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CHAPTER 1

Introduction and local wellposedness on R3

In this section we develop a local wellposedness theory for the quasilinear
Maxwell equations on R3. Our approach is based on energy methods and a
fixed-point argument, which make use of the linear system with time-depending
coefficients. One has to work in Sobolev spaces Hs with s > 5

2 in this context,
where we take s = 3 for simplicity. Actually we treat general symmetric hy-
perbolic systems on R3. In the first subsection we introduce Maxwell equations
and discuss some facts used throughout these notes. We then investigate the
linear case, first in L2 and then in H3, also establishing the finite speed of prop-
agation. Our main tools are energy estimates, duality arguments for existence
in L2, approximation by mollifiers for regularity and uniqueness, and finally a
transformation from L2 to H3. The non-linear problem is solved by means of
fixed-point arguments going back to Kato [30] at least, where the derivation
of blow-up conditions in W 1,∞ and the continuous dependence of data in H3

require significant additional efforts. Finally, for the isotropic Maxwell system,
we show the preservation of energy and construct a blow-up example in H1.
The wellposedness results on R3 are due to Kato [31], but our proof differs

from Kato’s and instead uses (well known) energy methods from the theory of
symmetric hyperbolic PDE, see [5], [7], [11], [36], for instance. The problem on
domains is treated also via energy methods in Chapter 2, and so core features
of these arguments can first be presented in a simpler situation on R3.

1.1. The Maxwell system

The Maxwell equations relate the electric field E(t, x) ∈ R3, the (electric)
displacement field D(t, x) ∈ R3, the magnetic field B(t, x) ∈ R3 and the magne-
tizing field H(t, x) ∈ R3 via the Maxwell–Ampère and Maxwell–Faraday laws

∂tD = curlH − Je, ∂tB = − curlE, t ≥ 0, x ∈ G, (1.1)

where G ⊆ R3 is open and Je(t, x) ∈ R3 is the current density. (See e.g. [29]
for the background in physics.) If G 6= R3 we have to add boundary conditions
to (1.1) as discussed in Chapter 2. We use the standard differential expressions

curlu = ∇×u =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

u1

u2

u3

 , div u = ∇·u = ∂1u1+∂2u2+∂3u3,

where the derivatives are interpreted in a weak sense if needed (see Section 1.2).
Since div curl = 0, solutions to (1.1) fulfill Gauß’ laws

ρe(t) := divD(t) = divD(0)−
∫ t

0
div Je(s) ds, divB(t) = divB(0), (1.2)

1
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for t ≥ 0. The electric charge density ρe is thus determined by the initial charge
and the current density. As there are no magnetic charges in physics, one often
requires divB(0) = 0.
To complete the Maxwell system (1.1), we have to connect the fields via

material laws. They involve the polarization P = D−ε0E and themagnetization
M = B−µ0H which describe the material response to the fields E and B. Below
we set ε0 = µ0 = 1 for simplicity (thus destroying physical units). In these notes
we use instantaneous constitutive relations, namely

(D,B) = θ(x,E,H) = θ(x, u) for regular θ : G× R6 → R6. (1.3)

We choose u = (E,H) as state because this fits best to energy estimates. Other
choices are possible since transformations like θ(x, ·) are typically invertible.
Our main hypothesis will be that ∂uθ(x, u) is symmetric and a0 ≥ ηI for some
number η > 0. Finally, the current is modelled as the sum

Je = σ(x,E,H)E + J0 (1.4)

of a given external current density J0 : R≥0 × G → R3 and a current induced
via Ohm’s law for a (possibly state-depending) conductivity σ : G×R6 → R3×3.

Example 1.1. A basic example in nonlinear optics is the Kerr law

D = χ1(x)E + χ3(x)|E|2E, H = B,

for bounded functions χj : G→ R with χ1(x) ≥ 2η > 0 for all x, see [2], [23] and
also Example 1.21. It is isotropic; i.e., D(t, x) and E(t, x) are parallel. The Kerr
law satisfies our assumption a0 = a>0 ≥ ηI for small E (and for all E if χ3 ≥ 0).
The latter also holds for the more general laws D = χe(x)E + βe(x, |E|2)E and
H = χm(x)B + βm(x, |B|2)B for 3 × 3 matrices χj = χ>j ≥ 2ηI and smooth
scalar βj with βj(0) = 0. ♦

In physics material laws often also contain a time retardation, see [2], [9] or
[23]. Here we stick to the instantaneous case which stays within the PDE frame-
work. (But we expect that we can treat the Maxwell system with retardation
by variants of our methods.)
It is often convenient to rewrite (1.1) with (1.3) and (1.4) as a quasilinear

symmetric hyperbolic system. To this end, we first introduce the matrices

S1 =

0 0 0
0 0 −1
0 1 0

 , S2 =

 0 0 1
0 0 0
−1 0 0

 , S3 =

0 −1 0
1 0 0
0 0 0

 satisfying

curl = S1∂1 + S2∂2 + S3∂3, a× b = (a1S1 + a2S2 + a3S3)b

for vectors a, b ∈ R3. We then define ∂0 = ∂t,

Aco
j =

(
0 −Sj
Sj 0

)
, a0(u) = ∂uθ(·, u), d =

(
σ

0

)
, f =

(
−J0

0

)
(1.5)

for j ∈ {1, 2, 3}. Note that the matrices Aco
j are symmetric.

Then the Maxwell system (1.1) with material laws (1.3) and (1.4) becomes

L(u)u := a0(u)∂tu+

3∑
j=1

Aco
j ∂ju+ d(u)u = f. (1.6)
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Our strategy to solve this problem goes (at least) back to Kato [30]. One freezes
a function v from a suitable space E in the nonlinearities, setting A0 = a0(v)
and D = d(v). One next solves the resulting non-autonomous linear problem
L(v)u =

∑3
j=0Aj∂ju+Du = f in the space E . For small times (0, T ) one finds

a fixed point of the map v 7→ u which then solves (1.6) and (1.1). The first linear
step is more difficult; here it is crucial to control very well how the constants in
the estimates depend on the coefficients. We carry out this program for G = R3

in the following sections.

1.2. The linear problem on R3 in L2

Let J = (0, T ). We solve the linear problem in the space C(J, L2(R3,R6)) =
C(J, L2

x) for coefficients and data subject to the assumptions

Aj = A>j ∈W
1,∞
t,x = W 1,∞(J × R3,R6×6), j ∈ {0, 1, 2, 3}, A0 = A>0 ≥ ηI >0,

D ∈ L∞t,x = L∞(J × R3,R6×6), u0 ∈ L2
x, f ∈ L2

t,x = L2(J × R3,R6). (1.7)

We often omit range spaces as R6 in the notation. We use the subscript t to
indicate a function space over t ∈ J or other time intervals, and x for a space
over x ∈ R3 (or over x ∈ U ⊆ Rm). Compared to (1.6) we allow for D and f
with non-zero ‘magnetic’ components, as needed in our analysis. We also deal
with general symmetric (t, x)-depending coefficients A1, A2 and A3, and thus
with linear symmetric hyperbolic systems. Those occur in many applications,
see [7], [30] or [36]; and our reasoning would not differ much if we restricted
to Aj = Aco

j . Moreover, when treating the Maxwell system on domains by
localization arguments, one obtains x-depending coefficients. It is useful to see
them first in an easier case.
Assuming (1.7), we look for a solution u ∈ C(J, L2

x) of the system

Lu :=
3∑
j=0

Aj∂ju+Du = f, t ≥ 0, u(0) = u0, (1.8)

with ∂0 = ∂t. Here the derivatives are understood in a weak sense.
To explain this, we assume that the reader is familiar with Sobolev spaces

W k,p(U) = W k,p for an open subset U of Rm, k ∈ N0, and p ∈ [1,∞]. (See [1]
or [8], for instance.) We mostly work with real scalars, endow W k,p with the
(complete) norm ‖v‖pk,p =

∑
0≤|α|≤k ‖∂αv‖

p
p (obvious modification for p = ∞),

and write Hk := W k,2 (which is a Hilbert space), Lp = W 0,p and ‖v‖p := ‖v‖0,p.
By W k,p

0 (U) we denote the closure of test functions C∞c (U) in W k,p(U). If ∂U
is compact and Ck (or Lipschitz if k = 1), say, then W k,p

0 is the closed subspace
in W k,p of functions whose (weak) derivatives of order up to k− 1 have trace 0.
One can check that W k,p

0 (Rm) = W k,p(Rm).
Let H−k(U) be the dual space Hk0(U)∗, where we restrict ourselves to p = 2

for simplicity. For ϕ ∈ L2(U), j ∈ {1, . . . ,m} and v ∈ H1
0(U), we define the

weak derivative ∂jϕ ∈ H−1(U) by setting

(∂jϕ)(v) = 〈v, ∂jϕ〉H1
0

:= −〈∂jv, ϕ〉L2 .
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(The brackets 〈·, ·〉X designate the duality pairing between a Banach space X
and its dual X∗.) Since |〈∂jv, ϕ〉| ≤ ‖v‖1,2 ‖ϕ‖2, the linear map ∂j : L2(U) →
H−1(U) is bounded. Iteratively, one obtains bounded maps ∂j : H−k(U) →
H−k−1(U), and analogously ∂α : H−k(U) → H−k−|α|(U) for multi-indices α ∈
Nm0 and k ∈ N0. The definitions imply that these derivatives commute.
For a ∈W 1,∞(U) and ϕ ∈ H−1(U), we next define the map aϕ ∈ H−1(U) by

(aϕ)(v) = 〈v, aϕ〉H1
0

:= 〈av, ϕ〉H1
0
, v ∈ H1

0(U).

Because of ‖av‖1,2 . ‖a‖1,∞ ‖v‖1,2, we see as above that the multiplication
operator Ma : ϕ 7→ aϕ is bounded on H−1(U). (Here and below A .α B stands
for A ≤ cB for a generic constant c = c(α) which is non-decreasing in each
component of α ∈ Rn≥0.) These facts easily extend to Rl–valued functions.
We infer that Lu ∈ H−1

t,x if u ∈ L2
t,x. If Lu = f is contained in L2

t,x, we obtain

∂tu = A−1
0 f −

3∑
j=1

A−1
0 Aj∂ju−A−1

0 Du ∈ L2
tH−1

x = L2(J,H−1
x ), (1.9)

and so u belongs to H1
tH−1

x ↪→ C(J,H−1
x ). Accordingly, the initial condition in

(1.8) is understood in H−1
x .

We will first show the basic energy (or apriori) estimate. Here we use the
temporal weights e−γ(t) := e−γt for γ ≥ 0 and t ∈ J (or t ∈ R) and the weighted
spaces L2

γHkx of functions with (finite) norm

‖v‖L2
γHkx := ‖e−γv‖L2

tHkx .

On J , we have the equivalence ‖v‖L2
γHkx ≤ ‖v‖L2Hkx ≤ eγT ‖v‖L2

γHkx . Taking large
γ in these norms, we can produce small constants in front of the contribution
of f in the inequality below. This fact will be used to absorb error terms by the
left-hand side, for instance. The estimate and the precise form of the constants
is also crucial for the nonlinear problem. We write divA =

∑3
j=0 ∂jAj .

Lemma 1.2. Assume that (1.7) is true and u ∈ H1(J ×R3) solves (1.8). Let
C := 1

2 divA−D, γ ≥ γ′0(L) := max{1, 4η−1‖C‖∞}, and t ∈ J . We then obtain
γη
4 ‖u‖

2
L2
γ((0,t),L2

x) + η
2e−2γt‖u(t)‖2L2

x
≤ 1

2‖A0(0)‖∞ ‖u0‖2L2
x

+ 1
2γη ‖f‖

2
L2
γ((0,t),L2

x) .

Proof. Set v = e−γu and g = e−γf . We have γA0v + Lv = g. Using the
symmetry of Aj , we derive

〈g, v〉 = γ〈A0v, v〉+
3∑
j=0

〈Aj∂jv, v〉+ 〈Dv, v〉

= γ〈A0v, v〉+
1

2

3∑
j=0

(∫ t

0

∫
R3

∂j(Ajv · v) dx ds− 〈∂jAjv, v〉
)

+ 〈Dv, v〉,

where we drop the subscript L2((0, t), L2
x) of the brackets and denote the scalar

product in R6 by a dot. Integration yields

γ〈A0v, v〉+ 1
2〈A0(t)v(t), v(t)〉L2

x
= 1

2〈A0(0)v(0), v(0)〉L2
x

+ 〈Cv, v〉+ 〈g, v〉.
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We now replace v = e−γu, g = e−γf as well as u(0) = u0, and use (1.7) and
‖C‖∞ ≤ γη/4. It follows

γη‖u‖L2
γL

2
x
+η

2e−2γt‖u(t)‖2L2
x

≤ 1
2‖A0(0)‖∞ ‖u0‖2L2

x
+ ‖C‖∞ ‖u‖2L2

γL
2
x

+
√
γη√
γη ‖u‖L2

γL
2
x
‖f‖L2

γL
2
x

≤ 1
2‖A0(0)‖∞ ‖u0‖2L2

x
+
(γη

4 + γη
2

)
‖u‖2L2

γL
2
x

+ 1
2γη ‖f‖

2
L2
γL

2
x
,

which implies the assertion. �

Below we use the above estimate for

γ ≥ γ0(r, η) := max{1, 12r/η} ≥ γ′0(L) (1.10)

where ‖∂jAj‖∞, ‖D‖∞ ≤ r. For γ = 0 its proof yields the energy equality∫
R3

A0(t)u(t)·u(t) dx =

∫
R3

A0(0)u0·u0 dx+2

∫ t

0

∫
R3

(
C(s)u(s)+f(s)

)
·u(s) dx ds.

(1.11)
In the term with C = 1

2 divA − D we have damping effects (if D = D> 	 0)
and extra errors terms coming from the t- or x-dependence of Aj .
Lemma 1.2 yields uniqueness of H1-solutions to (1.8). However, we need

uniqueness (and the energy estimate) for solutions in C(J, L2
x). This fundamen-

tal gap can be closed by a crucial regularization argument based on mollifiers.
We recall the definition and basic properties of this core tools, see e.g. [8].
We set gε(x) = ε−mg(ε−1x) for any function g on Rm, ε > 0, and x ∈ Rm.

Take 0 ≤ ρ ∈ C∞c (Rm) with
∫
ρdx = 1, support supp ρ in the closed unit ball

B(0, 1), and ρ(x) = ρ(−x) for x ∈ Rm. Note that ‖ρε‖1 = 1. For ε > 0 and
v ∈ L1

loc(Rm), we define the mollifiers Rε by

Rεv(x) = ρε ∗ v(x) =

∫
Rm

ρε(x− y)v(y) dy, x ∈ Rm.

One can check that Rεv ∈ C∞(Rm), suppRεv ⊆ supp v + B(0, ε), and
∂αRεv = Rε∂

αv for v ∈ W |α|,p(Rm). Young’s inequality for convolutions yields
‖Rεv‖k,p ≤ ‖v‖k,p for p ∈ [1,∞] and k ∈ N0. Using this estimate, one derives
that Rεv → v in W k,p(Rm) for v ∈ W k,p(Rm) as ε → 0 if p < ∞, since this
limit is true for test functions v. Differentiating ρε(x− y) in x, one also obtains
the smoothing estimate ‖Rεv‖k,p .ε,k ‖v‖p.
Finally, for ϕ ∈ H−k(Rm), v ∈ Hk(Rm) and k ∈ N, we set

(Rεϕ)(v) = 〈v,Rεϕ〉Hk := 〈Rεv, ϕ〉Hk .

This definition is consistent with the symmetry R∗ε = Rε on L2(Rm) which
follows from the symmetry of ρ and Fubini’s theorem. By means of its properties
in Hk(Rm), one can show that Rε is contractive on H−l(Rm) and that it maps
this space into Hk(Rm) for all l ∈ N. Moreover, it commutes with ∂α.
Hence, the commutator [Rε,Ma] := RεMa−MaRε tends to 0 strongly in L2

x if
a ∈ L∞x . It even gains a derivative if a ∈W 1,∞

x , which is crucial for our analysis.
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Proposition 1.3. Let a∈W 1,∞(Rm), u∈L2(Rm), j∈{1, . . . ,m}, and ε>0.
Set Cεu := Rε(a∂ju)− a∂j(Rεu). Then there is a constant c = c(ρ) such that

‖Cεu‖2 ≤ c‖a‖1,∞ ‖u‖2 and Cεu→ 0 in L2
x as ε→ 0.

Proof. Let v ∈ H1(Rm). Using the above indicated facts, we compute

〈v, Cεu〉H1 = 〈aRεv, ∂ju〉H1 − 〈av,Rε∂ju〉H1 = 〈∂j(Rε(av)− aRεv), u〉L2 .

We set C ′εv = ∂j(Rε(av)− aRεv) and Rjε for the convolution with (|∂jρ|)ε. For
a.e. x ∈ Rm, differentiation and |x− y| ≤ ε yield

C ′εv(x) =

∫
B(x,ε)

ε−m(∂jρ)(ε−1(x− y)) ε−1(a(y)−a(x))v(y) dy − ∂ja(x)Rεv(x),

|C ′εv(x)| ≤ ‖a‖1,∞ (|Rjεv(x)|+ |Rεv(x)|).

(Recall that W 1,∞(Rm) is isomorphic to the space of bounded Lipschitz func-
tions [8].) Young’s inequality now implies the first assertion. The second one is
true for u in the dense subspace H1(Rm) and thus on L2(Rm) by the uniform
estimate. �

With this tool we can extend Lemma 1.2 to all solutions of (1.8) in C(J, L2
x).

Proposition 1.4. Let (1.7) hold and u ∈ C(J, L2
x) solve (1.8). Then the

statement of Lemma 1.2 and (1.11) are also valid for u. Hence, (1.8) has at
most one solution in C(J, L2

x).

Proof. We note that Rεu belongs to C(J,Hkx) for all ε > 0 and k ∈ N.
Moreover, Rεu tends to u in C(J, L2

x) as ε → 0 since u(J) is compact and
Rε → I strongly in L2

x. As ‖Rεf(t)‖2 ≤ ‖f(t)‖2, dominated convergence also
yields Rεf → f in L2

t,x. Using Lu = f and (1.9), we compute

LRεu = Rεf + [D,Rε]u+
3∑
j=1

[Aj , Rε]∂ju+ [A0, Rε]∂tu (1.12)

= Rεf + [D,Rε]u+ [A0, Rε]A
−1
0 (f −Du) +

3∑
j=1

(
[Aj , Rε]− [A0, Rε]A

−1
0 Aj

)
∂ju.

Proposition 1.3 shows that the right-hand side belongs to L2
t,x with uniform

bounds. Hence, Rεu is also contained H1
tL

2
x by (1.9). Arguing as above, we

further see that the commutator terms tend to 0 in L2
t,x and thus in L2

γL
2
x.

Lemma 1.2 and (1.11) for Rεu now lead to the first assertion letting ε→ 0. The
second one follows from linearity. �

Combining the energy estimate with a clever duality argument, one can also
deduce the existence of a solution.

Theorem 1.5. Let (1.7) be true. Then there is a unique map u in C(J, L2
x)

solving (1.8). It satisfies the estimate in Lemma 1.2 and (1.11).

Proof. 1) We need the (formal) adjoint L◦ = −
∑3

j=0Aj∂j +D◦ of L with
D◦ = D> − divA. Let V =

{
v ∈ H1(J × R3,R6)

∣∣ v(T ) = 0
}
, v ∈ V , and
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L◦v = h. We introduce ṽ(t) = v(T − t) and f(t) = h(T − t) for t ∈ J and
the operator L̃ with coefficients Ã0(t) = A0(T − t), Ãj(t) = −Aj(T − t) for
j ∈ {1, 2, 3} and D̃(t) = D◦(T − t). Note that L̃ṽ = f and ṽ(0) = 0. Applied at
time T − t to L̃, ṽ and γ = γ0(r, η) from (1.10), Lemma 1.2 yields the estimate

‖v(t)‖22 = ‖ṽ(T − t)‖22 ≤
2e2γ(T−t)

η · 2ηγ

∫ T−t

0
e−2γτ‖h(T − τ)‖22 dτ

≤ e2γT

γη2

∫ T

t
‖h(s)‖22 ds,

‖v‖L2
t,x
≤ κ
√
T ‖L◦v‖L2

t,x
, κ := 1

η
√
γ eγT . (1.13)

In particular, L◦ : V → L2(J × R3)6 is injective. We can thus define the
functional

`0 : L◦V → R; `0(L◦v) = 〈v, f〉L2
t,x

+ 〈v(0), A0(0)u0〉L2
x
.

The Cauchy–Schwarz inequality and estimate (1.13) imply

|`0(L◦v)| ≤
(
‖f‖L2

t,x
+ ‖A0(0)u0‖L2

x

)
κ
(√
T + 1

)
‖L◦v‖L2

t,x
.

By the Hahn–Banach theorem, `0 has an extension ` in (L2
t,x)∗ which can be

represented by a function u ∈ L2(J, L2
x) via

〈v, f〉L2
t,x

+ 〈v(0), A0(0)u0〉L2
x

= `(L◦v) = 〈L◦v, u〉L2
t,x

(1.14)

= 〈v,Du〉 −
3∑
j=0

∫ T

0

∫
R3

∂j(Ajv)·udx dt (∀ v ∈ V ).

2) To evaluate (1.14), we first take v ∈ H1
0(J × R3). The definition of weak

derivatives then leads to 〈v, f〉L2
t,x

= 〈v, Lu〉H1
0
; i.e., Lu = f in H−1

t,x . Hence,
u belongs to H1

tH−1
x because of (1.9) and f ∈ L2

t,x. For v ∈ V , we can now
integrate by parts the summand in (1.14) with j = 0 in H−1

x ; the others are
treated as before. As v(T ) = 0, it follows

〈v, f〉L2
t,x

+ 〈v(0), A0(0)u0〉L2
x

= 〈v, Lu〉H1
0

+ 〈A0(0)v(0), u(0)〉L2
x
.

Since A0(0) is symmetric and Lu = f , we have also shown that u(0) = u0.
3) We next use (1.12) for wn,m = R1/nu−R1/mu. As in the proof of Propo-

sition 1.4, Proposition 1.3 implies that wn,m is contained in H1
t,x and satisfes

Lwn,m → 0 in L2
t,x and wn,m(0)→ 0 in L2

x as n,m→∞. So (R1/nu) is a Cauchy
sequence in C(J, L2

x) by Lemma 1.2, and it converges to u in L2
t,x. Thus, u be-

longs to C(J, L2
x). The other assertions were proven in Proposition 1.4. �

In the time-independent Maxwell case (A0 = A0(x) and Aj = Aco
j ) one can

show a similar result if A0 is only bounded and positive definite (even with
boundary conditions), see e.g. Theorem 5.2.5 in [4] or §7.8 in [23]. In the non-
autonomous case there are blow-up solutions even for the wave equation on
G = R with Hölder continuous and x-independent coefficients, as shown in [12].
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As indicated in Section 1.1 and described in the next example, the above
result can easily be applied to the linear Maxwell system

∂t(εE) = curlH − σE − J0, ∂t(µH) = − curlE, t ≥ 0, x ∈ R3, (1.15)

which is (1.1) on G = R3 with the material lawsD = ε(t, x)E and B = µ(t, x)H.
We write Rn×nη for the space of real n× n matrices M = M> ≥ ηI.

