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CHAPTER 1

The Maxwell system on R3

The Maxwell equations are the fundamental laws of electro-magnetism and
play an important role as building blocks of many coupled systems. They relate
the electric field E(t, x) ∈ R3, the (electric) displacement field D(t, x) ∈ R3,
the magnetic field B(t, x) ∈ R3 and the magnetizing field H(t, x) ∈ R3 via the
Maxwell–Ampère and Maxwell–Faraday laws

∂tD = curlH − Je, ∂tB = − curlE, t ≥ 0, x ∈ R3, (1.1)

where Je(t, x) ∈ R3 is the current density. Here E and B can be measured in
experiments via the Lorentz force they exert on charges. (See e.g. [29] for the
background in physics.) On spatial domains G ̸= R3 one has to add boundary
conditions to (1.1) as discussed in Chapter 2 of [44]. We use the standard
differential expressions

curlu = ∇×u =

 0 −∂3 ∂2
∂3 0 −∂1
−∂2 ∂1 0

u1u2
u3

 , div u = ∇·u = ∂1u1+∂2u2+∂3u3,

where the derivatives are interpreted in a weak sense if needed (cf. Section 2.1).
Roughly speaking, the Maxwell equations say that the electric field is changed
by a current or by magnetic vortices, and that the magnetic field is changed by
electric vortices in the opposite way.

We note that these fields have the SI units NC−1 = V m−1 for E, Cm−2 for
D, tesla T = NA−1m−1 for B, Am−1 for H, and Am−2 for Je, using the more
basic units newton N , volt V , coulomb C, and ampère A.

To complete the Maxwell system (1.1), we have to connect the fields via
material laws. They involve the polarization P = D−ε0E and the magnetization
M = µ−1

0 B − H which describe the material response to the fields E and B,
namely the density of induced electric, respectively magnetic, dipole moments.
Here ε0 ≈ 8.854 · 10−12 Fm−1 is the vacuum permittivity and µ0 ≈ 1.257 ·
10−6Hm−1 the vacuum permeability, with the units farad F = CV −1 and henry
H = Tm2A−1. In the following we ignore units and set ε0 = 1 = µ0 so that the
speed of light in vacuum becomes c = 1. Otherwise one has c = (ε0µ0)

−1/2.
We collect some formulas. First let u ∈ W 2,1

loc (U,R
3) and φ ∈ W 2,1

loc (U,R),
where U ⊆ R3 is open. (We often omit the range spaces.) First, one obtains

div curlu = ∂1(∂2u3 − ∂3u2) + ∂2(∂3u1 − ∂1u3) + ∂3(∂1u2 − ∂2u1) = 0, (1.2)

curl∇φ =

∂2∂3φ− ∂3∂2φ
∂3∂1φ− ∂1∂3φ
∂1∂2φ− ∂2∂1φ

 = 0. (1.3)
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Because of (1.2), solutions to (1.1) fulfill Gauß’ laws

ρe(t) := divD(t) = divD(0)−
∫ t

0
div Je(s) ds, divB(t) = divB(0) (1.4)

for t ≥ 0. The electric charge density ρe (with unit Cm−3) is thus determined
by the initial charge and the current density. As there are no magnetic charges
and currents in physics, one typically requires divB(0) = 0. However, in the
analytic treatment such quantities often appear and will be included later on. A
control on the charges is crucial to counteract the large kernel of curl, cf. (1.3).

For u ∈W 1,p
loc (U,R

3) and φ ∈W 1,p′

loc (U,R) with p ∈ [1,∞] we further have the
product formulas

div(φu) = ∂1(φu1) + ∂2(φu2) + ∂3(φu3) = ∇φ · u+ φdiv u, (1.5)

curl(φu) =

∂2(φu3)− ∂3(φu2)
∂3(φu1)− ∂1(φu3)
∂1(φu2)− ∂2(φu1)

 =

∂2φu3 − ∂3φu2
∂3φu1 − ∂1φu3
∂1φu2 − ∂2φu1

+ φ curlu

= ∇φ× u+ φ curlu. (1.6)

The dot denotes the scalar product in Rm, and the cross product in R3 is given by

a× b =

a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

 =

a · b̂1a · b̂2
a · b̂3


with b̂1 = (0, b3,−b2), b̂2 = (−b3, 0, b1), and b̂3 = (b2,−b1, 0). For u ∈W 1,p(U),
v ∈ W 1,p′(U) and a (say, compact) Lipschitz boundary ∂U with outer unit
normal ν, the divergence theorem yields∫
U
curlu · v dx =

3∑
j=1

∫
U
vj div û

j dx =

3∑
j=1

(
−
∫
U
ûj · ∇vj dx+

∫
∂U
ν · ûj vj dσ

)
=

∫
U
[u2∂3v1 − u3∂2v1 + u3∂1v2 − u1∂3v2 − u2∂1v3 + u1∂2v3]dx+

∫
∂U
ν×u · v dσ

=

∫
U
u · curl v dx+

∫
∂U
u · (v × ν) dσ. (1.7)

The boundary term disappears if U = R3, or if u or v have compact support.
Here we also used the first of the formulas (with a, b, c ∈ R3)

a · (b× c) = b · (c× a) = c · (a× b), a× (b× c) = b(a · c)− c(a · b). (1.8)

We briefly discuss material laws, see [1], [7], or [12] for a systematic treat-
ment in the context of nonlinear optics.

1) In these notes we focus on instantaneous constitutive relations. At first we
look at the general case

(D,B) = θ(x,E,H) = (θe(x, u), θm(x, u)) for θ : U × R6 → R6. (1.9)

Here we choose u = (E,H) as state which suits best to energy estimates. The
choice v = (D,B) is also possible since θ(x, ·) is invertible under our assump-
tions, at least locally. This state fits better to (1.4) and is also used later on.
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Our main hypothesis will be that a0(x, u) := ∂uθ(x, u) belongs to the space
R6×6
≥η of symmetric real matrices with a0 ≥ ηI for some number η > 0. In an

exercise, the typical autonomous linear case θ(x,E,H) = (ε(x)E,µ(x)H) with
ε, µ ∈ L∞(U,R3×3

≥η ) is studied. We discuss some basic nonlinear material laws.

Example 1.1. A standard example in nonlinear optics is the Kerr law

D = εlin(x)E + κ(x)|E|2E, H = B,

for bounded functions εlin, κ : U → R with εlin(x) ≥ 2η > 0 for all x, see [1], [7],
or [20]. It is isotropic; i.e., D(t, x) and E(t, x) have the same direction. The Kerr
law satisfies our assumption a0 = a⊤0 ≥ ηI for small E (and for all E if κ ≥ 0)
since ∂EθE(E) = (εlin + κ|E|2)I + 2κEE⊤. The assumption also holds for the
more general lawsD = εlin(x)E+βe(x, |E|2)E andB = µlin(x)H+βm(x, |H|2)H
for coefficients εlin, µlin ∈ Cb(U,R3×3

≥2η) and βj , ∂2βj ∈ C(U × R,R) which are
bounded in x and satisfy βj(x, 0) = 0.1 ♢

A typical anisotropic relation is the following polynomial one.

Example 1.2. Let θ(x,E,H) = (εlin(x)E + εnl(x,E)E,µlin(x)H). As above
we assume that εlin, µlin ∈ Cb(U,R3×3

≥2η), and we set

εnl(x,E) =
(∑3

j,k,l=1
κjkli (x)EjEk

)
il

for scalar coefficients κjkli ∈ Cb(U), cf. [12]. Because of the triple sum, the tensor
(κjkli )il has to be symmetric in {j, k, l}. Using this symmetry, we compute

∂Eθe(E) = εlinI + 3
(∑3

j,k=1
κjkli EjEk

)
il

which is symmetric if also κjkli = κjkil , i.e., we can only prescribe κjkli for, say,
1 ≤ i ≤ j ≤ k ≤ l ≤ 3. For |E| ≤ r with a suitable r ∈ (0,∞] and all x,H ∈ R3

we then obtain ∂uθ(x, u) ≥ ηI. ♢

2) In nonlinear optics, the material response is often descibed by a retardation
in time, see [1] or [12]. A rather general retarded material law is given by

D(t, x) = εlin(x)E(t, x) +

∫ t

−∞
k1(t− τ, x)E(τ, x) dτ (1.10)

+

∫ t

−∞

∫ t

−∞
k2(t− τ1, t− τ2, x)[E(τ1, x), E(τ2, x)] dτ1dτ2 + . . .

for tensor-valued kernels kn ∈ L1(Rn
≥0
, L∞(U,Ln(R3,R3))). Instantaneous laws

as in Example 1.2 result as (formal) singular limits of such retarded ones. The
components of kj could be decaying exponentials times trigonometric polyno-
mials in basic cases, cf. Section 4.2.1 of [20].

3) In dynamical material laws the polarization or magnetization are given by
evolution equations coupled with the Maxwell systems, e.g., in the Maxwell–
Bloch, Maxwell–Lorentz or the Maxwell–Landau–Lifschitz systems, see Sec-
tion 4.2 of [20], Section 4a of [40] and also [18].

1The subscript b means that the functions and all occuring derivatives are bounded.
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4) In many basic models, the current is described as the sum

Je = σ(x,E,H)E + J0 (1.11)

of a given external current density J0 : R≥0 × U → R3 and a current induced
via Ohm’s law for a (possibly state-depending) conductivity σ : U ×R6 → R3×3.
In several models Je is coupled to another evolution equation, e.g., in magne-
tohydrodynamics or the Maxwell–Schrödinger system. Such systems and the
dynamical laws from item 3) are not treated in these lectures.

Sometimes it is useful to pass to second-order versions of (1.1), i.e., to for-
mulations as wave systems. We first treat time-depending anisotropic linear
relations D = ε(t, x)E and B = µ(t, x)H, before we discuss special cases. Non-
linear laws are treated similarly. We focus on the equation for the electric field
E, one can handle D, B, H analogously. Here, Ampère’s equation in (1.1) yields

∂tεE + ε∂tE = ∂t(εE) = curl(µ−1B)− Je.

Differentiating in t, we deduce

ε∂2tE = curl
(
µ−1∂tB

)
− curl

(
µ−1∂tµµ

−1B
)
− 2∂tε∂tE − ∂2t εE − ∂tJe.

Faraday’s equation in (1.1) and B = µH then lead to

∂2tE+ ε−1 curl(µ−1 curlE
)
= −ε−1

(
2∂tε∂tE+∂2t εE+curl

(
µ−1∂tµH

)
+∂tJe

)
.

(1.12)
Observe that the equation is still coupled to H in first order. Besides E(0) = E0

one has the initial condition

∂tE(0) = ε−1
(
curlH0 − ∂tε(0)E0 − Je(0)

)
.

invoking curlH0. The second-order term in (1.12) is symmetric in the weighted
space L2(ε dx) if we impose the boundary condition E × ν = 0 and enough
regularity, see (1.7). In the equations for H or B inhomogeneities as curl(ε−1Je)
appear, so that E is present via Je = σE if one has nonzero conductivity.

If ε and µ do not depend on time, (1.12) simplifies considerably and the H
term diappears. But still the components of E are coupled in the term of highest
order. For scalar ε and µ, the product rule (1.6) further yields

εµ∂2tE + curl(curlE) = 1
µ∇µ× curlE − µ∂tJe.

In addition let div(εE0) = 0 = div Je and thus the charges div(εE) vanish by
(1.4). As curl curl = ∇ div−∆I, cf. (1.8), formula (1.5) implies

εµ∂2tE = ∆E+ 1
µ∇µ×curlE+ 1

ε∇ε·∇E+ 1
εD

2εE− 1
ε∇ε(

1
ε∇ε·E)−µ∂tJe. (1.13)

The dot term reads as
∑

k ∂kε ∂jEk. So in the time-independent, isotropic and
charge-free case, the terms of highest order form a decoupled wave equation
with coefficients, ingnoring boundary conditions. The coupling occurs in lower
order only. The system completely decouples into the standard wave equation
if ε and µ are also constant.
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It is often convenient to rewrite (1.1) with (1.9) and (1.11) as a quasilinear
symmetric hyperbolic system. To this end, we first introduce the matrices

S1 =

0 0 0
0 0 −1
0 1 0

 , S2 =

 0 0 1
0 0 0
−1 0 0

 , S3 =

0 −1 0
1 0 0
0 0 0

 , satisfying

curl = S1∂1 + S2∂2 + S3∂3 and a× b = (a1S1 + a2S2 + a3S3)b

for vectors a, b ∈ R3. We then define ∂0 = ∂t,

Aco
j =

(
0 −Sj
Sj 0

)
, a0(u) = ∂uθ(·, u), d =

(
σ

0

)
, f =

(
−J0
0

)
(1.14)

for j ∈ {1, 2, 3}. Note that the matrices Aco
j are symmetric.

Then the Maxwell system (1.1) with material laws (1.9) and (1.11) becomes

L(u)u := a0(u)∂tu+

3∑
j=1

Aco
j ∂ju+ d(u)u = f. (1.15)

Our strategy to solve this problem originates from Kato [31]. One freezes a
function v from a suitable space E in the nonlinearities, setting A0 = a0(v),
Aj = Aco

j and D = d(v). One next solves the resulting non-autonomous linear
problem L(v)u =

∑3
j=0Aj∂ju+Du = f in the space E . On small time intervals

(0, T ) one finds a fixed point of the map v 7→ u which then solves (1.15) and
(1.1). The first linear step is more difficult; here it is crucial to control very well
how the constants in the estimates depend on the coefficients. We carry out
this program on R3 in the following chapter.



CHAPTER 2

Local wellposedness in H3

In this chapter we develop a local wellposedness theory for the quasilinear
Maxwell equations on R3. Our approach is based on energy methods and a
fixed-point argument, which make use of the linear system with time-depending
coefficients. One has to work in Sobolev spaces Hs with s > 5

2 in this context,
where we take s = 3 for simplicity. Actually we treat general symmetric hy-
perbolic systems on R3. In the first subsection we introduce Maxwell equations
and discuss some facts used throughout these notes. We then investigate the
linear case, first in L2 and then in H3, also establishing the finite speed of prop-
agation. Our main tools are energy estimates, duality arguments for existence
in L2, approximation by mollifiers for regularity and uniqueness, and finally a
transformation from L2 to H3. The non-linear problem is solved by means of
fixed-point arguments going back to Kato [31] at least, where the derivation
of blow-up conditions in W 1,∞ and the continuous dependence of data in H3

require significant additional efforts. Finally, for the isotropic Maxwell system,
we show the preservation of energy and construct a blow-up example in H1.

The wellposedness results on R3 are due to Kato [32], but our proof differs
from Kato’s and instead uses (well known) energy methods from the theory of
symmetric hyperbolic PDE, see [5], [6], [13] or [38]. The corresponding problem
on domains can also be treated by means of energy methods, but this is much
harder. See [56], [57] and [58] for the core theory, [50] and [51] for different
boundary conditions, as well as my lecture notes [44] or the shorter version [45]
for the easier accessible halfspace case.

2.1. The linear problem in L2

We often omit range spaces as R6 in the notation, and write Lp
JX = Lp(J,X)

for function spaces from an interval J to a Banach space X (also with subscript
T if J = (0, T )), as well as Lp instead of Lp(Rm), etc. Chapter 1 of [26]
discusses the theory of X-valued Lp-spaces. It is quite similar to the Lebesgue
case X = R, and we will highlight differences if they play a role below. Let
J = (0, T ). We solve the linear problem in the space C(J, L2(R3,R6)) = CJL

2

for coefficients and data subject to the assumptions

Aj = A⊤
j ∈ W1,∞

J :=W 1,∞(J × R3,R6×6), j ∈ {0, 1, 2, 3}, A0 = A⊤
0 ≥ ηI >0,

D ∈ L∞
J := L∞(J × R3,R6×6), u0 ∈ L2, f ∈ L2

JL
2 = L2(J × R3,R6). (2.1)

(See Proposition 1.2.4 of [26] for the last equality, which is an isomorphism
actually.) Then A−1

0 belongs to W1,∞
J and A−1

0 = (A−1
0 )⊤ ≥ ∥A0∥−1

∞ I.

6



2.1. The linear problem in L2 7

Compared to (1.15) we allow for D and f with non-zero ‘magnetic’ compo-
nents, as needed in our analysis. We also deal with general symmetric (t, x)-
depending coefficients A1, A2 and A3, and thus with linear symmetric hyperbolic
systems. Those occur in many applications, see [6], [31], [38] or the exercises;
and our reasoning would not differ much if we restricted to Aj = Aco

j . Moreover,
when treating the Maxwell system on domains by localization arguments, one
obtains x-depending coefficients. It is useful to see them first in an easier case.

Assuming (2.1), we look for a solution u ∈ C(J, L2) of the system

Lu :=

3∑
j=0

Aj∂ju+Du = f, t ≥ 0, u(0) = u0, (2.2)

with ∂0 = ∂t. Here the derivatives are understood in a weak sense.
To explain this, we assume that the reader is familiar with Sobolev spaces

W k,p(U) = W k,p for an open subset U of Rm, k ∈ N0, and p ∈ [1,∞]. (See
[9] or [47], for instance.) We work with real scalars in this chapter almost
entirely, endow W k,p with the (complete) norm ∥v∥pk,p =

∑
0≤|α|≤k ∥∂αv∥

p
p (ob-

vious modification for p = ∞), and write Hk :=W k,2 (which is a Hilbert space),
Lp = W 0,p and ∥v∥p := ∥v∥0,p. By W k,p

0 (U) we denote the closure of test func-
tions C∞

c (U) in W k,p(U). If ∂U is compact and Ck (or Lipschitz if k = 1), say,
then W k,p

0 is the closed subspace in W k,p of functions whose (weak) derivatives
of order up to k − 1 have trace 0. One can check that W k,p

0 (Rm) =W k,p(Rm).
Let H−k(U) be the dual space Hk

0(U)⋆, where we restrict ourselves to p = 2 for
simplicity. Since Hk

0(U) ↪→ L2(U) with dense range, the space L2(U) ∼= L2(U)⋆

(and thus C∞
c (U)) is densely embedded into H−k(U), where φ ∈ L2(U) acts as

φ(v) =
∫
φv dx on v ∈ Hk

0(U). One also has H−k(U) ↪→ H−l(U) for k ≤ l ∈ N.
For φ ∈ L2(U), j ∈ {1, . . . ,m} and v ∈ H1

0(U), we define the weak derivative
∂jφ ∈ H−1(U) by setting

(∂jφ)(v) = ⟨v, ∂jφ⟩H1
0
:= −⟨∂jv, φ⟩L2 .

(The brackets ⟨·, ·⟩X designate the duality pairing between a Banach space X
and its dual X⋆.) Since |⟨∂jv, φ⟩| ≤ ∥v∥1,2 ∥φ∥2, the linear map ∂j : L

2(U) →
H−1(U) is bounded. Iteratively, one obtains bounded maps ∂j : H−k(U) →
H−k−1(U), and analogously ∂α : H−k(U) → H−k−|α|(U) for multi-indices α ∈
Nm
0 and k ∈ N0. The definitions imply that these derivatives commute.
For a ∈W 1,∞(U) and φ ∈ H−1(U), we next define the map aφ ∈ H−1(U) by

(aφ)(v) = ⟨v, aφ⟩H1
0
:= ⟨av, φ⟩H1

0
, v ∈ H1

0(U).

Because of ∥av∥1,2 ≲ ∥a∥1,∞ ∥v∥1,2, we see as above that the multiplication
operator Ma : φ 7→ aφ is bounded on H−1(U). (Here and below A ≲α B stands
for A ≤ cB for a generic constant c = c(α) which is non-decreasing in each
component of α ∈ Rn

≥0.) These facts easily extend to Rl–valued functions.
We infer that Lu ∈ H−1(J × R3) if u ∈ L2

JL
2. Let Lu = f be contained in

L2
JL

2. We stress that a summand Aj∂ju may only belong to L2(R3,H−1(J))
if j = 0 and to L2(J × R2,H−1(R)) otherwise. More precisely, for the time
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derivative we obtain

∂tu = A−1
0 f −

∑3

j=1
A−1

0 Aj∂ju−A−1
0 Du ∈ L2

JH−1, (2.3)

and so u is an element of H1
JH−1 ↪→ C(J,H−1). (See the beginning of Sec-

tion 4.5 of [46] for Banach space valued Sobolev spaces.) Accordingly, the
initial condition in (2.2) is understood in H−1.

We will first show the basic energy (or apriori) estimate. Here we use the
temporal weights e−γ(t) := e−γt for γ ≥ 0 and t ∈ J (or t ∈ R) and the weighted
spaces L2

γ,JX = L2
γ(J,X) (= L2

γ,TX if J=(0, T )) of functions with finite norm

∥v∥L2
γ,JX

:= ∥e−γv∥L2
JX

=
(∫

J
e−2γt∥v(t)∥2X dt

) 1
2
.

We have the equivalence eγa∥v∥L2
γ,JX

≤ ∥v∥L2
JX

≤ eγb∥v∥L2
γ,JX

if J = (a, b) is
bounded. Taking large γ in these norms, we can produce small constants in
front of the contribution of f in the inequality below. This fact will be used
to absorb error terms by the left-hand side, for instance. The estimate and the
precise form of the constants is also crucial for the nonlinear problem. We write
divA =

∑3
j=0 ∂jAj and use ∥ · ∥∞ for the sup-norm in (t, x).

Lemma 2.1. Assume that (2.1) is true and u ∈ H1(J ×R3) solves (2.2). Let
C := 1

2 divA−D, γ ≥ γ′0(L) := max{1, 4η−1∥C∥∞}, and t ∈ J . We then obtain
γη
4 ∥u∥2L2

γ,tL
2 +

η
2e

−2γt∥u(t)∥2L2 ≤ 1
2∥A0(0)∥L∞∥u0∥2L2 + 1

2γη ∥f∥
2
L2
γ,tL

2 .

Proof. Set v = e−γu and g = e−γf for γ ≥ 0. We have γA0v + Lv = g.
Using the symmetry of Aj , we derive

⟨g, v⟩ = γ⟨A0v, v⟩+
3∑

j=0

⟨Aj∂jv, v⟩+ ⟨Dv, v⟩

= γ⟨A0v, v⟩+
1

2

3∑
j=0

(∫ t

0

∫
R3

∂j(Ajv · v) dx ds− ⟨∂jAjv, v⟩
)
+ ⟨Dv, v⟩,

where we drop the subscript L2
tL

2 of the brackets and denote the scalar product
in R6 by a dot. Integration yields

γ⟨A0v, v⟩+ 1
2⟨A0(t)v(t), v(t)⟩L2 = 1

2⟨A0(0)v(0), v(0)⟩L2 + ⟨Cv, v⟩+ ⟨g, v⟩.

We now replace v = e−γu, g = e−γf as well as u(0) = u0, and use (2.1) and
γ ≥ γ′0(L). It follows

γη∥u∥L2
γ,tL

2 +
η
2e

−2γt∥u(t)∥2L2

≤ 1
2∥A0(0)∥L∞∥u0∥2L2 + ∥C∥∞∥u∥2L2

γ,tL
2 +

√
γη√
γη ∥u∥L2

γ,tL
2∥f∥L2

γ,tL
2

≤ 1
2∥A0(0)∥L∞∥u0∥2L2 +

(γη
4 + γη

2

)
∥u∥2L2

γ,tL
2 +

1
2γη ∥f∥

2
L2
γ,tL

2 ,

which implies the assertion. □
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Below we use the above estimate for

γ ≥ γ0(r, η) := max{1, 12r/η} ≥ γ′0(L) (2.4)

where ∥∂jAj∥∞, ∥D∥∞ ≤ r. For γ = 0 its proof yields the energy equality∫
R3

A0(t)u(t)·u(t) dx =

∫
R3

A0(0)u0·u0 dx+2

∫ t

0

∫
R3

(
C(s)u(s)+f(s)

)
·u(s) dx ds.

(2.5)
In the term with C = 1

2 divA − D we have damping effects (if D = D⊤ ≩ 0)
and extra errors terms coming from the t- or x-dependence of Aj .

Lemma 2.1 yields uniqueness of H1-solutions to (2.2). However, we need
uniqueness (and the energy estimate) for solutions in C(J, L2). This fundamen-
tal gap can be closed by a crucial regularization argument based on mollifiers.
We recall the definition and basic properties of this core tools, see e.g. [9].

We set gε(x) = ε−mg(ε−1x) for any function g on Rm, ε > 0, and x ∈ Rm.
Take 0 ≤ ρ ∈ C∞

c (Rm) with
∫
ρdx = 1, support supp ρ in the closed unit ball

B(0, 1), and ρ(x) = ρ(−x) for x ∈ Rm. Note that ∥ρε∥1 = 1. For ε > 0 and
v ∈ L1

loc(Rm), we define the mollifiers Rε by

Rεv(x) = ρε ∗ v(x) =
∫
Rm

ρε(x− y)v(y) dy, x ∈ Rm.

One can check that Rεv ∈ C∞(Rm), suppRεv ⊆ supp v + B(0, ε), and
∂αRεv = Rε∂

αv for v ∈ W |α|,p(Rm). Young’s inequality for convolutions yields
∥Rεv∥k,p ≤ ∥v∥k,p for p ∈ [1,∞] and k ∈ N0. Using this estimate, one derives
that Rεv → v in W k,p(Rm) for v ∈ W k,p(Rm) as ε → 0 if p < ∞, since this
limit is true for test functions v. Differentiating ρε(x− y) in x, one also obtains
the smoothing estimate ∥Rεv∥k,p ≲ε,k ∥v∥p.

Finally, for φ ∈ H−k(Rm), v ∈ Hk(Rm) and k ∈ N, we set

(Rεφ)(v) = ⟨v,Rεφ⟩Hk := ⟨Rεv, φ⟩Hk .

This definition is consistent with the symmetry R⋆
ε = Rε on L2(Rm) which

follows from the symmetry of ρ and Fubini’s theorem. By means of its properties
in Hk(Rm), one can show that Rε is contractive on H−l(Rm) and that it maps
this space into Hk(Rm) for all l ∈ N. Moreover, it commutes with ∂α.

Hence, the commutator [Rε,Ma] := RεMa −MaRε tends to 0 strongly in L2

if a ∈ L∞ (and is bounded uniformly in ε > 0). It even gains a derivative if
a ∈W 1,∞, which is crucial for our analysis.

Proposition 2.2. Let a∈W 1,∞(Rm), φ∈L2(Rm), j∈{1, . . . ,m}, and ε>0.
Set Cεφ := Rε(a∂jφ)− a∂j(Rεφ). Then there is a constant c = c(ρ) such that

∥Cεφ∥2 ≤ c∥a∥1,∞∥φ∥2 and Cεφ→ 0 in L2 as ε→ 0.

Proof. Let v ∈ H1(Rm). Using the above indicated facts, we compute

⟨v, Cεφ⟩H1 = ⟨aRεv, ∂jφ⟩H1 − ⟨av,Rε∂jφ⟩H1 = ⟨∂j(Rε(av)− aRεv), φ⟩L2 .
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We set C ′
εv = ∂j(Rε(av)− aRεv) and Rj

ε for the convolution with (|∂jρ|)ε. For
a.e. x ∈ Rm, differentiation and |x− y| ≤ ε yield

C ′
εv(x) =

∫
B(x,ε)

ε−m(∂jρ)(ε
−1(x− y)) ε−1(a(y)−a(x))v(y) dy − ∂ja(x)Rεv(x),

|C ′
εv(x)| ≤ ∥a∥1,∞ (Rj

ε|v|(x) + |Rεv(x)|).

(Recall that W 1,∞(Rm) is isomorphically isomorpic to the space of bounded
Lipschitz functions by Proposition 9.3 in [9].) Young’s inequality now implies
the first assertion. The second one is true for u in the dense subspace H1(Rm)
and thus on L2(Rm) by the uniform estimate. □

With this tool we can extend Lemma 2.1 to all solutions of (2.2) in C(J, L2).

Proposition 2.3. Let (2.1) hold and u ∈ C(J, L2) solve (2.2). Then the
statement of Lemma 2.1 and (2.5) are also valid for u. Hence, (2.2) has at most
one solution in C(J, L2).

Proof. We note that Rεu belongs to C(J,Hk) for all ε > 0 and k ∈ N.
Moreover, Rεu tends to u in C(J, L2) as ε → 0 since u(J) is compact and
Rε → I strongly in L2. As ∥Rεf(t)∥2 ≤ ∥f(t)∥2, dominated convergence also
yields Rεf → f in L2

JL
2. Using Lu = f and (2.3), we compute

LRεu = Rεf + [D,Rε]u+
3∑

j=1

[Aj , Rε]∂ju+ [A0, Rε]∂tu (2.6)

= Rεf + [D,Rε]u+ [A0, Rε]A
−1
0 (f −Du) +

3∑
j=1

(
[Aj , Rε]− [A0, Rε]A

−1
0 Aj

)
∂ju.

Proposition 2.2 shows that the right-hand side belongs to L2
JL

2 with uniform
bounds. Hence, Rεu is also contained H1

JL
2 by (2.3). Arguing as above, we

further see that the commutator terms tend to 0 in L2
JL

2 and thus in L2
γ,JL

2.
Lemma 2.1 and (2.5) for Rεu now lead to the first assertion letting ε→ 0. The
second one follows from linearity. □

Combining the energy estimate with a clever duality argument, one can also
deduce the existence of a solution. As a starting point, we note that a closed
operator C from X to Y with dense domain is surjective if its adjoint C⋆ is
bounded from below, i.e., ∥C⋆y⋆∥ ≥ c∥y⋆∥ for some c > 0 and all y⋆ ∈ D(C⋆).
See Theorem 2.20 in [9]. Below we avoid to invoke the adjoint explicitly.

Theorem 2.4. Let (2.1) be true. Then there is a unique map u in C(J, L2)
solving (2.2). It satisfies the estimate in Lemma 2.1 and (2.5).

Proof. 1) We need the (formal) adjoint L◦ = −
∑3

j=0Aj∂j +D
◦ of L with

D◦ = D⊤ − divA. Let V =
{
v ∈ H1(J × R3,R6)

∣∣ v(T ) = 0
}
, v ∈ V , and

L◦v = h. We introduce ṽ(t) = v(T − t) and f(t) = h(T − t) for t ∈ J and
the operator L̃ with coefficients Ã0(t) = A0(T − t), Ãj(t) = −Aj(T − t) for
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j ∈ {1, 2, 3} and D̃(t) = D◦(T − t). Note that L̃ṽ = f and ṽ(0) = 0. Applied at
time T − s to L̃, ṽ and γ = γ0(r, η) from (2.4), Lemma 2.1 yields the estimate

∥v(s)∥22 = ∥ṽ(T − s)∥22 ≤
2e2γ(T−s)

η · 2ηγ

∫ T−t

0
e−2γτ∥h(T − τ)∥22 dτ

≤ e2γT

γη2

∫ T

s
∥h(τ ′)∥22 dτ ′, s ∈ (0, T ),

∥v∥L2
JL

2 ≤ κ
√
T ∥L◦v∥L2

JL
2 , κ := 1

η
√
γ e

γT . (2.7)

Hence, L◦ : V → L2(J × R3)6 is injective. We can thus define the functional

ℓ0 : L
◦V → R; ℓ0(L

◦v) = ⟨v, f⟩L2
JL

2 + ⟨v(0), A0(0)u0⟩L2 .

The Cauchy–Schwarz inequality and estimate (2.7) imply

|ℓ0(L◦v)| ≤
(
∥f∥L2

JL
2 + ∥A0(0)u0∥L2

)
κ
(√
T + 1

)
∥L◦v∥L2

JL
2 .

By the Hahn–Banach theorem, ℓ0 has an extension ℓ in (L2
JL

2)⋆ which can be
represented by a function u ∈ L2

JL
2 ∼= L2(J × R3) via

⟨v, f⟩L2
JL

2+ ⟨v(0), A0(0)u0⟩L2 = ℓ(L◦v) = ⟨L◦v, u⟩L2
JL

2 (2.8)

= ⟨v,Du⟩ −
3∑

j=0

∫ T

0

∫
R3

∂j(Ajv)·u dx dt (∀ v ∈ V ).

2) To evaluate (2.8), we first take v ∈ H1
0(J × R3). The definition of weak

derivatives then leads to ⟨v, f⟩L2
JL

2 = ⟨v, Lu⟩H1
0
; i.e., Lu = f in H−1(J × R3).

Hence, u belongs to H1
JH−1 because of (2.3) and f ∈ L2

JL
2. For v ∈ V , we can

now integrate by parts the summand in (2.8) with j = 0 in H−1; the others are
treated as before. As v(T ) = 0, it follows

⟨v, f⟩L2
JL

2 + ⟨v(0), A0(0)u0⟩L2 = ⟨v, Lu⟩H1
0
+ ⟨A0(0)v(0), u(0)⟩L2 .

Since A0(0) is symmetric and Lu = f , we have also shown that u(0) = u0.
3) We next use (2.6) for wn,m = R1/nu−R1/mu. As in the proof of Proposi-

tion 2.3, Proposition 2.2 implies that wn,m is contained in H1(J×R3) and satisfes
Lwn,m → 0 in L2

JL
2 and wn,m(0) → 0 in L2 as n,m → ∞. So (R1/nu) is a

Cauchy sequence in CJL
2 by Lemma 2.1, and it converges to u in L2

JL
2. Thus,

u belongs to CJL
2. The other assertions were proven in Proposition 2.3. □

There are blow-up solutions even for the wave equation on R with Hölder
continuous and x-independent coefficients, as shown in [15].

As indicated in Chapter 1 and described in the next example, the above result
can easily be applied to the linear Maxwell system

∂t(εE) = curlH − σE − J0, ∂t(µH) = − curlE, t ≥ 0, x ∈ R3, (2.9)

which is (1.1) with the material laws D = ε(t, x)E and B = µ(t, x)H.

Example 2.5. Let ε, µ ∈ W 1,∞(J × R3,R3×3
≥η ) for some η > 0, σ ∈ L∞(J ×

R3,R3×3), E0, H0 ∈ L2(R3,R3) and J0 ∈ L2(J × R3,R3). As in (1.14), we
set A0 = diag(ε, µ), Aj = Aco

j for j = {1, 2, 3}, D = diag(σ + ∂tε, ∂tµ), f =
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(−J0, 0), and u0 = (E0, H0). Theorem 2.4 then yields a unique solution (E,H) ∈
C(J, L2) of (2.9) with E(0) = E0 andH(0) = H0. It satisfies the energy equality

∥ε(t)
1
2E(t)∥22 + ∥µ(t)

1
2H(t)∥22 = ∥ε(0)

1
2E0∥22 + ∥µ(0)

1
2H0∥22

−
∫ t

0

∫
R3

(
(2σE+∂tεE+2J0)·E + ∂tµH ·H

)
dx ds.

In the autonomous case it suffices that ε, µ ∈ L∞(R3,R3×3
≥η ), see the exercises

and also Theorem 5.2.5 in [2] or §7.8 in [20]. ♢.

One of the key features of hyperbolic systems is the finite propagation speed
of their solutions. As a simple example, we first look at the standard wave
equation ∂2t u = c2∂2xu on R for the wave speed c > 0 equipped with the initial
conditions u(0) = u0 ∈ C2(R) and ∂tu(0) = v0 ∈ C1(R). (To pass to the above
first-order framework, use the state (∂tu,

√
c∂xu) and A1v = −

√
c (v2, v1).) The

pointwise solution of this wave problem is given by d’Alembert’s formula

u(t, x) = 1
2(u0(x+ ct) + u0(x− ct)) +

1

2c

∫ x+ct

x−ct
v0(s) ds, t ≥ 0, x ∈ R.

Hence, the solution at (t, x) only depends on the initial data on [x− ct, x+ ct];
for instance, u(t, x) = 0 if u0 and v0 vanish on [x − ct, x + ct]. Conversely, the
value of u0 and v0 at y influences u at most for (t, x) with |x− y| ≤ ct; i.e., on
a triangle with vertex (y, 0) and lateral sides of slope ±1

c . In this sense, c is the
speed of propagation.

We extend these observations to the system (2.2), assuming (2.1). In the
statement we use the backward ‘light’ cone

Γ(x0, R,K) =
{
(t, x) ∈ R≥0 × R3

∣∣ |x− x0| < R−Kt
}

with base B(x0, R) at t = 0 and apex (RK , x0), where x0 ∈ R and R,K > 0. Set

k20 = ∥A1∥2∞ + ∥A2∥2∞ + ∥A3∥2∞
with the operator norm for | · |2 on R6×6. Note that k0 =

√
3 in Example 2.5.

Below we see (for f = 0) that u vanishes on Γ(x0, R, k0/η) if u0 = 0 on
B(x0, R). Hence, if two initial functions u0 and ũ0 coincide on B(x0, R) then the
corresponding solutions u and ũ are equal on Γ(x0, R, k0/η) by linearity. In other
words, the values of u0 outside B(x0, R) influence u(t) only off Γ(x0, R, k0/η),
that is, with maximal speed k0/η. Our proof is based on energy estimates with
an exponential weight, and the arguments are taken from §4.2.2 of [5].

Theorem 2.6. Let (2.1) be true. Assume that u0 = 0 on B(x0, R) and f = 0
on Γ(x0, R, k0/η) for some R > 0 and x0 ∈ R3. Then the solution u ∈ C(J, L2)
of (2.2) also vanishes on Γ(x0, R, k0/η).

Proof. 1) Let δ,R > 0 and x0 ∈ R3 be given. There is a function ψ ∈
C∞(R3) with |∇ψ| ≤ η/k0 (for the euclidean norm) and

−2δ+ ηk−1
0 (R−|x−x0|) ≤ ψ(x) ≤ −δ+ ηk−1

0 (R−|x−x0|), x ∈ R3. (2.10)

We construct ψ as in Theorem 6.1 of [56]. Take χ(s) = −3
2δ + ηk−1

0 (R − |s|)
for s ∈ R. This function is Lipschitz with constant η/k0. The same is true for
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the mollified map χε = Rεχ as ∇χε = Rε∇χ. Also, χε tends uniformly to χ as
ε→ 0 since

|χε(s)− χ(s)| ≤
∫
R
ε−1ρ(ε−1τ)|χ(s− τ)− χ(s)| dτ ≤ ηk−1

0 ε

∫
R
ρ(σ)|σ|dσ.

We fix a small ε > 0 such that χε satisfies (2.10) with s instead of |x − x0|
and 5/3 instead of 2. Then ψ(x) = χε((δ

2
0 + |x− x0|2)1/2) does the job, where

δ0 = k0δ(3η)
−1.

Set ϕ(t, x) = ψ(x) − t and uτ = eτϕu for τ > 0. Inequality (2.10) yields
ψ(x) ≤ −δ + t if |x − x0| ≥ R − k0t/η (i.e., (t, x) /∈ Γ(x0, R, k0/η)), so that
eτϕ ≤ e−τδ ≤ 1 off Γ(x0, R, k0/η) and eτϕ is bounded on J × R3. We further
have ∇eτϕ = τeτϕ∇ψ and ∂te

τϕ = −τeτϕ. As a result, uτ is an element of
C(J, L2) and the right-hand side of

Luτ = eτϕf − τ
(
A0 −

∑3

j=1
Aj∂jψ

)
uτ

belongs to L2
JL

2. The matrix in parentheses is denoted by M .
2) For ξ ∈ R6 we have Mξ · ξ ≥ (η − k0 |∇ψ|)|ξ|2 ≥ 0. Set C = 1

2 divA −D
and κ = ∥C∥∞. By Theorem 2.4, the function uτ satisfies the energy equality

∥A0(t)
1
2uτ (t)∥2L2 = ∥A0(0)

1
2uτ (0)∥2L2 + 2⟨(C − τM)uτ + eτϕf, uτ ⟩L2

JL
2 .

Using Cauchy–Schwarz, the above inequalities and Gronwall, we estimate

η∥uτ (t)∥2L2 ≤ ∥A0(0)∥L∞∥eτϕu0∥2L2 + ∥eτϕf∥2L2
JL

2 + (2κ+ 1)

∫ t

0
∥uτ (s)∥2L2 ds,

∥eτϕu(t)∥2L2 ≲T ∥eτϕu0∥2L2 + ∥eτϕf∥2L2
JL

2 .

The right-hand side tends to 0 as τ → ∞ since u0 and f vanish on Γ(x0, R, k0/η)
and eτϕ → 0 uniformly off Γ(x0, R, k0/η). Hence, u(t) has to be 0 on {ϕ >
δ} = {ψ > t + δ}. By (2.10), this set includes points (t, x) with |x − x0| <
R−k0η−1(t+3δ). Since δ > 0 is arbitrary here, u equals 0 on Γ(x0, R, k0/η). □

2.2. The linear problem in H3

As noted in Chapter 1, to solve the nonlinear problem (1.15) we will set
A0 = a0(v) for functions v having the same regularity as the desired solution
u. Since A0 has to be Lipschitz in Theorem 2.4, the same must be true for v.
Working in Hk spaces, we thus need solutions in L∞

J H3 ∩W 1,∞
J H2 at least. We

want to reduce the problem in H3 to that in L2 by means of a transformation.
(One could also perform the proof of Theorem 2.4 in H3 instead of L2, see e.g.
[6] or [13], which would require more work in our context.)

To this end, we define the operator Λ = F−1(1 + |ξ|2)1/2F via the Fourier
transform F on tempered distributions at first. Using standard properties of
F , one sees that Λ = (I −∆)1/2 can be restricted to isomorphisms Hk → Hk−1

for k ∈ Z with inverse given by Λ−1 = (I −∆)−1/2 = F−1(1 + |ξ|2)−1/2F and
that it commutes with derivatives. Powers of Λ behave analogously. See also
Section 3.1. Moreover, Λ−1 is a convolution operator with positive kernel by
Proposition 1.2.5 in [24], so that Λ = (I −∆)Λ−1 leaves invariant real-valued
functions.
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Our analysis relies on a commutator estimate for Λ3 and Ma : φ 7→ aφ which
gains a derivative. We use the proof of Lemma A2 in [31], which works for real
k > m

2 + 1 on Rm. More results can be found in e.g. [65] or in Proposition 3.9.

