 1) Take v € C(J,H?3) and v > yo(r,n) from (2.4). Let t € J. Using
Proposition 2.7 and Lemma 2.8, we see that the square of the norm in L%L2

of g(f,v) from (2.12) is bounded by c’1(||f||%2 s ||v”i2 443) for a constant
v,t . v,t

¢} = ¢y (r,n). Theorem 2.4 yields a solution w € C(J, L?) of Lw = g(f,v) and

w(0) = A3ug = wp which satisfies

T ||wHL2 g2 t3 HwHLoo 12 < clluolls + o (||fHL2 w3 T Hvlligﬁs) (2.14)

with ¢ = ’\7 |40(0)||co- The map w also belongs to C'(J,H™!) because of
(2.3) and f € Z3(J). Set ®v = A 3w € G3(J). Let w satisfy Lw = g(f,7)
and w(0) = wq for some v € C(J,H3). For w — w estimate (2.14) applies with
up = 0 and f = 0 so that

)\w/c T

12(v =)l p2e 23 = A7 (w = @) | 0, s < [o =l oo 245

Fixing a large v = (r,n,T), we obtain a fixed point u of ® in LZ° SH3. Tt

actually belongs to G3(J) and satisfies u(0) = ug. Equation (2.12) 1mphes that
Lu = f. Uniqueness of solutions was already shown in Proposition 2.3.
2) It remains to establish (2.13). We first insert u = v and w = A3u in (2.14)

and take v > max {'yo(r n), )\\F} Note that |ul/s2 < Aljw||2. Absorbing
||uHL 4,3 Dy the left-hand side, we infer
vt

% IIUHLz g T 3l 2 < oA [luolfs + 5 (2.15)

2’y7] H5

If we estimate Oyu in H? via (2.3) and (2.15), we obtain a constant depending
on 7 in front of the norm of ug. Instead we use that dyu € C(J,H?) satisfies

Loy = 0,f — 9, Du — Zj 0, A;0u = h,
dyu(0) = Ag(0)~" £(0) — Ao(0)~'D(0 Uo—z Ao(0)7A;(0)d5uo =: vo.

Lemma 2.8 yields

17($) |22 < 110ef (8)ll3ez + () (u(s)llgs + 0ruls)llg2), s €,
[vollzz < e(ro, n) ([ (0)lle2 + [[uoll3s)-
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The maps [M Aj,Az]: H!' — L? are bounded by Proposition 2.7 since 8gflj €
H! — L3. Starting from Ldyu = h, as in (2.12) and (2.14) we thus deduce

oz e + 30l e

~ A )\2
< X (luoll3s + £ ON3e) + 555 (101122 g2 + Iulllz 30 + 100ll72 502)

for constants ¢y = ¢o(ro,n) and é; = é1(r,n). Set cp = 16)\277_1(06+50) and ¢; =

%2 max{c}, ¢1}. We add the above inequality to (2.15) and take v > v (r,n) =

max {70(7,n), y/c1 }. Estimate (2.13) follows after some calculations. O

In the above result we control more space than time derivatives. Under
stronger assumptions on A;, D and f, one can obtain analogous estimates on
0?u in H' and 9Pu in L? by differentiating (2.2) in time, cf. (2.27) in [44] or
[58]. We discuss variants of the above theorem partly needed below.

PROPOSITION 2.10. Let Aj and D be as in Theorem 2.9, as well as ug € H?
and f € L*(J,H?). Then there is a unique solution v € C(J,H?) N CY(J, H')
of (2.2). Forte J and vy > 71(r,n) = max {'yo(r,n), \/a}, it satisfies

Ylullzz g + e u®le < olluollze + 5 1 £1Iz2 500
for constants &y = ¢o(ro,n) and & = é1(r,n). If Orf € L2(J,H'), we also obtain

NorulZs y+ e 10O B < el + 17O ) + 211250,

The result is shown as Theorem 2.9, replacing A® by A? in its proof up to
(2.15) and A? by A afterwards.

REMARK 2.11. In Theorem 2.9 we have focused on the space H? needed for the
quasilinear problem. Actually, one obtains a unique solution u € G*(.J) of (2.2)
satisfying the analogue of (2.13) if k € N, ug € H*, f € Z¥(J), A;, D € FF(J),
Aj = A;-r, Ag > nl, and 8§Aj € L?JOL?’ if K = 2. This can be shown as for k = 3
still using Proposition 2.7. One only has to take care of estimates for products,
inverse matrices and commutators, noting that the extra condition for k = 2 is
preserved by products and inverses.

Moreover, there is no problem to change the range space R to R™. Also other
spatial domains R" can be treated analogously, though one has to modify the
assumptions on the coefficients in this case. Invoking a bit harmonic analysis
one can also work in fractional Sobolev spaces H* instead of H¥, see [32]. ¢

REMARK 2.12. In (2.11) we have required that the derivatives of the co-
efficients belong to H2. So local singularities are allowed to some extent,
but one enforces a certain decay at infinity which is an unnecessary restric-
tion. Actually, Theorem 2.9 remains valid if we replace the space F3(J) by
F3(J) = F3(J)+ W3 (J xR3), and H2 by H2, = H2+W?2°°. (They have the
norm || z|| x4y = info—ppy ||| x +|ly|ly of sums X +Y. Observe X,Y — X +Y)
To derive this fact, we note that [M4, A?]: H? — H! is bounded uniformly in ¢
if A€ F3,(J), and so the same is true for

[Ma, A% = [Ma, AJA? + A[M, A%): H? — L2
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(Recall the boundedness of [M4, A] on L2.) One can further check the appro-
priate bounds for products and inversions involving F3(J) and H2, as well as
G3(J). The analogue of Theorem 2.9 can now be proven as before. O

As a preparation for Theorem 2.19 on the wellposedness of the nonlinear
problem we show an approximation result for the coeflicients.

LEMMA 2.13. Let up € L%, f € L%3L? n € NU{oo}, j € {0,1,2,3},
A7 € F3.(J) be symmetric with Ay > nl, and D" € F3 (J). Assume that
[ AT |00 < 7 and [D"||ze < 7, as well as A} — A® and D™ — D> in LT

J - —
as n — oo. Set L, = 3 ; A70; + D". There are maps un, € C(J, L?) with
Ly, = f and up(0) = ug by Theorem 2.4. Then (uy,) tends to us, in C(J, L?).
PROOF. There are functions ug,, in #> and f,,, in Z3(J) converging to ug
and f in L? and L2JL27 respectively, as m — oco. For these data Theorem 2.9

provides solutions uy, , € G3(J) of Lytupm = fm and uy m(0) = ugm,. Fixing
v =0(r,n) from Lemma 2.1 and (2.4), Proposition 2.3 now shows

lun = tnmllg e < cllun = tnmllroe r2 < e(lluo — uomllzz +I1f = fmllL2 22)-

with ¢ = ¢(r,n,T). The right-hand side tends to 0 as m — oo uniformly for
n € NU {oo}. It is thus enough to take ug € H?, f € Z3(J), and u, € G>(J).
We then compute

3
L (tn = thoo) = Logtioo — Lntico = » (A = AT)Djttn + (D™ — D™ og =: g
7=0

Since uy € G3(J), as above Lemma 2.1 yields

lun = toollpoer2 < (v, T) lgnllzoe, 2 — 0, n — 0. O

2.3. The quasilinear problem in #?

In this section we study the nonlinear system
u—Za] )oju+du)u=f, t>0, xR u(0) = up, (2.16)

under the assumptions
aj,d € C}(R* x RO, R%C), aj=aj, ao>nl, ne(0,1], (2.17)

Vr>0: sup max [|05a;(-,&)|r,[|05d(-,&)||re < o0, j€{0,1,2,3},
|€|<r 0<]|<3
up € H3, YT >0: f e 23T) = 23(J) = L*(J,H)nHY(J, H?), J=(0,T).

One can also treat coefficients only defined for (z, &) € R*x O and an open subset
O C R, see Remark 2.20. This is already needed in the Kerr Example 1.1 if x
is not non-negative. To simplify a bit, we focus on the case O = R% in (2.17).
We look for solutions v of (2.16) in C([0,T4.), H3)NCL([0, T'y), H?) for a max-
imally chosen final time T € (0,00]. As indicated in the next section, solutions
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may blow up and so T’y could be finite. The solutions will be constructed in a
fixed-point argument on the space

GF=(J) = L=(J, HF) n wheo (g, HE—1)

endowed with its natural norm, where £ = 3. The strategy of this section
and many techniques are typical for quasilinear evolution equations, though
there are different (but related) approaches, see e.g. [5], [6], or [28|. The easier
‘semilinear’ case is discussed in [46].

We first state basic properties of substitution operators, which remain valid
for Lipschitz domains instead of R? with the same proof. (Recall Remark 2.12
concerning F3 (J) and HZ,.) We set E, = L2°(J,1?) for a moment.

LEMMA 2.14. Let a € C3(R3 x R™,R™*") fulfill the second line of (2.17).

a) Let v e G3(J) with ||[v]leo < 7. Then |la(v)||zs sy < k(r)(1+ HvHég_(J)).

b) Let v,we LFH? with norm < r. Then ||a(v) —a(w)|g, < &(r)|v—w|g,
for all v>0. We can replace LYH? and E. by G*(J) and g%(j), respectively.

¢) Let vg € H? with ||vol|ee < 70. Then ”a(UO)H?-lgO < ko(ro) (1 + [lvoll3,2)-

d) Let vy, wo € H? with norm <ro. Then ||la(vo)—a(wo)llz2 < ko(ro)|[vo—woll3,2 -

PRrROOF. We sketch the proof. (See §7.1in [56] or §2 in [57] for more details.)

a) Take o € N§ with 1 < |a| < 3 and a9 € {0,1}. The latter refers to
the time derivative. It is clear that the function |(0%a)(-,v)| is bounded by
c(r) for all 0 < |8] < 3 where 8 = (B, B¢) € N3 x N§. Note that 9%a(v) is
a linear combination of products of (9%a)(-,v) and j € {0,1,2,3} factors 9%v
with 8, +v1 +---+; = a. Since v € W}’OO by Sobolev’s embedding, as in
the proof of Lemma 2.8 one can estimate 0%a(v) in L¥PL? if j > 1 and in £F if
j =0, both by ¢(r)(1 + HUHZ?,Q)). (Use 0 < a,a® <1+a)

b) We start from the formula

1
a(w) —a(v) = /0 (O¢a)(-,v+ s(w —v))(w —v)ds.

Let ps = v+ s(w — v). We then compute
1 1
9;(a(w) — a(v)) = /0 (Dea) (-, ps) O3 (w — v) ds + /0 07(0ea) (-, ps) (w — v) ds

1
+2/0 0x(0ca) (-, ¢s) Ox(w — v) ds (2.18)

The factor e is put in front of &5 (w — v) on the right. We further have
03(8561)(-, Ps) = (0585(1)(-, ®s) + 2(8153@(-, ©s)0ups + (852‘1)('» Sps)ag‘{?s
+ (83(1)(7 (Ps)[am@m 890905]-

Using Sobolev’s embedding, one can then bound the second term on the right-
hand side of (2.18) in L3°(/J, L?) by ¢(r)||lv—w| g,. The other terms are handled
more easily. Parts ¢) and d) are treated similarly. O
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As the space for the fixed-point argument we will use
E(R, T) = {U S g37(<]) ‘ ||1)Hg3—(J) < R, U(O) = U()}.

for suitable R > ||up|lys and 7" > 0. This set is non-empty as it contains the
constant function ¢ — v(t) = up. In view of Lemma 2.14Db) it is crucial that
E(R,T) is complete for a metric involving only two derivatives, which can be
shown by a standard application of the Banach—Alaoglu theorem. For this we
recall that LPL? is the dual space of L L%, see Corollary 1.3.22 in [26]. (This
is the reason to take L*> in time instead of C'.)

LEMMA 2.15. The space E(R,T) is complete with the metric ||u — vl|foqs2.

PRrROOF. Let (uy) be Cauchy in E(R,T) with this metric. Then (u,) has
a limit u in C(J,H?). Pick a € N§ with ap < 1 and 0 < |a| < 3. Applying
Banach—Alaoglu iteratively, we obtain a subsequence (also denoted by (uy))
such that 9%u, tends to a function v, weak* in Li}"L2 which also satisfies
> lal<3 ||va||%3oL2 < R?. It remains to check that v, = 0%u. To this end, take

¢ € H3(J x R?). We compute
(0. u) = Tim (0., = Tim (1) (i, 0%un) = (~1) i, vg)
in the duality pairing L};L2 X L;OLQ. There thus exists 0%u = v, g
In the next lemma we perform the core fixed-point argument.
LEMMA 2.16. Let (2.17) hold and p* > |Juoll3,s + [ £(0)[13. + HfH2Z3(1). Then

there is a radius R = R(p) > p given by (2.19), a time Ty = To(p) € (0,1] given
by (2.20), and a unique solution u € E(R,Ty) of (2.16).

PROOF. 1) Lemma 2.14 shows that a;(ug) and d(up) are bounded in HZ,
by some kq(p). This yields a constant ¢y = ¢o(p) > 1 in (2.13), in the setting of
Remark 2.12. We define

R = R(p) = Veco(p)p®> + 1> p. (2.19)

Take v,w € E(R,T) for some T > 0. We can use ¢y for v since v(0) = ugy. Let
a € {ag,a1,as,a3,d} and v > 0. By Lemma 2.14 and H? < L™ there is a
constant x = k(R) with

la()llzg,y <w and  la(v) = a(w)l|pe 32 < Kl —wl[px 52 -

Let ¢; = c1(k,m), é1 = ¢1(k,n), and v1 = max{y1(k,n),J1(k,n)} be given by
Theorem 2.9 and Proposition 2.10. We fix

v =(p) = max {vl,ecpo, 2651(6I€R)2}, Ty = To(p) = min{1, (27)'}, (2.20)

where the constant ¢ > 0 is introduced below.
2) Theorem 2.9 gives a solution u € G3(Tp) of L(v)u = f and u(0) = ug with

lu(®) 15 + [0ru®) 32 < ™ (collluoli3s + £ (O)3e) + vy I flZay) < B

for t € [0,Tp]. So the map ®: v +— u =: 0 leaves invariant £(R, Tp). We note
3

L(v)(8 — ) = (L(w) — L(v))d = Y _(a;(w) — a;(v))d;i + (d(w) — d(v))i = g
7=0
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and that ||g(t)|l2.2 < ekR|[v(t) —w(t)|/2,2 by Lemma 2.8 and the above estimate
involving k. Since 0(0) = up = w(0) and Ty < 1, Proposition 2.10 then implies

Tt
[®(v) — ‘P(w)H%%%Hz < e?710)|2(v) — ‘I’(W)\IingOHz (2.21)
< ey (ehR)*Tollv — w”%goTOHZ < 3l - wH%i"TOHZ’
The assertion now follows from the contraction mapping principle. O

The above result yields uniqueness only in the ball £(R,Tp), but the contrac-
tion estimate (2.21) itself will lead to a much more flexible uniqueness state-
ment. Before showing it, we note that restrictions or translations of a solution
u € G3(J) to (2.16) satisfy (obvious) variants of (2.16). Let u € G3(J) solve
(2.16) and v € G3(J*) with v(T) = u(T) solve it on J* = [T,T’]. Then the
concatenation w of u and v belongs to G3([0,7"]) and fulfills (2.16). (Use (2.3)
to check dyw € C([0,T'],H?).)

LEMMA 2.17. Let (2.17) hold, Ji = (0,T}), T € (0,00], and u* € G3(Jy)
solve (2.16) on Jy for k € {1,2}. We then have u! =u? on Jy N Jy = J.
2

PROOF. Let 7 be the supremum of all ¢ € [0,sup.J) for which u! = u? on
[0,#]. Note that u!(0) = ug = u?(0). We suppose that 7 < supJ. Then u! = u?
on [0, 7] by continuity, and there exists a number § > 0 with J5 := [r,7+4] C J.
Let R be the maximum of the norms of u! and w? in G*(J5). Fix ~ as in (2.20)
(with & = k(R) and p = 0) and take 6 € (0,40]. As in (2.21), Proposition 2.10

and a time shift yield a constant ¢; = ¢ (R) > 0 with
' = (oo (g5 902y < €1y (@R R)?0]|u’ — 0 oo g 002)-

Choosing a sufficently small § > 0, we infer u! = u? on Js = [r,7 + §]. This
fact contradicts the definition of 7, so that 7 = sup J as asserted. O

We now use the above results to define a mazimal solution u to (2.16) assum-
ing (2.17). The mazimal existence time is given by
Ty = Ty (uo, f) = sup {T > 0| Jup € G*(T) solving (2.16) on [0,7]} € (0, o0].

Lemma 2.16 shows T4 (ug, f) > To(p) as we can restart the problem at time
T = Ty(p) with the initial value up (7). Moreover, by Lemma 2.17 the solutions
ug and up coincide on [0, S] for 0 < S < T < T4. Setting u(t) = urp(t) for such
times, we thus define a unique solution u of (2.16) in G3([0, 7).

In the proof of the blow-up criterion below, we need the following Moser-type
estimates, which are still true if one replaces R™ by a Lipschitz domain in R™.

LEMMA 2.18. Let k € N and o, B € NjJ'.
a) For v,w € L®(R™) NHY(R™) and |a| + |B| = k, we have
10°087wll2 < e([[vlloo lwlli2 + [[ollk2]lw]loo)-

b) For v,w € WhH®(R™) with 0%v,%w € L*(R™) for 1 < |a| < k and
la| +|8] =k + 1, we have

m m
6% 007 wlls < e Velloo D 1050lk1.2 + el Tlow D 195012
j=1 j=1
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PrOOF. We first recall the Gagliardo-Nirenberg inequality

1o
k

1_lal
10%¢ll2ksja < cliglloc * Y 1076l
Iv|=Fk

where |a| < k and ¢ € L®(R™) with 97¢ € L?>(R™) for all |y| = k, see
Lecture II in [41].

Assertion a) is clear if |a| is 0 or k. So let £ > 2 and 1 < |a| < k — 1. Note
that % =1- % The inequalities of Holder (with % = % + %), Gagliardo—
Nirenberg and Young yield

oy 8B a 5 L TR I T 2 P e
[0%08%wll2 < |0%0]|ak/ja) 107 wll2k/181 < ellvlloo * (0]l 5 lwlloo ™ llwlli

Lo

_lof lo]
= (Ilvlloollwlli2) = (lwlloo [vll,2) = < vlloo |w

k2t [[ollk2][w]|oo-

In part b) we can assume that £ > 3 and 2 < |a|] < k — 1. There are
i,j € {1,...,m} with @ = o/ +¢; and § = ' + ¢;, where /| + |f'| = k — 1.
From a) we deduce

10°v0Pw]|> = 1|8% 050 0% Djwll2 < [100]lsc 105w llk—1,2 + 950 ]lk—-1,2 1105w ]l
and thus statement b). O

We state the core local wellposedness result for H3-solutions of (2.16). It
provides an improved blow-up condition in W1 (and not only in H3 < W1°).
In quasilinear hyperbolic problems one can only expect continuity of the solution
map, not even uniform continuity, see [25] or [32]. Let Br((uo, f),r) be the
closed ball in H? x Z3(T) with center (ug, f) and radius r > 0.

THEOREM 2.19. Let (2.17) hold and ,02 > ||u0||3{3+||f(0)||3_[2+||f||223(1). Then
the following assertions are true.

a) There is a unique solution w = V(ug, f) of (2.16) on [0,T}), where T =
T, (ug, f) € (To(p),00] with To(p) >0 from (2.20) and u€ G*(T) for all T € (0,T).

b) Let Ty <oo. Then limy_7, [[u(t)||zs = oo and limy_7, ||u(t)|yie = 0.

¢) Take T € [0,T}). Then there is a radius 6 > 0 such that for all
(vo,9) € Br((ug, f),8) we have Ty (vo,g) > T and ¥: Br((uo, f),8) — G3(T) is
continuous. Moreover, W: (Br((uo, f),0), || luzxz2(r)) = G*(T) is Lipschitz.

PROOF. a)/b) Above we have shown part a). Let T} < oo and u = ¥ (ug, f).
1) Suppose there are t,, — T with r == sup,, ||u(ty)|]32 < oco. Set T' =T} +1
and p? = r? + HfH233(T) + sup,, Hf(tn)H%Q < 00. Let 7 = To(p) > 0 be given by
(2.20). Fix an index N such that ¢y +7 > 7. Lemma 2.16 and a time shift
yield a solution v € G3([ty,tn + 7]) of (2.16) with v(ty) = u(ty) . We thus
obtain a solution on [0,¢x + 7]. This fact contradicts the definition of 7', and
hence [Ju(t)|[32 — 0o as t — T';.
2) Whereas the arguments for step 1) are fairly standard, the following steps
are more sophisticated. Set w = supy<;<p, [[u(t)[|1,00 and suppose that w < oco.
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Let o € N3 with |a| < 3. Using (2.3), we compute

3

Luw)ofu=02f - > ( ) [Zafaj )00 Pou + 0P d(u)02Pu  (2.22)
0< <
3
+ 8fao(u)8§‘*’8 (ao(u)*l <f — Z aj(u)dju — d(u)u))}
j=1
=t fa= 03 f—9ga-

In view of (the proofs of) Lemmas 2.8 and 2.14, the summands of f, in the
second line can be treated as the others (using Young’s inequality for products
of norms of f and u). Employing also Lemma 2.18 and H3 < W1 we estimate

4
[fa@®l2 < c(w) [Hf(t)\lys lalls +Y- > N0 u(t) - 93k u(t)l2

k=1 |v;|<3,57;1v1<4
(@) (1F @O ll2s + 1+ w?)[u(®) )

Take 7 > 7p(w) in Proposition 2.3. For ¢t € [0,7}), this proposition and the
above inequality yield

2t

logullgs ot 25 105 u(®)72 < 52

We sum over |o| < 3 and fix a large v to absorb the last summand. Hence,
||u(t)||3,2 is bounded for ¢t < T4 contradicting step 1); i.e., part b) is shown.

(1172 g lulZe o]

c) The proof of assertion c) is quite demanding. We first fix some constants,
and then show continuity of ¥ at (ug, f) on an interval [0, b] assuming that we
have solutions with uniform bounds on [0, b]. Using this fact and Lemma 2.16,
we then prove inductively that solutions on [0, T] exist and satisfy such bounds
if we start in a certain ball around (ug, f). Finally, we replace (ug, f) by different
data in this ball to obtain the asserted continuity statements.

1) Fix T € (0,T4), write J = (0,7), and let ¢gs > 1 be the norm of the
embedding Z3(T) < C([0,T], H?). Choose p* > HUOH§,2+ Hf||223(T)+ ||fH%3on,
do = p, and 7 > max{csp, ||ullgs(y}. Below we take R > 7, b < T, and v €
G3(b) with [[v]|gsy < R. Lemma 2.14 yields a constant & = %(R) dominating
the norms of a;(v) and d(v) in F3 (b) and of a;(v)(0) and d(v)(0) in HZ .

2) Assume there are b € (0,71, vo € H? and g € Z3(T) such that T (v, g) >
b. We write v = U (v, g) € G3(b). Let R > [vllgs) with R > 7. Observe that

L(u)(v—u) = g—f+(L(u)=L(v))v = g— f+z aj(u ))jv+(d(u)—d(v))v.

By Lemma 2.14, the function (L(u) — L(v))v belongs to G2(b) with norm less
than ¢(R)R|v — quz for v > 0. Proposition 2.10 then yields

lv = ullgay < (& ) (luo — voll3e + Ilf = gllZ2e + 77 Bbllv — ullgsy)
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for v > 41(R,n) > 1. Fixing a sufficiently large v =7, (%, R, T,n) > 31(R,n), we
can absorb the term by the right-hand side and deduce

lo = ullgey <&@, R, T,n) (luo — vollFe + 1 = gllZ2))- (2.23)

3) Estimate (2.23) leads to Lipschitz continuity of ¥ in G?(T'). The hard and
core part of the proof is to check continuity of ¥ in G3(T) at (ug, f), assuming
apriori bounds. So let (ug ., fn) € Br((uo, f),0) tend to (ug, f) on H?x Z3(T) as
n — oo, where § > 0. Hence, f,(0) — f(0) in #? and f,, — f in Z3(T). Assume
that T’y (uon, fn) > b with b € (0,7] and that u, = ¥ (ug, f,) is bounded by
some R > 7 in G3(b) for all n € N. Then u, tends to u in G%(b) — L5 as
n — oo by (2.23), and the coeffcients a;(u,) and d(uy,) satisfy the estimates of
step 1) with a uniform & = %(R).

The main idea is to split the n-convergence of the coefficients and the data.
Let a € N} with || = 3. As in (2.22) we write L(uy)0%Uu, = 0% fn, — gn.a and
L(u)0%u = 0% f — go. Theorem 2.4 yields solutions wy,, z, € C([0,b], L?) of

L(un)wn = agf — o, wn(o) = a§u07
L(un)zn = 03 fn — 03 f + 9o — Gnias  2n(0) = O3 uom — 9 up.
By uniqueness, we have w,, + 2, = 05u, and hence
Oguy, — 05U = wy, — Oy u + 2.
Since a;(un) = aj(u) and d(u,) = d(u) in LT as n — oo, Lemma 2.13 shows
that gn == [lwp — OFul| L2 tends to 0. We thus have to prove z, — 0 in L¥L.
Choose 7 =7 (R,T) as in step 2). For t € [0, b], Proposition 2.3 then implies

108 (un(t) — w(®) 22 < 262 +2]lza(t)]122
< 262 + e(R, ') (105 (won — wo)l[32+ 192 (fn — D122 1 lgm — gll2 12).

To estimate ||gn.a — gall2, let a € {aj,a5",d}, v € {u,u,}, and w € {u, uy, f}.
(i) First, we look at summands of the type

02a(v(t)0Y a(v* (1)) 07 a(v®(£)) 07 (un(t) — u(t))

where the terms with the multiindices 2 or v3 may disappear, |3]+ |[y!|+|v?| +
|v3] < 4, and |B],]7'| < 3. By Lemma 2.8 and the bounds on the coefficients
these terms are controlled in L? by ¢(R)||un(t) — u(t)||3.2. Here the sup-norms
of first-order factors are less than ¢(R), and second-order factors are handled by
Holder and Sobolev. Summands with f,,(¢) — f(t) are treated analogously.