Example 1.6. Let ε, µ ∈ W 1,∞(J × R3,R3×3
η ) for some η > 0, σ ∈ L∞(J ×

R3,R3×3), E0, H0 ∈ L2(R3,R3) and J0 ∈ L2(J × R3,R3). As in (1.5), we
set A0 = diag(ε, µ), Aj = Aco

j for j = {1, 2, 3}, D = diag(σ + ∂tε, ∂tµ), f =

(−J0, 0), and u0 = (E0, H0). Theorem 1.5 then yields a unique solution (E,H) ∈
C(J, L2

x) of (1.15) with E(0) = E0 and H(0) = H0. It satisfies the energy
equality

‖ε(t)
1
2E(t)‖22 + ‖µ(t)

1
2H(t)‖22 = ‖ε(0)

1
2E0‖22 + ‖µ(0)

1
2H0‖22

−
∫ t

0

∫
R3

(
(2σ+∂tεE+2J0)·E + ∂tµH ·H

)
dx ds. ♦

One of the key features of hyperbolic systems is the finite propagation speed
of their solutions. To see a simple example first, we look at the standard wave
equation ∂2

t u = c2∂xxu on R for the wave speed c > 0 equipped with the initial
conditions u(0) = u0 and ∂tu(0) = v0. (One can put this second-order equation
in the above first-order framework for the new state (∂tu, ∂xu).) The solution
of this wave problem is given by d’Alembert’s formula

u(t, x) = 1
2(u0(x+ ct) + u0(x− ct)) +

1

2c

∫ x+ct

x−ct
v0(s) ds, t ≥ 0, x ∈ R.

Hence, the solution at (x, t) only depends on the initial data on [x− ct, x+ ct];
for instance, u(t, x) = 0 if u0 and v0 vanish on [x − ct, x + ct]. Conversely, the
value of u0 and v0 at y influences u at most for (t, x) with |x− y| ≤ ct; i.e., on
a triangle with vertex (y, 0) and lateral sides of slope ±c. In this sense, c is the
speed of propagation.
We extend these observations to the system (1.8), assuming (1.7). In the

statement we use the backward ‘light’ cone

Γ(x0, R,K) =
{

(t, x) ∈ R≥0 × R3
∣∣ |x− x0| < R−Kt

}
.

It has the base B(x0, R) at t = 0 and the apex (RK , x0). Set

k2
0 = ‖A1‖2∞ + ‖A2‖2∞ + ‖A3‖2∞

with the operator norm for | · |2 on R6×6. Note that k0 =
√

3 in the Maxwell
example.
Below we see (for f = 0) that u vanishes on Γ(x0, R, k0/η) if u0 = 0 on

B(x0, R). Hence, if two initial functions u0 and ũ0 coincide on B(x0, R) then
the corresponding solutions u and ũ are equal on Γ(x0, R, k0/η). In other words,
the values of u0 outside B(x0, R) influence u(t) only off Γ(x0, R, k0/η), that is,
with maximal speed k0/η. Our proof is based on energy estimates with an
exponential weight, and the arguments are taken from §4.2.2 of [5].
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Theorem 1.7. Let (1.7) be true. Assume that u0 = 0 on B(x0, R) and f = 0
on Γ(x0, R, k0/η) for some R > 0 and x0 ∈ R3. Then the solution u ∈ C(J, L2

x)
of (1.8) also vanishes on Γ(x0, R, k0/η).

Proof. 1) Let δ,R > 0 and x0 ∈ R3 be given. There is a function ψ ∈
C∞(R3) with |∇ψ| ≤ η/k0 (for the euclidean norm) and

−2δ+ηk−1
0 (R−|x−x0|) ≤ ψ(x) ≤ −δ+ηk−1

0 (R−|x−x0|), x ∈ R3. (1.16)

We construct ψ as in Theorem 6.1 of [51]. Take χ(s) = −3
2δ + ηk−1

0 (R − |s|)
for s ∈ R. This function is Lipschitz with constant η/k0. The same is true for
the mollified map χε = Rεχ as ∇χε = Rε∇χ. Also, χε tends uniformly to χ as
ε→ 0 since

|χε(s)− χ(s)| ≤
∫
R
ε−1ρ(ε−1τ) |χ(s− τ)− χ(s)| dτ ≤ ηk−1

0 ε

∫
R
ρ(σ) |σ|dσ.

We fix a small ε > 0 such that χε satisfies (1.16) with s instead of |x − x0|
and 5/3 instead of 2. Then ψ(x) = χε((δ

2
0 + |x− x0|2)1/2) does the job, where

δ0 = k0δ(3η)−1.
Set φ(t, x) = ψ(x) − t and uτ = eτφu for τ > 0. Inequality (1.16) yields

ψ(x) ≤ −δ + t if |x − x0| ≥ R − k0t/η (i.e., (t, x) /∈ Γ(x0, R, k0/η)), so that
eτφ ≤ e−τδ ≤ 1 off Γ(x0, R, k0/η) and eτφ is bounded on J × R3. We further
have ∇eτφ = τ∇ψeτφ and ∂te

τφ = −τeτφ. As a result, uτ is an element of
C(J, L2

x) and the right-hand side of

Luτ = eτφf − τ
(
A0 −

3∑
j=1

Aj∂jψ
)
uτ

belongs to L2
t,x. The matrix in parentheses is denoted by M .

2) For ξ ∈ R6 we have Mξ · ξ ≥ (η − k0 |∇ψ|)|ξ|2 ≥ 0. Set C = 1
2 divA −D

and κ = ‖C‖∞. By Theorem 1.5, the function uτ satisfies the energy equality

‖A0(t)
1
2uτ (t)‖2L2

x
= ‖A0(0)

1
2uτ (0)‖2L2

x
+ 2〈(C − τM)uτ + eτφf, uτ 〉L2

t,x
.

Using Cauchy–Schwarz, the above inequalities and Gronwall, we estimate

η ‖uτ (t)‖2L2
x
≤ ‖A0(0)‖∞ ‖eτφu0‖2L2

x
+ ‖eτφf‖2L2

t,x
+ (2κ+ 1)

∫ t

0
‖uτ (s)‖2L2

x
ds,

‖eτφu(t)‖2L2
x
.T ‖eτφu0‖2L2

x
+ ‖eτφf‖2L2

t,x
.

The right-hand side tends to 0 as τ →∞ since u0 and f vanish on Γ(x0, R, k0/η)
and eτφ → 0 uniformly off Γ(x0, R, k0/η). Hence, u(t) has to be 0 on {φ >
δ} = {ψ > t + δ}. By (1.16), this set includes points (t, x) with |x − x0| <
R−k0η

−1(t+3δ). Since δ > 0 is arbitrary here, u equals 0 on Γ(x0, R, k0/η). �

1.3. The linear problem on R3 in H3

As noted in Section 1.1, to solve the nonlinear problem (1.6) we will set
A0 = a0(v) for functions v having the same regularity as the desired solution
u. Since A0 has to be Lipschitz in Theorem 1.5, the same must be true for v.
Working in Hkx spaces, we thus need solutions in L∞t H3

x∩W
1,∞
t H2

x at least. We
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want to reduce the problem in H3
x to that in L2

x by means of a transformation.
(One could also perform the proof of Theorem 1.5 in H3

x instead of L2
x, see e.g.

[7] or [11], which would require more work in our context.)
To this end, we define the square root Λ = (I −∆)1/2 = F−1(1 + |ξ|2)1/2F

of the shifted Laplacian on L2(R3), where F is the Fourier transform. Using
standard properties of F , one can check that Λ commutes with derivatives and
that it can be extended, respectively restricted, to isomorphismsHkx → Hk−1

x for
k ∈ Z with inverse given by Λ−1 = (I −∆)−1/2 = F−1(1 + |ξ|2)−1/2F . Observe
that Λ = (I−∆)Λ−1 and that Λ−1 is a convolution operator with positive kernel,
see Proposition 6.1.5 in [25]. Hence, Λ leaves invariant real-valued functions.
Our analysis relies on a commutator estimate for Λ3 and Ma : ϕ 7→ aϕ which

gains a derivative. In Lemma A2 in [30] it is shown that

‖[Λ3,Ma]‖B(H2(R3),L2(R3)) . ‖∇a‖H2(R3). (1.17)

Here the space dimension 3 is crucial; on Rm one obtains e.g. an analogous
bound for [Λk,Ma] : Hk−1

x → L2
x with k > m

2 + 1. (Noninteger k are also
allowed here.)
Guided by (1.17) and (1.7), we introduce the space

F̃k(J) = F̃k(T ) =
{
A ∈W 1,∞(J × R3,R6×6)

∣∣∇t,xA ∈ L∞t Hk−1
x

}
, k ∈ N,

for the coefficients, endowed with its natural norm. We will usually take k = 3.
We use the same notation for vector- or scalar-valued functions of the same
regularity. The subscript sym will refer to symmetric matrices and η to those
with A = A> ≥ ηI with η > 0. We state the hypotheses of the present section:

A0 ∈ F̃3
η (J), A1, A2, A3 ∈ F̃3

sym(J), D ∈ F̃3(J), (1.18)

u0 ∈ H3
x = H3(R3,R6), f ∈ Z3(J) = Z3(T ) := L2(J,H3

x) ∩H1(J,H2
x).

Set ‖f‖2Z3
γ(J) = ‖e−γf‖2L2

tH3
x

+ ‖e−γ∂tf‖2L2
tH2

x
for γ ≥ 0. We also use the spaces

Ĥkx =
{
v ∈ L∞(R3)

∣∣∇xv ∈ Hk−1
x

}
, G̃k(J) = G̃k(T ) = C(J,Hkx)∩C1(J,Hk−1

x )

with their natural norms. (Such spaces will also be considered on other time
intervals.) We state product and inversion rules which will be used throughout,
cf. [53]. Here one can replace R3 by all Lipschitz domains. In the proof and
also later on, we employ Sobolev embeddings such as H2 ↪→ Lp for p ∈ [2,∞]
and H1 ↪→ Lq for q ∈ [2, 6] on (Lipschitz domains in) R3.

Lemma 1.8. Let k ≥ max{j, 2}.
a) For v ∈ Hkx and w ∈ Hjx we have the estimate

‖vw‖Hj . ‖v‖Hk‖w‖Hj .

Here one can replace Hkx by Ĥkx, as well as H
j
x and Hkx by G̃j(J) and G̃j(J) (or

F̃ j(J)), or by F̃ j(J) and F̃k(J).
b) Also, if A ∈ Ĥkη for k ∈ N, then A−1 belongs to Ĥkη with norm bounded by

c(η, k)(1+‖A‖Ĥkx)k−1‖A‖Ĥkx .

Proof. a) For the first claim, by the product rule (and interpolative in-
equalities) we have to control ∂βxv∂α−βx w for multi-indices 0 ≤ β ≤ α with
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|α| = j. Observe that ∂βxv ∈ Hk−|β|x and ∂α−βx w ∈ H|β|x . This product can be
estimated in L2

x as needed if k − |β| ≥ 2 or |β| ≥ 2 since then v and w are
bounded, respectively. As k ≥ 2, only the case |β| = 1 remains. Here ∂βxv and
∂α−βx w belong to H1

x ↪→ L4
x and thus the product to L2

x. The other variants are
proved similarly.
b) Observe that ∇3

xA
−1 is a linear conbination of terms like

A−1∇3
xAA

−1, A−1∇2
xAA

−1∇xAA−1, A−1∇xAA−1∇xAA−1∇xAA−1.

These terms clearly satisfy the asserted estimate, and the lower-order ones are
treated similarly. �

We look for a solution u ∈ G̃3(J) of (1.8) assuming (1.18). The basic idea
is to solve a modified problem for w = Λ3u in C(J, L2

x). Since the inequality
(1.17) only improves space regularity, we first replace the equation Lu = f

by L̂u = f̂ := A−1
0 f where L̂ has the coefficients Â0 = I, Âj = A−1

0 Aj and
D̂ = A−1

0 D. We then obtain

L̂w = Λ3f̂ +

3∑
j=1

[Âj ,Λ
3]∂ju+ [D̂,Λ3]u,

Lw = A0Λ3f̂ +
3∑
j=1

A0[Âj ,Λ
3]∂ju+A0[D̂,Λ3]u =: g(f, u). (1.19)

We now replace in g the unknown u by a given function v ∈ C(J,H3
x). Theo-

rem 1.5 will give a solution w ∈ C(J, L2
x) of Lw = g(f, v) with w(0) = Λ3u0.

The energy estimate from Lemma 1.2 (with a large γ) then implies that
Φ : v 7→ Λ−3w is a strict contraction on L∞γ H3

x. This fact will lead to the desired
regularity result. Let λ be the maximum of ‖Λk‖B(Hk,L2) and ‖Λ−k‖B(L2,Hk) for
k ∈ {2, 3}. It will be important in the fixed-point argument for the nonlinear
problem that the contant c0 in (1.20) only depends on r0 (and η), but not on r.

Theorem 1.9. Let (1.18) be true. Then there is a unique u in C(J,H3
x) ∩

C1(J,H2
x) solving (1.8). For t ∈ J and γ ≥ γ1(r, η) := max

{
γ0(r, η),

√
c1

}
, see

(1.10), we have

γ‖u‖2Z3
γ(0,t) + e−2γt(‖u(t)‖2H3

x
+ ‖∂tu(t)‖2H2

x
)

≤ c0(‖u0‖2H3
x

+ ‖f(0)‖2H2
x
) + c1

γ ‖f‖
2
Z3
γ(0,t) , (1.20)

where ‖Aj(0)‖Ĥ2
x
, ‖D(0)‖Ĥ2

x
≤ r0, ‖Aj‖F̃3(J), ‖D‖F̃3(J) ≤ r for j ∈ {0, 1, 2, 3},

and c0 = c0(r0, η) and c1 = c1(r, η) are constants described in the proof.

Proof. 1) Take v ∈ C(J,H3
x) and γ ≥ γ0(r, η) from (1.10). Using

Lemma 1.8 and (1.17), we see that the square of the norm in L2
γL

2
x of g(f, v) from

(1.19) is bounded by c′1(‖f‖2L2
γH3

x
+ ‖v‖2L2

γH3
x
) for a constant c′1 = c′1(r, η). Theo-

rem 1.5 yields a solution w ∈ C(J, L2
x) of Lw = g(f, v) and w(0) = Λ3u0 =: w0

which satisfies
γη
4 ‖w‖

2
L2
γL

2
x

+ η
2 ‖w‖

2
L∞γ L

2
x
≤ c′0‖u0‖2H3

x
+

c′1
2γη

(
‖f‖2L2

γH3
x

+ ‖v‖2L2
γH3

x

)
(1.21)
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with c′0 = λ2

2 ‖A0(0)‖∞. The map w also belongs to C1(J,H−1
x ) because of

(1.9) and f ∈ Z3(J). Set Φv = Λ−3w ∈ G̃3(J). Let w satisfy Lw = g(f, v)
and w(0) = w0 for some v ∈ C(J,H3

x). For w − w estimate (1.21) applies with
u0 = 0 and f = 0 so that

‖Φ(v − v)‖L∞γ H3
x

= ‖Λ−3(w − w)‖L∞γ H3
x
≤ λ
√
c′1T√
γη ‖v − v‖L∞γ H3

x
.

Fixing a large γ = γ(r, η, T ), we obtain a fixed point u of Φ in L∞γ H3
x. It actually

belongs to G̃3(J) and satisfies u(0) = u0. Equation (1.19) implies that Lu = f .
Uniqueness of solutions was already shown in Proposition 1.4.
2) It remains to establish (1.20). We first insert u = v and w = Λ3u in (1.21)

and take γ ≥ max
{
γ0(r, η),

2λ
√
c′1

η

}
. Absorbing ‖u‖2L2

γH3
x
by the left-hand side,

we infer
γη
8 ‖u‖

2
L2
γH3

x
+ η

2 ‖u‖
2
L∞γ H3

x
≤ c′0λ2‖u0‖2H3

x
+

c′1λ
2

2γη ‖f‖
2
L2
γH3

x
. (1.22)

If we estimated ∂tu in H2
x by means of (1.9) and (1.22), we would obtain a

constant depending on r in front of the norm of u0. Instead we use that ∂tu ∈
C(J,H2

x) satisfies

L∂tu = ∂tf − ∂tDu−
3∑
j=0

∂tAj∂ju =: h,

∂tu(0) = A0(0)−1f(0)−A0(0)−1D(0)u0 −
3∑
j=1

A0(0)−1Aj(0)∂ju0 =: v0.

Lemma 1.8 yields

‖h(t)‖H2
x
≤ ‖∂tf(t)‖H2

x
+ c(r)(‖u(t)‖H3

x
+ ‖∂tu(t)‖H2

x
),

‖v0‖H2
x
≤ c(r0, η)(‖f(0)‖H2

x
+ ‖u0‖H3

x
).

The commutator [Ma,Λ
2] = [Ma,−∆] : H1

x → L2
x is bounded if a ∈ W 1,∞

x and
D2a ∈ H1

x ↪→ L3
x. Starting from L∂tu = h, as in (1.19) and (1.21) we thus

deduce
γη
4 ‖∂tu‖

2
L2
γH2

x
+ η

2‖∂tu‖
2
L∞γ H2

x

≤ ĉ0λ
2
(
‖u0‖2H3

x
+ ‖f(0)‖2H2

x

)
+ ĉ1λ2

2γη

(
‖∂tf‖2L2

γH2
x

+ ‖u‖2L2
γH3

x
+ ‖∂tu‖2L2

γH2
x

)
for constants ĉ0 = ĉ0(r0, η) and ĉ1 = ĉ1(r, η). Set c0 = 16λ2η−1(c′0+ĉ0) and c1 =
8λ2

η2
max{c′1, ĉ1}. We add the above inequality to (1.22) and take γ ≥ γ1(r, η) :=

max
{
γ0(r, η),

√
c1

}
. Estimate (1.20) follows after some calculations. �

In the above result we control more space than time derivatives. Under
stronger assumptions on Aj , D and f , one can obtain analogous estimates on
∂2
t u in H1

x and ∂3
t u in L2

x by differentiating (1.8) in time, see (2.27). We discuss
variants of the above theorem partly needed below.
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Proposition 1.10. Let Aj and D be as in Theorem 1.9, as well as u0 ∈ H2
x

and f ∈ L2(J,H2
x). Then there is a unique solution u ∈ C(J,H2

x) ∩ C1(J,H1
x)

of (1.8). For t ∈ J and γ ≥ γ̃1(r, η) := max
{
γ0(r, η),

√
c̃1

}
, we have

γ‖u‖2L2
γ((0,t),H2

x) + +e−2γt‖u(t)‖2H2
x
≤ c̃0‖u0‖2H2

x
+ c̃1

γ ‖f‖
2
L2
γ((0,t),H2

x)

for constants c̃0 = c̃0(r0, η) and c̃1 = c̃1(r, η). If ∂tf ∈ L2(J,H1
x) we also obtain

γ‖∂tu‖2L2
γ((0,t),H1

x) + e−2γt‖∂tu(t)‖2H1
x
≤ c̃0(‖u0‖2H2

x
+ ‖f(0)‖2H1

x
) + c̃1

γ ‖f‖
2
Z2
γ(0,t)

where Zk(J) := L2(J,Hkx) ∩H1(J,Hk−1
x ) for k ∈ N.

The result is shown as Theorem 1.9, replacing Λ3 by Λ2 in its proof up to (1.22)
and Λ2 by Λ afterwards. For the second part one also uses that the commutator
[Ma,Λ] is bounded on L2

x by Proposition 4.1.A in [54] if a ∈W 1,∞
x .

Remark 1.11. In Theorem 1.9 we have focused on the space H3
x needed for

the quasilinear problem. Actually, one obtains a unique solution u ∈ G̃k(J) of
(1.8) satisfying the analogue of (1.20) if u0 ∈ Hkx, f ∈ Zk(J), Aj , D ∈ F̃k(J),
Aj = A>j , A0 ≥ ηI, and k ∈ N \ {2}. For k = 2 one needs another assumption
stated below. This can be shown as for k = 3, one only has to take care of
estimates for products, inverse matrices and commutators.
Indeed, for k > 3 one can use the product and inversion results mentioned

above and the higher-order version of (1.17) in [30]. For k = 1 (thus for coef-
ficients in W 1,∞

t,x ) the needed product and inversion bounds are easy to check,
and we have just seen that [Ma,Λ] is bounded on L2

x if a ∈ W 1,∞
x . For k = 2

the second-order derivatives of Aj also have to belong to L∞t L3
x. Then the com-

mutator [Ma,Λ
2] = [Ma,−∆] : H1

x → L2
x is bounded, and the extra condition is

preserved by products and inverses.
Moreover, there is no problem to change the range space R6 to Rn. Also

other spatial domains Rm can be treated analogously, though one has to modify
the assumptions on the coefficients in this case. Finally, invoking a bit more
harmonic analysis one can also work in fractional Sobolev spaces Hsx instead of
Hkx, see [31]. ♦

Remark 1.12. In (1.18) we have required that the derivatives of the co-
efficients belong to H2

x. So local singularities are allowed to some extent,
but one enforces a certain decay at infinity which is an unnecessary restric-
tion. Actually, Theorem 1.9 remains valid if we replace the space F̃3(J) by
F̃3
∞(J) = F̃3(J) +W 3,∞

t,x , and Ĥ2
x by Ĥ2

∞ = Ĥ2
x +W 2,∞

x . (They have the norm
of sums X+Y , namely ‖z‖X+Y = infz=x+y ‖x‖X+‖y‖Y .) To show this fact, we
note that [MA,Λ

2] : H2
x → H1

x is bounded uniformly in t if A ∈ F̂3(J) +W 3,∞
t,x ,

and so the same is true for

[MA,Λ
3] = [MA,Λ]Λ2 + Λ[MA,Λ

2] : H2
x → L2

x.

(Recall the boundedness of [Ma,Λ] on L2
x.) One can further show the appropri-

ate bounds for products and inversions involving F̃3(J)+W 3,∞
t,x and Ĥ2

x+W 2,∞
x ,

as well as G̃3(J). The analogue of Theorem 1.9 can now be proven as before. ♦
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As a preparation for Theorem 1.19 on the wellposedness of the nonlinear
problem we show an approximation result for the coefficients.

Lemma 1.13. Let u0 ∈ L2
x, f ∈ L2

t,x, n ∈ N ∪ {∞}, j ∈ {0, 1, 2, 3},
Anj ∈ F̂3

∞(J) be symmetric with An0 ≥ ηI, and Dn ∈ F̂3
∞(J). Assume that

‖Anj ‖W 1,∞
t,x
≤ r and ‖Dn‖L∞t,x ≤ r, as well as Anj → A∞j and Dn → D∞ in L∞t,x

as n → ∞. Set Ln =
∑

j A
n
j ∂j + Dn. We have functions un ∈ C(J, L2

x) with
Lnun = f and un(0) = u0. Then un → u∞ in C(J, L2

x) as n→∞.