Proposition 2.7. Let k ∈ N and a ∈ W 1,∞(R3) with ∆a ∈ L3(R3) if k = 2
and ∇a ∈ Hk−1(R3) if k ≥ 3. Then the commutator [Λk,Ma] = ΛkMa −
MaΛ

k : Hk−1(R3) → L2(R3) is bounded.

Proof. The result for k = 1 requires more work and is a special case of
Proposition 4.1.A in [65] or of Proposition 3.9. For k = 2, we have −[Λ2,Ma]v =
∆a v + 2∇a · ∇v so that the result easily follows from Hölder and Sobolev. To
simplify a bit, we now restrict ourselves to k = 3. By Plancherel, we have to
show that T = F [Λ3,Ma]Λ

−2F−1 is bounded on L2(R3). Observe that T is the
integral operator with kernel

κ(ξ, ζ) = (2π)−
3
2
[
(1 + |ξ|2)

3
2 − (1 + |ζ|2)

3
2
]
â(ξ − ζ)(1 + |ζ|2)−1

with ξ, ζ ∈ R3. We can bound∣∣[ . . . ]∣∣ ≤ ∫ 1

0

∣∣∂τ (1 + |ξ + τ(ζ − ξ)|2)
3
2

∣∣dτ ≤ 15
2 |ξ − ζ|

∣∣(1 + |ξ|2) + (1 + |ζ|2)
∣∣.

Hence, κ is dominated by |κ| ≤ c0κ1 + c0κ2 with c0 = 15
2 (2π)

− 3
2 and

κ1(ξ, ζ) = (1+|ξ|2)b̃(ξ−ζ)(1+|ζ|2)−1, κ2(ξ, ζ) = b̃(ξ−ζ), b̃ = |ξâ| = |F(∇a)|,
so that we need the L2-boundedness of the corresponding integral operators.
Again by Plancherel, it thus suffices to show that T1 = Λ2MbΛ

−2 and T2 =Mb

are bounded on L2, where b = F−1b̃. Since we have

∥b∥22,2 ≤ c

∫
R3

(1 + |ξ|2)2|b̃(ξ)|2 dξ ≤ c∥∇a∥22,2

for some constants, Lemma 2.8 below and Sobolev’s embedding indeed yield

∥T1φ∥2 ≤ c∥bΛ−2φ∥2,2 ≤ c∥b∥2,2∥Λ−2φ∥2,2 ≤ c∥∇a∥2,2∥φ∥2,
∥T2φ∥2 ≤ ∥b∥∞∥φ∥2 ≤ c∥∇a∥2,2∥φ∥2, φ ∈ L2. □

Guided by Proposition 2.7 and (2.1), we introduce the space

Fk(J) = Fk(T ) =
{
A ∈W 1,∞(J×R3,R6×6)

∣∣ (∇, ∂t)A ∈ L∞
J Hk−1

}
, k ∈ N,

for the coefficients, endowed with its natural norm. We will usually take k = 3.
We employ the same notation for vector- or scalar-valued functions of the same
regularity. The subscript sym will refer to symmetric matrices and ≥ η to those
with A = A⊤ ≥ ηI. We state the hypotheses of the present section:

A0 ∈ F3
≥η(J), η > 0, A1, A2, A3 ∈ F3

sym(J), D ∈ F3(J), (2.11)

u0 ∈ H3 = H3(R3,R6), f ∈ Z3(J) = Z3(T ) := L2(J,H3) ∩H1(J,H2).

Set ∥f∥2Zk
γ (J)

= ∥e−γf∥2L2
JHk+∥e−γ∂tf∥2L2

JHk−1 for γ ≥ 0 and k ∈ N. We also use

Ĥk =
{
v ∈ L∞(R3)

∣∣∇xv ∈ Hk−1
}
, Gk(J) = Gk(T ) = C(J,Hk)∩C1(J,Hk−1)

with their natural norms, as well as ∥v∥2Gk
γ (J)

= ∥e−γv∥2L∞
J Hk+∥e−γ∂tv∥2L∞

J Hk−1 .
(Such spaces will also be considered on time intervals different from J = (0, T ).)



2.2. The linear problem in H3 15

We state product and inversion rules which are often used in this chapter, cf.
[58]. Here one can replace R3 by all Lipschitz domains. In the proof and also
later on, we employ Sobolev embeddings such as H2 ↪→ Lp for p ∈ [2,∞] and
H1 ↪→ Lq for q ∈ [2, 6] on (Lipschitz domains in) R3.

Lemma 2.8. Let k, j ∈ N0 with k ≥ max{j, 2} and l ∈ N.
a) For v ∈ Hk and w ∈ Hj we have ∥vw∥Hj ≲ ∥v∥Hk∥w∥Hj . Here one can

replace Hk by Ĥk, as well as Hj and Hk by Gj(J) and Gk(J) (or Fk(J)), or by
F j(J) and Fk(J), taking j ≥ 1 if Gj(J) or F j(J) is involved.

b) Let A ∈ Ĥl
≥η. Then A−1 belongs to Ĥl

≥µ with norm bounded by c(µ, k)(1+
∥A∥Ĥl)

l−1∥A∥Ĥl and µ = ∥A∥−1
∞ .

Proof. a) For the first claim, by the product rule (and interpolative in-
equalities) we have to control ∂βv∂α−βw for multi-indices 0 ≤ β ≤ α with
|α| = j. Observe that ∂βv ∈ Hk−|β| and ∂α−βw ∈ H|β|. This product can be
estimated in L2, as needed, if k − |β| ≥ 2 or |β| ≥ 2 since then ∂βv or ∂α−βw
are bounded, respectively. As k ≥ 2, only the case |β| = 1 remains. Here ∂βv
and ∂α−βw belong to H1 ↪→ L4 and thus the product to L2. The other variants
are proved analogously.

b) We take l = 3, the other cases are similar. Observe that ∂3xA−1 is a linear
conbination of terms like

A−1∂3AA−1, A−1∂2AA−1∂AA−1, A−1∂AA−1∂AA−1∂AA−1.

(Here and below we occasionally use somewhat informal notation in such ex-
pressions.) These terms satisfy the asserted estimate as in part a), since
∥A−1∥∞ ≤ 1/η. The lower-order ones are treated in the same way. □

We look for a solution u ∈ G3(J) of (2.2) assuming (2.11). The basic idea is to
solve a modified problem for w = Λ3u in C(J, L2). Since the commutator result
Proposition 2.7 only improves space regularity, we first replace the equation
Lu = f by L̂u = f̂ := A−1

0 f where L̂ has the coefficients Â0 = I, Âj = A−1
0 Aj

and D̂ = A−1
0 D. We then obtain

L̂w = Λ3f̂ +

3∑
j=1

[Âj ,Λ
3]∂ju+ [D̂,Λ3]u,

Lw = A0Λ
3f̂ +

3∑
j=1

A0[Âj ,Λ
3]∂ju+A0[D̂,Λ

3]u =: g(f, u). (2.12)

We now replace in g the unknown u by a given map v ∈ C(J,H3). Theorem 2.4
provides a solution w ∈ C(J, L2) of Lw = g(f, v) with w(0) = Λ3u0. The energy
estimate from Lemma 2.1 (with a large γ) then implies that Φ: v 7→ Λ−3w is a
strict contraction on L∞

γ,JH3. This fact will lead to the desired regularity result.
Let λ be the maximum of ∥Λk∥B(Hk,L2) and ∥Λ−k∥B(L2,Hk) for k ∈ {2, 3}. It
will be important in the fixed-point argument for the nonlinear problem that
the constant c0 in (2.13) only depends on r0 (and η), but not on r.



2.2. The linear problem in H3 16

Theorem 2.9. Let (2.11) be true with ∥Aj(0)∥Ĥ2 , ∥D(0)∥Ĥ2 ≤ r0 and
∥Aj∥F3(J), ∥D∥F3(J) ≤ r for j ∈ {0, 1, 2, 3}. Then there exists a unique so-
lution u of (2.2) in C(J,H3) ∩ C1(J,H2). For t ∈ J and γ ≥ γ1(r, η) :=
max

{
γ0(r, η),

√
c1
}
, see (2.4), it satisfies

γ∥u∥2Z3
γ(0,t)

+ e−2γt(∥u(t)∥2H3 + ∥∂tu(t)∥2H2)

≤ c0(∥u0∥2H3 + ∥f(0)∥2H2) +
c1
γ ∥f∥2Z3

γ(0,t)
(2.13)

for constants c0 = c0(r0, η) and c1 = c1(r, η) described in the proof.

Proof. 1) Take v ∈ C(J,H3) and γ ≥ γ0(r, η) from (2.4). Let t ∈ J . Using
Proposition 2.7 and Lemma 2.8, we see that the square of the norm in L2

γ,tL
2

of g(f, v) from (2.12) is bounded by c′1(∥f∥2L2
γ,tH3 + ∥v∥2

L2
γ,tH3) for a constant

c′1 = c′1(r, η). Theorem 2.4 yields a solution w ∈ C(J, L2) of Lw = g(f, v) and
w(0) = Λ3u0 =: w0 which satisfies

γη
4 ∥w∥2L2

γ,tL
2 +

η
2 ∥w∥

2
L∞
γ,tL

2 ≤ c′0∥u0∥2H3 +
c′1
2γη

(
∥f∥2L2

γ,tH3 + ∥v∥2L2
γ,tH3

)
(2.14)

with c′0 = λ2

2 ∥A0(0)∥∞. The map w also belongs to C1(J,H−1) because of
(2.3) and f ∈ Z3(J). Set Φv = Λ−3w ∈ G3(J). Let w satisfy Lw = g(f, v)
and w(0) = w0 for some v ∈ C(J,H3). For w − w estimate (2.14) applies with
u0 = 0 and f = 0 so that

∥Φ(v − v)∥L∞
γ,JH3 = ∥Λ−3(w − w)∥L∞

γ,JH3 ≤ λ
√

c′1T√
γη ∥v − v∥L∞

γ,JH3 .

Fixing a large γ = γ(r, η, T ), we obtain a fixed point u of Φ in L∞
γ,JH3. It

actually belongs to G3(J) and satisfies u(0) = u0. Equation (2.12) implies that
Lu = f . Uniqueness of solutions was already shown in Proposition 2.3.

2) It remains to establish (2.13). We first insert u = v and w = Λ3u in (2.14)

and take γ ≥ max
{
γ0(r, η),

2λ
√

c′1
η

}
. Note that ∥u∥3,2 ≤ λ∥w∥2. Absorbing

∥u∥2
L2
γ,tH3 by the left-hand side, we infer

γη
8 ∥u∥2L2

γ,tH3 +
η
2 ∥u∥

2
L∞
γ,tH3 ≤ c′0λ

2∥u0∥2H3 +
c′1λ

2

2γη ∥f∥2L2
γ,tH3 . (2.15)

If we estimate ∂tu in H2 via (2.3) and (2.15), we obtain a constant depending
on r in front of the norm of u0. Instead we use that ∂tu ∈ C(J,H2) satisfies

L∂tu = ∂tf − ∂tDu−
∑3

j=0
∂tAj∂ju =: h,

∂tu(0) = A0(0)
−1f(0)−A0(0)

−1D(0)u0 −
∑3

j=1
A0(0)

−1Aj(0)∂ju0 =: v0.

Lemma 2.8 yields

∥h(s)∥H2 ≤ ∥∂tf(s)∥H2 + c(r)(∥u(s)∥H3 + ∥∂tu(s)∥H2), s ∈ J,

∥v0∥H2 ≤ c(r0, η)(∥f(0)∥H2 + ∥u0∥H3).
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The maps [MÂj
,Λ2] : H1 → L2 are bounded by Proposition 2.7 since ∂2xÂj ∈

H1 ↪→ L3. Starting from L∂tu = h, as in (2.12) and (2.14) we thus deduce
γη
4 ∥∂tu∥2L2

γ,tH2 +
η
2∥∂tu∥

2
L∞
γ,tH2

≤ ĉ0λ
2
(
∥u0∥2H3 + ∥f(0)∥2H2

)
+ ĉ1λ2

2γη

(
∥∂tf∥2L2

γ,tH2 + ∥u∥2L2
γ,tH3 + ∥∂tu∥2L2

γ,tH2

)
for constants ĉ0 = ĉ0(r0, η) and ĉ1 = ĉ1(r, η). Set c0 = 16λ2η−1(c′0+ĉ0) and c1 =
8λ2

η2
max{c′1, ĉ1}. We add the above inequality to (2.15) and take γ ≥ γ1(r, η) :=

max
{
γ0(r, η),

√
c1
}
. Estimate (2.13) follows after some calculations. □

In the above result we control more space than time derivatives. Under
stronger assumptions on Aj , D and f , one can obtain analogous estimates on
∂2t u in H1 and ∂3t u in L2 by differentiating (2.2) in time, cf. (2.27) in [44] or
[58]. We discuss variants of the above theorem partly needed below.

Proposition 2.10. Let Aj and D be as in Theorem 2.9, as well as u0 ∈ H2

and f ∈ L2(J,H2). Then there is a unique solution u ∈ C(J,H2) ∩ C1(J,H1)
of (2.2). For t ∈ J and γ ≥ γ̃1(r, η) := max

{
γ0(r, η),

√
c̃1
}
, it satisfies

γ∥u∥2L2
γ,tH2 + e−2γt∥u(t)∥2H2 ≤ c̃0∥u0∥2H2 +

c̃1
γ ∥f∥2L2

γ,tH2

for constants c̃0 = c̃0(r0, η) and c̃1 = c̃1(r, η). If ∂tf ∈ L2(J,H1), we also obtain

γ∥∂tu∥2L2
γ,tH1 + e−2γt∥∂tu(t)∥2H1 ≤ c̃0(∥u0∥2H2 + ∥f(0)∥2H1) +

c̃1
γ ∥f∥2Z2

γ(0,t)
.

The result is shown as Theorem 2.9, replacing Λ3 by Λ2 in its proof up to
(2.15) and Λ2 by Λ afterwards.

Remark 2.11. In Theorem 2.9 we have focused on the space H3 needed for the
quasilinear problem. Actually, one obtains a unique solution u ∈ Gk(J) of (2.2)
satisfying the analogue of (2.13) if k ∈ N, u0 ∈ Hk, f ∈ Zk(J), Aj , D ∈ Fk(J),
Aj = A⊤

j , A0 ≥ ηI, and ∂2xAj ∈ L∞
J L

3 if k = 2. This can be shown as for k = 3
still using Proposition 2.7. One only has to take care of estimates for products,
inverse matrices and commutators, noting that the extra condition for k = 2 is
preserved by products and inverses.

Moreover, there is no problem to change the range space R6 to Rn. Also other
spatial domains Rm can be treated analogously, though one has to modify the
assumptions on the coefficients in this case. Invoking a bit harmonic analysis
one can also work in fractional Sobolev spaces Hs instead of Hk, see [32]. ♢

Remark 2.12. In (2.11) we have required that the derivatives of the co-
efficients belong to H2. So local singularities are allowed to some extent,
but one enforces a certain decay at infinity which is an unnecessary restric-
tion. Actually, Theorem 2.9 remains valid if we replace the space F3(J) by
F3
∞(J) = F3(J)+W 3,∞(J×R3), and Ĥ2 by Ĥ2

∞ = Ĥ2+W 2,∞. (They have the
norm ∥z∥X+Y = infz=x+y ∥x∥X+∥y∥Y of sums X+Y . Observe X,Y ↪→ X+Y .)
To derive this fact, we note that [MA,Λ

2] : H2 → H1 is bounded uniformly in t
if A ∈ F3

∞(J), and so the same is true for

[MA,Λ
3] = [MA,Λ]Λ

2 + Λ[MA,Λ
2] : H2 → L2.



2.3. The quasilinear problem in H3 18

(Recall the boundedness of [MA,Λ] on L2.) One can further check the appro-
priate bounds for products and inversions involving F3

∞(J) and Ĥ2
∞, as well as

G3(J). The analogue of Theorem 2.9 can now be proven as before. ♢

As a preparation for Theorem 2.19 on the wellposedness of the nonlinear
problem we show an approximation result for the coefficients.

Lemma 2.13. Let u0 ∈ L2, f ∈ L2
JL

2, n ∈ N ∪ {∞}, j ∈ {0, 1, 2, 3},
An

j ∈ F3
∞(J) be symmetric with An

0 ≥ ηI, and Dn ∈ F3
∞(J). Assume that

∥An
j ∥W1,∞

J
≤ r and ∥Dn∥L∞

J
≤ r, as well as An

j → A∞
j and Dn → D∞ in L∞

J

as n → ∞. Set Ln =
∑

j A
n
j ∂j + Dn. There are maps un ∈ C(J, L2) with

Lnun = f and un(0) = u0 by Theorem 2.4. Then (un) tends to u∞ in C(J, L2).

Proof. There are functions u0,m in H3 and fm in Z3(J) converging to u0
and f in L2 and L2

JL
2, respectively, as m → ∞. For these data Theorem 2.9

provides solutions un,m ∈ G3(J) of Lnun,m = fm and un,m(0) = u0,m. Fixing
γ = γ0(r, η) from Lemma 2.1 and (2.4), Proposition 2.3 now shows

∥un − un,m∥L∞
J L2 ≤ c∥un − un,m∥L∞

γ,JL
2 ≤ c

(
∥u0 − u0,m∥L2 + ∥f − fm∥L2

JL
2

)
.

with c = c(r, η, T ). The right-hand side tends to 0 as m → ∞ uniformly for
n ∈ N ∪ {∞}. It is thus enough to take u0 ∈ H3, f ∈ Z3(J), and un ∈ G3(J).
We then compute

Ln(un − u∞) = L∞u∞ − Lnu∞ =

3∑
j=0

(A∞
j −An

j )∂ju∞ + (D∞ −Dn)u∞ =: gn.

Since u∞ ∈ G3(J), as above Lemma 2.1 yields

∥un − u∞∥L∞
J L2 ≤ c(γ, T ) ∥gn∥L∞

γ,JL
2 −→ 0, n→ ∞. □

2.3. The quasilinear problem in H3

In this section we study the nonlinear system

L(u)u :=

3∑
j=0

aj(u)∂ju+ d(u)u = f, t ≥ 0, x ∈ R3, u(0) = u0, (2.16)

under the assumptions

aj , d ∈ C3(R3 × R6,R6×6), aj = a⊤j , a0 ≥ ηI, η ∈ (0, 1], (2.17)
∀ r > 0: sup

|ξ|≤r
max

0≤|α|≤3
∥∂αx aj(·, ξ)∥L∞ , ∥∂αx d(·, ξ)∥L∞ <∞, j ∈ {0, 1, 2, 3},

u0 ∈ H3, ∀T > 0: f ∈ Z3(T ) = Z3(J) = L2(J,H3)∩H1(J,H2), J = (0, T ).

One can also treat coefficients only defined for (x, ξ) ∈ R3×O and an open subset
O ⊆ R6, see Remark 2.20. This is already needed in the Kerr Example 1.1 if κ
is not non-negative. To simplify a bit, we focus on the case O = R6 in (2.17).

We look for solutions u of (2.16) in C([0, T+),H3)∩C1([0, T+),H2) for a max-
imally chosen final time T+ ∈ (0,∞]. As indicated in the next section, solutions
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may blow up and so T+ could be finite. The solutions will be constructed in a
fixed-point argument on the space

Gk−(J) = L∞(J,Hk) ∩W 1,∞(J,Hk−1)

endowed with its natural norm, where k = 3. The strategy of this section
and many techniques are typical for quasilinear evolution equations, though
there are different (but related) approaches, see e.g. [5], [6], or [28]. The easier
‘semilinear’ case is discussed in [46].

We first state basic properties of substitution operators, which remain valid
for Lipschitz domains instead of R3 with the same proof. (Recall Remark 2.12
concerning F3

∞(J) and Ĥ2
∞.) We set Eγ = L∞

γ (J,H2) for a moment.

Lemma 2.14. Let a ∈ C3(R3 × Rn,Rn×n) fulfill the second line of (2.17).
a) Let v ∈ G3−(J) with ∥v∥∞ ≤ r. Then ∥a(v)∥F3

∞(J) ≤ κ(r)(1+∥v∥3G3−(J)).

b) Let v, w∈L∞
J H2 with norm ≤ r. Then ∥a(v)− a(w)∥Eγ ≤ κ(r)∥v−w∥Eγ

for all γ≥0. We can replace L∞
J H2 and Eγ by G2(J) and G2

γ(J), respectively.

c) Let v0 ∈ H2 with ∥v0∥∞ ≤ r0. Then ∥a(v0)∥Ĥ2
∞

≤ κ0(r0)(1 + ∥v0∥2H2).

d) Let v0, w0∈H2 with norm ≤r0. Then ∥a(v0)−a(w0)∥H2 ≤κ0(r0)∥v0−w0∥2H2.

Proof. We sketch the proof. (See §7.1 in [56] or §2 in [57] for more details.)
a) Take α ∈ N4

0 with 1 ≤ |α| ≤ 3 and α0 ∈ {0, 1}. The latter refers to
the time derivative. It is clear that the function |(∂βa)(·, v)| is bounded by
c(r) for all 0 ≤ |β| ≤ 3 where β = (βx, βξ) ∈ N3

0 × N6
0. Note that ∂αa(v) is

a linear combination of products of (∂βa)(·, v) and j ∈ {0, 1, 2, 3} factors ∂γiv
with βx + γ1 + · · · + γj = α. Since v ∈ W1,∞

J by Sobolev’s embedding, as in
the proof of Lemma 2.8 one can estimate ∂αa(v) in L∞

J L
2 if j ≥ 1 and in L∞

J if
j = 0, both by c(r)(1 + ∥v∥3G3(J)

). (Use 0 ≤ a, a2 ≲ 1 + a3.)
b) We start from the formula

a(w)− a(v) =

∫ 1

0
(∂ξa)(·, v + s(w − v))(w − v) ds.

Let φs = v + s(w − v). We then compute

∂2x(a(w)− a(v)) =

∫ 1

0
(∂ξa)(·, φs)∂

2
x(w − v) ds+

∫ 1

0
∂2x(∂ξa)(·, φs)(w − v) ds

+ 2

∫ 1

0
∂x(∂ξa)(·, φs) ∂x(w − v) ds (2.18)

The factor e−γt is put in front of ∂jx(w − v) on the right. We further have

∂2x(∂ξa)(·, φs) = (∂2x∂ξa)(·, φs) + 2(∂x∂
2
ξa)(·, φs)∂xφs + (∂2ξa)(·, φs)∂

2
xφs

+ (∂3ξa)(·, φs)[∂xφs, ∂xφs].

Using Sobolev’s embedding, one can then bound the second term on the right-
hand side of (2.18) in L∞

γ (J, L2) by c(r)∥v−w∥Eγ . The other terms are handled
more easily. Parts c) and d) are treated similarly. □
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As the space for the fixed-point argument we will use

E(R, T ) :=
{
v ∈ G3−(J)

∣∣ ∥v∥G3−(J) ≤ R, v(0) = u0
}
.

for suitable R > ∥u0∥H3 and T > 0. This set is non-empty as it contains the
constant function t 7→ v(t) = u0. In view of Lemma 2.14 b) it is crucial that
E(R, T ) is complete for a metric involving only two derivatives, which can be
shown by a standard application of the Banach–Alaoglu theorem. For this we
recall that L∞

J L
2 is the dual space of L1

JL
2, see Corollary 1.3.22 in [26]. (This

is the reason to take L∞ in time instead of C.)

Lemma 2.15. The space E(R, T ) is complete with the metric ∥u− v∥L∞
J H2.

Proof. Let (un) be Cauchy in E(R, T ) with this metric. Then (un) has
a limit u in C(J,H2). Pick α ∈ N4

0 with α0 ≤ 1 and 0 ≤ |α| ≤ 3. Applying
Banach–Alaoglu iteratively, we obtain a subsequence (also denoted by (un))
such that ∂αun tends to a function vα weak* in L∞

J L
2 which also satisfies∑

|α|≤3 ∥vα∥2L∞
J L2 ≤ R2. It remains to check that vα = ∂αu. To this end, take

φ ∈ H3
0(J × R3). We compute

⟨∂αφ, u⟩ = lim
n→∞

⟨∂αφ, un⟩ = lim
n→∞

(−1)|α|⟨φ, ∂αun⟩ = (−1)|α|⟨φ, vα⟩

in the duality pairing L1
JL

2 × L∞
J L

2. There thus exists ∂αu = vα. □

In the next lemma we perform the core fixed-point argument.

Lemma 2.16. Let (2.17) hold and ρ2 ≥ ∥u0∥2H3 + ∥f(0)∥2H2 + ∥f∥2Z3(1). Then
there is a radius R = R(ρ) > ρ given by (2.19), a time T0 = T0(ρ) ∈ (0, 1] given
by (2.20), and a unique solution u ∈ E(R, T0) of (2.16).

Proof. 1) Lemma 2.14 shows that aj(u0) and d(u0) are bounded in Ĥ2
∞

by some κ0(ρ). This yields a constant c0 = c0(ρ) ≥ 1 in (2.13), in the setting of
Remark 2.12. We define

R = R(ρ) =
√

ec0(ρ)ρ2 + 1 > ρ. (2.19)

Take v, w ∈ E(R, T ) for some T > 0. We can use c0 for v since v(0) = u0. Let
a ∈ {a0, a1, a2, a3, d} and γ ≥ 0. By Lemma 2.14 and H2 ↪→ L∞ there is a
constant κ = κ(R) with

∥a(v)∥F3
∞(J) ≤ κ and ∥a(v)− a(w)∥L∞

γ,JH2 ≤ κ∥v − w∥L∞
γ,JH2 .

Let c1 = c1(κ, η), c̃1 = c̃1(κ, η), and γ1 = max{γ1(κ, η), γ̃1(κ, η)} be given by
Theorem 2.9 and Proposition 2.10. We fix

γ = γ(ρ) = max
{
γ1, ec1ρ

2, 2ec̃1(cκR)
2
}
, T0 = T0(ρ) = min{1, (2γ)−1}, (2.20)

where the constant c > 0 is introduced below.
2) Theorem 2.9 gives a solution u ∈ G3(T0) of L(v)u = f and u(0) = u0 with

∥u(t)∥2H3 + ∥∂tu(t)∥2H2 ≤ e2γT0
(
c0(∥u0∥2H3 + ∥f(0)∥2H2) + c1γ

−1∥f∥2Z3(1)

)
≤ R2

for t ∈ [0, T0]. So the map Φ: v 7→ u =: v̂ leaves invariant E(R, T0). We note

L(v)(v̂ − ŵ) = (L(w)−L(v))ŵ =

3∑
j=0

(aj(w)− aj(v))∂jŵ+ (d(w)− d(v))ŵ =: g
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and that ∥g(t)∥2,2 ≤ cκR∥v(t)−w(t)∥2,2 by Lemma 2.8 and the above estimate
involving κ. Since v̂(0) = u0 = ŵ(0) and T0 ≤ 1, Proposition 2.10 then implies

∥Φ(v)− Φ(w)∥2L∞
T0

H2 ≤ e2γT0∥Φ(v)− Φ(w)∥2L∞
γ,T0

H2 (2.21)

≤ ec̃1γ
−1(cκR)2T0∥v − w∥2L∞

γ,T0
H2 ≤ 1

2 ∥v − w∥2L∞
γ,T0

H2 .

The assertion now follows from the contraction mapping principle. □

The above result yields uniqueness only in the ball E(R, T0), but the contrac-
tion estimate (2.21) itself will lead to a much more flexible uniqueness state-
ment. Before showing it, we note that restrictions or translations of a solution
u ∈ G3(J) to (2.16) satisfy (obvious) variants of (2.16). Let u ∈ G3(J) solve
(2.16) and v ∈ G3(J∗) with v(T ) = u(T ) solve it on J∗ = [T, T ′]. Then the
concatenation w of u and v belongs to G3([0, T ′]) and fulfills (2.16). (Use (2.3)
to check ∂tw ∈ C([0, T ′],H2).)

Lemma 2.17. Let (2.17) hold, Jk = (0, Tk), Tk ∈ (0,∞], and uk ∈ G3(Jk)
solve (2.16) on Jk for k ∈ {1, 2}. We then have u1 = u2 on J1 ∩ J2 =: J .

Proof. Let τ be the supremum of all t ∈ [0, sup J) for which u1 = u2 on
[0, t]. Note that u1(0) = u0 = u2(0). We suppose that τ < sup J . Then u1 = u2

on [0, τ ] by continuity, and there exists a number δ > 0 with Jδ := [τ, τ+δ] ⊆ J .
Let R be the maximum of the norms of u1 and u2 in G3(Jδ). Fix γ as in (2.20)
(with κ = κ(R) and ρ = 0) and take δ ∈ (0, δ]. As in (2.21), Proposition 2.10
and a time shift yield a constant c1 = c̃1(R) > 0 with

∥u1 − u2∥2L∞
γ (Jδ,H2) ≤ ec1γ

−1(cκR)2δ∥u1 − u2∥L∞
γ (Jδ,H2).

Choosing a sufficently small δ > 0, we infer u1 = u2 on Jδ = [τ, τ + δ]. This
fact contradicts the definition of τ , so that τ = supJ as asserted. □

We now use the above results to define a maximal solution u to (2.16) assum-
ing (2.17). The maximal existence time is given by

T+ = T+(u0, f) := sup
{
T ≥ 0

∣∣ ∃uT ∈ G3(T ) solving (2.16) on [0, T ]
}
∈ (0,∞].

Lemma 2.16 shows T+(u0, f) > T0(ρ) as we can restart the problem at time
T = T0(ρ) with the initial value uT (T ). Moreover, by Lemma 2.17 the solutions
uS and uT coincide on [0, S] for 0 < S < T < T+. Setting u(t) = uT (t) for such
times, we thus define a unique solution u of (2.16) in G3([0, T+)).

In the proof of the blow-up criterion below, we need the following Moser-type
estimates, which are still true if one replaces Rm by a Lipschitz domain in Rm.

Lemma 2.18. Let k ∈ N and α, β ∈ Nm
0 .

a) For v, w ∈ L∞(Rm) ∩Hk(Rm) and |α|+ |β| = k, we have

∥∂αv∂βw∥2 ≤ c(∥v∥∞∥w∥k,2 + ∥v∥k,2∥w∥∞).

b) For v, w ∈ W 1,∞(Rm) with ∂αv, ∂βw ∈ L2(Rm) for 1 ≤ |α| ≤ k and
|α|+ |β| = k + 1, we have

∥∂αv∂βw∥2 ≤ c∥∇v∥∞
m∑
j=1

∥∂jw∥k−1,2 + c∥∇w∥∞
m∑
j=1

∥∂jv∥k−1,2 .
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Proof. We first recall the Gagliardo–Nirenberg inequality

∥∂αφ∥2k/|α| ≤ c∥φ∥1−
|α|
k∞

∑
|γ|=k

∥∂γφ∥
|α|
k
2

where |α| ≤ k and φ ∈ L∞(Rm) with ∂γφ ∈ L2(Rm) for all |γ| = k, see
Lecture II in [41].

Assertion a) is clear if |α| is 0 or k. So let k ≥ 2 and 1 ≤ |α| ≤ k − 1. Note
that |β|

k = 1 − |α|
k . The inequalities of Hölder (with 1

2 = |α|
2k + |β|

2k ), Gagliardo–
Nirenberg and Young yield

∥∂αv∂βw∥2 ≤ ∥∂αv∥2k/|α|∥∂βw∥2k/|β| ≤ c∥v∥1−
|α|
k∞ ∥v∥

|α|
k
k,2∥w∥

1− |β|
k∞ ∥w∥

|β|
k
k,2

= (∥v∥∞∥w∥k,2)1−
|α|
k (∥w∥∞∥v∥k,2)

|α|
k ≲ ∥v∥∞∥w∥k,2+∥v∥k,2∥w∥∞.

In part b) we can assume that k ≥ 3 and 2 ≤ |α| ≤ k − 1. There are
i, j ∈ {1, . . . ,m} with α = α′ + ei and β = β′ + ej , where |α′| + |β′| = k − 1.
From a) we deduce

∥∂αv∂βw∥2 = ∥∂α′
∂iv ∂

β′
∂jw∥2 ≲ ∥∂iv∥∞∥∂jw∥k−1,2 + ∥∂iv∥k−1,2∥∂jw∥∞

and thus statement b). □

We state the core local wellposedness result for H3-solutions of (2.16). It
provides an improved blow-up condition inW 1,∞ (and not only in H3 ↪→W 1,∞).
In quasilinear hyperbolic problems one can only expect continuity of the solution
map, not even uniform continuity, see [25] or [32]. Let BT ((u0, f), r) be the
closed ball in H3 ×Z3(T ) with center (u0, f) and radius r > 0.

Theorem 2.19. Let (2.17) hold and ρ2 ≥ ∥u0∥2H3+∥f(0)∥2H2+∥f∥2Z3(1). Then
the following assertions are true.

a) There is a unique solution u = Ψ(u0, f) of (2.16) on [0, T+), where T+=
T+(u0, f)∈(T0(ρ),∞] with T0(ρ)>0 from (2.20) and u∈G3(T ) for all T ∈(0,T+).

b) Let T+<∞. Then limt→T+ ∥u(t)∥H3 = ∞ and limt→T+∥u(t)∥W 1,∞ = ∞.

c) Take T ∈ [0, T+). Then there is a radius δ > 0 such that for all
(v0, g) ∈ BT ((u0, f), δ) we have T+(v0, g) > T and Ψ: BT ((u0, f), δ) → G3(T ) is
continuous. Moreover, Ψ: (BT ((u0, f), δ), ∥ · ∥H2×Z2(T )) → G2(T ) is Lipschitz.

Proof. a)/b) Above we have shown part a). Let T+ <∞ and u = Ψ(u0, f).
1) Suppose there are tn → T+ with r := supn ∥u(tn)∥3,2 <∞. Set T = T++1

and ρ2 = r2 + ∥f∥2Z3(T ) + supn ∥f(tn)∥22,2 < ∞. Let τ = T0(ρ) > 0 be given by
(2.20). Fix an index N such that tN + τ > T+. Lemma 2.16 and a time shift
yield a solution v ∈ G3([tN , tN + τ ]) of (2.16) with v(tN ) = u(tN ) . We thus
obtain a solution on [0, tN + τ ]. This fact contradicts the definition of T+, and
hence ∥u(t)∥3,2 → ∞ as t→ T+.

2) Whereas the arguments for step 1) are fairly standard, the following steps
are more sophisticated. Set ω = sup0≤t<T+

∥u(t)∥1,∞ and suppose that ω <∞.
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Let α ∈ N3
0 with |α| ≤ 3. Using (2.3), we compute

L(u)∂αxu = ∂αx f −
∑

0<β≤α

(
α

β

)[ 3∑
j=1

∂βxaj(u)∂
α−β
x ∂ju+ ∂βxd(u)∂

α−β
x u (2.22)

+ ∂βxa0(u)∂
α−β
x

(
a0(u)

−1
(
f −

3∑
j=1

aj(u)∂ju− d(u)u
))]

=:fα= ∂αx f−gα.

In view of (the proofs of) Lemmas 2.8 and 2.14, the summands of fα in the
second line can be treated as the others (using Young’s inequality for products
of norms of f and u). Employing also Lemma 2.18 and H3 ↪→W 1,∞, we estimate

∥fα(t)∥2 ≤ c(ω)
[
∥f(t)∥H3 + ∥u(t)∥H3 +

4∑
k=1

∑
|γi|≤3,

∑
i|γi|≤4

∥∂γ1x u(t) · · · ∂γkx u(t)∥2
]

≤ c(ω)
(
∥f(t)∥H3 + (1 + ω3)∥u(t)∥H3

)
.

Take γ ≥ γ0(ω) in Proposition 2.3. For t ∈ [0, T+), this proposition and the
above inequality yield

∥∂αxu∥2L2
γ,t,L

2+
2e−2γt

γ ∥∂αxu(t)∥2L2 ≤ c(ω)
ηγ ∥u0∥2H3+

c(ω)
η2γ2

[
∥f∥2L2

γ,tH3+ ∥u∥2L2
γ,tH3

]
.

We sum over |α| ≤ 3 and fix a large γ to absorb the last summand. Hence,
∥u(t)∥3,2 is bounded for t < T+ contradicting step 1); i.e., part b) is shown.

c) The proof of assertion c) is quite demanding. We first fix some constants,
and then show continuity of Ψ at (u0, f) on an interval [0, b] assuming that we
have solutions with uniform bounds on [0, b]. Using this fact and Lemma 2.16,
we then prove inductively that solutions on [0, T ] exist and satisfy such bounds
if we start in a certain ball around (u0, f). Finally, we replace (u0, f) by different
data in this ball to obtain the asserted continuity statements.

1) Fix T ∈ (0, T+), write J = (0, T ), and let cS ≥ 1 be the norm of the
embedding Z3(T ) ↪→ C([0, T ],H2). Choose ρ̃2 ≥ ∥u0∥23,2+ ∥f∥2Z3(T )+ ∥f∥2L∞

J H2 ,
δ0 := ρ̃, and r̃ ≥ max{cS ρ̃, ∥u∥G3(T )}. Below we take R ≥ r̃, b ≤ T , and v ∈
G3(b) with ∥v∥G3(b) ≤ R. Lemma 2.14 yields a constant κ = κ(R) dominating
the norms of aj(v) and d(v) in F3

∞(b) and of aj(v)(0) and d(v)(0) in Ĥ2
∞.

2) Assume there are b ∈ (0, T ], v0 ∈ H3 and g ∈ Z3(T ) such that T+(v0, g) >
b. We write v = Ψ(v0, g) ∈ G3(b). Let R ≥ ∥v∥G3(b) with R ≥ r̃. Observe that

L(u)(v−u)= g−f+(L(u)−L(v))v = g−f+
3∑

j=0

(aj(u)−aj(v))∂jv+(d(u)−d(v))v.

By Lemma 2.14, the function (L(u) − L(v))v belongs to G2
γ(b) with norm less

than c(κ)R∥v − u∥G2
γ(b)

for γ ≥ 0. Proposition 2.10 then yields

∥v − u∥2G2
γ(b)

≤ c̃(κ, η)
(
∥u0 − v0∥2H2 + ∥f − g∥2Z2

γ(b)
+ γ−1Rb∥v − u∥2G2

γ(b)

)
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for γ ≥ γ̃1(κ, η) ≥ 1. Fixing a sufficiently large γ = γ1(κ,R, T, η) ≥ γ̃1(κ, η), we
can absorb the term by the right-hand side and deduce

∥v − u∥2G2(b) ≤ c̃(κ,R, T, η)
(
∥u0 − v0∥2H2 + ∥f − g∥2Z2(b)

)
. (2.23)

3) Estimate (2.23) leads to Lipschitz continuity of Ψ in G2(T ). The hard and
core part of the proof is to check continuity of Ψ in G3(T ) at (u0, f), assuming
apriori bounds. So let (u0,n, fn) ∈ BT ((u0, f), δ̃) tend to (u0, f) on H3×Z3(T ) as
n→ ∞, where δ̃ > 0. Hence, fn(0) → f(0) in H2 and fn → f in Z3(T ). Assume
that T+(u0,n, fn) > b with b ∈ (0, T ] and that un = Ψ(u0,n, fn) is bounded by
some R ≥ r̃ in G3(b) for all n ∈ N. Then un tends to u in G2(b) ↪→ L∞

b as
n→ ∞ by (2.23), and the coeffcients aj(un) and d(un) satisfy the estimates of
step 1) with a uniform κ = κ(R).

The main idea is to split the n-convergence of the coefficients and the data.
Let α ∈ N3

0 with |α| = 3. As in (2.22) we write L(un)∂αxun = ∂αx fn − gn,α and
L(u)∂αxu = ∂αx f − gα. Theorem 2.4 yields solutions wn, zn ∈ C([0, b], L2) of

L(un)wn = ∂αx f − gα, wn(0) = ∂αxu0,

L(un)zn = ∂αx fn − ∂αx f + gα − gn,α, zn(0) = ∂αxu0,n − ∂αxu0.

By uniqueness, we have wn + zn = ∂αxun and hence

∂αxun − ∂αxu = wn − ∂αxu+ zn.

Since aj(un) → aj(u) and d(un) → d(u) in L∞
J as n → ∞, Lemma 2.13 shows

that qn := ∥wn−∂αxu∥L∞
J L2 tends to 0. We thus have to prove zn → 0 in L∞

J L
2.

Choose γ = γ1(R, T ) as in step 2). For t ∈ [0, b], Proposition 2.3 then implies

∥∂αx (un(t)− u(t))∥2L2 ≤ 2q2n + 2∥zn(t)∥2L2

≤ 2q2n + c(R, T ′)
(
∥∂αx (u0,n − u0)∥2L2+ ∥∂αx (fn − f)∥2L2

JL
2+ ∥gn,α − gα∥2L2

JL
2

)
.

To estimate ∥gn,α − gα∥2, let a ∈ {aj , a−1
0 , d}, v ∈ {u, un}, and w ∈ {u, un, f}.

(i) First, we look at summands of the type

∂βxa(v(t))∂
γ2

x a(v
2(t))∂γ

3

x a(v
3(t))∂γ

1

x (un(t)− u(t))

where the terms with the multiindices γ2 or γ3 may disappear, |β|+ |γ1|+ |γ2|+
|γ3| ≤ 4, and |β|, |γi| ≤ 3. By Lemma 2.8 and the bounds on the coefficients
these terms are controlled in L2 by c(R)∥un(t) − u(t)∥3,2. Here the sup-norms
of first-order factors are less than c(R), and second-order factors are handled by
Hölder and Sobolev. Summands with fn(t)− f(t) are treated analogously.