(ii) We next analyze the remaining terms, which look like

W = 2[a(un(t)) — a(u(t))]0] a(v?(t) 9] a(v?(t)) 97 w(t)

for multiindices as above. At first, we consider situations where we can estimate
the first factor by u — u, in LYH? using Lemma 2.14. This works for 8 = 0 in
L and all admitted ~¢, for |3| = 1 in L® if |y*| < 2 for some i and |y/| < 1
otherwise; and for |3| = 2 in L? if |¢| < 1 for all 4. In this situation one obtains
an estimate as in case (i).

This does not work if (and only if) |8] = 3 and |y!| < 1 for all i, or |3 = 2
and |y!| = 2 (then w € {u,u,}), or |3| = 1 and |y!| = 3. The factors with
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85 are bounded in L%, L% and L™, respectively, so that we have to estimate
1

a(un(t)) — a(u(t)) in H? by Sobolev. Similarly, the terms 97 w(t) are controlled

by |lw(t)]|3,2, and the other factors are bounded by ¢(R) in L*°. For the highest-

order contributions we compute 95 (a(up) — a(u)) with || = 3 using the chain
rule. For these terms we define

ZZ Z 1y, Buy) (1)) — By -+~ By, ) () -

a k=11[;=1
The L2-norm of such W is then bounded by linear combinations of ¢(R) times
hn(0)[10310(2) - - - Oyt o()OF w(B)]| L2 + (|05 0 (E) - - - 0 o () Dy w(t) | 2,

where ¢, = up, —u, m € {1,2,3,4}, |vi| < 3, and |y1]| + -+ + |ym| < 4. This
sum can be estimated by ¢(R)(hy,(t) + [|un(t) — u(t)|/3,2) due to Lemma 2.8 and
the bounds on v and wu,,. We have shown that

T

|Gn,a — ga||2L§L2 < (R, T)(an - fH%2H2 + [Jun — UH%OO?-L? "‘/ hn(5)2 ds
0

# [ 3 1) — oD ).

Iv|=3

We write the last integrand as ||02 (un(s) — u(s))||3. Note that h,(s) tends to 0
as n — 0o since u, — v in L5 and that it is bounded uniformly in s and n. By

dominated convergence fOT h2 ds tends to 0. Summing up, we conclude that

102 (un(t) = u(®)) |72 < e(R, T)en + c(R,T) /0 162 (un(s) — u(s))lI72 ds

for a null sequence (g,). By Gronwall, 93(u,, — u) tends to 0 in C([0,b], L?) as
n — 0o, and so u, — u in C([0,b],H?). Using (2.3) and Lemma 2.14, we infer
Up — u in G3(b).

4) We now look for data to which we can apply steps 2) and 3). Let (vg,g) €
Br((uo, f),d0). We then obtain

lvollzgs < llvo — woll3s + l|uollys < o+ p = 2p < 27,
gl zs(ry < Mlg — fllzsery + Ifllz3(ry < 2p < 27,
9]l o2z < esllgllzs(r) < 2c5p < 2r

Lemma 2.16 thus yields a time 7 = 7(7) and a solution v € G3(7) of (2.16) with
data vg and g, where ||v[|gs(;) < R = R(7) and R > 2F. By part a), we have
v = ¥(vg,9) and T4 (vg,g9) > 7. Fix N € N with (N —1)7 < T < N, set
tp =kt for k€ {0,1,...,N—1} and ty =T.

Steps 2) and 3) show that (2.23) is true on [0, 7] for such v with a constant
¢ = &) and that W: Br((uo, f),80) — G>(7) is continuous at (ug, f). We can
thus find a radius 6; € (0, do] such that [|v—u||gs(;) < 7, and hence [Jv|[gs () < 27,
for all (U07g) € BT((“O) f)> 51)

5) We iterate the above argument. Assume that for some k € {1,. -1}
and &y € (0, do], we have T (vo, g) >ty and ||v — ullgsq,) < 7 for all (Uo, g) €
Br((uo, f), dx) and the map ¥ : Br((uo, f),0) — G3(tx) is continuous at (ug, f).
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It follows [|v||gs(s,) < 27. Since [[v(t)[|32 < 27, step 4) and a time shift provide
a solution & € G3([ty,try1]) of (2.16) with @(t;) = wv(tx) and norm less or
equal R. We can thus extend v to a solution in G3([0,¢,1]) bounded by R
and so T (vg, g) > tx+1. Because of this bound, steps 2) and 3) imply (2.23)
on [0, tx41] with ¢ = &(7) for all (v, g) € Br((uo, f),0x) and the continuity of
U: Br((uo, f),0r) — G3(ter1) at (uo, f). Using the latter property, we find a
radius dx11 € (0,0 such that [lv — ullgs(y,,,) < 7 for v = W(vp,g) and all
(vo, g) € Br((uo, f),0k+1), and hence |[v]|gs(, ) < 27

Induction yields a radius 6 = dn such that for all (vg,g) € Br((uo, f),d) we
have T, (vo, g) > T, the continuity of ¥: Br((uo, f),8) — G3(T) at (uo, f), and
¥ (vo, g)llgs(ry < 27. Moreover, (2.23) holds on [0, T] for u and v = ¥ (vy, g).

6) Finally, we take data (vo, g), (wo,h) € Br((uo, f),d) with solutions v and
w. Replacing u by w and 7 by 27 in step 2), we then obtain the last assertion
in ¢). Also step 3) can be repeated on [0,7] for data converging to (wq,h) in
Br((uo, f), d), since the corresponding solutions are bounded by 47 in G3(T). [

Theorem 2.6 yields finite speed of progation for a solution u € G3(T') of (2.16),
setting A; = a;(u) and D = d(u). We comment on variants of Theorem 2.19.

REMARK 2.20. One can easily extend Theorem 2.19 to negative times (e.g.,
by time reversion). Moreover, in (2.17) one can replace the domain R? x RS of
a; and d by R3 x O for an open O C RS, restricting £ in the supremum not to
each closed ball B(0,r) C R% but to each compact subset of O. One further has
to require that the closure Kg of ug(R3) is contained in O, and the solution u
has to take values in O. Theorem 2.19 is then valid with one modification. In
part b) now T < oo implies that lim sup, ., [[u(t)[/1,00 = 00 or that u(t) leaves
any compact subset of O as t — 7.

Indeed, the proofs are very similar in this more general case. In the fixed-
point argument one chooses a bounded open set V with Ko CV CV C O. Let
d > 0 be the distance between V and 0U. In £(R,T) one then also includes the
condition that [|v(t) — up|lec < d/2 for all t € [0,T] which is preserved by limits
in Lf}o’;‘—[Q. Other steps in the reasoning are modified accordingly. Compare
Theorem 3.3 of [57]. %

As explained in Chapter 1, one can easily apply Theorem 2.19 to the Maxwell
system (1.1) with material laws (1.9) and (1.11). We state the needed assump-
tions in a situation motivated by nonlinear optics.

EXAMPLE 2.21. Let 0(x, E, H) = (e1in(z) E+eni(x, E)E, uin(x)H) be given as
in Example 1.2 and (1.9) with U = R3. Assuming also €1y, fiin € Cg’ (R3, ]R3>X2?7)
and /@gkl € C3(R3,R). Moreover, take J. = o(z,E)E + Jy in (1.11) with o €
C3 (RO, R3*3) satisfying supe <, 050 (-, )|z < oo for all r >0 and 0 < |af <
3, respectively. Recall that for a suitable § € (0,00] and all z, E, H € R? with
|E| < & we obtain Og m)0(w, E, H) > nl. Rewriting the system as in (1.15),
we see that hypothesis (2.17) (modified as in Remark 2.20 if § < c0) is fulfilled.
For initial fields in H3 with |Eg| < §/2 and a current density Jo € Z3(T) for all
T > 0, Theorem 2.19 and Remark 2.20 thus provide wellposedness in H?> of the
Maxwell system (1.1) with the above material laws. O
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2.4. Energy and blowup

In the preceeding sections we have worked with the linear energy estimate
which contains error terms caused by the time derivative of coefficients. (The
space derivatives in C' of (2.5) disappear in the Maxwell case.) These error
terms have led to the inconvenient H3-setting. The time dependence arises since
we freeze a function in the nonlinearities of (2.16). One may wonder whether
this is really necessary and whether it is not better to solve (2.16) based on a
nonlinear energy identity. Actually, this can be done in the semilinear case where
D =¢e(x)E, B = p(r)H, and J. = o(z, E)E under appropriate conditions on
o, cf. [19]. Below we see that this does not seem to work in the quasilinear case.

In this section we first establish an energy equality for J, = 0 and isotropic
nonlinearities

D =i E+ Be(-,|EP)E, B = minH + Bn(-,|H|?)H. (2.24)
Here e, and py, belong to LOO(R:”,R;XUS) for some n > 0 and the maps

Be, Bm: R? x R>9p — R are C', bounded in z € R3 and non-decreasing in
s € R>g. We set u = (E, H) and

. * 2
Alin = (Egn ,u(l)m> ) 5(|U‘2) = <ﬁ€( ,|Zf)| )I3><3 /Bm(7 “8-’2)13><3> )

3

0 curl o

M= <— curl 0 > = ;Aj 9j,  D(M) = H(curl) x H(curl),
j:

where H(curl) = {v € LQ(Rg,R?’)‘ curlv € L?(R® R®)}. The operator M is
skew-adjoint in L?(R3,R%). Maxwell equations (1.1) then become

Otlanu(t) + B|u(®)|®)u(t)] = Mu(t), t>0, u(0)=wuy= (Ey, Hp). (2.25)
Omitting the argument x in the notation, we further define

bi(s) = /O B dr, hy(s) = sBi(s) — Lbj(s).

We have hj(s) > 58;(s) since ; does not decrease and that h’(s) = $B;(s) +

sf3;(s), where B} = 0y3;. We now introduce the ‘energy’ for u = (u1,us) by

E(U) - /R3 [%alinu - U+ h1(IU1|2) + h2(|u2‘2)] dz

Note that £(u) > 3{u||3 if 8; > 0. In the Kerr case €1n = pin = 1, Be(w,5) =
k(x)s and B, = 0, we obtain

Ex (B, H) = /R LEP + 2| B* + L HP] da

Let u € GY(T) solve (2.25). The energy equality &(u(t)) = &(ug) for t € [0,T]
follows from

GE(u) = /R [ Dulan) + By Do+ 205 (fuf)u - O]

:/ 8t[ahnu+ﬂ(|u|2)u] cudx = Mu - udz = 0.
R3 R3
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If B; > 0 we can thus bound squares of 2-norms of solutions (and || E| in the
Kerr case if infx > 0). This is not enough control to pass to a weak limit
in the nonlinearity when performing an approximation argument (which would
typically produce a global solution). One would need an estimate involving
derivatives. Such estimates are not known, and the next result on blowup
indicates that they do not hold.

We first stress that it is well known that the gradient of a solution to (2.25)
may blow up in sup-norm in finite time, see [38]. However in the semilinear case
one relies on estimates in H(curl), so we are interested in blowup in this space
(or at least in H!). Below we give such an example on a domain with periodic
boundary conditions, taken from [17]. Such conditions arise if one truncates a
fullspace problem with periodic coefficients to a periodicity cell. (See [17] for a
weaker result on R3.) We work in the following setting with D = (1+ «o(|E|))E
and B = H. We set a(s) = (1 + a(]s|))s for s € R and assume

a € C?*(R,R), Is_.<0<sp<si: a >0 on S:=(s_,s4),

a//(s)
2&'(8)3/2 ’

q is C! near sg, q(s) >0 for 0< s < s.

q: S —=R; q(s) = has a global maximum at s = sg, (2.26)

Let v > 2 and ag > 0. A simple example for (2.26) is furnished by any C2-
extension of a: [0, s4] = R; a(s) = s+aps?, which is strictly growing on (s_, s4)
for some s_ < 0 < sp < sy with
< 2(y - 2) )#-1
so=|—F—=
apy(y+1)
in this case. We stress that the behavior of a for large s is arbitrary here.
THEOREM 2.22. Assume that (2.26) is true. Then there are numbers M, T >
0 and a map (B, B) € C*([0,T) x [-M, M]?) which solves (1.1) on (—M, M)3
with div D = 0 = div B, periodic boundary conditions and the above material
laws, and which satisfies

lcurl E(t)||p2 w00 as t =T .
We look for a solution of the form
(E(t,z),B(t,x)) = (u(t,z2),0,0,0,0,v(t, z2)).

for x € (=M, M)? and t € [0,T). Observe that such E, B and D = (1 +
af|E|))E are divergence-free. If w and v have support in [0,7) x (=M, M),
then E and B fulfill periodic boundary conditions. Moreover, (E, B) belong to
CY([0,T) x [-M, M]?) satisfy (1.1) on (—M, M)3 with the above material laws
if and only if (u,v) € C*([0,T) x (=M, M)) solve

Ora(u) = 0zv, Oy = Oyu, (u(0),v(0)) = (ug,vo),
for t € [0,7) and = € R. This system can be rewritten as

o, Cf) + A(u,0)d, (Z) —0  with A(u,0) = (_01 ‘“’(0“)1> (2.27)
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on R. Here we assume that u takes values in S from (2.26). Since also dyu =
curl £, the theorem thus follows from the next one-dimensional result.

The following proof uses a standard construction from Section 1.4 of [38].
However, it requires a rather detailed analysis to find a class of initial values for
which we get the blowup of d,u in L? instead of L™.

PROPOSITION 2.23. Assume that (2.26) is true. Then there exist initial data
(ug,v0) € CHR,R?) and a C*-solution (u,v) to (2.27) on [0,T) x R for some
T € (0,00) which is compactly supported and which satisfies ||Ozu(t,-)||L2r) —
©ast—T.

PROOF. 1) We first contruct the desired function (u,v). For (s,z) € S x R,
the matrix A(s, z) has the eigenvalues and eigenvectors

Ma(s,z) = £d/(s)73,  wias,2) = (F1,d/(s)?).
(Recall S = (s_,s4), so and ¢ from (2.26).) In the following we take A = A\;
and w = w; and drop the index 1. Fix (§,() € (so, s+) X R such that

q(s) >0 for 0<s<¢.
Observe that the interval £ —S = (6 —s,,&—s_) contains [0, £]. The C%-function

6i6=S 2 SxR: Gi(s)=€-s dals) =C+ [ ale-n)dr
0
solves the ordinary differential equation

¢'(s) =w(e(s)), s€&—=8,  4(0)=(&0Q).
For later use, we note the identities
VAG(5)) - 9/(5) = VAW(s)) - w(gls) =al€ —s),  s€E-S.  (228)
Let og: R — [0,£] be C? and equal to ¢ outside a compact set. There is a
unique C'-solution ¢ of the scalar partial differential equation
oo (t,x) + Mo(o(t,z)))0zo(t,x) =0, t>0, zeR,
o(0,2) = oo(z), z € R, (229)

on a bounded time interval [0,), where o takes values in £ — S. See e.g. Theo-
rems 2.1 and 2.2 Annex of [38] (a variant of Theorem 2.19). We now define

(u(t,x)) = o(o(t, ).

v(t, )
It is easy to check that (u,v) is a Cl-solution of (2.27) on [0,%) x R. We observe
Opu = ¢ (0)0p0 = —0,0. (2.30)

2) By uniqueness, the solution of (2.29) fulfills the implicit formula
o(t,x) = oo (z — tA(@(o(t, 2)))) = oo(y(t, ),
y<t7 JE) =T t)\((ﬁ(O'(t, .'IZ‘))) =T - ta/(f - U(ta x))il/Q‘

(Note that og(y) satisfies (2.29) as this is true for o.) Hence, o is bounded. We
will need the inquality

LHVA($(o (L)) - w(é(o(t, 2)))oh(z — EA(G(o(t, 2))))

(2.31)
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=1+toy(z — tA(¢(o(t,2))))q(€ — o(t,x)) >0, (2.32)
where we use (2.28). We now set
1(t) = inf oh(u(t,2)a(€ ~o(t,x)) for te[0,0)

Let t9 > 0 be the supremum of ¢ € [0,%) such that 7y(7) > —1 for all 7 € [0, ¢].
In the following, we take t € [0,%p) so that the inequality (2.32) is valid for all
x € R. Equations (2.31) then imply

0p0(t,z) = o) (x — tA(B(0(t, 7)) (1 —tq(€ — a(t,x))u0(t, x)),

oton) — ohlta)
1+ tQ(g_O-(tv x))crf)(y(t, :‘U))
In particular, 9,0 is bounded on [0, tg—0] xR for each ¢ € (0, tp]. We show below
that the maps 9,0(t) tend to oo in L? and thus in L™ as t — tg. The blow-up
condition in Theorem 2.2 Annex of [38] thus yields ¢ = ty. From formula (2.31)
we further deduce 9,0 (¢, z) = o(,(y(t,x))9zy(t, x) and therefore

Ouy(t, ) 1

f y L) =

i L+ tq(€ — o (t,2))op(y(t, x)

In the case o(,(y(t,x)) = 0 the identity 0,y(t,z) = 1 > 0 follows from (2.31).
0

Using also (2.31), we see that the map = — y(¢,x) is a bijection from R to R.
This fact and (2.31) lead to the equation

> 0. (2.33)

1(0) = inf oh(2)al€ — 00(2)) = 0.

3) We now fix a C'-function og: R — [0, &] which is equal to & outside some
compact set and satisfies

00(0) = & — so, a4(0) = gleilga()(z) < 0.

In view of (2.26), we can determine
70 = 0(0)g(s0) and to = —=. (2.34)
Substituting z = y(t,z) and using (2.33), we infer from (2.31) the identities

H@fo(tw)H%Z/Rlaxa(t,l‘)IdeZAlaé(y(tam))axy(t,w)lgdx

Sy R G —
r L+1q(§ —o0(2)) op(2)
Since ¢ has a global maximum at sp while o{, has a global minimum at 0, we
obtain the expansions

q(s) = q(s0) — 0+ (s — s0), 00(2) = 05(0) + 04 (2), o0(z) =€ —s0+0(2),

where o4 (z) denotes any nonnegative function with the property o4 (z)/z — 0
as z — 0. Hence, (2.34) yields

L+ 1q(€ — 00(2)) 0p(2) = 1+ tyo + t[a(s0)0+(2) + 04(2) [0G(0)] — 04(2)?]
=1+t + toy(2)
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for small |z|. Fix a number dy > 0 such that the above identity is true and

log(2)> > £]06(0)]* = co if |2| < 8. For each € > 0 there exists a radius
d € (0,0p] with 0 < 04(z) < €d for z € [—6,0]. We can then estimate
d / 2 0
2
ouott )32 [ DO gy [0 g 20
—s5 L+ty0 +tos(2) 5 L+1ty +ted 1+ tyo + ted

Because of tg = —1/79 =: T in (2.34), it follows
. 200
liminf ||0,0(t,-)||3 > —.
im inf [|0:0 (¢, )ll2 = =
Since € > 0 is arbitrary, equation (2.30) finally implies that
lim inf |0, u(t, -)||3 = liminf || 0,0 (t,-)||3 = +oo.
im inf {|0pu(t, -)llz = lim inf [[Gz0 (¢, -)ll2 = +o0

4) Note that o(t,z) = oo(y(t,x)) = & if |y| is large enough. This fact holds
for some z9p > 0 and all t € [0,T") and || > ¢ because of (2.31) and the strict
positivity of @’ on [0,£]. So u = £ — ¢ has compact support. Fixing

13
(== [ ale-ntrar
0
also the function "
v = C-l—/ a/(f—7)1/2d7'
0

has compact support. O



CHAPTER 3

Background for Strichartz estimates

In this chapter we collect several results from functional and harmonic analysis
needed to establish Strichartz estimates for the Maxwell system. In particular,
we treat the Fourier transform of tempered distributions, Fourier multipliers,
fractional derivatives and Sobolev spaces, and the Littlewood—Paley decomposi-
tion. The latter will lead to more flexible and general product and commutator
estimates which are crucial for the analysis of partial differential equations. In
the last section we discuss Strichartz estimates for wave equations which serve
as background for our investigations of the Maxwell system. Much of this ma-
terial is covered by other lectures. In these cases we partly indicate a derivation
to explain main ideas in the area, but often we just refer to the literature or
lecture notes for the proofs. From now we use C as scalar field.

3.1. Fourier transform and multipliers

It is convenient to extend the Fourier transform to the rather large space of
‘tempered distributions.” To this aim, we first recall the Schwartz space

S=8n={veC®R™)|Vk e Ny, a € Nj': pa(v) = [2|*0%]| 00 < oo}

(|x| stands for the map = +— |z| etc.) A sequence (vy) converges to v in S if
Pk,a(n —v) = 0 as n — oo for all k € Ng and o € Nj*. This limit concept can
be expressed by a complete metric. Recall that S is dense in all Sobolev spaces
WHP with p < co. (See Sections 3.1 and 3.6 in [47] and Section 5.1 of [46] for
proofs omitted here and more information.) For further definitions, let a > 0,
z,y,§ € R™, eiy(z) = ¥, and v,w € S. We define translations, dilations,
reflection, Fourier transform, and convolution on S by

To(z) =v(z+vy), o.v(x)=wv(ax), Rv(z)=uv(-z),
Folg) =09 = 20 F [ eEn@de, @rue) = [ oo - pul)dy

Extensions of these operators are denoted by the same symbols. We do not
list properties of these objects on the level of S, but state them immediately in
greater generality. We only recall that F is a homeomorphism of S and that it
can be extended to a unitary operator on L? = L?(R™) by Plancherel’s theorem.

The space of tempered distributions S* = S}, consists of the continuous linear
maps ¢: S — C. The ‘weak’ convergence ¢, — ¢ in §* means that ¢, (v) =
(v,on)s — p(v) for all v € S, as n — oo. Measurable functions f and Borel
measures p with at most polynomial growth as |z| — oo belong to S*. More

32
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precisely, assume that

/ |flde < ck®,  respectively,  pu(Ag) < ck® (3.1)
Apg

for Ay, = B(0,k+ 1)\ B(0,k), k € N and some ¢, > 0. These objects induce
elements ¢; of §* via

pr(0) = (v fs = [ ofde, respectively,  p,(0) = (v s = [ vdn

for v € §. We also need the vector space and algebra
E=Emn={feC®R™) |VaeNy In,eNy: SUp|>1 |27 (0% f ()] < oo}
of polynomially growing smooth functions. Note that both f € £ and f € L?
for p € [1, 00] satisfy (3.1). Let p € §*, g € £, and a € N{J'. For v € S we define
a) (Myp)(v) = (9)(v) = <v ge)s = (gv.)s = @(gv),
b) (8%¢)(v) = (v,0%)s = (=1)I*(9*v, p)s = (=1)*p(9*),
c) p(v) = (Fe)(v) = <v f@) = (Fv,9)s = o(Fv),
d) (Rp)(v) = (v, Rp)s = (Rv, p)s = p(Rv),
e) (v*¢)(x) = (T_zRv go)s = (17—, Rv) for every x € R™.

One can check that these maps belong to S*. Observe that we multiply and
convolve tempered distributions only with the (very regular) functions in £ and
S, respectively. In view of the following examples and the proposition below,
the above definitions extend the concepts on S in a natural way and allow to
generalize several main properties of the Fourier transform to the space S*.

EXAMPLE 3.1. Letve S, g€ &, a € N, and z,y € R™.
a) Let f € LI _(R™) be as in (3.1). Then M, acts as g = @45 because of

(gp1)(v) = /Rm vgfdr = @gp(v).

b) Let f € WHkP(R™) for some p € [1,00] and |a] < k € N. We then obtain
0%pf = @go s since the definitions and the divergence theorem yield

(0,0%g)s = (=1)!*1 (0%, p)s = (=) | 0% fdw = / 00°f dw = (v, ony)s-

RrRm
c) Let f € L>(R™). Then Fp; = @ry as Plancherel implies

(v, For)s = (Fu,pp)s = /m Of dz = /m vfdz = (v, 05f)s
d) The derivative of the point evaluation d,: v — v(y) is given by

(0,0%3,)s = (=1)1"1(0"v,8,)s = (—=1)/*0%(y) = (~1)ll55 (v).
e) We have F¢, = (271')7%6,13/ because of

(v, Fo,)s = (Fv,8,)s = (2n)" 2 / e W ry(z)dz = (v, (21) " % e_iy) .

m
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f) Conversely, Fe;, = (2%)%53/ follows from the inversion formula via

(v, Fery)s= (Fo,e)s= / (e de=(2m) ¥ (F 1) () = (27)

Assertion f) can also be deduced from e) since F2 is equal to R in S*, too, as
shown in the next proposition (with a similar proof as above).

g) Let f € L'(R™). The convolutions then satisfy v * ¢ = v * f because of

v pp(x) = (T Rv, 0f)s = / v(—=(z —x))f(z)dz = vx* f(x). O

m

m
2

v(y).

We now collect the main properties of the above objects on S*. Observe that
the second part of assertion c) does not work on W2,

PROPOSITION 3.2. Let ¢ € S, u,v €S, a >0, and o € NJ'. The following
assertions hold.

a) F: 8* — S8* is a homeomorphism with F*=1 and F~'=F3=RF.

b) Floap) = a"o1/afp.

¢) F(°p) = 912 F o and 9°(Fp) = (—i)ll Faop).

d) vy €&, and hence v * ¢ induces a tempered distribution.

e) 0%(v* @) = (0%) * o = v * 0%p.

f) Floxp) = (2m)205 and Flup) = (2m) 20 .

9) (uxv)x @ =ux(v*p)

Fourier multipliers a(D) with symbol a are an important tool in analysis and
we often use them below. Let a: R™ — C be measurable and polynomially
bounded. Then a(D)v := F~1(ad) defines a linear map from L? into S*. If a

belongs to &, then we can extend and restrict a(D) to an operator from S* to S*
and from S to S. For two multipliers a,b € £, we obtain the algebra property

a(D)b(D)y = F~}(abp) = (ab)(D)p = b(D)a(D)y (3.2)
for all ¢ € §*. These identities typically hold also for less regular symbols in
adapted settings. For instance, by Plancherel a(D): L? — L? is bounded if and
only if a is bounded, and then [|a(D)||g(r2) = [|lalco-

The LP-boundedness of a(D) is far more difficult for p # 2. Here the basic
result is Mikhlin’s theorem. Let k = | 2] +1, a € C*(R™\ {0}), p € (1,0), and

lallar = supo<jaj<k,e£0 €1*110%a(€)] < oco.