Proof. For the given data there are functions u0,m in H3
x and fm in Z3(J)

converging to u0 and f in L2
x and L2

t,x, respectively, as m→∞. For these data
Theorem 1.9 provides solutions un,m ∈ G̃3(J) of Lnun,m = fm and un,m(0) =
u0,m. Fixing γ = γ0(r, η) from Lemma 1.2 and (1.10), Proposition 1.4 now
shows

‖un − un,m‖L∞t L2
x
≤ c‖un − un,m‖L∞γ L2

x
≤ c
(
‖u0 − u0,m‖2L2

x
+ ‖f − fm‖2L2

t,x

)
.

with c = c(r, η, T ). The right-hand side tends to 0 as m → ∞ uniformly for
n ∈ N ∪ {∞}. It is thus enough to take u0 ∈ H3

x, f ∈ Z3(J), and un ∈ G̃3(J).
We then compute

Ln(un − u∞) = L∞u∞ − Lnu∞ =
3∑
j=0

(A∞j −Anj )∂ju∞ + (D∞ −Dn)u∞ =: gn.

Since u∞ ∈ G̃3(T ), as above Lemma 1.2 yields

‖un − u∞‖L∞t L2
x
≤ c(γ, T ) ‖gn‖L∞γ L2

x
−→ 0, n→∞. �

1.4. The quasilinear problem on R3

In this section we treat the nonlinear system

L(u)u :=

3∑
j=0

aj(u)∂ju+ d(u)u = f, t ≥ 0, x ∈ R3, u(0) = u0, (1.23)

under the assumptions

aj , d ∈ C3(R3 × R6,R6×6), aj = a>j , a0 ≥ ηI, η ∈ (0, 1], (1.24)
∀ r > 0 : sup

|ξ|≤r
max

0≤|α|≤3
‖∂αx aj(·, ξ)‖L∞x , ‖∂

α
x d(·, ξ)‖L∞x <∞, j ∈ {0, 1, 2, 3},

u0 ∈ H3
x, ∀T > 0 : f ∈ Z3(T ) = Z3(J) = L2(J,H3

x)∩H1(J,H2
x), J = (0, T ).

One can also treat coefficients only defined for (x, ξ) ∈ R3×U and an open subset
U ⊆ R6, see Remark 1.20. This is already needed in the Kerr Example 1.1 if χ3

is not non-negative. To simplify a bit, we focus on the case U = R6 in (1.24).
We look for solutions u of (1.23) in C([0, T+),H3

x) ∩ C1([0, T+),H2
x) for a

maximally chosen final time T+ ∈ (0,∞]. As indicated in the next section, solu-
tions may blow up and so T+ could be finite. The solutions will be constructed
in a fixed-point argument on the space G̃k−(J) = L∞(J,Hkx) ∩W 1,∞(J,Hk−1

x )
endowed with its natural norm, where k = 3. The overall strategy of this sec-
tion and many techniques are typical for quasilinear (or semilinear) evolution
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equations, though there are different (but related) approaches, see e.g. [5], [7],
or [28].
We first state basic properties of substitution operators, which is remains valid

for Lipschitz domains instead of R3 with the same proof. (Recall Remark 1.12
concerning F̃3

∞(J) and Ĥ2
∞.) We set Eγ = L∞γ (J,H2

x) for a moment.

Lemma 1.14. Let a be as in (1.24) and γ ≥ 0.
a) Let v ∈ G̃3(J) with ‖v‖∞ ≤ r. Then ‖a(v)‖F̃ 3

∞(J) ≤ κ(r)(1 + ‖v‖3G̃3(J)
).

b) Let v, w ∈ L∞t H2
x with norm ≤ r. Then ‖a(v)−a(w)‖Eγ ≤ κ(r) ‖v−w‖Eγ .

Here we can also replace L∞t H2
x and Eγ by G̃2(J) and G̃2

γ(J), respectively.
c) Let v0 ∈ H2

x with ‖v0‖∞ ≤ r0. Then ‖a(v0)‖Ĥ2
∞
≤ κ0(r0)(1 + ‖v0‖2H2

x
).

d) Let v0, w0∈H2
x with norm ≤r0. Then ‖a(v0)−a(w0)‖H2

x
≤κ0(r0)‖v0−w0‖2H2

x
.

Proof. We sketch the proof. (See §7.1 in [51] or §2 in [52] for more details.)
a) Take α ∈ N4

0 with 1 ≤ |α| ≤ 3 and α0 ∈ {0, 1}. The latter refers to
the time derivative. It is clear that the function |(∂βa)(v)| is bounded by c(r)
for all 0 ≤ |β| ≤ 3 where β = (βx, βξ) ∈ N3

0 × N6
0. Note that ∂αa(v) is a

linear combination of products of (∂βa)(·, v) and j ∈ {0, 1, 2, 3} factors ∂γiv
with βx + γ1 + · · ·+ γj = α. Since v ∈W 1,∞

t,x by Sobolev’s embedding, as in the
proof of Lemma 1.8 one can estimate ∂αa(v) in L∞t L

2
x if j ≥ 1 and in L∞t,x if

j = 0, both by c(r)(1 + ‖v‖3G̃3(J)
).

b) We start from the formula

a(v)− a(w) =

∫ 1

0
(∂ξa)(·, v + s(w − v)) (w − v) ds =: A(w − v).

Let ϕs = v + s(w − v). We then compute

∇2
x(a(v)− a(w)) =

∫ 1

0
(∂ξa)(·, ϕs)∇2

x(w − v) ds+

∫ 1

0
∇2
x(∂ξa)(·, ϕs) (w − v) ds

+ 2

∫ 1

0
∇x(∂ξa)(·, ϕs)∇x(w − v) ds (1.25)

The factor e−γt is put in front of ∇jx(w − v) on the right. We further have

∇2
x(∂ξa)(·, ϕs) = (∂2

x∂ξa)(·, ϕs) + (∂x∂
2
ξa)(·, ϕs)∂xϕs + (∂2

ξa)(·, ϕs)∂2
xϕs

+ (∂3
ξa)(·, ϕs)[∂xϕs, ∂xϕs].

Using Sobolev’s embedding, one can then bound the second term on the right-
hand side of (1.25) in L∞γ (J,H2

x) by c(r)‖v−w‖Eγ . The other terms are handeld
more easily. Parts c) and d) are treated similarly. �

As the space for the fixed-point argument we will use

E(R, T ) := {v ∈ G̃3−(J) | ‖v‖G̃3−(J) ≤ R, v(0) = u0.}

for suitable R > ‖u0‖H3 and T > 0. This set is non-empty as it contains
the constant function t 7→ v(t) = u0. It is crucial that E(R, T ) is complete
for a metric involving only two derivatives, which can be shown by a standard
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application of the Banach–Alaoglu theorem. For this we recall that L∞t L2
x is

the dual space of L1
tL

2
x, see Corollary 1.3.22 in [27]. (This is the reason to take

L∞ in time instead of C.)

Lemma 1.15. The space E(R, T ) is complete with the metric ‖u− v‖L∞t H2
x
.

Proof. Let (un) be Cauchy in E(R, T ) with this metric. Then (un) has a
limit u in C(J,H2

x). Take α ∈ N4
0 with α0 ≤ 1 and 0 ≤ |α| ≤ 3. Applying

Banach–Alaoglu iteratively, we obtain a subsequence (also denoted by (un))
such that ∂αun tends to a function vα weak* in L∞t L

2
x which also satisfies∑

|α|≤3 ‖vα‖2L∞t L2
x
≤ R2. It remains to check that vα = ∂αu. To this end, take

ϕ ∈ H3
0(J × R3). We compute

〈∂αϕ, u〉 = lim
n→∞

〈∂αϕ, un〉 = lim
n→∞

(−1)|α|〈ϕ, ∂αun〉 = (−1)|α|〈ϕ, vα〉

in the duality pairing L1
tL

2
x × L∞t L2

x. There thus exists ∂αu = vα. �

In the next lemma we perform the core fixed-point argument.

Lemma 1.16. Let (1.24) hold and ρ2 ≥ ‖u0‖2H3
x

+ ‖f(0)‖2H2
x

+ ‖f‖2Z3(1). Then
there is a radius R = R(ρ) > ρ given by (1.26), a time T0 = T0(ρ) ∈ (0, 1] given
by (1.27), and a unique solution u ∈ E(R, T0) of (1.23).

Proof. 1) Lemma 1.14 shows that aj(u0) and d(u0) are bounded in Ĥ2
∞

by some κ0(ρ). This yields a constant c0 = c0(ρ) ≥ 1 in (1.20), in the setting of
Remark 1.12. We define

R2 = R(ρ)2 = ec0(ρ)ρ2 + 1 > ρ2. (1.26)

Take v, w ∈ E(R, T ) for some T > 0. Let a ∈ {a0, a1, a2, a3, d} and γ ≥ 0. By
Lemma 1.14 and H2

x ↪→ L∞x there is a constant κ = κ(R) with

‖a(v)‖F̃ 3
∞(J) ≤ κ and ‖a(v)− a(w)‖L∞γ H2

x
≤ κ‖v − w‖L∞γ H2

x
.

Let c1 = c1(κ, η), c̃1 = c̃1(κ, η), and γ1 = max{γ1(κ, η), γ̃1(κ, η)} be given by
Theorem 1.9 and Proposition 1.10. We fix

γ = γ(ρ) = max
{
γ1, ec1ρ

2,
√

ec̃1cκR
}
, T0 = T0(ρ) = min{1, (2γ)−1}, (1.27)

where the constant c > 0 is introduced below.
2) Theorem 1.9 gives a solution u ∈ G̃3(J0) of L(v)u = f and u(0) = u0

satisfying

‖u(t)‖2H3
x

+ ‖∂tu(t)‖2H2
x
≤ e2γT0

(
c0(‖u0‖2H3

x
+ ‖f(0)‖2H2

x
) + c1γ

−1‖f‖2Z3(1)

)
≤ R2

for t ∈ [0, T0]. So the map Φ : v 7→ u =: v̂ leaves invariant E(R, T0). Observe
that

L(v)(v̂ − ŵ) = (L(w)− L(v))ŵ =

3∑
j=0

(aj(w)− aj(v))∂jŵ + (d(w)− d(v))ŵ.

The right-hand side at time t is bounded in H2
x by cκR‖v(t) − w(t)‖2,2 due to

Lemma 1.14. Since v(0) = w(0) and T0 ≤ 1, Proposition 1.10 then implies

‖Φ(v)− Φ(w)‖2L∞t H2
x
≤ e2γT0‖Φ(v)− Φ(w)‖2L∞γ H2

x
(1.28)
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≤ ec̃1γ
−1c2κ2R2T0 ‖v − w‖2L∞γ H2

x
≤ 1

2 ‖v − w‖
2
L∞γ H2

x
.

The assertion now follows from the contraction mapping principle. �

The above result yields uniqueness only in the ball E(R, T0), but the contrac-
tion estimate (1.28) itself will lead to a much more flexible uniqueness state-
ment. Before showing it, we note that restrictions or translations of a solution
u ∈ G̃3(J) to (1.23) satisfy (obvious) variants of (1.23). Let u ∈ G̃3(J) solve
(1.23) and v ∈ G̃3(J ′) with v(T ) = u(T ) solve it on J ′ = (T, T ′). Then the
concatenation w of u and v belongs to G̃3(0, T ′) and fulfills (1.23). (Use (1.23)
to check ∂tw ∈ C([0, T ′],H2

x).)

Lemma 1.17. Let (1.24) hold, J̃ = (0, T̃ ), u ∈ G̃3(J) and ũ ∈ G̃3(J̃) solve
(1.23) on J and J̃ , respectively. Then u = ũ on J ∩ J̃ =: Ĵ .

Proof. Let τ be the supremum of all t ∈ [0, sup Ĵ) for which u = ũ on
[0, t]. Note that u(0) = u0 = ũ(0). We suppose that τ < sup Ĵ . Then u = ũ on
[0, τ ] by continuity, and there exists a number δ > 0 with Jδ := [τ, τ + δ] ⊆ Ĵ .
Let R be the maximum of the norms of u and ũ in G̃3(Jδ). Fix γ as in (1.27)
(with κ = κ(R) and ρ = 0) and take δ ∈ (0, δ]. As in (1.28), Proposition 1.10
yields a constant c1 = c̃1(R) > 0 with

‖u− ũ‖2L∞γ (Jδ,H2
x) ≤ ec1γ

−1c2κ2R
2
δ ‖u− ũ‖L∞γ (Jδ,H2

x).

Choosing a sufficently small δ > 0, we infer u = ũ on Jδ. This fact contradicts
the definition of τ , so that τ = sup Ĵ as asserted. �

We now use the above results to define a maximal solution u to (1.23) assum-
ing (1.24). The maximal existence time is given by

T+ = T+(u0, f) := sup{T ≥ 0 | ∃uT ∈ G̃3(T ) solving (1.23) on [0, T ]} ∈ (0,∞].

Lemma 1.16 shows T+(u0, f) > T0(ρ) as we can restart the problem at time
t0 = T0(ρ) with the initial value uT (T ). Moreover, by Lemma 1.17 the solutions
ut and uT coincide on [0, t] for 0 < t < T < T+. Setting u(t) = uT (t) for such
times thus yields a unique solution u of (1.23) on [0, T+) which belongs to G̃3(T )
for each T ∈ (0, T+).
In the proof of our main result below, we need the following Moser-type

estimates, which are still true if one replaces Rm by a Lipschitz domain in Rm.

Lemma 1.18. Let k ∈ N and α, β ∈ Nm0 .
a) For v, w ∈ L∞(Rm) ∩Hk(Rm) and |α|+ |β| = k, we have

‖∂αv ∂βw‖2 ≤ c (‖v‖∞ ‖w‖k,2 + ‖v‖k,2 ‖w‖∞).

b) For v, w ∈W 1,∞(Rm) ∩Hk(Rm) with ∂αv, ∂βw ∈ L2(Rm) for 1 ≤ |α| ≤ k
and |α|+ |β| = k + 1, we have

‖∂α v∂βw‖2 ≤ c‖∇v‖∞
m∑
j=1

‖∂jw‖k−1,2 + c ‖∇w‖∞
m∑
j=1

‖∂jv‖k−1,2.
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Proof. We first recall the Gagliardo–Nirenberg inequality

‖∂αϕ‖2k/|α| ≤ c ‖ϕ‖
1− |α|

k∞
∑
|γ|=k

‖∂γϕ‖
|α|
k

2

for ϕ ∈ L∞(Rm) with ∂γϕ ∈ L2(Rm) for all |γ| = k, see [40].
Assertion a) is clear if |α| is 0 or k. So let k ≥ 2 and 1 ≤ |α| ≤ k − 1. Note

that |β|k = 1 − |α|k . The inequalities of Hölder (with 1
2 = |α|

2k + |β|
2k ), Gagliardo–

Nirenberg and Young yield

‖∂αv∂βw‖2 ≤ ‖∂αv‖2k/|α| ‖∂βw‖2k/|β| ≤ c‖v‖
1− |α|

k∞ ‖v‖
|α|
k
k,2 ‖w‖

1− |β|
k∞ ‖w‖

|β|
k
k,2

= (‖v‖∞‖w‖k,2)1− |α|
k (‖w‖∞‖v‖k,2)

|α|
k . ‖v‖∞‖w‖k,2+‖v‖k,2‖w‖∞.

In part b) we can assume that k ≥ 3 and 2 ≤ |α| ≤ k − 1. There are
i, j ∈ {1, . . . ,m} with α = α′ + ei and β = β′ + ej , where |α′| + |β′| = k − 1.
From a) we deduce

‖∂αv∂βw‖2 = ‖∂α′∂iv ∂β
′
∂jw‖2 . ‖∂iv‖∞ ‖∂jw‖k−1,2 + ‖∂iv‖k−1,2 ‖∂jw‖∞

and thus statement b). �

We state the core local wellposedness result for (1.23). Let BT ((u0, f), r) be
the closed ball in H3

x ×Z3(T ) with center (u0, f) and radius r > 0.

Theorem 1.19. Let (1.24) hold and ρ2 ≥ ‖u0‖2H3
x

+ ‖f(0)‖2H2
x

+ ‖f‖2Z3(1).

Then the following assertions are true.
a) There is a unique solution u = Ψ(u0, f) of (1.23) on [0, T+), where T+ =

T+(u0, f)∈(T0(ρ),∞] with T0(ρ)>0 from (1.27) and u∈G̃3(T ) for all T ∈(0,T+).
b) Let T+<∞. Then limt→T+ ‖u(t)‖H3

x
=∞ and limt→T+‖u(t)‖

W 1,∞
x

=∞.

c) Take T ∈ [0, T+). Then there is a radius δ > 0 such that for all
(v0, g) ∈ BT ((u0, f), δ) we have T+(v0, f) > T and Ψ : BT ((u0, f), δ)→ G̃3(T ) is
continuous. Moreover, Ψ : (BT ((u0, f), δ), ‖ ·‖H2

x×Z2(T ))→ G̃2(T ) is Lipschitz.

Proof. a)/b) Above we have shown part a). Let T+ <∞ and u = Ψ(u0, f).
1) Suppose there are tn → T+ with r := supn ‖u(tn)‖3,2 <∞. Set T = T+ +1

and ρ2 = r2 + ‖f‖2Z3(T ) + supn ‖f(tn)‖22,2 < ∞. Let τ = T0(ρ) > 0 be given
by (1.27). Fix an index N such that tN + τ > T+. Lemma 1.16 and a time
shift yield a solution v ∈ G̃3(tN , tN + τ) of (1.23) with v(tN ) = u(tN ) . We thus
obtain a solution on [0, tN + τ ]. This fact contradicts the definition of T+, and
hence ‖u(t)‖3,2 →∞ as t→ T+.
2) Next, set ω = sup0≤t<T+ ‖u(t)‖1,∞ and suppose that ω < ∞. Let α ∈ N3

0

with |α| ≤ 3. Using (1.9), we compute

L(u)∂αxu = ∂αx f −
∑

0<β≤α

(
α

β

)[ 3∑
j=1

∂βxaj(u)∂α−βx ∂ju+ ∂βxd(u)∂α−βx u (1.29)

+ ∂βxa0(u)∂α−βx

(
a0(u)−1

(
f −

3∑
j=1

aj(u)∂ju− d(u)u
))]
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=:fα= ∂αx f−gα.

In view of (the proofs of) Lemmas 1.8 and 1.14, the summands of fα in the
second line can be treated as the others (using Young’s inequality for products
of norms of f and u). Employing also Lemma 1.18 and H3

x ↪→ W 1,∞
x , we can

estimate

‖fα(t)‖2 ≤ c(ω)
(
‖f(t)‖H3

x
+ 1 +

3∑
k=1

∑
|γi|≤3,|γ1|+···+|γk|≤4

‖∂γ1x u · · · ∂γkx u‖2
)

≤ c(ω)
(
‖f(t)‖H3

x
+ 1 + (1 + ω3)‖u(t)‖H3

x

)
.

Take γ ≥ γ0(ω) in Proposition 1.4. For t ∈ [0, T+), this proposition and the
above estimate yield (with Jt = (0, t))

‖∂αxu‖2L2
γ(Jt,L2

x)+
2e−2γt

γ ‖∂αxu(t)‖2L2
x
≤ c(ω)

ηγ ‖u0‖2H3
x
+ c(ω)
η2γ2

[
‖f‖2L2

γH3
x
+1+‖u‖2L2

γ(Jt,H3
x)

]
.

We now sum over |α| ≤ 3 and fix a large γ to absorb the last summand. It turns
out that ‖u(t)‖3,2 is bounded for t < T+ contradicting step 1), and hence part
b) is shown.
c) The proof of assertion c) is more demanding. We first fix some constants,

and then show continuity of Ψ at (u0, f) on an interval [0, b] assuming that we
have solutions with uniform bounds on [0, b]. Using this fact and Lemma 1.16,
we then prove inductively that solutions on [0, T ] exist and satisfy such bounds
if we start in a certain ball around (u0, f). Finally, we replace (u0, f) by different
data in this ball to obtain the asserted continuity statements.
1) Fix T ′ ∈ (T, T+) and set J ′ = (0, T ′). We can extend maps g from Z3(T )

to Z3(T ′) with norm bounded by cE‖g‖Z3(T ). Let cS ≥ 1 be the norm of the
embedding C([0, T ′],H2

x) ↪→ Z3(T ′), ρ̃2 ≥ ‖u0‖23,2 + ‖f‖2Z3(T ′) + ‖f‖2L∞(J ′,H2
x),

δ0 = ρ̃/cE ≤ ρ̃, and r̃ ≥ max{cS ρ̃, ‖u‖G̃3(T ′)}. Below we take R ≥ r̃, b ≤ T ′, and
v ∈ G̃3(b) with norm less or equal R. Lemma 1.14 yields a constant κ = κ(R)

larger than the norms of aj(v) and d(v) in F̂3
∞(b) and of aj(v)(0) and d(v)(0)

in Ĥ2
∞.

2) Assume there are b ∈ (0, T ′], v0 ∈ H3
x and g ∈ Z3(T ) such that T+(v0, g) >

b. We write v = Ψ(v0, g) ∈ G̃3(b). Let R ≥ ‖v‖G̃3(b) with R ≥ r̃. Observe that

L(u)(v−u)= g−f+(L(u)−L(v))v = g−f+

3∑
j=0

(aj(u)−aj(v))∂jv+(d(u)−d(v))v.

By Lemma 1.14, the function (L(u) − L(v))v belongs to G̃2
γ(b) with norm less

than c(κ)R‖v − u‖G̃2γ(b) for γ ≥ 0. Proposition 1.10 yields

‖v − u‖G̃2γ(b) ≤ c̃(κ, η, T
′)
(
‖u0 − v0‖2H2

x
+ ‖f − g‖Z2

γ(b) + γ−1Rb‖v − u‖G̃2γ(b)

)
for γ ≥ γ̃1(κ, η) ≥ 1. Fixing a large γ1 = γ1(κ,R, T ′, η) ≥ γ̃1(κ, η), we thus
obtain

‖v − u‖G̃2(b) ≤ c̃(κ,R, T
′, η)

(
‖u0 − v0‖2H2

x
+ ‖f − g‖Z2(b)

)
. (1.30)
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3) Estimate (1.30) is related to Lipschitz continuity of Ψ in G̃2. The hard
and core part of the proof is to check continuity of Ψ in G̃3 at (u0, f), assuming
apriori bounds. So let (u0,n, fn) ∈ BT ((u0, f), δ̃) tend to (u0, f) on H3

x ×Z3(T )

as n → ∞, where δ̃ > 0. Hence, fn(0) → f(0) in H2
x and fn → f in Z3(T ′).

Assume that T+(u0,n, fn) > b with b ∈ (0, T ′] and that un = Ψ(u0,n, fn) is
bounded by some R ≥ r̃ in G̃3(b) for all n ∈ N. Then un tends to u in G̃2(b) as
n→∞ by (1.30), and the coeffcients aj(un) and d(un) satisfy the estimates of
step 1) with a uniform κ = κ(R).
The main idea is to split the n-dependence of the coefficients and the data.

Let α ∈ N3
0 with |α| = 3. As in (1.29) we write L(un)∂αxun = ∂αx fn − gn,α and

L(u)∂αxu = ∂αx f − gα. Theorem 1.5 yields solutions wn, zn ∈ C([0, b], L2
x) of

L(un)wn = ∂αx f − gα, wn(0) = ∂αxu0,

L(un)zn = ∂αx fn − ∂αx f + gα − gn,α, zn(0) = ∂αxu0,n − ∂αxu0.