(ii) We next analyze the remaining terms, which look like

W = ∂βx [a(un(t))− a(u(t))]∂γ
2

x a(v
2(t))∂γ

3

x a(v
3(t))∂γ

1

x w(t)

for multiindices as above. At first, we consider situations where we can estimate
the first factor by u− un in L∞

J H2 using Lemma 2.14. This works for β = 0 in
L∞ and all admitted γi, for |β| = 1 in L6 if |γi| ≤ 2 for some i and |γj | ≤ 1
otherwise; and for |β| = 2 in L2 if |γi| ≤ 1 for all i. In this situation one obtains
an estimate as in case (i).

This does not work if (and only if) |β| = 3 and |γi| ≤ 1 for all i, or |β| = 2
and |γ1| = 2 (then w ∈ {u, un}), or |β| = 1 and |γ1| = 3. The factors with
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∂βx are bounded in L2, L6 and L∞, respectively, so that we have to estimate
a(un(t))− a(u(t)) in H3 by Sobolev. Similarly, the terms ∂γ

1

x w(t) are controlled
by ∥w(t)∥3,2, and the other factors are bounded by c(R) in L∞. For the highest-
order contributions we compute ∂βx (a(un) − a(u)) with |β| = 3 using the chain
rule. For these terms we define

hn(t) =
∑
a

3∑
k=1

9∑
li=1

∥(∂lk · · · ∂l1a)(un(t))− (∂lk · · · ∂l1a)(u(t))∥L∞ .

The L2-norm of such W is then bounded by linear combinations of c(R) times

hn(t)∥∂γ1x v(t) · · · ∂γm−1
x v(t)∂γmx w(t)∥L2 + ∥∂γ1x v(t) · · · ∂γm−1

x φn(t)∂
γm
x w(t)∥L2 ,

where φn = un − u, m ∈ {1, 2, 3, 4}, |γi| ≤ 3, and |γ1| + · · · + |γm| ≤ 4. This
sum can be estimated by c(R)(hn(t)+ ∥un(t)−u(t)∥3,2) due to Lemma 2.8 and
the bounds on u and un. We have shown that

∥gn,α − gα∥2L2
tL

2 ≤ c(R, T )
(
∥fn − f∥2L2

JH2 + ∥un − u∥2L∞
J H2 +

∫ T

0
hn(s)

2 ds

+

∫ t

0

∑
|γ|=3

∥∂γx(un(s)− u(s))∥2L2 ds
)
.

We write the last integrand as ∥∂3x(un(s)− u(s))∥22. Note that hn(s) tends to 0
as n→ ∞ since un → u in L∞

J and that it is bounded uniformly in s and n. By
dominated convergence

∫ T
0 h2n ds tends to 0. Summing up, we conclude that

∥∂3x(un(t)− u(t))∥2L2 ≤ c(R, T )εn + c(R, T )

∫ t

0
∥∂3x(un(s)− u(s))∥2L2 ds

for a null sequence (εn). By Gronwall, ∂3x(un − u) tends to 0 in C([0, b], L2) as
n → ∞, and so un → u in C([0, b],H3). Using (2.3) and Lemma 2.14, we infer
un → u in G3(b).

4) We now look for data to which we can apply steps 2) and 3). Let (v0, g) ∈
BT ((u0, f), δ0). We then obtain

∥v0∥H3 ≤ ∥v0 − u0∥H3 + ∥u0∥H3 ≤ δ0 + ρ̃ = 2ρ̃ ≤ 2r̃,

∥g∥Z3(T ) ≤ ∥g − f∥Z3(T ) + ∥f∥Z3(T ) ≤ 2ρ̃ ≤ 2r̃,

∥g∥L∞
J H2 ≤ cS∥g∥Z3(T ) ≤ 2cS ρ̃ ≤ 2r̃.

Lemma 2.16 thus yields a time τ = τ(r̃) and a solution v ∈ G3(τ) of (2.16) with
data v0 and g, where ∥v∥G3(τ) ≤ R̃ = R̃(r̃) and R̃ > 2r̃. By part a), we have
v = Ψ(v0, g) and T+(v0, g) > τ . Fix N ∈ N with (N − 1)τ < T ≤ Nτ , set
tk = kτ for k ∈ {0, 1, . . . , N − 1} and tN = T .

Steps 2) and 3) show that (2.23) is true on [0, τ ] for such v with a constant
c̃ = c̃(r̃) and that Ψ: BT ((u0, f), δ0) → G3(τ) is continuous at (u0, f). We can
thus find a radius δ1 ∈ (0, δ0] such that ∥v−u∥G3(τ) ≤ r̃, and hence ∥v∥G3(τ) ≤ 2r̃,
for all (v0, g) ∈ BT ((u0, f), δ1).

5) We iterate the above argument. Assume that for some k ∈ {1, . . . , N − 1}
and δk ∈ (0, δ0], we have T+(v0, g) > tk and ∥v − u∥G3(tk) ≤ r̃ for all (v0, g) ∈
BT ((u0, f), δk) and the map Ψ: BT ((u0, f), δk) → G3(tk) is continuous at (u0, f).
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It follows ∥v∥G3(tk) ≤ 2r̃. Since ∥v(tk)∥3,2 ≤ 2r̃, step 4) and a time shift provide
a solution ṽ ∈ G3([tk, tk+1]) of (2.16) with ṽ(tk) = v(tk) and norm less or
equal R̃. We can thus extend v to a solution in G3([0, tk+1]) bounded by R̃
and so T+(v0, g) > tk+1. Because of this bound, steps 2) and 3) imply (2.23)
on [0, tk+1] with c̃ = c̃(r̃) for all (v0, g) ∈ BT ((u0, f), δk) and the continuity of
Ψ: BT ((u0, f), δk) → G3(tk+1) at (u0, f). Using the latter property, we find a
radius δk+1 ∈ (0, δk] such that ∥v − u∥G3(tk+1) ≤ r̃ for v = Ψ(v0, g) and all
(v0, g) ∈ BT ((u0, f), δk+1), and hence ∥v∥G3(tk+1) ≤ 2r̃.

Induction yields a radius δ = δN such that for all (v0, g) ∈ BT ((u0, f), δ) we
have T+(v0, g) > T , the continuity of Ψ: BT ((u0, f), δ) → G3(T ) at (u0, f), and
∥Ψ(v0, g)∥G3(T ) ≤ 2r̃. Moreover, (2.23) holds on [0, T ] for u and v = Ψ(v0, g).

6) Finally, we take data (v0, g), (w0, h) ∈ BT ((u0, f), δ) with solutions v and
w. Replacing u by w and r̃ by 2r̃ in step 2), we then obtain the last assertion
in c). Also step 3) can be repeated on [0, T ] for data converging to (w0, h) in
BT ((u0, f), δ), since the corresponding solutions are bounded by 4r̃ in G3(T ). □

Theorem 2.6 yields finite speed of progation for a solution u ∈ G3(T ) of (2.16),
setting Aj = aj(u) and D = d(u). We comment on variants of Theorem 2.19.

Remark 2.20. One can easily extend Theorem 2.19 to negative times (e.g.,
by time reversion). Moreover, in (2.17) one can replace the domain R3 × R6 of
aj and d by R3 ×O for an open O ⊆ R6, restricting ξ in the supremum not to
each closed ball B(0, r) ⊆ R6 but to each compact subset of O. One further has
to require that the closure K0 of u0(R3) is contained in O, and the solution u
has to take values in O. Theorem 2.19 is then valid with one modification. In
part b) now T+ <∞ implies that lim supt<T+

∥u(t)∥1,∞ = ∞ or that u(t) leaves
any compact subset of O as t→ T+.

Indeed, the proofs are very similar in this more general case. In the fixed-
point argument one chooses a bounded open set V with K0 ⊆ V ⊆ V ⊆ O. Let
d > 0 be the distance between V and ∂U . In E(R, T ) one then also includes the
condition that ∥v(t)− u0∥∞ ≤ d/2 for all t ∈ [0, T ] which is preserved by limits
in L∞

J H2. Other steps in the reasoning are modified accordingly. Compare
Theorem 3.3 of [57]. ♢

As explained in Chapter 1, one can easily apply Theorem 2.19 to the Maxwell
system (1.1) with material laws (1.9) and (1.11). We state the needed assump-
tions in a situation motivated by nonlinear optics.

Example 2.21. Let θ(x,E,H) = (εlin(x)E+εnl(x,E)E,µlin(x)H) be given as
in Example 1.2 and (1.9) with U = R3. Assuming also εlin, µlin ∈ C3

b (R3,R3×3
≥2η)

and κjkli ∈ C3
b (R3,R). Moreover, take Je = σ(x,E)E + J0 in (1.11) with σ ∈

C3(R6,R3×3) satisfying sup|ξ|≤r ∥∂αxσ(·, ξ)∥L∞ <∞ for all r ≥ 0 and 0 ≤ |α| ≤
3, respectively. Recall that for a suitable δ ∈ (0,∞] and all x,E,H ∈ R3 with
|E| < δ we obtain ∂(E,H)θ(x,E,H) ≥ ηI. Rewriting the system as in (1.15),
we see that hypothesis (2.17) (modified as in Remark 2.20 if δ <∞) is fulfilled.
For initial fields in H3 with |E0| < δ/2 and a current density J0 ∈ Z3(T ) for all
T > 0, Theorem 2.19 and Remark 2.20 thus provide wellposedness in H3 of the
Maxwell system (1.1) with the above material laws. ♢
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2.4. Energy and blowup

In the preceeding sections we have worked with the linear energy estimate
which contains error terms caused by the time derivative of coefficients. (The
space derivatives in C of (2.5) disappear in the Maxwell case.) These error
terms have led to the inconvenient H3-setting. The time dependence arises since
we freeze a function in the nonlinearities of (2.16). One may wonder whether
this is really necessary and whether it is not better to solve (2.16) based on a
nonlinear energy identity. Actually, this can be done in the semilinear case where
D = ε(x)E, B = µ(x)H, and Je = σ(x,E)E under appropriate conditions on
σ, cf. [19]. Below we see that this does not seem to work in the quasilinear case.

In this section we first establish an energy equality for Je = 0 and isotropic
nonlinearities

D = εlinE + βe(·, |E|2)E, B = µlinH + βm(·, |H|2)H. (2.24)

Here εlin and µlin belong to L∞(R3,R3×3
≥η ) for some η > 0 and the maps

βe, βm : R3 × R≥0 → R are C1, bounded in x ∈ R3 and non-decreasing in
s ∈ R≥0. We set u = (E,H) and

alin =

(
εlin 0
0 µlin

)
, β(|u|2) =

(
βe(·, |E|2)I3×3 0

0 βm(·, |H|2)I3×3

)
,

M =

(
0 curl

− curl 0

)
= −

3∑
j=1

Aco
j ∂j , D(M) = H(curl)×H(curl),

where H(curl) =
{
v ∈ L2(R3,R3)

∣∣ curl v ∈ L2(R3,R3)
}
. The operator M is

skew-adjoint in L2(R3,R6). Maxwell equations (1.1) then become

∂t[alinu(t) + β(|u(t)|2)u(t)] =Mu(t), t ≥ 0, u(0) = u0 = (E0, H0). (2.25)

Omitting the argument x in the notation, we further define

bj(s) =

∫ s

0
βj(r) dr, hj(s) = sβj(s)− 1

2bj(s).

We have hj(s) ≥ s
2βj(s) since βj does not decrease and that h′j(s) =

1
2βj(s) +

sβ′j(s), where β′j = ∂2βj . We now introduce the ‘energy’ for u = (u1, u2) by

E(u) =
∫
R3

[
1
2alinu · u+ h1(|u1|2) + h2(|u2|2)

]
dx

Note that E(u) ≥ η
2 ∥u∥

2
2 if βj ≥ 0. In the Kerr case εlin = µlin = 1, βe(x, s) =

κ(x)s and βm = 0, we obtain

EK(E,H) =

∫
R3

[
1
2 |E|2 + 3

4κ|E|4 + 1
2 |H|2

]
dx.

Let u ∈ G1(T ) solve (2.25). The energy equality E(u(t)) = E(u0) for t ∈ [0, T ]
follows from

d
dtE(u) =

∫
R3

[
u · ∂t(alinu) + β(|u|2)u · ∂tu+ 2|u|2β′(|u|2)u · ∂tu

]
dx

=

∫
R3

∂t
[
alinu+ β(|u|2)u

]
· udx =

∫
R3

Mu · u dx = 0.
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If βj ≥ 0 we can thus bound squares of 2-norms of solutions (and ∥E∥44 in the
Kerr case if inf κ > 0). This is not enough control to pass to a weak limit
in the nonlinearity when performing an approximation argument (which would
typically produce a global solution). One would need an estimate involving
derivatives. Such estimates are not known, and the next result on blowup
indicates that they do not hold.

We first stress that it is well known that the gradient of a solution to (2.25)
may blow up in sup-norm in finite time, see [38]. However in the semilinear case
one relies on estimates in H(curl), so we are interested in blowup in this space
(or at least in H1). Below we give such an example on a domain with periodic
boundary conditions, taken from [17]. Such conditions arise if one truncates a
fullspace problem with periodic coefficients to a periodicity cell. (See [17] for a
weaker result on R3.) We work in the following setting with D = (1+α(|E|))E
and B = H. We set a(s) = (1 + α(|s|))s for s ∈ R and assume

a ∈ C2(R,R), ∃ s− < 0 < s0 < s+ : a′ > 0 on S := (s−, s+),

q : S → R; q(s) =
a′′(s)

2a′(s)3/2
, has a global maximum at s = s0, (2.26)

q is C1 near s0, q(s) > 0 for 0 < s ≤ s0.

Let γ > 2 and α0 > 0. A simple example for (2.26) is furnished by any C2-
extension of a : [0, s+] → R; a(s) = s+α0s

γ , which is strictly growing on (s−, s+)
for some s− < 0 < s0 < s+ with

s0 =
( 2(γ − 2)

α0γ(γ + 1)

) 1
γ−1

in this case. We stress that the behavior of a for large s is arbitrary here.

Theorem 2.22. Assume that (2.26) is true. Then there are numbers M,T >
0 and a map (E,B) ∈ C1([0, T )× [−M,M ]3) which solves (1.1) on (−M,M)3

with divD = 0 = divB, periodic boundary conditions and the above material
laws, and which satisfies

∥curlE(t)∥L2 → ∞ as t→ T−.

We look for a solution of the form

(E(t, x), B(t, x)) = (u(t, x2), 0, 0, 0, 0, v(t, x2)).

for x ∈ (−M,M)3 and t ∈ [0, T ). Observe that such E, B and D = (1 +
α(|E|))E are divergence-free. If u and v have support in [0, T ) × (−M,M),
then E and B fulfill periodic boundary conditions. Moreover, (E,B) belong to
C1([0, T )× [−M,M ]3) satisfy (1.1) on (−M,M)3 with the above material laws
if and only if (u, v) ∈ C1([0, T )× (−M,M)) solve

∂ta(u) = ∂xv, ∂tv = ∂xu, (u(0), v(0)) = (u0, v0),

for t ∈ [0, T ) and x ∈ R. This system can be rewritten as

∂t

(
u

v

)
+A(u, v)∂x

(
u

v

)
= 0 with A(u, v) =

(
0 −a′(u)−1

−1 0

)
(2.27)
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on R. Here we assume that u takes values in S from (2.26). Since also ∂xu =
curlE, the theorem thus follows from the next one-dimensional result.

The following proof uses a standard construction from Section 1.4 of [38].
However, it requires a rather detailed analysis to find a class of initial values for
which we get the blowup of ∂xu in L2 instead of L∞.

Proposition 2.23. Assume that (2.26) is true. Then there exist initial data
(u0, v0) ∈ C1

c (R,R2) and a C1-solution (u, v) to (2.27) on [0, T ) × R for some
T ∈ (0,∞) which is compactly supported and which satisfies ∥∂xu(t, ·)∥L2(R) →
∞ as t→ T−.

Proof. 1) We first contruct the desired function (u, v). For (s, z) ∈ S ×R,
the matrix A(s, z) has the eigenvalues and eigenvectors

λ1,2(s, z) = ±a′(s)−
1
2 , w1,2(s, z) = (∓1, a′(s)

1
2 ).

(Recall S = (s−, s+), s0 and q from (2.26).) In the following we take λ = λ1
and w = w1 and drop the index 1. Fix (ξ, ζ) ∈ (s0, s+)× R such that

q(s) > 0 for 0 < s ≤ ξ.

Observe that the interval ξ−S = (ξ−s+, ξ−s−) contains [0, ξ]. The C2-function

ϕ : ξ − S → S × R; ϕ1(s) = ξ − s, ϕ2(s) = ζ +

∫ s

0
a′(ξ − τ)1/2 dτ,

solves the ordinary differential equation

ϕ′(s) = w(ϕ(s)), s ∈ ξ − S, ϕ(0) = (ξ, ζ).

For later use, we note the identities

∇λ(ϕ(s)) · ϕ′(s) = ∇λ(ϕ(s)) · w(ϕ(s)) = q(ξ − s), s ∈ ξ − S. (2.28)

Let σ0 : R → [0, ξ] be C2 and equal to ξ outside a compact set. There is a
unique C1-solution σ of the scalar partial differential equation

∂tσ(t, x) + λ(ϕ(σ(t, x)))∂xσ(t, x) = 0, t ≥ 0, x ∈ R,
σ(0, x) = σ0(x), x ∈ R,

(2.29)

on a bounded time interval [0, t̄), where σ takes values in ξ − S. See e.g. Theo-
rems 2.1 and 2.2 Annex of [38] (a variant of Theorem 2.19). We now define(

u(t, x)

v(t, x)

)
= ϕ(σ(t, x)).

It is easy to check that (u, v) is a C1-solution of (2.27) on [0, t̄)×R. We observe

∂xu = ϕ′1(σ)∂xσ = −∂xσ. (2.30)

2) By uniqueness, the solution of (2.29) fulfills the implicit formula

σ(t, x) = σ0
(
x− tλ(ϕ(σ(t, x)))

)
= σ0(y(t, x)),

y(t, x) := x− tλ
(
ϕ(σ(t, x))

)
= x− ta′(ξ − σ(t, x))−1/2.

(2.31)

(Note that σ0(y) satisfies (2.29) as this is true for σ.) Hence, σ is bounded. We
will need the inquality

1+t∇λ
(
ϕ(σ(t, x))

)
· w

(
ϕ(σ(t, x))

)
σ′0

(
x− tλ(ϕ(σ(t, x)))

)
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= 1 + tσ′0
(
x− tλ(ϕ(σ(t, x)))

)
q(ξ − σ(t, x)) > 0, (2.32)

where we use (2.28). We now set

γ(t) := inf
x∈R

σ′0(y(t, x))q(ξ − σ(t, x)) for t ∈ [0, t̄).

Let t0 ≥ 0 be the supremum of t ∈ [0, t̄) such that τγ(τ) > −1 for all τ ∈ [0, t].
In the following, we take t ∈ [0, t0) so that the inequality (2.32) is valid for all
x ∈ R. Equations (2.31) then imply

∂xσ(t, x) = σ′0
(
x− tλ(ϕ(σ(t, x)))

)(
1− tq(ξ − σ(t, x))∂xσ(t, x)

)
,

∂xσ(t, x) =
σ′0(y(t, x))

1 + tq(ξ−σ(t, x))σ′0(y(t, x))
.

In particular, ∂xσ is bounded on [0, t0−δ]×R for each δ ∈ (0, t0]. We show below
that the maps ∂xσ(t) tend to ∞ in L2 and thus in L∞ as t→ t0. The blow-up
condition in Theorem 2.2 Annex of [38] thus yields t̄ = t0. From formula (2.31)
we further deduce ∂xσ(t, x) = σ′0(y(t, x))∂xy(t, x) and therefore

∂xy(t, x) =
1

1 + tq(ξ − σ(t, x))σ′0(y(t, x))
> 0. (2.33)

(In the case σ′0(y(t, x)) = 0 the identity ∂xy(t, x) = 1 > 0 follows from (2.31).)
Using also (2.31), we see that the map x 7→ y(t, x) is a bijection from R to R.
This fact and (2.31) lead to the equation

γ(t) = inf
z∈R

σ′0(z)q(ξ − σ0(z)) =: γ0.

3) We now fix a C1-function σ0 : R → [0, ξ] which is equal to ξ outside some
compact set and satisfies

σ0(0) = ξ − s0, σ′0(0) = min
z∈R

σ′0(z) < 0.

In view of (2.26), we can determine

γ0 = σ′0(0)q(s0) and t0 = − 1
γ0
. (2.34)

Substituting z = y(t, x) and using (2.33), we infer from (2.31) the identities

∥∂xσ(t, ·)∥22 =
∫
R
|∂xσ(t, x)|2 dx =

∫
R
|σ′0(y(t, x))∂xy(t, x)|2 dx

=

∫
R

|σ′0(z)|2

1 + tq(ξ − σ0(z))σ′0(z)
dz.

Since q has a global maximum at s0 while σ′0 has a global minimum at 0, we
obtain the expansions

q(s) = q(s0)−o+(s−s0), σ′0(z) = σ′0(0)+o+(z), σ0(z) = ξ−s0+O(z),

where o+(z) denotes any nonnegative function with the property o+(z)/z → 0
as z → 0. Hence, (2.34) yields

1 + tq(ξ − σ0(z))σ
′
0(z) = 1 + tγ0 + t

[
q(s0)o+(z) + o+(z) |σ′0(0)| − o+(z)

2
]

= 1 + tγ0 + to+(z)
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for small |z|. Fix a number δ0 > 0 such that the above identity is true and
|σ′0(z)|2 ≥ 1

2 |σ
′
0(0)|2 =: c0 if |z| ≤ δ0. For each ϵ > 0 there exists a radius

δ ∈ (0, δ0] with 0 ≤ o+(z) ≤ ϵδ for z ∈ [−δ, δ]. We can then estimate

∥∂xσ(t, ·)∥22 ≥
∫ δ

−δ

|σ′0(z)|2

1 + tγ0 + to+(z)
dz ≥

∫ δ

−δ

c0
1 + tγ0 + tϵδ

dz =
2c0δ

1 + tγ0 + tϵδ
.

Because of t0 = −1/γ0 =: T in (2.34), it follows

lim inf
t→T−

∥∂xσ(t, ·)∥22 ≥
2c0
Tϵ

.

Since ϵ > 0 is arbitrary, equation (2.30) finally implies that

lim inf
t→T−

∥∂xu(t, ·)∥22 = lim inf
t→T−

∥∂xσ(t, ·)∥22 = +∞.

4) Note that σ(t, x) = σ0(y(t, x)) = ξ if |y| is large enough. This fact holds
for some x0 > 0 and all t ∈ [0, T ) and |x| ≥ x0 because of (2.31) and the strict
positivity of a′ on [0, ξ]. So u = ξ − σ has compact support. Fixing

ζ = −
∫ ξ

0
a′(ξ − τ)1/2 dτ,

also the function
v = ζ +

∫ σ

0
a′(ξ − τ)1/2 dτ

has compact support. □



CHAPTER 3

Background for Strichartz estimates

In this chapter we collect several results from functional and harmonic analysis
needed to establish Strichartz estimates for the Maxwell system. In particular,
we treat the Fourier transform of tempered distributions, Fourier multipliers,
fractional derivatives and Sobolev spaces, and the Littlewood–Paley decomposi-
tion. The latter will lead to more flexible and general product and commutator
estimates which are crucial for the analysis of partial differential equations. In
the last section we discuss Strichartz estimates for wave equations which serve
as background for our investigations of the Maxwell system. Much of this ma-
terial is covered by other lectures. In these cases we partly indicate a derivation
to explain main ideas in the area, but often we just refer to the literature or
lecture notes for the proofs. From now we use C as scalar field.

3.1. Fourier transform and multipliers

It is convenient to extend the Fourier transform to the rather large space of
‘tempered distributions.’ To this aim, we first recall the Schwartz space

S = Sm =
{
v ∈ C∞(Rm)

∣∣ ∀ k ∈ N0, α ∈ Nm
0 : pk,α(v) := ∥|x|k∂αv∥∞ <∞

}
.

(|x| stands for the map x 7→ |x| etc.) A sequence (vn) converges to v in S if
pk,α(vn − v) → 0 as n→ ∞ for all k ∈ N0 and α ∈ Nm

0 . This limit concept can
be expressed by a complete metric. Recall that S is dense in all Sobolev spaces
W k,p with p < ∞. (See Sections 3.1 and 3.6 in [47] and Section 5.1 of [46] for
proofs omitted here and more information.) For further definitions, let a > 0,
x, y, ξ ∈ Rm, eiy(x) = eiy·x, and v, w ∈ S. We define translations, dilations,
reflection, Fourier transform, and convolution on S by

τyv(x) = v(x+ y), σav(x) = v(ax), Rv(x) = v(−x),

Fv(ξ) = v̂(ξ) = (2π)−
m
2

∫
Rm

e−iξ·xv(x) dx, (v ∗ w)(x) =
∫
Rm

v(x− y)w(y) dy.

Extensions of these operators are denoted by the same symbols. We do not
list properties of these objects on the level of S, but state them immediately in
greater generality. We only recall that F is a homeomorphism of S and that it
can be extended to a unitary operator on L2 = L2(Rm) by Plancherel’s theorem.

The space of tempered distributions S⋆ = S⋆
m consists of the continuous linear

maps φ : S → C. The ‘weak’ convergence φn → φ in S⋆ means that φn(v) =
⟨v, φn⟩S → φ(v) for all v ∈ S, as n → ∞. Measurable functions f and Borel
measures µ with at most polynomial growth as |x| → ∞ belong to S⋆. More

32
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precisely, assume that∫
Ak

|f |dx ≤ ckα, respectively, µ(Ak) ≤ ckα (3.1)

for Ak = B(0, k + 1) \ B(0, k), k ∈ N and some c, α ≥ 0. These objects induce
elements φj of S⋆ via

φf (v) = ⟨v, f⟩S :=

∫
Rm

vf dx, respectively, φµ(v) = ⟨v, µ⟩S :=

∫
Rm

v dµ

for v ∈ S. We also need the vector space and algebra

E = Em =
{
f ∈ C∞(Rm)

∣∣ ∀α∈Nm
0 ∃nα∈N0 : sup|x|≥1 |x|−nα |∂αf(x)| <∞

}
of polynomially growing smooth functions. Note that both f ∈ E and f ∈ Lp

for p ∈ [1,∞] satisfy (3.1). Let φ ∈ S⋆, g ∈ E , and α ∈ Nm
0 . For v ∈ S we define

a) (Mgφ)(v) = (gφ)(v) = ⟨v, gφ⟩S := ⟨gv, φ⟩S = φ(gv),

b) (∂αφ)(v) = ⟨v, ∂αφ⟩S := (−1)|α|⟨∂αv, φ⟩S = (−1)|α|φ(∂αv),
c) φ̂(v) = (Fφ)(v) = ⟨v,Fφ⟩S := ⟨Fv, φ⟩S = φ(Fv),
d) (Rφ)(v) = ⟨v,Rφ⟩S := ⟨Rv, φ⟩S = φ(Rv),
e) (v ∗ φ)(x) := ⟨τ−xRv, φ⟩S = φ(τ−xRv) for every x ∈ Rm.
One can check that these maps belong to S⋆. Observe that we multiply and

convolve tempered distributions only with the (very regular) functions in E and
S, respectively. In view of the following examples and the proposition below,
the above definitions extend the concepts on S in a natural way and allow to
generalize several main properties of the Fourier transform to the space S⋆.

Example 3.1. Let v ∈ S, g ∈ E , α ∈ Nm
0 , and x, y ∈ Rm.

a) Let f ∈ L1
loc(Rm) be as in (3.1). Then Mg acts as gφf = φgf because of

(gφf )(v) =

∫
Rm

vgf dx = φgf (v).

b) Let f ∈ W k,p(Rm) for some p ∈ [1,∞] and |α| ≤ k ∈ N. We then obtain
∂αφf = φ∂αf since the definitions and the divergence theorem yield

⟨v, ∂αφf ⟩S = (−1)|α|⟨∂αv, φf ⟩S = (−1)|α|
∫
Rm

∂αvf dx =

∫
Rm

v∂αf dx = ⟨v, φ∂αf ⟩S .

c) Let f ∈ L2(Rm). Then Fφf = φFf as Plancherel implies

⟨v,Fφf ⟩S = ⟨Fv, φf ⟩S =

∫
Rm

v̂f dx =

∫
Rm

vf̂ dx = ⟨v, φFf ⟩S .

d) The derivative of the point evaluation δy : v 7→ v(y) is given by

⟨v, ∂αδy⟩S = (−1)|α|⟨∂αv, δy⟩S = (−1)|α|∂αv(y) =: (−1)|α|δαy (v).

e) We have Fδy = (2π)−
m
2 e−iy because of

⟨v,Fδy⟩S = ⟨Fv, δy⟩S = (2π)−
m
2

∫
Rm

e−iy·xv(x) dx =
〈
v, (2π)−

m
2 e−iy

〉
S .



3.1. Fourier transform and multipliers 34

f) Conversely, Feiy = (2π)
m
2 δy follows from the inversion formula via

⟨v,Feiy⟩S= ⟨Fv, eiy⟩S=
∫
Rm

v̂(ξ)eiy·ξ dξ=(2π)
m
2 (F−1v̂)(y)=(2π)

m
2 v(y).

Assertion f) can also be deduced from e) since F2 is equal to R in S⋆, too, as
shown in the next proposition (with a similar proof as above).

g) Let f ∈ L1(Rm). The convolutions then satisfy v ∗ φf = v ∗ f because of

v ∗ φf (x) = ⟨τ−xRv, φf ⟩S =

∫
Rm

v(−(z − x))f(z) dz = v ∗ f(x). ♢

We now collect the main properties of the above objects on S⋆. Observe that
the second part of assertion c) does not work on W k,2.

Proposition 3.2. Let φ ∈ S⋆, u, v ∈ S, a > 0, and α ∈ Nm
0 . The following

assertions hold.
a) F : S⋆ → S⋆ is a homeomorphism with F4 = I and F−1 = F3 = RF .
b) F(σaφ) = a−mσ1/aφ̂.

c) F(∂αφ) = i|α|ξαFφ and ∂α(Fφ) = (−i)|α|F(xαφ).
d) v ∗ φ ∈ E, and hence v ∗ φ induces a tempered distribution.
e) ∂α(v ∗ φ) = (∂αv) ∗ φ = v ∗ ∂αφ.
f) F(v ∗ φ) = (2π)

m
2 v̂φ̂ and F(vφ) = (2π)−

m
2 v̂ ∗ φ̂.

g) (u ∗ v) ∗ φ = u ∗ (v ∗ φ).

Fourier multipliers a(D) with symbol a are an important tool in analysis and
we often use them below. Let a : Rm → C be measurable and polynomially
bounded. Then a(D)v := F−1(av̂) defines a linear map from L2 into S⋆. If a
belongs to E , then we can extend and restrict a(D) to an operator from S⋆ to S⋆

and from S to S. For two multipliers a, b ∈ E , we obtain the algebra property

a(D)b(D)φ = F−1(abφ̂) = (ab)(D)φ = b(D)a(D)φ (3.2)

for all φ ∈ S⋆. These identities typically hold also for less regular symbols in
adapted settings. For instance, by Plancherel a(D) : L2 → L2 is bounded if and
only if a is bounded, and then ∥a(D)∥B(L2) = ∥a∥∞.

The Lp-boundedness of a(D) is far more difficult for p ̸= 2. Here the basic
result is Mikhlin’s theorem. Let k = ⌊n2 ⌋+1, a ∈ Ck(Rm \ {0}), p ∈ (1,∞), and

∥a∥M := sup0≤|α|≤k,ξ ̸=0 |ξ||α| |∂αa(ξ)| <∞.

Then a(D) : Lp → Lp has norm less than cm,p∥a∥M by Theorem 6.2.7 in [23],
where also related theorems are discussed. The Mikhlin condition is satisfied
for 0-homogeneous a in Ck. Indeed, the chain rule yields

∂ja(ξ) = ∂ja(|ξ|−1ξ) = (∂ja)(|ξ|−1ξ)|ξ|−1 − (∇a)(|ξ|−1ξ) · ξ ξj |ξ|−3,

and thus the claim for |α| = 1. This can be iterated. A typical example
is a(ξ) = ξβ|ξ|−k for |β| = k. Mikhlin also applies to a(ξ) = ξβ⟨ξ⟩−k with
⟨ξ⟩ =

√
1 + |ξ|2 because of ∂j⟨ξ⟩s = sξj⟨ξ⟩s−2 for s ∈ R. In this context we

write ⟨D⟩s = F−1⟨ξ⟩sF , noting that ⟨ξ⟩s ∈ E .
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This fractional power of I −∆ plays a crucial role in the definition and treat-
ment of the Bessel-potential spaces Hs,p given by

Hs,p = Hs,p(Rm) =
{
φ ∈ S⋆

∣∣ ⟨D⟩sφ ∈ Lp(Rm)
}

with norm ∥φ∥s,p = ∥⟨D⟩sφ∥p for s ∈ R and p ∈ [1,∞]. We often write
Hs,2 = Hs. Note that H0,p = Lp and S ⊆ Hs,p. In the definition of Hs

one can replace ⟨D⟩s by ⟨ξ⟩sF due to Plancherel. Because of (3.2) the map
⟨D⟩−s : Ht,p → Ht+s,p is an isometric isomorphism for t ∈ R. Taking t = 0, we
see that Hs,p is a Banach space, which is reflexive for p ∈ (1,∞) and separable
for p ∈ [1,∞), and S is dense in Hs,p in the latter case.

The dual of Hs,p coincides with H−s,p′ if p ∈ [1,∞). Indeed, the isomorphism
⟨D⟩s : Hs,p → Lp has the adjoint ⟨D⟩s : Lp′ → (Hs,p)⋆ since

⟨⟨D⟩su, v⟩Lp = ⟨F−1⟨ξ⟩sFu, v⟩S = ⟨u,F⟨ξ⟩sF−1v⟩S = ⟨u,F−1⟨ξ⟩sFv⟩Hs,p

for u ∈ S and v ∈ Lp′ . Here we identify (Lp)⋆ and Lp′ in the usual way and use
F−1 = RF = FR in the last identity. Because of the density of S in Hs,p, the
claim about ⟨D⟩s is shown. Since also ⟨D⟩s : Lp′ → H−s,p′ is an isomorphism,
we can identify (Hs,p)⋆ and H−s,p′ by extending the usual Lp-Lp′ duality.

To use Mikhlin, we restrict to p ∈ (1,∞) in the treatment of Hs,p. Then
⟨D⟩−s is bounded on Lp for s ≥ 0 and thus Hs,p ↪→ Lp in this case. Applying
⟨D⟩t−s, the embedding Ht,p ↪→ Hτ,p follows for t ≥ τ . Actually this remains
true for p ∈ [1,∞] due to Corollary 1.2.6 in [24] and the isomorphisms.

By means of the Lp-boundedness of the Fourier multiplier for i|α|ξα⟨ξ⟩−k with
|α| ≤ k and Proposition 3.2, we deduce the embedding Hk,p ↪→ W k,p for k ∈ N
and p ∈ (1,∞). For the converse inclusion, note that ⟨ξ⟩2k can be written as a
sum

∑
|α|≤k cαξ

2α and hence Proposition 3.2 yields

⟨D⟩kv = F−1
∑
|α|≤k

cαξ
α⟨ξ⟩−kξαv̂ =

∑
|α|≤k

i−|α|cαF−1
(
ξα⟨ξ⟩−kF(∂αv)

)
. (3.3)

Since the last Fourier multiplier is bounded on Lp, we obtain the equality Hk,p =
W k,p with equivalent norms.

We thus have the Sobolev embedding Hk,p ↪→ Lq for q ∈ [p,∞) if k−m
p ≥ −m

q

and for q = ∞ if k − m
p > 0, still assuming p ∈ (1,∞). We use interpolation

theory to extend the embeding to noninteger s, and also for other purposes. The
Bessel-potential spaces behave well with respect to the complex interpolation
method. We do not define it, but state its main property.

Let Xj and Yj be Banach spaces which are subspaces of vector spaces Zj

with continuous inclusion, where Zj has a metric for which its addition and
scalar multiplication are continuous, where j ∈ {1, 2}. Then, for θ ∈ (0, 1) there
exist Banach spaces [Xj , Yj ]θ ↪→ Xj + Yj with the interpolation property: Let
TX ∈ B(X1, X2) and TY ∈ B(Y1, Y2) satisfy TXv = TY v =: Tv for v ∈ X1 ∩ Y1.
This map can then be extended to a bounded linear operator T : X1 + Y1 →
X2 + Y2. It has a restriction T : [X1, Y2]θ → [X2, Y2]θ with norm bounded by
∥TX∥1−θ∥TY ∥θ. This theory is discussed in Chapter 2 in [37], for instance.

One can further show that

[Hs,p(Rm),Ht,q(Rm)]θ = Hτ,r(Rm) with τ = (1−θ)s+θt, 1
r = 1−θ

p + θ
q , (3.4)
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for s, t ∈ R, p, q ∈ (1,∞) and θ ∈ (0, 1). See Theorems 2.4.7 and 2.5.6 in [68].
In the case s = 0 one just interpolates Lp-spaces, where the result is true for
p, q ∈ [1,∞] by the Riesz–Thorin theorem, see [37].

Let k ∈ N, k − m
p ≥ −m

q and p ≤ q < ∞, or k − m
p > 0 and q = ∞. We

interpolate the embeddings Lp ↪→ Lp and Hk,p ↪→ Lq with θ = τ
k ∈ (0, 1) and

obtain Hτ,p ↪→ Lr with 1
r = 1

p −
τ
kp +

τ
kq . This yields the conditions τ− m

p ≥ −m
r

and p ≤ r <∞. The above isomorphisms then imply the Sobolev embedding

Ht,p(Rm) ↪→ Hs,q(Rm) if 1 < p ≤ q <∞, t− m
p ≥ s− m

q . (3.5)

The same is true with q = ∞ if we have t− m
p > s.

The ‘inhomogenous fractional derivative’ ⟨D⟩s does not fit well to the scaling
x 7→ λx, in contrast to the ‘homogeneous’ symbol |ξ|s. However, this function is
singular at 0 if s < 0, i.e., when we would expect a smoothing behavior. There
are several ways to deal with this problem, where we take the most frequently
used alternative. (See e.g. [5] for two other approaches.) For test functions,
instead of S we use the space

S0 =
{
v ∈ S

∣∣ ∀α ∈ Nm
0 : ∂αv̂(0) = 0

}
of Schwartz maps whose Fourier transform vanish at 0 together with their
derivatives. It is a closed subspace of S. For v ∈ S0 Taylor’s theorem yields
|∂αv̂(ξ)| ≤ c(N,α, v)|ξ|N for all N ∈ N, α ∈ Nm

0 , and |ξ| ≤ 1. Hence, |ξ|sv̂
belongs to S and vanishes at 0 with all derivatives. We can thus define the
homogenous fractional derivative |D|s = F−1|ξ|sF : S0 → S0 for s ∈ R.

In a next step we look at the dual S⋆
0 containing all continuous linear φ : S0 →

C. The restriction to S0 of a distribution ψ ∈ S⋆ belongs to this space. More-
over, for v ∈ S0 and a polynomial P we compute ⟨v, P ⟩S = ⟨F−1v,FP ⟩S = 0
since FP is a linear combinations of derivatives of δ0 by Example 3.1; i.e.,
φ+ P↾S0= φ for φ ∈ S⋆

0 . Conversely, Hahn–Banach allows to extend φ ∈ S⋆
0 to

a map φ1 ∈ S⋆. Each extension φ2 ∈ S⋆ satisfies

0 = ⟨v, φ1 − φ2⟩S = ⟨F−1v,F(φ1 − φ2)⟩S
for all v ∈ S0, so that F(φ1 − φ2) vanishes on all χ ∈ C∞

c (Rm \ {0}). Then
φ1−φ2 is a polynomial by Proposition 2.4.1 in [23] combined with Example 3.1.
As a result, S⋆

0 can be identified with the quotient space S⋆ over the set P of
polynomials. See also §5.1.2 in [68].

We thus have the extensions F : S⋆
0 → S⋆ and |D|s : S⋆

0 → S⋆
0 observing

that |D|sP (v) = ⟨FP, |ξ|sF−1v⟩S = 0 for v ∈ S0. As in (3.2) we obtain that
|D|s+t = |D|s |D|t = |D|t |D|s for s, t ∈ R. For λ > 0 and φ ∈ S⋆

0 Proposition 3.2
leads to the crucial scaling property

|D|s(σλφ) = λ−mF−1(|ξ|sσ 1
λ
φ̂) = λ−mF−1

(
σ 1

λ
(λs|ξ|sφ̂)

)
= λsσλ(|D|sφ). (3.6)

Also, for a ∈ E the Fourier multiplier a(D) leaves invariant S0 and thus S⋆
0 .

The homogeneous (fractional) Sobolev spaces are defined by

Ḣs,p = Ḣs,p(Rm) =
{
φ ∈ S⋆

0

∣∣ |D|sφ ∈ Lp(Rm)
}

with norm ∥φ∥s,p = ∥|D|sφ∥p for s ∈ R and p ∈ (1,∞). Again, Ḣs := Ḣs,2,
Ḣ0,p = Lp, and |D|t : Ḣs,p → Ḣs−t,p is an isometric isomorphism. Hence, Ḣs,p
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is a reflexive and separable Banach space with dual Ḣ−s,p′ in which S0 is dense.
(Use that S0 is dense in Lp by Theorems 5.1.5 and 5.2.3.1 in [68].)