Then a(D): LP — LP has norm less than ¢, p||lal|ar by Theorem 6.2.7 in [23],
where also related theorems are discussed. The Mikhlin condition is satisfied
for 0-homogeneous a in C*. Indeed, the chain rule yields

0;ja(€) = 0;a(|€]7*€) = (95a) (1] )€1 — (Va) (1] 71€) - €&,
and thus the claim for || = 1. This can be iterated. A typical example
is a(f) = &B|¢|7F for |B] = k. Mikhlin also applies to a(¢) = €5(¢)7F with
=1+ |§]2 because of 9;(€)% = s£;(£)*~2 for s € R. In this context we
erte (D)* = F~1{¢)*F, noting that (£)° € £.
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This fractional power of I — A plays a crucial role in the definition and treat-
ment of the Bessel-potential spaces H*P given by

AsP — /HS,P(RW) —_ {SO cS* ‘ <D>SQO c Lp(Rm)}

with norm |[[¢|ls, = [[(D)%¢|lp, for s € R and p € [1,00]. We often write
HS2 = H5. Note that HOP = IP and S C H5P. In the definition of H*
one can replace (D) by (£)°F due to Plancherel. Because of (3.2) the map
(D)=%: HYP — H!'TSP is an isometric isomorphism for t € R. Taking t = 0, we
see that H*P is a Banach space, which is reflexive for p € (1,00) and separable
for p € [1,00), and S is dense in H*P in the latter case.

The dual of H5P coincides with H 5 if p € [1,00). Indeed, the isomorphism
(D)*: H>P — LP has the adjoint (D)®: LV — (H*P)* since

(D) u,v) e = (FHE Fu,v)s = (u, FE) Fv)s = (u, FHE Fo)psn

for u € S and v € L. Here we identify (L?)* and L? in the usual way and use
F~!' = RF = FR in the last identity. Because of the density of S in H*P, the
claim about (D)*® is shown. Since also (D)*: LV — H 5" is an isomorphism,
we can identify (H*?)* and H~5"" by extending the usual LP-L¥ duality.

To use Mikhlin, we restrict to p € (1,00) in the treatment of H*P. Then
(D)~* is bounded on LP for s > 0 and thus H®P < LP in this case. Applying
(D)5, the embedding H*? < HTP follows for t > 7. Actually this remains
true for p € [1, 00| due to Corollary 1.2.6 in [24] and the isomorphisms.

By means of the LP-boundedness of the Fourier multiplier for il®l¢®(¢)~* with
|a| < k and Proposition 3.2, we deduce the embedding H*? < W*P for k € N
and p € (1,00). For the converse inclusion, note that (£)2* can be written as a
sum Z‘ al<k ca&2® and hence Proposition 3.2 yields

(DYfo =F 13" cal™() P =D il (M) TP F(0%)). (3.3)

o<k lo| <k

Since the last Fourier multiplier is bounded on LP, we obtain the equality H*P? =
WkP with equivalent norms.

We thus have the Sobolev embedding H*? < L4 for ¢ € [p, 00) if k— % > —%

and for ¢ = oo if k — % > 0, still assuming p € (1,00). We use interpolation
theory to extend the embeding to noninteger s, and also for other purposes. The
Bessel-potential spaces behave well with respect to the complex interpolation
method. We do not define it, but state its main property.

Let X; and Y; be Banach spaces which are subspaces of vector spaces Z;
with continuous inclusion, where Z; has a metric for which its addition and
scalar multiplication are continuous, where j € {1,2}. Then, for § € (0,1) there
exist Banach spaces [X;,Yj]p — X; + Y, with the interpolation property: Let
Tx € B(X17X2) and Ty € B(Yl,YQ) satisfy Txv="Tyv = Tv forve X;NY.
This map can then be extended to a bounded linear operator T: X; +Y; —
X2 + Y. It has a restriction T': [X1, Ya]p — [X2, Ya2]g with norm bounded by
| Tx ||*~?||Ty||. This theory is discussed in Chapter 2 in [37], for instance.

One can further show that

[HoP(R™), HYI(R™)]g = H"(R™)  with 7= (1-0)s+0t, L =1042 (34)
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for s,t € R, p,q € (1,00) and 0 € (0,1). See Theorems 2.4.7 and 2.5.6 in [68].
In the case s = 0 one just interpolates LP-spaces, where the result is true for
D, q € [1,00] by the Riesz—Thorin theorem, see [37].

LetkEN,k—%z—% andp§q<oo,ork:—%>0andq:oo. We
interpolate the embeddings L < LP and H*? — L7 with § = € (0,1) and
obtain H™P — L" with 1 =1_ kp + L B This yields the conditions 7 — % > —

p
and p < r < oco. The above isomorphisms then imply the Sobolev embeddlng

HWP(R™) < H5I(R™) if 1<p<g<oo, t—72=>s—"0 (3.5)

The same is true with ¢ = oo if we have t — % > s.

The ‘inhomogenous fractional derivative’ (D)® does not fit well to the scaling
x — Az, in contrast to the ‘homogeneous’ symbol |£]°. However, this function is
singular at 0 if s < 0, i.e., when we would expect a smoothing behavior. There
are several ways to deal with this problem, where we take the most frequently
used alternative. (See e.g. |5] for two other approaches.) For test functions,
instead of & we use the space

So={veS|VaeNj: 0“(0) =0}
of Schwartz maps whose Fourier transform vanish at 0 together with their
derivatives. It is a closed subspace of §. For v € Sy Taylor’s theorem yields
|0°0(€)| < (N, a,v) €N for all N € N, @ € NZ*, and |¢| < 1. Hence, [0
belongs to & and vanishes at 0 with all derivatives. We can thus define the
homogenous fractional derivative |D|* = F Y¢S F: So — Sp for s € R.

In a next step we look at the dual Sg containing all continuous linear ¢: Sp —
C. The restriction to Sy of a distribution ¥ € S* belongs to this space. More-
over, for v € Sg and a polynomial P we compute (v, P)s = (Flv, FP)s = 0
since FP is a linear combinations of derivatives of dg by Example 3.1; i.e
¢+ Pls,= ¢ for ¢ € §§. Conversely, Hahn-Banach allows to extend ¢ € &j to
a map 1 € §*. Each extension @9 € §* satisfies

0= (v, 01— p2)s = (F v, Flo1 — p2))s
for all v € Sp, so that F(p1 — ¢2) vanishes on all x € C°(R™ \ {0}). Then
1 — 2 is a polynomial by Proposition 2.4.1 in [23] combined with Example 3.1.
As a result, §§ can be identified with the quotient space &* over the set P of
polynomials. See also §5.1.2 in [68].

We thus have the extensions F: S§ — S* and |D|*: §§ — 8§ observing
that |D|*P(v) = (FP, |§\ F~lv)s = 0 for v € Sp. As in (3.2) we obtain that
|D|**t = |D|*|D|* = |D|*|D|* for s,t € R. For A > 0 and ¢ € S} Proposition 3.2
leads to the crucial scaling property

DP(org) = A" F (601 8) = XMF 01 (WIEPR)) = Moa(IDI). (3.6)

Also, for a € € the Fourier multiplier a(D) leaves invariant Sy and thus Sj.
The homogeneous (fractional) Sobolev spaces are defined by

HoP = HP(R™) = {p € SF | |D|°p € IP(R™)}

with norm [l¢|lsp = [[|D]*¢|lp for s € R and p € (1,00). Again, HE = H2,
HOP = [P, and |D|': H*P — H* PP is an isometric isomorphism. Hence, H*?
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is a reflexive and separable Banach space with dual H =5 in which S is dense.
(Use that Sy is dense in LP by Theorems 5.1.5 and 5.2.3.1 in [68].)

Let s > —m/p’, p > 2, and v € S. Then [£]* belongs to L? (B(0,1)) and
hence [£|*0 to L? + 8. The mapping properties of F~! thus imply that S is
contained in #*? and thus dense.

Arguing as for H*? but now with £*|¢|7%, from Mikhlin we deduce that H*?
is isomorphic to the space W*? of v € & with 9% € LP for all |a| = k.
In sharp contrast to the (inhomogeneous) Bessel-potential spaces there is no
inclusion between H*? and HP for t # s, cf. p.96 of [46]. For s > 0 one has
LP N HSP = H5P since a(€) = (1 + |€]°)(1 + |£]?)~*/? and 1/a satisfy Mikhlin’s
conditions. By duality, we infer that H5P is embedded into H*P for s < 0.

The homogeneous spaces interpolate as in (3.4) via

[P (R™), H9(R™)])g = HT"(R™) with 7= (1-0)s+6t, + = 15048, (3.7)

T

for s,t € R, p,q € (1,00) and 0 € (0,1), cf. §5.2.5 in [68]. Using the above

characterization, one can show that H*? < L for ¢ € [p,00) if k — % = —%.
Compare the proof of Theorem 3.52 in [47], taking f € Sy there. Interpolation

and isomorphism then again imply the Sobolev embedding

Ht,P(Rm) N 'HS’q(Rm) if 1<p<g<oo, t— % =g — % (3.8)

Such an embedding can only be true if the ‘Sobolev regularity exponents’ are
equal, see Remark 3.30 in [47]. Since H*P is contained in L" for some r < oo
if0<s< %, it cannot contain nonzero polynomials and so it is a subspace of
S*. Applying 0% with |a| < k, we see that if s — % < k only polynomials up to

degree k have to be factored out in H5P.

3.2. Littlewood—Paley decomposition

The Fourier transform turns derivatives into multiplication operators via
0% = il F=1(€29). By Plancherel, 9% is thus bounded on L? by Al°l when
acting on functions with supp® C B(0, ). (The Fourier variable is often ad-
dressed as ‘frequency’.) Actually such results are true in LP as shown by the
Bernstein estimates in the next lemma, which show in particular that functions
with bounded Fourier support are smooth. By its part b), for functions with
Fourier support in an annulus around A the norm of k-th derivatives is propor-
tional to A¥. So the first part corresponds to Sobolev’s embedding. Observe
that ||ogv||, = af%Hva for v € LP, p € [1,00], and a > 0 because of the
transformation y = ax. We use the closed annulus A(r, R) = B(0, R) \ B(0, ).

LEMMA 3.3. Let \,r,r1 >0, ro>7r1, 1<p<qg<oo, keNy, ve LP(R™), and
a N with |a|=k. For a constant C' = C(r,r;j, k,m) the following claims hold.
a) The inclusion supp 9 C B(0, A\r) yields ve € and ||0%v||4 < o) anaar V]|
b) suppv C A(Ary, A\ra) yields C'_l)\kHva < max|q|—, |0%v||, < C)\k||va,
¢) One can replace the maz-term in part b) by |||D|*v|, if k € R and the left
term in part a) by |||D|*v||, if k € Ry. If X > 1, the same is true for (D)1

lStatement ¢) has been corrected and improved compared to the lecture.
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PROOF. 1) Let A=1. For a), take ¢y € C°(R™) with ¢=1 on B:=B(0,r).
Since © = ¢0, Proposition 3.2 yields that v = ¢ xv € £ and 9% = 0%y * v with
P = (2%)_%}"_1¢. Estimate a) for A = 1 then follows from Young’s inequality
with % =1+ é - I% € [0,1] and [|0%¢ |, < maxq =, ([[0°Y[|1 + [[0°¢]lo) =: C.

To show part b), pick ¢ € C(R™ \ {0}) with ¢9 = 1 on A = A(ry,r2).
For the lower bound note that there are constants ¢, > 0 such that 1 =
E|a|:k ca(—1)FE2|€|72FiF €. From © = ¢o0, we then deduce

v Zla\:k FH (cal =) €El " 0 F(9™)) = Z|a|=k e * O

for suitable 1o € S < L!. Another application of Young’s inequality yields the
lower bound if A = 1, possibly after increasing C.

Let k € R. The upper estimate in claim b) for | D|* follows from the equation
|D|Fv = (27) ™2 F~1(|¢]¥¢o) *v and Young since |¢|F¢y € S. Similarly, the lower
bound is derived from v = F~1(|¢| Ky [€]F0) = (2m) "2 F1(|€]* o) * |D|Fv.

To derive the estimate in a) for |D|* and k € R, we split ¢ = > i>002i %0
where ¢ has support in A(r/2, 2r) and is equal to 1 around [¢] = 7, cf. (3.9). Let
v have Fourier support in B and set v; =F (095 00) =27/ 0509 for j €Ny, so
that v =3, v;. We also set 0y = F (o) for a map in C2A(r/3,3r) being 1
on A(r/2,2r). Equation (3.6) then yields |D|*v; = 27k12=™g, ;| D|*¢o (D).
The kernel F~1(|¢[¥¢y) also belongs to L” with % = 1—1—%—% € [0,1]. Young and
the transform z = 279y thus imply |||D|*v;|, < c2_kj2_%j|]f}o\|p < 27K o,
since ¢o(D) is LP-bounded by step 1). As k > 0, summation yields assertion a)
for |D|F and A = 1.

2) The case A > 0 is now shown for * and |D|¥ by a scaling argument. We
apply the above estimates to u = 01,\v having Fourier support in B, respectively
A, by Proposition 3.2. The result is a consequence of the identities ||ul[, =
A7 ([0l 10°0lly = A4 9%ully, and [|ID[*vlly = A [[D[Ful,, see (3.6).

3) To treat (D)* in b), we use the cut-off ¢y (£) = ¢o(A71€) and compute

2(DYFv = FTH (&) 01 )ad0) * v = N"orFH(AE) o) x v = fr xv.

Transforming z = Ay, the 1-norm of fy is equal to that of f = F~1((A)*¢y).
Because of the support of ¢g and A > 1 we obtain [|0%((\&)¥¢)||1 < e(N)NF for
|a| < N. Thus one can show ||f||; < cAF as in (3.10).

For part a) we proceed as for |D| decomposing ¢ = Zj>0 095 ¢o and setting

(2m)

(j% x = 02i/x¢0. We now estimate the analogue fﬁ\ of fy in LP. In this norm the

transformation to f yields the needed factor AN = )\%_%. Similar as above,
the p-norm of the resulting kernel f7 is bounded by c(r, k)2~ \¥. Summing over
j >0, we obtain the estimate in s) for (D)*, A > 1 and k > 0. O

In many areas of analysis it is an important technique to decompose functions
into pieces with Fourier support in dyadic annuli, e.g., to control regularity in
a very precise way. To introduce the resulting Littlewood—Paley decompositions
of H*P and H*P for p € (1,00) we fix a radial function y € C*°(R™) such that
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X >0, suppx C {2 < [¢] <2}, x=1on {1 <[ <2}, and x(&) +x(5¢) =1
for 1 < €| < %, see §1.3.2 in [24]. Set x; = 09—, x for j € Z. It follows

DO =1 &#0. (3.9)

The Littlewood—Paley operators are defined by P; = fﬁlxj}". Clearly, x;0
has support in the annulus with radii 2/~ and 27!, We further set Pej, =
ngk Pj for k € Z etc. These operators have the symbol y* = ngk Xj, where
x*(0) == 1. All P; and P<; leave invariant & and Sp so that they are defined
on §* and on S, where Pjp = 0 for a polynomial p. They also behave well on
LP-spaces because of their representation as a convolution operator.

REMARK 3.4. Proposition 3.2 implies that Pjp = (27) ™2 2™ gy1) % @ with
W = F~ly for ¢ € S* and that P; maps 8* into €. Since 1; == 2/™0gy;9) has
I-norm |[|9)||1, the operators P; are uniformly bounded on all LP for 1 < p < oo,
by Young. Replacing x by x", we obtain the same result for Pe;.

The kernel of P; is ‘essentially’ supported near B(0,277) because of
1Y (y)| < en2m(1 + 27|y for N e Ny, yeR™ (3.10)

Indeed, this is clear if 27|y| < 1. Otherwise, take an index k with /m|yx| >
ly| > 277. Integrating by parts, we then compute

1 129 4+ i 1274+
025(y) = /IR g e X© de = | e On(€) d,

m
2

(2m)

obtaining |o4;v(y)| < ¢} /(27]y|) Scl/(1+2j|y\L Then (3.10) follows inductively.
Since 0 < x? € C®°(R™) satisfies X = 1 on B(0,1) and supp x° C B(0,2), we
get the estimate (3.10) also for the kernel (27)™% 27gy; F~1x° of P;.

The Littlewood—Paley operators are almost projections in the sense that
Pj = (Pj-1 + Pj+ Pjp)Pj = FPj and PP, =0 if |[j—k|>2 (3.11)

for j,k € Z, since xjx = 0 and the ‘enlarged’ Littlewood-Paley operator p]
has the symbol x; = x;—1 + Xxj + Xx;+1 satisfying x;x; = x;. There are also
restrictions on the support of the product of frequency-localized functions, e.g.,

for k> j+3: suppF(PjuPy) C A(2F2 2k2) (3.12)

for u,v € S* with 4,0 € L%OC, say. Indeed the above Fourier transform is
proportional to

(€)= G+ xu)(©) = [ ()€ — ) e ()
2k_1§|77|§2k+1
To obtain ¢(£) # 0, we need 277! < |€ —n| < 27F1. The triangle inequality then
yields the claim via |¢| > 281 — 27+ > 2k=2 and |¢] < 2k+1 4 27+ < k42,

These operators allow us to reduce our analysis to frequency-localized func-
tions. They yield an ‘almost orthogonal’ decomposition of H*P as expressed by
the following Littlewood—Paley theorem.
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THEOREM 3.5. Let p € (1,00) and s € R. If v e H>P, we have

1
. 255112\ 2
ol = || (32, 5 227 1B012)
If v e & satisfies ||v]|7,, < oo, then v belongs to HP and vl < cllvll3 -

These results are also true with a different constant if one replaces the above
X by any 0 < x € C°(R™\ {0}) satisfying (3.9).

See Theorem 1.3.8 in [24] for a proof. Note that 0113,
over the p-norms of partial sums instead of ) i We show the norm equivalence
in the theorem for p = 2. Let v € §y. Plancherel then yields

IPjvlla = [[x;dlla < c2™?2  sup  [6] < c(s,v)2 2]
A(20-1 27+1)

< cl|vllgsp-
p

is the supremum

for all j € Z since 0 tends to 0 as || — 0, co faster than any polynomial. Using
Plancherel, (3.9) and (3.11), we compute

2
ol = | [owiafac= 3 | ternlerik ag

J,kEZ

Y 25(j+k)/R XXk |0[*dg SSZQQSjA XX [0 d¢

7,k€Z JEZ
<Zz?8f/ |>zja|2dg:§:228j/ | Pjo|? dz 58/ > 22F| Pl da.
JEL R JEZ R R™ ez

Here we inserted ]3] = Pj_1 + Pj + Pj;1, and the final L%¢%-norm is finite due
the observations above. The converse inequality is shown similarly.

To treat also H*P, we replace the summands P; for j < 0 by P<g with symbol
x". In other words, we use multipliers with the property

O+ X =1,  £eR™ (3.13)

We can then state the inhomogeneous version of the above result (see Theo-
rem 1.3.6 in |24]).

THEOREM 3.6. Letp € (1,00) and s € R. If v € H*P, we have

1
£ 257 | D112 5” <
Jollzp = NPovlly + | (30 22 1P50) | < elivllo

If v € 8" satisfies ||v||5, < 0o, then v belongs to H*P and [[v||sp < c|lv]|5 -
These results are also true with a different constant if one replaces the above

x and X° by any 0<x € CX(R™\ {0}) and 0<x° € C°(R™) satisfying (3.13).

Actually, all tempered distributions can be written as a ‘Littlewood-Paley series.’

PROPOSITION 3.7. a) Let ¢ € 8* and ¢o € S§. Then the series P<op +
>_j>1Pjep converges to ¢ in S* and 3 ez Pjo to @o in S§.

b) Let p € (1,00), s € R, v € H*P, and vy € HEP, The@ the series P<qv +
ZjZI Pjv converges to v in H*P and ZjeZ Pjvy to vg in H¥P. In particular,
Pc,, strongly tends to I in these spaces, as n — 00.
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ProOOF. We focus on the inhomogeneous case. Let ¢ € §*, v € S, and
n € N. We compute

(v, P<pip)s = <<XO + Z:Zl Xj)JrlU’ ¢>S — (v, ¢)s

as n — 00, since the right-hand side tends to F v in S.

For b), we note that P<;, is uniformly bounded on H®*? by Remark 3.4 and
(D)®P<y, = P<p(D)®. So it remains to show the strong convergence to 0 in H*?
of P>p41 = I — P<,, on the dense subset S 5 v. Here we write (D)*Psp v =
(D)7 P51 (D)* . Let ¢ = 1—x!. The operator (D)~ P>, 1 has the symbol
an = (€)"toy-n¢. It is bounded by c2~" and we have e.g.

jan(€) = —&{E)2H(277) + ()12 (27"IENE /1€l

so that [£||Va,| < ¢27™ by the support of ¢. This can be iterated and so
Mikhlin shows that (D)~ P, tends to 0 in B(LP) as required. O

In the next proof we use the (Hardy—Littlewood) mazimal operator

1 m
M(f)(x):ig%ml(B(O,M/B(o,r)U(x_y)’dy’ r € R"™,

for f € LL (R™). It satisfies | M(f)|l, < c(p,m)]| f|l, for p € (1,00] by Theo-

loc
rem 2.1.6 in |23|. Fefferman and Stein showed the vector-valued variant

H (ZjeZM(fj)z); p < ¢(p, m)H (Zjez ‘fj‘2)§

for f = (f;) € LP(R™,¢?) and p € (1,00), see Theorem 5.6.6 in [23]. Corol-
lary 2.1.12 of |23| combined with (3.10) and the comments after it imply the
pointwise bounds

(3.14)

p

|Pefl <ceM(f)  and  [P<ypf| < eM(f) (3.15)
forall k € Z, f € Ll _, and ¢ = c(m, x).

We will use the Littlewood—Paley series in the following product and com-
mutator estimate which are crucial for later investigations. They considerably
improve Lemma 2.8 and Proposition 2.7. The proof of the first result follows
that of Proposition 3.3 in [14].

PROPOSITION 3.8. Let s > 0, r,p2,q1 € (1,00), and p1,q2 € (r,00] with
1= p%_ + é fori € {1,2}. Assume that u € LP', |D|’u € LP?, v € L%, and
|D|*v € LT. We then obtain uv € L™ for some 9 € (1,00], |D|*(uv) € L", and

D (o)llr S M[llpy [P 0llgy + 1D ullps [[0]lg, - (3.16)
Here one can replace |D|* by (D)*.

PROOF. Let p1,q2 < 0o so that we can use the Littlewood—Paley decom-
position freely. See Theorem 1.1 in [42] and Proposition 2.1.1 in [66] for the
remaining and also other cases.

1) We first show that w € LP and v € L% for some pg,qo € (1,00) with
p% + q% = % € (0,1), and hence we can apply Hélder to products like uv € L
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below. We are done if = 4 L > < 1. Ifeg s— 2 = —1 <(, then the Sobolev
p1 p2 Po

embedding (3.8) shows that u € LPo with pg € (1, oo). In this case we obtain
et et <ir<l

by assumption. Otherwise, we have o = s — pﬂQ > 0 and analoguously for ¢;.

One can now choose 0 € (0, 1) with 0o — (1 — 0)% = _pmo for some pg € (p1,0)

satisfying p% + q% < 1. The interpolation result (3.7) then yields u € H™? with

L= % and 7= 0s. Since 7 — 2 = 0 — (1 — )™ = —2 Dy (3.8) the

P ph
function u belongs to LPO.

It suffices to establish the homogeneous case as the inhomogeneous one follows
by adding the estimate for s = 0 which is just Holder. To use (3.17) under our
assumptions, we first restrict to u and v having a finite Littlewood—Paley series.

2) We abbreviate Q = P<p_3 and set Pk = P, 9+ -+ + Pyyo. Formula
(3.12) leads to QruPyv = Pr(QruPyv). Using Proposition 3.7, we can write

uv:ZkaQku—i—Zka Z Pju + Z Pju Piv

ke kez i>k+3 li—k|<2
= ZPkU Qku—l—ZPquﬂ)—l— Z Pju Ppv
kez jez li—k|<2

= PP Quu)+ Y Pi(PuQu)+ Y PuPw. (3.17)

keZ JEZ li—k|<2
To compute ||| D|*(uv)]|, be means of Theorem 3.5, we have to apply 2°/ P, to
the terms in (3.17) and form a square sum. As in (3.11) we obtain PP, = 0 if
|k — 1| > 4 and, with fr = Prv Qyu,
+3

> PPufi = PP1fi-s + P(P—1 + P) fi-a + PP(fic1 + fi + fia)
k=13

+ P(P,+ Pry1) fivo + PPy figs

~ 142 142
=PP Y =P ) |n
k=1-2 k=1—-2

3) By (3.15), (3.14) and Theorem 3.5, the first term in (3.17) then leads to

(b <[ [ X Ipmw o))

IEZ

& H(Zlez 2l M P Ql““)‘Q)% e H (ZkeZpSkka Q| )
< H( o 2 PP M )2>% - HM(U)<ZIC€Z|2Skka|2>§Hr
(X, 2 pf)’

The second summand is estimated in the same way. For the last term, observe
that P(PjuPyv) = 0if |j — k| < 2and [ > 4+ jVk with j VE = max{j,k}

ZPsz Prv Qpu) ’ }

T

[NIES

< [|M ()]l

S [lellp: 11D llg, -
q1
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since F(Pju Pyv) C B(0,27V**+2) in this case, cf. (3.12). Substituting j = k — i,
k=14 m and [l = n — m, we deduce as above

(2] = newrafT], < |[S2( = 1acunol)]

N

r

ez ioR<e I
= [Zlez<zli|§2 Zmz—s QSI}MP”’”WP’*’”U)')ZF ,
S Zmz—5 ZIZ‘IQ [ZZez‘PZ(BW—Z'MSZP’WU)‘QF ,
S Zmz—5zlvz|s2 Q_Sm(znez (M(Po-iu2™ Pov) )2>;
s ZmszZszm(Z [Bniuf* 257 | Py ”’2)é
.

< —sm 2sn )

e e (X, M2 2" P
1

< M(u)(znez228n|P”v|2>2

also using the generalized Minkowski inequality Proposition 1.2.22 in [26].