By uniqueness, we have wn + zn = ∂αxun and hence

∂αxun − ∂αxu = wn − ∂αxu+ zn.

Since aj(un) → aj(u) and d(un) → d(u) in L∞t,x as n → ∞, Lemma 1.13 shows
that qn := ‖wn−∂αxu‖L∞t L2

x
tends to 0. We thus have to prove zn → 0 in L∞t L2

x.
Choose γ = γ1(R) as in step 2). For t ∈ [0, b], Proposition 1.4 then implies

‖∂αx (un(t)− u(t))‖2L2
x
≤ 2q2

n + 2‖zn(t)‖2L2
x

≤ 2q2
n + c(R)

(
‖∂αx (u0,n − u0)‖2L2

x
+ ‖∂αx (fn − f)‖2L2

t,x
+ ‖gn,α − gα‖2L2

t,x

)
.

The estimation of ‖gn,α−gα‖ is only sketched. Let a ∈ {aj , a−1
0 , d}, v ∈ {u, un},

and w ∈ {u, un, f}. First, we look at summands of the type ∂βxa(v(t))∂γx(un(t)−
u(t)) with |γ| ≤ 4 − |β|, |γ| ≤ 3 and |β| ≤ 3. By Lemma 1.8 and the bounds
on the coefficients these terms are bounded in L2

x by c(R)‖un(t) − u(t)‖3,2.
Analogous summands with fn(t)− f(t) are treated similarly.
We next analyze terms like W = ∂βx [a(un(t)) − a(u(t))] ∂γxw(t). At first, we

look at situations where we can estimate the first factor by u − un in L∞t H2
x

using Lemma 1.14. This works for β = 0 in L∞x for |γ| ≤ 3, for |β| = 1 in L6
x if

|γ| ≤ 2, and for |β| = 2 in L2
x if |γ| ≤ 1; and it yields terms as in the first case.

If this does not work (which implies w ∈ {u, un}), we compute ∂βx (a(un)−a(u))
using the chain rule for each summand. For these terms we define

hn(t) =
∑

a∈{aj ,d,a−1
0 }

3∑
k=1

9∑
li=1

‖(∂lk · · · ∂l1a)(un(t))− (∂lk · · · ∂l1a)(u(t))‖L∞x .

The L2
x-norm of such W is then bounded by linear combinations of c(R) times

hn(t)‖∂γ1x v(t) · · · ∂γm−1
x v(t)∂γmx w(t)‖L2

x
+ ‖∂γ1x v(t) · · · ∂γm−1

x ϕn(t)∂γmx w(t)‖L2
x
,

where ϕn = un−u, m ∈ {1, 2, 3, 4}, |γi| ≤ 3, and |γ1|+ · · ·+ |γm| ≤ 4. This sum
can be estimated by c(R)(hn(t) + ‖un(t)− u(t)‖3,2) due to Sobolev embeddings
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and the bounds on u and un. We have shown that

‖gn,α − gα‖2L2((0,t),L2
x) ≤ c(R, T

′)
(
‖fn − f‖2L2

tH2
x

+ ‖un − u‖2L∞t H2
x

+

∫ T ′

0
hn(s)2 ds

+

∫ t

0

∑
|γ|=3

‖∂γx(un(s)− u(s))‖2L2
x

ds
)
.

We write the last integrand as ‖∂3
x(un(s)− u(s))‖22. Note that hn(s) tends to 0

as n→∞ since un → u in L∞t,x and that it is bounded uniformly in s and n. By
dominated convergence

∫ T ′
0 h2

n ds tends to 0. Summing up, we conclude that

‖∂3
x(un(t)− u(t))‖22 ≤ c(R, T ′)εn + c(R, T ′)

∫ t

0
‖∂3

x(un(s)− u(s))‖22 ds

for a null sequence (εn). By Gronwall, ∂3
x(un − u) tends to 0 in C([0, b], L2

x) as
n→∞, and so un → u in C([0, b],H3

x). Using (1.9) and Lemma 1.14, we infer
un → u in G̃3(b).
4) We now look for data to which we can apply steps 2) and 3). Let (v0, g) ∈
BT ((u0, f), δ0). We then obtain

‖v0‖H3
x
≤ ‖v0 − u0‖H3

x
+ ‖u0‖H3

x
≤ δ0 + ρ̃ ≤ 2ρ̃ ≤ 2r̃,

‖g‖Z3(T ′) ≤ ‖g − f‖Z3(T ′) + ‖f‖Z3(T ′) ≤ cEδ0 + ρ̃ ≤ 2ρ̃ ≤ 2r̃,

‖g‖L∞(J ′,H2
x) ≤ cS‖g‖Z3(T ′) ≤ 2cS ρ̃ ≤ 2r̃.

Lemma 1.16 thus yields a time τ = τ(r̃) and a solution v ∈ G̃3(τ) of (1.23) with
data v0 and g, where ‖v‖G̃3(τ) ≤ R̃ = R̃(r̃) and R̃ > 2r̃. By parts a) and b), we
have v = Ψ(v0, g) and T+(v0, g) > τ . Fix N ∈ N with (N − 1)τ ≤ T < Nτ , set
tk = kτ for k ∈ {0, 1, . . . , N − 1} and tN = min{T ′, Nτ}.

Steps 2) and 3) show that (1.30) is true on [0, τ ] for such v with a constant
c̃ = c̃(r̃) and that Ψ : BT ((u0, f), δ0) → G̃3(τ) is continuous at (u0, f). We can
thus find a radius δ1 ∈ (0, δ0] such that ‖v−u‖G̃3(τ) ≤ r̃, and hence ‖v‖G̃3(τ) ≤ 2r̃,
for all (v0, g) ∈ BT ((u0, f), δ1).
5) We iterate the above argument. Assume that for some k ∈ {1, . . . , N − 1}

and δk ∈ (0, δ0], we have T+(v0, g) > tk and ‖v − u‖G̃3(tk) ≤ r̃ for all (v0, g) ∈
BT ((u0, f), δk) and the map Ψ : BT ((u0, f), δk)→ G̃3(tk) is continuous at (u0, f).
It follows ‖v‖G̃3(tk) ≤ 2r̃. Since ‖v(tk)‖3,2 ≤ 2r̃, step 4) and a time shift provide
a solution ṽ ∈ G̃3([tk, tk+1]) of (1.23) with ṽ(tk) = v(tk) and norm less or
equal R̃. We can thus extend v to a solution in G̃3([0, tk+1]) bounded by R̃
and so T+(v0, g) > tk+1. Because of this bound, steps 2) and 3) imply (1.30)
on [0, tk+1] with c̃ = c̃(r̃) for all (v0, g) ∈ BT ((u0, f), δk) and the continuity of
Ψ : BT ((u0, f), δk) → G̃3(tk+1) at (u0, f). Using the latter property, we find
a radius δk+1 ∈ (0, δk] such that ‖v − u‖G̃3(tk+1) ≤ r̃ for v = Ψ(v0, g) and all
(v0, g) ∈ BT ((u0, f), δk+1), and hence ‖v‖G̃3(tk+1) ≤ 2r̃.
Induction yields a radius δ = δN such that for all (v0, g) ∈ BT ((u0, f), δ) we

have T+(v0, g) > T , the continuity of Ψ : BT ((u0, f), δ)→ G̃3(T ) at (u0, f), and
‖Ψ(v0, g)‖G̃3(T ) ≤ 2r̃. Moreover, (1.30) holds on [0, T ] for u and v = Ψ(v0, g).
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6) Finally, we take any (v0, g), (w0, h) ∈ BT ((u0, f), δ) with corresponding
solutions v and w. Replacing u by w in step 2), we then obtain the last assertion
in c). Also step 3) can be repeated on [0, T ] for data converging to (w0, h) in
BT ((u0, f), δ). �

Observe that Theorem 1.7 yields finite speed of progation for a solution u ∈
G̃3(T ) of (1.23), setting Aj = aj(u) and D = d(u). We comment on variants of
Theorem 1.19.

Remark 1.20. One can easily extend Theorem 1.19 to negative times (e.g.,
by time reversion). Moreover, in (1.24) one can replace the domain R3 × R6 of
aj and d by R3 × U for an open U ⊆ R6, restricting ξ in the supremum not to
each closed ball B(0, r) ⊆ R6 but to each compact subset of U . One further
has to require that the closure K0 of u0(R3) is contained in U , and the solution
u has to take values in U . Theorem 1.19 is then valid with one modification.
In part b) now T+ < ∞ implies that lim supt<T+‖u(t)‖

W 1,∞
x

= ∞ or that u(t)

leaves any compact subset of U as t→ T+.
The proofs are very similar in this more general case. In the fixed-point

argument one chooses a bounded open set V with K0 ⊆ V ⊆ V ⊆ U . Let
d > 0 be the distance between V and ∂U . In E(R, T ) one then also includes the
condition that ‖v(t)− u0‖∞ ≤ d/2 for all t ∈ [0, T ] which is preserved by limits
in L∞t H2

x. Other steps in the reasoning are modified accordingly. Compare
Theorem 3.3 of [52]. ♦

As explained in Section 1.1, one can easily apply Theorem 1.19 to the Maxwell
system (1.1) with material laws (1.3) and (1.4). We state the needed assump-
tions in a situation motivated by nonlinear optics.

Example 1.21. Let θ(x,E,H) = (εlin(x)E + εnl(x,E)E,µlin(x)H) and Je =
σ(x,E)E + J0 in (1.3) and (1.4). Here we assume that εlin, µlin ∈ C3

b (R3,R3×3
sym)

and σ ∈ C3(R6,R3×3) satisfy εlin, µlin ≥ 2ηI > 0 and sup|ξ|≤r ‖∂αxσ(·, ξ)‖L∞x <

∞ for all r ≥ 0 and 0 ≤ |α| ≤ 3, respectively. (The subscript b means that
the functions and all occuring derivatives are bounded.) In Example 1.1 we
had seen rather general isotropic nonlinear terms which fit to (1.24). A typical
anistropic example is furnished by

εnl(x,E) =
( 3∑
j,k=1

χjkli (x)EjEk

)
il

for scalar coefficients χjkli ∈ C3
b (R3), cf. [9]. Because of the triple sum in

εnl(x,E)E, the tensor (χjkli )i,j,k,l has to be symmetric in {j, k, l}. For (1.24)
we also require symmetry in {i, l}, i.e., we can only prescribe χjkli for, say,
1 ≤ i ≤ j ≤ k ≤ l ≤ 3. For |E| < r and a suitable r ∈ (0,∞] and all x,H ∈ R3

we then obtain ∂(E,H)(x,E,H) ≥ ηI. Rewriting the system as in (1.6), we see
that hypothesis (1.24) (modified as in Remark 1.20 if r < ∞) is fulfilled. For
initial fields in H3

x with |E0| < r/2 and a current density J0 ∈ Z3(T ) for all
T > 0, Theorem 1.19 and Remark 1.20 thus provide wellposedness in H3

x of the
Maxwell system (1.1) with the above material laws. ♦
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1.5. Energy and blow-up

In the preceeding sections we have worked with the linear energy estimate
which contains error terms caused by the time derivative of coefficients. (The
space derivatives in C of (1.11) disappear in the Maxwell case.) These error
terms have led to the H3

x setting, which is quite inconvenient. The time de-
pendence arises since we freeze a function in the nonlinearities of (1.23). One
may wonder whether this is really necessary and whether it is not better to
solve (1.23) based on a nonlinear energy identity. Actually, this can be done in
the semilinear case where D = ε(x)E, B = µ(x)H, and Je = σ(x,E)E under
appropriate conditions on σ, cf. [21]. Below we see that this does not seem to
work in the quasilinear case.
In this section we first establish an energy equality in the quasilinear case,

without conductivity and for isotropic nonlinearities

D = εlinE + βe(·, |E|2)E, B = µlinH + βm(·, |H|2)H, (1.31)

Here εlin and µlin belong to L∞(R3,R3×3
η ) for some η > 0 and the maps βe, βm :

R3 × R≥0 → R are C1, bounded in x ∈ R3 and non-decreasing in s ∈ R≥0. We
set u = (E,H) and

A0 =

(
εlin 0
0 µlin

)
, β(|u|2) =

(
βe(·, |E|2)I3×3 0

0 βm(·, |H|2)I3×3

)
,

M =

(
0 curl

− curl 0

)
= −

3∑
j=1

Sj∂j , D(M) = H(curl)×H(curl),

where H(curl) = H(curl, U) = {v ∈ L2(U,R3)
∣∣ curl v ∈ L2(U,R3)}. The opera-

tor M is skew-adjoint in L2(R3,R6). Maxwell equations (1.1) then become

∂t[A0u(t)+β(|u(t)|2)u(t)] = Mu(t), t ≥ 0, u(0) = u0 = (E0, H0). (1.32)

Omitting the argument x in the notation, we further define

bj(s) =

∫ s

0
βj(r) dr, hj(s) = sβj(s)− 1

2bj(s).

We have hj(s) ≥ s
2βj(s) since βj does not decrease and that h′j(s) = 1

2βj(s) +

sβ′j(s), where β
′
j = ∂2βj . We now introduce the ‘energy’ for u = (u1, u2) by

E(u) =

∫
R3

[
1
2A0u · u+ h1(|u1|2) + h2(|u2|2)

]
dx

Note that E(u) ≥ η
2 ‖u‖

2
2 if βj ≥ 0. In the Kerr case εlin = µlin = 1, βe(x, s) =

χ3(x)s and βm = 0, we obtain

EKerr(E,H) =

∫
R3

[
1
2 |E(t)|2 + 3

4χ3 |E(t)|4 + 1
2 |H(t)|2

]
dx.

Let u ∈ G̃1(T ) solve (1.32). The energy equality E(u(t)) = E(u0) for t ∈ [0, T ]
follows from

d
dtE(u) =

∫
R3

[
u · ∂t(A0u) + β(|u|2)u · ∂tu+ 2|u|2β′(|u|2)u · ∂tu

]
dx
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=

∫
R3

∂t
[
A0u+ β(|u|2)u

]
· udx =

∫
R3

Mu · udx = 0. (1.33)

In the Kerr case (with χ3 ≥ 0) we can thus bound powers of p-norms of solutions.
This is not enough control to pass to a weak limit in the nonlinearity when
performing an approximation argument (which would typically produce a global
solution). One would need an estimate involving derivatives. Such estimates
are not known, and the next result on blow-up indicates that they do not hold.
We first stress that it is well known that the gradient of a solution to (1.32)

may blow up in sup-norm in finite time, see [36]. However in the semilinear case
one relies on estimates in H(curl), so we are interested in blow-up in this space
(or at least in H1). Below we give such an example on a domain with periodic
boundary conditions, taken from [14]. Such conditions arise if one truncates a
fullspace problem with periodic coefficients to a periodicity cell. (See this paper
for a weaker result on R3.) We work in the following more specific setting given
by D = (1 + α(|E|))E and B = H. We set a(s) = (1 + α(|s|))s for s ∈ R and
assume

a ∈ C2(R,R), ∃ s− < 0 < s0 < s+ : a′ > 0 on S := (s−, s+),

q : S → R; q(s) =
a′′(s)

2a′(s)3/2
, has a global maximum at s = s0, (1.34)

q is C1 near s0, q(s) > 0 for 0 < s ≤ s0.

Let γ > 2 and α0 > 0. A simple example for (1.34) is furnished by any C2-
extension of a : [0, s+] → R; a(s) = s + α0s

γ , which is strictly growing on
(s−, s+) for some s− < 0 < s0 < s+ with

s0 =
( 2(γ − 2)

α0γ(γ + 1)

) 1
γ−1

in this case. We stress that the behavior of a for large s is arbitrary here.

Theorem 1.22. Assume that (1.34) is true. Then there are numbers M,T >
0 and a divergence-free map (E,H) ∈ C1([0, T )× [−M,M ]3) which solves (1.1)
on (−M,M)3 with periodic boundary conditions and the above material laws,
and which satisfies

‖ curlE(t)‖L2
x
→∞ as t→ T−.

We look for a solution of the form

(E(t, x), B(t, x)) = (u(t, x2), 0, 0, 0, 0, v(t, x2)).

for x ∈ (−M,M)3 and t ∈ [0, T ). Observe that such E and B are divergence-
free. If u and v have support in [0, T )× (−M,M), then E and B fulfill periodic
boundary conditions. Moreover, (E,B) ∈ C1 satisfy (1.1) on (−M,M)3 with
the above material laws if and only if (u, v) ∈ C1 solve

∂ta(u) = ∂xv, ∂tv = ∂xu, (u(0), v(0)) = (u0, v0),

for t ∈ [0, T ) and x ∈ R. This system can be rewritten as

∂t

(
u

v

)
+A(u, v)∂x

(
u

v

)
= 0 with A(u, v) =

(
0 −a′(u)−1

−1 0

)
(1.35)
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on R. Here we assume that u takes values in S from (1.34). Since also ∂xu =
curlE, the theorem thus follows from the next one-dimensional result.
The following proof uses a standard construction from Section 1.4 of [36].

However, it requires a rather detailed analysis to find a class of initial values for
which we get the blow-up of ∂xu in L2 instead of L∞.

Proposition 1.23. Assume that (1.34) is true. Then there exist initial data
(u0, v0) ∈ C1

c (R,R2) and a C1-solution (u, v) to (1.35) on [0, T ) × R for some
T ∈ (0,∞) which is compactly supported and which satisfies ‖∂xu(t, ·)‖L2(R) →
∞ as t→ T−.

Proof. 1) For (u, v) ∈ S × R, the matrix A(u, v) has the eigenvalues and
eigenvectors

λ1,2(u, v) = ±a′(u)−
1
2 , w1,2(u, v) = (∓1, a′(u)

1
2 ).

(Recall S = (s−, s+), s0 and q from (1.34).) These observations are a special
case of the analysis in Section 3 of [3]. In the following we take λ = λ1 and
w = w1 and drop the index 1. Fix (ξ, ζ) ∈ (s0, s+)× R such that

q(s) > 0 for 0 < s ≤ ξ.

Observe that the interval ξ−S = (ξ−s+, ξ−s−) contains [0, ξ]. The C2-function
φ : ξ − S → S × R

φ1(s) = ξ − s, φ2(s) = ζ +

∫ s

0
a′(ξ − τ)1/2 dτ,

solves the ordinary differential equation

φ′(s) = w(φ(s)), s ∈ ξ − S, φ(0) = (ξ, ζ).

For later use, we note the identities

∇λ(φ(s)) · φ′(s) = ∇λ(φ(s)) · w(φ(s)) = q(ξ − s), s ∈ ξ − S. (1.36)

Let σ0 : R → [0, ξ] be C1 and equal to ξ outside a compact set. There is a
unique C1-solution σ of the scalar partial differential equation

∂tσ(t, x) + λ(φ(σ(t, x)))∂xσ(t, x) = 0, t ≥ 0, x ∈ R,
σ(0, x) = σ0(x), x ∈ R,

(1.37)

on a bounded time interval [0, t̄), where σ takes values in ξ − S. See e.g. Theo-
rems 2.1 and 2.2 of [36]. We now define(

u(t, x)

v(t, x)

)
= φ(σ(t, x)).

It is easy to check that (u, v) is a C1-solution of (1.35) on [0, t̄)×R. We observe

∂xu = φ′1(σ)∂xσ = −∂xσ. (1.38)

2) The method of characteristics yields the implicit formula

σ(t, x) = σ0(x− tλ(φ(σ(t, x)))) = σ0(y(t, x)),

y(t, x) := x− tλ(φ(σ(t, x))) = x− ta′(ξ − σ(t, x))−1/2,
(1.39)
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for the solution of (1.37) as long as

1+t∇λ(φ(σ(t, x))) · w(φ(σ(t, x)))σ′0(x− tλ(φ(σ(t, x))))

= 1 + tσ′0(x− tλ(φ(σ(t, x))))q(ξ − σ(t, x)) > 0, (1.40)

see (1.36). Hence, σ is bounded. We now set

γ(t) := inf
x∈R

σ′0(y(t, x))q(ξ − σ(t, x)) for t ∈ [0, t̄).

Let t0 ≥ 0 be the supremum of t ∈ [0, t̄) such that τγ(τ) > −1 for all τ ∈ [0, t].
In the following, we take t ∈ [0, t0) so that the inequality (1.40) is valid for all
x ∈ R. Equations (1.39) then imply

∂xσ(t, x) = σ′0(x− tλ(φ(σ(t, x))))
(

1− tq(ξ − σ(t, x))∂xσ(t, x)
)
,

∂xσ(t, x) =
σ′0(y(t, x))

1 + tq(ξ−σ(t, x))σ′0(y(t, x))
.

In particular, ∂xσ is bounded on [0, t0− δ]×R for each δ ∈ (0, t0]. The blow-up
condition in Theorem 2.2 Annex of [36] (a variant of Theorem 1.19) thus yields
t̄ = t0. From formula (1.39) we further deduce ∂xσ(t, x) = σ′0(y(t, x))∂xy(t, x)
and therefore

∂xy(t, x) =
1

1 + tq(ξ − σ(t, x))σ′0(y(t, x))
> 0. (1.41)

(In the case σ′0(y(t, x)) = 0 the identity ∂xy(t, x) = 1 > 0 follows from (1.39).)
Using also (1.39), we see that the map x 7→ y(t, x) is a bijection from R to R.
This fact and (1.39) lead to the equation

γ(t) = inf
z∈R

σ′0(z)q(ξ − σ0(z)) =: γ0.

3) We now fix a C1-function σ0 : R→ [0, ξ] which is equal to ξ outside some
compact set and satisfies

σ0(0) = ξ − s0, σ′0(0) = min
z∈R

σ′0(z) < 0.

In view of (1.34), we can determine

γ0 = σ′0(0)q(s0) and t0 = − 1

γ0
. (1.42)

Substituting z = y(t, x) and using (1.41), we infer from (1.39) the identities

‖∂xσ(t, ·)‖22 =

∫
R
|∂xσ(t, x)|2 dx =

∫
R
|σ′0(y(t, x))∂xy(t, x)|2 dx

=

∫
R

|σ′0(z)|2

1 + tq(ξ − σ0(z))σ′0(z)
dz.

Since q has a global maximum at s0 while σ′0 has a global minimum at 0, we
obtain the expansions

q(s) = q(s0)−o+(s−s0), σ′0(z) = σ′0(0)+o+(z), σ0(z) = ξ−s0 +O(z),
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where o+(z) denotes any nonnegative function with the property o+(z)/z → 0
as z → 0. Hence, (1.42) yields

1 + tq(ξ − σ0(z))σ′0(z) = 1 + tγ0 + t[q(s0)o+(z) + o+(z) |σ′0(0)| − o+(z)2]

= 1 + tγ0 + to+(z)

for small |z|. Fix a number δ0 > 0 such that the above identity is true and
|σ′0(z)|2 ≥ 1

2 |σ
′
0(0)|2 =: c0 if |z| ≤ δ0. For each ε > 0 there exists a radius

δ ∈ (0, δ0) with 0 ≤ o+(z) ≤ εδ for z ∈ (−δ, δ). We can then estimate

‖∂xσ(t, ·)‖22 ≥
∫ δ

−δ

|σ′0(z)|2

1 + tγ0 + to+(z)
dz ≥

∫ δ

−δ

c0

1 + tγ0 + tεδ
dz =

2c0δ

1 + tγ0 + tεδ
.