Let s > −m/p′, p ≥ 2, and v ∈ S. Then |ξ|s belongs to Lp′(B(0, 1)) and
hence |ξ|sv̂ to Lp′ + S. The mapping properties of F−1 thus imply that S is
contained in Ḣs,p and thus dense.

Arguing as for Hs,p but now with ξα |ξ|−k, from Mikhlin we deduce that Ḣk,p

is isomorphic to the space Ẇ k,p of v ∈ S⋆
0 with ∂αv ∈ Lp for all |α| = k.

In sharp contrast to the (inhomogeneous) Bessel-potential spaces there is no
inclusion between Ḣs,p and Ḣt,p for t ̸= s, cf. p.96 of [46]. For s > 0 one has
Lp ∩ Ḣs,p = Hs,p since a(ξ) = (1 + |ξ|s)(1 + |ξ|2)−s/2 and 1/a satisfy Mikhlin’s
conditions. By duality, we infer that Ḣs,p is embedded into Hs,p for s < 0.

The homogeneous spaces interpolate as in (3.4) via

[Ḣs,p(Rm), Ḣt,q(Rm)]θ = Ḣτ,r(Rm) with τ = (1−θ)s+θt, 1
r = 1−θ

p + θ
q , (3.7)

for s, t ∈ R, p, q ∈ (1,∞) and θ ∈ (0, 1), cf. §5.2.5 in [68]. Using the above
characterization, one can show that Ḣk,p ↪→ Lq for q ∈ [p,∞) if k − m

p = −m
q .

Compare the proof of Theorem 3.52 in [47], taking f ∈ S0 there. Interpolation
and isomorphism then again imply the Sobolev embedding

Ḣt,p(Rm) ↪→ Hs,q(Rm) if 1 < p ≤ q <∞, t− m
p = s− m

q . (3.8)

Such an embedding can only be true if the ‘Sobolev regularity exponents’ are
equal, see Remark 3.30 in [47]. Since Ḣs,p is contained in Lr for some r < ∞
if 0 ≤ s < m

p , it cannot contain nonzero polynomials and so it is a subspace of
S⋆. Applying ∂α with |α| ≤ k, we see that if s− m

p < k only polynomials up to
degree k have to be factored out in Ḣs,p.

3.2. Littlewood–Paley decomposition

The Fourier transform turns derivatives into multiplication operators via
∂αv = i|α|F−1(ξαv̂). By Plancherel, ∂α is thus bounded on L2 by λ|α| when
acting on functions with supp v̂ ⊆ B(0, λ). (The Fourier variable is often ad-
dressed as ‘frequency’.) Actually such results are true in Lp as shown by the
Bernstein estimates in the next lemma, which show in particular that functions
with bounded Fourier support are smooth. By its part b), for functions with
Fourier support in an annulus around λ the norm of k-th derivatives is propor-
tional to λk. So the first part corresponds to Sobolev’s embedding. Observe
that ∥σav∥p = a

−m
p ∥v∥p for v ∈ Lp, p ∈ [1,∞], and a > 0 because of the

transformation y = ax. We use the closed annulus A(r,R) = B(0, R) \B(0, r).

Lemma 3.3. Let λ, r, r1> 0, r2>r1, 1≤ p≤ q≤∞, k∈N0, v ∈Lp(Rm), and
α∈Nm

0 with |α|=k. For a constant C = C(r, rj , k,m) the following claims hold.

a) The inclusion supp v̂⊆B(0, λr) yields v∈E and ∥∂αv∥q ≤ Cλ
k+m

p
−m

q ∥v∥p.
b) supp v̂ ⊆ A(λr1, λr2) yields C−1λk∥v∥p ≤ max|α|=k ∥∂αv∥p ≤ Cλk∥v∥p.
c) One can replace the max-term in part b) by ∥|D|kv∥p if k ∈ R and the left

term in part a) by ∥|D|kv∥q if k ∈ R+. If λ ≥ 1, the same is true for ⟨D⟩k.1

1Statement c) has been corrected and improved compared to the lecture.



3.2. Littlewood–Paley decomposition 38

Proof. 1) Let λ=1. For a), take ϕ∈C∞
c (Rm) with ϕ=1 on B :=B(0, r).

Since v̂ = ϕv̂, Proposition 3.2 yields that v = ψ ∗ v ∈ E and ∂αv = ∂αψ ∗ v with
ψ = (2π)−

m
2 F−1ϕ. Estimate a) for λ = 1 then follows from Young’s inequality

with 1
ρ
:= 1 + 1

q −
1
p ∈ [0, 1] and ∥∂αψ∥r ≤ max|α|=k

(
∥∂αψ∥1 + ∥∂αψ∥∞

)
=: C.

To show part b), pick ϕ0 ∈ C∞
c (Rm \ {0}) with ϕ0 = 1 on A := A(r1, r2).

For the lower bound note that there are constants cα > 0 such that 1 =∑
|α|=k cα(−i)kξα|ξ|−2kikξα. From v̂ = ϕ0v̂, we then deduce

v =
∑

|α|=k
F−1

(
cα(−i)kξα|ξ|−2kϕ0F(∂αv)

)
=

∑
|α|=k

ψα ∗ ∂αv

for suitable ψα ∈ S ↪→ L1. Another application of Young’s inequality yields the
lower bound if λ = 1, possibly after increasing C.

Let k ∈ R. The upper estimate in claim b) for |D|k follows from the equation
|D|kv = (2π)−

m
2 F−1(|ξ|kϕ0)∗v and Young since |ξ|kϕ0 ∈ S. Similarly, the lower

bound is derived from v = F−1(|ξ|−kϕ0 |ξ|kv̂) = (2π)−
m
2 F−1(|ξ|−kϕ0) ∗ |D|kv.

To derive the estimate in a) for |D|k and k ∈ R+, we split ϕ =
∑

j≥0 σ2jϕ0
where ϕ0 has support in A(r/2, 2r) and is equal to 1 around |ξ| = r, cf. (3.9). Let
v have Fourier support in B and set vj=F−1(σ2jϕ0v̂)=2−mjσ2−jv0 for j∈N0, so
that v =

∑
j vj . We also set ṽ0 = F−1(ϕ̃0v̂) for a map in C∞

c A(r/3, 3r) being 1
on A(r/2, 2r). Equation (3.6) then yields |D|kvj = 2−kj2−mjσ2−j |D|kϕ0(D)ṽ0.
The kernel F−1(|ξ|kϕ0) also belongs to Lρ with 1

ρ = 1+ 1
q−

1
p ∈ [0, 1]. Young and

the transform z = 2−jy thus imply ∥|D|kvj∥q ≤ c2−kj2
−m

ρ′ j∥ṽ0∥p ≤ c2−kj∥v∥p
since ϕ̃0(D) is Lp-bounded by step 1). As k > 0, summation yields assertion a)
for |D|k and λ = 1.

2) The case λ > 0 is now shown for ∂α and |D|k by a scaling argument. We
apply the above estimates to u = σ1/λv having Fourier support inB, respectively
A, by Proposition 3.2. The result is a consequence of the identities ∥u∥p =

λ
m
p ∥v∥p, ∥∂αv∥q = λ

k−m
q ∥∂αu∥q, and ∥|D|kv∥q = λ

k−m
q ∥|D|ku∥q, see (3.6).

3) To treat ⟨D⟩k in b), we use the cut-off ϕ0,λ(ξ) = ϕ0(λ
−1ξ) and compute

(2π)
m
2 ⟨D⟩kv = F−1(⟨ξ⟩kσ1/λϕ0) ∗ v = λmσλF−1(⟨λξ⟩kϕ0) ∗ v =: fλ ∗ v.

Transforming z = λy, the 1-norm of fλ is equal to that of f := F−1(⟨λξ⟩kϕ0).
Because of the support of ϕ0 and λ ≥ 1 we obtain ∥∂α(⟨λξ⟩kϕ)∥1 ≤ c(N)λk for
|α| ≤ N . Thus one can show ∥f∥1 ≤ cλk as in (3.10).

For part a) we proceed as for |D| decomposing ϕ =
∑

j≥0 σ2jϕ0 and setting
ϕj0,λ = σ2j/λϕ0. We now estimate the analogue f jλ of fλ in Lρ. In this norm the

transformation to f yields the needed factor λmλ−
m
ρ = λ

m
p
−m

q . Similar as above,
the ρ-norm of the resulting kernel f j is bounded by c(r, k)2−kjλk. Summing over
j ≥ 0, we obtain the estimate in s) for ⟨D⟩k, λ ≥ 1 and k > 0. □

In many areas of analysis it is an important technique to decompose functions
into pieces with Fourier support in dyadic annuli, e.g., to control regularity in
a very precise way. To introduce the resulting Littlewood–Paley decompositions
of Hs,p and Ḣs,p for p ∈ (1,∞) we fix a radial function χ ∈ C∞(Rm) such that
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χ ≥ 0, suppχ ⊆ {6
7 ≤ |ξ| ≤ 2}, χ = 1 on {1 ≤ |ξ| ≤ 12

7 }, and χ(ξ) + χ(12ξ) = 1

for 1 ≤ |ξ| ≤ 24
7 , see §1.3.2 in [24]. Set χj = σ2−jχ for j ∈ Z. It follows∑

j∈Z
χj(ξ) = 1, ξ ̸= 0. (3.9)

The Littlewood–Paley operators are defined by Pj = F−1χjF . Clearly, χj v̂
has support in the annulus with radii 2j−1 and 2j+1. We further set P≤k =∑

j≤k Pj for k ∈ Z etc. These operators have the symbol χk =
∑

j≤k χj , where
χk(0) := 1. All Pj and P≤j leave invariant S and S0 so that they are defined
on S⋆ and on S⋆

0 , where Pjp = 0 for a polynomial p. They also behave well on
Lp-spaces because of their representation as a convolution operator.

Remark 3.4. Proposition 3.2 implies that Pjφ = (2π)−
m
2 2jmσ2jψ ∗ φ with

ψ = F−1χ for φ ∈ S⋆ and that Pj maps S⋆ into E . Since ψj := 2jmσ2jψ has
1-norm ∥ψ∥1, the operators Pj are uniformly bounded on all Lp for 1 ≤ p ≤ ∞,
by Young. Replacing χ by χ0, we obtain the same result for P≤j .

The kernel of Pj is ‘essentially’ supported near B(0, 2−j) because of

|ψj(y)| ≤ cN2jm(1 + 2j |y|)−N for N ∈ N0, y ∈ Rm. (3.10)

Indeed, this is clear if 2j |y| ≤ 1. Otherwise, take an index k with
√
m|yk| ≥

|y| > 2−j . Integrating by parts, we then compute

(2π)
m
2 σ2jψ(y) =

∫
Rm

1

i2jyk
∂ξke

i2jy·ξχ(ξ) dξ =

∫
Rm

i

2jyk
ei2

jy·ξ∂kχ(ξ) dξ,

obtaining |σ2jψ(y)|≤c′1/(2j |y|)≤c1/(1+2j |y|). Then (3.10) follows inductively.
Since 0 ≤ χ0 ∈ C∞(Rm) satisfies χ0 = 1 on B(0, 1) and suppχ0 ⊆ B(0, 2), we
get the estimate (3.10) also for the kernel (2π)−

m
2 2jmσ2jF−1χ0 of P≤j .

The Littlewood–Paley operators are almost projections in the sense that

Pj = (Pj−1 + Pj + Pj+1)Pj =: P̃jPj and PjPk = 0 if |j − k| ≥ 2 (3.11)

for j, k ∈ Z, since χjχk = 0 and the ‘enlarged’ Littlewood–Paley operator P̃j

has the symbol χ̃j := χj−1 + χj + χj+1 satisfying χ̃jχj = χj . There are also
restrictions on the support of the product of frequency-localized functions, e.g.,

for k ≥ j + 3: suppF(PjuPkv) ⊆ A(2k−2, 2k+2) (3.12)

for u, v ∈ S⋆ with û, v̂ ∈ L1
loc, say. Indeed the above Fourier transform is

proportional to

c(ξ) := (χj û ∗ χkv̂)(ξ) =

∫
2k−1≤|η|≤2k+1

(χj û)(ξ − η)(χkv̂)(η) dη

To obtain c(ξ) ̸= 0, we need 2j−1 ≤ |ξ− η| ≤ 2j+1. The triangle inequality then
yields the claim via |ξ| ≥ 2k−1 − 2j+1 ≥ 2k−2 and |ξ| ≤ 2k+1 + 2j+1 ≤ 2k+2.

These operators allow us to reduce our analysis to frequency-localized func-
tions. They yield an ‘almost orthogonal’ decomposition of Ḣs,p as expressed by
the following Littlewood–Paley theorem.
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Theorem 3.5. Let p ∈ (1,∞) and s ∈ R. If v ∈ Ḣs,p, we have

∥v∥∗Ḣs,p :=
∥∥∥(∑

j∈Z
22sj |Pjv|2

) 1
2
∥∥∥
p
≤ c∥v∥Ḣs,p .

If v ∈ S∗
0 satisfies ∥v∥∗Ḣs,p <∞, then v belongs to Ḣs,p and ∥v∥Ḣs,p ≤ c∥v∥∗Ḣs,p .

These results are also true with a different constant if one replaces the above
χ by any 0 ≤ χ ∈ C∞

c (Rm \ {0}) satisfying (3.9).

See Theorem 1.3.8 in [24] for a proof. Note that ∥v∥∗Ḣs,p is the supremum
over the p-norms of partial sums instead of

∑
j . We show the norm equivalence

in the theorem for p = 2. Let v ∈ S0. Plancherel then yields

∥Pjv∥2 = ∥χj v̂∥2 ≤ c2jm/2 sup
A(2j−1,2j+1)

|v̂| ≤ c(s, v)2−2|sj|

for all j ∈ Z since v̂ tends to 0 as |ξ| → 0,∞ faster than any polynomial. Using
Plancherel, (3.9) and (3.11), we compute

∥v∥2Ḣs =

∫
Rm

∣∣∣∑
j∈Z

χj |ξ|s v̂
∣∣∣2dξ = ∑

j,k∈Z

∫
Rm

|ξ|sχj |ξ|sχk |v̂|2 dξ

≂s

∑
j,k∈Z

2s(j+k)

∫
Rm

χjχk |v̂|2dξ ≲s

∑
j∈Z

22sj
∫
Rm

χjχ̃j |v̂|2 dξ

≤
∑
j∈Z

22sj
∫
Rm

|χ̃j v̂|2 dξ =
∑
j∈Z

22sj
∫
Rm

|P̃jv|2 dx ≲s

∫
Rm

∑
k∈Z

22sk|Pkv|2 dx.

Here we inserted P̃j = Pj−1 + Pj + Pj+1, and the final L2ℓ2-norm is finite due
the observations above. The converse inequality is shown similarly.

To treat also Hs,p, we replace the summands Pj for j ≤ 0 by P≤0 with symbol
χ0. In other words, we use multipliers with the property

χ0(ξ) +
∑

j∈N
χj(ξ) = 1, ξ ∈ Rm. (3.13)

We can then state the inhomogeneous version of the above result (see Theo-
rem 1.3.6 in [24]).

Theorem 3.6. Let p ∈ (1,∞) and s ∈ R. If v ∈ Hs,p, we have

∥v∥∗s,p := ∥P≤0v∥p +
∥∥∥(∑

j∈N
22sj |Pjv|2

) 1
2
∥∥∥
p
≤ c∥v∥s,p.

If v ∈ S∗ satisfies ∥v∥∗s,p <∞, then v belongs to Hs,p and ∥v∥s,p ≤ c∥v∥∗s,p.
These results are also true with a different constant if one replaces the above

χ and χ0 by any 0≤χ ∈ C∞
c (Rm \ {0}) and 0≤χ0 ∈ C∞

c (Rm) satisfying (3.13).

Actually, all tempered distributions can be written as a ‘Littlewood-Paley series.’

Proposition 3.7. a) Let φ ∈ S⋆ and φ0 ∈ S⋆
0 . Then the series P≤0φ +∑

j≥1 Pjφ converges to φ in S⋆ and
∑

j∈Z Pjφ0 to φ0 in S⋆
0 .

b) Let p ∈ (1,∞), s ∈ R, v ∈ Hs,p, and v0 ∈ Ḣs,p. Then the series P≤0v +∑
j≥1 Pjv converges to v in Hs,p and

∑
j∈Z Pjv0 to v0 in Ḣs,p. In particular,

P≤n strongly tends to I in these spaces, as n→ ∞.
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Proof. We focus on the inhomogeneous case. Let φ ∈ S⋆, v ∈ S, and
n ∈ N. We compute

⟨v, P≤nφ⟩S =
〈(
χ0 +

∑n

j=1
χj

)
F−1v, φ̂

〉
S
−→ ⟨v, φ⟩S

as n→ ∞, since the right-hand side tends to F−1v in S.
For b), we note that P≤n is uniformly bounded on Hs,p by Remark 3.4 and

⟨D⟩sP≤n = P≤n⟨D⟩s. So it remains to show the strong convergence to 0 in Hs,p

of P≥n+1 = I − P≤n on the dense subset S ∋ v. Here we write ⟨D⟩sP≥n+1v =
⟨D⟩−1P≥n+1⟨D⟩s+1v. Let ϕ = 1−χ1. The operator ⟨D⟩−1P≥n+1 has the symbol
an = ⟨ξ⟩−1σ2−nϕ. It is bounded by c2−n and we have e.g.

∂jan(ξ) = −ξj⟨ξ⟩−3ϕ(2−nξ) + ⟨ξ⟩−12−nϕ′(2−n|ξ|)ξj/|ξ|,

so that |ξ| |∇an| ≤ c2−n by the support of ϕ. This can be iterated and so
Mikhlin shows that ⟨D⟩−1P≥n+1 tends to 0 in B(Lp) as required. □

In the next proof we use the (Hardy–Littlewood) maximal operator

M(f)(x) = sup
r>0

1

vol(B(0, r))

∫
B(0,r)

|f(x− y)|dy, x ∈ Rm,

for f ∈ L1
loc(Rm). It satisfies ∥M(f)∥p ≤ c(p,m)∥f∥p for p ∈ (1,∞] by Theo-

rem 2.1.6 in [23]. Fefferman and Stein showed the vector-valued variant∥∥∥(∑
j∈Z

M(fj)
2
) 1

2
∥∥∥
p
≤ c(p,m)

∥∥∥(∑
j∈Z

|fj |2
) 1

2
∥∥∥
p

(3.14)

for f = (fj) ∈ Lp(Rm, ℓ2) and p ∈ (1,∞), see Theorem 5.6.6 in [23]. Corol-
lary 2.1.12 of [23] combined with (3.10) and the comments after it imply the
pointwise bounds

|Pkf | ≤ cM(f) and |P≤kf | ≤ cM(f) (3.15)

for all k ∈ Z, f ∈ L1
loc, and c = c(m,χ).

We will use the Littlewood–Paley series in the following product and com-
mutator estimate which are crucial for later investigations. They considerably
improve Lemma 2.8 and Proposition 2.7. The proof of the first result follows
that of Proposition 3.3 in [14].

Proposition 3.8. Let s > 0, r, p2, q1 ∈ (1,∞), and p1, q2 ∈ (r,∞] with
1
r = 1

pi
+ 1

qi
for i ∈ {1, 2}. Assume that u ∈ Lp1, |D|su ∈ Lp2, v ∈ Lq2 , and

|D|sv ∈ Lq1. We then obtain uv ∈ Lr0 for some r0 ∈ (1,∞], |D|s(uv) ∈ Lr, and

∥|D|s(uv)∥r ≲ ∥u∥p1∥|D|sv∥q1 + ∥|D|su∥p2∥v∥q2 . (3.16)

Here one can replace |D|s by ⟨D⟩s.

Proof. Let p1, q2 < ∞ so that we can use the Littlewood–Paley decom-
position freely. See Theorem 1.1 in [42] and Proposition 2.1.1 in [66] for the
remaining and also other cases.

1) We first show that u ∈ Lp0 and v ∈ Lq0 for some p0, q0 ∈ (1,∞) with
1
p0

+ 1
q0

=: 1
r0

∈ (0, 1), and hence we can apply Hölder to products like uv ∈ Lr0
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below. We are done if 1
p1

+ 1
q2
< 1. If e.g. s− m

p2
=: −m

p0
< 0, then the Sobolev

embedding (3.8) shows that u ∈ Lp0 with p0 ∈ (1,∞). In this case we obtain
1
p0

+ 1
q2

= 1
p2

+ 1
q2

− s
m < 1

r < 1

by assumption. Otherwise, we have σ := s − m
p2

≥ 0 and analoguously for q1.
One can now choose θ ∈ (0, 1) with θσ− (1− θ)mp1 = −m

p0
for some p0 ∈ (p1,∞)

satisfying 1
p0

+ 1
q2
< 1. The interpolation result (3.7) then yields u ∈ Ḣτ,ρ with

1
ρ = 1−θ

p1
+ θ

p2
and τ = θs. Since τ − m

ρ = θσ − (1 − θ)mp1 = −m
p0

, by (3.8) the
function u belongs to Lp0 .

It suffices to establish the homogeneous case as the inhomogeneous one follows
by adding the estimate for s = 0 which is just Hölder. To use (3.17) under our
assumptions, we first restrict to u and v having a finite Littlewood–Paley series.

2) We abbreviate Qk = P≤k−3 and set P̂k = Pk−2 + · · · + Pk+2. Formula
(3.12) leads to QkuPkv = P̂k(QkuPkv). Using Proposition 3.7, we can write

uv =
∑
k∈Z

Pkv Qku+
∑
k∈Z

Pkv
∑

j≥k+3

Pju+
∑

|j−k|≤2

PjuPkv

=
∑
k∈Z

Pkv Qku+
∑
j∈Z

PjuQjv +
∑

|j−k|≤2

PjuPkv

=
∑
k∈Z

P̂k(Pkv Qku) +
∑
j∈Z

P̂j(PjuQjv) +
∑

|j−k|≤2

PjuPkv. (3.17)

To compute ∥|D|s(uv)∥r be means of Theorem 3.5, we have to apply 2slPl to
the terms in (3.17) and form a square sum. As in (3.11) we obtain PlP̂k = 0 if
|k − l| ≥ 4 and, with fk = Pkv Qku,

l+3∑
k=l−3

PlP̂kfk = PlPl−1fl−3 + Pl(Pl−1 + Pl)fl−2 + PlP̃l(fl−1 + fl + fl+1)

+ Pl(Pl + Pl+1)fl+2 + PlPl+1fl+3

= P̃lPl

l+2∑
k=l−2

fk = Pl

l+2∑
k=l−2

fk.

3) By (3.15), (3.14) and Theorem 3.5, the first term in (3.17) then leads to∥∥∥[∑
l∈Z

22sl
∣∣∣∑
k∈Z

PlP̂k(Pkv Qku)
∣∣∣2] 1

2
∥∥∥
r
≤

∥∥∥[∑
l∈Z

22sl
( ∑

|i|≤2

∣∣Pl(Pl+iv Ql+iu)
∣∣)2] 1

2
∥∥∥
r

≲
∥∥∥(∑

l∈Z

∑
|i|≤2

∣∣M(2slPl+iv Ql+iu)
∣∣2) 1

2
∥∥∥
r
≲

∥∥∥(∑
k∈Z

∣∣2skPkv Qku
∣∣2) 1

2
∥∥∥
r

≲
∥∥∥(∑

k∈Z
|2skPkv|2M(u)2

) 1
2
∥∥∥
r
=

∥∥∥M(u)
(∑

k∈Z
|2skPkv|2

) 1
2
∥∥∥
r

≤ ∥M(u)∥p1
∥∥∥(∑

k∈Z
|2skPkv|2

) 1
2
∥∥∥
q1

≲ ∥u∥p1∥|D|sv∥q1 .

The second summand is estimated in the same way. For the last term, observe
that Pl(PjuPkv) = 0 if |j − k| ≤ 2 and l ≥ 4 + j ∨ k with j ∨ k = max{j, k}
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since F(PjuPkv) ⊆ B(0, 2j∨k+2) in this case, cf. (3.12). Substituting j = k− i,
k = l +m and l = n−m, we deduce as above∥∥∥[∑

l∈Z
22sl

∣∣∣ ∑
|j−k|≤2

Pl(PjuPkv)
∣∣∣2] 1

2
∥∥∥
r
≤

∥∥∥[∑
l∈Z

22sl
( ∑

|j−k|≤2
j∨k≥l−3

∣∣Pl(PjuPkv)
∣∣)2] 1

2
∥∥∥
r

≤
∥∥∥[∑

l∈Z

(∑
|i|≤2

∑
m≥−5

2sl
∣∣Pl(Pl+m−iuPl+mv)

∣∣)2] 1
2
∥∥∥
r

≲
∥∥∥∑

m≥−5

∑
|i|≤2

[∑
l∈Z

∣∣Pl(Pl+m−iu 2
slPl+mv)

∣∣2] 1
2
∥∥∥
r

≲
∥∥∥∑

m≥−5

∑
|i|≤2

2−sm
(∑

n∈Z

(
M(Pn−iu 2

snPnv)
)2) 1

2
∥∥∥
r

≲
∥∥∥∑

m≥−5

∑
|i|≤2

2−sm
(∑

n∈Z
|Pn−iu|2 22sn|Pnv|2

) 1
2
∥∥∥
r

≲
∥∥∥∑

m≥−5

∑
|i|≤2

2−sm
(∑

n∈Z
M(u)2 22sn|Pnv|2

) 1
2
∥∥∥
r

≲
∥∥∥M(u)

(∑
n∈Z

22sn|Pnv|2
) 1

2
∥∥∥
r
≲ ∥u∥p1∥|D|sv∥q1 ,

also using the generalized Minkowski inequality Proposition 1.2.22 in [26].

4) So far we have shown (3.16) for uN = RNu and vN = RNv for N ∈ N with
RN := P≤NP≥−N and constants independent of N . Proposition 3.7 shows the
limits uN → u in Lp0 ∩ Lp1 , |D|suN → |D|su in Lp2 , vN → v in Lq0 ∩ Lq2 , and
|D|svN → |D|sv in Lq1 . So the terms on the right-hand side of (3.16) tend to
those without N as N → ∞. For the left-hand side we note that ψl ∗ (uNvN )
converges to ψl ∗ (uv) in Lr0 as N → ∞ since ψl∈ L1, cf. Remark 3.4. Passing
to a subsequence, all summands Pl(uNvN ) tend to Pl(uv) pointwise a.e., and
analogously for their finite square sums. Fatou’s lemma and (3.16) then imply

∥|D|s(uv)∥r ≂ sup
L∈N

∥∥∥[∑
|l|≤L

22sl
∣∣Pl(uv)

∣∣2] 1
2
∥∥∥
r

≤ sup
L∈N

lim inf
N→∞

∥∥∥[∑
|l|≤L

22sl
∣∣Pl(uNvN )

∣∣2] 1
2
∥∥∥
r

≤ lim inf
N→∞

∥∥∥[∑
l∈Z

22sl
∣∣Pl(uNvN )

∣∣2] 1
2
∥∥∥
r

≲ ∥u∥p1∥|D|sv∥q1 + ∥|D|su∥p2∥v∥q2 . □

The proof of the commutator estimate is taken from the more general Theo-
rem 1.4 in [42], where also a modified result is shown for s > 1. This type of
inequalities goes back to Kato and Ponce. The argument in [42] relies on the
following observation. Let 0 ≤ ak ≤ min{2αkA, 2−βkB} for all k ∈ Z and some
α, β,A,B > 0. For p ∈ [1,∞] and a = (ak), we then obtain

∥a∥p ≲α,β A
β

α+β B
α

α+β . (3.18)
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Indeed, we have 2αkA ≤ 2−βkB if and only if k ≤ ln(B/A)((α + β) ln 2)−1.
Splitting

∑
k a

p
k at this value, we get the bound cAp(B/A)

pα
α+β + cBp(B/A)

−pβ
α+β

if p <∞, which is the desired one. The case p = ∞ is easier.

Proposition 3.9. Let s ∈ (0, 1), r ∈ (1,∞), p, q ∈ [r,∞] with 1
r = 1

p + 1
q .

Assume that a ∈W 1,p and v ∈ Lq. We then obtain

∥⟨D⟩s(av)− a⟨D⟩sv∥r ≲ ∥⟨D⟩sa∥p∥v∥q + ∥∇a∥p∥⟨D⟩s−1v∥q .

Proof. Again we restrict ourselves to p, q <∞, see Theorem 1.4 in [42] for
the other case. In our setting we can derive the inhomogenous version of (3.17)
from Proposition 3.7 since Hölder, Lemma 3.3, and Remark 3.4 yield∑
k∈N

∑
j≥k−3

∥PkvPja∥r ≲
∑
k∈N

∑
j≥k−3

∥v∥q2−j∥∇Pja∥p ≲ ∥a∥1,p∥v∥q
∑
k∈N

∑
j≥k−3

2−j

≲ ∥a∥1,p∥v∥q
∑
k∈N

2−k ≲ ∥a∥1,p∥v∥q .

We thus have (3.17) for av and a⟨D⟩sv, apply ⟨D⟩s to the first equation, and
subtract the second one, resulting in

[⟨D⟩s, a]v =
∑
k∈N

[⟨D⟩s, Qka]Pkv +
∑
k∈N

[⟨D⟩s, Pka]Qkv +
∑
k∈N

[⟨D⟩s, Pka]P̂kv

+ [⟨D⟩s, P≤1a]P≤1v − [⟨D⟩s, P1a]P1v =: S1 + S2 + S3 + S4 . (3.19)

Here we have redefined Qk =
∑k−3

j=1 Pj and analogously P̂k. As in (3.12) the
Fourier support of P≤1aP≤1v is contained in B(0, 8). Hence Lemma 3.3 and
Hölder show that ∥S4∥r ≲ ∥a∥p∥v∥q. In a similar way we compute

∥[⟨D⟩s,Pka]P̂kv∥r ≤ ∥⟨D⟩s(PkaP̂kv)∥r + ∥Pka ⟨D⟩sP̂kv∥r
≲ 2s(k+4)∥PkaP̂kv∥r + ∥Pka∥p 2s(k+2)∥P̂kv∥q ≲ 2sk∥Pka∥p∥P̂kv∥q.

Using Bernstein again and Remark 3.4, we redistribute the weights to obtain

∥[⟨D⟩s, Pka]P̂kv∥r ≲ min
{
2−(1−s)k∥∇a∥p∥v∥q, 2(1−s)k∥⟨D⟩sa∥p∥⟨D⟩s−1v∥q

}
.

Estimate (3.18) with p = 1 and α = β = 1− s then yields

∥S3∥r ≤
∑
k∈N

∥[⟨D⟩s, Pka]P̂kv∥r ≲
(
∥∇a∥p∥v∥q

) 1
2
(
∥⟨D⟩sa∥p∥⟨D⟩s−1v∥q

) 1
2

≲ ∥∇a∥p∥⟨D⟩s−1v∥q + ∥⟨D⟩sa∥p∥v∥q .

For S1, Proposition 3.9 from [42], Lemma 3.3 and Mikhlin show

ak := ∥[⟨D⟩s, Qka]Pkv∥r ≲ 2(s−1)k∥∇Qka∥p∥Pkv∥q
≲ ∥⟨D⟩1−sQk⟨D⟩sa∥p∥⟨D⟩s−1Pkv∥q ≲ 2(1−s)k∥⟨D⟩sa∥p∥⟨D⟩s−1v∥q .

(Note that we can estimate ⟨D⟩1−sQk by means of Lemma 3.3 since 1− s > 0.)
On the other hand, we obtain

2(s−1)k∥∇Qka∥p ≲ 2
1
2
(s−1)k∥∇a∥

1
2
p ∥⟨D⟩sa∥

1
2
p
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similarly, and hence

ak ≲ min
{
2(1−s)k∥⟨D⟩sa∥p∥⟨D⟩s−1v∥q , 2−

1
2
(1−s)k∥∇a∥

1
2
p ∥⟨D⟩sa∥

1
2
p ∥v∥q

}
.

From (3.18) with α = 1− s and β = (1− s)/2 it then follows

∥S1∥r ≲
(
∥⟨D⟩sa∥p∥⟨D⟩s−1v∥q

) 1
3
(
∥∇a∥

1
2
p ∥⟨D⟩sa∥

1
2
p ∥v∥q

) 2
3 .

=
(
∥⟨D⟩sa∥p∥v∥q

) 2
3
(
∥∇a∥p∥⟨D⟩s−1v∥q

) 1
3

≲ ∥∇a∥p∥⟨D⟩s−1v∥q + ∥⟨D⟩sa∥p∥v∥q .
The remaining term is expressed by

S2 =
∑
k∈N

⟨D⟩s(PkaQkv)−
∑
k∈N

Pka ⟨D⟩sQkv =: S21 + S22 .

Proposition 3.8 and Lemma 3.3 imply ∥S21∥r ≲ 2sk∥Pka∥p∥Qkv∥q. As above
Bernstein yields

∥Pka∥p ≲ min
{
2−sk∥⟨D⟩sa∥p , 2−k∥∇a∥p

}
∥Qkv∥q ≲ min

{
2(1−s)k∥⟨D⟩s−1v∥q , 2

1
2
(1−s)k∥v∥

1
2
q ∥⟨D⟩s−1v∥

1
2
q

}
,

leading to

∥S21∥r ≲ min
{
2(1−s)k∥⟨D⟩sa∥p∥⟨D⟩s−1v∥q , 2−

1
2
(1−s)k∥∇a∥p∥⟨D⟩s−1v∥

1
2
p ∥v∥

1
2
q

}
.

Using (3.18), we conclude

∥S21∥r ≲
(
∥⟨D⟩sa∥p∥⟨D⟩s−1v∥q

) 1
3
(
∥∇a∥p∥⟨D⟩s−1v∥

1
2
p ∥v∥

1
2
q

) 2
3

≲ ∥∇a∥p∥⟨D⟩s−1v∥q + ∥⟨D⟩sa∥p∥v∥q .
Applying Hölder, we obtain similarly

∥Pka ⟨D⟩sQkv∥r ≲ min
{
2(1−s)k∥⟨D⟩sa∥p∥⟨D⟩s−1v∥q , 2−(1−s)k∥∇a∥p∥v∥q

}
.

Hence, S22 can be treated as S3. □

Remark 3.10. To deal with the case p = ∞ in Proposition 3.9, let v ∈ L∞

and s ∈ (0, 1). Then it is known that v ∈ Cs
b (Rm) if and only if ∥Pjv∥∞ ≤

C2−sj for j ∈ N, and then C = c∥v∥Cs
b
. Moreover, this estimate holds for

s = 1 if v ∈ W 1,∞(Rm). See §A.1 in [65]. The geometric series then implies
∥P≥kv∥∞ ≤ c2−sk∥v∥Cs

b
. By Lemma 3.3 we have ∥⟨D⟩sPjv∥∞ ≤ c2sj∥Pjv∥∞.

Let a ∈ Cs
b (Rm). Proposition 3.7 yields ⟨D⟩sa = ⟨D⟩sP≤0a +

∑
j≥1⟨D⟩sPja

in S⋆. Estimating as above, we deduce ∥⟨D⟩sa∥∞ ≲δ ∥a∥Cs+δ
b

for δ > 0. ♢

From Theorems A.8 and A.12 in [34] (which contains more general and precise
results) we deduce the following homogeneous version which is more flexibel than
Proposition 3.9, though σ = 1 is not admitted. The proofs in [34] use a similar
approach as in Proposition 3.8. Since they are quite lenghty, we omit them.

Proposition 3.11. Let s∈(0, 1), σ∈ [0, s], r, p2, q2∈(1,∞), and p1, q1∈ [r,∞]
with 1

r = 1
pi
+ 1

qi
for i ∈ {1, 2}. If σ = s, we can admit q2 = ∞. We then obtain

∥|D|s(av)− a|D|sv∥r ≲ ∥|D|sa∥p1∥v∥q1 + ∥|D|σa∥p2∥|D|s−σv∥q2 .
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3.3. Strichartz estimates for the wave equation

Before we study Strichartz estimates for the Maxwell system, it is important
to recall corresponding results for the standard wave equation on Rm and dis-
cuss basic methods in this simpler case. Our treatment largely follows parts of
Chapter 5 of [46]. We investigate the wave equation

∂2t u = ∆u+ f, u(0) = u0, ∂tu(0) = u1, t ∈ J, x ∈ Rm, (3.20)

for m ≥ 2, an interval J of positive length containing 0, and given initial maps
u0, u1 : Rm → C and forcing f : J × Rm → C. Here u may represent the dis-
placement of a vibrating object, the pressure, or a component of electromagnetic
fields in vacuum.

One derives a solution formula to this equation taking the Fourier transform
in x ∈ Rm (at first formally), which yields the ordinary differential equation

∂2t û(t, ξ) + |ξ|2û(t, ξ) = f̂(t, ξ), û(0, ξ) = û0(ξ), ∂tû(0, ξ) = û1(ξ),

for fixed ξ ∈ Rm. It is solved by

û(t, ξ) = cos(t|ξ|)û0(ξ) + sin(t|ξ|) 1
|ξ| û1(ξ) +

∫ t

0
sin((t− τ)|ξ|) 1

|ξ| f̂(τ, ξ) dτ.

If we apply the inverse Fourier transform, we are led to the Fourier multipliers

C(t) = F−1 cos(t|ξ|)F , S(t) = F−1 sin(t|ξ|)F , Sc(t) = F−1 sinc(t|ξ|)F
for t ∈ R. They map L2 into S∗ for all s ∈ R since the symbols are bounded,
they leave invariant S0 and thus S∗

0 , and they are uniformly bounded on Hs and
Ḣs by Plancherel. We obtain the solution formula

u(t) = C(t)u0 + tSc(t)u1 +

∫ t

0
(t− τ)Sc(t− τ)f(τ) dτ, t ∈ J, (3.21)

which implies the expressions

|D|u(t) = C(t)|D|u0 + S(t)u1 +

∫ t

0
S(t− τ)f(τ) dτ, t ∈ J,

∂tu(t) = −S(t)|D|u0 + C(t)u1 +

∫ t

0
C(t− τ)f(τ) dτ, t ∈ J.

(3.22)

Proposition 5.6 of [46] shows that for u0 ∈ Ḣ1, u1 ∈ L2, and f ∈ L1
JL

2

formula (3.21) provides the unique solution u of (3.20) in C(J, Ḣ1) with ∂tu ∈
C(J, L2) and ∂2t u ∈ C(J, L2 + Ḣ−1). In [46] the case m = 2 is excluded for the
homogeneous spaces because of the definition of Ḣs used there. However, the
arguments there also work for our case. In H1(R2) one only factors out constant
functions. By means of the isomorphism |D|1−s we obtain a unique Ḣs-solution
in u ∈ C(J, Ḣs) with ∂tu ∈ C(J, Ḣs−1) and ∂2t u ∈ C(J, Ḣs−1 + Ḣs−2) for data
u0 ∈ Ḣs, u1 ∈ Ḣs−1, and f ∈ L1

JḢs−1. Here one can omit the dots.
We note that u is real for real data u0, u1, and f in the above spaces, since

then Imu solves (3.20) with 0 data and thus Imu = 0 by uniqueness. Moreover,
(3.22) imply the ‘energy’ estimate

∥(∂t, |D|)u(t)∥L2 ≤ c
(
∥(|D|u0, u1)∥L2 + ∥f∥L1

tL
2

)
, (3.23)
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for t ∈ J , say with t > 0. We stress that the map (u0, u1) 7→ u(t) is just
Ḣ1 × L2-bounded, whereas f 7→ u gains one derivative and uniformity in time.
Since |ξk| ≤ |ξ|, the left-hand side dominates ∥∇u(t)∥2 by Plancherel. In (3.23)
one can also multiply all functions by |D|s or ⟨D⟩s with s ∈ R. For the L2-norm,
(3.21) only yields the non-uniform estimate

∥u(t)∥L2 ≤ ∥u0∥L2 + |t|∥u1∥L2 + |t|∥f∥L1
tL

2 .

For nonlinear problems one often needs to control the Lp-norms of solutions.
Here this can be obtained to some extent using dispersive behavior.

Remark 3.12. Let ξ ∈ Rm \ {0} and ϕ ∈ C2(R,R). Then the ‘plane wave’
wξ(t, x) = ϕ(t)e−iξ·x solves the differential equation (3.20) with f = 0 if and
only if ϕ′′ + |ξ|2ϕ = 0. So one obtains e.g. the solution

wξ(t, x) = a exp(i|ξ|(t− x · ξ/|ξ|)), a > 0.

For t ̸= 0, we have wξ = a if and only if x = tξ/|ξ|, and hence the plane waves
travel in different directions ξ/|ξ|. As a result, superpositions of the functions
wξ (‘wave packets’) disperse. This behavior is not present in space dimension
m = 1 since, e.g., the solution u(t, x) = 1

2(u0(x+ t) + u0(x− t)) of (3.20) with
u1 = 0 and f = 0 just exhibits transport. ♢

There are several ways to quantify the effect of this phenomenon, where we
focus on ‘Strichartz inequalities.’ To state them, we need time and space expo-
nents p, q ∈ [2,∞] and a regularity loss parameter γ ∈ R. Such numbers form
an admissible triple (for m ≥ 2 and the wave equation) if
2

p
+
m− 1

q
≤ m− 1

2
,

1

p
+
m

q
=
m

2
−γ, for m=3: (p, q, γ) ̸= (2,∞,1). (3.24)

We call a triple strict if the first relation in (3.24) is an equality. In this case
we have γ = m+1

p(m−1) . Otherwise the regularity loss m+1
p(m−1) ≤ γ ≤ m

2 is larger.
So except for p = ∞ = q and thus γ = m

2 the space Ḣγ is contained in S⋆, and
it always contains S as a dense subspace. By duality, Ḣ−γ ↪→ S⋆ in all cases
and S is dense in Ḣ−γ for γ < m

2 . The loss γ is positive except for the energy
case (∞, 2, 0), which is the ‘trivial endpoint’. This is the only strict case with
p = ∞, whereas the only strict triple with q = ∞ is (4,∞, 34) if m = 2, as p ≥ 2.
For m > 3, there exists the (strict) ‘critical endpoint’ p = 2, q = 2m−1

m−3 and
γ = m+1

2(m−1) < 1. We now state the Strichartz estimates for the wave equation.