Sl N1DPolly

4) So far we have shown (3.16) for uy = Ryu and vy = Ryv for N € N with
Ry == P<nP>_p and constants independent of N. Proposition 3.7 shows the
limits uy — w in LPO N LP') |D|*uy — |D|*u in LP?, vy — v in L% N L%, and
|D|*vy — |D|*v in L?. So the terms on the right-hand side of (3.16) tend to
those without N as N — oco. For the left-hand side we note that ¢ % (uyvy)
converges to ¢y * (uv) in L™ as N — oo since 1 € L', cf. Remark 3.4. Passing
to a subsequence, all summands Pj(uyvy) tend to Pj(uv) pointwise a.e., and
analogously for their finite square sums. Fatou’s lemma and (3.16) then imply

el =g [ 20T

ll<L r

1
2

228l ‘-F)I(UN'UN) ‘2i|

< sup hm inf

LeN N—oo H |: lI<L r

1
< hmlnf H { 225[|PZ(UNUN)|2} ’
,

S Hu\lpl IHD!Svllql + D Pullps [[v]lgs - O

The proof of the commutator estimate is taken from the more general Theo-
rem 1.4 in [42], where also a modified result is shown for s > 1. This type of
inequalities goes back to Kato and Ponce. The argument in [42] relies on the
following observation. Let 0 < ap < min{2°*A4,27%%B} for all k € Z and some
a,,A,B > 0. For p € [1,00] and a = (ax), we then obtain

8 ey
lallpy Sa,p A®FF Ba77. (3.18)
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Indeed, we have 2°*A < 27F*B if and only if k < ln(B/A)((a + B)In2)~!
—pB
Splitting »°, af at this value, we get the bound cA?P(B/A)a+5 ath c¢BP(B/A) s

if p < 0o, which is the desired one. The case p = oo is easier.
PROPOSITION 3.9. Let s € (0,1), r € (1,00), p,q € [r,00] with % =
Assume that a € WP and v € LY. We then obtain

(D) (av) — a(D)™wllr < [{D)*allpllvlly + [ Vallp (D)~ vll,.

PROOF. Again we restrict ourselves to p, ¢ < oo, see Theorem 1.4 in [42] for
the other case. In our setting we can derive the inhomogenous version of (3.17)
from Proposition 3.7 since Holder, Lemma 3.3, and Remark 3.4 yield

SN PwPall, £33 ol 2 VPl < lalhllvll > Y 27

EEN j>k—3 kEN j>k—3 EEN j>k—3

—k
Slalliplivlg D27 S llallpllvllg-
keN

We thus have (3.17) for av and a({D)*v, apply (D)® to the first equation, and
subtract the second one, resulting in

[(D)*,alv = [(D)*, QualPrv + > _[(D)*, PealQrv + Y _[{D)*, Pra] P
keN keN keN
+ [(D)®, P<ia]P<iv — [(D)®, Pia]Pyv =: S1 + S2 + S3 + S4. (3.19)

Here we have redefined Qp = 25;13 P; and analogously P.. As in (3.12) the

Fourier support of P<ja P<jv is contained in B(0,8). Hence Lemma 3.3 and
Hélder show that ||Sal|,» < |lallpl|v]lg- In a similar way we compute

I(D)*,Pral Pollr < (D) (PsaPro)lly + || Pra (D) Pyoll,
S 20| Pea ol + || Peallp 2202 | Prollg S 2°% | Prallp | Prollg.
Using Bernstein again and Remark 3.4, we redistribute the weights to obtain
I(D)*, Pra] Poll, < min {2707 Val, ollg, 207 [(D)*all, [ (D) vlly }-
Estimate (3.18) with p =1 and a = f = 1 — s then yields
1
15ll, < D~ I(D)*, Pral By S (IIVallyllollq )2 (I(D)*all, (D) v]l,)?

keN
S IVallp (D) vllq + (D) allpllvlly-
For S, Proposition 3.9 from [42], Lemma 3.3 and Mikhlin show
ap = |[(D)%, Qral Prolly < 207V VQpallp || Prolly
S DY Qu(D)all,p [(D)* " Prolly S 21 I(D)allp 1(D)* vl

(Note that we can estimate (D)!~*Q} by means of Lemma 3.3 since 1 — s > 0.)
On the other hand, we obtain

1 1
DEVQuallp S 22D ValZ (D) all3
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similarly, and hence
. —s s s— _l(1_s 1 s 13
ar S min {207IF(D)%all, [[(D)*~ ollg, 2721 7% | Val |3 [(D)*alF [[v]lq}-
From (3.18) with « =1 — s and 8 = (1 — s)/2 it then follows
1 1 1 2
151l S (KDY allp [I{D)* " ollg)® (IIVall3 (D)% all3 [[vllq) *-
2 _
= (IKDY*allpllvllg)® (IVally (D)~ ollq)
< IVallp [{D)*~ vllg + D) all, | vllq-

The remaining term is expressed by

Sy = (D)*(PraQyv) — Y Pra (D)’ Qv =: Sa1 + Sao.
keN keN

ol

Proposition 3.8 and Lemma 3.3 imply [|So1|, < 25| Prall,||Qkvlly- As above
Bernstein yields

1Pallp, S min {27 |(D)*all,, 27" Val» }

. _ _ 11 1 _ 1
1Qrvllg S min {207¥||(D) ol 220 [o]|F |[(D)* o]l },
leading to

1 —S S S— _1 —s S— 1 1
1921]|, < min {207* (D) all,|[(D)* " v]lq, 272 ¥ Val, [(D)* ol [[v]1§ }.
Using (3.18), we conclude

1 11
1S21llr S (IKD)*all[[(D)* ollg)® (IIVallpl[(D)*~ oI5 [[vll)
S IVallp[{D)* " ollg + [KD)*allp | v]lq-
Applying Holder, we obtain similarly
1Pra (D)*Qpolly < min {207 |(D)*all,|[(D)*~ v]lg, 27 ¥||Val|, o]l }-

Hence, S5 can be treated as Sj3. O

2
3

REMARK 3.10. To deal with the case p = co in Proposition 3.9, let v € L™
and s € (0,1). Then it is known that v € CJ(R™) if and only if ||Pjv||e <
C27% for j € N, and then C = cllvllcg. Moreover, this estimate holds for
s =1if v € Wh(R™). See §A.1 in [65]. The geometric series then implies
| P>kv]loo < CQ_SkHUHle. By Lemma 3.3 we have [|[(D)*Pjv|leo < 2% || Pjv||oc-

Let a € Cy(R™). Proposition 3.7 yields (D)*a = (D)*P<oa + _;51(D)°Pja
in §*. Estimating as above, we deduce ||(D)%a||oc Ss HaHCi” for 6 > 0. O

From Theorems A.8 and A.12 in [34] (which contains more general and precise
results) we deduce the following homogeneous version which is more flexibel than
Proposition 3.9, though o = 1 is not admitted. The proofs in [34] use a similar
approach as in Proposition 3.8. Since they are quite lenghty, we omit them.

PROPOSITION 3.11. Let s€(0,1), 0 €0, s], r,p2,q2 € (1,00), and p1, ¢1 € [r,o0]
with % = i + % forie {1,2}. If o = s, we can admit g = co. We then obtain

I1D[*(av) = al DPollr S [|DFallp, [0llg + DI allp, D~ ]lg,
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3.3. Strichartz estimates for the wave equation

Before we study Strichartz estimates for the Maxwell system, it is important
to recall corresponding results for the standard wave equation on R™ and dis-
cuss basic methods in this simpler case. Our treatment largely follows parts of
Chapter 5 of [46]. We investigate the wave equation

OPu = Au + f, u(0) =wug, Owu(0) =uy, ted, zeR™  (3.20)

for m > 2, an interval J of positive length containing 0, and given initial maps
ug,u1: R™ — C and forcing f: J x R™ — C. Here u may represent the dis-
placement of a vibrating object, the pressure, or a component of electromagnetic
fields in vacuum.

One derives a solution formula to this equation taking the Fourier transform
in z € R™ (at first formally), which yields the ordinary differential equation

ofa(t, &) + [€Pat, &) = f(£,9),  a(0,8) =w(§), a(0,€) = ui(§),
for fixed £ € R™. It is solved by

t
t,) = cos(ETE) + sin(te) fa(e) + [ sin((e = 7))y fr ) ar
If we apply the inverse Fourier transform, we are led to the Fourier multipliers
C(t) = F leos(t|¢|)F, S(t)=F tsin(t|¢])F, Sc(t) = F Lsinc(t|¢])F
for t € R. They map L? into S* for all s € R since the symbols are bounded,

they leave invariant Sy and thus S, and they are uniformly bounded on ‘H?® and
‘H? by Plancherel. We obtain the solution formula

¢
u(t) = C(t)ug + tSc(t)us —|—/ (t —71)Sc(t—7)f(r)dr, teJ, (3.21)
0
which implies the expressions

|D|u(t) = C(t)|D|ug + S(t)us + /t S(t—7)f(r)dr, ted,
° . (3.22)
opu(t) = —=S(t)|D|ug + C(t)u; +/0 C(t—71)f(r)dr, ted

Proposition 5.6 of [46] shows that for ug € H', u; € L?, and f € LyL?
formula (3.21) provides the unique solution u of (3.20) in C/(J,H') with dyu €
C(J,L?) and du € C(J,L? +H'). In [46] the case m = 2 is excluded for the
homogeneous spaces because of the definition of H* used there. However, the
arguments there also work for our case. In H!(R?) one only factors out constant
functions. By means of the isomorphism |D|!'~* we obtain a unique HE -solution
in ue C(J,H?) with yu € C(J, 1) and d2u € C(J,H*~' + H*~2) for data
up € H5, up € H¥ 1 and f € L}]’Hs_l. Here one can omit the dots.

We note that w is real for real data ug, ui, and f in the above spaces, since
then Im wu solves (3.20) with 0 data and thus Im u = 0 by uniqueness. Moreover,
(3.22) imply the ‘energy’ estimate

106, IDDu@®)llz2 < c(ll(|Dluo, ur)llz2 + 1/l L1 2), (3.23)
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for t € J, say with ¢ > 0. We stress that the map (up,u1) — u(t) is just
H! x L2-bounded, whereas f — u gains one derivative and uniformity in time.
Since |&x| < [€], the left-hand side dominates ||Vu(t)||2 by Plancherel. In (3.23)
one can also multiply all functions by |D|* or {D)* with s € R. For the L?-norm,
(3.21) only yields the non-uniform estimate

)Lz < lluollrz + [t[llurllz + [¢[ 1 Fll 2y z2-

For nonlinear problems one often needs to control the LP-norms of solutions.
Here this can be obtained to some extent using dispersive behavior.

REMARK 3.12. Let £ € R™\ {0} and ¢ € C?(R,R). Then the ‘plane wave’
we(t,x) = B(t)e €7 solves the differential equation (3.20) with f = 0 if and
only if ¢” + [£|?¢ = 0. So one obtains e.g. the solution

wg(t,:c) :anp(i|€’(t_$'§/’£D)v a>0.
For ¢t # 0, we have we = a if and only if z = t£/|¢|, and hence the plane waves
travel in different directions £/|£]. As a result, superpositions of the functions
we (‘wave packets’) disperse. This behavior is not present in space dimension
m = 1 since, e.g., the solution u(t,z) = $(uo(z + t) + uo(z — t)) of (3.20) with
u; = 0 and f = 0 just exhibits transport.

There are several ways to quantify the effect of this phenomenon, where we
focus on ‘Strichartz inequalities.” To state them, we need time and space expo-
nents p, ¢ € [2,00] and a regularity loss parameter v € R. Such numbers form
an admissible triple (for m > 2 and the wave equation) if

2 m-—1 m—1 1 m m
. < -

< , 4+—=———, form=3: (p,q,7) # (2,00,1). (3.24
e R (,0.7) # (2,00,1). (3.24)
We call a triple strict if the first relation in (3.24) is an equality. In this case
we have v = p(’fntl). Otherwise the regularity loss p(rfntll) < v < % is larger.
So except for p = co = g and thus v = 3 the space 7 is contained in S*, and

it always contains S as a dense subspace. By duality, ™7 < S* in all cases
and S is dense in H~7 for v < . The loss v is positive except for the energy
case (00,2,0), which is the ‘trivial endpoint’. This is the only strict case with
p = oo, whereas the only strict triple with ¢ = oo is (4, oo, %) ifm=2 asp>2.
For m > 3, there exists the (strict) ‘critical endpoint’ p = 2, ¢ = 22;”—::13 and

v = 2(72;11) < 1. We now state the Strichartz estimates for the wave equation.

THEOREM 3.13. Let (p,q,7) and (r,s,0) be admissible, ug € HY, uy e L2,
and f € LZ},”HQ’SI, Then the solution u of (3.20) satisfies

DI (1D, )ull o < C (11Dl un)ll g2 + DI £l o) (3.25)

for a constant C > 1. If ¢ = 2, then (|D|,0¢)u belongs to CrL?. For q¢ = co or
s = 00, the estimate has to be modified as in Remark 3.1/ a).

We refer to e.g. Strichartz [60], Ginibre—Velo [22], Lindblad—Sogge [36], Keel-
Tao [33], and also [54] and [61]. Keel and Tao developed a general approach to
Strichartz estimates and settled the non-trivial endpoint cases.
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In (3.25) the parameter v measures a loss in regularity for the map (ug, u1)
u and a reduced gain of 1 — -y derivatives in the map f — wu, compared to the
energy estimate from (3.23); i.e., the case (p,q,7) = (0, 2,0) = (r,s,60). Thus
the Strichartz estimates trade regularity and boundedness in time to improve
spatial integrability (and to obtain some decay as |[t| — o0). More precisely, for
ug € HY, up € L2 and f € LbLQ, Sobolev’s embedding, (3.23) and admissibility
imply that the solution w of (3.20) belongs to Lgoﬂl_v_%’q, whereas (3.25)
yields Lg?-'[l_%q. Later we focus on the energy case (1, s',0) = (1,2,0) on the
right-hand side which often suffices for applications, cf. Theorem 5.17 in [46].

We provide most of the proof below in various steps except for the harder
critical endpoint. We first discuss Theorem 3.13 and versions of it.

REMARK 3.14. a) In (3.25), one has to replace the spaces L>°(R™) and
LY(R™) for ¢ = oo and s = oo, respectively, by the homogeneous Besov spaces

BSO,Q ={v e Sy |(Pw) € *(Z,L™)}, 332 = {ve S| (Pw) e *(Z, L")}

with their canonical norms, see Chapter 5 in [68]. (One defines Bﬁ g forp,q €
[1,00] and a € R analogously, replacing Pjv by 2%/ Pjv and using LP and ¢4.)
However, in the strict case the space exponent oo only occurs for the triple
(4, 00, %) and m = 2. Since the proof of Theorem 3.13 is reduced to strict triples
by means of Sobolev’s embedding, these Besov spaces rarely occur below.

b) Tt suffices to prove (3.25) for J = R. Indeed, on the left the norm in L* L1
is dominated by that in L L7, and we can use the 0 extension of f from J to R
which has the same norm and produces the same solution on J.

¢) In (3.25) contains energy norms on the right (if (r/, s’,0) = (1,2,0)). Since
(3.20) has constant coefficients, one can easily ransform (3.25) to versions on
every regularity level. Let k € R, ug € H11%, uy € H”, and f € L§ﬁ9+“’s/. Set
vo = |D|fug, vi = |D|"uy, and g = |D|*f. By (3.2), for these data (3.20) has
the solution v = |D|*u. Applying (3.25) to it and using (3.2), we derive

D" (1D], de)ull o < C(INDI"(1Dluo, u)llzz + DI fll ) (3.26)

with the same modifications as a). By |D|™", one sees that (3.26) implies (3.25).

d) The multiplier & |¢|~! satisfies the Mikhlin condition, so that 0|D|~! is
L9-bounded and in (3.25) and (3.26) one can replace (|D|, 9;) by (V,0¢) = V.
This also works for ¢ = 0o because of part a) and Theorem 5.2.2 in [68|. O

Most of admissibility asssumptions in Theorem 3.13 are necessary.

REMARK 3.15. a) The equality in (3.24) is needed for the Strichartz estimate
with f = 0, which can be seen by a scaling argument. Let u solve (3.20) with
f=0and (up,us) # 0. Then also uy(t,z) = u(\t, \z) is a solution with initial
values oyug and Aoyug, for A > 0. Let (3.25) hold for (p,q,7) € [1,00]? x R.
By the transformation rule and (3.6), we conclude

1 _m

N IDIT (D), 0ull e = A N(DITT (DL 0 w) (A M)l g 1o
= 1D (D], 8e)unllpz e < Cll([Dloruo, Aoyur)| 2
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= CAlloa(IDlug, 1)l gz = CA'™ % [[(|D]ug, un )| 2-

Letting A — 0 and A — oo, we infer %—1—% =% —7 fug =0 = u, the
Strichartz estimate holds for a wider range of exponents, see e.g. [21].

b) The inequality in (3.24) is necesssary for Theorem 3.13 because of Knapp’s
example: Let e € (0,1], 2’ = (22,...,Zm), Re = [1,2] X [—¢,e]™7!, and ¢ =
F Mg, (which belongs to H* for all k¥ € N). The H?-solution of (3.20) with
ug = ¢, up = —i|D|p and f = 0 is given by

u(t,z) = (2m)" % / e te il de = Fl (e p,),
see (3.27). By means of Plancherel, we first estimate (with [£| = |£|2)

11D]ll3 = / €2de < (m + 3A(R.) = (m + 3)2m—1em-L,

R

To obtain a lower bound for u, we fix Kk = %arccos% > 0 and define

Se={(t,z) € RHm’ D] < ke 2, |z —t| <k, 21 < ke '}
Let (t,x) € S: and £ € R.. We aim at the inequality
7 <Re @ E=lElt) — cog [(z1 — )& + ' - & +t& (1 - [€]/&)].

This lower bound is true since the definitions of S. and R. imply

e 1) <

by a standard estimate for the square root. Let £ = LP(R, L9). We infer

Dl = | F (g e "R g = c H ‘ /R e el déH

>CH/ Re el(@¢— €1 df‘

for some constants ¢ > 0. On the other hand, estimate (3.25) yields

|| D]~ Vu||E<ca 7 foralleG(O,l] sothatmTfl—%—mTAZO.

c) The last condition in (3.24) is needed due to an example by Stein, see
Exercise 2.44 in [61]. The inequality in (3.24) already implies that ¢ > 2 and
p > 2if m < 3. For m > 3 the condition p > 2 can be justified by a more
complicated argument, see [33]. ¢

K
I[...]] §2m+gs+

LPLY

_m=1 _2
> AR s, pppa = c™ e @ e

Lqu (Se)

The solution operators C'(t) and S(t) in (3.22) are inconvenient since they do
not form groups. But one can easily express them by the half-wave group G(t) =
Pl = F1etllF for t € R. As C(t) and S(t), the operators G(t) map L?
into §* for all ¢ € R, leave invariant Sy and S, and are uniformly bounded and
strongly continuous on H* and H*. (Ube Plancherel and dominated convergence
for the last point.) We set (G %4 f)(t fo (t — 7)f(7)dr. Observing that

C(t) = 3(G()+G(-1), S(t) = %(G(t)—G(—t)), G(t) = C(t)+iS(t), (3.27)

we next reduce the wave problem to a first-order one.
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Let f € L (R,?—Ze’sl) for an admissible triple. Then the above convolution
and the Duhamel terms in (3.22) are defined in o (in L? if r = o), where
1 m

G(-) is strongly continuous. Indeed, admissibility yields § — % = —- — 3 and

s’ < 2. Sobolev (3.8) then implies H?* < T if s < oo, where H% < L2 if
r = oo. If s = 0o, one has the same embeddings for B?,Q by §5.2.5 in [68] and
the equality 33,2 = H for a € R.

LEMMA 3.16. In the setting of Theorem 3.13, estimate (3.25) is equivalent to
DI GOellpre < clieliz and [[1DI7 G fllzpra < ell[DIfll o (3:28)

for o € L? and f € L' (R, H?*"). These inequalities are equivalent to
P GOellppe < ellDellzes 1D Gt fllpra < ellfll pyrggo s (3:29)

fork € R, ¢ € H®, and f € L" (R, H+™5). (For ¢ = 0o or s = oo we have
modifications as in Remark 3.14 a).) Moreover, for ¢ = 2 the second part of
(3.28) implies the addendum in Theorem 3.15.

PROOF. The first part follows from (3.27) and (3.22), as the estimates for
G(t) and G(—t) are equivalent by the transformation ¢ — —t. The second
statement is shown as in Remark 3.14c). For the addendum, we note that
G * f is continuous in L? if f € C.(R,Sy) C C.(R, L?). Since the former space
is dense in Lﬁg?—le’s/, cf. Lemma 4.8 in [46], by approximation we obtain that
Gx*feCrL?if f e Lfé?—la’s/. For s = 0o one argues in the same way, using
Theorem 5.1.5 in [68]. Equations (3.27) and (3.22) then yield the last claim. O

The first inequality in (3.28) or in (3.29) is called ‘homogeneous,” the second
one ‘inhomogeneous’. We note that parts a) and b) of Remark 3.15 can easily
be transferred to the half-wave case. We next reduce (3.25) to the strict case.

LEMMA 3.17. Let (3.28) hold for all strict admissible triples (p,q,7) and
(7,5,0). Then it is true for every admissible triples (p,q,v) and (r,s,0).

PROOF. Let (p,q,) be non-strict admissible. The numbers
1 1 2 1 m 1 m

=T N T e O
¢ 2 pm-1)" ¢ 2 p g
yield a strict admissible triple (p,, 7). (Note p > 2 if m = 3.) By admissibility
m

we have v — 4 = - % > 0. If (p,q,7) is strict, we set (p,q,75) = (p,q,7). We

define (r,3,6) analogously, with 6 — 0 = T — 5 <0if (r,s,0) is non-strict. It
is enough to show (3.29) for k = .

First, let ¢q,s < oo. The Sobolev embedding (3.8) and estimate (3.29) for
(p,d,%) and (r, §,0) then imply

5 g
Gt fllzgra < elllDIG %y fllzzra < DI o

60 0 0
= cC[IDI" P IDP T f |y por < cCNDITf
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If infinite space exponents occur, we look at the frequency-localized piece

uj = PjGxy f = G+, (P;f) for j € Z. Bernstein’s Lemma 3.3 and (3.29) yield
ym_m . P
lusllzgre < 25 ugllpg e < elllDP sl 10 < cCHDP TPl
(5 -3 +0 +6
< cCPE DD, f] 1y < CAPDI ]

We square this estimate and sum over j € Z. For p € (1,00), the generalized
Minkowski inequality and Littlewood—Paley yield 3272 — LPif p > 2 and
LP — 32,2 if p < 2, since e.g.

1 1
o ) 2\ 2 . 2\ 2
lollee = [ (3, 108) || < (3, 1P012)

if p > 2. Similarly, using ¢,p > 2 and 2 > 7/, s’, we deduce

1 1
2 2 0,12 2

1G %+ Fllzgna S NG Fligo, <[ D IsllEpia] * S| DIBIDP TSI,

JEZ. JET
0 0
S DI fll o, S WDl o
s!,2 R

where the first or final step is omitted if ¢ = oo or s’ = 1, respectively. The
homogeneous estimate is treated in the same way. g

In the next result we show that the two parts of (3.28) are equivalent by means
of a “I'T™*-argument’. One could formulate the equivalence in greater generality,
see |33], but we stick to our setting to simplify a bit. We first introduce some
notation for admissible triples (p, q,7) and (r, s, 6).

We write Y = H ™79 and Y, = HV? if ¢ € [2,00) as well as YV = Bo_j2 and
Y, = 312 if ¢ = 0o0. These spaces satisfy Y* =Y, if ¢ < co and Y =Y in both
cases by the previous section and §5.2.5 in [68]. Hence, Y, is a closed norming
subspace of Y*; i.e, [[v]ly = supy,, <1 [(v, u)y|. We further set E' = LYY and

E, = L%Y*. For ¢ < oo we have B} = F and E* = E, if also p < oo because of
Corollary 1.3.22 in |26]. Otherwise, E, is a closed norming subspace of E* by
Proposition 1.3.1 in [26]. For the triple (r, s, #) the same results hold with the
notation Z and F' instead of Y and FE. . ‘

To simplify notation, in the following we equip the duality pairing H* x H~¢
for & € R with the extension of the complex L2?-scalar product, so that the
adjoint of G(t) is G(—t). We further set

Go=Gl)p. S = [ Gt ¢/ =G
for ¢ € HO‘ or f € C.H™. A priori the ranges of these operators are CrH®, H™
and CrH®, respectively, by the strong continuity of G(-) on H®.

LEMMA 3.18. In Lemma 3.16 the two statements in (3.28) are equivalent for
admissible triples with v’ < p.

PROOF. We use the notation and properties discussed above.
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1) Let ¢ € Hr < Hr <> Y and g € Ce(R,Y,). Since Y, < H~ » as noted
before Lemma 3.16, by means of the above observations we compute

(¢.50)) = [ (0. G=0a(0)y dt = [ (Gpg(0)y dt = Gpg)e (3:30)
in the duality of 7 and 1 7. By density (cf. Lemma 4.8 in [46]), the bounded-
ness of G: L? — EF and S: F, — L? are equivalent, and S* = G if ¢ < co. (Here
we can replace E by F.) E.g., let S be bounded. Then [(Gy, 9)r| < ¢||¢ll2]l9] E. -
Taking g with support in a compact J, we obtain [|Gp||rr(sy) < cllpll2. The
boundedness of G follows by Fatou and density.

2) Next, let g € EY = {g € C.(R,Y.)|g(R) C So} and f € FY. Also E? is
dense in E,. Similarly as in step 1), we derive

erae= [ ([ Gwacnieilsn), @ 331
_ /R /R G(=1) F(1)|G(=)7(t)) ;o dr dt = (SF[Sg) 12

First, let S: E, — L? and S: F, — L? have norm less than S. Using density
and Hahn—Banach or the above comments, we conclude

ICfle= sup  [(Cf.g)el < S?|fllF.-
9€EY |9l e, <1
By density this is true for all f € F,. Conversely, let C: E, — E be bounded.
With f =g € E?, identity (3.31) yields the continuity of S: E, — L? via

ISFII72 = (Cf, f)e < IICIHIFIIE. -

We have now shown that the validity of the first part of (3.28) is equivalent to
the boundedness of C: F, — F, both for all admissible triple. By the following
proposition, these facts imply the boundedness of the ‘full” half-sided convolution
Ci: Fy — E. If t > 0, it is equal to G x4 f(t) for the 0 extension f of fIr,.
The case t < 0 is then treated via the transform ¢t — —t.

Conversely, let the second part of (3.28) be true. Take f € F, with compact
support, say in [a,b]. In this case we have (C+f)(t +a) = (G *+ f(- + a))(?),
and so C;: F, — FE is continuous by density. As above it also follows that
(Cif, 9V ={(C_g,f)rfor ge E?, f € FO and ( = [CGt—T7)g(r)dr.
Hence, C: F, — E is bounded. O

For the Christ-Kiselev lemma stated below we refer to Lemma IV.2.1 in [54].
For r = 0o one can by-pass it, see Lemma 5.13 in [46].