Because of t0 = −1/γ0 =: T in (1.42), it follows

lim inf
t→T−

‖∂xσ(t, ·)‖22 ≥
2c0

Tε
.

Since ε > 0 is arbitrary, equation (1.38) finally implies that

lim inf
t→T−

‖∂xu(t, ·)‖22 = lim inf
t→T−

‖∂xσ(t, ·)‖22 = +∞.

4) Note that σ(t, x) = σ0(y(t, x)) = ξ if |y| is large enough. This fact holds
for some x0 > 0 and all t ∈ [0, T ) and |x| ≥ x0 because of (1.39) and the strict
positivity of a′ on [0, ξ]. So u = ξ − σ has compact support. Fixing

ζ = −
∫ ξ

0
a′(ξ − τ)1/2 dτ,

also the function
v = ζ +

∫ σ

0
a′(ξ − τ)1/2 dτ

has compact support. �



CHAPTER 2

Local wellposedness on a domain

In this chapter we extend the results from the previous one to linear and
quasilinear Maxwell systems on a spatial domain G, endowed with boundary
conditions. The general theory of symmetric hyperbolic systems is much more
sophisticated in this case. It uses Sobolev spaces of higher order and with
weights encoding a loss of derivatives in normal direction, see [26] or [49].
Fortunately the Maxwell equations have a special structure which allows us
to derive analogous theorems as on R3 using a similar approach. However,
already in the half-space case G = R3

+ := {x∈R3|x3 > 0} many new difficulties
arise, which we describe and solve below (sketching or omitting some technical
steps). The general case is treated via localization arguments and thus reduced
to hyperbolic problems on R3

+. They still resemble the Maxwell system, but the
resulting coefficients Aj , j ∈ {1, 2, 3}, are far more complicated than Aco

j . Here
we can only indicate how one deals with the new situation. In a first section
we start with a derivation of the boundary conditions and a discussion of the
relevant trace operator and the compatibility conditions.

2.1. The Maxwell system on a domain

We continue to study the Maxwell equations

∂tD = curlH − Je, ∂tB = − curlE, t ≥ 0, x ∈ G, (2.1)

for t ≥ 0 and x ∈ G, where G ⊆ R3 is open and bounded with a smooth
boundary or G = R3

+ = R2 × R+. As before, we can define solutions to these
equations in C(J, L2

x). Observe that the solutions still satisfy Gauß’ laws (1.2).
Below we will equip the system again with the material laws (1.3) and (1.4),
or their linear variants. However, the derivation of the boundary conditions is
independent of these laws.
We first establish the interface conditions for (2.1), arguing a bit informal. Let

Σ be a surface in G, which is given by a chart ϕ : U → V with ϕ(Σ) = V0×{0}.
Given a point x ∈ Σ, we may choose ϕ with ϕ′(x) = I. Set ψ = ϕ−1 and
U± = ψ(V ∩ R3

±) with R3
− = R2 × R−. We equip Σ with the unit normal νΣ

pointing into U+, whereas ν and ν± are the outer unit normal of U and U±,
respectively. Moreover, let S ⊆ V0 be a line segment with direction p and a > 0
such that Q = S×[−a, a] ⊆ V . Let ∂Q be oriented counter-clockwise and choose
the normal n to Q with det[n, p, e3] > 0. The surface Γ = ψ(S × [−a, a]) ⊆ U
shall carry the induced orientation; i.e., its boundary (with a parametrization
γ = γ(θ)) winds positively around the unit normal νΓ of Γ. Note that νΓ is
perpendicular to νΣ at a point x with ϕ′(x) = I. Let Γ± = ψ(Q ∩ R3

±) be

28
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oriented accordingly. For a function f on U± we denote its trace on Σ by f±
(assuming that it exists) and its jump across Σ by [f ] = f+ − f−.
It is better to start from the more fundamental integral versions of the

Maxwell equations and the Gauß’ laws (1.2), namely∫
∂Γ
H · d~s =

∫
Γ
(∂tD + Je) · νΓ dσ,

∫
∂Γ
E · d~s = −

∫
Γ
∂tB · νΓ dσ,∫

∂U
D · ν dσ =

∫
U
ρe dx,

∫
∂U
B · ν dσ = 0,

(2.2)

where we require that these traces and integrals exist. (Here H · d~s = (H ◦ γ) ·
γ′ dθ and σ is the surface measure.) If the fields belong to H1(U), say, these
equations follow from (2.1) and (1.2) by means of Stokes’ and Gauß’ theorems.
To show the converse implication, after applying Stokes and Gauß again, one
divides the integrals by the volume of U and Γ, respectively, and lets them tend
to 0. (Note that νΓ can be any unit vector in R3 if one varies Σ and Γ.)
Let ρ± = ρe�U± and J± = Je�U± . We also allow for surface charges ρΣ and

surface currents JΣ concentrated on Σ, where JΣ ⊥ νΣ. Let D be regular on
U± so that the jump [D · νΣ] = [D] · νΣ is integrable on Σ. We then infer from
(2.2) on U that∫
U+

ρ+ dx+

∫
U−

ρ− dx+

∫
Σ
ρΣ dσ =

∫
U
ρe dx =

∫
∂U
D · ν dσ

=

∫
∂U+

D · ν+ dσ +

∫
∂U−

D · ν− dσ +

∫
Σ

[D · νΣ] dσ.

By (2.2) on U±, the first two terms on both sides cancel. We can replace V0 by
subsets V ′0 . Dividing by the area of Σ and shrinking V ′0 , we see that ρΣ = [D ·νΣ]
on Σ. In the same way one shows that [B · νΣ] = 0. Similarly, (2.2) also yields∫

∂Γ+

H · d~s+

∫
∂Γ−

H · d~s−
∫

Γ∩Σ
[H] · d~s =

∫
∂Γ
H · d~s

=

∫
Γ+

(∂tD + Je) · νΓ+ dσ +

∫
Γ−

(∂tD + Je) · νΓ− dσ +

∫
Γ∩Σ

JΣ · νΓ ds

for ds = |γ′| dθ. Choosing ϕ′(x) = I, the unit tangent vector of Γ ∩ Σ at x is
equal to νΣ × νΓ. We then deduce as above that −JΣ · νΓ = [H] · (νΣ × νΓ) =
νΓ · [H × νΣ], and hence [H × νΣ] = −JΣ as nΓ is an arbitrary tangent vector
of Σ. Analogously one shows that [E × νΣ] = 0. We summarize the interface
conditions

[E × νΣ] = 0, [D · νΣ] = ρΣ, [B · νΣ] = 0, [H × νΣ] = −JΣ (2.3)

for fields being sufficiently regular on U±. (Cf. §I.4.2.4 in [15] or §1.7 in [23].)
As for Gauß’ laws (1.2), the equations forD and B are redundant for solutions

to (2.1) satisfying the interface conditions for E and H. More precisely, one has
[B(t)·νΣ] = [B(0)·νΣ], and ρΣ(t) can be computed in terms of [D(0)·νΣ] = ρΣ(0),
Je and JΣ. See Lemma 8.1 in [48] and also §I.4.2.4 in [15] or our Lemma 2.4.
Arguably the basic set-up for the Maxwell system is R3 endowed with different

material laws on subsets G and R3 \G (e.g., having vacuum D = E and H = B
on R3 \ G) and equipped with initial conditions and interface conditions for
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E and H on Σ = ∂G. In fact, one can extend the local wellposedness theory
discussed in this chapter to this setting, see [48]. Here we treat the simpler
situation that the traces at ∂G of the fields on R3 \G are assumed to be 0. For
the electric fields, this is reasonable in the case of a perfect conductor on R3 \G
which refers to the limit case of infinite conductivity σ so that E = 1

σJe = 0 in
Ohm’s law, see §I.4.2.4+6 in [15] or §7.12 in [23]. In this setting we will derive
a local wellposedness theory with the boundary condition of a perfect coductor

E × ν = 0 on ∂G. (2.4)

It is usually combined with the condition

B · ν = 0 on ∂G, (2.5)

which however turns out to be true if it holds at time 0 by Lemma 2.4.

Before we continue, we have to explain the meaning of the above equations
for functions E,B ∈ C(J, L2(G,R3)) solving the Maxwell system. To this end,
we first recall several known results about traces, see [1] and [16], for instance.
Let U ⊆ Rm be an open subset with a Lipschitz boundary given by local graphs
which yield a covering of U by finitely many charts ϕj : Uj → Vj with inverses
ψj and parametrizations Fj = ψj�{ym=0}. Let ν be its outer unit normal. For
s ≥ 0 we have the fractional Sobolev spaces Hs(Rm) consisting of v ∈ L2(Rm)
such that |ξ|sFv belongs to L2(Rm), where |ξ|s stands for the map ξ 7→ |ξ|s.
They are endowed with the norm given ‖v‖2s = ‖v‖22 + ‖|ξ|sFv‖22. Their dual
spaces are denoted by H−s(Rm). The space Hs(U) contains the restrictions v�U
for v ∈ Hs(Rm). For an open subset Γ ⊆ ∂U and s ∈ (0, 1), we define

Hs(Γ) =
{
v ∈ L2(Γ, σ)

∣∣∀ j : v ◦ Fj ∈ Hs(ϕj(Γ ∩ Vj))
}
.

Again we let H−s(Γ) be the dual space. If ∂U is Ck, one can take here s ∈ [0, k].
It is known that the trace operator tr : v 7→ v�∂U (defined on H1(U)∩C(U))

extends to a continuous and surjective map from H1(U) to H
1
2 (∂U). Its kernel

is H1
0(U). Here and in the treatment of div below, U can be a Lipschitz domain

in Rm. We discuss analogous results for the traces used in (2.4) and (2.5). To
this end, we use the spaces

H(div, U) = H(div) = {v ∈ L2(U)m | div v ∈ L2(U)},
H(curl, U) = H(curl) = {v ∈ L2(U,R3)

∣∣ curl v ∈ L2(U,R3)}

endowed with their canonical norms. The closures of test functions in these
spaces are denoted by H0(div) and H0(curl), respectively.
To work with curl, we need its basic integration by parts formula. We first

treat a weak version. Let w ∈ L2(U) and v ∈ C∞c (U). With distributional
derivatives we compute,∫
U
w · curl v dx =

∫
U

(
w1(∂2v3 − ∂3v2) + w2(∂3v1 − ∂1v3) + w3(∂1v2 − ∂2v1)

)
dx

= 〈v, curlw〉C∞c (U)
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By density, we deduce ∫
U
w · curl v dx = 〈v, curlw〉H1

0(U),∫
U
u · curl v dx =

∫
U

curlu · v dx

(2.6)

for w ∈ L2(U), u ∈ H(curl), and v ∈ H1
0(U). To handle nonzero boundary

terms, we express curl by means of div. Let u, v ∈ H1(U). We set

û1 = (0, u3,−u2), û2 = (−u3, 0, u1), û3 = (u2,−u1, 0).

The divergence theorem and a straightforward computation then imply∫
U

curlu · v dx =

∫
U

(
v1 div û1 + v2 div û2 + v3 div û3

)
dx (2.7)

=

3∑
j=1

(∫
U
−ûj · ∇vj dx+

∫
∂G
ν · ûj vj dσ

)
=

∫
U
u · curl v dx+

∫
∂U

(ν × u) · v dσ

=

∫
U
u · curl v dx+

∫
∂U
u · (v × ν) dσ.

We can show the completeness of H(curl). Indeed, if (un) is Cauchy in
H(curl), then it converges to some u and curlun to some w in L2. For v ∈ H1

0(U),
formula (2.6) now yields∫

U
w · v dx = lim

n→∞

∫
U

curlun · v dx = lim
n→∞

∫
U
un · curl v dx =

∫
U
u · curl v dx.

This means that curlu = w in H−1(U) and thus in L2(U). The completeness
of H(div) is shown analogously.
We now state the basic trace theorems for H(div) and H(curl). To this end

we define the normal trace trno : v 7→ (v · ν)�∂U on H(div) ∩ C(U) and the
tangential trace trta : v 7→ (v × ν)�∂U on H(curl) ∩ C(U).

Theorem 2.1. Let U ⊆ Rm be open having a Lipschitz boundary as described
above. Then the following assertions are true.
a) The space C∞c (U) := C∞c (Rm)�U is dense in H(div).
b) The normal trace extends to a continuous and surjective map trno :

H(div)→ H−
1
2 (∂U) with kernel H0(div).

c) For v ∈ H(div) and ϕ ∈ H1(U), we have Gauß’ formula∫
U
v · ∇ϕdx = −

∫
U
ϕdiv v dx+ 〈trϕ, trno v〉H1/2(∂U). (2.8)

Theorem 2.2. Let U ⊆ R3 be open having a Lipschitz boundary as described
above. Then the following assertions are true.
a) The space C∞c (U) is dense in H(curl).

b) The tangential trace has a continuous extension trta : H(curl)→ H−
1
2 (∂U)

with kernel H0(curl).



2.1. The Maxwell system on a domain 32

c) For v ∈ H(curl) and ϕ ∈ H1(U,R3) we have∫
U
v · curlϕdx =

∫
U

curl v · ϕdx+ 〈trϕ, trta v〉H1/2(∂U). (2.9)

If v ∈ H0(curl) and ϕ ∈ L2(U,R3), we obtain H0(curl)∗ ↪→ H−1(U,R3) and∫
U

curl v · ϕdx = 〈v, curlϕ〉H0(curl). (2.10)

In Theorem 2.4 in [10] the range of trta is determined if ∂U ∈ C2, say. We only
show the results for curl. Those for div are similarly proven, see Theorem IX.1.1
in [16]. The core step of the prof is the density statement in a), which relies on
the following description of H0(curl).

Lemma 2.3. Let U ⊆ R3 be open having a Lipschitz boundary as described
above. Assume that u ∈ H(curl) satisfies∫

U
u · curlφ dx =

∫
U

curlu · φ dx

for all φ ∈ C∞c (U)3. Then u belongs to H0(curl).

Proof. We proceed in several steps to approximate the given map u in
H(curl, U) by test functions in G. For the approximation, we first use the
assumption to extend u to an element in H(curl,R3).
1) Set v = curlu ∈ L2(U). Let ũ, ṽ ∈ L2(R3) be the 0-extensions of u and v,

respectively. Take ϕ ∈ C∞c (R3)3. The assumption then yields∫
R3

ũ · curlϕdx =

∫
G
u · curlϕdx =

∫
G

curlu · ϕdx =

∫
R3

ṽ · ϕdx.

By density, this equation is true for ϕ ∈ H1(R3)3 so that curl ũ = ṽ in H−1(R3),
and hence ũ belongs to H(curl,R3).
2) We next restrict the problem to compactly supported ũ if G is unbounded.

Take a cut-off function χ ∈ C∞c (R3) with 0 ≤ χ ≤ 1, χ = 1 on B(0, 1), and
support in B(0, 2). For a > 0 the map χa(x) := χ( 1

ax) satisfies |χa| ≤ 1,
|∇χa| ≤ ‖∇χ‖∞/a, suppχa ⊆ B(0, 2a), and tends pointwise to 1 as a → ∞.
So χaũ converges to ũ in L2(R3) by dominated convergence. We further obtain

curl(χaũ) = χa curl ũ+∇χa × ũ −→ curl ũ

in L2(R3) as a→∞. Hence, the restriction of χaũ to U tends to u inH(curl, U).
It is thus enough to show that χaũ�U belongs to H0(curl, U) for all a. Therefore,
we assume that ũ has compact support without loss of generality.
3) In this main step, we require U to be strictly starlike; i.e., θU is contained

in U for all θ ∈ [0, 1). For maps v ∈ L2(R3) we set Dθv = v(θ ·) for θ ∈ [1
2 , 1).

The operators Dθ are uniformly bounded on L2(R3) and converge strongly to
I as θ → 1 on Cc(R3) and thus on L2(R3). The function ũθ = Dθũ has a
(compact) support Sθ in U . Since ∂j ũθ,k(x) = θ(∂j ũk)(θx), we obtain

curl ũθ = θDθ curl ũ −→ curl ũ

in L2(R3) as θ → 1. Hence, the restrictions of ũθ to U tend to u in H(curl, U).
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4) Let δ < dist(Sθ, ∂U). Then the mollified maps Rδũθ�U belong to C∞c (U)
and tend to ũθ in L2(U). Moreover, the restrictions of curlRδũθ = Rδ curl ũθ
to U converge to curl ũθ in L2(U). Combined with step 3), we have shown the
lemma for strictly starlike U .
5) The general case can be treated by localization. See the proof of

Lemma IX.1.1 in [16]. �

We can now show the trace theorem for curl.

Proof of Theorem 2.2. 1) To show the density statement, take u ∈
H(curl) such that

∀φ ∈ C∞c (U) : 0 = 〈u, φ〉curl :=

∫
U

(
u · φ+ curlu · curlφ

)
dx.

Using (2.6), we infer curl curlφ = −u in H−1(U) and hence v := curlu belongs
to H(curl) with curl v = −u. Lemma 2.3 now implies that v is an element of
H0(curl). We can thus approximate it by ψn ∈ C∞c (U)3 in H(curl). For all
w ∈ H(curl), formula (2.6) implies

〈u,w〉curl = 〈− curl v, w〉L2 + 〈v, curlw〉L2

= lim
n→∞

(
〈− curlψn, w〉L2 + 〈ψn, curlw〉L2

)
= 0,

so that u = 0 and assertion a) is true.

2) We extend trta toH(curl) by means of (2.7) for v ∈ C∞c (U) and ϕ ∈ H1(U).
This formula yields∣∣∣ ∫

∂U
(v × ν) · ϕdσ

∣∣∣ ≤ ‖v‖2 ‖ curlϕ‖2 + ‖ curl v‖2 ‖ϕ‖2 ≤ c ‖v‖H(curl) ‖ϕ‖H1 .

Let R : H
1
2 (∂U) → H1(U) be a right inverse of tr and % be its norm. Writing

Y = H
1
2 (∂U) and ψ = %Rφ , we then estimate

‖ trta v‖H− 1
2 (∂U)

= sup
‖φ‖Y ≤1

|〈φ, trta v〉Y | ≤ % sup
‖%−1ψ‖H1(U)≤1

|〈tr 1
%ψ, trta v〉Y |

= % sup
‖%−1ψ‖H1(U)≤1

|〈tr 1
%ψ, trta v〉L2 | ≤ c% ‖v‖H(curl).

We can thus extend trta to a continuous map from H(curl) to H−
1
2 (∂U)

3) By continuity and density, H0(curl) is contained in the kernel of trta and
(2.9) follows from (2.7). Let u ∈ N(trτ ). For ϕ ∈ H1(U), formula (2.9) yields∫

U
u · curlϕdx =

∫
U

curlu · ϕdx,

so that u belongs to H0(curl). Hence, also b) is shown. Let ϕ ∈ L2(U). For v ∈
H1

0(U) we define the functional Φ(v) = 〈v, curlϕ〉H1
0(U). Since H1

0(U) is dense
in H0(curl), equation (2.6) implies that Φ can be extended to H0(curl)∗, so that
curl actually maps L2(U) into H0(curl)∗ ↪→ H−1(U) and satisfies (2.10). �
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These results justify the boundary condition (2.5) in view of (1.2), but not yet
(2.4) since we only require u = (E,H) ∈ C(J, L2

x). We first fix our assumptions
for the linear problem Lu =

∑3
j=0Aj∂ju+Du = f on G as

A0 ∈W 1,∞
t,x = W 1,∞(J ×G,R6×6), A0 = A>0 ≥ ηI > 0, J = (0, T ),

Aj = Aco
j for j ∈ {1, 2, 3}, D ∈ L∞t,x = L∞(J ×G,R6×6), (2.11)

u0 ∈ L2(G,R6) = L2
x, f ∈ L2

t,x = L2(J ×G,R6).

(The matrices Aco
j were defined in (1.5).) Let Lu = f for u ∈ C(J, L2

x). We
thus obtain

3∑
j=0

∂j(Aju) = f −Du+ ∂tA0 u ∈ L2
t,x.

By Theorem 2.1, the function
∑3

j=0 njAju has a trace in H−1/2(∂(J × G)),
where n is the outer unit normal of J × G. Restricting to the subset {0} × G
with n = −e0 this gives a meaning to the initial condition u(0) = u0 as A0(0)
is Lipschitz and invertible. On the lateral boundary J × ∂G with n = (0, ν), by
means of the comments before (1.5) we infer that (−ν × u2, ν × u1) has a trace
in H−1/2(J × ∂G), and so (2.4) for E = u1 is well defined. We denote the latter
trace also by trta. See §2.1 in [51] for a detailed exposition in which several
basic properties are shown that are used below without further notice.
We now check that condition (2.5) is preserved forH1-solutions of the Maxwell

system with (2.4).

Lemma 2.4. Let B,E ∈ C1(J, L2
x) ∩ C(J,H1

x) satisfy ∂tB = − curlE and
trtaE = 0. Then trnoB(t) = trnoB(0) for all t ∈ J .

Proof. Let t ∈ J and ϕ ∈ H2(G). The assumption implies div ∂tB = 0 so
that trno ∂tB(t) exists in H−

1
2 (∂G), and the same is true for curlE(t). Using

also (2.8) and (2.9), we thus obtain

∂t〈B(t)·ν, ϕ〉L2(∂G) = 〈trno(∂tB)(t), ϕ〉H−1/2(∂G) = 〈− trno curlE(t), ϕ〉H−1/2(∂G)

= −
∫
G

div curlE(t) ϕdx−
∫
G

curlE(t) · ∇ϕdx

= −
∫
G
E(t) · curl∇ϕdx+ 〈trtaE(t),∇ϕ〉H−1/2(∂G) = 0

omitting tr in front of ϕ. The result follows by density. �

2.2. The linear problem on R3
+ in L2

We treat the linear Maxwell equations (2.1) on G = R3
+ with the boundary

condition (2.4) of a perfect conductor for ν = −e3. As in Eample 1.6, we rewrite
them as the symmetric hyperbolic system

Lu =

3∑
j=0

Aj∂ju+Du = f, t ≥ 0, x ∈ R3
+,

Bu = −E × e3 = 0, t ≥ 0, x ∈ ∂R3
+, (2.12)
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u(0) = u0, x ∈ R3
+

assuming hypothesis (2.11) for G = R3
+. We first look for a solution u =

(E,H) ∈ C(J, L2
x), using the notation of (2.11) for G = R3

+, proceeding as in
[7], [11] or [45], for instance. The trace operator B is defined as in the previous
section and will be identified with the matrix Bco = (S3 0) ∈ R3×6, where
the matrices Sj ∈ R3×3 were introduced before (1.5). We proceed similar to
Section 1.2 starting with an energy estimate. Later it turns out to be important
that we require a bit less than H1 in the lemma. We set vta = (v1, v2, v4, v5) for
the tangential components of a function v : R3

+ → R6, and vno = (v3, v6) for the
normal ones.