Theorem 3.13. Let (p, q, γ) and (r, s, θ) be admissible, u0 ∈ Ḣ1, u1 ∈ L2,
and f ∈ Lr′

J Ḣθ,s′ . Then the solution u of (3.20) satisfies

∥|D|−γ(|D|, ∂t)u∥Lp
JL

q ≤ C
(
∥(|D|u0, u1)∥L2 + ∥|D|θf∥

Lr′
J Ls′

)
(3.25)

for a constant C ≥ 1. If q = 2, then (|D|, ∂t)u belongs to CRL
2. For q = ∞ or

s = ∞, the estimate has to be modified as in Remark 3.14 a).

We refer to e.g. Strichartz [60], Ginibre–Velo [22], Lindblad–Sogge [36], Keel–
Tao [33], and also [54] and [61]. Keel and Tao developed a general approach to
Strichartz estimates and settled the non-trivial endpoint cases.
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In (3.25) the parameter γ measures a loss in regularity for the map (u0, u1) 7→
u and a reduced gain of 1 − γ derivatives in the map f 7→ u, compared to the
energy estimate from (3.23); i.e., the case (p, q, γ) = (∞, 2, 0) = (r, s, θ). Thus
the Strichartz estimates trade regularity and boundedness in time to improve
spatial integrability (and to obtain some decay as |t| → ∞). More precisely, for
u0 ∈ Ḣ1, u1 ∈ L2 and f ∈ L1

JL
2, Sobolev’s embedding, (3.23) and admissibility

imply that the solution u of (3.20) belongs to L∞
J Ḣ1−γ− 1

p
,q, whereas (3.25)

yields Lp
JḢ1−γ,q. Later we focus on the energy case (r′, s′, θ) = (1, 2, 0) on the

right-hand side which often suffices for applications, cf. Theorem 5.17 in [46].
We provide most of the proof below in various steps except for the harder

critical endpoint. We first discuss Theorem 3.13 and versions of it.

Remark 3.14. a) In (3.25), one has to replace the spaces L∞(Rm) and
L1(Rm) for q = ∞ and s = ∞, respectively, by the homogeneous Besov spaces

Ḃ0
∞,2 =

{
v ∈ S⋆

0

∣∣ (Pjv) ∈ ℓ2(Z, L∞)
}
, Ḃ0

1,2 =
{
v ∈ S⋆

0

∣∣ (Pjv) ∈ ℓ2(Z, L1)
}

with their canonical norms, see Chapter 5 in [68]. (One defines Ḃα
p,q for p, q ∈

[1,∞] and α ∈ R analogously, replacing Pjv by 2αjPjv and using Lp and ℓq.)
However, in the strict case the space exponent ∞ only occurs for the triple
(4,∞, 34) and m = 2. Since the proof of Theorem 3.13 is reduced to strict triples
by means of Sobolev’s embedding, these Besov spaces rarely occur below.

b) It suffices to prove (3.25) for J = R. Indeed, on the left the norm in Lp
JL

q

is dominated by that in Lp
RL

q, and we can use the 0 extension of f from J to R
which has the same norm and produces the same solution on J .

c) In (3.25) contains energy norms on the right (if (r′, s′, θ) = (1, 2, 0)). Since
(3.20) has constant coefficients, one can easily ransform (3.25) to versions on
every regularity level. Let κ ∈ R, u0 ∈ Ḣ1+κ, u1 ∈ Ḣκ, and f ∈ Lr′

J Ḣθ+κ,s′ . Set
v0 = |D|κu0, v1 = |D|κu1, and g = |D|κf . By (3.2), for these data (3.20) has
the solution v = |D|κu. Applying (3.25) to it and using (3.2), we derive

∥|D|κ−γ(|D|, ∂t)u∥Lp
JL

q ≤ C
(
∥|D|κ(|D|u0, u1)∥L2 + ∥|D|θ+κf∥

Lr′
J Ls′

)
(3.26)

with the same modifications as a). By |D|−κ, one sees that (3.26) implies (3.25).
d) The multiplier ξk|ξ|−1 satisfies the Mikhlin condition, so that ∂k|D|−1 is

Lq–bounded and in (3.25) and (3.26) one can replace (|D|, ∂t) by (∇, ∂t) =: ∇t,x.
This also works for q = ∞ because of part a) and Theorem 5.2.2 in [68]. ♢

Most of admissibility asssumptions in Theorem 3.13 are necessary.

Remark 3.15. a) The equality in (3.24) is needed for the Strichartz estimate
with f = 0, which can be seen by a scaling argument. Let u solve (3.20) with
f = 0 and (u0, u1) ̸= 0. Then also uλ(t, x) = u(λt, λx) is a solution with initial
values σλu0 and λσλu1, for λ > 0. Let (3.25) hold for (p, q, γ) ∈ [1,∞]2 × R.
By the transformation rule and (3.6), we conclude

λ
1−γ− 1

p
−m

q ∥|D|−γ(|D|, ∂t)u∥Lp
RL

q = λ1−γ∥(|D|−γ(|D|, ∂t)u)(λ·, λ·)∥Lp
RL

q

= ∥|D|−γ(|D|, ∂t)uλ∥Lp
RL

q ≤ C∥(|D|σλu0, λσλu1)∥L2
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= Cλ∥σλ(|D|u0, u1)∥L2 = Cλ1−
m
2 ∥(|D|u0, u1)∥L2 .

Letting λ → 0 and λ → ∞, we infer 1
p + m

q = m
2 − γ. If u0 = 0 = u1, the

Strichartz estimate holds for a wider range of exponents, see e.g. [21].
b) The inequality in (3.24) is necesssary for Theorem 3.13 because of Knapp’s

example: Let ε ∈ (0, 1], x′ = (x2, . . . , xm), Rε = [1, 2] × [−ε, ε]m−1, and φ =
F−1

1Rε (which belongs to Hk for all k ∈ N). The H2-solution of (3.20) with
u0 = φ, u1 = −i|D|φ and f = 0 is given by

u(t, x) = (2π)−
m
2

∫
Rε

eix·ξe−it|ξ| dξ = F−1(e−it|ξ|
1Rε),

see (3.27). By means of Plancherel, we first estimate (with |ξ| = |ξ|2)

∥|D|φ∥22 =
∫
Rε

|ξ|2 dξ ≤ (m+ 3)λ(Rε) = (m+ 3)2m−1εm−1.

To obtain a lower bound for u, we fix κ = 1
4 arccos

1
2 > 0 and define

Sε =
{
(t, x) ∈ R1+m

∣∣ (m− 1)|t| ≤ κε−2, |x1 − t| ≤ κ, |x′|1 ≤ κε−1
}
.

Let (t, x) ∈ Sε and ξ ∈ Rε. We aim at the inequality
1
2 ≤ Re ei(x·ξ−|ξ|t) = cos

[
(x1 − t)ξ1 + x′ · ξ′ + tξ1(1− |ξ|/ξ1)

]
.

This lower bound is true since the definitions of Sε and Rε imply

|[. . . ]| ≤ 2κ+
κ

ε
ε+

κ

(m− 1)ε2
2
(√

1 + |ξ′|2ξ−2
1 − 1

)
≤ 4κ

by a standard estimate for the square root. Let E = Lp(R, Lq). We infer

∥|D|1−γu∥E = ∥F−1(|ξ|1−γe−i|ξ|t
1Rε)∥E = c

∥∥∥∣∣∣ ∫
Rε

|ξ|1−γei(x·ξ−|ξ|t) dξ
∣∣∣∥∥∥

Lp
tL

q
x

≥ c
∥∥∥∫

Rε

Re ei(x·ξ−|ξ|t) dξ
∥∥∥
Lp
tL

q
x(Sε)

≥ c
2λ(Rε)∥1Sε∥Lp

RL
q = cεm−1ε

−m−1
q ε

− 2
p

for some constants c > 0. On the other hand, estimate (3.25) yields
∥|D|1−γu∥E ≤ cε

m−1
2 for all ε ∈ (0, 1] so that m−1

2 − 2
p − m−1

q ≥ 0.

c) The last condition in (3.24) is needed due to an example by Stein, see
Exercise 2.44 in [61]. The inequality in (3.24) already implies that q ≥ 2 and
p ≥ 2 if m ≤ 3. For m > 3 the condition p ≥ 2 can be justified by a more
complicated argument, see [33]. ♢

The solution operators C(t) and S(t) in (3.22) are inconvenient since they do
not form groups. But one can easily express them by the half-wave group G(t) =
eit|D| = F−1eit|ξ|F for t ∈ R. As C(t) and S(t), the operators G(t) map L2

into S∗ for all t ∈ R, leave invariant S0 and S∗
0 , and are uniformly bounded and

strongly continuous on Hs and Ḣs. (Use Plancherel and dominated convergence
for the last point.) We set (G ∗+ f)(t) =

∫ t
0 G(t− τ)f(τ) dτ . Observing that

C(t) = 1
2(G(t)+G(−t)), S(t) =

1
2i(G(t)−G(−t)), G(t) = C(t)+iS(t), (3.27)

we next reduce the wave problem to a first-order one.
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Let f ∈ Lr′(R, Ḣθ,s′) for an admissible triple. Then the above convolution
and the Duhamel terms in (3.22) are defined in Ḣ− 1

r (in L2 if r = ∞), where
G(·) is strongly continuous. Indeed, admissibility yields θ − m

s′ = −1
r − m

2 and
s′ ≤ 2. Sobolev (3.8) then implies Ḣθ,s′ ↪→ Ḣ− 1

r if s < ∞, where Ḣθ,s′ ↪→ L2 if
r = ∞. If s = ∞, one has the same embeddings for Ḃθ

1,2 by §5.2.5 in [68] and
the equality Ḃα

2,2 = Ḣα for α ∈ R.

Lemma 3.16. In the setting of Theorem 3.13, estimate (3.25) is equivalent to

∥|D|−γG(·)φ∥Lp
RL

q ≤ c∥φ∥L2 and ∥|D|−γG∗+f∥Lp
RL

q ≤ c∥|D|θf∥
Lr′
R Ls′ (3.28)

for φ ∈ L2 and f ∈ Lr′(R, Ḣθ,s′). These inequalities are equivalent to

∥|D|κ−γG(·)φ∥Lp
RL

q ≤ c∥|D|κφ∥L2 , ∥|D|κ−γG∗+f∥Lp
RL

q ≤ c∥f∥
Lr′
R Ḣθ,s′ (3.29)

for κ ∈ R, φ ∈ Ḣκ, and f ∈ Lr′(R, Ḣθ+κ,s′). (For q = ∞ or s = ∞ we have
modifications as in Remark 3.14 a).) Moreover, for q = 2 the second part of
(3.28) implies the addendum in Theorem 3.13.

Proof. The first part follows from (3.27) and (3.22), as the estimates for
G(t) and G(−t) are equivalent by the transformation t 7→ −t. The second
statement is shown as in Remark 3.14 c). For the addendum, we note that
G ∗ f is continuous in L2 if f ∈ Cc(R,S0) ⊆ Cc(R, L2). Since the former space
is dense in Lr′

R Ḣθ,s′ , cf. Lemma 4.8 in [46], by approximation we obtain that
G ∗ f ∈ CRL

2 if f ∈ Lr′
R Ḣθ,s′ . For s = ∞ one argues in the same way, using

Theorem 5.1.5 in [68]. Equations (3.27) and (3.22) then yield the last claim. □

The first inequality in (3.28) or in (3.29) is called ‘homogeneous,’ the second
one ‘inhomogeneous’. We note that parts a) and b) of Remark 3.15 can easily
be transferred to the half-wave case. We next reduce (3.25) to the strict case.

Lemma 3.17. Let (3.28) hold for all strict admissible triples (p̃, q̃, γ̃) and
(r̃, s̃, θ̃). Then it is true for every admissible triples (p, q, γ) and (r, s, θ).

Proof. Let (p, q, γ) be non-strict admissible. The numbers

1

q̃
:=

1

2
− 2

p(m− 1)
>

1

q
, γ̃ :=

m

2
− 1

p
− m

q̃
< γ,

yield a strict admissible triple (p, q̃, γ̃). (Note p > 2 if m = 3.) By admissibility
we have γ − γ̃ = m

q̃ − m
q > 0. If (p, q, γ) is strict, we set (p, q̃, γ̃) = (p, q, γ). We

define (r, s̃, θ̃) analogously, with θ̃ − θ = m
s̃′ −

m
s′ < 0 if (r, s, θ) is non-strict. It

is enough to show (3.29) for κ = γ.
First, let q, s < ∞. The Sobolev embedding (3.8) and estimate (3.29) for

(p, q̃, γ̃) and (r, s̃, θ̃) then imply

∥G ∗+ f∥Lp
RL

q ≤ c∥|D|γ−γ̃G ∗+ f∥Lp
RL

q̃ ≤ cC∥|D|γ+θ̃f∥
Lr′
R Ls̃′

= cC∥|D|θ̃−θ |D|γ+θf∥
Lr′
R Ls̃′ ≤ cC∥|D|γ+θf∥

Lr′
R Ls′ .



3.3. Strichartz estimates for the wave equation 51

If infinite space exponents occur, we look at the frequency-localized piece
uj = PjG ∗+ f = G ∗+ (Pjf) for j ∈ Z. Bernstein’s Lemma 3.3 and (3.29) yield

∥uj∥Lp
RL

q ≤ c2
j(m

q̃
−m

q
)∥uj∥Lp

RL
q̃ ≤ c∥|D|γ−γ̃uj∥Lp

RL
q̃ ≤ cC∥|D|γ+θ̃Pjf∥Lr′

R Ls̃′

≤ cC2j(
m
s̃′ −

m
s′ )∥|D|γ+θPjf∥Lr′

R Ls̃′ ≤ cC∥Pj |D|γ+θf∥
Lr′
R Ls′ .

We square this estimate and sum over j ∈ Z. For ρ ∈ (1,∞), the generalized
Minkowski inequality and Littlewood–Paley yield Ḃ0

ρ,2 ↪→ Lρ if ρ ≥ 2 and
Lρ ↪→ Ḃ0

ρ,2 if ρ ≤ 2, since e.g.

∥v∥Lρ =
∥∥∥(∑

j∈Z
|Pjv|2

) 1
2
∥∥∥
ρ
≤

(∑
j∈Z

∥Pjv∥2ρ
) 1

2

if ρ ≥ 2. Similarly, using q, p ≥ 2 and 2 ≥ r′, s′, we deduce

∥G ∗+f∥Lp
RL

q ≲ ∥G ∗+f∥Lp
RḂ

0
q,2

≤
[∑
j∈Z

∥uj∥2Lp
RL

q

] 1
2
≲
[∑
j∈Z

∥Pj |D|γ+θf∥2
Lr′
R Ls′

] 1
2

≲ ∥|D|γ+θf∥
Lr′
R Ḃ0

s′,2
≲ ∥|D|γ+θf∥

Lr′
R Ls′ ,

where the first or final step is omitted if q = ∞ or s′ = 1, respectively. The
homogeneous estimate is treated in the same way. □

In the next result we show that the two parts of (3.28) are equivalent by means
of a ‘TT ∗-argument’. One could formulate the equivalence in greater generality,
see [33], but we stick to our setting to simplify a bit. We first introduce some
notation for admissible triples (p, q, γ) and (r, s, θ).

We write Y = Ḣ−γ,q and Y∗ = Ḣγ,q′ if q ∈ [2,∞) as well as Y = Ḃ−γ
∞,2 and

Y∗ = Ḃγ
1,2 if q = ∞. These spaces satisfy Y ⋆ = Y∗ if q <∞ and Y ⋆

∗ = Y in both
cases by the previous section and §5.2.5 in [68]. Hence, Y∗ is a closed norming
subspace of Y ⋆; i.e, ∥v∥Y = sup∥u∥Y∗≤1 |⟨v, u⟩Y |. We further set E = Lp

RY and

E∗ = Lp′

RY∗. For q <∞ we have E⋆
∗ = E and E⋆ = E∗ if also p <∞ because of

Corollary 1.3.22 in [26]. Otherwise, E∗ is a closed norming subspace of E⋆ by
Proposition 1.3.1 in [26]. For the triple (r, s, θ) the same results hold with the
notation Z and F instead of Y and E.

To simplify notation, in the following we equip the duality pairing Ḣα×Ḣ−α

for α ∈ R with the extension of the complex L2-scalar product, so that the
adjoint of G(t) is G(−t). We further set

Gφ = G(·)φ, Sf =

∫
R
G(−t)f(t) dt, Cf = G ∗ f

for φ ∈ Ḣα or f ∈ CcḢα. A priori the ranges of these operators are CRḢα, Ḣα

and CRḢα, respectively, by the strong continuity of G(·) on Ḣα.

Lemma 3.18. In Lemma 3.16 the two statements in (3.28) are equivalent for
admissible triples with r′ < p.

Proof. We use the notation and properties discussed above.
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1) Let φ ∈ H
1
p ↪→ Ḣ

1
p ↪→ Y and g ∈ Cc(R, Y∗). Since Y∗ ↪→ Ḣ− 1

p as noted
before Lemma 3.16, by means of the above observations we compute

⟨φ,Sg⟩ 1
p
=

∫
R
⟨φ,G(−t)g(t)⟩ 1

p
dt =

∫
R
⟨G(t)φ, g(t)⟩ 1

p
dt = ⟨Gφ, g⟩E (3.30)

in the duality of Ḣ
1
p and Ḣ− 1

p . By density (cf. Lemma 4.8 in [46]), the bounded-
ness of G : L2 → E and S : E∗ → L2 are equivalent, and S⋆ = G if q <∞. (Here
we can replace E by F .) E.g., let S be bounded. Then |⟨Gφ, g⟩E | ≤ c∥φ∥2∥g∥E∗ .
Taking g with support in a compact J , we obtain ∥Gφ∥Lp(J,Y ) ≤ c∥φ∥2. The
boundedness of G follows by Fatou and density.

2) Next, let g ∈ E0
∗ = {g ∈ Cc(R, Y∗) | g(R) ⊆ S0} and f ∈ F 0

∗ . Also E0
∗ is

dense in E∗. Similarly as in step 1), we derive

⟨Cf, g⟩E =

∫
R

(∫
R
G(t)G(−τ)f(τ) dτ

∣∣g(t))
l2
dt (3.31)

=

∫
R

∫
R

(
G(−τ)f(τ)

∣∣G(−t)g(t))
L2 dτ dt = (Sf |Sg)L2 .

First, let S : E∗ → L2 and S : F∗ → L2 have norm less than S. Using density
and Hahn–Banach or the above comments, we conclude

∥Cf∥E = sup
g∈E0

∗ ,∥g∥E∗≤1

|⟨Cf, g⟩E | ≤ S2∥f∥F∗ .

By density this is true for all f ∈ F∗. Conversely, let C : E∗ → E be bounded.
With f = g ∈ E0

∗ , identity (3.31) yields the continuity of S : E∗ → L2 via

∥Sf∥2L2 = ⟨Cf, f⟩E ≤ ∥C∥∥f∥2E∗ .

We have now shown that the validity of the first part of (3.28) is equivalent to
the boundedness of C : F∗ → E, both for all admissible triple. By the following
proposition, these facts imply the boundedness of the ‘full’ half-sided convolution
C+ : F∗ → E. If t > 0, it is equal to G ∗+ f̃(t) for the 0 extension f̃ of f ↾R+ .
The case t < 0 is then treated via the transform t 7→ −t.

Conversely, let the second part of (3.28) be true. Take f ∈ F∗ with compact
support, say in [a, b]. In this case we have (C+f)(t + a) = (G ∗+ f(· + a))(t),
and so C+ : F∗ → E is continuous by density. As above it also follows that
⟨C+f, g⟩E = ⟨C−g, f⟩F for g ∈ E0

∗ , f ∈ F 0
∗ , and (C−g)(t) =

∫∞
t G(t− τ)g(τ) dτ .

Hence, C : F∗ → E is bounded. □

For the Christ–Kiselev lemma stated below we refer to Lemma IV.2.1 in [54].
For r = ∞ one can by-pass it, see Lemma 5.13 in [46].

Proposition 3.19. Let J be an interval, Y,Z ⊆ X be Banach spaces, 1 ≤
p < q ≤ ∞, and K : J × J → B(X) be strongly continuous and bounded. Set

(Kf)(t) =
∫
J
K(t, s)f(s) ds and (K+f)(t) =

∫ t

inf J
K(t, s)f(s) ds

for t ∈ J and f ∈ Cc(J, Y ). If K has a bounded extension from Lp(J, Y ) to
Lq(J, Z), then the same is true for K+.
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It thus remains to show the homogeneous estimate in (3.28). A core step in
this proof is the following reduction to a frequency-localized piece, which relies
on the Littlewood–Paley decomposition.

Lemma 3.20. Let (p, q, γ) be admissible. Assume that

∥P0G(·)φ∥Lp
RL

q ≤ C∥P̃0φ∥L2 (3.32)

for all φ ∈ L2 and some C > 0. Then the first part of (3.29) with κ = γ is true.

Proof. By a scaling argument, from (3.32) we deduce

∥PjG(·)φ∥Lp
RL

q ≤ C2γj ∥P̃jφ∥L2 (3.33)

for all j ∈ Z and φ ∈ Ḣγ , see Lemma 5.15 in [46]. If q = ∞, we are done since

∥G(·)φ∥Lp
RḂ

0
∞,2

=
∥∥∥(∑

j∈Z
∥PjG(·)φ∥2L∞

) 1
2
∥∥∥
Lp
R

≤
(∑

j∈Z
∥PjG(·)φ∥2Lp

RL
∞

) 1
2

≤ C
(∑

j∈Z
22γj ∥P̃jφ∥2L2

) 1
2
≲ ∥|D|γφ∥L2 ,

using Minkowski’s inequality if p <∞ and Theorem 3.5 at the end.
For q < ∞ we employ the Littlewood–Paley decomposition. We let p < ∞,

as the case p = ∞ just requires a minor modification. Take φ ∈ Hk for some
k ≥ m

2 and J be a compact interval. Then G(t)φ belongs to Hk ↪→ Lq by
Sobolev’s embedding. Theorem 3.5 yields

∥G(·)φ∥2Lp
JL

q ≲
∥∥∥∥∥∥(∑

j∈Z
|PjG(·)φ|2

) 1
2
∥∥∥
Lq

∥∥∥2
Lp
J

=
∥∥∥∥∥∥∥∥(|PjG(·)φ|2)j

∥∥
ℓ1

∥∥∥
L

q
2

∥∥∥
L

p
2
J

.

For fixed t, we interpret the inner terms as the norm in L
q
2 (Rm) of the L

q
2 -valued

sum
∑

j |PjG(t)φ|2. We can take this norm in the sum since q ≥ 2, obtaining

∥G(·)φ∥2Lp
JL

q ≲
∥∥∥∑

j∈Z
∥PjG(·)φ∥2Lq

∥∥∥
L

p
2
J

.

This procedure also works for the t-integral so that

∥G(·)φ∥2Lp
JL

q ≲
∑

j∈Z
∥PjG(·)φ∥2Lp

JL
q

Estimates (3.33) and Theorem 3.5 now yield

∥G(·)φ∥2Lp
JL

q ≤ cC2
∑

j∈Z
22γj∥P̃jφ∥2L2 = cC2

∥∥∥∑
j∈Z

22γj |P̃jφ|2
∥∥∥2
2
≲ ∥φ∥2Ḣγ .

Fatou’s lemma allows us to replace J by R. The claim then follows from the
density of Hk in Ḣγ . □

For Theorem 3.13 it remains to show (3.32) for strict triples by the above
results. We restrict ourselves to the case p ∈ (2,∞). As seen above, in the
strict case we have p > 2 if m ≤ 3, and p = ∞ only occurs in the energy case
(∞, 2, 0) which we have settled in (3.23).

By a stationary phase argument one can show the following core frequency-
localized dispersive estimate. See p.128 in [54], and also Lemma 5.16 in [46] for
the easier case m = 3.

Lemma 3.21. We have ∥F−1(eit|ξ|χ)∥L∞ ≤ c(1 + |t|)−
m−1

2 for all t ̸= 0.
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We also need the Hardy-Littlewood-Sobolev inequality, Theorem 1.2.13 in [23].

Lemma 3.22. Let 1 < r < s <∞ and 0 < λ < n satisfy 1+ 1
s = λ

n + 1
r . Then

there is a constant c > 0 such that(∫
Rn

[∫
Rn

|f(y)|
|x− y|λ

dy
]s

dx
) 1

s ≤ c∥f∥r for all f ∈ Lr(Rn).

This result extends Young’s convolution inequality to a borderline case since
∥|t|−λ∥n/λn/λ = c

∫∞
0

1
r dr = ∞.

Proof of Theorem3.13 in the non-endpoint case. By Remark 3.14,
Lemmas 3.16, 3.17, 3.18 and 3.20, as well as P0G(t) = P0G(t)P̃0, it remains to
show the boundedness of P0G(·) : L2 → E := Lp(R, Lq) for strict non-endpoint
triples. Let φ ∈ L1 ∩ L2 and E′ = Lp′

RL
q′ . Lemma 3.21 and the formula

P0G(t)φ = (2π)−
m
2 F−1(eit|ξ|χ) ∗ φ

yield the basic (frequency-localized) dispersive estimate

∥P0G(t)φ∥L∞ ≤ c|t|−
m−1

2 ∥φ∥L1 .

Interpolating with ∥P0G(t)∥B(L2) ≤ 1, see (3.7), we derive

∥P0G(t)φ∥Lq ≤ c|t|−(m−1)( 1
2
− 1

q
)∥φ∥Lq′ (3.34)

if q ∈ (2,∞). (Recall that the triple (4,∞, 34) can occur if m = 2.) Strict
admissibility and our setting yield 1 < p′ < p <∞, 1+ 1

p = (m−1)(12 −
1
q )+

1
p′ ,

and (m− 1)(12 − 1
q ) ∈ (0, 1). Lemma 3.22 then implies

∥P0G ∗ f∥E ≤ c
∥∥|t|−(m−1)( 1

2
− 1

q
) ∗ ∥f(·)∥q′

∥∥
Lp
R
≤ c∥f∥E′ , f ∈ E′. (3.35)

We now show (3.32) by a duality argument as in Lemma 3.18. Set S0f =∫
RP0G(−t)f(t)dt for f ∈ Cc(R, L2 ∩ Lq′). Using (3.35) and Remark 3.4, we

compute

∥S0f∥2L2 =

∫
R

∫
R

(
G(−τ)P0f(τ)

∣∣G(−t)P0f(t)
)
L2 dτ dt

=

∫
R

(∫
R
P0G(t− τ)f(τ) dτ

∣∣∣P0f(t)
)
L2

dt = ⟨P0G ∗ f, P0f⟩E ≤ c∥f∥2E′

By density, S0 : E′ → L2 is bounded. As in the proof of Lemma 3.18, we then
deduce that P0G(·) : L2 → E is bounded. □

We add some comments on the non-autonomous wave equation

∂2t u = div(a∇u) + f, u(0) = u0, ∂tu(0) = u1, t ∈ R, x ∈ Rm, (3.36)

with bounded coefficients a : R × Rm → Rm×m
≥η and η > 0. First-order terms

b ·∇u+ cu with bounded coefficients can be estimated by ∥u∥L∞H1 and thus by
the energy inequality, at least locally in time (if a is regular enough).

Non-constants coefficients may prohibit global-in-time estimates as in (3.25).
Locally in time, it is not difficult to control low frequencies using Bernstein es-
timates, as we see in Lemma 4.12. So one can pass to standard inhomogeneous
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Sobolev spaces. In the proofs for smooth coefficients on Rm one may follow the
strategy of the previous section, but one has to replace the arguments based
on the Fourier transform by the sophisticated theory of Fourier integral opera-
tors. Theorem 7.5 and Remark 7.7 in [30] indeed imply (3.25) for solutions of
(3.36) on bounded time intervals J , also assuming that a ∈ C∞ with bounded
derivatives. The constant in (3.25) then depends on the length of J .

Global-in-time Stichartz estimates for varying coefficents need a ‘nontrapping
condition’ and some decay of derivatives of a. We refer to [55], for instance,
and to [10] for the description of a typical approach to this subject.

To treat quasilinear problems one needs rough coefficients. The methods used
above do not work for non-smooth coefficients. Actually, if a possesses less than
two derivatives, Strichartz estimates suffer an additional regularity loss.

Theorem 3.23. Let a ∈ Cβ
b (R×Rm,Rm×m

sym ) with a ≥ η > 0 and β ∈ [0, 2],
(p, q, γ) and (r, s, θ) be admissible, and σ := 2−β

2+β . Then the solution u of (3.36)
satisfies

∥|D̄|1−γ−σ
2 u∥Lp

RL
q ≤ C

(
∥∇t,xu∥L2

RL
2 + ∥|D̄|−σf∥L2

RL
2

)
. (3.37)

If β ≥ 1 and m ≥ 3, for T > 0 and κ > 1 (κ = 1 if m ≥ 4) one obtains

∥∇t,xu∥
Lp
TH−γ−κσ

p ,q ≤ C(T, κ)
(
∥u0∥H1 + ∥u1∥L2 + ∥f∥

Lr′
T Hθ+κσ

r ,s′
)
. (3.38)

See Theorem 2 and Corollary 6 in [63], and also Corollary 1.6 in [64]. The
operator |D̄|α is defined via the Fourier transform on R1+m. With somewhat
different methods the case a ∈ C1,1 was treated earlier in [52], see also [4]. The
regularity loss in Theorem 3.23 is sharp in general by an example in [53]. In the
paper [64] variants with, e.g., ∇t,xa ∈ L1

TL
∞ are treated, which are needed for

the study of the quasilinear problem, where a = a(t, x, u) or a = a(t, x, u,∇u).
Estimate (3.37) is global in time, provided one knows a priori that |Dt,x|u

belongs to L2
RL

2. Otherwise one has to replace u by ϕu with a cut-off in time.
If β ≥ 1, one can invoke the energy estimate (which involves ∥∂ta∥L1

TL∞ if a
depends on time) to bound |D̄|u by the data locally in time as in (3.38).

To explain the proof of Theorem 3.23 a bit, we first indicate Strichartz’ ap-
proach to the homogeneous estimate for the half-wave equation in (3.28), cf.
Section III.1 in [54]. For f ∈ Cc(R, L2) we can write

Sf(y) = (2π)−
m
2

∫
Rm

∫
R
eiy·ξe−it|ξ|f̂(t, ξ) dt dξ = (2π)−

m−1
2

∫
Rm

eiy·ξ f̃(|ξ|, ξ) dξ

for the space-time Fourier transform f̃ . Plancherel now yields

∥Sf∥2L2 = c

∫
Rm

|f̃(|ξ|, ξ)|2 dξ = c

∫
τ=|ξ|

|f̃ |2 d(τ, ξ) (3.39)

The last integral is taken over (one half of) the light cone {τ = ±|ξ|} in R1+m,
where omit the surface measure. One thus wants to estimate the L2-norm of
the restriction of the Fourier transform to a surface having non-zero curvature
by a LpLq-norm of f . This topic is treated in, e.g., Section VIII.8 in [59].
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In Theorem 3.23, one first reduces to pieces of u which are localized in (t, x)
and (τ, ξ) up to error terms and to (at first C2-) coefficients with a frequency cut-
off. Instead of the space-time Fourier transform, one applies the ‘FBI-transform’,
which maps into functions of (t, x, τ, ξ). The transformed problem is then split
into a part away from the light cone C and the more difficult one close to it.
With severe efforts, the latter is reduced to a Fourier restriction problem on C
to which theory from [59] can be applied. Rougher coefficients are treated by
another cut-off argument.



CHAPTER 4

Strichartz estimates for the Maxwell system

In this chapter we discuss very recent local-in-time Strichartz estimates for
nonautonomous linear Maxwell equations and indicate two applications.

4.1. Introduction and the basic result

We start with an existence result and energy estimate for the Maxwell system
under a bit weaker hypotheses than in Section 2.1. After a glimpse on dispersive
properties, we treat properties of Lp

RL
q and related spaces. Then Strichartz

estimates for the Maxwell equations with isotropic Cs-coefficients are presented.
We discuss this result and some variants, and show first steps of the proof.

We study the (slightly generalized) Maxwell system
∂t(εE) = curlH − σeE − Je, E(0) = E0,

∂t(µH) = − curlE − σmH − Jm, H(0) = H0,
t ∈ J, x ∈ R3, (4.1)

using somewhat modified notation. The time interval J of positive length |J |
contains 0. The unphysical magnetic ‘conductivity’ and ‘current’ will appear in
our analysis later on. We further set

a = diag(ε, µ), d = −diag(σe, σm), f = −
(
Je
Jm

)
, u =

(
E
H

)
, ρ =

(
ρe
ρm

)
=Div(au)

with Div = diag(div, div). As in (1.4) one checks

ρ(t) = ρ(0) +

∫ t

0
Div

(
f(τ) + d(τ)u(τ)

)
dτ, (4.2)

assuming (4.4) below, for instance. In our main results we actually focus on the
fields v = (D,B) = au which solve

∂tD = curl(µ−1B)− σeε
−1D − Je, D(0) = D0,

∂tB = − curl(ε−1D)− σmµ
−1B − Jm, B(0) = B0,

t ∈ J, x ∈ R3. (4.3)

The above coefficients and data are required to satisfy

ε, µ ∈ L∞(
J × R3,R3×3

≥η

)
, η > 0, ∂tε, ∂tµ, σi ∈ L1

(
J, L∞(R3,R3×3)

)
,

E0, H0, D0, B0 ∈ L2(R3,R3) = L2, Ji ∈ L1(J, L2), i ∈ {e,m}, (4.4)

if J is bounded; otherwise one replaces L1(J,X) by L1
loc(J,X).

Remark 4.1. Assume that (4.4) holds. Then there is a unique solution u =
(E,H) ∈ C(J, L2) of (4.1) and thus also v = (D,B) ∈ C(J, L2) of (4.3). It
fulfills the energy equality and estimate(

a(t)u(t)
∣∣u(t))

L2 =
(
a(0)u0

∣∣u0)L2 +

∫
Jt

(
(2d− ∂ta) · u+ 2f

∣∣u)
L2 dτ, (4.5)

57
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∥u(t)∥L2 ≤ c0
(
∥u0∥L2 + ∥f∥L1(Jt,L2)

)
exp

∫
Jt

c∥(d(τ), ∂ta(τ))∥L∞ dτ (4.6)

for t ∈ J with u0 = (E0, H0), c0 = c0(η, ∥a(0)∥∞), Jt = (0, t) if t ≥ 0, and
Jt = (t, 0) if t < 0. Here one can also allow for C-valued data.

One can show these facts as in Theorem 2.4 and Example 2.5, using also
Gronwall’s inequality for (4.6). There are minor modifications, e.g., one first
treats bounded J , takes γ = 0, and the operator L◦ in the theorem acts from{
v ∈W 1,1

T L2 ∩ L1
TH1

∣∣ v(T ) = 0
}

to L1
TL

2. ♢

In (1.13) we have seen that the isotropic autonomous Maxwell system without
charges reduces to a wave system for E (and similarly for the other fields)
whose components are coupled only in lower order. One obtains the basic wave
equation (3.20) if ε = 1 = µ, σi = 0, and the fields are divergence-free. So one
should have the wave case in mind when treating the Maxwell system. However
for the analysis of quasilinear systems one needs nonautonomous anisotropic
linear systems, cf. Section 2.3, and already the presence of conductivity produces
charges so that the wave case can just be a starting point. Indeed, we see below
that charges and anisotropic coefficients change the behavior a lot.

For the wave equation plane waves exhibit dispersive behavior by Re-
mark 3.12. We first discuss similar, but more complicated phenomena for simple
Maxwell problems.

Remark 4.2. Let ε, µ ∈ R3×3
>0 be constant and commute. Fix eigenvectors

E0 of ε and H0 of µ with eigenvalues αi and a wave vector ξ ∈ R3 such that
{ξ, E0, H0} is orthogonal with positive orientation. We then set

E(t, x) = ei(ωet−ξ·x)E0, H(t, x) = ei(ωmt−ξ·x)H0

for numbers ωi > 0 and (t, x) ∈ R1+3. Observe that ∂kEj = −iξkEj and hence
div(εE) = −iξ · εE = −iαee

i(ωet−ξ·x) ξ · E0 and analogously for H. As a result,
the charges ρ vanish. Similarly, the Maxwell equations are equivalent to

ωeαeE
0 = ωeεE

0 = −ξ ×H0, ωmαmH
0 = ωmµH

0 = ξ × E0.

It remains to choose ωi appropriately. Multiplying by E0 and H0, we obtain
the dispersion relations

ωe = −(ξ ×H0) · E0

εE0 · E0
=

(E0 ×H0) · ξ
εE0 · E0

, ωm =
(ξ × E0) ·H0

µH0 ·H0
=

(E0 ×H0) · ξ
µH0 ·H0

.

Hence, these plane waves move into the direction E0 ×H0 proportional to ξ. ♢

For scalar ε and µ, one can choose every ξ ̸= 0 in the above construction,
as for the wave equation (3.20). In the anisotropic case, the matrices ε and µ
impose restrictions on the direction of ξ which hints at reduced dispersion. This
effect becomes clearer in the discussion of the characteristic surface taken from
Proposition 1.2 of [39]. Observe that the Fourier transform of curl results in

F(curl v) = iξ × v̂ = i

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 v̂ =: ic(ξ)v̂. (4.7)
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Remark 4.3. We consider diagonal and constant (homogeneous) coefficients
ε = diag(εj) and µ = diag(µj) with εj , µj ∈ R+. Inserting standing waves
E(t, x) = eiτtE0(x) and H(t, x) = eiτtH0(x) into (4.1) with σi = 0 and Ji =
eiτtJi,0(x) with divergence free Ji,0, we obtain the time-harmonic system

iτεE0 − curlH0 = −Je,0, iτµH0 + curlE0 = −Jm,0, (4.8)

on R3. The spatial Fourier transform then yields

iτεφ− icψ = −he , icφ+ iτµψ = −hm , ξ ∈ R3,

where we set φ = FE0, ψ = FH0, he = FJe,0 and hm = FJm,0. Applying

−i

(
τε−1 ε−1cµ−1

−µ−1cε−1 τµ−1

)
to this system from the left, we arrive at two 3× 3 systems

(τ2I +Ae)φ := τ2φ+ ε−1cµ−1cφ = iτε−1he + iε−1cµ−1hm ,

(τ2I +Am)ψ := τ2ψ + µ−1cε−1cψ = iτµ−1hm − iµ−1cε−1he ,
ξ ∈ R3. (4.9)

Observe that Ae(ξ) =: aeam and Am(ξ) = amae have the same characteristic
polynomial p(τ, ξ). In (12) of [39] it is determined as

p(τ, ξ) = τ2
(
τ4 − τ2q0(ξ) + q1(ξ)

)
, q1(ξ) =

εξ · ξ
det ε

µξ · ξ
detµ

,

q0(ξ) = ξ21

( 1

ε2µ3
+

1

ε3µ2

)
+ ξ22

( 1

ε1µ3
+

1

ε3µ1

)
+ ξ23

( 1

ε1µ2
+

1

ε2µ1

)
.

One can solve (4.9), and thus (4.8) via F−1, if ξ does not belong to the charac-
teristic set Cτ = {ξ | p(τ, ξ) = 0} for τ ̸= 0. In the ‘fully anisotropic’ case where
all εj

µj
differ, by §3 of [39] the Fresnel surface Cτ contains four singularities and

four curves with one non-zero principal curvature. In the ‘partially anisotropic’
case µ1 = µ2 = µ3 and ε1 = ε2 ̸= ε3, the set Cτ consists of two ellipsoids
touching at two points, see §2.3 of [43]. In crystal optics these cases are called
‘biaxial’, resp. ‘uniaxial’. If also ε is scalar, Cτ is a (doubly sheeted’) sphere. ♢

Hence the anisotropy of the coefficients drastically changes the properties of
the characteristic surface (or light cone). In view of the comments at the end of
the previous section, one can expect weaker dispersive porperties in this case.
This is in fact true, as reported next.

Remark 4.4. Let ε = diag(εj) and µ = diag(µj) be fully anisotropic as in
the previous remark, u0 ∈ W k,1 for a sufficiently large k ∈ N, f = 0 = d and
Div(au) = 0. The solution to (4.1) then satisfies ∥u(t)∥∞ ≤ ct−

1
2 ∥u0∥k,1 for

t > 0 due to Theorem 1.3 in [35]. This corresponds to (3.34) for the wave
equation on R2 only! In the partially anisotropic case one recovers the 3D decay
t−1, see item (4) in [35]. ♢

The previous two remarks strongly indicate that the dispersive behavior of the
anisotropic Maxwell system is considerably harder to study. Indeed, here the
available Strichartz estimates are restricted to special cases, exhibit additional
regularity loss, and in the fully anisotropic case the triples are wave admissible
only for m = 2. See [43] for the partially anisotropic and [49] for the fully
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anisotropic case. One has 3× 3 Maxwell systems on R2 for polarized fields, see
(4.69). In [48] the results from the wave case are recovered here. In these papers
local-in-time estimates for (t, x)-depending coefficients are treated. Below we
focus on the isotropic case on R3, where we also find results as for (3.36).