ProrosITION 3.19. Let J be an interval, Y, Z C X be Banach spaces, 1 <
p<q<oo,and K:JxJ— B(X) be strongly continuous and bounded. Set

t
— [ K9rods a0 = [ Kt ds
J inf J
fort € J and f € C.(J,Y). If K has a bounded extension from LP(J,Y) to
LY(J, Z), then the same is true for K.
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It thus remains to show the homogeneous estimate in (3.28). A core step in
this proof is the following reduction to a frequency-localized piece, which relies
on the Littlewood—Paley decomposition.

LEMMA 3.20. Let (p,q,7y) be admissible. Assume that
PG (ellrpra < CllPoll 2 (3.32)
for all o € L* and some C > 0. Then the first part of (3.29) with k = is true.
PROOF. By a scaling argument, from (3.32) we deduce
IP;GC)ellLpre < 277 |[Pygl 2 (3.33)

for all j € Z and ¢ € H", see Lemma 5.15 in [46]. If ¢ = oo, we are done since

16l = (2, 15C0)’

1

< (5, a0’

1
i1 2
<o(3,, 27 I1Bl:)" S IIDPelse,

using Minkowski’s inequality if p < oo and Theorem 3.5 at the end.

For ¢ < oo we employ the Littlewood—Paley decomposition. We let p < oo,
as the case p = 0o just requires a minor modification. Take ¢ € H* for some
k > %3 and J be a compact interval. Then G(t)¢ belongs to HF < L7 by
Sobolev’s embedding. Theorem 3.5 yields

16Ol 5 || (L ipeeer)’|

For fixed ¢, we interpret the inner terms as the norm in L2 (R™) of the L3 -valued
sum |PjG(t)p|?. We can take this norm in the sum since g > 2, obtaining

IGO0 S || 22, 1RGO |,

This procedure also works for the t-integral so that
IGO0 S 32 1RGOl
Estimates (3.33) and Theorem 3.5 now yield
2
RV 2 29 1| .12 2 295 | ., |2 2
IGORlE e < eC? Y 22| Prglfle = eC2|| S0 2291 Pl ||| S el

Fatou’s lemma allows us to replace J by R. The claim then follows from the
density of H* in H". O

JEZ

p.

L2
J

| [[CAcOrRA

]EZ %

For Theorem 3.13 it remains to show (3.32) for strict triples by the above
results. We restrict ourselves to the case p € (2,00). As seen above, in the
strict case we have p > 2 if m < 3, and p = oo only occurs in the energy case
(00,2,0) which we have settled in (3.23).

By a stationary phase argument one can show the following core frequency-
localized dispersive estimate. See p.128 in [54], and also Lemma 5.16 in [46] for
the easier case m = 3.

LEMMA 3.21. We have ||F~1(et€ly)|ze < (14 [t])~ "2 " for all t # 0.
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We also need the Hardy-Littlewood-Sobolev inequality, Theorem 1.2.13 in [23].

LEMMA 3.22. Letl<r<s<ooand 0 <A <n satisfyl—i—% = %—i—% Then
there is a constant ¢ > 0 such that

(/JA;'“”'dASMJiSdum for all f € L"(R").

n |z —yA

This result extends Young’s convolution inequality to a borderline case since
_ A 1
112008 = e o= Ldr = o

PROOF OF THEOREM3.13 IN THE NON-ENDPOINT CASE. By Remark 3.14,
Lemmas 3.16, 3.17, 3.18 and 3.20, as well as PyG(t) = PyG(t)Pp, it remains to
show the boundedness of PyG(-): L? — E = LP(R, L9) for strict non-endpoint

triples. Let ¢ € L' N L? and E' = L%Lq/. Lemma 3.21 and the formula
PoG(t)p = (2m) 2 F ' (e"ly) #

yield the basic (frequency-localized) dispersive estimate

PG (Bl < clt] ™% [lgll-
Interpolating with || PoG(t)[| g2y < 1, see (3.7), we derive

m—1)(L_1
1RGOl < et ™™V ]l (3.34)
if ¢ € (2,00). (Recall that the triple (4 00, 2) can occur if m = 2.) Strict
admissibility and our setting yield 1 < p’ < p < oo, 1 —i—% = (m— 1)(7 — 5) + 1%’
and (m —1)(3 — f) (0,1). Lemma 3.22 then implies

—(m—1)(2-1
12 # flle < el "D £ Ollg || < ellfller, S € B (3.35)

We now show (3.32) by a duality argument as in Lemma 3.18. Set SOf =
JoPoG(=t) f(t)dt for f € Co(R,L? N LY). Using (3.35) and Remark 3.4, we
compute

IISof\Iiaz/R/R( T)Pof(7)|G(—t)Pof(t)) ,» dT dt
:/(/POG(t—T)f(T)dT’POf(t)> LAt = (PG = f. Pof)p < c| I3
R R L

By density, S°: E’ — L? is bounded. As in the proof of Lemma 3.18, we then
deduce that PyG(-): L? — E is bounded. O

We add some comments on the non-autonomous wave equation
Pu=div(aVu) + f, u(0)=up, Ou(0)=wi, teR, zeR™ (336)

with bounded coefficients a: R x R™ — RZ™ and n > 0. First-order terms
b-Vu + cu with bounded coefficients can be estimated by || ;o5 and thus by
the energy inequality, at least locally in time (if a is regular enough).
Non-constants coefficients may prohibit global-in-time estimates as in (3.25).
Locally in time, it is not difficult to control low frequencies using Bernstein es-
timates, as we see in Lemma 4.12. So one can pass to standard inhomogeneous
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Sobolev spaces. In the proofs for smooth coefficients on R one may follow the
strategy of the previous section, but one has to replace the arguments based
on the Fourier transform by the sophisticated theory of Fourier integral opera-
tors. Theorem 7.5 and Remark 7.7 in [30] indeed imply (3.25) for solutions of
(3.36) on bounded time intervals J, also assuming that a € C*° with bounded
derivatives. The constant in (3.25) then depends on the length of J.

Global-in-time Stichartz estimates for varying coefficents need a ‘nontrapping
condition” and some decay of derivatives of a. We refer to [55], for instance,
and to [10] for the description of a typical approach to this subject.

To treat quasilinear problems one needs rough coefficients. The methods used
above do not work for non-smooth coefficients. Actually, if a possesses less than
two derivatives, Strichartz estimates suffer an additional regularity loss.

THEOREM 3.23. Let a € Cf(Rme,Rmxm) with a > n>0 and B € [0,2],

sym
(p,q,7) and (r,s,0) be admissible, and o = % Then the solution u of (3.36)
satisfies

DI %ull e < C(IVuatllzzze + MBI fllz2 ). (337)
If6>1andm >3, forT >0 and k >1 (k=1 if m > 4) one obtains

Vel 50 < O ) (ol + ol o + 1) (3:39)

See Theorem 2 and Corollary 6 in [63], and also Corollary 1.6 in [64]. The
operator |D|® is defined via the Fourier transform on R!*™. With somewhat
different methods the case a € C%! was treated earlier in [52], see also [4]. The
regularity loss in Theorem 3.23 is sharp in general by an example in [53]. In the
paper |64 variants with, e.g., V;,a € LlTLoo are treated, which are needed for
the study of the quasilinear problem, where a = a(t,z,u) or a = a(t,x,u, Vu).

Estimate (3.37) is global in time, provided one knows a priori that |D; ,|u
belongs to L% L?. Otherwise one has to replace u by ¢u with a cut-off in time.
If B > 1, one can invoke the energy estimate (which involves ||d;al| i~ if a

depends on time) to bound |D|u by the data locally in time as in (3.38).

To explain the proof of Theorem 3.23 a bit, we first indicate Strichartz’ ap-
proach to the homogeneous estimate for the half-wave equation in (3.28), cf.
Section II1.1 in [54]. For f € C.(R, L?) we can write

St = @n) % [ [ et (e ards = 2m) T [ @vflel.a
for the space-time Fourier transform f. Plancherel now yields

ISHl: = [ 1felopas=c [

R™ T

The last integral is taken over (one half of) the light cone {7 = %|¢|} in RIT™,

where omit the surface measure. One thus wants to estimate the L2-norm of

the restriction of the Fourier transform to a surface having non-zero curvature
by a LPL%-norm of f. This topic is treated in, e.g., Section VIIL.8 in [59].

. 12 d(r.€) (3-39)
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In Theorem 3.23, one first reduces to pieces of u which are localized in (¢, z)
and (7, £) up to error terms and to (at first C2-) coefficients with a frequency cut-
off. Instead of the space-time Fourier transform, one applies the ‘FBI-transform’,
which maps into functions of (¢,z,7,£). The transformed problem is then split
into a part away from the light cone C and the more difficult one close to it.
With severe efforts, the latter is reduced to a Fourier restriction problem on C
to which theory from [59] can be applied. Rougher coefficients are treated by
another cut-off argument.



CHAPTER 4

Strichartz estimates for the Maxwell system

In this chapter we discuss very recent local-in-time Strichartz estimates for
nonautonomous linear Maxwell equations and indicate two applications.

4.1. Introduction and the basic result

We start with an existence result and energy estimate for the Maxwell system
under a bit weaker hypotheses than in Section 2.1. After a glimpse on dispersive
properties, we treat properties of L%Lq and related spaces. Then Strichartz
estimates for the Maxwell equations with isotropic C'®*-coefficients are presented.
We discuss this result and some variants, and show first steps of the proof.

We study the (slightly generalized) Maxwell system

O(eF) =curlH — o0 .E — J., E(0) = Ey,
(pH)=—cuwrl B — o, H — Jp,, H(0) = H,

using somewhat modified notation. The time interval J of positive length |.J|
contains 0. The unphysical magnetic ‘conductivity’ and ‘current’ will appear in
our analysis later on. We further set

a = diag(e, p), d=—diag(oe.om), f=-(7), u=(g), p=(s:)=Div(au)
with Div = diag(div,div). As in (1.4) one checks

t
p(t) = p(0) + /0 Div(f(7) 4+ d(r)u(r))dr, (4.2)
assuming (4.4) below, for instance. In our main results we actually focus on the
fields v = (D, B) = au which solve
oD = curl(p™'B) — o.e7'D — J., D(0) = Dy,
OB =—curle™'D) —oppu 1B —J,, B(0)= By,
The above coefficients and data are required to satisfy
aueLmuxR%R§%,7ﬁ>m Oe, Oypu, 0y € LY (J, L=(R? R¥*3)),
Eo, Hy, Dy, By € L*(R®,R3) = L?, J; € L'(J, L%, i< {e,m}, (4.4)
if J is bounded; otherwise one replaces L'(.J, X) by Li (J, X).

loc

teJ, xR (4.1)

teJ, xc R (4.3)

REMARK 4.1. Assume that (4.4) holds. Then there is a unique solution u =
(E,H) € C(J,L?) of (4.1) and thus also v = (D, B) € C(J,L?) of (4.3). It
fulfills the energy equality and estimate

(a(t)u(t)|u(?)) ;> = (a(0)ug|ug) » + /J ((2d — dpa) - u+2f|u) ,dr,  (4.5)

t

57
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lu(®)lz2 < co(lluollze + 1/ 11 (. 2)) eXp/J cll(d(r), Bra(7))|lL dr (4.6)
t
for t € J with ug = (Eo, Ho), co = co(n, ||a(0)|ls), J: = (0,t) if t > 0, and
Ji = (t,0) if t < 0. Here one can also allow for C-valued data.
One can show these facts as in Theorem 2.4 and Example 2.5, using also
Gronwall’s inequality for (4.6). There are minor modifications, e.g., one first
treats bounded J, takes v = 0, and the operator L° in the theorem acts from

{veWp'L2 N LYH! [v(T) = 0} to LLL2. 0

In (1.13) we have seen that the isotropic autonomous Maxwell system without
charges reduces to a wave system for E (and similarly for the other fields)
whose components are coupled only in lower order. One obtains the basic wave
equation (3.20) if e = 1 = u, 0; = 0, and the fields are divergence-free. So one
should have the wave case in mind when treating the Maxwell system. However
for the analysis of quasilinear systems one needs nonautonomous anisotropic
linear systems, cf. Section 2.3, and already the presence of conductivity produces
charges so that the wave case can just be a starting point. Indeed, we see below
that charges and anisotropic coefficients change the behavior a lot.

For the wave equation plane waves exhibit dispersive behavior by Re-
mark 3.12. We first discuss similar, but more complicated phenomena for simple
Maxwell problems.

REMARK 4.2. Let e, € R?;a?’ be constant and commute. Fix eigenvectors

E° of ¢ and H? of i with eigenvalues a; and a wave vector ¢ € R? such that
{¢, E°, H'} is orthogonal with positive orientation. We then set

E(t,z) = ei(wet—f-x)EO’ H(t,z) = ol(wmt—&-x) [0

for numbers w; > 0 and (¢,z) € R'™3. Observe that 0y F; = —i{,E; and hence
div(eE) = —if - eE = —ia.e!@!=¢2) ¢ . F0 and analogously for H. As a result,
the charges p vanish. Similarly, the Maxwell equations are equivalent to

Wete B = wee FY = =€ x H°,  wpmamH® = wpuHY = € x E°.

It remains to choose w; appropriately. Multiplying by E? and H°, we obtain
the dispersion relations
(€ x HY)-E° _ (E®x H)-¢ (€ x EY) - HY _ (EYxH')-¢

we_— = y m = =

cE0. EO cEO . EO /J,HO'HO MHO-HO

Hence, these plane waves move into the direction E° x H? proportional to &. ¢

For scalar ¢ and pu, one can choose every £ # 0 in the above construction,
as for the wave equation (3.20). In the anisotropic case, the matrices € and p
impose restrictions on the direction of £ which hints at reduced dispersion. This
effect becomes clearer in the discussion of the characteristic surface taken from
Proposition 1.2 of [39]. Observe that the Fourier transform of curl results in

0 =& &
Fleurlv) =i xo=1| & 0 =& | 0 =1ic(&)0. (4.7)
& & 0
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REMARK 4.3. We consider diagonal and constant (homogeneous) coefficients
e = diag(e;) and p = diag(p;) with €5, 4, € Ry. Inserting standing waves
E(t,z) = e Fo(z) and H(t,r) = €T Hy(x) into (4.1) with o; = 0 and J; =
e J; o(z) with divergence free J; o, we obtain the time-harmonic system
ireEy — curl Hy = —Je 0, itnHy + curl Ey = —Jp, 0, (4.8)
on R3. The spatial Fourier transform then yields
iTep —icth = —he, icp 4+ iTp) = —hp, ¢ e R3,
where we set ¢ = FEy, ¥ = FHy, he = FJeo and hy, = FJp, 0. Applying

i e ! e lep™t
—utee™t Tt

to this system from the left, we arrive at two 3 x 3 systems
(T2 T+ A =12+ e Lep tep =ire the +ie Lep
(72T 4+ A =72 + ptee ey = irp hy — ip e e,

Observe that A.(§) =: aeanm and A,,(§) = ama. have the same characteristic
polynomial p(7,&). In (12) of [39] it is determined as

c€ - .
p(1,€) =7 (1 = T2(©) + 01 (€)),  @(§) = ditg ﬁﬁtj,
w@=(c—+ =) +&(——+ =) +&(+ =),
E2H3  E3M2 €13 E3M1 €12 Eal1

One can solve (4.9), and thus (4.8) via F~1, if £ does not belong to the charac-
teristic set C; = {&|p(1,&) = 0} for 7 # 0. In the ‘fully anisotropic’ case where
all /% differ, by §3 of [39] the Fresnel surface C, contains four singularities and
four curves with one non-zero principal curvature. In the ‘partially anisotropic’
case (1 = po = p3 and €1 = €9 # €3, the set C; consists of two ellipsoids
touching at two points, see §2.3 of [43]. In crystal optics these cases are called
‘biaxial’, resp. ‘uniaxial’. If also ¢ is scalar, C; is a (doubly sheeted’) sphere. ¢

EeR3 (4.9)

I

Hence the anisotropy of the coeflicients drastically changes the properties of
the characteristic surface (or light cone). In view of the comments at the end of
the previous section, one can expect weaker dispersive porperties in this case.
This is in fact true, as reported next.

REMARK 4.4. Let ¢ = diag(e;) and p = diag(u;) be fully anisotropic as in
the previous remark, ug € W*! for a sufficiently large k € N, f = 0 = d and
Div(au) = 0. The solution to (4.1) then satisfies [|u(t)|c0 < ct_%Huon,l for
t > 0 due to Theorem 1.3 in [35]. This corresponds to (3.34) for the wave
equation on R? only! In the partially anisotropic case one recovers the 3D decay
t=1, see item (4) in [35]. O

The previous two remarks strongly indicate that the dispersive behavior of the
anisotropic Maxwell system is considerably harder to study. Indeed, here the
available Strichartz estimates are restricted to special cases, exhibit additional
regularity loss, and in the fully anisotropic case the triples are wave admissible
only for m = 2. See [43| for the partially anisotropic and [49] for the fully
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anisotropic case. One has 3 x 3 Maxwell systems on R? for polarized fields, see
(4.69). In 48] the results from the wave case are recovered here. In these papers
local-in-time estimates for (¢, x)-depending coefficients are treated. Below we
focus on the isotropic case on R3, where we also find results as for (3.36).

In our arguments we use the harmonic analysis tools on space-time R*3 and
not only on R3. To distinguish from the R3-case, we overline symbols; i.e.,
T=(z))}0=(tx), E=(1,6), F=7Fs |D|=F|F, Pj=F 'x;F,
V = V3, and so on. When using nonhomogeneous Littlewood-Paley decomposi-
tions (P )jeN, and (P;)jen,, we redefine P<0 and P<o as Py and P, respectively.

We further write P’ and P” instead of P and P for the enlarged operators.

Fortunately, the relevant results from L7 remain valid in L L9. We start with
Sobolev embeddings and Bernstein estimates, before Collecting deeper results.

LEMMA 4.5. Let a—%—% =-2-1 ae(0,m+l), 1<p<r<oo, 1<g<s<oo,

and f € R. We then 9bmm ||\D|ﬂ_a9||L]§Ls S ||]D|ﬂg||L£Lq if |D|Pg € LE LY.

and analogously for (D).

PROOF. It suffices to treat 3 = 0 by isomorphisms. We have |D|™%g =

ca|Z|*"™ 1 % g by p.10 in [24], where we may assume that g € Sy by density.
S 1._ 11 1._ 11

The assumptions imply ; =1+ — 7 € (0,1], s=1+. -5 € (0,1), and
mtl—a=ml+i—g)+l+r—3=2+2>0

Using Minkowski, Young and a transformation, we deduce

0019w < [ ([ ([ =g ol ) ar
/Hg )M za / ’(t_T,Z)’U(aml)dZ>idT
= [t = atr e / (L) ) ar

1
= [le=r T gl [ 0,07 ac) " ar

Since the last integral is finite, Lemma 3.22 for exponents 1 + % =
yields the first assertion.

The second claim can be treated analogously since (D)~ is a convolution with
kernel bounded by ¢, (|z|*~™~1 + e“iVQ) due to Proposition 1.2.5 in [24|. O

REMARK 4.6. Let 1 <p<p<o0, 1 <qg<qg< o0, A,y >0, 79 > 71y,
v E L%L‘l’7 and s € R. Applying Young twice, we see that the convolution with
P e L%L‘7 maps L%L‘j into L%Lq continuously if 1—1—% = %—i—% and 1—1—% = %—i—%.
So the following facts can be shown as in Lemma 3.3 (with implicit constants
independent of A and v).

a) supp Fv C A(Ary, Ars) yields )\sHvHLqu < H]D|svHLqu <\ HvHLqu

b) supp Fv C B(0, \r) yields |||D|SU||LPL <A TEs



4.1. Introduction and the basic result 61

REMARK 4.7. Let 1 < p,q < co. The Littlewood—Paley Theorems 3.5 and 3.6
remain true for L L? because of Theorem 5.5.22 in [26] and Theorems 6.2.4 and
7.2.13 in [27]. One then shows Proposition 3.8 and 3.9 also within these spaces.
Moreover, as in Theorem 2.4.2.1 of [69] one can derive interpolation properties
for the spaces |D|*LE LY (with norm || ]D|O‘UHL§L¢1) and (D)*LE L7 as those for
H*, resp. H*Y, where o« € R. As in Section 3.1 one sees that (D)~*LP' L¢
is the dual space of (D)*LPLY, and analogously for |D|. Corollary 8.3.22 and
Example 8.1.9 in [27] yield Mikhlin’s theorem with the condition ¢°9%a € L>®
for all g € {0,1}™. This result implies H(D)_O‘vHL%Lq < |||D]_O‘UHL§M for

a > 0. The converse is true if supp Fv C C\ B(0,6) for some § > 0. O

The next theorem invokes the seminorm |[|v|| ;. which is the highest-order part
of the norm in Cf(R'™™) for s > 0. For p,q,r € [1,00] and s € R we use the
space-time Besov spaces Bziq,r and By .. of distributions ¢g € §§ (R'*™) and
¢ € S*(R'*™) with finite norms given by

loolly, =30 2 Bolpse Nl =D 2 1 Bielp 0

respectively, for r < oo, and similar for » = co. One can interpolate between
these spaces as for standard Besov spaces in Theorem 2.4.2 of [68]. Recall that
wave admissible triples for m = 3 satisfy
Pge 2,0, sH+:<5 s5—v=,+2 (0,¢,7)#(2001), (410)
and that the triple is strict if the inequality is an identity.
We now state Theorems 1.1 and 1.2 of [43], writing Lv = (0; + Ma )v = f
for (4.3). These results are proved in this and the next two sections. The general
strategy of the proof originates from [63]. We only aware of one earlier (local-in-

time) Strichartz estimate for the Maxwell system from [18], in the charge-free
case and for smooth scalar coefficients being constant outside a compact set.

THEOREM 4.8. Let £, € C§(R x R3,R) with e, i > n for some n € (0,1]
and s € (0,2], 0 == %, oe =0 =o0pm, (p,q,7) be admissible, but (p,q,vy) #
(0,2,0), and v € LEL?*. Set Lv = f and p = Divv. Then v satisfies

=~ O = — = _1l_go

DI =20/l zp0 S llollgare + 2 DI fllgzre + 11DI72 72 pll g2 20 (4.11)
=\ —~y—Z =\ —c —\_1l_g¢

KDY %0l o0 < Kllvll g2 e + 2I(DY ™ fll 2z + 14D) 2 % pll 2o, (4.12)

if the terms on the right are finite and ||(e, p)||zs < £*7 with k 2 1 for (4.12).

If p=o00 and g > 2 or if ¢ = 0o, one has to replace L? by Bg7q72, resp., B27q72.

By the assumptions Lv and p belong to 7-.[*1(R4). Note that p is given by
the data via (4.2) and that Ha*1HC§ < llafleg. By Lemma 4.12, we can mainly
restrict the reasoning to the inhomogeneous norms in (4.12). One deduces the
case s < 2 from s = 2 using the control on |[|(¢, )|z in the estimates, see
Lemma 4.19. The above Strichartz estimates are the versions closest to the core
of the proof, where we work on R'*3 and the L2-setting on the right is very
convenient. The occuring error terms will end up in ||v||;272. In Corollary 4.25
we treat a local-in-time variant which avoids (non-causal!) fractional time-
derivatives. We discuss the results in several remarks and lemmas.
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REMARK 4.9. a) There is a unique solution v € CrL? of (4.3) if (4.4) is true,
e.g. if s > 1, see Remark 4.1. In this case, by density it is enough to consider
f € So(R*) and vy € So(R3), respectively f € S(R?*) and vy € S(R?).

b) If f =0 and ¢ and p do not depend on time, the solution v to (4.3) does
not belong to L% L? since ||v(t)||2 = [Jvo]| by (4.5). Actually, one should consider
Theorem 4.8 as a local-in-time result. Assume that (4.4) holds and that (after a
cut-off in time) the solution has compact support I in time containing 0. Then
the energy estimate (4.6) allows to bound [|v]| 22 by c(|1]) ([lvollz2 + ||f||L}’L2).

c) The cases p = oo and ¢ = oo can only occur for non-strict triples, ex-
cept for the energy triple (0o, 2,0) which has already been treated in (4.6). In
Lemma 4.11 we reduce to the strict case, so that infinite exponents rarely occur
later on. In the rest of this remark we let p,q < oo to simplify.

d) The regularity loss § on the left is sharp for the corresponding result on

R? by [48]. It varies between o = 0 if s = 2 and 0 = 1 if s = 0 (where (4.11)
and (4.12) directly follow from Lemma 4.5, cf. the next item). We have o =
for the case s = 1 which is used to treat quasilinear problems, see [43], [48|,
[49], and also [64] for the wave case.

e) Let s = 2. The Sobolev embedding in Lemma 4.5 shows that the left-
hand side of (4.11) is bounded by || ‘DP/%”LH%L?’ and analogously for (4.12).
The Strichartz estimates in the theorem thus improve on Sobolev by half a
derivative — compared to a gain of % derivatives in Theorem 3.13.

f) Note that HDivaH_l(W) is bounded by HU”LﬁLQ a priori. In the Strichartz
estimates with s = 2 we require that the charge is a half derivative better, in
accordance with statement e). In contrast to the wave case, we need a condition
on the charges since initial data vy = a(0)(Vipe, Vior,) € L? yield equilibria
of the Maxwell system (with o;, J;, Oia being 0). Since —3/2 is smaller than
—~—3/q by admissibility, there will be functions ¢; such that vy does not belong
to H 74 (which is left invariant by a(0) ! for s = 2). In other words, the charge
condition is needed to control the huge kernel of curl.

g) One can easily extend (4.12) to non-zero o; € Ci(R%) if o < s. To this
aim, redefine f as f + da~'v, which does not change p by (4.2). We can then
estimate ||da~'v|/3-o by ||UHL]}2§L2. Here one has to use the product estimate

Proposition 3.8, Remark 3.10, and the duality of #°(R*) and H~7(R%). O
The Strichartz estimate (4.11) is scaling invariant which will be important for
the proof. Using this fact, we first restrict to the case kK = 1.
LEMMA 4.10. In Theorem 4.8 for (4.11) it is enough to take (g, u) with k = 1.

PROOF. Let (4.11) be true for kK = 1. We assume that p,q < co. The other
case is shown similarly. We set vy (¢, z) = v(At, Az) for A > 0 and analogously for
the other maps. Let Ly be the operator for ay = (ex, py). Note Divuy = Apy,
Lyvy = Afy, and [lax]|gs = A [lal|ze < A%s2T5. We choose A = k™% to obtain
laxlles < 1. Equation (3.6), estimate (4.11) for vy, and (4.10) imply

W=

_ 1.8 o 1,8, 4o = o
DI 20l gza = A4 [(IDI 7772 0)allpzpe = Ar T T2 [[|DI77 "5 0a 2 10

340 n|— DI—3~%
SATE ([loall gz 2 + 11D Ml 2z + 11D175 S0l 212)
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o_ 1 _o 1 = = _1_ o
=272 ]z + A2 2D fll gz + |1DI727 2 pll 2 o

Since 1 — o = 227;57 the definition of A leads to (4.11) for v. O

We next reduce the reasoning to strict triples by Sobolev’s embedding.
LEMMA 4.11. In Theorem 4.8 it suffices to show the estimates for strict triples.