Lemma 2.5. Assume that (2.11) is true for G = R3
+ and that u ∈ C(J, L2

x)
solves (2.12) and has derivatives ∂ju, ∂3uta in L2

t,x for j ∈ {0, 1, 2}. Let C+ :=
1
2∂tA0 −D, γ ≥ γ+′

0 (L) := max{1, 4 ‖C+‖∞/η}, t ∈ J , and L2
γ = L2

γ(0, t). We
then obtain

γη
4 ‖u‖

2
L2
γL

2
x

+ η
2e−2γt‖u(t)‖2L2

x
≤ 1

2‖A0(0)‖∞ ‖u0‖2L2
x

+ 1
2γη ‖f‖

2
L2
γL

2
x
. (2.13)

Proof. Let v = e−γu and g = e−γf . By assumption, ∂ju for j ∈ {0, 1, 2}
and ∂3A

co
3 u belong to L2

t,x, and hence uta has a trace on {x3 = 0} in L2(J×R2).
It is 0 for u1 and u2 by the boundary condition. As in Lemma 1.2, the equation
γA0v + Lv = g yields

〈g, v〉 = γ〈A0v, v〉+
3∑
j=0

〈Aj∂jv, v〉+ 〈Dv, v〉

for the scalar products in L2((0, t), L2
x). For j ∈ {1, 2, 3} the summand

with Aj is equal to
∫

1
2∂j(Ajv · v) d(s, x) since Aj is constant and symmet-

ric. The integral in xj then vanishes by the above properties and since
Aco

3 u · u = (u5u1,−u4u2, 0,−u2u4, u1u5, 0) has trace 0 on {x3 = 0}. For j = 0,
one obtains 2A0∂tv · v = ∂t(A0v · v)− ∂tA0v · v. Integrating in t, we derive

γ〈A0v, v〉+
1

2

∫
R3
+

A0(t)v(t) · v(t) dx =
1

2

∫
R3
+

A0(0)u0 ·u0 dx+ 〈C+v, v〉+ 〈g, v〉.

The assertion now follows as in Lemma 1.2. �

We use (2.13) only for

γ ≥ γ+
0 (r, η) := max{1, 6r/η} ≥ γ+′

0 (L) (2.14)

assuming that ‖∂tA0‖∞, ‖D‖∞ ≤ r. As in (1.11) the above proof yields the
energy equality∫

R3
+

A0(t)u(t) · u(t) dx (2.15)

=

∫
R3
+

A0(0)u0 · u0 dx+ 2

∫ t

0

∫
R3
+

(
C+(s)u(s) + f(s)

)
· u(t) dx ds.
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For the existence result we need analogous estimates for the (formal) adjoint

L◦ = −
3∑
j=0

Aj∂j +DT − ∂tA0

in backward time and on the time interval R. To this end, we extend the
coefficents A0 constantly and D by 0 to t ∈ R.

Proposition 2.6. Let (2.11) be true for G = R3
+ with ‖∂tA0‖∞, ‖D‖∞ ≤ r.

Extend A0 constantly and D by 0 to t ∈ R. Let γ ≥ γ+
0 (r, η), see (2.14).

a) Let v ∈ C(J, L2
x) with ∂jv, ∂3vta ∈ L2(J, L2

x) for j ∈ {0, 1, 2} satisfy L◦v =

f , Bv = 0 and v(T ) = v0. For the weight ẽγ(t) = eγ(t−T ), t ∈ J , and L2
t,x =

L2((t, T ), L2
x) we obtain

γη
4 ‖ẽγv‖

2
L2
t,x

+ η
2e2γ(t−T )‖v(t)‖2L2

x
≤ 1

2‖A0(T )‖∞ ‖v0‖2L2
x

+ 1
2γη ‖ẽγf‖

2
L2
t,x
. (2.16)

b) Let h, v ∈ L2
−γ(R, L2

x) with ∂jv, ∂3vta ∈ L2
−γ(R, L2

x) for j ∈ {0, 1, 2} satisfy
L◦v = h and Bv = 0. We then have

γη
4 ‖v‖

2
L2
−γ(R,L2

x) ≤
1

2γη ‖h‖
2
L2
−γ(R,L2

x) . (2.17)

The same estimate holds if we replace −γ by γ and L◦ by L.

Proof. Assertion a) can be reduced to Lemma 2.5 as in step 1) of the
proof of Theorem 1.5. For b), we first show the addendum. For t ∈ R, as in
Lemma 2.5 and with L2

γ,t = L2
γ(−∞, t) we derive

γη
4 ‖v‖

2
L2
γ,tL

2
x

+ η
2e−2γt‖v(t)‖2L2

x
≤ 1

2γη ‖h‖
2
L2
γ,tL

2
x
≤ 1

2γη ‖h‖
2
L2
γL

2
x
. (2.18)

On the left we can drop the second summand and then let t→∞ using Fatou’s
lemma. Transforming t 7→ −t as in Theorem 1.5, estimate (2.17) follows from
(2.18). �

Also in the present setting the duality argument from Theorem 1.5 provides
a solution of (2.12) in L2

t,x. However, the regularization argument does not
work anymore in x3. To obtain uniqueness and a continuous solution satisfying
the energy estimate, we first pass to a problem with t ∈ R so that we can use
regularization in t instead. We set ‖v‖2H1

γ
= ‖v‖2L2

γH1
x

+ ‖∂tv‖2L2
γL

2
x
.

Proposition 2.7. Let (2.11) be true for G = R3
+ with ‖∂tA0‖∞, ‖D‖∞ ≤ r.

a) Then we have a solution u ∈ L2(J, L2
x) of (2.12).

b) Let γ ≥ γ+
0 (r, η), see (2.14), and f̃ ∈ L2

γ(R, L2
x). Then there is a function

u ∈ L2
γ(R, L2

x) ∩ C(R, L2
x) satisfying Lu = f̃ and Bu = 0. Let f̃ also have

support in R≥0. Then u solves (2.12) on J with u0 = 0 and f̃ , and it fulfills
(2.13) and (2.15).

Proof. a) We proceed as in Theorem 1.5 and define for v ∈ V :=
{
v ∈

H1(J × R3
+)
∣∣Bv = 0, v(T ) = 0

}
the functional

`0 : L◦V → R; `0(L◦v) = 〈v, f〉L2
t,x

+ 〈v(0), A0(0)u0〉L2
x
.
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Estimate (2.16) with γ = γ+
0 (r, η) shows that `0 is well defined and that

|`0(L◦v)| ≤ ‖f‖L2
t,x
‖v‖L2

t,x
+ ‖A0(0)u0‖L2

x
‖v(0)‖L2

x
≤ c‖L◦v‖L2

t,x
.

As a result, `0 can be extended to a functional on L2
t,x which in turn is rep-

resented by a function u ∈ L2(J, L2
x) satisfying `0(L◦v) = 〈L◦v, u〉L2

t,x
for all

v ∈ V ; i.e.,

〈v, f〉L2
t,x

+ 〈v(0), A0(0)u0〉L2
x

(2.19)

= 〈v,Du〉L2
t,x
−

2∑
j=0

∫ T

0

∫
R3
+

∂j(Ajv) · udx dt−
∫ T

0

∫
R3
+

∂3v ·Aco
3 udx dt.

First, for v ∈ H1
0(J × R3

+) this formula yields

〈v, f〉L2
t,x

= 〈v,Du〉L2
t,x

+
3∑
j=0

〈v,Aj∂ju〉H1
0(J×R3

+) = 〈v, Lu〉H1
0(J×R3

+),

so that Lu = f in H−1
t,x . Since f ∈ L2

t,x, from (1.9) we deduce that ∂tu belongs
to L2

tH−1
x and from Lu = f that ∂3uta is contained in L2

x3(R+,H−1(J × R2)).
In a second step, we take v = φv0 for some v0 ∈ C∞c (R3

+) and φ ∈ C1([0, T ])
with φ(0) = 1 and φ(T ) = 0. Equation (2.19) now implies

〈v, Lu〉L2
t,x

+ 〈v0, A0(0)u0〉L2
x

= 〈v,Du〉L2
t,x

+
3∑
j=0

∫ T

0
〈v(s), Aj(s)∂ju(s)〉H1

0(R3
+) ds+ 〈v0, A0(0)u(0)〉L2

x

= 〈v, Lu〉L2
t,x

+ 〈v0, A0(0)u(0)〉L2
x
.

As C∞c (R3
+) is dense in H1

0(R3
+), it follows A0(0)u0 = A0(0)u(0) in H−1

x , and so
u(0) = u0.
Finally, let v ∈ C∞c (J × R2 × R≥0). Identity (2.19) then leads to

〈v, Lu〉L2
t,x

= 〈v,Du〉L2
t,x

+
2∑
j=0

〈v,Aj∂ju〉H1
0(J×R2,L2(R+))−

∫ T

0

∫
R3
+

∂3v ·Aco
3 udx dt.

We now choose v such that only v5 6= 0. Write Γ = ∂R3
+ = {x3 = 0}. Combined

with the identity

−
∫ ∞

0
〈∂3v5, u1〉L2(J×R2) dx3 =

∫ ∞
0
〈v5, ∂3u1〉H1

0(J×R2)dx3 + 〈trΓ v5, trΓ u1〉H1
0(J×R2)

the above equation in display yields 〈v, Lu〉 = 〈v, Lu〉+〈trΓ v5, trΓ u1〉 so that the
last term is equal to 0. Again by density we conclude trΓ u1 = 0 in H−1(J×R2),
and similarly trΓ u2 = 0. Therefore u ∈ L2(J, L2

x) solves (2.12).
b) 1) Let f̃ ∈ L2

γ(R, L2
x) for a fixed γ ≥ γ+

0 (r, η). We proceed as above on
the time interval R, setting V =

{
v ∈ H1

−γ(R × R3
+)
∣∣Bv = 0

}
and `0(L◦v) =

〈v, f̃〉L2
t,x

for v ∈ V . We note that L2
γ is the dual of L2

−γ via the L2-scalar
product. Estimate (2.17) then implies that `0 is welldefined and bounded. As
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in part a) we can then represent `0 by a function u ∈ L2
γ(R, L2

x) and show that
Lu = f̃ and Bu = 0.
2) Let R1/n be a mollifier in (t, x1, x2) for n ∈ N. Then R1/nu is an element

of H1
γ(R× R2, L2(R+)), and it satisfies BR1/nu = 0 and

LR 1
n
u = R 1

n
f̃ + [A0, R 1

n
]∂tu+ [D,R 1

n
]u =: f̃n. (2.20)

By Proposition 1.3 and dominated convergence, the functions f̃n tend to f̃ in
L2
γ(R, L2

x) as n→∞. Moreover,

∂3A
co
3 R 1

n
u = f̃n −

2∑
j=0

Aj∂jR 1
n
u−DR 1

n
u (2.21)

is contained in L2
γL

2
x. So (R1/nu)n is Cauchy in Cb,γL2

x ∩ L2
γL

2
x by (2.18) and

(2.20). Since R1/nu→ u in L2
γL

2
x, we conclude that u belongs to C(R, L2

x) and
fulfills (2.18).
3) Let f̃ have support in R≥0. Using (2.18) for u, we estimate∫ 0

−∞
‖u(s)‖2L2

x
ds ≤

∫ 0

−∞
e−2γs‖u(s)‖2L2

x
ds ≤ 2

γ2η2
‖f̃‖2L2

γ(R,L2
x) ≤

2

γ2η2
‖f̃‖2L2

t,x
.

Letting γ →∞, we infer that u vanishes for t ≤ 0. Inequality (2.18) then shows
(2.13) with u0 = 0. Moreover, the functions R1/nu from step 2) satisfy the
energy equality (2.15) with u0 = 0, and thus also u by approximation. �

The above proof also yields uniqueness of solutions to (2.12) even in L2
t,x.

Proposition 2.8. Assume that (2.11) is true for G = R3
+. Let u, v ∈

L2(J, L2
x) solve (2.12). Then u = v.

Proof. The function w = u−v ∈ L2
t,x solves (2.12) with u0 = 0 and f = 0.

Extend w by 0 to R. We then have w ∈ H1((0, T ),H−1
x ) by (1.9) and Lw = 0

on (−∞, T ). Take times 0 < t0 < t1 < T and a function θ ∈ C∞(R) being 1
on (−∞, t0] and 0 on [t1,∞). The map w̃ = θw has support in J and satisfies
Lw̃ = θ′A0w =: g ∈ L2

tL
2
x, where supp g ⊆ [t0, t1]. As in parts 2) and 3) of the

proof of Proposition 2.7 b), we then check that w = 0 on [0, t0] (using the weight
e−γ(t−t0) and replacing the time 0 by t0). Here t0 < T is arbitrary. �

As a final preliminary step we show the desired result if f = 0. Recall that
we have extended A0 and D to R.

Lemma 2.9. Assume that (2.11) is true and f = 0. Then there is a unique
solution u ∈ C(J, L2

x) of (2.12), and it satisfies (2.13) and (2.15) with f = 0.

Proof. Proposition 2.7 provides a solution u ∈ L2
t,x on (0, T + 1).

1) First, let u0 be 0 outside a compact set in R3
+. Then extend it by 0 to R3.

Theorem 1.5 (and a backward version) yield a solution ũ ∈ C(R, L2
x) of Lũ = 0

with ũ(0) = u0. There is a time τ > 0 such that ũ(t) is supported in R3
+ for

all t ∈ [−τ, τ ] due to the finite speed of propagation, see Theorem 1.7. So the
restriction v of ũ to [−τ, τ ]×R3

+ solves (2.12) with f = 0. Proposition 2.8 shows
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that u = v on [0, τ ], and hence u belongs to C([0, τ ], L2
x). We extend u by ũ|R3

+

continuously to t < 0.
As in the proof of Proposition 2.7, we set un = R1/nu on [0, T ] for a mollifier

in (t, x1, x2) = (t, x′). Then the functions un ∈ C(J, L2
x) tend to u in L2(J, L2

x)
and satisfy Bun = 0, Lun =: fn → 0 in L2(J, L2

x) as well as (2.13) and (2.15)
on J . (See (2.20) and (2.21) and use Lemma 2.5.) Moreover, we have

un(0, x) =

∫ 1/n

−1/n

∫
B(x′,1/n)

ρ1/n(−s, x′ − y′)u(s, y′, x3) dy′ ds

which tends to u0 in L2
x by the time continuity of u. For t ∈ J and γ = γ+

0 , see
(2.14), estimate (2.13) then yields

‖un(t)− um(t)‖2L2
x
≤ c
(
‖un(0)− um(0)‖2L2

x
+ ‖fn − fm‖2L2

t,x

)
−→ 0

for n,m→∞ so that (un) is Cauchy in C(J, L2
x). As a result, u belongs to this

space and fulfills (2.13) and (2.15) with f = 0.
2) Let u0 ∈ L2

x. Set u0,n = 1Knu0 for compact setsKn ⊆ R3
+ with

⋃
n∈NKn =

R3
+. Step 1) provides a map un ∈ C(J, L2

x) with Lun = 0, Bun = 0 and un(0) =
u0,n which satisfies (2.13) and (2.15). This estimate then implies that (un) is
Cauchy in C(J, L2

x), and hence the limit u has the asserted properties. �

We now obtain the basic linear well-posedness result in L2
x. (The additional

factor 2 could be avoided using R1/n as above.)

Theorem 2.10. Let (2.11) be true for G = R3
+ with ‖∂tA0‖∞, ‖D‖∞ ≤ r.

Then there is a unique solution u ∈ C(J, L2
x) of (2.12). It satisfies (2.15) and

(2.13) with a factor 2 on the right-hand side for γ ≥ γ+
0 (r, η) from (2.14).

Proof. Uniqueness was shown in Corollary 2.6. Proposition 2.7 and
Lemma 2.9 provide functions v, w ∈ C(J, L2

x) satisfying Lv = f , Bv = 0,
v(0) = 0, as well as Lw = 0, Bw = 0, w(0) = u0. Then u = v + w ∈ C(J, L2

x)
solves (2.12). Since v and w fulfill (2.13) and (2.15) for the respective data, the
last assertion also follows. �

2.3. The linear problem on R3
+ in H3

On G = R3 we have reduced the wellposedness of the linear problem in H3 to
that in L2 by means of the transformation v 7→ (I −∆)3/2v. For the Maxwell
system on domains such a procedure does not seem to work anymore because of
the boundary condition (2.4). (See [32] for cases where one can proceed in such
a way also in the presence of (simpler) boundary conditions.) Instead we will
first derive apriori estimates for H3-solutions and then show by regularization
arguments that the L2-solution of Theorem 2.10 is actually an H3-solution if
the data satisfy natural assumptions.
In our reasoning we will mix space and time regularity so that we need the

same number of derivatives in space and in time. We thus look for solutions in
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G3(J × R3
+), where we set

Gm(J ×G) =
m⋂
k=0

Ck(J,Hm−k(G,R6)),

Gm−(J ×G) =
m⋂
k=0

W k,∞(J,Hm−k(G,R6))

for m ∈ N0 and an open bounded set G ⊆ R3 with smooth boundary or G ∈
{R3

+,R3}. These spaces are endowed with their canonical norms. Sometimes
we only write Gm(T ) if G is clear from the context and J = (0, T ). For the
coefficients we use

Fm(J ×G) =
{
A ∈W 1,∞(J ×G,R6×6)

∣∣∀α ∈ N4
0 with 1 ≤ |α| ≤ m :

∂αA ∈ L∞(J, L2
x)
}
,

These spaces are endowed with their natural norms, and the same symbols also
denote spaces with different range spaces. The spaces Ĥmx = Ĥm(G) are defined
as on R3 after (1.18). As before, the subscript ‘sym’ means that the functions
take values in symmetric matrices, ‘η’ that they are bounded from below by ηI
in addition, and ‘γ’ refers to norms with weight e−γt. To obtain solutions in G3,
we strengthen hypotheses (2.11) to

A0, D ∈ F3(J ×G,R6×6), A0 = A>0 ≥ ηI > 0, J = (0, T ), (2.22)

Aj = Aco
j for j ∈ {1, 2, 3}, u0 ∈ Hk(G,R6) = Hkx, f ∈Hk(J×G,R6) = Hkt,x,

‖A0‖F3 , ‖D‖F3 ≤ r, ‖A0(0)‖Ĥ2
x
, ‖D(0)‖Ĥ2

x
, ‖∂ltA0(0)‖H2−l

x
, ‖∂ltD(0)‖H2−l

x
≤ r0

for all l ∈ {1, 2}, some k ∈ {1, 2, 3}, and constants r ≥ r0 ≥ 1. We note that the
product and inversion rules from Lemma 1.8 remain true on the present spatial
domain G and for G3, since G admits an extension operator and the additional
time derivatives can be treated similarly, see §2 of [53] or §2.2 of [51].
If one has a solution u ∈ C(J,H1

x) of (2.12), the initial value u(0) = u0 must
satisfy the boundary condition Bu0 = 0 by continuity. If u even belongs to G3,
also u1 = ∂tu(0) and u2 = ∂2

t u(0) have to fulfill Buj = 0, where we put u0 = u0.
In view of (2.12) and (2.22), the following (linear) compatibility conditions (of
order 3) are thus neccessary for the existence of a solution u ∈ G3.

Buj = 0 for j ∈ {0, 1, 2}, where:

u1 := A0(0)−1
[
f(0)−D(0)u0 −

3∑
j=1

Aj∂ju0

]
, (2.23)

u2 := A0(0)−1
[
∂tf(0)− ∂tD(0)u0 −D(0)u1 − ∂tA0(0)u1 −

3∑
j=1

Aj∂ju
1
]
.

The function u3 is defined analogously applying ∂2
t to Lu = f . Assuming (2.22),

the product and inversion rules easily yield

‖uj‖Hk−jx
≤ c(r0, η)

(
‖u0‖Hkx + ‖f(0)‖Hk−1

x
+ · · ·+ ‖∂j−1

t f(0)‖Hk−jx

)
(2.24)



2.3. The linear problem on R3
+ in H3 41

for k∈{1, 2, 3} and j∈{0, . . . , k}, cf. Lemma 2.3 in [53] or Lemma 2.33 of [51].
We start with the apriori estimates for the time and tangential derivatives. We

writeHkta(J×G) for functions g ∈ L2
t,x with ∂αg ∈ L2

t,x for all α = (α0, . . . , α3) ∈
N4

0 with |α| ≤ k and α3 = 0. Analogously, we define Gkta,γ and Hkta(G) = Hkta,x.

Lemma 2.11. Let (2.22) be true for G = R3
+ and some k ∈ {1, 2, 3}, where

we only require f ∈ H3
ta(J × G). Assume that u ∈ Gk(J × G) solves (2.12).

Then there exist constants γ̃+
k = γ̃+

k (r, η) ≥ γ+
0 (r, η), see (2.14), c+

k = c+
k (r, η)

and c+
k,0 = c+

k,0(r0, η) such that u satisfies

‖u‖2Gkta,γ + γ‖u‖2Hkta,γ ≤ c
+
k,0

[
‖u0‖2Hkx + ‖f(0)‖2Hk−1

x
+ · · ·+ ‖∂k−1

t f(0)‖2L2
x

]
+

c+k
γ (‖f‖2Hkta,γ + ‖u‖2Gkγ )

for all γ ≥ γ̃+
k .

Proof. Take α ∈ N4
0 with |α| ≤ k and α3 = 0 and apply ∂α to (2.12). We

then have B∂αu = 0, ∂αu(0) = ∂(α1,α2)uα0 and

L∂αu = ∂αf −
∑

0<β≤α

(
α
β

)(
∂βA0∂

α−β∂tu+ ∂βD∂α−βu
)
. (2.25)

Combined with (2.24) and Lemma 1.8, the energy inequality (2.13) applied to
the above equation yields the assertion. �

The extra term involving u on the right-hand side will be absorbed below.
The above argument fails for the normal derivative ∂3 since ∂3 destroys the
boundary condition Bu = 0. However, the equation (2.12) directly allows to
bound ∂3uta in terms of u and ∂ju for j ∈ {0, 1, 2}. For instance, the first line
of (2.12) yields

∂3H2 = ∂2H3 − (A0∂tu)1 − (Du)1 + f1. (2.26)
Here we mix space and time regularity which forces us to use the solution space
G3. The remaining derivatives ∂3u3 and ∂3u6 (and higher-order analogues) can
be treated using div curl = 0. We stress that we do not employ boundary
conditions in these two steps.