In our arguments we use the harmonic analysis tools on space-time R1+3 and
not only on R3. To distinguish from the R3-case, we overline symbols; i.e.,

x̄ = (x̄j)
3
j=0 = (t, x), ξ̄ = (τ, ξ), F̄ = Fx̄, |D̄| = F̄−1|ξ̄|F̄ , P̄j = F̄−1χ̄jF̄ ,

∇̄ = ∇x̄, and so on. When using nonhomogeneous Littlewood–Paley decomposi-
tions (P̄j)j∈N0 and (Pj)j∈N0 , we redefine P̄≤0 and P≤0 as P̄0 and P0, respectively.
We further write P̄ ′

j and P̄ ′′
j instead of ˜̄Pj and ˆ̄Pj for the enlarged operators.

Fortunately, the relevant results from Lq remain valid in Lp
RL

q. We start with
Sobolev embeddings and Bernstein estimates, before collecting deeper results.

Lemma 4.5. Let α−m
q −

1
p = −m

s−
1
r , α∈(0,m+1), 1<p<r<∞, 1≤q≤s<∞,

and β ∈ R. We then obtain ∥|D̄|β−αg∥Lr
RL

s ≲ ∥|D̄|βg∥Lp
RL

q if |D̄|βg ∈ Lp
RL

q.
and analogously for ⟨D̄⟩.

Proof. It suffices to treat β = 0 by isomorphisms. We have |D̄|−αg =
cα |x̄|α−m−1 ∗ g by p.10 in [24], where we may assume that g ∈ S0 by density.
The assumptions imply 1

σ
:= 1 + 1

s −
1
q ∈ (0, 1], 1

ρ
:= 1 + 1

r −
1
p ∈ (0, 1), and

m+ 1− α = m
(
1 + 1

s −
1
q

)
+ 1 + 1

r −
1
p = m

σ + 1
ρ >

m
σ .

Using Minkowski, Young and a transformation, we deduce

∥(|D̄|−αg)(t, ·)∥Ls ≲
∫
R

(∫
Rm

(∫
Rm

|x̄− ȳ|α−m−1 |g(τ, y)|dy
)s

dx
) 1

s
dτ

≤
∫
R
∥g(τ, ·)∥Lq

(∫
Rm

|(t− τ, z)|σ(α−m−1) dz
) 1

σ
dτ

=

∫
R
|t− τ |α−m−1∥g(τ, ·)∥Lq

(∫
Rm

∣∣(1, z
t−τ

)∣∣σ(α−m−1)
dz

) 1
σ
dτ

=

∫
R
|t− τ |−

1
ρ
−m

σ
+m

σ ∥g(τ, ·)∥Lq

(∫
Rm

|(1, ζ)|σ(α−m−1) dζ
) 1

σ
dτ.

Since the last integral is finite, Lemma 3.22 for exponents 1 + 1
r = 1

ρ + 1
p then

yields the first assertion.
The second claim can be treated analogously since ⟨D̄⟩−α is a convolution with

kernel bounded by c′α
(
|x̄|α−m−1 + e−|x̄|/2) due to Proposition 1.2.5 in [24]. □

Remark 4.6. Let 1 ≤ p̄ ≤ p ≤ ∞, 1 ≤ q̄ ≤ q ≤ ∞, λ, r, r1 > 0, r2 > r1,
v ∈ Lp

RL
q, and s ∈ R. Applying Young twice, we see that the convolution with

ψ ∈ Lρ
RL

σ maps Lp̄
RL

q̄ into Lp
RL

q continuously if 1+ 1
p = 1

ρ+
1
p̄ and 1+ 1

q = 1
σ+

1
q̄ .

So the following facts can be shown as in Lemma 3.3 (with implicit constants
independent of λ and v).

a) supp F̄v ⊆ A(λr1, λr2) yields λs∥v∥Lp
RL

q ≲ ∥|D̄|sv∥Lp
RL

q ≲ λs∥v∥Lp
RL

q .

b) supp F̄v⊆B(0, λr) yields ∥|D̄|sv∥Lp
RL

q ≲ λ
s+m

q̄
+ 1

p̄
−m

q
− 1

p ∥v∥Lp̄
RL

q̄ if s≤0. ♢
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Remark 4.7. Let 1 < p, q <∞. The Littlewood–Paley Theorems 3.5 and 3.6
remain true for Lp

RL
q because of Theorem 5.5.22 in [26] and Theorems 6.2.4 and

7.2.13 in [27]. One then shows Proposition 3.8 and 3.9 also within these spaces.
Moreover, as in Theorem 2.4.2.1 of [69] one can derive interpolation properties
for the spaces |D̄|αLp

RL
q (with norm ∥|D̄|αv∥Lp

RL
q) and ⟨D̄⟩αLp

RL
q as those for

Ḣα,q, resp. Hα,q, where α ∈ R. As in Section 3.1 one sees that ⟨D̄⟩−αLp′Lq′

is the dual space of ⟨D̄⟩αLpLq, and analogously for |D̄|. Corollary 8.3.22 and
Example 8.1.9 in [27] yield Mikhlin’s theorem with the condition ξβ∂βa ∈ L∞

for all β ∈ {0, 1}m. This result implies ∥⟨D̄⟩−αv∥Lp
RL

q ≲ ∥|D̄|−αv∥Lp
RL

q for
α > 0. The converse is true if supp F̄v ⊆ C \B(0, δ) for some δ > 0. ♢

The next theorem invokes the seminorm ∥v∥Ċs which is the highest-order part
of the norm in Cs

b (R1+m) for s ≥ 0. For p, q, r ∈ [1,∞] and s ∈ R we use the
space-time Besov spaces Ḃs

p,q,r and Bs
p,q,r of distributions φ0 ∈ S⋆

0 (R1+m) and
φ ∈ S⋆(R1+m) with finite norms given by

∥φ0∥rḂs
p,q,r

=
∑

j∈Z
2rsj∥P̄jφ0∥rLp

RL
q , ∥φ∥rBs

p,q,r
=

∑
j∈N0

2rsj∥P̄jφ∥rLp
RL

q ,

respectively, for r < ∞, and similar for r = ∞. One can interpolate between
these spaces as for standard Besov spaces in Theorem 2.4.2 of [68]. Recall that
wave admissible triples for m = 3 satisfy

p, q ∈ [2,∞], 1
p + 1

q ≤ 1
2 ,

3
2 − γ = 1

p + 3
q , (p, q, γ) ̸= (2,∞, 1), (4.10)

and that the triple is strict if the inequality is an identity.
We now state Theorems 1.1 and 1.2 of [43], writing Lv = (∂t +Ma−1)v = f

for (4.3). These results are proved in this and the next two sections. The general
strategy of the proof originates from [63]. We only aware of one earlier (local-in-
time) Strichartz estimate for the Maxwell system from [18], in the charge-free
case and for smooth scalar coefficients being constant outside a compact set.

Theorem 4.8. Let ε, µ ∈ Cs
b (R × R3,R) with ε, µ ≥ η for some η ∈ (0, 1]

and s ∈ (0, 2], σ := 2−s
2+s , σe = 0 = σm, (p, q, γ) be admissible, but (p, q, γ) ̸=

(∞, 2, 0), and v ∈ L2
RL

2. Set Lv = f and ρ = Div v. Then v satisfies

∥|D̄|−γ−σ
2 v∥Lp

RL
q ≲ κ∥v∥L2

RL
2 + 1

κ ∥|D̄|−σf∥L2
RL

2 + ∥|D̄|−
1
2
−σ

2 ρ∥L2
RL

2 , (4.11)

∥⟨D̄⟩−γ−σ
2 v∥Lp

RL
q ≲ κ∥v∥L2

RL
2 + 1

κ ∥⟨D̄⟩−σf∥L2
RL

2 + ∥⟨D̄⟩−
1
2
−σ

2 ρ∥L2
RL

2 , (4.12)

if the terms on the right are finite and ∥(ε, µ)∥Ċs ≤ κ2+s with κ ≳ 1 for (4.12).
If p = ∞ and q > 2 or if q = ∞, one has to replace Lq by Ḃ0

p,q,2, resp., B0
p,q,2.

By the assumptions Lv and ρ belong to Ḣ−1(R4). Note that ρ is given by
the data via (4.2) and that ∥a−1∥Cs

b
≲ ∥a∥Cs

b
. By Lemma 4.12, we can mainly

restrict the reasoning to the inhomogeneous norms in (4.12). One deduces the
case s < 2 from s = 2 using the control on ∥(ε, µ)∥Ċs in the estimates, see
Lemma 4.19. The above Strichartz estimates are the versions closest to the core
of the proof, where we work on R1+3 and the L2-setting on the right is very
convenient. The occuring error terms will end up in ∥v∥L2L2 . In Corollary 4.25
we treat a local-in-time variant which avoids (non-causal!) fractional time-
derivatives. We discuss the results in several remarks and lemmas.
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Remark 4.9. a) There is a unique solution v ∈ CRL
2 of (4.3) if (4.4) is true,

e.g. if s ≥ 1, see Remark 4.1. In this case, by density it is enough to consider
f ∈ S0(R4) and v0 ∈ S0(R3), respectively f ∈ S(R4) and v0 ∈ S(R3).

b) If f = 0 and ε and µ do not depend on time, the solution v to (4.3) does
not belong to L2

RL
2 since ∥v(t)∥2 ≂ ∥v0∥ by (4.5). Actually, one should consider

Theorem 4.8 as a local-in-time result. Assume that (4.4) holds and that (after a
cut-off in time) the solution has compact support I in time containing 0. Then
the energy estimate (4.6) allows to bound ∥v∥L2

IL
2 by c(|I|)

(
∥v0∥L2 +∥f∥L1

I ,L
2

)
.

c) The cases p = ∞ and q = ∞ can only occur for non-strict triples, ex-
cept for the energy triple (∞, 2, 0) which has already been treated in (4.6). In
Lemma 4.11 we reduce to the strict case, so that infinite exponents rarely occur
later on. In the rest of this remark we let p, q <∞ to simplify.

d) The regularity loss σ
2 on the left is sharp for the corresponding result on

R2 by [48]. It varies between σ = 0 if s = 2 and σ = 1 if s = 0 (where (4.11)
and (4.12) directly follow from Lemma 4.5, cf. the next item). We have σ = 1

3
for the case s = 1 which is used to treat quasilinear problems, see [43], [48],
[49], and also [64] for the wave case.

e) Let s = 2. The Sobolev embedding in Lemma 4.5 shows that the left-
hand side of (4.11) is bounded by ∥|D̄|1/2v∥L2

RL
2 , and analogously for (4.12).

The Strichartz estimates in the theorem thus improve on Sobolev by half a
derivative – compared to a gain of 1

p derivatives in Theorem 3.13.
f) Note that ∥Div v∥Ḣ−1(R4) is bounded by ∥v∥L2

RL
2 a priori. In the Strichartz

estimates with s = 2 we require that the charge is a half derivative better, in
accordance with statement e). In contrast to the wave case, we need a condition
on the charges since initial data v0 = a(0)(∇φe,∇φm) ∈ L2 yield equilibria
of the Maxwell system (with σi, Ji, ∂ta being 0). Since −3/2 is smaller than
−γ−3/q by admissibility, there will be functions φi such that v0 does not belong
to Ḣ−γ,q (which is left invariant by a(0)−1 for s = 2). In other words, the charge
condition is needed to control the huge kernel of curl.

g) One can easily extend (4.12) to non-zero σi ∈ Cs
b (R4) if σ < s. To this

aim, redefine f as f + da−1v, which does not change ρ by (4.2). We can then
estimate ∥da−1v∥H−σ by ∥v∥L2

RL
2 . Here one has to use the product estimate

Proposition 3.8, Remark 3.10, and the duality of Hσ(R4) and H−σ(R4). ♢

The Strichartz estimate (4.11) is scaling invariant which will be important for
the proof. Using this fact, we first restrict to the case κ = 1.

Lemma 4.10. In Theorem 4.8 for (4.11) it is enough to take (ε, µ) with κ = 1.
Proof. Let (4.11) be true for κ = 1. We assume that p, q <∞. The other

case is shown similarly. We set vλ(t, x) = v(λt, λx) for λ > 0 and analogously for
the other maps. Let Lλ be the operator for aλ = (ελ, µλ). Note Div vλ = λρλ,
Lλvλ = λfλ, and ∥aλ∥Ċs = λs∥a∥Ċs ≤ λsκ2+s. We choose λ = κ−

2+s
s to obtain

∥aλ∥Ċs ≤ 1. Equation (3.6), estimate (4.11) for vλ, and (4.10) imply

∥|D̄|−γ−σ
2 v∥Lp

RL
q = λ

1
p
+ 3

q ∥(|D̄|−γ−σ
2 v)λ∥Lp

RL
q = λ

1
p
+ 3

q
+γ+σ

2 ∥|D̄|−γ−σ
2 vλ∥Lp

RL
q

≲ λ
3
2
+σ

2
(
∥vλ∥L2

RL
2 + ∥|D̄|−σλfλ∥L2

RL
2 + ∥|D̄|−

1
2
−σ

2 λρλ∥L2
RL

2

)
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= λ
σ
2
− 1

2 ∥v∥L2
RL

2 + λ−
σ
2
+ 1

2 ∥|D̄|−σf∥L2
RL

2 + ∥|D̄|−
1
2
−σ

2 ρ∥L2
RL

2 .

Since 1− σ = 2s
2+s , the definition of λ leads to (4.11) for v. □

We next reduce the reasoning to strict triples by Sobolev’s embedding.

Lemma 4.11. In Theorem 4.8 it suffices to show the estimates for strict triples.

Proof. We focus on (4.11), as (4.12) is treated similarly. By Lemma 4.10
we may assume κ = 1, where κ ≥ 1 would be sufficient. Let (p, q, γ) be non-strict
admissible. Choose p̄ ∈ (2, p) and q̄ ∈ [2, q] with q̄ <∞ and

1
p̄ + 1

q̄ = 1
2 and set γ̄ = 3

2 − 1
p̄ − 3

q̄ < γ,

so that (p̄, q̄, γ̄) is strict admissible. Let (4.11) be true for (p̄, q̄, γ̄).
First, let p, q <∞. Since γ− γ̄− 3

q̄ −
1
p̄ = −3

q −
1
p by (4.10), Lemma 4.5 yields

∥|D̄|−γ−σ
2 v∥Lp

RL
q ≲ ∥|D̄|−γ̄−σ

2 v∥Lp̄
RL

q̄

so that (4.11) for (p̄, q̄, γ̄) implies the statement.
Next, let p = ∞ or q = ∞. Remark 4.6 and the above relations yield

2−(γ+σ
2
)j∥P̄jv∥Lp

RL
q ≲ 2−(γ̄+σ

2
)j∥P̄jv∥Lp̄

RL
q̄ ≲ 2(

1
2
−σ

2
)j∥P̄jv∥L2

RL
2

for j ∈ Z. Using Remark 4.6, σ < 1 and the L2-boundedness of P̄j , we deduce

∥|D̄|−γ−σ
2 v∥2

Ḃ0
p,q,2

≂ ∥v∥2
Ḃ

−γ−σ
2

p,q,2

≲
∑
j<j0

2(1−σ)j∥P̄jv∥2L2
RL

2+
∑
j≥j0

2−2(γ̄+σ
2
)j∥P̄jv∥2Lp̄

RL
q̄

≲j0 ∥v∥2L2
RL

2 +
∑

j≥j0
2−2(γ̄+σ

2
)j∥P̄jv∥2Lp̄

RL
q̄

for any j0 ∈ Z. For s = 2 we will see later that

2−2(γ̄+σ
2
)j∥P̄jv∥2Lp̄

RL
q̄ ≲ ∥P̄jv∥2L2

RL
2 + 2−2σj∥P̄jf∥2L2

RL
2 + 2−2(σ+ 1

2
)j∥P̄jρ∥2L2

RL
2

for all large j ≥ 0, cf. (4.16). So the Littlewood–Paley decomposition in L2
RL

2

yields the assertion. For s < 2 one obtains this estimate plus a term whose
square sum is bounded by ∥v∥2

L2
RL

2 , cf. (4.20) and (4.21). □

In our proof we will work with frequency-localized pieces of v, see (4.16), and
the next result will allow us to restrict to large λ = 2j .

Lemma 4.12. In Theorem 4.8 estimate (4.12) implies (4.11), and conversely
if s = 2. In (4.11) and (4.12) it suffices to take P̄≥kv on the left for a k ∈ N0.

Proof. Let k ∈ N0. Thanks to Lemmas 4.10 and 4.11, we may assume
that κ = 1 for (4.11) and that (p, q, γ) is strict and hence p, q <∞. Lemma 4.5,
admissibility, and Remark 4.6 yield

∥ |D̄|−γ−σ
2 P̄<kv∥Lp

RL
q ≲ ∥|D̄|

1
2
−σ

2 P̄<kv∥L2
RL

2 ≲k ∥P̄<kv∥L2
RL

2 ≲ ∥v∥L2
RL

2

since σ < 1. The same works with ⟨D̄⟩ and κ∥v∥L2
RL

2 . So the last claim holds.
Observe that ∥|D̄|−γ−σ

2 P̄≥kv∥Lp
RL

q ≂k ∥⟨D̄⟩−γ−σ
2 P̄≥kv∥Lp

RL
q due to Mikhlin,

cf. Remark 4.7. Assuming (4.12), we then deduce

∥ |D̄|−γ−σ
2 P̄≥kv∥Lp

RL
q ≲ ∥P̄≥kv∥L2

RL
2 + ∥f∥H−σ+ ∥LP̄<kv∥H−σ+ ∥P̄≥kρ∥H− 1

2−σ
2
.
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On the right we can use that the operators P̄≥k are uniformly bounded and
Ḣ−α(R4) ↪→ H−α(R4) for α > 0. The remaining term is estimated via

∥|D̄|1−σ(a−1P̄<kv)∥L2
RL

2 ≲ ∥|D̄|1−σa−1∥∞ ∥P̄<kv∥2 + ∥a−1∥∞ ∥|D̄|1−σP̄<kv∥2
≲k ∥a∥Cs

b
∥P̄<kv∥L2

RL
2 ≲ ∥v∥L2

RL
2 ,

by means of Proposition 3.8, Remark 3.10 and 1−σ < s. (Recall that ∥a−1∥Cs
b
≲

∥a∥Cs
b
.) Altogether (4.11) follows.

The converse is proven in the same way for s = 2, using that ∥|D|−σf∥L2
RL

2 =

∥f∥L2
RL

2 in this case. □

We can now show two variants of Theorem 4.8. In the first one, regularity in
the Strichartz estimates is shifted up to a level given by s.

Remark 4.13. Let α ∈ (0, s+σ− 1) or α∈(0, 1] if s=2. Then (4.12) implies

∥⟨D̄⟩α−γ−σ
2 v∥Lp

RL
q ≲ κ∥v∥Hα(R4) +

1
κ ∥f∥Hα−σ(R4) + ∥ρ∥

Hα− 1
2−σ

2 (R4)
. (4.13)

The converse implication is true for α < s+ σ − 1.
Proof. If s = 2 and α = 1, we differentiate (4.3) in x̄ = (t, x) obtaining the

equation for ∇̄v with right-hand side ∇̄f+M(∇̄a−1 v) and charge ∇̄ρ. In L2
RL

2

the extra term is bounded by ∥v∥L2
RH1 as a∈C2

b . Thus, (4.12) and κ≥1 lead to

∥⟨D̄⟩−γ∇̄v∥Lp
RL

q ≲ κ∥v∥H1(R4) +
1
κ ∥f∥H1(R4) + ∥ρ∥

H
1
2 (R4)

.

Using Mikhlin and (3.3), we can replace ⟨D̄⟩−γ∇̄ by ⟨D̄⟩1−γ and deduce (4.13)
in this case. Let α < s+ σ − 1. Estimate (4.12) for ṽ = ⟨D̄⟩αv yields

∥⟨D̄⟩α−γ−σ
2 v∥Lp

RL
q ≲ κ∥v∥Hα(R4) +

1
κ ∥f∥Hα−σ(R4) + ∥ρ∥

Hα− 1
2−σ

2 (R4)

+ ∥⟨D̄⟩1−σ[a−1, ⟨D̄⟩α]v∥L2
RL

2 .

The last term can be rewritten as [⟨D̄⟩1−σ, a−1]⟨D̄⟩αv + [a−1, ⟨D̄⟩1−σ+α]v. If
1− σ + α = 1 we replace σ by some σ′ ∈ (1 + α− s, σ). The first commutator
is L2-bounded by Proposition 1.2 in [67], and the same is true for the second if
1 − σ + α < 1. In the case 1 − σ + α > 1, we instead use Theorem 1.4 of [42]
to obtain boundednes from Hα−σ to L2. The restriction on α is needed for the
second commutator.

The converse is shown similarly, starting from ⟨D̄⟩−γ−σ
2 v = ⟨D̄⟩α−γ−σ

2 ⟨D̄⟩−αv
and estimating the commutator term ∥[⟨D̄⟩α, a−1]⟨D̄⟩−αv∥H1−σ(R4). □

We can also pass from the fields (D,B) back to (E,H).

Remark 4.14. Let γ < s, 1 < s+ σ
2 and p, q <∞ (which hold for s ≥ 1 and

strict triples) for (4.12), and γ+ σ
2 < s and p, q <∞ for (4.11). In Theorem 4.8

we can then replace v = (D,B) by u = (E,H) which solves (4.1).
Proof. Remark 4.13 also works for u, so that it is enough to show (4.13) for

u and α = σ
2 noting that σ

2 < s+σ− 1 by the assumption. Using Remarks 3.10
and 4.7, a ∈ Cs

b , and σ
2 , γ < s, we see that the multiplication with a or a−1

leaves invariant ⟨D̄⟩
σ
2L2

RL
2, ⟨D̄⟩γLp′Lq′ , and thus ⟨D̄⟩−γLpLq by duality. These

facts show the result for (4.12) since f and ρ are the same in (4.1) and (4.3).
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It is not clear that muliplication leaves invariant |D̄|γLp′Lq′ . But we can argue
as in Lemma 4.12. First, again one obtains ∥|D̄|−γ−σ

2 P<0u∥Lp
RL

q ≲ ∥u∥L2
RL

2 .
Next, Remarks 4.7 and 4.6 and a variant of the first step yield

∥|D̄|−γ−σ
2 P≥0u∥Lp

RL
q ≲ ∥⟨D̄⟩−γ−σ

2 P≥0u∥Lp
RL

q ≲ ∥⟨D̄⟩−γ−σ
2 u∥Lp

RL
q

≲ ∥⟨D̄⟩−γ−σ
2 v∥Lp

RL
q ≲ ∥|D̄|−γ−σ

2 v∥Lp
RL

q .

Estimate (4.11) for u now follows from that for v. □

In four more lemmas we reduce Theorem 4.8 to compactly supported solu-
tions, frequency-localized pieces, coeffcients with Fourier cut-off, and to s = 2.
By the above results, in these steps it is enough to show (4.12) for v with Fourier
support off 0 assuming that (p, q, γ) is strict with p <∞ and κ = 1 if s = 2.

Lemma 4.15. It suffices to show Theorem 4.8 for compactly supported v.

Proof. We1 fix a function 0 ≤ φ ∈ C∞(R4) with support in B(0, 2) satis-
fying

∑
k∈Z4 φk = 1 for φk = φ(· − k). (For instance, let 0 ≤ ψ ∈ C∞

c (B(0, 2))
be 1 on B(0, 1). Since Ψ =

∑
k ψk ≥ 2 is uniformly bounded, one can choose

φk = ψk/Ψ.) Moreover, take smooth maps 0 ≤ φ̃k with support in B(k, 3)
being 1 on B(k, 2). Let v ∈ L2

RL
2. We can then write

⟨D̄⟩−γ−σ
2 v =

∑
k,l∈Z4

φk⟨D̄⟩−γ−σ
2 (φlv) =

∑
|k−l|<8

Gklv +
∑

|k−l|≥8

Gkl =: S< + S≥

abbreviating Gkl = φk⟨D̄⟩−γ−σ
2φl. Set φ̂k :=

∑
l:|l−k|<8 φl = φ̂0(· − k). The

near-diagonal part then becomes S< =
∑

k φk⟨D̄⟩−γ−σ
2 φ̂kv.

To obtain square sums in k, we note that for some K ∈ N and each x̄ the series∑
k φk(x̄) has at most K nonzero summands. From Hölder we thus deduce∣∣S<+S≥∣∣2 ≲ ∑

k∈Z4

∣∣⟨D̄⟩−γ−σ
2 φ̂kv

∣∣2+∑
k∈Z4

( ∑
l:|l−k|≥8

|Gkl(φ̃lv)|
)2

=:
∑
k∈Z4

(
â2k+ã

2
k

)
,

also inserting φlv = φlφ̃lv. Minkowski’s inequality then implies∥∥⟨D̄⟩−γ−σ
2

∥∥2
Lp
RL

q ≲
∥∥∥∑

k∈Z4

(
â2k + ã2k

)∥∥∥
L

p
2
R L

q
2

(4.14)

≤
∑
k∈Z4

∥∥⟨D̄⟩−γ−σ
2 φ̂kv

∥∥2
Lp
RL

q +
∑
k∈Z4

( ∑
l:|l−k|≥8

∥Gkl(φ̃lv)∥Lp
RL

q

)2

since p, q ≥ 2. The operator Gkl has the form

Gklw(x̄) = lim
δ→0

∫
R4

∫
R4

ϕ(δξ̄)ei(x̄−ȳ)·ξ̄φk(x̄)φl(ȳ)⟨ξ̄⟩−γ−σ
2 dξ̄ w(ȳ) dȳ, x̄ ∈ R4,

with δ ∈ (0, 1] and a fixed cutoff 0 ≤ ϕ ∈ C∞(R4) being 1 on B(0, 1) and
supported in B(0, 2), if w ∈ S(R4) say. The limit exists in H3(R4) ↪→ Lp

RL
q, for

instance.

1This proof was omitted in the lectures.
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For |k − l| ≥ 8, the approximate kernels gδkl(x̄, ȳ) can be integrated by parts
in ξ̄, cf. (3.10), yielding

|gδkl(x̄, ȳ)| ≲N ⟨x̄− ȳ⟩−2N
N∑
k=0

ckδ
k

∫
R4

∣∣(∇̄kϕ)(δξ̄)
∣∣⟨ξ̄⟩−γ−σ

2
−N+k dξ̄

≲N ⟨x̄− ȳ⟩−2N
N∑
k=0

ckδ
k

∫ 2
δ

0
⟨r⟩−γ−σ

2
−N+k+3 dr ≲N ⟨x̄− ȳ⟩−N ⟨k − l⟩−N

for N ∈ N with N > 4 − γ. At the end we use that |x̄ − ȳ| ≥ |k − l| − 4 by
the supports of φk and φl. Thanks to Young’s inequality, see Remark 4.6, the
double sum in (4.14) can then be bounded via

c
∑
k∈Z4

( ∑
l:|l−k|≥8

⟨k − l⟩−N∥φ̃lv∥L2
RL

2

)2
≲

∑
l∈Z4

∥φ̃lv∥2L2
RL

2 ≲ ∥v∥2L2
RL

2

for a fixed sufficiently large N , because of p, q ≥ 2 and
∑

l φ̃l ≤ K̃. By density,
this estimate is true for all v ∈ L2

RL
2. Equation (4.14) now leads to∥∥⟨D̄⟩−γ−σ

2 v
∥∥2
Lp
RL

q ≲ ∥v∥2L2
RL

2 +
∑

k∈Z4

∥∥⟨D̄⟩−γ−σ
2 φ̂kv

∥∥2
Lp
RL

q .

The assumption allows us to apply (4.12) to φ̂kv. We arrive at∥∥⟨D̄⟩−γ−σ
2 v

∥∥2
Lp
RL

q ≲ κ∥v∥2L2
RL

2 +
∑
k∈Z4

[
1
κ ∥L(φ̂kv)∥2H−σ(R4) + ∥Div(φ̂kv)∥2H− 1

2−σ
2

]
≲ κ∥v∥2L2

RL
2+

∑
k∈Z4

[
1
κ ∥φ̂kf∥2H−σ(R4)+ ∥φ̂kρ∥2H− 1

2−σ
2 (R4)

]
(4.15)

since
∑

k ∥ψkw∥22 =
∥∥∑

k ψkw
∥∥2
2
≲ ∥w∥22 for ψk = φ̂k or ψk = ∥∇̄φ̂0∥∞1supp φ̂k

.
It remains to show the boundedness of g 7→ (φ̂kg) from H−α to ℓ2(H−α), or

by duality of S : (hk) 7→
∑

k φ̂khk from ℓ2(Hα) to Hα, for α ∈ [0, 1]. As above,
the support property of φ̂k yields∣∣∣∑

k∈Z4
φ̂khk

∣∣∣2 ≲ ∑
k∈Z4

∣∣φ̂khk
∣∣2 ≲ ∑

k∈Z4

∣∣hk∣∣2
and analogously for ∇̄(φ̂khk). By integration, S is bounded for α ∈ {0, 1} and
thus for α ∈ (0, 1) by interpolation. Hence, (4.15) implies (4.12) for v. □

As in Lemma 3.20 we now reduce to Littlewood–Paley pieces. We first restrict
s = 2 in order to handle commutators of P̄j with coefficients.

Lemma 4.16. Let s = 2. Then Theorem 4.8 follows from the estimate

2−γj∥P̄jv∥Lp
RL

q ≤ C
(
∥P̄jv∥L2

RL
2 + ∥LP̄jv∥L2

RL
2 + 2−

1
2
j∥P̄jρ∥L2

RL
2

)
(4.16)

for strict triples, compactly supported v ∈ L2
RL

2, j ≥ j0, and some fixed j0 ∈ N0.

Proof. By the previous lemmas it suffices to show (4.12) with P̄>j0v on
the left and κ = 1. As in Lemma 3.20, Remark 4.7 and estimate (4.16) yield

∥⟨D̄⟩−γP̄>j0v∥2Lp
RL

q ≲
∑

j≥j0
2−2γj∥P̄jv∥2Lp

RL
q (4.17)
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≲
∑

j≥j0

(
∥P̄jv∥2L2

RL
2 + ∥LP̄jv∥2L2

RL
2 + 2−j∥P̄jρ∥2L2

RL
2

)
≲ ∥v∥2L2

RL
2 + ∥f∥2L2

RL
2 + ∥ρ∥2

H− 1
2 (R4)

+
∑

j≥j0
∥[L, P̄j ]v∥2L2

RL
2 .

The commutator term is rewritten as

[L, P̄j ] = [L, P̄j ]P̄
′′
j − P̄jL(I − P̄ ′′

j ) =M [a−1, P̄j ]P̄
′′
j − P̄jL(I − P̄ ′′

j )

using the enlarged Littlewood–Paley projector P̄ ′′
j = P̄j−2 + · · ·+ P̄j+2. In view

of Remark 3.4, the last commutator is given by

[a−1, P̄j ]w(x̄) = c

∫
R4

(
a−1(x̄)− a−1(ȳ)

)
24jψ

(
2j(x̄− ȳ)

)
w(ȳ) dȳ

= c

∫
R4

∫ 1

0
(∇̄a−1)

(
ȳ + r(x̄− ȳ)

)
·(x̄− ȳ)24jψ

(
2j(x̄− ȳ)

)
w(ȳ) drdȳ

= c

∫
R4

∫ 1

0
(∇̄a−1)

(
ȳ + r(x̄− ȳ)

)
dr · 23jψ̃

(
2j(x̄− ȳ)

)
w(ȳ) dȳ

with the Schwartz function ψ̃(x̄) = x̄ψ(x̄). We can now differentiate in x̄ and
use that 24jσ2j ψ̃ has a fixed 1-norm. Young’s convolution inequality then yields∥∥M [a−1, P̄j ]P̄

′′
j v

∥∥2
L2
RL

2 ≲ 2−2j∥P̄ ′′
j v∥2L2

RL
2 + ∥P̄ ′′

j v
∥∥2
L2
RL

2

since a ∈ C2
b . The sum of the right-hand side is bounded by ∥v∥2

L2
RL

2 .

As in (3.12) we see that P̄jM
(
P̄<j−2a

−1(I − P̄ ′′
j )v

)
= 0. The remaining piece

is bounded by∥∥MP̄j

(
P̄≥j−2a

−1(I − P̄ ′′
j )v

)∥∥
L2
RL

2 ≲ 2j∥P̄≥j−2a
−1∥∞∥v∥L2

RL
2 ≲ 2−j∥a∥2,∞∥v∥2

due to Remarks 4.6 and 3.10. So the last term in (4.17) is less than c∥v∥2
L2
RL

2 . □

Remark 4.17. In the above and the next lemma one can replace Pj by, e.g.,
P̄ ′
j on the right-hand side. Note that Pjv is not compactly supported anymore,

but decays faster than any polynomial. Indeed, Remark 3.4 and (3.10) lead to

|Pjv(x̄)| ≤ cN24j
∫
K

|v(ȳ)|
⟨2j(x̄− ȳ)⟩N

dȳ ≤ c′N2(4−N)j∥v∥1⟨x̄⟩−N

for j,N ∈ N, |x̄| ≥ 2maxK |ȳ|, and the compact set K = supp v. ♢

Multiplication with a−1 destroys the frequency localization of v, in general. As
a remedy, one applies a Fourier cut-off to the coefficients. We set P≤α=

∑
j≤αPj

etc. for α ∈ R and define ak = P≤k/2a
−1 for k ∈ Z. Remark 3.10 implies

∥a−1 − ak∥∞ = ∥P>k/2a
−1∥∞ ≲ 2−

sk
2 ∥a−1∥Cs

b
≲ 2−

sk
2 ∥a∥Cs

b
, k ∈ N. (4.18)

So there is index k0 ∈ N such that 2
η ≥ ak ≥ (2∥a∥∞)−1I for k ≥ k0. Using

this fact, one also obtains ∥a − (ak)−1∥∞ ≲ ∥a−1 − ak∥∞ ≲ 2−sk/2∥a∥Cs
b

and
thus (ak)−1 ≥ η/2, possibly after increasing k0. Finally, we have ∥(ak)−1∥Cs

b
≲

∥ak∥Cs
b
≲ ∥a−1∥Cs

b
≲ ∥a∥Cs

b
. For k ≥ k0 we define Lk = ∂t +Mak.
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Lemma 4.18. Let s = 2. To establish Theorem 4.8, we only have to show the
frequency-localized and -truncated estimate

2−γj∥P̄jv∥Lp
RL

q ≤ C
(
∥P̄jv∥L2

RL
2 + ∥LjP̄jv∥L2

RL
2 + 2−

1
2
j∥P̄jρ∥L2

RL
2

)
(4.19)

for strict triples, compactly supported v ∈ L2
RL

2, and j ≥ k0.

Proof. We pass from (4.19) to (4.16) via

∥LjP̄jv∥L2
RL

2 ≤ ∥LP̄jv∥L2
RL

2 +
∥∥M(

P̄>j/2a
−1P̄jv

)∥∥
L2
RL

2

≲ ∥LP̄jv∥L2
RL

2 +
(
∥a∥C1

b
+ 2j∥P̄>j/2a

−1∥∞
)
∥P̄jv∥L2

RL
2

≲ ∥LP̄jv∥L2
RL

2 + ∥a∥C2
b
∥P̄jv∥L2

RL
2

again using Remarks 3.10 and 4.6. □

The above reasoning fails if s < 2. However, this case can be reduced to s = 2
by another frequency-cutoff which causes the regularity loss in Theorem 4.8.

Lemma 4.19. It suffices to show Theorem 4.8 for s = 2.

Proof. Let s ∈ (0, 2) and κ≳ 1. Take Fourier-truncated coefficients âl =
P̄≤la

−1 for l = 2
2+sj =: νj and j ≥ j0 :=

k0
ν . Lemma 3.3 and Remark 3.10 yield

∥âl∥Ċ2 ≲ 22νj∥P̄≤la
−1∥∞ ≲ 22σj∥a−1∥Cs

b
≲ 22σj∥a∥Cs

b
≲ 22σjκ4

since 2νj = 2σj + sl and ∥a∥Cs
b
≲ ∥a∥Ċs + ∥a∥∞ ≲ κ4. Hence, âl satisfies

the assumptions of Theorem 4.8 for s = 2 with κ′ = cκ2
σ
2
j . Together with

Bernstein, estimate (4.12) for s = 2, κ′ and P̄jv thus leads to

2−(γ+σ
2
)j∥P̄jv∥Lp

RL
q ≲ κ∥P̄jv∥L2

x̄
+2−σj 1

κ ∥L̂
lP̄jv∥L2

x̄
+2−( 1

2
+σ

2
)j∥P̄jρ∥L2

x̄
(4.20)

for all v ∈ L2
RL

2 = L2
x̄ and the operator L̂l = ∂t +Mâl. If we can show∑
j≥j0

2−2σj∥L̂lP̄jv − P̄jLv∥2L2
RL

2 ≲ ∥v∥2L2
RL

2 , (4.21)

then (4.12) for s < 2 follows from (4.20) as in (4.17). Let â>l = P̄>la
−1. After

factoring out the derivatives and decomposing a−1, it suffices to establish∑
j≥j0

22(1−σ)j
[∥∥[âl, P̄j ]v

∥∥2
L2
x̄
+
∥∥P̄j(â

>lP̄ ′′
j v)

∥∥2
L2
x̄
+
∥∥P̄j(â

>l(I− P̄ ′′
j )v)

∥∥2
L2
x̄

]
≲ ∥v∥2L2

x̄
.

(4.22)
For the first summand, if s ≥ 1 the map âl is Lipschitz with norm bounded

by ∥a−1∥1,∞ ≲ ∥a∥Cs
b
. Otherwise we have

∥âl∥1,∞≲ ∥a−1∥∞+2ν(1−s)j2sνj∥P̄≤νja
−1∥∞≲ 2ν(1−s)j∥a−1∥Cs

b
≲ 2ν(1−s)j∥a∥Cs

b

by Bernstein and Remark 3.10. Hence the first summand in (4.22) can be
handled by means of the commutator estimate∥∥[âl, 2jP̄j ]v

∥∥
L2
x̄
≲ ∥âl∥1,∞∥v∥L2

x̄
≲ 2ν(1−s)+j∥a∥Cs

b
∥v∥L2

x̄
,

see (3.6.2) in [65], since ν(1− s) = σ − s/(2 + s) < σ if s < 1.
Remark 3.10 and sν = 1 − σ also yield 2(1−σ)j∥â>l∥∞ ≲ ∥a−1∥Cs

b
≲ ∥a∥Cs

b
.

The second sum in (4.22) is thus dominated by ∥v∥2
L2
RL

2 in view of Theorem 3.6.
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In the third term enter only the frequencies |ξ̄| ∈ [2j−1, 2j+1] of the product
â>l(I−P̄ ′′

j )v =: g̃h̃, where those of second factor satisfy |ζ̄| ≥ 2j+2 or |ζ̄| ≤ 2j−2.
Hence, in g ∗h(ξ̄) =

∫
g(ξ̄− ζ̄)h(ζ̄) dζ̄ we obtain |ζ̄ − ξ̄| ≥ 2j+2− 2j+1 ≥ 2j+1 or

|ξ̄ − ζ̄| ≥ 2j−1 − 2j−2 ≥ 2j−2. As a result, in the above product we can replace
P̄>νj by P̄≥j−3, possibly after increasing j0 to j0 ≥ 3/(1 − ν). Then the third
summand can be estimated by∥∥P̄j

(
P̄≥j−3a

−1(I−P̄ ′′
j )v

)∥∥
L2
x̄
≤ ∥P̄≥j−3a

−1∥L∞
x̄
∥(I−P̄ ′′

j )v
∥∥
L2
x̄
≲ 2−js∥a∥Cs

b
∥v∥L2

x̄
.

Since 1− σ − s < 0, the desired inequality (4.22) follows. □

4.2. Reduction to a half-wave problem

We have seen in the above chain of lemmas that Theorem 4.8 follows from
(4.19) for j ≥ k0, strict triples and compactly supported v ∈ L2

RL
2. In this

section we reduce this inequality to a Strichartz estimate for a half-wave equation
with coefficients, which is essentially shown in [63] and discussed in the next
section. This reduction is based on a diagonalization of the ‘principal symbol’
of the operator Lj = ∂t + Maj , as explained next. We will pass from the
symbols to the estimate (4.19) at the end of this section. For this step and
also later on, we need the so-called FBI transform and tools from the theory of
pseudo-differential operators, which are treated in the section’s middle part.

A) Diagonalization of the principal symbol. Recall that we use the
scalar, truncated coefficients εj := P̄≤j/2ε

−1 and µj := P̄≤j/2µ
−1 for j ≥ k0,

where we set aj = diag(εj , µj). The isotropy is crucially used in the sequel. The
1-homogeneous principal symbol of Lj is given by

ℓj(x̄, ξ̄) = i

(
τI −µj(x̄)c(ξ)

εj(x̄)c(ξ) τI

)
with I = I3×3. The precise relation of ℓj and Lj is discussed in the next
subsection. We compute the eigenvalues λ(x̄, ξ̄) ∈ R and eigenvectors w(x̄, ξ̄) =
(w1, w2)∈R3+3 of the symmetric matrix 1

i ℓ
j . Take ξ ̸= 0, as ℓj(x̄, τ, 0) = iτI6×6.