PRrROOF. We focus on (4.11), as (4.12) is treated similarly. By Lemma 4.10
we may assume k£ = 1, where x > 1 would be sufficient. Let (p, g, ) be non-strict
admissible. Choose p € (2,p) and § € [2, ¢] with § < oo and

1 1 1 = 1
5"‘5:5 and set Vzg—t—§<7,

so that (p, q,7) is strict admissible. Let (4.11) be true for (p, q,7).

First, let p,q < co. Since y—7 — % — % = —% —]13 by (4.10), Lemma 4.5 yields

S —r—Z S —~—Z
D720l e e S MNP 20l 1 g

so that (4.11) for (p,q,7) implies the statement.
Next, let p = oo or ¢ = co. Remark 4.6 and the above relations yield

— LA T _(ALTN | = 1_ oV, =
27O Pyoll o e S 27T | Poll g S 20275 | Poll 2 e
for j € Z. Using Remark 4.6, o < 1 and the L?-boundedness of Pj, we deduce
A-1—2.12 — 2 1=0)j || B ||2 —2(3+2)3 || P..) 112

DI Buly = 0l 5 S 3201l ot 3220+ Pl

Py J<Jjo J=Jo

. 2 =27+ )3 || Py l|2 -
Sio HUHLD%L? +Zj2j02 2 HPJUHLgﬁLq
for any jo € Z. For s = 2 we will see later that

272D Pl S 1Pl + 27 1Bif I 1o+ 272D | Pipl2

for all large j > 0, cf. (4.16). So the Littlewood—Paley decomposition in L]%QL2

yields the assertion. For s < 2 one obtains this estimate plus a term whose

square sum is bounded by HUH%QLQ, cf. (4.20) and (4.21). O
R

In our proof we will work with frequency-localized pieces of v, see (4.16), and
the next result will allow us to restrict to large A = 27.

LEMMA 4.12. In Theorem 4.8 estimate (4.12) implies (4.11), and conversely
if s=2. In (4.11) and (4.12) it suffices to take P>iv on the left for a k € Ny.

PROOF. Let k € Ny. Thanks to Lemmas 4.10 and 4.11, we may assume
that k = 1 for (4.11) and that (p, g, ) is strict and hence p, ¢ < co. Lemma 4.5,
admissibility, and Remark 4.6 yield

=y 2 5 =11l_og 5 >
D[ 2P<kUHL§Lq S DIz 2P<k”‘\LH§L2 Sk \\P<kU”LH§L2 S HUHLf{B

since 0 < 1. The same works with (D) and |v|| rzr2- So the last claim holds.
Observe that |||D|_7_%P2kv\|L§Lq =~} ||<D>_7_%p2kaL§Lq due to Mikhlin,
cf. Remark 4.7. Assuming (4.12), we then deduce

D172 Pogollppra S 1Pokvllpzrz + 1flls-o + | LP<kvllz—o + [1Porpll, 1 -

g.
272
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On the right we can use that the operators ]52;9 are uniformly bounded and
HY(R*) < H~*(R*) for a > 0. The remaining term is estimated via

11D ’1_0(‘1_117<kv)”L2L2 SID |1_Ua_1||oo [ P<xvll2 ||a_1||oo 11D |1_Uf<kUH2
R
Sk Ha‘|C§HJ_<kUHLD§L2 S lvllpzrz,

by means of Proposition 3.8, Remark 3.10 and 1—0 < s. (Recall that |la~! ||C; <
lallcs.) Altogether (4.11) follows.

The converse is proven in the same way for s = 2, using that || |D’70fHLH2{L2 _
HfHLD%L? in this case. 0

We can now show two variants of Theorem 4.8. In the first one, regularity in
the Strichartz estimates is shifted up to a level given by s.

REMARK 4.13. Let o € (0,s+0 —1) or a€(0, 1] if s=2. Then (4.12) implies

KD)* 30l o 1o S llollpe @y + & 1/ 2o e + ol oy -5 oy (413)

The converse implication is true for o < s + o — 1.

PRrROOF. If s = 2 and a = 1, we differentiate (4.3) in z = (¢, ) obtaining the
equation for Vv with right-hand side V f + M (Va~!v) and charge Vp. In L3 L?
the extra term is bounded by ||v||L]§H1 as a€ CZ. Thus, (4.12) and k>1 lead to

H<D>77?U”L§Lq S kllvlla gy + %Hf”?—ll(]R‘l) + HPH%%(W)-

Using Mikhlin and (3.3), we can replace (D)~7V by (D)'~7 and deduce (4.13)

in this case. Let o < s 4+ 0 — 1. Estimate (4.12) for o = (D)%v yields
KDY 20l ppra S wllvllaecesy + % 1 llaee @) + Pl oy g gy
+[(D)Y [ (D) vl 2 2

The last term can be rewritten as [(D)!=7 a=|(D)% + [a~!, (D)1= F%. If
1— 0+ a =1 we replace o by some ¢’ € (1 +« — s,0). The first commutator
is L2-bounded by Proposition 1.2 in [67], and the same is true for the second if
1 -0+ a < 1. Inthe case 1 — o + o > 1, we instead use Theorem 1.4 of [42]
to obtain boundednes from HY~° to L2. The restriction on « is needed for the
second commutator.

The converse is shown similarly, starting from (D) ™72y = (D)*7~2 (D)%
and estimating the commutator term ||[(D)®, a™'[(D)~“v||31-0 ga). O

We can also pass from the fields (D, B) back to (E, H).

REMARK 4.14. Let v < 5,1 < s+ % and p,q < oo (which hold for s > 1 and
strict triples) for (4.12), and v+ & < s and p,q < oo for (4.11). In Theorem 4.8
we can then replace v = (D, B) by u = (E, H) which solves (4.1).

PROOF. Remark 4.13 also works for u, so that it is enough to show (4.13) for
u and o = § noting that § < s+ o —1 by the assumption. Using Remarks 3.10

and 4.7, a € Cj, and §,7 < s, we see that the multiplication with a or a=!

leaves invariant (D)% L2 L2, (D)YLP' LY, and thus (D)~7LPL? by duality. These
facts show the result for (4.12) since f and p are the same in (4.1) and (4.3).
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It is not clear that muliplication leaves invariant ]DWLPILQI. But we can argue
as in Lemma 4.12. First, again one obtains H|D|_7_%P<OUHL§LC, < ‘|U||LD§L2-
Next, Remarks 4.7 and 4.6 and a variant of the first step yield

I1DI77~% Psoullp o S (D)% Pooull e S (D)7 2 ul| o
SIKD)Y 20l e e SIIDITT 2U||Lqu
Estimate (4.11) for u now follows from that for v. O

In four more lemmas we reduce Theorem 4.8 to compactly supported solu-
tions, frequency-localized pieces, coeffcients with Fourier cut-off, and to s = 2.
By the above results, in these steps it is enough to show (4.12) for v with Fourier
support off 0 assuming that (p, q,) is strict with p < oo and K =1 if s = 2.

LEMMA 4.15. It suffices to show Theorem 4.8 for compactly supported v.

PrOOF. We! fix a function 0 < ¢ € C*(R*) with support in B(0,2) satis-
fying > pcza or = 1 for ¢ = (- — k). (For instance, let 0 < ) € C°(B(0,2))
be 1 on B(0,1). Since ¥ = >, ¢;, > 2 is uniformly bounded, one can choose
vr = Yr/V.) Moreover, take smooth maps 0 < @ with support in B(k,3)
being 1 on B(k,2). Let v € L2L?. We can then write

(D) ""2v=>" (D)2 (p) = Y Guv+ > Gu=S<+S5>
kl€ZA lk—1|<8 k—1]>8

abbreviating Gy = g0k<D>_’y_%(pl. Set ¢ = Zl:|l7k\<8 Y = @0( — k‘) The

near-diagonal part then becomes Sc =), or(D) T2 ¢,
To obtain square sums in k, we note that for some K € N and each T the series
> i ¥k(Z) has at most K nonzero summands. From Hélder we thus deduce

ot 2
Se+8:P < 1D+ Y (X IGu@w)l) = Y (@f+ad),
kezA keZA L|i—k|>8 kezA

also inserting ¢;v = p;pv. Minkowski’s inequality then implies

B 2 (4.14)

1P g 5 2 430

< IO 2+ X (X 1Cu@m) )

kezZA keZA  I:|l—k|>8

13

since p, ¢ > 2. The operator Gy; has the form

Gun(@) = lim | [ 666D o)) (€ dEw(i) g @ e R

6—0

with § € (0,1] and a fixed cutoff 0 < ¢ € C®°(R*) being 1 on B(0,1) and
supported in B(0,2), if w € S(R*) say. The limit exists in H3(R?) < LE L, for
instance.

IThis proof was omitted in the lectures.
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For |k — 1| > 8, the approximate kernels gl‘zl(j, y) can be integrated by parts
in £, cf. (3.10), yielding

108(5,9)| Sv (@ QNcha’f / |(V#6)(86)[ (€)1~ 5N +k ag

Sw (2 QNché’f 5t sy g

for N € N with N > 4 —~. At the end we use that |z —gy| > |k — 1] — 4 by
the supports of ¢ and ;. Thanks to Young’s inequality, see Remark 4.6, the
double sum in (4.14) can then be bounded via

e (X k) Vewler) £ Iawle < ol
kezZ4  I:|l—k|>8 lez4

for a fixed sufficiently large IV, because of p,q > 2 and ), ¢; < K. By density,
this estimate is true for all v € L3 L%, Equation (4.14) now leads to

=\ —~—Z 12
(D)~ 2UHL§L‘1 < IIvllz 2L2+Zkez4 o QSOkaLqu
The assumption allows us to apply (4.12) to ¢rv. We arrive at
=\ —~A—Z 2
1Dy Fell3 0 S BllolZa e + S [RIER0)IE, o gy + I Div(@r0)]2
kez*

S Rl ot D [EIGRF Iy + lonpl2
kez*

B

] (4.15)

1
2
3% (RY)

since Y w3 = H ok lbkag < Nwll3 for ¢ = @r or P = [Vl oo Lsupp ¢

It remains to show the boundedness of g — (prg) from H =% to £2(H %), or
by duality of S: (hg) — Y, Grhi from (2(H) to H?, for a € [0,1]. As above,
the support property of ¢y yields

2
‘Zke% @“hk‘ S ZkeZ‘l [ ZkeZ‘l ]

and analogously for V(pxhy). By integration, S is bounded for a € {0,1} and
thus for a € (0,1) by interpolation. Hence, (4.15) implies (4.12) for v. O

As in Lemma 3.20 we now reduce to Littlewood-Paley pieces. We first restrict
s = 2 in order to handle commutators of P; with coefficients.

LEMMA 4.16. Let s =2. Then Theorem 4.8 follows from the estimate
i || p p p 30| p
2| Pyollpage < CIPlase + 1LPpolly2 e + 275 | Pipllage)  (416)
for strict triples, compactly supported v € LﬁLQ, 7 > jo, and some fized jo € Np.

PROOF. By the previous lemmas it suffices to show (4.12) with Psj,v on
the left and x = 1. As in Lemma 3.20, Remark 4.7 and estimate (4.16) yield

P\ —7 B 2 —2Vi 1 B 1|2
D) Posoliy s S 37 2751 Bldy (117)
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512 D112 1D A2
S Zijo (HPjUHLD%L? + ||LPjUHL%{L2 +27 HPijLD%LZ)

2 2 2 5 2
S ol + 171832 + 012y D M PO
The commutator term is rewritten as
(L, Pj] = [L, Pj|P{ — P;L(I — P}) = Mla™", P}|P{ — P;L(I — P})

using the enlarged Littlewood—Paley projector PJ{’ = Pj_g + 15j+2. In view
of Remark 3.4, the last commutator is given by

B = [ (@@ - o @) - 9)em) d
1
B C/R/o (Va™)(7 + (@ = 9))(7 = 5)2Y9(2'(z - 7)) w(y) drdy

1
= C/R4 /0 (Va1 (g + (@ —g)) dr- 239929 (z — §))w(y) dg

with the Schwartz function ¥(Z) = Z(Z). We can now differentiate in Z and
use that 2% ¢4;1) has a fixed 1-norm. Young’s convolution inequality then yields

1M PPz 2 S 277 1P 0l 1o + 1P 0]l 2

since a € Cf. The sum of the right-hand side is bounded by [[v]|, .
_ — _ R

As in (3.12) we see that P;M (P<;j_sa ' (I — Pj{’)v) = 0. The remaining piece
is bounded by

1M Py (Pzjmaa™ (I = P})0) || 12 12 € 211Pjmaa™ a0l 2 12 S 277 lallzcc [[0]]2

due to Remarks 4.6 and 3.10. So the last term in (4.17) is less than c||v O

H%D%LT

~ REMARK 4.17. In the above and the next lemma one can replace P; by, e.g.,

P]( on the right-hand side. Note that P;v is not compactly supported anymore,
but decays faster than any polynomial. Indeed, Remark 3.4 and (3.10) lead to

- ‘ lv(y)] _ 7 o(4—N)j \—N

|Pju(z)] < cN24j/ ——=—dy < cn2 Hv|l1 (x)

! K (21(@ —g)N o

for j, N € N, |Z| > 2maxg |y|, and the compact set K = suppv. ¢
Multiplication with a~! destroys the frequency localization of v, in general. As

a remedy, one applies a Fourier cut-off to the coefficients. We set P<o=>" . P;

etc. for a € R and define a* = ng/za_l for k € Z. Remark 3.10 implies

Jjla

1

_ sk _ _sk
— oo = [Pokp2a oo S 272 lla” iy $27 % llallcy, k€N (4.18)

~

[la™
So there is index ky € N such that % > a® > (2||alloo) "' for k > ko. Using
this fact, one also obtains |la — (a*) e < lla™! — a|loo < 2_5]“/2”@HC§ and

thus (a*)~! > 7/2, possibly after increasing kg. Finally, we have H(ak)*chi <
||ak||C§ < Ha_lHCg S llallcg. For k > ko we define LF =0 + Md*.
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LEMMA 4.18. Let s = 2. To establish Theorem 4.8, we only have to show the
frequency-localized and -truncated estimate

2| Pyl e < O(1Pollyge + 1D Pl g + 274 | Pipllape)  (4.19)
for strict triples, compactly supported v € L%LQ, and j > k.
PROOF. We pass from (4.19) to (4.16) via
HLjijHLH%LZ < ‘|LPJU|’L§L2 + HM(P>]'/20’71F)JJU) HL%§L2
S ULPwl 2o + (lalles +2 1P 00 o) 1 Pyoll 2
SILPwllz 2 + llallez 1Pl 2 .2
again using Remarks 3.10 and 4.6. U

The above reasoning fails if s < 2. However, this case can be reduced to s = 2
by another frequency-cutoff which causes the regularity loss in Theorem 4.8.

LEMMA 4.19. It suffices to show Theorem 4.8 for s = 2.

PROOF. Let s € (0,2) and x > 1. Take Fourier-truncated coefficients a' =

Pgla_l for |l = 52-j = vj and j > jo == k—VO Lemma 3.3 and Remark 3.10 yield

2+
8]l < 227 | Para™ oo S 2°7 0™ ey S 2°7|lallcy S 2%k

4

since 2vj = 20j + sl and [allcs < [lallgs + [lalleo S k. Hence, al satisfies

the assumptions of Theorem 4.8 for s = 2 with &' = k227 Together with
Bernstein, estimate (4.12) for s = 2, ¥’ and Pjv thus leads to

270N Pyl g o S I Poll gz +27 7 LIL Pyl 2 +27 3| Ppl 2 (4.20)
for all v € L3L? = L2 and the operator L} = 8 + Mat. If we can show
Yo 2 P - BTl S ol (1.21)

then (4.12) for s < 2 follows from (4.20) as in (4.17). Let a>! = Psja~!. After
factoring out the derivatives and decomposing a~', it suffices to estabhsh

. = 2
> 22079 |[a, PyJo|[7, + || Po(@™ PYo) [+ | Py(@' (1 = Pyl | < Il
J=jo

(4.22)

For the first summand, if s > 1 the map a' is Lipschitz with norm bounded
by la 1,00 < |allc;. Otherwise we have

181,00 S lla™ M loo+2"0 77257 | Peyja oo S 2707 a7 o S 270V a5

by Bernstein and Remark 3.10. Hence the first summand in (4.22) can be
handled by means of the commutator estimate

18", 27 Pilo]| 2 < lla'lleollvllze S 270+ lalicy o]l 2
see (3.6.2) in [65], since v(1 —s) =0 —s/(2+s) <o if s < 1.
Remark 3.10 and sv = 1 — o also yield 2079)7||6> o0 < ||a_1||cg S llallcs.
The second sum in (4.22) is thus dominated by Hv||%2 12 in view of Theorem 3.6.
R
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In the third term enter only the frequencies |¢| € [2971, 271 of the product
a1 — ]5”)1) = giz where those of second factor satisfy || > 272 or |¢| < 2772,
Hence, in g+ h(§) = [g(€ — C (¢) d¢ we obtain |¢ —&| > 27%2 — 27+ > 27+l op
|§ = 23 2 > 2772 As a result, in the above product we can replace
P.,; by Ps;_s, possibly after increasing jo to jo > 3/(1 — v). Then the third
summand can be estimated by

[P (Pj—sa™ (I=P})v) || 12 < | Psj—sa™" |1z | (1= P 27 alic; o]l 2.

Joll 12 5
Since 1 — 0 — s < 0, the desired inequality (4.22) follows. O

2. Reduction to a half-wave problem

We have seen in the above chain of lemmas that Theorem 4.8 follows from
(4.19) for j > ko, strict triples and compactly supported v € LEL?. In this
section we reduce this inequality to a Strichartz estimate for a half-wave equation
with coefficients, which is essentially shown in [63]| and discussed in the next
section. This reduction is based on a diagonalization of the ‘principal symbol’
of the operator I’ = 0; + Ma’, as explained next. We will pass from the
symbols to the estimate (4.19) at the end of this section. For this step and
also later on, we need the so-called FBI transform and tools from the theory of
pseudo-differential operators, which are treated in the section’s middle part.

A) Diagonalization of the pr1n01pal symbol. Recall that we use the
scalar, truncated coefficients ¢/ = P<J /28" Dand p/ = P<] sl L for j > ko,
where we set o/ = diag(e’, 7). The isotropy is crucially used in the sequel. The
1-homogeneous principal symbol of L7 is given by

AT @)
”(“’5)_1<ej(x)c(§) gy )

with I = I343. The precise relation of # and L7 is discussed in the next

subsection. We compute the eigenvalues \(Z, &) € R and eigenvectors w(Z, ) =

(wh, w?) €R3F3 of the symmetric matrix %Kj. Take £ # 0, as £/ (Z,7,0) = iTIgxe.
We set w = A — 7 and normalize £* = |£|71€. We have to solve the system

— i ew? = ww', el ew' = ww?. (4.23)

Corresponding to N(curl), we have the eigenvectors (£*,0) and (0,£*) for A = 7,
ie,w=0. Let A\ # 7. Set v/ = (Ejuj)%. The system (4.23) yields —(17)2c2w! =
w?w!. The matrix ¢Z = &£ — |¢|2] has a kernel spanned by ¢ and the double
eigenvalue —|¢|? with eigenvectors orthogonal to &. (Below we use multiples of
(&2, —£1,0) and (£3,0,—&1).) Hence, w is equal to one of the numbers 417 |¢] =
w+ and we obtain the remaining eigenvalues Ay = 7 4 17|¢| having multiplicity
2. The eigenvalues of #/ are collected in the diagonal matrix

& (z,8) = idiag (1,7, 7+ ()[¢], 7= 7 (@) [¢], 7+ (@) €], =1 () [¢]). (4.24)

It remains to find suitably normalized eigenvectors w = (w!, w?) which yield a

transformation matrix with good properties. There is an index ¢ with || > %
We take ¢ = 1, as the other cases are handled analogously. See §3.1 in [43],

1 are treated, however. Set & = (&2 + &7)2

-

where the coefficients ¢! and p~
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and 77/ = v /) = (ej/uj)%. Note that & is positive if £ =1 or [ = 1. We first
choose w! = (5251}1, —flﬁﬁl, 0) which satisfies

, [0 =& & I3 eIt
daw' = [ & 0 =& || -a&y | = | Q&en | =wrwd,
& & 0 0 —&12

i &6

2 . =
wh =t 52535121
Gl
12
We then also obtain p/ cw? = —wiwi, and have found first eigenvectors for .

Next we take w! = (5351731, 0, ,515;31) and compute

| [0 =& & &y (Gt
dedt = | &0 =& 0 =¢’ 13 = Wi},
& & 0 —&1é1g —&abaiy
~2 i [—G&ls
wy = im i3 X
—§283813
Note that p/cw? = —wsw' and that {w!, @'} are linearly independent. We

have thus computed a basis of six eigenvectors which are 0-homogeneous in &.
It is important that w; = (£*,0) and we = (0,&*) are orthogonal to the other
four ones and to each other. The eigenvectors form the transformation matrix

&0 £ £ £ £
1 5162 6162 13 13
* 1 1
£ 0 5 Tas 0 0
. & 0 0 0 _5671 _5;1
J (4 13 13
m(2,8) = s ik _pj&is s Gl 55 Gk |- (4.25)
0 & V{fgﬂ{lf\ _V4§£12§|§\ _Vél?,lﬁ\ v 51,35\§|
x g €8s g §283 79 €13 _pidis
0 & 7 eag “VEald VT VT
¥ _pJrsl2 ) S12 __ 1)) S283 ~J §283
0 & . Vel Viesla Vsl

The final step is to invert m7. This is not done explicitely, we rather want to
show the properties of the inverse n] needed below. First, their orthogonality
properties imply that wy and ws are the first two rows of n{. Next we compute
the determinant of m}. Adding the third to the fourth row and the fifth to the
sixth, we eliminate the lower parts of the fourth and sixth row, but double their
upper parts. These factors can be taken out and then the inverse operations
annulate the upper parts of the third and fifth rows. Permuting the rows, we
obtain a block structure and hence

gik & &3 gik 0 &183 Y &162

; £1£2 13 '5512£\§| éw\ﬂ L
— _Y|ex & * pg €283 piks | .
det my = —4 (& 3P 05 9 V 51’25‘5 1/' |§‘§ = —44")
x — s x  _pjli2 _pj 8283
& 0 a8 TR Ve
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One easily computes §' = & \§|§f21§f31 In 05 one can take out factors and add
multiples of the first row to conclude

5 (ﬁj)z fl 5153 _6152 (l;j)z 51 0 ‘52 _ (ﬁj)2§1‘§‘

_ 2 72| _
INISEETSE 2 —5%2%53 gig;ég £3612613 g €2 0 §12613

and hence 19 (@)
J(5 &\ J(m &) — €\T)s1
81 (2, &) == detmy(z,§) (D)%
The determinant has a positive distance to 0 since |&] > [¢]. Moreover, it is
0-homogeneous in ¢ and it inherits the regularity properties of gl and W
To use Cramer’s rule, we write (m?)*) for the determinant of m] with deleted
kth row and Ith column, which is a homogeneous polynomial in the components
of m]. We summarize

(4.26)

. . . 1)k (2 (TR) , A
0 = midind, ()= Y +5§mg) S (n])1e= (€,0), (n)ae= (0,€7) (127)

)

if 3¢; > €], omitting the arguments (z,€). The components ¢ of mg and nf are

0-homogeneous in £ and those of d’ are 1-homogeneous; all are smooth in Z. For

later use, we admit coefficients ¢, ,ueC’l}. In this case we infer the core bounds
1

o 5| — j - (6% ] 1 ol — Y 21—
(0507 ¢| Sjap e 220N TV (03024 Sjay s 220TIENTI (4.28)

~

for o, B € NS, j > kg and k € {1,---,6}. With significant more work and partly
losing regularity, one can show similar results in the partially anisotropic case,
see [43|. The approach fails in the fully anisotropic case, cf. [49].

B) Pseudo-differential operators and FBI transform. We want to
turn the factorization in (4.27) into an operator equation. Since our symbols
also depend on Z, this requires pseudo-differential operators which we discuss
first. A smooth function @ on R™ x (R™\ {0}) belongs to the symbol class Sy,
for some v € R and w, k € [0,1] if

SUPgs0. |020F a(x, )| < cap (&)Y IPITRIRL o B e Ny (4.29)
We then define the pseudo-differential operator Op(a) = a(x, D) : Sp, — Sy by
Op(a)plz) = (2m) % | &"a(a, 5(6)de. (430

Observe that one has Op(a) = be(D) if a(z,) = b(x)c(§) where ¢(D) is
just a Fourier multiplier. Hence our principal symbol yields the operator
VU(z,D) = 8 + o/ M which differs from L’ by the L%L?-bounded perturba-
tion Ev = (—Vu? x vy, Vel x v1). The mapping properties of a(z, D) have been
studied in detail. For instance, let k < 1. Then one has a(z, D) : Sy, — Sp,. If
also a € S, the operator a(x, D) : H54 — H59 is bounded for s € R and
q € (1,00), by Lemma 0.1.A and Proposition 0.5.E in [65].

We work with symbols being frequency-localized at A = 2/ and thus need to
know the A-dependence of the constants. Typically our symbols are of the form

a;(z,€) = a(z,277€) for a smooth function a that vanishes if || ¢ (3,2), say,



4.2. Reduction to a half-wave problem 72

and satisfies |8§‘a| < 2(v=lel)i | ¢f. (4.28). Such operators can be controlled via
the next elementary lemma. In the matrix case it is applied componentwise.

LEMMA 4.20. Let p,q € [1,00] and a : R*xR* — C be smooth with a(z,&) = 0
for & ¢ B(0,2) and

C = sup Z [0 a(z, )|l L1 < oo.

ZERY o< o)<
Then the operator Op(a) is bounded on LR LY with norm less than cC'.
Let a;(z,€) = a(z,279€) for a as above with ]i??a] < ca2% for0 < la| <5
and some v € R and j € Z. We then obtain ||Op(a;)|| < cC2¥ in LELA.