Proposition 2.12. Let (2.22) be true for G = R3
+ and some T ′ > 0 and

k ∈ {1, 2, 3}. Let T ∈ (0, T ′] and u ∈ Gk(J ×G) solve (2.12). Then there exist
constants γ+

k = γ+
k (r, η, T ′) ≥ γ̃+

k (r, η), see Lemma 2.11, C+
k = C+

k (r, η, T ′) and
C+
k,0 = C+

k,0(r0, η) such that

‖u‖2Gkγ ≤ (C+
k,0 + TC+

k )ekC
+
1 T
(
‖u0‖2Hkx + ‖f(0)‖2H2

x
+ · · ·+ ‖∂k−1

t f(0)‖2L2
x

)
+

C+
k
γ ekC

+
1 T ‖f‖2Hkγ for all γ ≥ γ+

k . (2.27)

Proof. 1) Let k = 1 and t ∈ [0, T ]. To carry out the argument indicated
above, we first note that ‖A0(t)‖L∞x ≤ r0+rt since A0(t) = A0(0)+

∫ t
0 ∂tA0(s) ds

and analogously for D and f . So (2.12) and Lemma 2.11 yield

‖∂3uta‖G0γ(t) ≤ c(r0 + Tr)‖(u, ∂t,x1,x2u)‖G0γ(t) + ‖f(0)‖L2
x

(2.28)
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+ sup
τ∈[0,t]

∫ τ

0
e−γ(τ−s)e−γs‖∂tf(s)‖L2

x
ds,

≤ c(r0 + Tr)‖(u, ∂t,x1,x2u)‖G0γ(t) + ‖f(0)‖L2
x

+ c√
γ ‖∂tf‖L2

γ((0,t),L2
x)

≤ (c0(r0, η) + Tc(r, η))
(
‖u0‖H1

x
+ ‖f(0)‖L2

x

)
+ c(r,η,T ′)√

γ (‖f‖H1
γ,ta(t) + ‖u‖G1γ(t)),

using also Young’s inequality. We next treat ∂3uno with uno = (u3, u6). To
simplify notation, we assume in this proof that D = 0 and A0 = diag(ae, am),
where aj maps into R3×3

η , and we write f = (fe, fm). (Compare Proposition 3.3
in [53].) Equation (2.12) then leads to

∂t(a
e∇xE) = ∂ta

e∇xE + ae∇x(a−1
e curlH + a−1

e fe)

= ∂ta
e∇xE + ae∇xa−1

e (curlH + fe) +∇xfe +∇x curlH

in H−1
x . The first two summands in the last line are denoted by Λ and are

bounded pointwise by c(r)(|∇xu| + |f |). Observe that the trace sp(∇x curlH)
is equal to div curlH = 0. Integrating in time, we thus obtain

ae33(t)∂3E3(t) = sp(ae(0)∇E0)−
∑

(j,k) 6=(3,3)

aejk(t)∂kEj(t) +

∫ t

0
sp(∇fe + Λ) ds.

(2.29)
Let ∂′u = (u, ∂1u, ∂2u, ∂3uta). Since ae33 ≥ η, as in (2.28) we derive

‖∂3E3(t)‖L2
x
≤ c(r0, η)‖u0‖H1

x
+ c r0+rt

η ‖∂
′u(t)‖L2

x
+ c(r, η)

∫ t

0
‖(f(s), u(s))‖H1

x
ds

≤ c(r0)‖u0‖H1
x

+ (c0(r) + tc(r))eγt‖∂′u(t)‖G0γ(t) +
c(r)
√
γ

eγt‖f‖H1
γ(t)

+ c1(r)

∫ t

0
‖∂3uno(s)‖L2

x
ds, (2.30)

dropping the dependence on η in the constants. We now multiply this inequality
by e−γt, and add the analogous one for ∂3H3 as well as Lemma 2.11 and (2.28).
It follows

e−γt‖(u(t), ∂t,xu(t))‖L2
x
≤ (c(r0)+Tc(r))

(
‖u0‖H1

x
+ ‖f(0)‖L2

x

)
+ c(r,T ′)√

γ ‖f‖H1
γ(t)

+ c(r,T ′)√
γ ‖u‖G1γ(t) + c(r)

∫ t

0
e−γs‖∂3uno(s)‖L2

x
ds. (2.31)

Taking the supremum t ≤ t′, we educe this estimate with t′ instead of t and
‖u‖G1γ(t′) on the left-hand side. We now absorb the norm of u on the right-hand
side choosing sufficiently large γ. Going back to the form (2.31) of the estimate,
Gronwall’s inequality yields (2.27) for k = 1.
2) Let k = 3, the variant for k = 2 is shown by a modification of the proof.
a) We first take α ∈ N4

0 with |α| ≤ 2 and α3 = 0. Equation (2.25) and
Lemma 1.8 show that L∂αu = fα with ‖fα‖H1

γ,ta
≤ c(r) (‖f‖H3

γ,ta
+ ‖u‖H3

γ
).

Using also (2.24), we can bound ∂αu(0) in H1
x by

c(r0)(‖u0‖H3
x

+ ‖f(0)‖2H2
x

+ ‖∂tf(0)‖H1
x

+ ‖∂2
t f(0)‖L2

x
) =: c(r0)κ(u0, f).
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Lemma 2.11 and (2.28) thus imply

‖u‖G3ta,γ + ‖∂3∂
αuta‖G0γ(t) ≤ (c(r0) + Tc(r))κ(u0, f) + c(r,T ′)√

γ

(
‖f‖H3

γ,ta
+ ‖u‖G3γ

)
.

We next employ (2.30) with ∂αu and fα instead of u and f . Using also the
above estimates, we derive (2.31) for ∂αu and f , replacing ‖u‖G1γ(t) by ‖u‖G3γ(t)

on the right. Note that we still work with L and so the constant c1(r) in (2.30)
is unchanged. Gronwall’s inquality thus implies (2.27) for k = 3 up to the term
c(r, T ′)γ−1ec1(r)t‖u‖2G3γ on the right-hand side, if restrict ourselves to derivatives
of u and f with α3 ≤ 1.
b) In a next step, in a) we choose α with |α| ≤ 2 and α3 = 1. Proceeding as

in step a) and using it, we first obtain

‖u‖G3ta,γ(t) + ‖∂3u‖G2ta,γ(t) + ‖∂2
3uta‖G1ta,γ(t)

≤ (c(r0)+Tc(r))ec1(r)tκ(u0, f) + c(r,T ′)√
γ

[
‖∂3f‖H2

γ,ta
+ ec1(r)t(‖f‖H3

γ,ta
+ ‖u‖G3γ )

]
.

In (2.30) we now insert ∂3∂tau and ∂3jf with j ∈ {0, 1, 2}. As in (2.31), we
derive from the above estimate and Gronwall’s inquality the assertion up to the
error term for all derivatives except ∂3

3 and k = 2 in the exponent. The step for
∂3

3 can be performed analogously. Finally we absorb c(r, T ′)γ−1‖u‖2G3γ by the

left-hand side, choosing large γ ≥ γ+
3 (r, η, T ′). �

Using the above estimate, we now show in several steps that the solution
u ∈ G0(J) of (2.12) given by Theorem 2.10 actually belongs to G3(J) if (2.22)
is true with k = 3. For k = 1, we first show that u ∈ C1(J, L2

x) by solving
an equation formally satisfied by ∂tu. In this step, we need the compatibility
condition to obtain time regularity. The tangential regularity is then derived by
means of mollifiers as in Proposition 2.7. The normal regularity finally follows
from (2.12) and (2.29).

Lemma 2.13. Let (2.22) be true for G = R3
+ and k = 1, and let u ∈ G0(J×G)

solve (2.12). Assume that Bu0 = 0. Then u belongs to C1(J, L2
x).

Proof. 1) Define u1 ∈ L2
x as in (2.23). We look for v ∈ C(J, L2

x) solving

L′v :=
3∑
j=0

Aj∂jv + (D + ∂tA0)v = ∂tf − ∂tD
(
u0 + V (t)

)
, t ≥ 0, x ∈ R3

+,

Bv = 0, t ≥ 0, x ∈ ∂R3
+, (2.32)

v(0) = u1, x ∈ R3
+,

where we have set V (t) =
∫ t

0 v(s) ds. If we already knew that u belonged
to C1(J, L2

x), then v = ∂tu would satisfy (2.32). However, we can solve this
problem directly using a simple fixed-point argument. Indeed, take w ∈ G0(J)
and replace v by w on the right-hand side of the evolution equation in (2.32).
Theorem 2.10 then yields a solution v ∈ G0(J) of the resulting problem. For
γ ≥ γ+

0 and c = c(r, η), we further obtain

‖v − v‖2G0γ ≤
c
γ ‖W −W‖

2
L2
γL

2
x
≤ cT 2

2γ2
‖w − w‖2G0γ ,
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where v ∈ G0(J) solves (2.32) for w ∈ G0(J) instead of v on the right. Fixing a
large γ, we obtain a unique fixed point v ∈ G0(J) solving (2.32).
2) The function w := u0 +V ∈ C1(J, L2

x) satisfies w(0) = u0 and Bw = 0 due
to the compatibility condition Bu0 = 0. Observe that ∂tv ∈ L2

tH−1
x by (2.32)

and hence

A0(t)v(t) = A0(0)u1 +

∫ t

0

(
∂tA0(s)v(s) +A0(s)∂tv(s))

)
ds

in H−1
x for t ∈ [0, T ]. Similarly, we have

D(t)w(t) = D(0)u0 +

∫ t

0

(
∂tD(s)w(s) +D(s)v(s)

)
ds.

These identities, (2.32) and (2.23) imply

Lw(t) = (A0v)(t) +
3∑
j=1

Aco
j ∂j(u0 + V (t)) +D(t)w(t)

= A0(0)u1 +

3∑
j=1

Aco
j ∂ju0 +D(0)u0 +

∫ t

0

(
L′v(s) + ∂tD(s)w(s)

)
ds

= f(0) +

∫ t

0
∂tf(s) ds = f(t).

The uniqueness statement of Theorem 2.10 now yields u = w ∈ C1(J, L2
x). �

Lemma 2.14. Let (2.22) be true for G = R3
+ and k = 1, and let u ∈ C1(J, L2

x)

solve (2.12). Then u belongs to C(J,H1
ta,x).

Proof. Let R1/n be a mollifier with respect to (x1, x2) and set un = R1/nu

for n ∈ N. This function belongs to C(J,H1
ta,x) ∩ C1(J, L2

x) and tends to u in
C(J, L2

x) by the properties of u. As in (2.20), we have BR1/nu = 0 and

Lun = R 1
n
f + [A0, R 1

n
]∂tu+ [D,R 1

n
]u =: fn.

Hence, ∂3A
co
3 un is contained in L2

t,x. We can thus apply ∂j for j ∈ {1, 2} to
Lun = fn resulting in

L∂jun = R 1
n

(
∂jf − ∂jA0∂tu− ∂jDu

)
+ [A0, R 1

n
]∂j∂tu+ [D,R 1

n
]∂ju =: gn.

In view of the regularity of u and the data, Proposition 1.3 implies that gn tends
to ∂jf − ∂jA0∂tu− ∂jDu in L2

t,x and ∂jun(0) to ∂ju0 in L2
x as n→∞. Hence,

(∂jun)n is Cauchy in C(J, L2
x) by (2.13). This means that (un) converges to u

in C(J,H1
ta,x). �

The next lemma on normal regularity does not involve boundary conditions.
If Bu = 0, then u satisfies its regularity assumptions thanks to the previous
lemmas.

Lemma 2.15. Let (2.22) be true for G = R3
+ and k = 1. Assume that u ∈

C1(J, L2
x) ∩ C(J,H1

ta,x) solves Lu = f . Then u belongs to G1(J).
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Proof. Observe that ∂3uta is contained in C(J, L2
x) by (2.26) and the as-

sumptions. We want to regularize u in x3-direction and then use (2.30) to
pass to the limit. To this end, we simplify a bit and restrict ourselves to the
special case A0 = diag(ae, am) as in the proof of Proposition 2.12. More im-
portantly, for technical reasons we shift the functions on R3

+ downwards by
Sδv(x) = v(x′, x3 + δ) for x = (x′, x3) ∈ R3 with x3 > −δ and δ > 0. This de-
stroys the boundary condition, which is not needed fortunately. We then extend
the function Sδv by 0 to R3 and apply the mollifier R1/n in x3. Afterwards we
will restrict to x ∈ R3

+ again. This allows us to justify the calculations below,
see the proof of Lemma 4.1 in [53] for the details.
We write uδ = Sδu, fδ = Sδf , and Lδ for the operator with shifted coefficients

SδA0 and SδD. One has Lδuδ = fδ, and hence ∂3uδ,ta is contained in CtL2
x. We

compute

LδR 1
n
uδ = R 1

n
fδ + [SδA0, R 1

n
]∂tuδ + [SδD,R 1

n
]uδ =: gδ,n

for n ∈ N and δ > 0 with 1
n < δ. Then R1/nuδ belongs to G1(J × R3

+), gδ,n
tends to fδ in H1

t,x as n → ∞, and u0
δ,n := R1/nSδu0 to Sδu0 in H1

x by our
assumptions and Proposition 1.3. We can now derive the analogue of formula
(2.29) for R 1

n
uδ as before. As in (2.30) it follows

‖∂3(R 1
n
−R 1

m
)Sδuno(t)‖L2

x
≤ c

[
‖u0

δ,n − u0
δ,m‖H1

x
+ ‖(R 1

n
−R 1

m
)∂′Sδu‖G0(t)

+ ‖gδ,n−gδ,m‖H1
t,x

]
+ c

∫ t

0
‖∂3(R 1

n
−R 1

m
)Sδuno‖L2

x
ds,

where uno = (u3, u6) and ∂′u = (∂1u, ∂2u, ∂3uta). In view of the above com-
ments, the terms in brackets tend to 0 as n,m→∞, and hence the same is true
for the left-hand side due to Gronwall’s inequality.
As (R1/nSδuno)n has the limit Sδuno in G0, we infer that ∂3Sδuno = Sδ∂3uno

is an element of G0(J × R3
+). The strong continuity of (Sδ)δ on L2(R3

+) then
implies that also ∂3uno belongs to G0(J×R3

+), so that u is an element of G1. �

We can now show the linear wellposedness result in H3(R3
+).

Theorem 2.16. Let (2.22) be true for G = R3
+ and k = 3. Assume that

the compatibility conditions (2.23) hold. Then there is a unique solution u ∈
G3(J × R3

+) of (2.12). It satisfies (2.27).

Proof. 1) Theorem 2.10 provides a unique solution u in G0(J). If we
can prove that u belongs to G3(J), then it satisfies (2.27) by Proposition 2.12.
Lemmas 2.13, 2.14 and 2.15 already show that u is an element of G1.
2) For the iteration steps, we also assume that ∂tA0 ∈ F3(J). Let L̃ be the

operator with D̃ = D + ∂tA0∈F3(J) instead of D. We then have ∂tu∈G0(J),
B∂tu = 0, and

L̃∂tu = ∂tf − ∂tDu = f̃ ∈ H1
t,x.

As ∂tu(0) = u1 ∈ H1
x and Bu1 = 0 by (2.24) and (2.23), step 1) yields ∂tu ∈ G1.

Due to this regularity, L∂ju = ∂jf − ∂jA0∂tu − ∂jDu =: fj belongs to H1
t,x,

and we have ∂ju(0) = ∂ju0 ∈ H1
x for j ∈ {1, 2, 3}. If j 6= 3 also the boundary
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conditions B∂ju = 0 are preserved. Lemmas 2.14 and 2.15 thus show that ∂ju
is an element of C(J,H1

x) for j = {1, 2}. In particular, ∂3u is contained in
C1(J, L2

x)∩C(J,H1
ta,x), and hence in G1(J) due to Lemma 2.15 and f3, ∂3u0 ∈

H1. Therefore u belongs to G2(J).
3) To show u ∈ G3(J), we proceed similarly as in step 2), writing L̂ for the

operator with D replaced by D̂ = D + 2∂tA0 ∈ F3(J). Because of step 2) and
the assumption on A0, the function ∂2

t u ∈ G0(J) satisfies

L̂∂2
t u = ∂2

t f − ∂2
tA0∂tu− ∂2

tDu− 2∂tD∂tu ∈ H1
t,x

and B∂2
t u = 0. Starting from L̃∂tu = f̃ and ∂tu(0) = u1, we compute

∂2
t u(0) = A0(0)−1

[
∂tf(0)−∂tD(0)u0−D(0)u1−∂tA0(0)u1−

3∑
j=1

Aj∂ju
1
]

= u2,

see (2.23). Using also (2.24), we infer u2 ∈ H1
x and Bu2 = 0. So ∂2

t u belongs to
G1(J) by step 1).
We next look at ∂jtu ∈ G0(J) for j ∈ {1, 2, 3}. By the above established

properties of u and the regularity of A0, the map

L̃∂jtu = ∂jtf − ∂jA0∂
2
t u− ∂jtA0∂tu− ∂jtDu− ∂tD∂ju− ∂jD∂tu

is an element of H1
t,x and ∂jtu(0) = ∂ju

1 of H1
x. Because of B∂jtu = 0 and

B∂ju
1 = 0 if j 6= 3, step 1) yields ∂jtu ∈ G1(J) in this case. As in step 2), ∂tu

thus belongs to C(J,H2
x) by Lemma 2.15.

Finally, we treat ∂jku ∈ G0(J) for j, k ∈ {1, 2, 3}. Again the right-hand side

L∂jku = ∂jkf − ∂jkA0∂tu− ∂jA0∂ktu− ∂kA0∂jtu− ∂jkDu− ∂jD∂ku− ∂kD∂ju

is contained in H1
t,x and ∂jku(0) = ∂jku0 in H1

x. For j, k ≤ 2, we deduce that
∂jku ∈ G1(J) again from step 1). Hence, ∂j3u belongs to C1(J, L2

x)∩C(J,H1
ta,x)

and thus to G1(J) by Lemma 2.15. The remaining property ∂33u ∈ C(J,H1
x) is

shown analogously.
4) We still have to remove the extra assumption ∂tA0 ∈ F3(J). To this end,

one has to regularize A0 and to approximate u0 in H3
x so that the compatibility

conditions (2.23) remain valid. This technical step is omitted, see Lemma 4.8
in [53]. �

As in Remarks 1.11 and 1.12, we list variants of the above theorem, which
can be shown analogously.

Remark 2.17. Theorem 2.16 remains valid if we replace in (2.22) the differ-
entiation order 3 by m ∈ N throughout, and impose corresponding variants of
the compatibility conditions (2.23). If m = 2, the second-order derivatives of
A0 also have to belong to L∞t L3

x. On the other hand, in (2.11) we can replace
F3 = F3(J×R3

+) by F̂3
∞ = F̂3+W 3,∞

t,x and Ĥ2
x = Ĥ2

x(R3
+) by Ĥ2

∞ = Ĥ2
x+W 2,∞.

We use this notation below also for other domains G. ♦
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2.4. The quasilinear problem on R3
+

We now treat the nonlinear Maxwell system

a0(u)∂tu+
3∑
j=1

Aco
j ∂ju+ d(u)u = f, t ≥ 0, x ∈ G,

Bu = E × ν = 0, t ≥ 0, x ∈ ∂G, (2.33)
u(0) = u0, x ∈ G.

on G = R3
+ under the hypothesis

a0, d ∈ C3(G× R6,R6×6), a0 = a>0 ≥ ηI,
∀ r > 0 : sup

|ξ|≤r
max

0≤|α|≤3
‖∂αx a0(·, ξ)‖L∞x , ‖∂

α
x d(·, ξ)‖L∞x <∞,

u0 ∈ H3(G,R6), ∀T > 0 : f ∈ H3((0, T )×G,R6) = H3
t,x(T ), (2.34)

ρ2 ≥ ‖u0‖2H3
x

+ ‖f‖2H3
t,x

+ ‖f(0)‖2H2
x

+ ‖∂tf(0)‖2H1
x

+ ‖∂2
t f(0)‖2L2

x
.

We state a version of Lemma 1.14 on G in the framework of G3 and F3. The
proof is similar and thus omitted, see §2 of [52] or §7.1 in [51].

Lemma 2.18. Let a be as in (2.34) and γ ≥ 0.
a) Let v ∈ G3(J) with ‖v‖∞ ≤ r. Then ‖a(v)‖F̃m∞(J) ≤ κ(r)(1 + ‖v‖3G3(J)).

b) Let v, w∈G2(J) with norm ≤ r. Then ‖a(v)−a(w)‖G2γ(J)≤κ(r)‖v−w‖G2γ(J).

c) Let v0 ∈ H2
x with ‖v0‖∞ ≤ r0. Then ‖a(v0)‖Ĥ2

∞
≤ κ0(r0)(1 + ‖v0‖2H2

x
).

d) Let v0, w0∈H2
x with norm ≤r0. Then ‖a(v0)−a(w0)‖H2

x
≤κ0(r0)‖v0−w0‖2H2

x
.

We need a nonlinear variant of the compatibility conditions (2.23), derived
similarly:

Buj = 0 for j ∈ {0, 1, 2}, u1 := a0(u0)−1
(
f(0)− d(u0)u0 −

3∑
j=1

Aj∂ju0

)
,

u2 := a0(u0)−1
(
∂tf(0)− ∂ξa0(u0)[u1, u1]− d(u0)u1 − ∂ξd(u0)[u1, u0] (2.35)

−
3∑
j=1

Aj∂ju
1
)
,

where u0 := u0 and the derivatives in ξ ∈ R6 act on the vectors in brackets
bilinearly. We set uj =: Sj(u0, f, a0, d). Lemma 2.18 (and analogous versions for
∂ξa0 and ∂ξd) imply that Sj satisfy estimates as in (2.24) and related Lipschitz
bounds, see Lemma 2.4 in [52] or Lemma 7.7 in [51].
We now state the local wellposedness result on G = R3

+, using the data
manifold

DT,a0,d((u0, f), r) =
{

(u0, f)∈H3
x×H3

t,x(T )
∣∣ ‖u0‖2H3

x
+‖f‖2H3

x
≤ r2, (2.35) true

}
.

It is endowed with the metric of H3
x ×H3

t,x(T ) unless something else is stated.
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Theorem 2.19. Let (2.34) and (2.35) hold with G = R3
+. The following

assertions are true.
a) There is a maximal existence time T+ = T+(u0, f) ∈ (T0(ρ),∞] and a

unique (maximal) solution u = Ψ(u0, f) ∈ G3([0, T+)) of (2.33). (For T0(ρ) see
the proof.)
b) Let T+ <∞. Then limt→T+ ‖u(t)‖H3

x
=∞ and supt<T+‖u(t)‖

W 1,∞
x

=∞.

c) Let T ∈ [0, T+). Then there is a radius δ > 0 such that for all (v0, g)
in DT,a0,d((u0, f), δ) we have T+(v0, f) > T and Ψ : DT ((u0, f), δ) → G3(T ) is
continuous. Moreover, Ψ : (DT ((u0, f), δ), ‖·‖H2

x×H2
t,x(T ))→ G2(T ) is Lipschitz.

Proof. The arguments are only sketched, see [53] for full proofs in a more
general setting. As a fixed-point space we employ

E(R, T ) =
{
v∈G3−(J)

∣∣ ‖v‖G3−(J)≤R, ∂tjv(0)=Sj(u0, f, a0, d), j ∈ {0, 1, 2}
}
.

One can check as before that this set is complete for the metric induced by the
norm of G2(T ). (Compared to Lemma 1.15, we need the time derivatives in the
norm because of the new initial conditions.) It is now more difficult to show
that E(R, T ) is non-empty for sufficiently large R, see Lemma 2.6 in [53]. For
v ∈ E(R, T ) one sets A0 = a0(v) and D = d(v) with a corresponding linear
operator L(v). Observe that the nonlinear compatibility conditions (2.35) for
a0 and d coincide with the linear ones (2.23) for A0 and D because of the initial
conditions in E(R, T ).
We then choose R, γ and T0 depending on ρ as in Lemma 1.16. Here we have

also to control first and second time derivatives of A0 and D at t = 0 since these
bounds enter the higher-order energy estimate (2.27) via (2.22). Theorem 2.16
(and Remark 2.17) now yield a unique solution u = Φ(v) ∈ G3(T0) of L(v) = f
with Bu = 0 and u(0) = u0. The constants are arranged so that ‖u‖G3 ≤ R
and Φ is strictly contractive. The compatibility conditions of this equation also
imply that u belongs to E(R, T0). So we have solved (2.33) on [0, T0].
The proofs of Lemma 1.17 as well as of assertion a) and the first part of b) of

Theorem 1.19 follow a general pattern so that these arguments and statements
can easily be extended to the present situation. The second part of assertion b)
is more involved. One proceeds as in the proof of Theorem 1.19 and estimates
∂αxu in terms of the data and ω = supt<T+ ‖u(t)‖

W 1,∞
x

. This works as before if
α3 = 0. Using the resulting inequality in this case, one then follows the iteration
steps of the proof of Theorem 2.16. The analogous difficulty occurs in the core
step 3) of the proof of Theorem 1.19 c), the other steps do not change much. �

We discuss variants of the above theorem in Remark 2.23 in greater generality.