We set ω = λ− τ and normalize ξ∗ = |ξ|−1ξ. We have to solve the system

−µjcw2 = ωw1, εjcw1 = ωw2 . (4.23)

Corresponding to N(curl), we have the eigenvectors (ξ∗, 0) and (0, ξ∗) for λ = τ ,
i.e, ω = 0. Let λ ̸= τ . Set νj = (εjµj)

1
2 . The system (4.23) yields −(νj)2c2wl =

ω2wl. The matrix c2 = ξξ⊤ − |ξ|2I has a kernel spanned by ξ and the double
eigenvalue −|ξ|2 with eigenvectors orthogonal to ξ. (Below we use multiples of
(ξ2,−ξ1, 0) and (ξ3, 0,−ξ1).) Hence, ω is equal to one of the numbers ±νj |ξ| =:
ω± and we obtain the remaining eigenvalues λ± = τ ± νj |ξ| having multiplicity
2. The eigenvalues of ℓj are collected in the diagonal matrix

dj(x̄, ξ̄) = i diag
(
τ, τ, τ+νj(x̄)|ξ|, τ−νj(x̄)|ξ|, τ+νj(x̄)|ξ|, τ−νj(x̄)|ξ|

)
. (4.24)

It remains to find suitably normalized eigenvectors w = (w1, w2) which yield a
transformation matrix with good properties. There is an index i with |ξ∗i | ≥ 1

3 .
We take i = 1, as the other cases are handled analogously. See §3.1 in [43],
where the coefficients ε−1 and µ−1 are treated, however. Set ξkl = (ξ2k + ξ2l )

1
2
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and ν̂j = νj/µj = (εj/µj)
1
2 . Note that ξkl is positive if k = 1 or l = 1. We first

choose w1 = (ξ2ξ
−1
12 ,−ξ1ξ

−1
12 , 0) which satisfies

εjcw1 = εj

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 ξ2ξ
−1
12

−ξ1ξ−1
12

0

 = εj

−ξ1ξ3ξ−1
12

ξ2ξ3ξ
−1
12

−ξ12

 = ω±w
2
±,

w2
± := ± ν̂

j

|ξ|

ξ1ξ3ξ−1
12

ξ2ξ3ξ
−1
12

−ξ12

 .

We then also obtain µjcw2
± = −ω±w1, and have found first eigenvectors for λ±.

Next we take w̃1 = (ξ3ξ
−1
13 , 0,−ξ1ξ

−1
13 ) and compute

εjcw̃1 = εj

 0 −ξ3 ξ2
ξ3 0 −ξ1
−ξ2 ξ1 0

 ξ3ξ
−1
13
0

−ξ1ξ−1
13

 = εj

−ξ1ξ2ξ−1
13

ξ13
−ξ2ξ3ξ−1

13

 = ω±w̃
2
±,

w̃2
± := ± ν̂

j

|ξ|

−ξ1ξ2ξ−1
13

ξ13
−ξ2ξ3ξ−1

13

 .

Note that µjcw̃2
± = −ω±w̃

1 and that {w1, w̃1} are linearly independent. We
have thus computed a basis of six eigenvectors which are 0-homogeneous in ξ.
It is important that w1 = (ξ∗, 0) and w2 = (0, ξ∗) are orthogonal to the other
four ones and to each other. The eigenvectors form the transformation matrix

mj
1(x̄, ξ̄) =



ξ∗1 0 ξ2
ξ12

ξ2
ξ12

ξ3
ξ13

ξ3
ξ13

ξ∗2 0 − ξ1
ξ12

− ξ1
ξ12

0 0

ξ∗3 0 0 0 − ξ1
ξ13

− ξ1
ξ13

0 ξ∗1 ν̂j ξ1ξ3
ξ12 |ξ| −ν̂j ξ1ξ3

ξ12 |ξ| −ν̂j ξ1ξ2
ξ13 |ξ| ν̂j ξ1ξ2

ξ13 |ξ|
0 ξ∗2 ν̂j ξ2ξ3

ξ12 |ξ| −ν̂j ξ2ξ3
ξ12 |ξ| ν̂j ξ13|ξ| −ν̂j ξ13|ξ|

0 ξ∗3 −ν̂j ξ12|ξ| ν̂j ξ12|ξ| −ν̂j ξ2ξ3
ξ13 |ξ| ν̂j ξ2ξ3

ξ13 |ξ|


. (4.25)

The final step is to invert mj
1. This is not done explicitely, we rather want to

show the properties of the inverse nj1 needed below. First, their orthogonality
properties imply that w1 and w2 are the first two rows of nj1. Next we compute
the determinant of mj

1. Adding the third to the fourth row and the fifth to the
sixth, we eliminate the lower parts of the fourth and sixth row, but double their
upper parts. These factors can be taken out and then the inverse operations
annulate the upper parts of the third and fifth rows. Permuting the rows, we
obtain a block structure and hence

detmj
1 = −4

∣∣∣∣∣∣∣
ξ∗1

ξ2
ξ12

ξ3
ξ13

ξ∗2 − ξ1
ξ12

0

ξ∗3 0 − ξ1
ξ13

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
ξ∗1 ν̂j ξ1ξ3

ξ12 |ξ| −ν̂j ξ1ξ2
ξ13 |ξ|

ξ∗2 ν̂j ξ2ξ3
ξ12 |ξ| ν̂j ξ13|ξ|

ξ∗3 −ν̂j ξ12|ξ| −ν̂j ξ2ξ3
ξ13 |ξ|

∣∣∣∣∣∣∣ =: −4δ′δ′′
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One easily computes δ′ = ξ1 |ξ|ξ−1
12 ξ

−1
13 . In δ2 one can take out factors and add

multiples of the first row to conclude

δ′′ =
(ν̂j)2

|ξ|3ξ12ξ13

∣∣∣∣∣∣
ξ1 ξ1ξ3 −ξ1ξ2
ξ2 ξ2ξ3 ξ21 + ξ23
ξ3 −ξ21 − ξ22 −ξ2ξ3

∣∣∣∣∣∣ = (ν̂j)2

|ξ|3ξ12ξ13

∣∣∣∣∣∣
ξ1 0 0
ξ2 0 |ξ|2
ξ3 −|ξ|2 0

∣∣∣∣∣∣ = (ν̂j)2ξ1 |ξ|
ξ12ξ13

and hence

δj1(x̄, ξ̄) := detmj
1(x̄, ξ̄) = −4εj(x̄)ξ21 |ξ|2

µj(x̄)ξ212ξ
2
13

. (4.26)

The determinant has a positive distance to 0 since |ξ1| ≥ 1
3 |ξ|. Moreover, it is

0-homogeneous in ξ̄ and it inherits the regularity properties of εj and µj .
To use Cramer’s rule, we write (mj

i )
(kl) for the determinant of mj

i with deleted
kth row and lth column, which is a homogeneous polynomial in the components
of mj

i . We summarize

ℓj = mj
id

jnji , (n
j
i )kl=

(−1)k+l(mj
i )

(lk)

δji
, (nji )1 •= (ξ∗, 0), (nji )2 •= (0, ξ∗) (4.27)

if 3ξi ≥ |ξ|, omitting the arguments (x̄, ξ̄). The components c of mj
i and nji are

0-homogeneous in ξ̄ and those of dj are 1-homogeneous; all are smooth in x̄. For
later use, we admit coefficients ε, µ∈C1

b . In this case we infer the core bounds∣∣∂αx̄ ∂βξ̄ c∣∣ ≲|α|,|β| 2
1
2
(|α|−1)j |ξ|−|β|,

∣∣∂αx̄ ∂βξ̄ djk∣∣ ≲|α|,|β| 2
1
2
(|α|−1)j |ξ̄|1−|β| (4.28)

for α, β ∈ N4
0, j ≥ k0 and k ∈ {1, · · · , 6}. With significant more work and partly

losing regularity, one can show similar results in the partially anisotropic case,
see [43]. The approach fails in the fully anisotropic case, cf. [49].

B) Pseudo-differential operators and FBI transform. We want to
turn the factorization in (4.27) into an operator equation. Since our symbols
also depend on x̄, this requires pseudo-differential operators which we discuss
first. A smooth function a on Rm× (Rm \ {0}) belongs to the symbol class Sν

ω,κ

for some ν ∈ R and ω, κ ∈ [0, 1] if

supξ ̸=0,x

∣∣∂αx ∂βξ a(x, ξ)∣∣ ≤ cα,β ⟨ξ⟩ν−ω |β|+κ|α|, α, β ∈ Nm
0 . (4.29)

We then define the pseudo-differential operator Op(a) = a(x,D) : Sm → Sm by

Op(a)φ(x) = (2π)−
m
2

∫
Rm

eix·ξa(x, ξ)φ̂(ξ) dξ. (4.30)

Observe that one has Op(a) = bc(D) if a(x, ξ) = b(x)c(ξ) where c(D) is
just a Fourier multiplier. Hence our principal symbol yields the operator
lj(x,D) = ∂t + ajM which differs from Lj by the L2

RL
2-bounded perturba-

tion Ev = (−∇µj ×v2,∇εj ×v1). The mapping properties of a(x,D) have been
studied in detail. For instance, let κ < 1. Then one has a(x,D) : S⋆

m → S⋆
m. If

also a ∈ Sν
1,κ, the operator a(x,D) : Hs+ν,q → Hs,q is bounded for s ∈ R and

q ∈ (1,∞), by Lemma 0.1.A and Proposition 0.5.E in [65].
We work with symbols being frequency-localized at λ = 2j and thus need to

know the λ-dependence of the constants. Typically our symbols are of the form
aj(x̄, ξ̄) = a(x̄, 2−j ξ̄) for a smooth function a that vanishes if |ξ̄| /∈ (12 , 2), say,
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and satisfies |∂α
ξ̄
a| ≲ 2(ν−|α|)j , cf. (4.28). Such operators can be controlled via

the next elementary lemma. In the matrix case it is applied componentwise.

Lemma 4.20. Let p, q ∈ [1,∞] and a : R4×R4 → C be smooth with a(x̄, ξ̄) = 0
for ξ̄ /∈ B(0, 2) and

C := sup
x̄∈R4

∑
0≤|α|≤5

∥∂αξ̄ a(x̄, ·)∥L1 <∞.

Then the operator Op(a) is bounded on Lp
RL

q with norm less than cC.
Let aj(x̄, ξ̄) = a(x̄, 2−j ξ̄) for a as above with |∂α

ξ̄
a| ≤ cα2

νj for 0 ≤ |α| ≤ 5

and some ν ∈ R and j ∈ Z. We then obtain ∥Op(aj)∥ ≤ cC2νj in Lp
RL

q.

Proof. 1) Observe that a(x̄, ξ̄) = β(ξ̄)a(x̄, ξ̄) for a function β ∈ C∞(R4)
with support in Q = [−π, π]4 and β = 1 on B(0, 2). To separate variables, we
expand βa into a Fourier series in ξ̄, namely

β(ξ̄)a(x̄, ξ̄) = β(ξ̄)
∑

k∈Z4
ak(x̄)e

ik·ξ̄ with ak(x̄) =
1

16π4

∫
Q
e−ik·ξ̄a(x̄, ξ̄) dξ̄

for every fixed x̄ ∈ R4, obtaining

Op(a)g(x̄) =
∑
k∈Z4

1

4π2

∫
R4

ei(x̄+k)·ξ̄ak(x̄)β(ξ̄)F̄g(ξ̄) dξ̄ =
∑
k∈Z4

ak(x̄)(β(D̄)g)(x̄+k).

Translation invariance and Young’s inequality (via Remarks 3.4 and 4.6) yield
∥β(D̄)g(·+ k)∥Lp

RL
q ≲ ∥g∥Lp

RL
q . As in (3.10), integrating by parts we infer

|ak(x̄)| ≲ ⟨k⟩−5
∑

0≤|α|≤5
∥∂αξ̄ a(x̄, ·)∥L1 ≤ C⟨k⟩−5

for x̄ ∈ R4. The above formula for Op(a)g can thus be estimated as asserted.
2) For the second part we compute aj(x̄, D)g = σ2j â

j(x̄, D)σ2−jg with symbol
a(2−j x̄, ξ̄) by substituting η̄ = 2−j ξ̄ in (4.30). The claim follows from the
transformation rule and step 1). □

We want to factorize Lj as its symbol ℓj in (4.27). For this we use the
Kohn–Nirenberg formula for the product of pseudo-differential operators, see
Proposition 0.3.C in [65]. We write Dξ = −i∂ξ. Let ak be contained in Sνk

ωk,κk

with νk ∈ R, ωk, κk ∈ [0, 1], and κ2 < ω := min{ω1, ω2}. Set κ = max{κ1, κ2}
and ν = ν1 + ν2. Then a1(x,D)a2(x,D) is a pseudo-differential operator with
symbol a1 ◦ a2 ∈ Sν

ω,κ having the asymptotic expansion

a1 ◦ a2 =
∑

0≤|α|≤N

1
α!(D

α
ξ a1 ∂

α
x a2) + rN , (4.31)

where rN ∈ Sν−N
1,0 for N ∈ N and the symbol is given by

a1◦a2(x, ξ) =
1

(2π)m
lim
δ→0

∫
R2m

ei(x−z)·(ζ−ξ)ϕ(δ(ζ, z))a1(x, ζ)a2(z, ξ) d(z, ζ) (4.32)

for any cut-off 0 ≤ ϕ ∈ C∞
c (R2m) being 1 on B(0, 1).
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We apply this result to symbols of the form aj(x̄, ξ̄) = a(x̄, 2−j ξ̄) and
bj(x̄, ξ̄) = b(x̄, 2−j ξ̄) for some j ∈ Z and a, b as in Lemma 4.20. We assume

|∂αx̄ ∂
β

ξ̄
a| ≤ cα,β2

νj2
1
2
(|α|−1)+j , |∂αx̄ ∂

β

ξ̄
b| ≤ cα,β2

ν′j2
1
2
(|α|−1)+j (4.33)

for α, β ∈ N4
0 and some ν, ν ′ ∈ R, cf. (4.28). Here, the transformation in the

proof of Lemma 4.20 turns the products πα in the sum of (4.31) into the symbols
π̂jα(x̄, ξ̄) = 2−|α|j(Dα

ξ̄
a)(2−j x̄, ξ̄) (∂αx̄ b)(2

−j x̄, ξ̄). Lemma 4.20 then implies

∥Op(Dα
ξ aj ∂

α
x bj)∥B(Lp

RL
q) ≤ cα2

(ν+ν′)j2−
1
2
(|α|+1)j (4.34)

for 1 ≤ |α| ≤ N . The case |α| = 1 dominates and yields the bound 2(ν+ν′−1)j

for these operators. We still have to control the remainder.

Lemma 4.21. In the above setting we obtain Op(aj)Op(bj) = Op(ajbj) +E,
where the error term E is bounded by 2(ν+ν′−1)j on Lp

RL
q for p, q ∈ [1,∞].

Proof. By (4.31) and (4.34), it remains to check ∥Op(rN )∥ ≤ cN2(ν+ν′−1)j

for a fixed N ∈ N. Let ξ̃ = 2−j ξ̄. Formula (4.32) for cj := aj ◦ bj reads as

cj(x̄, ξ) =
1

(2π)4
lim
δ→0

∫
R8

ei(x̄−z̄)·(ζ̄−2j ξ̃)ϕ(δ(z̄, ζ̄))a(x̄, 2−j ζ̄)b(z̄, ξ̃) d(z̄, ζ̄)

=
24j

(2π)4
lim
δ→0

∫
R8

ei2
j(x̄−z̄)·(ζ̃−ξ̃)ϕ(δ(z̄, 2j ζ̃))a(x̄, ζ̃)b(z̄, ξ̃) d(z̄, ζ̃)

=
24j

(2π)4
lim
δ→0

∫
R8

ei2
j ȳ·η̄ϕ

(
δ(x̄− ȳ, 2j(ξ̃ + η̄))

)
a(x̄, ξ̃ + η̄)b(x̄− ȳ, ξ̃)d(ȳ, η̄),

transforming ζ̃ = 2−j ζ̄, ȳ = x̄− z̄, and η̄ = ζ̃− ξ̃, where we can take δ ≤ 2−j . We
can assume that ξ̃ belongs to B(0, 2) and then η̄ to B(0, 4) as b and a vanish off
B(0, 2). We further take a cut-off ϕ0 ∈ C∞

c (R4) being 1 on B(0, 1), and split the
integral into summands with ϕ0(ȳ) and 1−ϕ0(ȳ) in the integrand. Observe that
the δ-cut-off disappears in the first term (for fixed x̄). In the second term, we can
integrate by parts as in (3.10) starting from ei2

j ȳ·η̄ = −i2−j ȳ−1
k ∂η̄ke

i2j ȳ·η̄ with
|ȳk| ≥ |ȳ|/4. Doing this n times, we obtain a prefactor of the form cn2

(4−n)j⟨ȳ⟩−n

and harmless η̄-derivatives in the integrand (as δ2j ≤ 1). After replacing ξ̃ =
2−j ξ̄ one can apply the second part of Lemma 4.20 and obtains the norm bound
Cn2

(4+ν+ν′−n)j for the resulting pseudo-differential operator.
Taking n = 5, we are left with the ‘diagonal part’

cdj (x̄, ξ) =
24j

(2π)4

∫
R8

ei2
j ȳ·η̄ϕ0(ȳ)a(x̄, ξ̃ + η̄)b(x̄− ȳ, ξ̃) d(ȳ, η̄)

whose integrand vanishes outside a fixed compact set in (ȳ, η̄). We now insert
the Taylor polynomial of h(ȳ, η̄) = ϕ0(ȳ)a(x̄, ξ̃ + η̄)b(x̄ − ȳ, ξ̃) of order N at 0.
In this way one actually derives the expansion (4.31), cf. the text after equation
(24) in [48]. Here we need the remainder term given by

rdN (ȳ, η̄) =
∑

|β|=N+1

N+1
β!

∫ 1

0
(1− θ)N

(
∂βȳ,η̄h

)
(θ(ȳ, η̄)) dθ (ȳ, η̄)β.
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Writing β = βȳ + βη̄, βȳ = β′ȳ + β′′ȳ , and omitting the θ-integral and factors, we
obtain terms of the form

r̂dβ(x̄, ξ̃) = 24j
∫
R8

ei2
j ȳ·η̄ ȳβȳ η̄βη̄

(
∂β

′
ȳϕ0

)
(θȳ)

(
∂
βη̄

2 a
)
(θ(x̄, ξ̃+η̄))

(
∂
β′′
ȳ

1 b
)
(θ(x̄−ȳ, ξ̃)).

We insert η̄βη̄ei2
j ȳ·η̄ = (i2)−|βη̄ |j∂

βη̄

ȳ ei2
j ȳ·η̄ and integrate by parts. This gives at

most β − β′η̄ =: β∗ȳ spatial derivatives of b, where 0 ≤ β′η̄ ≤ min{βȳ, βη̄} is the
number of derivatives hitting ȳβȳ . The factor ȳβȳ−β′

η̄ is treated in the same way,
giving the total prefactor 2(4−|β|+|β′

η̄ |)j and harmless frequency derivatives.
We now replace again ξ̃ = 2−j ξ̄. The resulting integral is a symbol in (x̄, ξ̄) of

the form treated in the second part of Lemma 4.20. The estimates (4.33) give
a bound of the corresponding operator Op(r̂dβ) by

cβ2
(4−|β∗

ȳ |)j2νj2ν
′j2

1
2
(|β∗

ȳ |−1)j = cβ2
(ν+ν′+ 7

2
)j2−

1
2
|β∗

ȳ |j ≤ cβ2
(ν+ν′+ 7

2
)j2−

1
4
|β|j .

For N = |β| − 1 = 17 the above is less than c2(ν+ν′−1)j . The main part of
rN (x̄, ξ̄) is the θ-integral and linear combination of such terms and thus satisfies
the same estimate. □

We further need the Fourier–Bros–Iagolnitzer (FBI) transform, see [62].2 For
g ∈ L1

loc(Rm,C) as in (3.1) and a frequency λ > 0 we define

Tλg(z) := Cmλ
3m
4

∫
Rm

e−
λ
2
(z−y)2g(y) dy, z = x− iξ ∈ Cm,

= Cmλ
3m
4 e

λ
2
|ξ|2eiλξ·x

∫
Rm

e−
λ
2
|x−y|2e−iλξ·yg(y) dy,

= Cmλ
5m
4 e

λ
2
|ξ|2

∫
Rm

e−
λ
2
|ξ−ζ|2eiλx·ζ ĝ(λζ) dζ, (4.35)

using also basic properties of the Fourier transform, see (15) in [63]. Here we
let Cm = 2−

m
2 π−

3m
4 , z2 =

∑
k z

2
k, x, ξ ∈ Rm, and identify Cm and R2m via

z = x− iξ. It can be seen that Tλ : L2(Rm) → L2
Φ(R2m) = L2

Φ is isometric onto
the closed subspace of anti-holomorphic functions in L2

Φ, where Φ(ξ) = e−λ|ξ|2

and L2
Φ has the measure Φd(x, ξ). The FBI transform posseses the left inverse

T ⋆
λG(y) = Cmλ

3m
4

∫
R2m

e−
λ
2
(z−y)2Φ(ξ)G(z) d(x, ξ).

The Fourier transform is a superposition of plane waves. In Tλ one replaces
them by (L2-normalized) ‘coherent states’

φx0,ξ0(y) = λ
m
4 π−

m
4 e−

λ
2
|y−x0|2eiλ(y−x0)·ξ0 ,

which are localized in space in a λ−
1
2 neighborhood of x0 and in frequency in a

λ
1
2 neighborhood of λξ0. One can compute

Tλφx0,ξ0(z) = λ−
m
4 π

m
4 e−

λ
4
(|x−x0|2+|ξ−ξ0|2)e

λ
2
|ξ|2ei

λ
2
(x−x0)·(ξ+ξ0)

which is localized in the same way near z0 = x0 − iξ0. One directly checks that

Tλ(yg) =
(
x+ i

λ

(
∂ξ−λξ

))
Tλg, Tλ

(
1
λDyg

)
=

(
ξ− 1

λ(i∂x+λξ)
)
Tλg = 1

λDxTλg.

2This transform goes back to work by Bros and Iagolnitzer in the 70’s.
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This observation leads one to the following commutator properties of Tλ.
Let a(x, ξ) be a symbol vanishing for |ξ| ≥ 2 and which is Cs

b in x for some
s ∈ (0, 2]. Then aλ(x, ξ) := a(x, λ−1ξ) is supported up to frequencies 2λ. Set
Aλ = Op(aλ), ãsλ = a for s ∈ (0, 1],

ãsλ = a+ i
λ∂xa (∂ξ−λξ)−

1
λ∂ξa (i∂x+λξ) = a+ 2

λ(∂a)(∂−iλξ), s ∈ (1, 2], (4.36)

and Rs
λ,a = TλAλ − ãsλTλ, with 2∂ = ∂x + i∂ξ and 2∂ = ∂x − i∂ξ. The second

equality in (4.36) is true on anti-holomorphic maps where ∂ = 0. The following
core remainder estimates are taken from Theorem 1 and Remark 2.2. of [62].

Theorem 4.22. Let a ∈ Cs
bC

∞
c be as above, s ∈ (0, 2], and λ > 0. We obtain

∥Rs
λ,a∥B(L2,L2

Φ)
≲ λ−

s
2 and ∥(∂ξ − λξ)Rs

λ,a∥B(L2,L2
Φ)

≲ λ
1
2
− s

2 if s > 1.

We will apply Tλ with λ = 2j ≥ 1 to P̄jv. Here one can restrict to (x̄, ξ̄) ∈
B(0, 2)×A(14 , 4) =: K. Indeed formula (4.35) leads to

Φ(ξ̄)
∣∣TλP̄jv(z̄)

∣∣2 = C2
4λ

10
∣∣∣ ∫

R4

e−
λ
2
|ξ̄−η̄|2eiλx̄·η̄(F̄ P̄jv)(λη̄) dη̄

∣∣∣2.
Let (x̄, ξ̄) /∈ K. Note that σλ(F̄ P̄jv) is supported in A(12 , 2) since λ = 2j ,
implying |ξ̄− η̄| ≥ 1

4 . Starting from eiλx̄·η̄ = −i(λx̄k)
−1∂η̄ke

iλx̄·η̄ we can integrate
by parts gaining a factor λ−N |x̄|−N , but losing λN |ξ̄ − η̄|n for some n ≤ N .
Moreover, the Gaussian times λ−

n
2 λ

n
2 |ξ̄−η̄|n can be estimated by e−c′λe−

λ
4
|ξ̄−η̄|2

for c′ = (8 · 16)−1. Using N = 3, Young and Remark 4.17, we obtain

∥TλP̄jv∥L2
Φ(K

c) ≲ λ5λ−4e−c′λ∥F̄ P̄jv∥H3(R4) ≲ e−cλ∥v∥L2
RL

2 . (4.37)

As λ=2j this term is square summable, and it suffices to estimate TλP̄jv on K.

C) Diagonalization of Lj. We now transform (4.27) into a factorization of
Lj . For this we need a refined frequency decomposition taking care of the cases
in (4.27) and of the case |τ | ≫ |ξ| off the characteristic surface C = {ℓj = 0}.

For the latter point, as noted after (4.18) we have |εj |, |µj | ≤ 2
η for j ≥ k0. Let

|ξ̄| ∈ [12 , 2] and |τ | ≥ 4
η |ξ| =: c0 |ξ|. Using also η ≤ 1, we derive |τ | ≥ |ξ̄| − |ξ| ≥

1
2−

1
4 |τ |, and so |τ | ≥ 2

5 . For w = (w1, w2) this inequality yields the lower bound

|ℓjw| ≥ |τ ||w1| − 2
η |ξ||w2| ≥ |τ ||w1| − 1

2 |τ ||w1| ≥ 1
10 |w|, (4.38)

if |w1| ≥ |w2| and hence 2|w1| ≥ |w|, for instance.
Next, for the angle cases in (4.27) we fix maps 0 ≤ ωi ∈ C∞

c (S2) with ωi(θ) = 0
if |θi| ≤ 1

3 for i ∈ {1, 2, 3} and ω1 + ω2 + ω3 = 1. To incorporate the condition
|τ | ≥ c0 |ξ|, we fix ň ∈ N with 2ň ≥ 2(c0+1) and use the cut-off χ̌ = χ−ň+· · ·+χ1

acting in ξ only. Let χτ (|ξ̄|) := χ(|ξ̄|)(1 − χ̌(|ξ|)) be non-zero. We then obtain
|ξ̄| ∈ [12 , 2] and |ξ| ≤ 2−ň, cf. the lines before (3.9). It follows |τ | ≥ 1

2 − |ξ| ≥
(122

ň − 1)|ξ| ≥ c0 |ξ|. Therefore we can apply (4.38) if χτ ̸= 0. We now define

χij(ξ̄) = χ(2−j |ξ̄|)χ̌(2−j |ξ|)ωi(|ξ|−1ξ), χ̌j = σ2−j χ̌, χτ
j = σ2−jχτ ,

P̄ij = χij(D̄), P̌j = χ̌j(D), P̄ τ
j = χτ

j (D̄), Ωi = ωi(D),
(4.39)
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for j ∈ Z and i ∈ {1, 2, 3}. Here we consider χ as a map R>0 → R>0. Observe

P̌jP̄j = P̄1j + P̄2j + P̄3j , (I − P̌j)P̄j = P̄ τ
j . (4.40)

We can now define the operators corresponding to the symbols in (4.24),
(4.25) and (4.27), namely

Mij = Op(mj
iχij), Nij = Op(njiχij), (4.41)

Dj = Op(dj) = diag
(
∂t, ∂t, ∂t + iνj |D|, ∂t − iνj |D|, ∂t + iνj |D|, ∂t − iνj |D|

)
for j ≥ k0 and i ∈ {1, 2, 3}. We write Eν for any operator on Lp

RL
q with norm

less than c2νj and P̄ ′
ij for ‘enlarged’ versions of P̄ij . We collect main properties.

Proposition 4.23. Let ε, µ ∈ C1
b (R4) satisfy ε, µ ≥ η > 0, and p, q ∈ [1,∞].

Then the operators in (4.39) and Oij in (4.41) fulfill

OijP̄ij = P̄ ′
ijOijP̄ij + E−1, MijNijP̄ij = P̄ij + E−1, NijMijP̄ij = P̄ij + E−1,

OijP̄j= P̄ ′
jOijP̄j + E−1, LjP̄ij = MijDjNijP̄ij + E0 for j≥k0, i∈{1, 2, 3}.

Proof. The result follow from the corresponding identities of the symbols
as in (4.27), estimate (4.28), the localization |ξ| ≥ 2k0−ň−1 as well as Lem-
mas 4.20 and 4.21. □

After these preparations we can reduce (4.19) to a scalar half-wave problem
treated in the next section. We write Tj for T2j and L2

x̄ for L2
RL

2. Recall from
Remark 4.17 that we can accept enlarged operators P̄ ′

j on the right of (4.19).

Proposition 4.24. Let ε, µ ∈ C1
b (R4) and ε, µ ≥ η > 0. Then Theorem 4.26

implies (4.19) for j ≥ k0 with additional term ∥LjP̄ijv∥L2
x̄

on the right. In
particular, Theorem 4.8 follows if ε, µ ∈ C2

b (R4).

Proof. We split P̄jv = P̄ τ
j v +

∑
i P̄ijv, see (4.40), and estimate them sep-

arately. We first use Bernstein’s inequalities, the isometry of Tj , Theorem 4.22
and (4.38) to obtain

2−γj∥P̄ τ
j v∥Lp

RL
q ≲ 2

1
2
j∥P̄ τ

j v∥L2
x̄
= 2

1
2
j∥TjP̄ τ

j P̄
′
jv∥L2

Φ
(4.42)

≲ 2
1
2
j∥χτTjP̄

′
jv∥L2

Φ
+ ∥P̄ ′

jv∥L2
x̄
≲ 2

1
2
j∥ℓjTjP̄ ′

jv∥L2
Φ
+ ∥P̄ ′

jv∥L2
x̄

≲ 2
1
2
j2−j∥TjLjP̄ ′

jv∥L2
Φ
+ ∥P̄ ′

jv∥L2
x̄
= 2−

1
2
j∥LjP̄ ′

jv∥L2
x̄
+ ∥P̄ ′

jv∥L2
x̄
,

which fits to (4.19).
To prepare the part including the light cone C, we first compute

∥P̄ijg∥L2
x̄
≲ ∥NijP̄

′
ijMijP̄ijg∥L2

x̄
+ 2−j∥P̄ijg∥L2

x̄
≲ ∥MijP̄ijg∥L2

x̄
+ 2−j∥P̄ijg∥L2

x̄

using Proposition 4.23 and Lemma 4.20. Possibly increasing k0, we conclude

∥P̄ijv∥L2
x̄
≲ ∥MijP̄ijv∥L2

x̄
. (4.43)

These results and Bernstein imply

2−γj∥P̄ijv∥Lp
RL

q ≲ 2−γj∥MijP̄
′
ijNijP̄ijv∥Lp

RL
q + 2−(γ+1)j∥P̄ijv∥Lp

RL
q (4.44)

≲ 2−γj∥P̄ ′
ijw∥Lp

RL
q+ 2−

1
2
j∥P̄ijv∥L2

x̄
≲ 2−γj∥P̄ ′

jw∥Lp
RL

q+ ∥P̄jv∥L2
x̄
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with w := NijP̄ijv. The first two components of w correspond to the degenerate
part of Lj . Here the charges come into play via

2−γj∥P̄ ′
jw1/2∥Lp

RL
q ≲ 2

j
2 ∥|ξ|−1χ′

ijF̄ Div v∥L2
x̄
≲ 2−

1
2
j∥P̄ ′

jρ∥L2
x̄

(4.45)

invoking Bernstein, Plancherel and the form of nji described in (4.27).
The other components wk are treated by means of Theorem 4.26. Using also

Proposition 4.23, Lemma 4.20 and (4.43), we arrive at

2−γj∥P̄ ′
jwk∥Lp

RL
q ≲ ∥P̄ ′

jwk∥L2
x̄
+ ∥Dj,kP̄

′
jwk∥L2

x̄
≲ ∥P̄ ′

ijv∥L2
x̄
+ ∥MijDjNijP̄ijv∥L2

x̄

≲ ∥P̄ ′
jv∥L2

x̄
+ ∥LjP̄ijv∥L2

x̄
. (4.46)

Estimates (4.42), (4.45) and (4.46) imply the first claim. The second follows
from the commutator

[Lj , P̌iΩi] =M [aj(t), P̌jΩi]

which is bounded on L2 by c∥aj(t)∥C2
b
≤ c′∥a(t)∥C2

b
. This can be checked as in

the proof of Lemma 4.16. □

We add a variant of Theorem 4.8 only involving fractional space derivatives,
which is better suited to the study of evolution equations. (See also §4.4 A).)
The basic idea is that on the range of P̌j space and space-time derivatives are
equivalent, whereas L behaves much better off the light cone, as seen in the
above proof. For simplicity we take q < ∞ and inhomogeneous norms. The
energy estimate (4.6) yields ∥v∥L∞

JT
L2 ≲T ∥v0∥L2 + ∥f∥L1

TL2 in (4.47) if s ≥ 1.

Corollary 4.25. In the setting of Theorem 4.8, let q < ∞, T ≥ 1, and
JT = (−1

2 ,
T
2 ). We then obtain

∥⟨D⟩−γ−σ
2 v∥Lp

TLq ≲T ∥v∥L∞
JT

L2 + ∥⟨D⟩−σf∥L2
TL2 + ∥⟨D⟩−

1
2
−σ

2 ρ∥L2
TL2 , (4.47)

if the terms on the right are finite. The analogous result is true on [−T, 0].

Proof. The last claim is shown by reflection. Since we allow for s < 2, we
have to replace the coefficients a−1 by âl = P̄≤l for l = 2

2+sj and j ≥ j0 with
j0 ∈ N0 from the proof of Lemma 4.19. Note that P̄j = P̄jP≤j0 for j < j0, where
P̄0 means P̄≤0. Thus the lower frequencies can be treated as in Lemma 4.12,
but now using Sobolev’s embedding on R3 with −γ − 3

q = 1
p − 3

2 . It follows

∥⟨D⟩−γ−σ
2 P̄jv∥Lp

TLq ≲ ∥P≤j0v∥
Lp
TH

1
p−σ

2
≲ T

1
p ∥v∥L∞

T L2 =: S0 . (4.48)

As in Lemma 4.16, Theorem 3.6 and Minkowski’s inequality allow us to pass to
frequency-localized terms with P̄j which we then split by means of P̌j , cf. (4.39).
However, on the range of P̄j the fractional derivative ⟨D⟩α is not comparable
to 2jα in norm estimates, so that we have to keep it. Moreover, to pass to the
time interval R, we extend f by odd reflection and a time cut-off being 1 on
(−1

2 , T+
1
2) to a map supported in (−1, T+1). The solution of the corresponding

problem (4.3) on R is still denoted by v. Note that f and ρ on (−1, T + 1) are
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bounded by the functions on (0, T ). We set ṽ = ϕv for a map ϕ ∈ C∞(R) with
ϕ = 1 on [0, T ] and support in (−1

2 , T + 1
2). We start with

∥⟨D⟩−γ−σ
2 v∥2Lp

TLq ≤ ∥⟨D⟩−γ−σ
2 ṽ∥2Lp

RL
q ≲ S2

0 +
∑

j≥j0
∥⟨D⟩−γ−σ

2 P̄j ṽ∥2Lp
RL

q

≲ S2
0 +

∑
j≥j0

∥⟨D⟩−γ−σ
2 P̄ τ

j ṽ∥2Lp
RL

q +
∑

j≥j0
∥⟨D⟩−γ−σ

2 P̌jP̄j ṽ∥2Lp
RL

q . (4.49)

On the range of P̌j we can replace D by D̄ and vice versa. We use L̂l with
coefficients âl which preserve the frequency localization. Theorem 4.8 yields

∥⟨D⟩−γ−σ
2 P̌jP̄j ṽ∥Lp

RL
q (4.50)

≲ ∥P̌jP̄j ṽ∥L2
RL

2 + ∥⟨D̄⟩−σL̂lP̌jP̄j ṽ∥L2
RL

2 + ∥⟨D̄⟩−
1
2
−σ

2 P̌jP̄j(ϕρ)∥L2
RL

2

≲ ∥P̄j ṽ∥L2
RL

2+ 2−σj∥(L̂lP̌jP̄j − P̌jP̄jL)(ϕv)∥L2
RL

2+ ∥P̌jP̄j(ϕf)∥L2
RH−σ

+ ∥P̌jP̄j(ϕ
′v)∥L2

RL
2 + ∥P̄j(ϕρ)∥

L2
RH

− 1
2−σ

2

≲ ∥P̄ ′
j(ϕv)∥L2

RL
2+ 2−δj∥ϕv∥L2

RL
2+ ∥P̄j(ϕf)∥L2

RH−σ+ ∥P̄j(ϕ
′v)∥L2

RL
2+ ∥P̄j(ϕρ)∥,

for some δ > 0, arguing as in Lemma 4.19 in the last step. (For s = 2 one can
omit P̄≤l and treat [L, P̌jP̄j ] as in the proof of Lemma 4.16.) Using Littlewood–
Paley, the last square sum in (4.49) is thus bounded by

∥ϕv∥2L2
RL

2 + ∥ϕ′v∥2L2
RL

2 + ∥ϕf∥2L2
RH−σ + ∥ϕρ∥2

L2
RH

− 1
2−σ

2

≤T ∥v∥2L∞(JT ,L2) + ∥f∥2L2
TH−σ + ∥ρ∥2

L2
TH− 1

2−σ
2
.

By means of Sobolev in space and time, |τ | ≤ |ξ̄|, and |ξ| ≤ |ξ̄| if 1
p − σ

2 ≥ 0,
the penultimate square sum in (4.49) is dominated via

∥⟨D⟩−γ−σ
2 P̄ τ

j ṽ∥Lp
RL

q ≲ ∥⟨Dt⟩
1
2
− 1

p ⟨D⟩
1
p
−σ

2 P̄ τ
j ṽ∥L2

RL
2 ≲ 2

1
2
j∥P̄ τ

j ṽ∥L2
RL

2 .

We can now proceed as in (4.42) gaining a derivative and deduce

∥⟨D⟩−γ−σ
2 P̄ τ

j ṽ∥Lp
RL

q ≲ 2−
1
2
j∥L̂lP̄ ′

j ṽ∥L2
x̄
+ ∥P̄ ′

j ṽ∥L2
RL

2

As σ ≤ 1, we estimate the square sum of the above terms as in (4.50) by

∥ϕv∥2L2
RL

2 + ∥ϕ′v∥2L2
RL

2 + ∥⟨D̄⟩−σ(ϕf)∥2L2
RL

2 ≲T ∥v∥2L∞(JT ,L2) + ∥f∥2L2
TH−σ

using ∥⟨D̄⟩−σ(ϕf)∥2
L2
RL

2 ≲ ∥⟨D⟩−σ(ϕf)∥2
L2
RL

2 . Combined with (4.48), (4.49) and
(4.50), the above inequality yields (4.47). □

4.3. A localized Strichartz estimate for a half-wave equation

For Theorem 4.8 it remains to show the following Strichartz estimate, taken
from [63]. We state it for coefficients a ∈ C2

b

(
R4,R3×3

η′
)

with η′ > 0. We set
|ξ|a(x̄) =

√
a(x̄)ξ · ξ, q±(x̄, ξ̄) := τ ± |ξ|a(x̄), and Q± = Op(iq±). We need the

case a = εjµj I with Q± = ∂t ± i
√
εjµj |D|, satisfying the condition below.
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Theorem 4.26. In the above setting assume |∂αx̄ a| ≲α 2
1
2
(|α|−2)j for α ∈ N4

0

and some sufficiently large j ∈ N. Let w ∈ L2
RL

2 decay rapidly outside a compact
set and (p, q, γ) be strict admissible, see (4.10). We then have

2−γj∥P̄jw∥Lp
RL

q ≤ C
(
∥P̄jw∥L2

RL
2 + ∥Q±P̄jw∥L2

RL
2

)
.

In the following we restrict to the case q− =: q and Q− =: Q, as the other one
is handled in the same way (or via time reversal). We sketch the proof given in
pp. 397–415 in [63], following the treatment in Subsection 4.1 of [48].

A) Preparations. Let λ = 2j for j ≥ k0 from above. We write L2
x̄ =

L2
RL

2 and also P̄λ, Tλ etc. instead of P̄j , Tj , etc. since j is fixed and we do
not sum over it. We further set wλ = P̄λw for w with finite norms c(w) :=
∥P̄λw∥L2

RL
2 + ∥QP̄λw∥L2

RL
2 , w̃λ = Tλwλ, and write Eν for any operator with

norm cλν in L2
Φ, L2

x̄ or Lp
RL

q, depending on the context. Moreover g ∈ L2
Φ

means that ∥g∥L2
Φ
≲ c(w), and analogously for other spaces. As before we set

ϕλ(x̄, ξ̄) = ϕ(x̄, λ−1ξ̄). We start with a useful observation.

Lemma 4.27. In the setting of Theorem 4.8, let ϕ ∈ C∞(R4) have bounded
derivatives and assume that ∥ϕw̃λ∥L2

Φ
≲ λ−

1
2 ∥wλ∥L2

x̄
. Then it is enough to treat

(1− ϕλ)wλ in Theorem 4.8, where Tλ
(
(1− ϕλ)wλ

)
= (1− ϕ)w̃λ + E− 1

2
wλ.

Proof. Sobolev’s embedding, the isometry of Tλ and Theorem 4.22 yield

λ−γ∥wλ∥Lp
RL

q ≲ λ
1
2 ∥ϕλwλ∥L2

x̄
+ λ−γ∥(1− ϕλ)wλ∥Lp

RL
q

= λ
1
2 ∥Tλϕλwλ∥L2

Φ
+ λ−γ∥(1− ϕλ)wλ∥Lp

RL
q

≲ λ
1
2 ∥ϕTλwλ∥L2

Φ
+ ∥wλ∥L2

x̄
+ λ−γ∥(1− ϕλ)wλ∥Lp

RL
q

≲ ∥wλ∥L2
x̄
+ λ−γ∥(1− ϕλ)wλ∥Lp

RL
q .