PROOF. 1) Observe that a(z,&) = B(€)a(z,€) for a function B € C°(R*)
with support in Q = [, 7]* and B =1on B(0,2). To separate variables, we
expand fa into a Fourier series in £, namely

BOIED = BO Y, @€ with (@) = g | a(z, )8

for every fixed Z € R*, obtaining

9(@) =Y 1 /R Ty (@)5(E) Fg(§) dE = Y (@) (B(D)g)(a-+E).

kez* ke74

Translation invariance and Young’s inequality (via Remarks 3.4 and 4.6) yield
IB(D)g(- + k)HLqu < HgHLqu As in (3.10), integrating by parts we infer

an(@)] S k)X 10a(@ ) < Ok

for z € R*. The above formula for Op(a)g can thus be estimated as asserted.

2) For the second part we compute a;(Z, D)g = 09; @’ (%, D)oy-;g with symbol
a(2772,€) by substituting 7 = 277¢ in (4.30). The claim follows from the
transformation rule and step 1). U

We want to factorize L’/ as its symbol # in (4.27). For this we use the
Kohn—Nirenberg formula for the product of pseudo-differential operators, see
Proposition 0.3.C in [65]. We write D¢ = —i0e. Let ay be contained in SZt
with v, € R, wg, ki € [0,1], and k2 < w = min{wy,w2}. Set k = max{k1, ka}
and v = v + v5. Then a;(x, D)as(x, D) is a pseudo-differential operator with
symbol a; o az € S, having the asymptotic expansion

ajoay = Zo<|a|<N (Dga1 0gas) + (4.31)

where ry € Sl”’gN for N € N and the symbol is given by

lim / ei($_z).(<_€)¢(6(<7 Z))al ($a C)CLZ(Zv 5) d(Za C) (432)
R

ameaz(w,§) = (27)™ 5250 Jg2

for any cut-off 0 < ¢ € C°(R?™) being 1 on B(0,1).
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We apply this result to symbols of the form a;(7,§) = a(z,277€) and
bj(z,€) = b(z,277¢) for some j € Z and a,b as in Lemma 4.20. We assume

\agagay < Cqp2722(01=D45 |aga§by < o p2/ 230D (4.33)

for a, 8 € N§ and some v,/ € R, cf. (4.28). Here, the transformation in the
proof of Lemma 4.20 turns the products 7, in the sum of (4.31) into the symbols
7o (z,€) = 2’|a|j(Dga)(2*ja_c, ) (02b)(277z,€). Lemma 4.20 then implies

Ny 1 o .
HOP(D?%‘ 3§bj)||B(L§Lq) < 293 (lal+ 1) (4.34)

for 1 < |a| < N. The case |a| = 1 dominates and yields the bound 2(*+¥'~1)j
for these operators. We still have to control the remainder.

LEMMA 4.21. In the above setting we obtain Op(a;)Op(bj) = Op(a;b;) + E,
where the error term E is bounded by 2+ =13 on LY LY for p,q € [1,00].

PROOF. By (4.31) and (4.34), it remains to check ||Op(rn)| < en 20 =1
for a fixed N € N. Let £ = 277¢. Formula (4.32) for ¢; := a; o b; reads as

gt I [ EEI R 0006z, )z 29Oz (2.0

2% 129 (5—5)-(C_€ o

— W(%I—I}%] RSe12 (z—2)-(¢ f)qﬁ((S(Z,23€))a($,ob(z7§) d(z,o
247 ) )

=~ lim /Rseﬁj?%(a(f —5,2/(E+0)))a(z, £+ b — 7,£)d(7, ),

(27T)4 6—0

Cj(jag) =

transforming ¢ = 279, § = —z, and 7 = ( — &, where we can take § < 277, We
can assume that £ belongs to B(0,2) and then 7 to B(0,4) as b and a vanish off
B(0,2). We further take a cut-off ¢y € C°(R*) being 1 on B(0, 1), and split the
integral into summands with ¢¢(g) and 1 —¢o(y) in the integrand. Observe that
the d-cut-off disappears in the first term (for fixed z). In the second term, we can
integrate by parts as in (3.10) starting from 2’77 = —i277g,19; €297 with
7| > |5|/4. Doing this n times, we obtain a prefactor of the form ¢, 24~ ()"
and harmless 7-derivatives in the integrand (as 62/ < 1). After replacing £ =
277¢ one can apply the second part of Lemma 4.20 and obtains the norm bound
C, 204+ +'=1)j for the resulting pseudo-differential operator.
Taking n = 5, we are left with the ‘diagonal part’
24

w8 = iy [ ¥ on(gata. €+ mble — 5.8 A1)

whose integrand vanishes outside a fixed compact set in (g,7). We now insert
the Taylor polynomial of h(7,7) = ¢o()a(Z, & + 7)b(Z — 7,€) of order N at 0.
In this way one actually derives the expansion (4.31), cf. the text after equation
(24) in [48]. Here we need the remainder term given by

1
@ =Y. NP / (1= )N (9y 3h) (0(7, 7)) A6 (7,7)°.
Bl=N-+1 0
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Writing 8 = 85 + B85, By = By + B, and omitting the f-integral and factors, we
obtain terms of the form

@8 =2 [ g (0%00) (05) (05" a) 0@, E40) (9778) (0a—5.6)).

We insert 7P7el2' 771 = (i2)‘|5ﬁ‘j85’7ei2j73”7 and integrate by parts. This gives at
most 3 — (B = B; spatial derivatives of b, where 0 < 7 < min{fy, 85} is the
number of derivatives hitting §%7. The factor gjﬁ?*ﬁ% is treated in the same way,
giving the total prefactor 2(4=181+183D7 and harmless frequency derivatives.

We now replace again £ = 277¢. The resulting integral is a symbol in (z,€) of
the form treated in the second part of Lemma 4.20. The estimates (4.33) give
a bound of the corresponding operator Op(f‘g) by

052(4—|B;f\)j2uj2u’j2%(lﬁgl—1)j — cﬁ2<u+u’+§)j2—%|ﬁg\j < 062(v+v’+%)j2—%\ﬂlj'
For N = || — 1 = 17 the above is less than ¢2(*+*'~1)7. The main part of

rn(Z,€) is the f-integral and linear combination of such terms and thus satisfies
the same estimate. O

We further need the Fourier—Bros-Iagolnitzer (FBI) transform, see [62].2 For
g € LL (R™ C) as in (3.1) and a frequency A > 0 we define

Thg(z) = Cm)\gjln/ e 2(=Y)

m

2

9(y) dy, z=x—i{ € C™,
= O, N\ e lElPgiNew / o 2l emNv g () qy,

:cmATeéilz/ e 2P eireCyne) de, (4.35)

using also basic properties of the Fourier transform, see (15) in [63]. Here we
let Cy,, = 2_%7r_3Tm, 22 =3, 22, x,& € R™, and identify C™ and R*™ via
z =z —i€. It can be seen that Ty: L*(R™) — L% (R*™) = L2 is isometric onto
the closed subspace of anti-holomorphic functions in L%, where ®(£) = e ¢ 2
and L2 has the measure ®d(z,£). The FBI transform posseses the left inverse

T360) = G [ e HE RO o).

The Fourier transform is a superposition of plane waves. In T} one replaces
them by (L2-normalized) ‘coherent states’

Puo.to(Y) = Nig™ 7 6_% ly—x0|? 4iA(y—z0)-60

9

which are localized in space in a A3 neighborhood of xy and in frequency in a

A3 neighborhood of A&. One can compute

AN (z) = )\_%ﬂ%e_% (|$—$0|2+|€—50\2)e% |§|2€i%($—$0)'(§+§0)

which is localized in the same way near zy = xg — i§y. One directly checks that

Th(yg) = (245 (0c — X)) Thg, Th(3Dyg) = (€ —3(i0: +AE))Thg = + D Thg.

2This transform goes back to work by Bros and Iagolnitzer in the 70’s.



4.2. Reduction to a half-wave problem 75

This observation leads one to the following commutator properties of T).

Let a(z,€) be a symbol vanishing for |{| > 2 and which is C} in x for some
s € (0,2]. Then ay(z,&) == a(x, \"1¢) is supported up to frequencies 2). Set
Ay = Op(ay), a3 = a for s € (0,1],

a5 = a++0,a (0 — M) —10ca (10, +XE) = a+2(0a)(0—1XE), s € (1,2], (4.36)

and R} , = ThAx — a7y, with 20 = 0, +i0¢ and 20 = 0, — i0¢. The second
equality in (4.36) is true on anti-holomorphic maps where d = 0. The following
core remainder estimates are taken from Theorem 1 and Remark 2.2. of [62].

THEOREM 4.22. Let a € CJC be as above, s € (0,2], and X > 0. We obtain

S

S -£ S 1l_s .
1B allBrz,c2) S A2 and (g = AR ollprz,r2) SA272 if s> L.

We will apply Ty with A = 2/ > 1 to Pjv. Here one can restrict to (z,£) €
B(0,2) x A(%,4) = K. Indeed formula (4.35) leads to

— _ AIE =12 ive = — — 2
(&) | Ty Pyu(z)|* = cﬁxﬂ /R4 o2 6N F o) (Aqg) di |

Let (z,£) ¢ K. Note that o\(FPjv) is supported in A(%,2) since A = 27,
implying | —7| > 1. Starting from e?®7 = —i(AZ;)~10;,e* 7 we can integrate
by parts gaining a factor A=|z|~, but losing AV |€ — 7" for some n < N.
Moreover, the Gaussian times A~ 2 A2 |€—7|™ can be estimated by e~ et lE-7
for ¢ = (8 -16)71. Using N = 3, Young and Remark 4.17, we obtain

D —4, —A|| TP —cA
ITAPjoll 2 (o) S XA e A | FPjullas sy S ™Ml Lage- (4.37)
As A=27 this term is square summable, and it suffices to estimate T,\]5jv on K.

C) Diagonalization of L/. We now transform (4.27) into a factorization of

L7. For this we need a refined frequency decomposition taking care of the cases
in (4.27) and of the case |7| > |¢| off the characteristic surface C = {¢/ = 0}.

For the latter point, as noted after (4.18) we have |&/], |u?| < % for j > ko. Let

€] € [3,2] and |7| > %\5\ =: ¢p|¢|. Using also n < 1, we derive |7| > |£| — |¢| >
3— 17|, and so |7| > 2. For w = (wy, ws) this inequality yields the lower bound

[Ew]| > || fwi| = 21€]|wa| > |r|jwi] = glrllwi] > 55wl (4.38)

if |w1| > |wz| and hence 2|w;| > |w], for instance.

Next, for the angle cases in (4.27) we fix maps 0 < w; € C2°(S?) with w; () = 0
if [6;] < § for i € {1,2,3} and w; +ws + w3 = 1. To incorporate the condition
|7] > col€], we fix 7 € N with 2% > 2(cp+1) and use the cut-off Y = x_n+--+x1
acting in & only. Let x7(|¢]) = x(|€])(1 — x(|¢])) be non-zero. We then obtain
€] € [3,2] and |€] < 277, cf. the lines before (3.9). It follows |7| > I — [¢] >
(32" — 1)|¢] > co¢|. Therefore we can apply (4.38) if X7 # 0. We now define

Xij (§) = X ENX @ IENwi(lE]T1€), X5 = 00X X] = 023X,
Pj =xij(D), Pj=x;(D), Pl =xj(D), % =w(D),

(4.39)
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for j € Z and i € {1,2,3}. Here we consider x as a map Rsg — R-g. Observe
PiPj = Pij + Py + Py;, (I - Fj)P;=P]. (4.40)

We can now define the operators corresponding to the symbols in (4.24),
(4.25) and (4.27), namely

Mij = Op(mixi;).  Nij = Op(nlxij), (4.41)
D; = Op(d’) = diag (04, 0y, 0y + v/ |D|,9, — /| D|, 8, + 107 |D|, 0, — i’ | D|)
for j > ko and i € {1,2,3}. We write E, for any operator on L{L? with norm

less than ¢2%7 and ]52’] for ‘enlarged’ versions of ]5” We collect main properties.

PROPOSITION 4.23. Let e, € Cl}(R‘l) satisfy e, >1n >0, and p,q € [1,00].
Then the operators in (4.39) and Oy in (4.41) fulfill

OijP;j = P;0ijPij + E_1, MNPy = P+ E_1, NijjM;;jPij = Pij + E_y,
Oy Pj= PO Pj + E_1, L'Pjj = M;jDjN;;Pij + Eq  for j>ko, i€{1,2,3}.
PRrROOF. The result follow from the corresponding identities of the symbols

as in (4.27), estimate (4.28), the localization |¢| > 2K0~"=1 as well as Lem-
mas 4.20 and 4.21. O

After these preparations we can reduce (4.19) to a scalar half-wave problem
treated in the next section. We write T} for T5; and JJ% for L3 L% Recall from
Remark 4.17 that we can accept enlarged operators PJ{ on the right of (4.19).

PROPOSITION 4.24. Let e, € Cbl(R4) and &, pp > n > 0. Then Theorem 4.26
implies (4.19) for j > ko with additional term HLjPZ'jUHL% on the right. In

particular, Theorem 4.8 follows if e, u € C’g(R‘l).

PROOF. We split Pjv = Pij + Y, Pijv, see (4.40), and estimate them sep-
arately. We first use Bernstein’s inequalities, the isometry of T}, Theorem 4.22
and (4.38) to obtain

2| P ol g0 S 259|120l 2 = 289 T3 PT Pl (4.42)
S 227X Pl gz + 1Pl 2 S 227 1T Pjoll gz + (1Pl 2
l s P — _l . P —
< 28927 T3 L0 Pl 3 + [Pl 2 = 2739 |LI Plo 2 + | Pl 2,
which fits to (4.19).
To prepare the part including the light cone C, we first compute
1Pijgll 2 < INij PjMij Piglir2 + 277 || Pijgll 2 < lMij Pijgllz + 277 | Pijgll 2

using Proposition 4.23 and Lemma 4.20. Possibly increasing kg, we conclude

1Pl 2 < Mg Pijol| 2. (4.43)
These results and Bernstein imply
27| Pyl pp o S 27 (| Mg PN Pigoll g + 2709 Pygol| g 1 (4.44)

S 2 NPwll g pa+ 27 2| Pyl 2 S 27V I1Pjwll pp pa + 1 Pjoll 2
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with w = Nj; Pijv. The first two components of w correspond to the degenerate
part of L7. Here the charges come into play via

i D 1 — e 1. =
2V Plwiyoll e S 22 €17 X5 F Divoll 2 S 2727 || Pjpll 2 (4.45)

invoking Bernstein, Plancherel and the form of nf described in (4.27).
The other components wy, are treated by means of Theorem 4.26. Using also
Proposition 4.23, Lemma 4.20 and (4.43), we arrive at

279 Pjwgll oo S I1Pfwill 2+ 1Dk Piwell 2 S 1Pyl g2 + My DiNg Pigoll 2
S I1Pjll 2 + 117 Pijoll 2. (4.46)

Estimates (4.42), (4.45) and (4.46) imply the first claim. The second follows
from the commutator

[Lj, szz] = M[aj (t), p]QZ]

which is bounded on L? by cHaj(t)HCbz < C/Ha(t>||cg. This can be checked as in
the proof of Lemma 4.16. O

We add a variant of Theorem 4.8 only involving fractional space derivatives,
which is better suited to the study of evolution equations. (See also §4.4 A).)
The basic idea is that on the range of ]5] space and space-time derivatives are
equivalent, whereas L behaves much better off the light cone, as seen in the
above proof. For simplicity we take ¢ < oo and inhomogeneous norms. The
energy estimate (4.6) yields HU||L3°TL2 St llvollzz + [[flly e in (4.47) if s > 1.

COROLLARY 4.25. In the setting of Theorem 4.8, let ¢ < oo, T > 1, and
Jr=(—1,T). We then obtain

N— T _ S
KDY 20l g o ST l10llLss 22 + KDY fllzz 2 + (D)2 72 pll 1z 12, (4.47)
if the terms on the right are finite. The analogous result is true on [T, 0].

PRrROOF. The last claim is shown by reflection. Since we allow for s < 2, we
have to replace the coefficients a=! by a! = P< for | = %Sj and j > jo with
jo € Ny from the proof of Lemma 4.19. Note that PJ = pjpéjo for j < jo, where
Py means P<g. Thus the lower frequencies can be treated as in Lemma 4.12,

but now using Sobolev’s embedding on R3 with —vy — 2 = ]% — % It follows
g = 1
IKD) 72 Pjvll e S HngovHL,%H%_% ST |vllpgerz = So. (4.48)

Asin Lemma 4.16, Theorem 3.6 and Minkowski’s inequality allow us to pass to
frequency-localized terms with P; which we then split by means of ]5j, cf. (4.39).
However, on the range of P; the fractional derivative (D)® is not comparable
to 27¢ in norm estimates, so that we have to keep it. Moreover, to pass to the
time interval R, we extend f by odd reflection and a time cut-off being 1 on
(—%, T+ %) to a map supported in (—1,7'41). The solution of the corresponding
problem (4.3) on R is still denoted by v. Note that f and p on (=1,7 + 1) are
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bounded by the functions on (0,7"). We set © = ¢v for a map ¢ € C*°(R) with
¢ =1on [0,7] and support in (—%,T + %). We start with

D) Folidy 10 < DY Rty S S5+ DY 5Pl
2 ——Z B2 =25 B2
S+ D DT TR P aly Y D) TR Pl . (449)
On the range of 15] we can replace D by D and vice versa. We use L' with

coefficients @' which preserve the frequency localization. Theorem 4.8 yields
(D)5 Py Pyl 1

(4.50)
~ — — _O_A ~ — — _l_g ~ —
S 1B Pyoll e + (D) LBy Byill gz + D)% B;Pi(p)ll a2
S Pyl z o+ 20 (B PPy — PP L)(60) 2 o [ B3P0 2o
IR e + 1200y 45

SNBY60)ll 212+ 27960l 22+ 1B pzno + 1B (@)l 212+ |1 B (@),

for some § > 0, arguing as in Lemma 4.19 in the last step. (For s = 2 one can

omit P<; and treat [L, P;P;] as in the proof of Lemma 4.16.) Using Littlewood—
Paley, the last square sum in (4.49) is thus bounded by

2 /(12 2 2
H@Z)UHLD%H +[l¢ UHLD%{L? + H@Z)fHLH?{H—a + ||¢p||L2H_%_%

e A 3 PV 1

~3-°

. . = = oepe 1
By means of Sobolev in space and time, |7| < [¢], and [¢{] < [¢]if ; — § >0,
the penultimate square sum in (4.49) is dominated via

o o~ 1
KDY 2 PTol| pp o S (1(Dr) 2

3=

1_ o —_ 1, = _
(D)yr 2 Piollp2re S 227 || PToll g2 g2

We can now proceed as in (4.42) gaining a derivative and deduce
D)5 PToll a0 S 273 L PJB| 2 + | Pl 2 10
As o <1, we estimate the square sum of the above terms as in (4.50) by
l60lZa g + 190122 2 + (D)7 (6122 0 S 01wy 12y + 1 F 12 e
using [(D)~7(¢f)172 . < (D)7 (8.)]17

2 ~
L2L2

7272 Combined with (4.48), (4.49) and
R
(4.50), the above inequality yields (4.47). O
4.3. A localized Strichartz estimate for a half-wave equation

For Theorem 4.8 it remains to show the following Strichartz estimate, taken
from [63]. We state it for coefficients a € C? (RA‘,R?],X?’) with ' > 0. We set
Ela@) = Va(@)E €, qe(2,6) == 7+ |€|q(z), and Q+ = Op(igs). We need the

case a = &’/ I with Q4 = 9, + i/ | D|, satisfying the condition below.
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THEOREM 4.26. In the above setting assume |0Sa| Sq 23 (lal-2)i for a € N§
and some sufficiently large j € N. Letw € L%LQ decay rapidly outside a compact
set and (p,q,vy) be strict admissible, see (4.10). We then have

29| Byl iz 0 < Ol Pwllz e + 1Qs Pyl 2 12)-

In the following we restrict to the case g¢_ =: g and Q— =: ), as the other one
is handled in the same way (or via time reversal). We sketch the proof given in
pp. 397415 in 63|, following the treatment in Subsection 4.1 of [48].

A) Preparations. Let A\ = 2/ for j > ko from above. We write L2 =
L%&L2 and also Py, Ty etc. instead of 13j, T;, etc. since j is fixed and we do
not sum over it. We further set wy = Pyw for w with finite norms c(w) :=
HP/\wHL%{LZ + HQP,\wHLD%Lg, wy = Thwy, and write E, for any operator with
norm cA\” in L?D, L2 or L%Lq, depending on the context. Moreover g € L?I)
means that [|g|| 2 S ¢(w), and analogously for other spaces. As before we set

oA (T, €) = o(T, A\71E). We start with a useful observation.

LEMMA 4.27. In the setting of Theorem 4.8, let ¢ € C(R*) have bounded
derivatives and assume that ”(ZS’UNJ)\”L% < A2 lwallpz. Then it is enough to treat
(1 — ¢x)wy in Theorem 4.8, where TA((l — (;SA)wA) =(1—¢)wy\+ E_1w,.

2

PROOF. Sobolev’s embedding, the isometry of Ty and Theorem 4.22 yield
A wall gz pe S A2 [éawall gz + A7V = @x)wall o
= Az || Tagawall gz + X771 = da)wall 2 o
< A3 lgTaunl gz + lwallz + AL = éx)eallzs s
S lwallzz + A7 (0= ox)wallzz za-
The second claim also follows from Theorem 4.22. O

Note that ¢y, satisfies Mikhlin’s conditions in £ and that (4.37) also works if
one replaces the compactly supported map v by w which decays rapidly outside
a compact set. Using the above lemma, we thus have to estimate w) only on
K = B(0,2) x A(3,4). Similary, take a neighborhood U, = {|¢(z,{)| < k} of
the ‘light cone’ C = {gq = 0} for some £ > 0. On the complement of U, we can
invert ¢ and thus argue as in (4.42) to estimate ||qb1l)>\||L3I> S >\_1Hw,\HL% for ¢
having support in U;/Q. By Lemma 4.27 it suffices to bound wy on KNU, =: K.

We start with estimates for wy. Theorem 4.22 with s = 2 and a = ¢ and
Lemma 2.1 in [62] yield

A2 — A)wn € L, A72(9 — M) (A +2(09)(0 — INE))dy € L}, (4.52)

Using 0z = 10¢ on anti-holomorphic functions, the second and third property
above and the calculation after formula (26) in [63] lead to

Aegiy € L3 and  ¢(0—i\E))y € L2, (4.53)
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Hence, the second part of (4.51) remains valid if we replace g by hq for a map
h in WH*°(R8). The equality 0z = i0¢ and (4.51) also imply
(029 0 — 0gq 0z) + Mg — 1€0sq — £0gq)]x € L,
(95905 + 0eq 0¢) + N — EDeq — i€0zq)] Wy € L.
These expressions simplify a bit if we remove the weight ® by setting w) =
<I>%u~))\. Since 8g¢>% = —Ag@%, we deduce
(0290 — 09 0z) — iA(q — £Dzq) |y € L2, (4.54)
(024 0% + 9zq 0F) + A\(q — i£05q)]wy € L. (4.55)
with L? = L?(IR®). The first property corresponds to an ODE along the ‘Hamil-
tonian flow’ for ¢ and is used below to control regularity on C, whereas the
second relates to a gradient flow for ¢4 and allows to estimate off C. Observe
that g —{Jz¢ vanishes by 1-homogeneity. We write H; = 0zq 0 — 0gq O for the
Hamilitonian vector field for 4.

The first estimates in (4.51) and (4.52) translate into wy, )F%@gw)\ € L2. The
(proof of the) trace theorem and (4.51) imply

1. 1. 1l N
A [l 2eniy S AT F[0all 2+ AT ([0l 72 10g0all 72 S c(w). (4.56)

Based on the second part of (4.51), as above one computes )\_%ﬁquw)\ €L
Together with Hyy € L? from (4.55), we similarly derive

1 .
A3 || Hgoa || 2enrey S c(w). (4.57)
In the following we only need these two estimates.

B) Reduction to an estimate for an oscillatory integral. We want to
estimate wy by its trace on C N K which is controlled via (4.56) and (4.57). To
this aim we parametrize a neighborhood K|, of (a part of) C N K by (r,() for
the distance r to C N K and C?-coordinates ¢ on C N K. Here r is given by

Vfﬂ(ﬂ?"o,ﬁ_o)
V2 £4(Zo, o)
for the base point (Zo,&) € C N K. It can be seen that r/q is Lipschitz, see

p.400 in [63|. We can replace ¢ by r in (4.51) and hence in (4.55). Moreover,
the differential expression for 7 in (4.55) transforms into

dpdy = [0y + A(r —i0z7(Q)(E(C) + rdgr(()))]don = g € L2. (4.58)

Here we consider &, Z, Ozr and Ogr as functions of ¢ € C N K, which is partly
suppressed below.

Below we use the transformation dzd¢é = h(r,¢)drd¢, where h is strictly
positive, h(0,{) = 1 and d¢ denotes the surface measure on C N K. We split w)
by means of the ordinary differential equations

d,w! =g on K/, w1 =0 on CNK,

(ivg) = (‘%0750) +r =(+ r(vf,gr)(f()vg())

d,w? =0 on K/, we =wy = on CNK,
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dyi® = -0, +4* on K/, 3=0 on CNK.

We have @3 = (1—2)d? and @y, = @'+ + L2 We set w! = T;d ™2 (6! +d%)
and w? = Ti‘@_%%uﬁ so that w! +w? = T3Th\wy = wy. Energy-type estimates
show that A2db; € L2 and A2 ||isl|z < |[dall2 < A1 |¢||2, see (37) in [63]. Hence
(4.56) implies A2 |w||z < c(w).

It remains to treat w?. The ode for 1w? can be solved explicitely. Applying
T)TCD_% and transforming to (r, (), we deduce

W2() = Ca¥? for MmO g BE e N drard ()

with the abbreviations rz = 0z7 and rg = Jgr. Astonishingly the r-integral can
be calculated explicitely, leading to

wi(7) = CoA 3N / P70~ 3cT-7) o ()p(€) dC = CA 3T (a1 0) (5).
C
(rs +ir8) - (7 — 7))

7"2——1—27’%—1—17"@-7’5 ’

N

we(§—z)=(§—1)° — a() = (7“% +2r2 + irzrg) 2.