The second claim also follows from Theorem 4.22. □

Note that ϕλχλ satisfies Mikhlin’s conditions in ξ̄ and that (4.37) also works if
one replaces the compactly supported map v by w which decays rapidly outside
a compact set. Using the above lemma, we thus have to estimate w̃λ only on
K = B(0, 2) × A(14 , 4). Similary, take a neighborhood Uκ = {|q(x̄, ξ̄)| < κ} of
the ‘light cone’ C = {q = 0} for some κ > 0. On the complement of Uκ we can
invert q and thus argue as in (4.42) to estimate ∥ϕw̃λ∥L2

Φ
≲ λ−1∥wλ∥L2

x̄
for ϕ

having support in U c
κ/2. By Lemma 4.27 it suffices to bound w̃λ onK∩Uκ =: Kκ.

We start with estimates for w̃λ. Theorem 4.22 with s = 2 and a = q and
Lemma 2.1 in [62] yield

w̃λ ∈ L2
Φ , (λq + 2(∂̄q)(∂ − iλξ̄))w̃λ ∈ L2

Φ , (4.51)

λ−
1
2 (∂ξ̄ − λξ̄)w̃λ ∈ L2

Φ , λ−
1
2 (∂ξ̄ − λξ̄)(λq + 2(∂̄q)(∂ − iλξ̄))w̃λ ∈ L2

Φ . (4.52)

Using ∂x̄ = i∂ξ̄ on anti-holomorphic functions, the second and third property
above and the calculation after formula (26) in [63] lead to

λ
1
2 qw̃λ ∈ L2

Φ and q(∂ − iλξ̄))w̃λ ∈ L2
Φ . (4.53)
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Hence, the second part of (4.51) remains valid if we replace q by hq for a map
h in W 1,∞(R8). The equality ∂x̄ = i∂ξ̄ and (4.51) also imply[

i(∂x̄q ∂ξ̄ − ∂ξ̄q ∂x̄) + λ(q − iξ̄∂x̄q − ξ̄∂ξ̄q)
]
w̃λ ∈ L2

Φ,[
(∂x̄q ∂x̄ + ∂ξ̄q ∂ξ̄) + λ(q − ξ̄∂ξ̄q − iξ̄∂x̄q)

]
w̃λ ∈ L2

Φ .

These expressions simplify a bit if we remove the weight Φ by setting ŵλ =

Φ
1
2 w̃λ. Since ∂ξ̄Φ

1
2 = −λξ̄Φ

1
2 , we deduce[

(∂x̄q ∂ξ̄ − ∂ξ̄q ∂x̄)− iλ(q − ξ̄∂ξ̄q)
]
ŵλ ∈ L2

z, (4.54)[
(∂x̄q ∂x̄ + ∂ξ̄q ∂ξ̄) + λ(q − iξ̄∂x̄q)

]
ŵλ ∈ L2

z . (4.55)

with L2
z = L2(R8). The first property corresponds to an ODE along the ‘Hamil-

tonian flow’ for q and is used below to control regularity on C, whereas the
second relates to a gradient flow for q and allows to estimate off C. Observe
that q − ξ̄∂x̄q vanishes by 1-homogeneity. We write Hq = ∂x̄q ∂ξ̄ −∂ξ̄q ∂x̄ for the
Hamilitonian vector field for q .

The first estimates in (4.51) and (4.52) translate into ŵλ, λ
− 1

2∂ξ̄ŵλ ∈ L2
z. The

(proof of the) trace theorem and (4.51) imply

λ−
1
4 ∥ŵλ∥L2(C∩K) ≲ λ−

1
4 ∥ŵλ∥L2

z
+ λ−

1
4 ∥ŵλ∥

1
2

L2
z
∥∂ξ̄ŵλ∥

1
2

L2
z
≲ c(w). (4.56)

Based on the second part of (4.51), as above one computes λ−
1
2∂ξ̄Hq ŵλ ∈ L2

z.
Together with Hq ŵλ ∈ L2

z from (4.55), we similarly derive

λ−
1
4 ∥Hq ŵλ∥L2(C∩K) ≲ c(w). (4.57)

In the following we only need these two estimates.

B) Reduction to an estimate for an oscillatory integral. We want to
estimate ŵλ by its trace on C ∩K which is controlled via (4.56) and (4.57). To
this aim we parametrize a neighborhood K ′

κ of (a part of) C ∩K by (r, ζ) for
the distance r to C ∩K and C2-coordinates ζ on C ∩K. Here r is given by

(x̄, ξ̄) = (x̄0, ξ̄0) + r
∇x̄,ξ̄q(x̄0, ξ̄0)

|∇x̄,ξ̄q(x̄0, ξ̄0)|
= ζ + r(∇x̄,ξ̄r)(x̄0, ξ̄0)

for the base point (x̄0, ξ̄0) ∈ C ∩ K. It can be seen that r/q is Lipschitz, see
p. 400 in [63]. We can replace q by r in (4.51) and hence in (4.55). Moreover,
the differential expression for r in (4.55) transforms into

drŵλ :=
[
∂r + λ

(
r − i∂x̄r(ζ)(ξ̄(ζ) + r∂ξ̄r(ζ))

)]
ŵλ =: g ∈ L2

z. (4.58)

Here we consider ξ̄, x̄, ∂x̄r and ∂ξ̄r as functions of ζ ∈ C ∩K, which is partly
suppressed below.

Below we use the transformation dx̄ dξ̄ = h(r, ζ) dr dζ, where h is strictly
positive, h(0, ζ) = 1 and dζ denotes the surface measure on C ∩K. We split ŵλ

by means of the ordinary differential equations

drŵ
1 = g on K ′

κ, ŵ1 = 0 on C ∩K,
drŵ

2 = 0 on K ′
κ, ŵ2 = ŵλ =: φ on C ∩K,
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drŵ
3 = −∂r 1

h ŵ
2 on K ′

κ, ŵ3 = 0 on C ∩K.

We have ŵ3 = (1− 1
h)ŵ

2 and ŵλ = ŵ1+ŵ3+ 1
h ŵ

2. We set w1 = T ∗
λΦ

− 1
2 (ŵ1+ŵ3)

and w2 = T ∗
λΦ

− 1
2
1
h ŵ

2 so that w1 +w2 = T ⋆
λTλwλ = wλ. Energy-type estimates

show that λ
1
2 ŵ1 ∈ L2

z and λ
1
2 ∥ŵ3∥2 ≲ ∥ŵ2∥2 ≲ λ−

1
4 ∥φ∥2, see (37) in [63]. Hence

(4.56) implies λ
1
2 ∥w1∥2 ≲ c(w).

It remains to treat w2. The ode for ŵ2 can be solved explicitely. Applying
T ∗
λΦ

− 1
2 and transforming to (r, ζ), we deduce

w2(ȳ) = C4λ
3

∫
e−

λ
2
(ȳ−x̄−rrx̄−i(ξ̄+rrξ̄))

2
e−

λ
2
(ξ̄+rrξ̄)

2
e−

λ
2
r2eiλ(rrx̄ξ̄+

1
2
r2rx̄rξ̄)φ(ζ) dr dζ

with the abbreviations rx̄ = ∂x̄r and rξ̄ = ∂ξ̄r. Astonishingly the r-integral can
be calculated explicitely, leading to

w2(ȳ) = C4λ
− 1

2λ3
∫
C
eiλξ̄·(ȳ−x̄)e−

λ
2
ωζ(ȳ−x̄)α(ζ)φ(ζ) dζ =: C4λ

− 1
2Vλ(α

−1φ)(ȳ),

ωζ(ȳ − x̄) = (ȳ − x̄)2 −
[(rx̄ + irξ̄) · (ȳ − x̄)]2

r2
ξ̄
+ 2r2x̄ + irx̄ · rξ̄

, α(ζ) = (r2ξ̄ + 2r2x̄ + irx̄rξ̄)
− 1

2 .

The map α is well defined since |∇r| = 1. We can include it into φ as it is
Lipschitz and so [Hq , α] is bounded. It can been seen that Reω > 0 and the
above functions are continuous in x̄ and smooth in ξ̄.

Because of (4.56) and (4.57), we have to show

∥Vλφ∥Lp
RL

q ≲ λγ+
1
4
(
∥φ∥L2(C) + ∥Hqφ∥L2(C)

)
(4.59)

for φ with support in C ∩ K. To exploit the extra regularity on the right of
(4.59), we use the Hamiltonian flow (x̄t, ξ̄t) for q solving

d
dt x̄t = qξ̄(x̄t, ξ̄t),

d
dt ξ̄t = −qx̄(x̄t, ξ̄t), (x̄0, ξ̄0) = (x̄, ξ̄). (4.60)

Note that (x̄t, ξ̄t) belongs to C if (x̄, ξ̄) ∈ C = {q = 0} since d
dtq(x̄t, ξ̄t) =

(∇x̄,ξ̄q)q(x̄t, ξ̄t) · d
dt(x̄t, ξ̄t) = 0 by (4.60). We set Rφ(x̄, ξ̄) =

∫∞
0 e−tφ(x̄t, ξ̄t) dt

noting that (I − Hq)Rψ = ψ. Setting φ = Rψ, estimate (4.59) and thus
Theorem 4.26 follow from the next result, which is Theorem 6 of [63].

Proposition 4.28. In the above setting, let b ∈ C∞
c (R4×R4 \{0}) being one

for |ξ| ∈ [14 , 4]. We then obtain

∥VλbRψ∥Lp
RL

q ≲ λγ+
1
4 ∥ψ∥L2(C) .

Equivalent statements are that (VλbR)∗ : L
p′

RL
q′ →L2(C) is bounded by λγ+

1
4 or

Z = VλbRR
∗bV ∗

λ : Lp′

RL
q′ → Lp

RL
q by λ2γ+

1
2 . (4.61)

since ∥T ⋆g∥22 = ⟨TT ⋆g, g⟩.
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C) On the proof of the core estimate. We give a brief overview of
the demanding and lengthy derivation of Proposition 4.28. First, for the en-
ergy triple (∞, 2, 0) it suffices to show to the stronger estimate ∥Ṽλ,t,τφ∥2 ≲
e−cλ(t−τ)2∥φ∥2 for t, τ ∈ R and the operator Vλ,t,τ : L2(R6) → L2(R3) given by

Ṽλ,t,τφ(y) = λ3
∫
R6

eiλξ̄·(x̄−ȳ)e−λωx̄,ξ(x̄−ȳ)b(x̄, ξ̄)φ(x, ξ) d(x, ξ).

This estimate follows from the inequality

|K̃t,τ (y, y
′)| ≲N λ3e−cλ(t−τ)2

(
1 + λ|y − y′|

)−N

for the kernel of Ṽλ,t,τ Ṽ ⋆
λ,t,τ . See p. 404 of [63].

The main step in the proof of Proposition 4.28 is the case 2 < p < q. (We have
p > 2 for strict triples and m = 3.) To treat any strict triple (p̄, q̄, γ̄) ̸= (∞, 2, 0),
we choose p < p̄ and q > max{q̄, p} and interpolate using θ := p/p̄ ∈ (0, 1) and

1

p̄
=
θ

p
+

1− θ

∞
,

1

q̄
=
θ

q
+

1− θ

2
, γ̄ =

3

2
− 3

q̄
− 1

p̄
= θγ + (1− θ)0.

So let 2 < p ≤ q. We note that R⋆ is given like R with (x̄−t, ξ̄−t) and hence
RR⋆φ(x̄, ξ̄) =

∫
R e−|t|φ(x̄t, ξ̄t) dt =: Rφ(x̄, ξ̄). We can thus write

Z = VλbRδq=0bV
∗
λ .

Let q−θ(x̄, ξ̄) = (τ−a(x̄)ξ ·ξ)−θ
+ for Re θ < 1. As a distribution-valued map, q−θ

can be analytically extended to Re θ ∈ [1, 2). Moreover, for θ = 1 it coincides
with the restriction operator δq=0 to C. (Compare §IX.1.2 in [59] or the proof
of Proposition 3.7 in [49].)

One estimates Z by an interpolation argument. For this we fix ϕ ∈ C∞
c (R4)

being 1 near x̄ = 0 and set ϕδ(x̄) = ϕ(δx̄). For an integral operator J with
kernel k we define Jδ with kernel ϕδ(x̄− ȳ)k(x̄, ȳ). Also, for Re θ ≥ 0 let Rθ be
given by inserting |t|1−θ in the integrand of R. We then introduce the operators

Wθ = Vλbq−θRθe
iλqbV ∗

λ , Xθ = Vλbq−θRθbV
∗
λ , Zθ =W

√
λ

θ +Xθ −X
√
λ

θ .

Here W
√
λ

θ possesses a short-range kernel and Xθ − X
√
λ

θ a long-range kernel,
and we have Z1 = Z.

The maps Zθ for Re θ = 0 are estimated in B(L2
RL

2) by c, and for Re θ = ϑ :=
q
2 in B(Lr′

RL
1, Lr

RL
∞) by cλϑ(2γ+

1
2
). Here r > p is chosen such that 1

p = ϑ
2 +

1−ϑ
r .

Hence the interpolation result in § IX.1.2.5 of [59] will yield Proposition 4.28.
The estimate for Re θ = 0 in B(L2

RL
2) is again based on analysis of the kernel

of VλV ∗
λ , see p. 405f. of [63]. The treatment of the case Re θ = ϑ is reduced

to the operators Zt = VλbF
tδq=0bV

∗
λ for t ∈ R, where F t is the substitution

with (x̄t, ξ̄t). This is achieved by handling the t- and τ -integrals separately, see
p. 406f. of [63]. The operator Zt has the kernel

Kt(ȳ, ȳ
′) = λ6

∫
R6

eλω(x̄−ȳ)eλω(x̄t−ȳ′)b(x̄, ξ̄)b(x̄t, ξ̄t)e
iλξ̄·(x̄−ȳ)e−iλξ̄t·(x̄t−ȳ′) d(x̄, ξ).

The desired norm inequality for Zθ with Re θ = ϑ follows from the kernel bound

|Kt(ȳ, ȳ
′)| ≲ λ4e−cλ(s−s′−t)2(1 + λ|ȳ − ȳ′|)−1 (4.62)
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for ȳ = (s, y) and ȳ′ = (s′, y′) in R4 and t ∈ R, established in Theorem 7 of
[63]. This result is based on a detailed regularity analysis of the Hamiltonian
flow (x̄t, ξ̄t) in Lemmas 9-12 of [63], which relies on the assumption on ∂αx̄ a.

Using these lemmas, the inequality (4.62) is proven for the short range t <
√
λ

by reducing it to standard oscillatory integral estimates from Sections VIII.3 and
IX.1 of [59]. These results depend on the number 2 of non-vanishing principal
curvatures of C. The long range t ≥

√
λ is split into a ‘non-oscillatory’ part

c|ȳ − ȳ′| ≤ t2 and the ‘oscillatory’ part λ ≤ t2 ≤ c|ȳ − ȳ′|. The former can be
handled by more direct estimates, whereas the latter is more complicated and
involves the Fourier transform.

4.4. Variants and applications

Theorem 4.8 is not suited for applications to quasilinear problems. In this
section we discuss appropriate variants and an application to the local well-
posedness theory. However, for such results one has to differentiate the nonlin-
ear terms, which leads to matrix-valued coefficients in the linearized equation,
cf. Example 1.1. In the anisotropic case this can be done only for rather special
situations so far, see [43] and [49]. On the other hand, in [48] we have developed
theory for the anisotropic Maxwell system on R2, using the same arguments as
presented here. These Strichartz estimates lead to an improved local wellposed-
ness theory on R2. Theorem 4.8 can still be used to establish local wellposedness
of semilinear Maxwell systems arising from retarded problems. This application
is treated at the end of the section. Below we can only sketch the arguments in a
more informal way, and we cannot discuss variants as we did in Section 4.1. We
further note that for scalar coefficients and certain additional conditions, there
are global-in-time Strichartz estimates, see [16], and (local-in-time) on domains
in the presence of boundary conditions, see [11].

A) Strichartz estimates in an L1
R-setting. For the treatment of evolu-

tion equations, one prefers a true local-in-time estimate without (non-local and
non-causal) time regularity, as we have achieved it in Corollary 4.25. There
we have passed to an error term for v = (D,B) in L∞

T L
2, as L2

TL
2 does not

fit to some of the arguments anymore, cf. (4.48). However, the data are still
measured in L2

T on the right-hand side of the Strichartz inequalities. In view of
the results for the wave equation in Theorem 3.13 or the energy estimate (4.6),
we rather expect and prefer L1

T here. Even more importantly, the applications
to quasilinear problems lead to linearized systems with ∇̄(ε, µ) ∈ L2

TL
∞, for

instance. As a first step towards such Strichartz estimates we look at Lipschitz
coefficients with ∂2x̄(ε, µ) ∈ L1

RL
∞. We state a slightly weaker version of The-

orem 1.3 of [43], recalling that L = ∂t +Ma−1 represents the Maxwell system
(4.3) for v = (D,B).

Theorem 4.29. Let ε, µ ∈ C1
b (R4,R) with ∂2x̄(ε, µ) ∈ L1

RL
∞ and ε, µ ≥ η for

some η > 0, σe = 0 = σm, (p, q, γ) be admissible with p < ∞, T > 0, and
v ∈ L∞

T L
2. Set Lv = f and ρ = Div v. Then v satisfies

∥|D|−γv∥Lp
TLq ≲ κ

1
p ∥v∥L∞

T L2 + κ
− 1

p′ ∥f∥L1
TL2 + T

1
2
(
∥|D|−

1
2 ρ(0)∥L2
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+ ∥|D|−
1
2∂tρ∥L1

TL2

)
, (4.63)

if the terms on the right are finite and T ∥∂2x̄(ε, µ)∥L1
TL∞ ≤ κ2 with κ ≳ 1. If

q = ∞, one has to replace Lq by Ḃ0
∞,2.

Note that inequality (4.63) holds trivially for the energy triple (∞, 2, 0). Other
(non-strict) triples (∞, q, γ) are excluded to avoid technical problems in steps 2)
and 3) below. In step 2) we see that we can replace |D| by ⟨D⟩ in (4.63). The
different form of the charge term is caused by the arguments in step 4) below.
Note that ∂tρ = Div f by (4.2).

As for Theorem 4.8, the proof of (4.63) involves a lenghty reduction process
to a frequency-localized and -truncated inequality, namely

2−γj∥vj∥Lp
RL

q ≲ ∥P̄ ′
jv∥L∞

R L2 + ∥Ljvj∥L1
RL

2 + 2−
1
2
j∥P̌jP̄jρ∥L2

RL
2 (4.64)

for strict triples, vj = P̌jP̄jv, v ∈ L∞
R L

2 with support in a ball of fixed size, κ = 1
and j ≥ k0. As before we set Lj = ∂t +Maj and aj = P̄≤j/2 diag(ε

−1, µ−1).
In contrast to (4.19) we have L∞

T and L1
T instead of L2

R. Moreover, we have
already reduced to frequencies |ξ| ≳ |τ | in order to deal with the purely spatial
regularity in (4.63). We first explain why (4.64) implies (4.63) in several steps,
before we discuss its proof.

1) Using the scaled function vλ(t, x) = v(λt, λx) for λ = Tκ−2 we can reduce
Theorem 4.29 to T = κ2. As in p. 426f. of [64] one then sees that it is enough
to consider the case T ∥∂2x̄(ε, µ)∥L1

TL2 ≤ 1. Finally, by scaling with λ = T , we
can restrict to T = 1 = κ.

2) The small frequency part w := P̄≤j0v = P̄≤j0P≤j0+1v for j ≤ j0 can be
treated as in (4.48). If q < ∞, we now involve the Sobolev embedding H

1
p ↪→

Ḣ
1
p ↪→ Ḣ−γ,q. For q = ∞, we first use Hβ,r ↪→ L∞ for some δ := β − 3

r > 0 and

r ∈ (3p,∞), and then H
1
p
− 3

r ↪→ Ḣ−γ,r. It follows

∥|D|−γPkw(t)∥L∞ ≲ ∥Pkw(t)∥H 1
p+δ ≲j0 ∥Pkw(t)∥L2 .

Littlewood–Paley in L2 then yields ∥|D|−γw∥Lp
1Ḃ

0
∞,2

≲j0 ∥w∥Lp
1L

2 ≤ ∥v∥L∞
1 L2 .

Hence, we only have to treat ṽ := P>j0v on the left-hand side. As in
Lemma 4.12, we see that (4.63) is true for ṽ on the left and with ⟨D⟩ instead of
|D|. Here we use ε, µ ∈ C1

b .

3) If (p, q, γ) is not strict, we pass to the strict triple (p, q̄, γ̄) with 1
q̄ = 1

2−
1
p > 0

as in Lemma 3.17. If q <∞, the Sobolev embedding Ḣ−γ̄,q̄ ↪→ Ḣ−γ,q and (4.63)
for (p, q̄, γ̄) imply the estimate for (p, q, γ). For q = ∞, we use Bernstein,
Minkowski and (4.63) for ṽ to compute

∥|D|−γ ṽ∥2
Lp
1Ḃ

0
∞,2

≲
∥∥∥∑

k≥j0
2−2kγ̄∥Pkv∥Lq̄

∥∥∥2
Lp
1

≤
∑

k≥j0
∥|D|−γ̄Pkv∥2Lp

1L
q̄

≲
∑
k≥j0

[
∥Pkv∥2L∞

1 L2 + ∥LPkv∥2L1
1L

2 + ∥|D|−
1
2Pkρ(0)∥2L2 + ∥|D|−

1
2∂tPkρ∥2L1

1L
2

]
.
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The square sum can be taken into the L1-norms by Minkowski. A bit sloppy,
LPkv is written as Pkf +Da

−1 Pkv+[a−1,MPk]v. The second term is bounded
in L2 by ∥Pkv(t)∥2, whereas the third is split into

[a−1,MPk]P
′′
k v + PkM

(
P≥k−2a

−1(I − P ′′
k )v

)
as in the proof of Lemma 4.16. Both summands are estimated as in this proof by
∥a−1(t)∥2,2∥P ′′

k v(t)∥2. All together the square sum of ∥LPkv∥L1
1L

2 is less than
c
(
∥v∥2L∞

1 L2 + ∥f∥2
L1
1L

2

)
. In the summand with L∞

1 we use the energy estimate
(4.6) to obtain ∥Pkv(0)∥2L2+∥f∥2

L1
1L

2 and then ∥v0∥2L2 ≤ ∥v∥2L∞L2 by Littlewood–
Paley, arriving at (4.63). From now on we can assume p, q <∞.

4) In this core step we deduce (4.63) for κ = 1 = T , strict triples and ṽ on
the left from the estimate

∥|D|−γ ṽ∥Lp
1L

q ≤ ∥|D|−γ ṽ∥Lp
2L

q ≲ ∥v∥L2
RL

2 + ∥f∥L2
RL

2 + ∥⟨D⟩−
1
2 ρ∥L2

RL
2 (4.65)

involving again only L2
RL

2 on the right. (Observe that |D| and ⟨D⟩ are equiv-
alent on the range of P>j0 by Mikhlin.) Indeed, let (4.65) be true. The so-
lution v of (4.3) is given by Duhamel’s formula for solution operators U(t, r)
with t, r ∈ R. The part P>j0U(·, 0)v0 has the constant charge P>j0ρ(0). We
apply (4.65) to w = ϕP>j0U(·, 0)v0 for ϕ ∈ C∞

c (R) being 1 on [0, 1]. Note
that the resulting inhomogeneity Lw = ϕ′P>j0U(·, 0)v0 can be bounded by
c∥v0∥ ≤ c∥v∥L∞

1 L2 by the energy estimate (4.6), so that

∥⟨D⟩−γP>j0U(·, 0)v0∥Lp
2L

q ≲ ∥v(0)∥L2 + ∥⟨D⟩−
1
2 Div v0∥L2 .

It remains to treat the part ṽ1(t) = P>j0

∫ t
0 U(t, r)f(r) dr. The above estimate

for f(r) instead of v0 then yields

∥⟨D⟩−γ ṽ1∥Lp
1L

q ≤
∫ 2

0

∥∥⟨D⟩−γU(·, r)f(r)
∥∥
Lp
1L

q dr ≲ ∥f∥L1
2L

2 + ∥⟨D⟩−
1
2∂tρ∥L1

2L
2

by Minkowski’s inequality and Div f = ∂tρ.
5) As in Lemma 4.15, we now restrict to v supported in balls of a radius R>0.
6) We strenghten (4.65) to the time interval R on the left, and treat the

frequency region |ξ| ≤ 1
2η|τ |. For the principal symbol ℓ of L and such ξ̄, one

has |ℓ(ξ̄)| ≤ |τ |/2 and |τ | ≤ c0 |ξ̄| with c0 = 2/(2 + η), cf. (4.38). We choose a
smooth function χτ with bounded derivatives and support in this region, being
1 on {|ξ| ≤ 1

4η|τ |}, and Pτ = χτ (D̄). Using Sobolev and Plancherel, we infer

∥⟨D⟩−γPτ ṽ∥Lp
RL

q ≲ ∥⟨D⟩−γPτ ṽ∥
Lp
RH

1
p
≲ ∥⟨D⟩−γPτ ṽ∥

H
1
p− 1

2
R H

1
p

≲ ∥⟨ξ̄⟩
1
2 ℓ−1χτ ℓF̄ ṽ∥L2

RL
2 ≲ ∥(∂t − a−1M)ṽ∥L2

RL
2

≲ ∥v∥L2
RL

2 + ∥f∥L2
RL

2 .

As a result, we can replace in (4.65) ṽ by v̂ = (I − Pτ )ṽ.
7) We next infer (4.65) for v̂ and thus Theorem 4.29 from the frequency

localized version

∥|D|−γvj∥Lp
RL

q ≲ ∥vj∥L2
RL

2 + ∥Lvj∥Lr
RL

2 + 2−
1
2
j∥P̄jP̌jρ∥L2

RL
2 (4.66)
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for vj = P̄jP̌jv, j ≥ j0 and some r ∈ (1, 2). (Here we slighty adjust the definition
of χ̌.) Because of Littlewood–Paley and the fixed size of supp f ⊆ supp v, as in
step 3) it remains to show∑

j≥j0

∥∥[a−1,MP̄jP̌j ]P̄
′
jv
∥∥2
L2
RL

2+
∥∥P̌jMP̄j

(
P̄≥j−2a

−1(I−P̄ ′
j)v

)∥∥2
Lr
RL

2 ≲ ∥v∥2L2
RL

2 .

The commutator can be treated as in Lemma 4.16 only using ε, µ ∈ C1
b . Further,

Bernstein yields∥∥2jP̄≥j−2g
∥∥ ≲

∑
k≥j−2

2j−k
∥∥P̄k∇̄P̄≥j−3g

∥∥ ≲
∥∥∇̄P̄≥j−3g

∥∥
in any Lp

RL
q-norm. Let r∗ = 2r/(2−r). Using also Hölder, the second summand

above is thus is controlled via∥∥P̄≥j−3∇̄a−1
∥∥
Lr∗
R L∞∥v∥L2

RL
2 ≲

∥∥∇̄a−1
∥∥1− 1

r∗
L∞
R L∞

∥∥2−jP̄j−3D
2
x̄a

−1
∥∥ 1

r∗
L1
RL

∞∥v∥L2
RL

2

and thus by 2−
1
r∗ j∥v∥L2

RL
2 which is square summable.

As in Remark 4.17 we see that ∂x̄vj decays rapidly outside a compact set
so that (4.66) follows from the analogous estimate with L1

R instead of Lr
R and

with 2−j∥v∥L∞
R L2 on the right. Moreover, by the energy estimate on compact

time intervals ∥vj(0)∥ behaves like ∥vj(t)∥ up to summands ∥Lvj∥L1
RL

2 . Hence
it suffices to prove (4.66) with ∥P̄jv∥L∞

R L2 on the right.
8) We deduce (4.66) with the above modifications from estimate (4.64) as in

Lemma 4.18 but applying Hölder in time differently, similar to step 7).

Next we indicate the proof of (4.64). In the argument we split P̄jP̌j = P̄1j +
P̄2j + P̄3j , see (4.40). The terms P̄ijv are then estimated as in (4.44) observing
that the symbol compositions in Proposition 4.23 work for Lipschitz coefficients.
For the non-degenerate components one uses the estimate

2−γj∥P̄jw∥Lp
RL

q ≲ ∥P̄jw∥L∞
R L2 + ∥QP̄jw∥L2

RL
2 (4.67)

from Proposition 1.8 in [43], which is a variant of Theorem 4.26. As in step 4)
above one can replace L2

R by L1
R on right. In this way one reduces (4.66) to

(4.67). The latter result is shown in pp. 429–436 of [64], cf. § 4.2 of [48]. This
proof is similar to Theorem 4.26, but adapted to ∂2x̄a ∈ L1

RL
∞ and w ∈ L∞

R L
2.

In particular, Theorem 4.22 is replaced by its variant Theorem 2.3 in [64],
which yields estimates of the transformed solution which are adapted to the
new setting. Also the core part involving the oscillatory integrals is modified
according to the lower regularity of the coefficients.

We finally deduce a corollary for coefficients possessing only one derivative.
To this aim, for s ∈ R we introduce the space Xs of φ ∈ S⋆

0 (R4) with finite norm

∥φ∥Xs = supj∈Z 2
sj∥P̄jφ∥L1

RL
∞ .

Note that ∇̄L1
RL

∞ ↪→ X1 by Bernstein and Young, cf. Remarks 4.6 and 3.4.
For strictly positive ε, µ ∈ Xs one can show a Strichartz estimate with the norm
supj 2

−γ−σ
p ∥P̄jv∥Lp

RL
q on the left. This is deduced from Theorem 4.29 by an

argument as in Lemma 4.19, see Theorem 1.5 in [43]. As a consequence, we
obtain an estimate involving space regularity only.
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Corollary 4.30. Assume that ε, µ ∈ Xs satisfies ε, µ ≥ η > 0, ∥(ε, µ)∥Xs ≲ 1
and ∥∂x̄(ε, µ)∥L2

TL∞ ≲ 1 for some s ∈ [1, 2) and T > 0. Let σ = 2−s
2+s , (p, q, γ)

be admissible, α > γ + σ
p , Lv = f , and Div v = ρ. We then obtain

∥⟨D⟩−αv∥Lp
TLq ≲T ∥v0∥L2 + ∥f∥L1

TL2 + ∥ρ(0)∥
H− 1

2−σ
p
+ ∥∂tρ∥

L1
TH− 1

2−σ
p
.

This result can be shown as Corollary 1.7 in [48], passing to Littlewood–Paley
blocks. On a frequency range |τ | ≲ |ξ| one can use the result mentioned above
and the assumption involving Xs. For |τ | ≫ |ξ|, we argue as in (4.44) employing
∂x̄(ε, µ) ∈ L2

RL
∞. The extra regularity loss α−γ− σ

p is needed to bound certain
square sums.

To treat a quasilinear problem in next paragraph, we pass to the two-
dimensional Maxwell system

∂tD = ∇⊥(µ
−1B)− Je, D(0) = D0,

∂tB = − curl(ε−1D)− Jm, B(0) = B0,
t ∈ J, x ∈ R2. (4.68)

with D,Je : R×R2 → R2, B, Jm, µ : R×R2 → R, ε : R×R2 → R2×2
≥η , ρe = divD,

curl(φ1, φ2) = ∂1φ2 − ∂2φ1, and ∇⊥ = (∂2,−∂1)⊤.
In contrast to (4.3) for (D,B), in (4.68) the fields and coefficients only depend

on the variables (t, x1, x2). Morever, compared to (4.3) the components D3, B1,
and B2 vanish, so that B is orthogonal to the (x1, x2)-plane. This behavior is
called TM polarization (‘transversal magnetic’). If εj3 = ε3j = 0 for j ∈ {1, 2}
and µ is scalar, solutions of (4.3) preserve this structure if it satisfied by (D0,B0)
and J. The theory of Chapter 2 can be transfered to the above setting (adapting
the Sobolev embeddings a bit). One can also infer the wellposedness from the
three-dimensional case, see Appendix A in [11].

Remark 4.31. In the above setting, let p, q ∈ [2,∞], 2
p + 1

q ≤ 1
2 , and γ =

1− 2
q −

1
p . Then the analogues of Theorem 4.8, Theorem 4.29, and Corollary 4.30

are true. See Theorems 1.1–1.3 and Corollary 1.7. in [48]. One can use the same
arguments with obvious modifications in the context of Sobolev and Bernstein
inequalities and the admissibility relations. The core estimates of oscillatory
integrals are modfied since C now has only one non-zero principal curvature,
cf. part C) of Section 4.3. The diagonalization of the symbol is easier in this
case and thus also works in the matrix case. Here one can compute both the
transformation matrixm and its inversem−1, see (30) and (31) in [48] for µ = 1.
They mainly involve ξj/|ξ|ε̃ for |ξ|2ε = ε̃ξ ·ξ and ε̃ = det(ε) ε−1. In [48] one finds
more Strichartz estimates with different exponents on the right-hand side. ♢.

B) A quasilinear problem in lower regularity. We apply Corollary 4.30
on R2 to the quasilinear equation
∂tD = ∇⊥(B), D(0) = D0,

∂tB = ∂2(ε
−1(D)D1)− ∂1(ε

−1(D)D1), B(0) = B0,
t ∈ J, x ∈ R2. (4.69)

with ε−1(D) = ψ(|D1|2 + |D2|2) and divD0 = 0. Here ψ : R≥0 → R is smooth
and increasing with ψ(0) = 1. This covers the Kerr case ε(E) = 1 + |E|2. We
set v = (D,B) = (ṽ, v3) and state Theorem 1.9 of [48].
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Theorem 4.32. Under the above assumptions, let s > 11/6 and v0 ∈ Hs(R2).
Then there is a unique local solution v ∈ C

(
[0, T ],Hs(R2)

)
with ∇̄v ∈ L1

TL
∞ of

(4.69) for some T = T (∥v0∥s) > 0. It depends continuously on v0 in Hs.

We note that energy methods alone yield the result for s > 2, see [32]. For the
wave equation the same improvement for the wave equation was established in
Theorem 5.1 in [64]. This seems to be the borderline for an approach only using
linearization and Strichartz estimates. Here we use an approximation method
presented in [28], which starts from the existence of regular solutions for regular
data as provided by [32] or Chapter 2.3 This has the advantage that one use
(4.69), which fits to the Strichartz, and the version where one applies product
and chain rule to curl(ε−1(D)D), which fits to energy estimates. We write the
resulting equation as

∂tv = A1(v)∂1 +A2(v)∂2 (4.70)

with the coefficient matrices

A1(v) =

 0 0 0
0 0 −1

−2ψ′(|ṽ|2)v1v2 −2ψ′(|ṽ|2)v22 − ψ(|ṽ|2) 0

 ,

A2(v) =

 0 0 1
0 0 0

2ψ′(|ṽ|2)v21 + ψ(|ṽ|2) 2ψ′(|ṽ|2)v1v2 0

 .

Let v be a smooth solution, ∥v0∥Hs ≤ r0, set r(t) = ∥∇xṽ(t)∥L∞ and write c
for constants only depending on ∥v∥L∞

T L∞ .
1) Using commutator and Moser-type estimates, one can show the energy

inequality

∥v(t)∥Hs ≤ cec
∫ t
0 r dτ∥v0∥Hs , (4.71)

see Proposition 6.1 in [48]. Moreover, there is a time T = T (∥v0∥s) such that
∥v(t)∥Hs ≤ c∥v0∥Hs .

2) To show this fact we fix R = c0r0 for a suitable c0 > 0. Let T1 > 0 be the
supremum of T > 0 such v exists on [0, T ] and ∥∇xw∥L4

TL∞ ≤ R. Let T < T1

and set R1 = ∥r∥L1
T
≤ T

3
4R. We can control the norms

∥∇xε(ṽ)∥L2
TL∞ ≤ cT

1
4R ≤ 1, ∥∇xε(ṽ)∥L1

TL∞ ≤ cT
3
4R ≤ 1

for small T = T (r0) ∈ (0, T1). Hence we can apply Corollary 4.30 in the version
of Remark 4.31 with a unform constant. We note that

∥P≤j0∇xv∥L4
TL∞ ≲ T

1
4 ∥v∥L∞

T L2 ≤ cecR1T
1
4 r0 ≤ cT

1
4 r0

by Hölder, Bernstein and the energy estimate. For high frequencies we use
ṽ = ⟨D⟩sv. Since L(v)v = 0, as above one can bound

∥L(v)ṽ(t)∥L2 = ∥[L(v), ⟨D⟩s]v(t)∥L2 ≤ cr(t)∥v(t)∥Hs .

3In the lecture an erroneous argument was presented.
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We take the admissible triple (4,∞, 34) and note that 1− s < −5
6 = γ + σ

p since
σ = 1

3 for s = 1. Hence the Strichartz inequality and step 1) yield

∥P≥j0∇xv∥L4
TL∞ ≲ ∥⟨D⟩1−sṽ(t)∥L4

TL∞ ≲ ∥ṽ(0)∥L2 + ∥L(v)ṽ∥L1
TL2

≲ c
(
∥v0∥Hs +R1 sup

t≤T
∥v(t)∥Hs

)
≲ c

(
r0 + T

3
4 ecRT

3
4 r0

)
< R.

for sufficiently small T = T (r0) > 0, as claimed. (We avoid the Besov norm on
the left by a slight regularity loss.)

3) As in step 1) one can show the contraction ∥v(t) − v̂(t)∥L∞
T Hs ≤ c∥v̂0 −

v̂0∥Hs . for the solution v̂ of (4.69) with initial value v̂0 and ∥v̂0∥Hs ≤ r0, see
Proposition 6.2 in [48]. These ingredients are enough to show Theorem 4.32
using [28], as explained in §6 of [48].

C) A retarded nonlinear problem in low regularity. This is very
recent joint work with C. Bresch, see [8]. In nonlinear optics the typical nonlin-
earities exhibit retardations in time, see [7], [12] or [20] and the short discussion
around (1.10). We only look at the typical example

∂t(εE) = curlH − ∂tP (E), ∂t(µH) = − curlE, t ≥ 0, x ∈ R3,

E(t) = E0(t), H(t) = H0(t), t ∈ [−b, 0], x ∈ R3, (4.72)

with ε, µ ∈ C2
b (R3,R), ε, µ ≥ η > 0, κ ∈W 1,∞(R≥0, L3(R3,R3)), a > 0, and

P (E)(t) =

∫
[−a,t]3

κ(t− r1, t− r2, t− r3)[E(r1), E(r2), E(r3)] d(r1, r2, r3)

for t ≥ 0. Here one has to impose conditions for the ‘prehistory’E0 for t ∈ [−a, 0]
and not just at time t = 0. In [8] we treat finite sums of analogous n-linear
terms also for the magntization with kernels depending on x and r-integrals
over (−∞, t]n assuming also that κ is W 1,1 in time. Moreover, we allow for
conductivity. In typical examples, κ is given by trigonometric polynomials times
decaying exponentials.

In the above setting, one can differentiate P (E) in time obtaining

∂tP (E)(t) =

∫
[−a,t]3

∂1κ(t− r1, t− r2, t− r3)[E(r1), E(r2), E(r3)] d(r1, r2, r3)

+

∫
[−a,t]2

κ(0, t− r2, t− r3)[E(t), E(r2), E(r3)] d(r2, r3) + · · ·

We stress that no derivative hits E, resulting in a semilinear non-local problem.
Existence and unqiqueness of such problems was shown in [3] in Hs(R3) for
s > 3

2 , using that this space embedds into L∞(R3).
We now treat the case s ∈ (1, 32 ], strict admissible (p, q, γ), s > 1 + 1

q , α =

s− γ > 3
q and use that Hα,q(R3) ↪→ L∞(R3). We set

Z(b) = Cb

(
[−a, b],Hs(R3)6

)
∩ Lp

(
[−a, b],Hα,q(R3)6

)
for b ≥ 0, endowed with the canonical norm. Moreover let Et(τ) = E(t+ τ) for
τ ∈ [−a, 0] andf t ≥ 0, u = (E,H), L = a∂t+M , and F (Et) = 1

ε∂tP (E)(t). One
can the check that F : Z(b) → L1

(
[0, b],Hs ∩ Hα,q

)
is Lipschitz on balls, using
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Hα,q(R3) ↪→ L∞(R3). Moreover we can shift Theorem 4.29 to the regularity
level s > 1.

Corollary 4.33. In the above setting, let T ∈ (0, 1], u0 ∈ Hs(R3), and
f ∈ L1(0, T ),Hs(R3)). We then obtain

∥⟨D⟩αu∥Lp
THα,q ≲ ∥u0∥Hs + ∥f∥L1

THs + ∥ρ(0)∥
Hs− 1

2
+ ∥∂tρ∥

L1
THs− 1

2
.

if the terms with ρ = Div(au) are finite.

Here we pass to u as in Lemma 4.14, to inhomogeneous derivatives as after
Theorem 4.29, and to u0 using the mapping properties of the C0–semigroup
generated by a−1M . The regularity lift to s > 1 is more complicated as in
Remark 4.13. For the charge terms one has to exploit the negative regularity in
the charge terms in Theorem 4.29. See Theorem 3.4 in [8].

Unfortunately the charge terms in Corollary 4.33 would spoil the local well-
posedness result. To deal with them, we use the projection Qθ on N(curl) with
kernel given by div(θφ) = 0 and set Q = diag(Qε, Qµ) as well as Q̃ = I − Q.
One can check that these operators behave well in Hs and Hα,q, see Lemma 4.6
in [8]. We can split (4.72) with ‘frozen’ nonlinearity into

∂tQ̃u(t) = a−1MQ̃u(t) + Q̃F (vt), ∂tQu(t) = QF (vt),

where v is taken from a suitable ball in Z(b). Here the inhomogeneity f(t) =

Q̃F (ut) is charge-free (for the operator L) and the second equation can be simply
integrated.

Assuming that u0 ∈ Z(0) and Qu0(0) ∈ Hα,q, we can then solve the fixed
point problem v 7→ u and establish a local wellposedness theory in Z(b), see
Section 5 in [8].
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