The map « is well defined since |Vr| = 1. We can include it into ¢ as it is
Lipschitz and so [Hg, o is bounded. It can been seen that Rew > 0 and the

above functions are continuous in Z and smooth in &.
Because of (4.56) and (4.57), we have to show

1
IVaelliepe S N4 (lellzze) + 1Hgoll 2()) (4.59)

for ¢ with support in C N K. To exploit the extra regularity on the right of
(4.59), we use the Hamiltonian flow (Z¢, ;) for ¢ solving

%Et = gf(i'tagt)a %ﬁ_t = —qz (%1, &), (Zo, &) = (%, €). (4.60)

Note that (7, &) belongs to C if (z,€) € C = {g = 0} since %q(@,g}) =

(Vj’gq)q(it,gt) . %(it,&) = 0 by (4.60). We set Rp(Z,€) = fooo e to(Ty, &) dt
noting that (I — Hy )Ry = ). Setting ¢ = R, estimate (4.59) and thus
Theorem 4.26 follow from the next result, which is Theorem 6 of [63].

PROPOSITION 4.28. In the above setting, let b € C2°(R* x R\ {0}) being one
for |¢] € [1,4]. We then obtain

1
”V/\bR@bHLqu <A \|¢||L2(C)~

Equivalent statements are that (VA\bR)*: Lfé LY — L?(C) is bounded by ATHE or

Z = VAbRR*BVy: : L LY — LY by A3, (4.61)

since [|T*g||3 = (T'T*g, g).
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C) On the proof of the core estimate. We give a brief overview of
the demanding and lengthy derivation of Proposition 4.28. First, for the en-
ergy triple (00,2,0) it suffices to show to the stronger estimate ||[Vy: ¢z S

e—CA(t—7)? loll2 for t,7 € R and the operator Vy ;- : L?(R®) — L2(R3) given by

Prrroly) = X3 / @D N ED (7, &) p(, £) d(x,€).

R6
This estimate follows from the inequality

% —eA(t—71)2 -N
Ko (y,y)] Sv XPe™ 7 (14 Ay — ])

for the kernel of Vy it Tf/)ft - See p. 404 of [63].

The main step in the proof of Proposition 4.28 is the case 2 < p < ¢q. (We have
p > 2 for strict triples and m = 3.) To treat any strict triple (p, q,7) # (0, 2,0),
we choose p < p and ¢ > max{q, p} and interpolate using 6 := p/p € (0, 1) and

1 6 1-96 1 6 1-96 3 3 1

-—= -4 —, -—= -4 —, Yy=—=-——-—==0v4+(1-0)0.
p p o0 a q 2 TTaTg ( )

So let 2 < p < q. We note that R* is given like R with (z_;,£_;) and hence
RR*p = Jae Mo(zy, &) dt = Re(z,€). We can thus write

Z = VAbRS bV

Let ¢79(z,6) = (T—a(j)ﬁf)j_e for Ref < 1. As a distribution-valued map, g~°
can be analytically extended to Reé € [1,2). Moreover, for § = 1 it coincides
with the restriction operator dy—o to C. (Compare §1X.1.2 in [59] or the proof
of Proposition 3.7 in [49].)

One estimates Z by an interpolation argument. For this we fix ¢ € C2°(R*)
being 1 near Z = 0 and set ¢°(Z) = ¢(0Z). For an integral operator J with
kernel k we define JO with kernel ¢°(z — 3)k(Z,9). Also, for Re > 0 let Ry be
given by inserting |t/ % in the integrand of R. We then introduce the operators

Wo = Vabg *Ree™MbVY,  Xp = Vabg "RobVy,  Zp = W)* + Xy — XY™,
X

Here Wgﬂ possesses a short-range kernel and Xy — a long-range kernel,

and we have 71 = Z.
The maps Zy for Re = 0 are estimated in B(LZL?) by ¢, and for Ref = o :=
4 in B(Ly L', Ly L) by eA?@7+3) . Here r > p is chosen such that 11) =2
Hence the interpolation result in §I1X.1.2.5 of [59] will yield Proposition 4. 28
The estimate for Re§ = 0 in B(L3L?) is again based on analysis of the kernel
of VAV, see p.405f. of [63]. The treatment of the case Ref = ¥ is reduced
to the operators Z! = V,\th5qzobV; for t € R, where F' is the substitution
with (Z,&;). This is achieved by handling the t- and 7-integrals separately, see
p. 406f. of [63]. The operator Z! has the kernel

Ei(5,7) = \° / MEDNE Ty (7, E)b (T4, &) (TP e N (1) (7, ).
R6

The desired norm inequality for Zy with Re 8 = 9 follows from the kernel bound
Ko@) € Me X0 (14 Ay — o)) (4.62)
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for j = (s,y) and ¥ = (s',3') in R* and ¢t € R, established in Theorem 7 of
[63]. This result is based on a detailed regularity analysis of the Hamiltonian
flow (z¢,&;) in Lemmas 9-12 of [63], which relies on the assumption on 9%a.

Using these lemmas, the inequality (4.62) is proven for the short range t < v/A
by reducing it to standard oscillatory integral estimates from Sections VIII.3 and
IX.1 of [59]. These results depend on the number 2 of non-vanishing principal
curvatures of C. The long range ¢ > v/ is split into a ‘non-oscillatory’ part
cly — /| < t? and the ‘oscillatory’ part A < t? < ¢|g — ¢’|. The former can be
handled by more direct estimates, whereas the latter is more complicated and
involves the Fourier transform.

4.4. Variants and applications

Theorem 4.8 is not suited for applications to quasilinear problems. In this
section we discuss appropriate variants and an application to the local well-
posedness theory. However, for such results one has to differentiate the nonlin-
ear terms, which leads to matrix-valued coefficients in the linearized equation,
cf. Example 1.1. In the anisotropic case this can be done only for rather special
situations so far, see [43] and [49]. On the other hand, in [48] we have developed
theory for the anisotropic Maxwell system on R?, using the same arguments as
presented here. These Strichartz estimates lead to an improved local wellposed-
ness theory on R?. Theorem 4.8 can still be used to establish local wellposedness
of semilinear Maxwell systems arising from retarded problems. This application
is treated at the end of the section. Below we can only sketch the arguments in a
more informal way, and we cannot discuss variants as we did in Section 4.1. We
further note that for scalar coefficients and certain additional conditions, there
are global-in-time Strichartz estimates, see [16], and (local-in-time) on domains
in the presence of boundary conditions, see [11].

A) Strichartz estimates in an Lj-setting. For the treatment of evolu-
tion equations, one prefers a true local-in-time estimate without (non-local and
non-causal) time regularity, as we have achieved it in Corollary 4.25. There
we have passed to an error term for v = (D, B) in L¥L?, as L2L* does not
fit to some of the arguments anymore, cf. (4.48). However, the data are still
measured in L2 on the right-hand side of the Strichartz inequalities. In view of
the results for the wave equation in Theorem 3.13 or the energy estimate (4.6),
we rather expect and prefer LlT here. Even more importantly, the applications
to quasilinear problems lead to linearized systems with V(e,u) € L2.L>, for
instance. As a first step towards such Strichartz estimates we look at Lipschitz
coefficients with 92(e, u) € LLL>®. We state a slightly weaker version of The-
orem 1.3 of [43], recalling that L = d; + Ma~! represents the Maxwell system
(4.3) for v = (D, B).

THEOREM 4.29. Let e, 1 € CH(RY,R) with 82(e, ) € LEL™ and e, u > n for
somen >0, 0 =0 = opn, (p,q,7) be admissible with p < oo, T > 0, and
v E L%OLz. Set Lv = f and p = Divv. Then v satisfies

_ 1 _L 1 1
DI llp e S &7 0llpgere + 677 I fll s g2 + T2 (D172 p(0) | 2
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_1
+1DI720pll s £2), (4.63)

if the terms on the right are finite and TH(?%(&M)HHTLOO < k%2 with k 2 1. If

q = 00, one has to replace L by Bgo’g.

Note that inequality (4.63) holds trivially for the energy triple (oo, 2,0). Other
(non-strict) triples (oo, q,y) are excluded to avoid technical problems in steps 2)
and 3) below. In step 2) we see that we can replace |D| by (D) in (4.63). The
different form of the charge term is caused by the arguments in step 4) below.
Note that d;p = Div f by (4.2).

As for Theorem 4.8, the proof of (4.63) involves a lenghty reduction process
to a frequency-localized and -truncated inequality, namely

_ . — . 7; . ~ —
2 WH”jHLﬁLq S HPJ{UHL]EOLQ + HLJUJ'”L]}{LQ +2 QJHP)]'PJPHLD%LQ (4.64)

for strict triples, v; = ]%Pjv, v € L L? with support in a ball of fixed size, k = 1
and j > k. As before we set L/ = 0; + Ma’ and o/ = ng/Q diag(e=t, p™1).
In contrast to (4.19) we have L3 and L. instead of L%. Moreover, we have
already reduced to frequencies |£| 2 |7| in order to deal with the purely spatial
regularity in (4.63). We first explain why (4.64) implies (4.63) in several steps,
before we discuss its proof.

1) Using the scaled function v (¢, x) = v(At, Ax) for A = Tx~2 we can reduce
Theorem 4.29 to T = k2. As in p. 426f. of [64] one then sees that it is enough
to consider the case T'||02(e, m)lryrz < 1. Finally, by scaling with A = T', we
can restrict toT'=1 = k.

2) The small frequency part w == P<j,v = P<j)P<jo+1v for j < jo can be

1
treated as in (4.48). If ¢ < oo, we now involve the Sobolev embedding Hr —
.1 .
Hr — H 79, For q = oo, we first use H?" < L for some 6§ := 3 — % > (0 and

r € (3p,00), and then Hr~r s 1T It follows

DI Brw (@)l S 1 Brw @, 145 Sio 12w ()| 2.

Littlewood—Paley in L? then yields || |D|*"/LLJ||L;1”§2Q2 Sio llwllzerz < |lvllpsere.
Hence, we only have to treat v := Psj v on the left-hand side. As in
Lemma 4.12, we see that (4.63) is true for © on the left and with (D) instead of
|D|. Here we use ¢, u € Cy.
3) If (p, g, ) is not strict, we pass to the strict triple (p, g, 7) with % = %—% >0

as in Lemma 3.17. If ¢ < oo, the Sobolev embedding H =77 < H 77 and (4.63)
for (p,q,7) imply the estimate for (p,q,7). For ¢ = oo, we use Bernstein,
Minkowski and (4.63) for ¥ to compute

—Y~112 —2k5 _
D010 S | D0, 272 1Bkl o

_1 _1
< S (1Pl s + LBy o + 11DI 3 Pep(O)]22 + 11DI 400 Prpll2 o).
k>jo0

2
-5 2
10 < k> o ” ‘D’ PkUHLZI’Lq
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The square sum can be taken into the L'-norms by Minkowski. A bit sloppy,
LPyv is written as P, f + Da~! Pyv+[a~!, M P.]Jv. The second term is bounded
in L? by ||Pyv(t)|2, whereas the third is split into

[a™, M Py Pl'v+ PM(Psg_2a ' (I — P})v)
as in the proof of Lemma 4.16. Both summands are estimated as in this proof by
la=t(t)||2,2]| P{v(t)||l2. All together the square sum of ILPgv|[p1p2 is less than
C(HUH%CI’OLQ + Hf||%%L2) In the summand with L{® we use the energy estimate

(4.6) to obtain Hka(O)\|%2—|—||]“||%%L2 and then [|vg|2, < [[v]|? ., by Littlewood—-
Paley, arriving at (4.63). From now on we can assume p, ¢ < 0.
4) In this core step we deduce (4.63) for k = 1 = T, strict triples and © on

the left from the estimate
e e 1
D70l o ra < [1DI770zere S Wvllzzze + [1fllpz2pz + (D)~ 2pll 22 (4.65)

involving again only L2L? on the right. (Observe that |[D| and (D) are equiv-
alent on the range of P, by Mikhlin.) Indeed, let (4.65) be true. The so-
lution v of (4.3) is given by Duhamel’s formula for solution operators U (¢, )
with ¢,7 € R. The part P5;U(-,0)vg has the constant charge P-; p(0). We
apply (4.65) to w = ¢Ps;,U(-,0)vg for ¢ € C(R) being 1 on [0,1]. Note
that the resulting inhomogeneity Lw = ¢'Ps;,U(-,0)vg can be bounded by
c|[voll < c[|v[[Leep2 by the energy estimate (4.6), so that

_ 1.
(D)7 P55, U (-, 0)vollzzra S [l0(0)]| 2 + (D)2 Divug|| 2.

~

It remains to treat the part 01(t) = Psj, fg U(t,r)f(r)dr. The above estimate
for f(r) instead of vy then yields

2
. _ _1
KD) 01| g 1o S/O DY UC ) ()| popa dr S N fllzaze + (D) "2 0epl g2

by Minkowski’s inequality and Div f = 0yp.
5) As in Lemma 4.15, we now restrict to v supported in balls of a radius R > 0.

6) We strenghten (4.65) to the time interval R on the left, and treat the
frequency region [£| < %77\7'|. For the principal symbol ¢ of L and such &, one
has |(€)| < |7]/2 and |7| < ¢o|€| with cg = 2/(2 + n), cf. (4.38). We choose a
smooth function x, with bounded derivatives and support in this region, being
1 on {|¢| < in|r[}, and P; = x+(D). Using Sobolev and Plancherel, we infer

IKD) ™ Prollpere S H<D>_”PT@HL§H% S KDy eeell

D=

53
g H
1, = _ -
< IO el Pl 312 S 10 — @™ Mol
S lollzzee + £ 1lpzLe-
As a result, we can replace in (4.65) © by v = (I — P;)0.

7) We next infer (4.65) for ¢ and thus Theorem 4.29 from the frequency
localized version

_ S P
D™ il e e S llvsllpzre + 1 Lvjll g r2 + 272 (| PPypll 2 2 (4.66)
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for v; = P;Pjv, j > jo and some r € (1,2). (Here we slighty adjust the definition
of x.) Because of Littlewood—Paley and the fixed size of supp f C suppv, as in
step 3) it remains to show

> e MBIl oot | PP (Pajaa (I-Po) [

L]}ELQ SJ HUH%D%L?

The commutator can be treated as in Lemma 4.16 only using €, 4 € Cg. Further,
Bernstein yields

2 Pss-20] € 3,0, 2 IR Poy-agl] S [V Ps-ao]

in any L{ L%-norm. Let r* = 2r/(2—r). Using also Hélder, the second summand
above is thus is controlled via

1P5-5Va™ || o p 0l 222 S H%“Hi@m |27/ Pj_sDZa”"

1
’I‘*

LD1§L°° ”rUHLD%L2

and thus by 97 |l r2z2 which is square summable.

As in Remark 4.17 we see that Jzv; decays rapidly outside a compact set
so that (4.66) follows from the analogous estimate with L]}Q instead of Ly and
with 277]v|| Loz on the right. Moreover, by the energy estimate on compact
time intervals ||v;(0)|| behaves like |[v;(t)]| up to summands HLUJ'”LD%{LQ' Hence
it suffices to prove (4.66) with ||Pjv||L]§oL2 on the right.

8) We deduce (4.66) with the above modifications from estimate (4.64) as in
Lemma 4.18 but applying Holder in time differently, similar to step 7).

Next we indicate the proof of (4.64). In the argument we split P;P; = Pj; +
Py; + Ps;, see (4.40). The terms P;jv are then estimated as in (4.44) observing
that the symbol compositions in Proposition 4.23 work for Lipschitz coefficients.
For the non-degenerate components one uses the estimate

277 Pwlipre S I1Pjwlrg e + 1QPwll L2 2 (4.67)

from Proposition 1.8 in [43|, which is a variant of Theorem 4.26. As in step 4)
above one can replace L%& by L%& on right. In this way one reduces (4.66) to
(4.67). The latter result is shown in pp.429-436 of [64], cf. §4.2 of [48]. This
proof is similar to Theorem 4.26, but adapted to d2a € LﬂRLOO and w € LIORPLQ.
In particular, Theorem 4.22 is replaced by its variant Theorem 2.3 in [64],
which yields estimates of the transformed solution which are adapted to the
new setting. Also the core part involving the oscillatory integrals is modified
according to the lower regularity of the coefficients.

We finally deduce a corollary for coefficients possessing only one derivative.
To this aim, for s € R we introduce the space X5 of ¢ € Si(R?) with finite norm

lellx, = supjez 27 | Pl Ly oo -
Note that vLﬂQLC’O — A1 by Bernstein and Young, cf. Remarks 4.6 and 3.4.
For strictly positive €, 4 € X5 one can show a Strichartz estimate with the norm

sup; 2_7_%|]Pjvl|L§Lq on the left. This is deduced from Theorem 4.29 by an

argument as in Lemma 4.19, see Theorem 1.5 in [43]|. As a consequence, we
obtain an estimate involving space regularity only.
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COROLLARY 4.30. Assume thate, u € Xs satisfiese,u>n> 0, |[(e,p)||lx, <1
and ||3£(E,u)||L2TLoo <1 for some s € [1,2) and T > 0. Let o = g;i, (p,q,7)
be admissible, o > v + %, Lv = f, and Divv = p. We then obtain

KDYl pa St llvoll e + [[f1psz2 + [1p(0)

—g .
P

. ||3tp\|L1TH_%

This result can be shown as Corollary 1.7 in [48], passing to Littlewood—Paley
blocks. On a frequency range |7| < |£| one can use the result mentioned above
and the assumption involving Xs. For |7] > [{|, we argue as in (4.44) employing
Oz(e, 1) € LIQRLOO. The extra regularity loss a — v — % is needed to bound certain
square sums.

To treat a quasilinear problem in next paragraph, we pass to the two-
dimensional Maxwell system

D =V (u'B) = Je, D(0)= Dy,
0B = — curl(ale) — Jm, B(0) = B,

with D, Jo: RxR? = R?, B, Jyn, pp: RXR* = R, e: RxR* = RZ?, p, = div D,
curl(1, p2) = D192 — o1, and V| = (82, —h) .

In contrast to (4.3) for (D, B), in (4.68) the fields and coefficients only depend
on the variables (¢, x1, z2). Morever, compared to (4.3) the components D3, By,
and By vanish, so that B is orthogonal to the (z1,z2)-plane. This behavior is
called TM polarization (‘transversal magnetic’). If ;3 = e3; = 0 for j € {1,2}
and p is scalar, solutions of (4.3) preserve this structure if it satisfied by (Dg, By)
and J. The theory of Chapter 2 can be transfered to the above setting (adapting
the Sobolev embeddings a bit). One can also infer the wellposedness from the
three-dimensional case, see Appendix A in [11].

teJ, xeR2 (4.68)

REMARK 4.31. In the above setting, let p,q € [2, 0], % + % < %, and v =

1— % — %. Then the analogues of Theorem 4.8, Theorem 4.29, and Corollary 4.30

are true. See Theorems 1.1-1.3 and Corollary 1.7. in [48]. One can use the same
arguments with obvious modifications in the context of Sobolev and Bernstein
inequalities and the admissibility relations. The core estimates of oscillatory
integrals are modfied since C now has only one non-zero principal curvature,
cf. part C) of Section 4.3. The diagonalization of the symbol is easier in this
case and thus also works in the matrix case. Here one can compute both the
transformation matrix m and its inverse m~!, see (30) and (31) in [48] for u = 1.
They mainly involve &;/|¢|z for |€|> = &€ -€ and & = det(e) e L. In [48] one finds
more Strichartz estimates with different exponents on the right-hand side. .

B) A quasilinear problem in lower regularity. We apply Corollary 4.30
on R? to the quasilinear equation

oD =V (B), D(0)= Dy,
8tB = (92(8_1(D)D1) — 61(5_1(D)D1), B(O) = BQ,
with e71(D) = ¥(|D1|? + |D2|?) and div Dy = 0. Here v : R>g — R is smooth

and increasing with ¢(0) = 1. This covers the Kerr case e(E) = 1 + |E|>2. We
set v = (D, B) = (0,v3) and state Theorem 1.9 of [48].

teJ, zeR% (4.69)
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THEOREM 4.32. Under the above assumptions, let s > 11/6 and vy € H*(R?).
Then there is a unique local solution v € C([0,T], H*(R?)) with Vv € LLL> of
(4.69) for some T = T(||vg||s) > 0. It depends continuously on vy in H*.

We note that energy methods alone yield the result for s > 2, see [32]. For the
wave equation the same improvement for the wave equation was established in
Theorem 5.1 in [64]. This seems to be the borderline for an approach only using
linearization and Strichartz estimates. Here we use an approximation method
presented in [28|, which starts from the existence of regular solutions for regular
data as provided by [32] or Chapter 2.° This has the advantage that one use
(4.69), which fits to the Strichartz, and the version where one applies product
and chain rule to curl(e~}(D)D), which fits to energy estimates. We write the
resulting equation as

o = Al (v)9) + A2%(v)Do (4.70)
with the coefficient matrices
0 0 0
Al(v) = 0 0 -1,
=29/ (|o]*)vive —2¢'(|9]*)v3 — (18]?) 0
0 0 1
A(v) = 0 0 0
20/ (|91*)vf + 9 (10%) 29/ ([o*)vive O
Let v be a smooth solution, ||vg||xs < ro, set 7(t) = | V40(t)|| L~ and write ¢

for constants only depending on ||v[| s o~
1) Using commutator and Moser-type estimates, one can show the energy
inequality

t
lo()lls < ee®Jo™ 47 wollus (4.71)

see Proposition 6.1 in [48]. Moreover, there is a time 7" = T'(||vg||s) such that

[o(®)ll2s < cllvollpes-
2) To show this fact we fix R = cyrg for a suitable ¢y > 0. Let T3 > 0 be the
supremum of 7" > 0 such v exists on [0, 7] and ||wa||L%Lw <R Let T <T

and set Ry = ||rHL1T < T1R. We can control the norms
IVae(@) 200 < TTR<L,  [[Vae(8)| g1 < TR <1

for small T'= T'(rg) € (0,T1). Hence we can apply Corollary 4.30 in the version
of Remark 4.31 with a unform constant. We note that

|1Pejo Vavll s oo S TE||0l|pse 2 < ce®™ T g < cT'irg

by Holder, Bernstein and the energy estimate. For high frequencies we use
0 = (D)%v. Since L(v)v = 0, as above one can bound

[1L()o(#)]| e = [IL(v), (D)*Jo(@)]| 2 < er(®)[[o(t) 2

3In the lecture an erroneous argument was presented.
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We take the admissible triple (4,00, 2) and note that 1 —s < —2 =~y + 2 since
o= % for s = 1. Hence the Strichartz inequality and step 1) yield

1P>jo Vavllza oo S KDY 08 L oo S 19(0) 2 + 1L (v)] 1 2

- 3
S e(llollae + Ry sup [o@)llze) S ero + T3eFT ) < R.
t<

for sufficiently small 7' = T'(rg) > 0, as claimed. (We avoid the Besov norm on
the left by a slight regularity loss.)

3) As in step 1) one can show the contraction [lv(t) — 9(t)|Lgens < clldo —
Uollys. for the solution ¢ of (4.69) with initial value vy and ||0g|lys < 70, see
Proposition 6.2 in [48]. These ingredients are enough to show Theorem 4.32
using [28], as explained in §6 of [48].

C) A retarded nonlinear problem in low regularity. This is very
recent joint work with C. Bresch, see [8]. In nonlinear optics the typical nonlin-
earities exhibit retardations in time, see [7], [12] or [20] and the short discussion
around (1.10). We only look at the typical example

Oi(eE) = curl H — 0, P(E), Oy(uH) = —curlE, t>0, z € R3,
E(t)=E’t), H(t)=H"t), te[-b0], zecR3 (4.72)
with e, u € CZ(R3,R), e, >n > 0, k € WH*(Rxg, L3(R3,R3)), a > 0, and

P(E)(t) = /[ ;s K(t —ri,t —ro, t —r3)[E(r1), E(re), E(rs)] d(r1,r2,7r3)

for t > 0. Here one has to impose conditions for the ‘prehistory’ E° for t € [—a, 0]
and not just at time ¢ = 0. In [8] we treat finite sums of analogous n-linear
terms also for the magntization with kernels depending on x and r-integrals
over (—oo,t]" assuming also that x is Wl in time. Moreover, we allow for
conductivity. In typical examples,  is given by trigonometric polynomials times
decaying exponentials.

In the above setting, one can differentiate P(FE) in time obtaining

&gP(E)(t) = /[ t]s 81:‘1(t - T, t— T, t— Tg)[E(T’l), E(Tg), E(T3)] d(?”l, T, 7"3)

+ /[ - k(0,t —ro, t —r3)[E(t), E(re), E(rs)]d(re,r3) + - -

We stress that no derivative hits F, resulting in a semilinear non-local problem.
Existence and ungiqueness of such problems was shown in [3] in H*(R3) for
5> %, using that this space embedds into L>(R3).

We now treat the case s € (1, %], strict admissible (p,q,7), s > 1 + é, a =

s—> % and use that H*(R3) « L>®(R3). We set

Z(b) = Cb([—(l, b]v HS (R3)6) N Lp([_av b]a Ha’q(Rg)G)
for b > 0, endowed with the canonical norm. Moreover let E'(7) = E(t + 7) for
7 € [~a,0landft > 0,u = (E,H), L = ad;+ M, and F(E') = 19,P(E)(t). One

e

can the check that F : Z(b) — L'([0,b], H N H*%) is Lipschitz on balls, using
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H¥I(R3) — L>®(R3). Moreover we can shift Theorem 4.29 to the regularity
level s > 1.

COROLLARY 4.33. In the above setting, let T € (0,1], ugp € H*(R?), and
f € LY0,T),H*(R3)). We then obtain
KD ullgpioa S Mluollaee + 1 F iy + 12O, oy + 11900H 1y 5oy -
if the terms with p = Div(au) are finite.

Here we pass to u as in Lemma 4.14, to inhomogeneous derivatives as after
Theorem 4.29, and to ug using the mapping properties of the Cy—semigroup
generated by a~'M. The regularity lift to s > 1 is more complicated as in
Remark 4.13. For the charge terms one has to exploit the negative regularity in
the charge terms in Theorem 4.29. See Theorem 3.4 in [8].

Unfortunately the charge terms in Corollary 4.33 would spoil the local well-
posedness result. To deal with them, we use the projection Qg on N(curl) with
kernel given by div(6p) = 0 and set @ = diag(Q.,Q,) as well as Q=1-Q.
One can check that these operators behave well in H® and H*?, see Lemma 4.6
in [8]. We can split (4.72) with ‘frozen’ nonlinearity into

0iQu(t) = a ' MQu(t) + QF (vr),  9Qu(t) = QF (uvy),
where v is taken from a suitable ball in Z(b). Here the inhomogeneity f(t) =
QF (uyt) is charge-free (for the operator L) and the second equation can be simply
integrated.
Assuming that u® € Z(0) and Qu°(0) € H*9, we can then solve the fixed

point problem v — wu and establish a local wellposedness theory in Z(b), see
Section 5 in [8].
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