2.5. The main wellposedness result

We now treat the Maxwell system on an open and bounded set G ⊆ R3 with
a smooth boundary. Again we first look at the linear problem

Lu =

3∑
j=0

Aj∂ju+Du = f, t ≥ 0, x ∈ G,
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Bu = E × ν = 0, t ≥ 0, x ∈ ∂G, (2.36)
u(0) = u0, x ∈ G,

assuming hypothesis (2.22), and the nonlinear system (2.33) under asumption
(2.34). We further assume the compatibility conditions (2.23) respectively (2.35)
on G are satisfied.
Below we state the wellposedness theorems on the spatial domain G. We

cannot give full proofs (since they are too lengthy and technical), but rather
explain main features and differences to the case G = R3

+. We start with the
localization procedure which is the core point.

Localization. In principle, we follow a standard localization procedure.
One covers ∂G by finitely many charts ϕi : Ui → Vi and adds another open
set U0 with U0 ⊆ G so that U0, U1, . . . , UN cover G. Let ϕ0 : U0 → U0 be
the identity, {θ0, · · · , θN} be a smooth partition of unity for this cover and
V +
i = {x ∈ Vi |x3 > 0} be the range ϕi(Ui ∩ G) for i ≥ 1, where we put
V̄ +
i = {x ∈ Vi |x3 ≥ 0}. Set ψi = ϕ−1

i and Φi : L2(Ui)→ L2(Vi); Φiu = u ◦ ψi,
with inverse Φ−1

i v = v ◦ ϕi.
First, let u solve (2.22). One looks at the transformed function Φi(θiu) ∈

L2(J ×V +
i ). After extension by 0, the map Φ0(θ0u) solves the original problem

(1.8) on R3. For i ≥ 1 and v ∈ L2(J × V +
i ), we compute

L̃iv := ΦiLΦ−1
i v = Φi

(
A0(∂tv) ◦ ϕi +

3∑
j=1

Aco
j ∂j(v ◦ ϕi) +Dv ◦ ϕi

)

= ΦiA0∂tv + ΦiDv +

3∑
j=1

Aco
j Φi

( 3∑
k=1

(∂kv) ◦ ϕi ∂jϕi,k
)

= ΦiA0∂tv + ΦiD +
3∑

k=1

( 3∑
j=1

Aco
j Φi(∂jϕi,k)

)
∂kv

=:
3∑

k=0

Ãik∂kv + D̃iv, (2.37)

where ϕi,k is the k-th component of ϕi. Note that Ãik is symmetric and Ãi0 ≥ ηI.
One can check that there is a constant τ > 0 and for each i ≥ 1 an index

k(i) ∈ {1, 2, 3} such that |∂k(i)ϕi,3| ≥ τ on Ui, see Lemma 5.1 in [51]. To
simplify, we only look at the case that k(i) = 3 and ∂3ϕi,3 ≥ τ . Since Ui ∩ ∂G
equals U0

i := {x ∈ Ui |ϕi,3(x) = 0}, the vector ∇ϕi,3(x) is orthogonal to ∂U0
i

at x and hence given by ∇ϕi,3(x) = −κi(x)ν(x) for the smooth function κi =
−ν ·∇ϕi,3. On U0

i the boundary condition Bu = E×ν = 0 thus is equivalent to
κiBu = κiE × ν = 0. Using this reformulation, the transformation then yields
the new boundary condition

B̃iv := Φi(κiBΦ−1
i v) = Φi(κiB)v

on V̄ +
i . The coefficients Ãij , D̃

i, and B̃i are extended to R3
+ or its closure keeping

their properties. (This extension is omitted below, cf. Chapter 5 of [51].)
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The matrices Ãij for j ∈ {1, 2, 3} and B̃i now depend (smoothly) on the space
variable x. Moreover, Ãij has twelve instead of four non-zero entries, whereas
B̃i still has just two of them. For instance, we have

Ãi3 =

(
0 −S̃i3
S̃i3 0

)
, S̃i3 =

 0 −Φi∂3ϕi,3 Φi∂2ϕi,3
Φi∂3ϕi,3 0 −Φi∂1ϕi,3
−Φi∂2ϕi,3 Φi∂1ϕi,3 0

 .

In the calculations of this chapter, these changes lead to plenty of additional
commutators, which are partly hard to control and which make the iteration
arguments much more complicated. Even worse is the change from Aco

3 to Ãi3
since the form of Aco

3 plays a crucial role in the above treatment of normal
regularity. It is not clear how to extend the corresponding arguments to the
transformed operator.
Instead, one passes to the function vi = R−1

i Φi(θiu) for invertible matrices
Ri(x) = diag(R̂i(x), R̂i(x)) that are defined using ϕi. Let Li be the operator
on R3

+ with coefficients Aij = R>i Ã
i
jRi and D

i = R>i D̃
iRi −

∑3
j=1A

i
j∂jR

−1
i Ri

and set Bi = R̂>i B̃
iRi as well as vi0 = R−1

i Φi(θiu0). We then infer vi(0) = vi0,
Bivi = 0, and

Livi =
3∑
j=0

Aij∂j(R
−1
i Φi(θiu)) +R>i D̃

iΦi(θiu)−
3∑
j=1

Aij∂jR
−1
i Φi(θiu)

=

3∑
j=0

R>i Ã
i
j∂jΦi(θiu) +R>i D̃

iΦi(θiu) = R>i L̃
iΦi(θiu)

= R>i Φi(L(θiu)) = R>i Φi(θif) +R>i Φi

( 3∑
j=1

Aco
j ∂jθiu

)
=: f i(f, u).

We now choose Ri3 so that Ai3 = Aco
3 and Bi = Bco, namely

Ri = diag(R̂i, R̂i) with R̂i =
1√

Φi∂3ϕi,3

1 0 Φi∂1ϕi,3
0 1 Φi∂2ϕi,3
0 0 Φi∂3ϕi,3

 .

A computation shows R̂>i S̃
i
3R̂i = S3, and hence R>i Ã

i
3Ri = Aco

3 . We write
B = (B1 03×3) and recall that B1E = E × ν = −

∑
j νjSjE. It follows

Φi(κiB1) = −
3∑
j=1

Φi(κiνj)Sj =
3∑
j=1

Φi(∂jϕi,3)Sj = S̃i3.

Therefore we obtain Bi = R̂>i B̃iRi = Bco.
We only sketch the remaining steps, see Chapter 5 of [51] for details. One

can check that the new coefficients and data satisfy hypothesis (2.22) with Aco
1

and Aco
2 replaced by Ai1, Ai2 ∈ F3

sym and the compatibility conditions (2.23) on
G = R3

+. Moreover, the relevant norms of the transformed functions on R3
+

are bounded by a constant c(G) times the same norms of the corresponding
functions on G.
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So the apriori estimates of Theorems 2.16 and 1.9 for vi on R3
+ respectively

θ0u on R3 yield analogous inequalities for u on G. This also shows uniqueness of
solutions. To construct a solution, one solves the transformed problems on V +

i
and V0 and glues the solutions together. For this, we need another set of cut-off
functions σi ∈ C∞c (Ui) which are 1 on the support of θi. We have included the
original solution u into f i to compensate for error terms with θi when deriving
the transformed system. This forces us to set up a fixed-point argument on the
space of functions v in G3(J×G) which satisfy ∂jt v(0) = uj for j = {0, 1, 2} and
uj from (2.23) given by the data. The fixed point then solves the problem.

Main wellposedness results. Besides Theorem 1.9 on R3, the above rea-
soning requires a variant of Theorem 2.16 on R3

+ for the modified coefficients Ai1
and Ai2, where Ai0 and Di have the same properties as before and A3 = Aco

3 and
B = Bco do not change. This modification has quite unexpected consequences,
as many estimates and iteration arguments become much more involved since
the additional commutators intertwine our three steps (time, tangential and
normal regularity) to a larger extent. However, with some effort these problems
can be solved.
We first state the linear wellposedness result for L2-solutions which follows

by localization from Theorem 2.10. The result is surely older, but it is also a
special case of the more general Theorem 1.4 of [19], which is actually devoted to
boundary regularity. (The validity of (2.15) in this case is derived in Lemma 4.2
of [34] based on [53].)

Theorem 2.20. Assume that (2.11) is true for G with ‖∂tA0‖∞, ‖D‖∞ ≤ r.
Then there is a unique solution u ∈ C(J, L2

x) of (2.36), and it satisfies (2.15)
on G as well as (2.13) with a factor 2 on the right-hand side.

Theorem 1.1 of [53] yields the linear wellposedness theorem in G3(J ×G).

Theorem 2.21. Let (2.22) be true for k = 3 and the compatibility conditions
(2.23) hold. Then there is a unique solution u ∈ G3(J×G) of (2.36). It satisfies
(2.27) on G.

Remark 2.17 remains valid on G (after replacing R3
+ by G). The first part of

the proof of the quasilinear result on G is close to that of Theorem 2.19 on R3
+,

now based on Theorem 2.21. In Theorem 2.19 for G = R3
+, when proving the

blow-up condition in W 1,∞
x and of the continuous dependence on data, we have

omitted steps in which arguments from the derivation of the apriori estimate are
extended to the nonlinear level. On G the procedure is even more involved since
one has to perform the localization procedure also for the nonlinear problem.
So we skip these arguments, too. The following local wellposedness result is
proved in Theorem 5.3 of [52]. We use the notation from Theorem 2.19.

Theorem 2.22. Let (2.34) and the compatibility conditions (2.35) hold. Then
the following assertions are true.
a) There is a maximal existence time T+ = T+(u0, f) ∈ (T0(ρ),∞] and a

unique (maximal) solution u = Ψ(u0, f) ∈ G3([0, T+)) of (2.33).
b) Let T+ <∞. Then limt→T+ ‖u(t)‖H3

x
=∞ and supt<T+‖u(t)‖

W 1,∞
x

=∞.
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c) Let T ∈ [0, T+). Then there is a radius δ > 0 such that for all (v0, g)
in DT,a0,d((u0, f), δ) we have T+(v0, f) > T and Ψ : DT ((u0, f), δ) → G3(T ) is
continuous. Moreover, Ψ : (DT ((u0, f), δ), ‖·‖H2

x×H2
t,x(T ))→ G2(T ) is Lipschitz.

Example 1.21 directly carries over from R3 to G. In Theorem 5.3 of [52] more
general results were shown which we sketch below, cf. Remark 1.20.

Remark 2.23. a) In [52] one allows for unbounded domains G having a
‘uniformly smooth’ boundary (e.g. a compact, smooth one). Theorem 5.3 in
[52] actually deals with solutions on an interval (T−, T+) containing 0.
b) One also obtains solutions in Gm for data in Hm or Cm with m ≥ 3 and

m ∈ N, assuming higher-oder compatibility conditions.
c) One can admit nonlinearities a0 and d taking values in an open subset

U ⊆ R6. The necessary modifications are like those described in Remark 1.20.
d) Also boundary data Bu = g from the space

⋂m
j=0Hj(J,H

m+ 1
2
−j(G)) can

be included. The corresponding linear result in G0(J) is taken from [19] where
it is assumed that the coefficients are constant outside a compact set. This leads
to a restriction on a0 and d in [52]: They have to converge if |x| → ∞ (if G is
unbounded).
e) For the linear system on G , [51, 52] show finite speed of propagation. ♦

The local wellposedness theory for general hyperbolic systems would require
much more regularity for the above theorem, see [26] or [49]. In [48] we establish
results analogous to Theorem 2.22 for corresponding interface problems, and in
[47] for so-called absorbing boundary conditions. For these, in [42] an existence
result was proven (without uniqueness or continuous dependence on data).



CHAPTER 3

Exponential decay caused by conductivity

In this last chapter we use the wellposedness Theorem 2.22 to show global
existence and exponential decay to 0 for small initial data in the presence of
a strictly positive conductivity σ. The result is taken from [34]. Its proof is
based on a standard procedure for quasilinear problems, going back to [37] at
least. Besides local wellposedness, it uses the energy estimates for ∂kt u with
k ∈ {0, 1, 2, 3} including the dissipation terms ‖σ1/2∂kt E(t)‖2L2

x
. One further

needs an observability-type estimate for the time-differentiated linear problem
(inspired by [20] in our case) to control the norms of ∂kt u in H3−k

x by the
dissipation terms, globally in time. This can only be done up to error terms
which are small, but only in the stronger topology of G3. Astonishingly, a
variant of the apriori estimates from Chapter 2 allows us to bound space by time
derivatives, again globally in time. Our presentation is based on our paper [34].
We also show results on Helmholtz decompositions on G following Section X1.1
in [16], which are used in the derivation of the observability-type estimate.

3.1. Introduction and theorem on decay

We study the special case of the Maxwell system (1.1) given by

∂t
(
ε(E)E

)
= curlH − σE, t ≥ 0, x ∈ G,

∂t
(
µ(H)H

)
= − curlE, t ≥ 0, x ∈ G, (3.1)

trtaE = E × ν = 0, t ≥ 0, x ∈ Γ,

E(0) = E0, H(0) = H0, x ∈ G,

on an open, bounded, simply connected domain G ⊆ R3 with smooth boundary
∂G = Γ. As before, we also use the equivalent version

εd(E)∂tE = curlH − σE, t ≥ 0, x ∈ G,

µd(H)∂tH = − curlE, t ≥ 0, x ∈ G, (3.2)
trtaE = E × ν = 0, t ≥ 0, x ∈ Γ,

E(0) = E0, H(0) = H0, x ∈ G,

for energy estimates, with the differentiated coefficients

εd(·, ξ) := ε(·, ξ) +
( 3∑
l=1

∂ξkεjl(·, ξ)ξl
)
jk
, µd analogously defined.

53
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We modify our assumptions (2.34) and impose the hypothesis

ε, µ, εd, µd, σ ∈ C3(G× R3,R3×3
sym),

σ ≥ ηI > 0, ε(·, 0), µ(·, 0), εd(·, 0), µd(·, 0) ≥ 2ηI on G,
(3.3)

thus assuming that σ is uniformly positive definite. The material laws in Ex-
ample 1.21 on G fulfill the above condititions for ε and µ. By continuity, we
can fix a constant κ > 0 such that

ε(·, ξ), µ(·, ξ), εd(·, ξ), µd(·, ξ) ≥ η if |ξ| ≤ 2κ. (3.4)

The initial fields shall also satisfy the magnetic divergence and boundary
conditions now. Together with the simple connectedness of G, these conditions
exclude non-zero H0 in the kernel of curl, see ?? for the case µ = 1, which would
produce a constant-in-time solution (E,H) = (0, H0) of our system (3.1). Let
CS be the norm of the Sobolev embedding H2(G) ↪→ L∞(G). We assume

E0, H0 ∈ H3(G,R3), ‖E0‖2H3
x

+ ‖H0‖2H3
x
≤ r2, where r ≤ κ/CS , (3.5)

div(µ(H0)H0) = 0, trno(µ(H0)H0) = 0, trtaE0 = trtaE
1 = trtaE

2 = 0,

E1 := εd(E0)−1[curlH0 − σE0], H1 := −µd(H0)−1 curlE0,

E2 := εd(E0)−1
[

curlH1 − σE1 − (∇Eεd(E0)E1) · E1
]
.

Note that the initial data are bounded by κ. In view of (3.4), Theorem 2.22
and Remark 2.23 provide a unique local solution u = (E,H) ∈ G3(J+) of (3.1)
with a maximal existence time T+ = T+(E0, H0) and J+ = [0, T+). Moreover,
(1.2) and Lemma 2.4 show

div
(
µ(H(t))H(t)

)
= 0, trno(µ(H(t))H(t)) = 0, (3.6)

div
(
ε(E(t))E(t)

)
= div

(
ε(E0)E0

)
−
∫ t

0
div
(
σE(s)

)
ds (3.7)

for t ∈ J+. We state the decay result for small data, see Theorem 2.2 in [34].

Theorem 3.1. Let (3.3) and (3.5) hold. Then there exist a radius r > 0 in
(3.5) and numbers M,ω > 0 such that T+(E0, H0) =∞ and

max
k∈{0,1,2,3}

‖∂kt (E(t), H(t))‖H3−k
x
≤Me−ωt for all t ≥ 0.

The theorem is proved at the end of Section 3.3. In [43] we prove such a
result for boundary damping H × ν + (ζ(E × ν)) × ν = 0 with ζ(x) ≥ η on
∂G, where G is strictly starlike. These theorems are the first decay results for
quasilinear Maxwell systems on domains. On R3 one has global existence for
small data and certain material laws exploiting dispersive estimates, see §11.6
of [44] (with polynomial decay), [35] or [50]. In [6] convergence to equilibria is
shown for a class of hyperbolic systems with damping on Rm (not including the
Maxwell system).
There are some decay results for linear Maxwell systems with conductivity. In

[21], [33], [38] and [41], for instance, isotropic constitutive relations and (semi-
linear) strictly positive conductivity were considered, whereas matrix-valued
coefficients were investigated only recently in [20], see also [18] for related re-
sults on boundary obervability. Partially positive conductivities were treated in
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[39] in some cases, as well as in [41] for constant ε, µ > 0 and in [20] without
decay rates.
We discuss the background of the proof which employs time-differentiated

versions of (3.1). For the sake of brevity, we set

ε̂k =

{
ε(E), k = 0,

εd(E), k ∈ {1, 2, 3},
µ̂k =

{
µ(H), k = 0,

µd(H), k ∈ {1, 2, 3}.
(3.8)

For k ∈ {0, 1, 2, 3}, we then obtain the system

∂t(ε̂k∂
k
t E) = curl ∂ktH − σ∂kt E − ∂tfk, t ∈ J+, x ∈ G,

∂t(µ̂k∂
k
tH) = − curl ∂kt E − ∂tgk, t ∈ J+, x ∈ G, (3.9)

trta ∂
k
t E = 0, trno(µ̂k∂

k
tH) = − trno gk, t ∈ J+, x ∈ Γ,

with the commutator terms
f0 = f1 = 0, f2 = ∂tε

d(E) ∂tE, f3 = ∂2
t ε

d(E) ∂tE + 2∂tε
d(E) ∂2

tE,

g0 = g1 = 0, g2 = ∂tµ
d(H) ∂tH, g3 = ∂2

t µ
d(H) ∂tH + 2∂tµ

d(H) ∂2
tH.

(3.10)

Note that the electric boundary condition remains unchanged. The magnetic
one is well-defined in H−1/2(Γ) by Theorem 2.1 and the divergence relations

div(µd(H)∂ktH) = −div gk, div(εd(E)∂kt E) = −div(σ∂k−1
t E+fk), (3.11)

which follow from (3.6) and from (3.7) for k ∈ {1, 2, 3}. Estimate (3.16) below
shows that all maps ∂tfk, ∂tgk, div fk, div gk belong to L∞(J, L2(G)) for T < T+.
For the energy estimate, it is useful to consider the equivalent version of (3.9)

εd(E) ∂t∂
k
t E = curl ∂ktH − σ∂kt E − f̃k, t ∈ J+, x ∈ G,

µd(H) ∂t∂
k
tH = − curl ∂kt E − g̃k, t ∈ J+, x ∈ G, (3.12)

trta ∂
k
t E = 0, t ∈ J+, x ∈ Γ,

for k ∈ {0, 1, 2, 3}, which is based on (3.2) and has the new commutator terms

f̃k =
k∑
j=1

(
k

j

)
∂jt ε

d(E) ∂k+1−j
t E, g̃k =

k∑
j=1

(
k

j

)
∂jtµ

d(H) ∂k+1−j
t H,

where we put f̃0 = g̃0 = 0. We further introduce the quantities

ek(t) = 1
2 max

0≤j≤k

(
‖ε̂1/2
k ∂jtE(t)‖2L2

x
+ ‖µ̂1/2

k ∂jtH(t)‖2L2
x

)
, e = e3,

dk(t) = max
0≤j≤k

‖σ1/2∂jtE(t)‖2L2
x
, d = d3, (3.13)

zk(t) = max
0≤j≤k

(
‖∂jtE(t)‖2Hk−jx

+ ‖∂jtH(t)‖2Hk−jx

)
, z = z3,

for k ∈ {0, 1, 2, 3} and t ∈ J+. The choice of weights simplifies some estimates
below. Here ek is related to energy and dk to dissipation. We stress that dk
only contains the electric field and that dk and ek only involve time derivatives,
in contrast to zk.
To control the norms of (E,H) and the above quantities, we set δ0 =

min{1, κ/CS} and take δ ∈ (0, δ0], to be fixed in the proof of Theorem 3.1.
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Theorem 2.22 then yields a radius r(δ) ∈ (0, δ] such that for all r ∈ (0, r(δ)] and
(E0, H0) as in (3.5) we have T+ > 1 and z(t) ≤ δ2 for t ∈ [0, 1]. Given such
(E0, H0), we now introduce the final time

T∗(E0, H0) = T∗ = sup
{
T ∈ [1, T+)

∣∣ ∀ t ∈ [0, T ] : z(t) ≤ δ2
}
. (3.14)

The blow-up condition in Theorem 2.22 implies that T+ > T∗, and hence

z(T∗) = max
0≤k≤3

(
‖∂kt E(T∗)‖2H3−k

x
+ ‖∂ktH(T∗)‖2H3−k

x

)
= δ2 (if T∗ <∞) (3.15)

by continuity. We will suppose that T∗ < ∞. For sufficiently small δ > 0
(and thus r > 0), below we then show that z(T∗) < δ2. This contradiction to
(3.15) then establishes T∗ =∞. The exponential decay in Theorem 3.1 will be
a by-product of this argument, see the end of Section 3.3.
In the following we always look at solutions with data (E0, H0) as in (3.5)

for some r ∈ (0, r(δ)] and a corresponding solution u = (E,H) of (3.1) on
J∗ = [0, T∗), which thus satisfies z(t) ≤ δ2 ≤ 1 for all t ∈ J∗. The constants c,
ck, C or Ck below do not depend on s, t ∈ J∗, T∗, δ ∈ (0, δ0], r ∈ (0, r(δ0)], or
(E0, H0) satisfying (3.5).
Using Lemmas 1.8 and 2.18 and formula (3.14), one can estimate the above

commutator terms by

‖ε̂k(t)‖L∞x , ‖µ̂k(t)‖L∞x , ‖ε̂
−1
k (t)‖L∞x , ‖µ̂

−1
k (t)‖L∞x ≤ c,

‖∂αε̂j(t)‖L2
x
, ‖∂αµ̂j(t)‖L2

x
≤ c(z1/2

k (t) + δα0=0),

max
k∈{2,3},j∈{0,1}

(
‖∂jt fk(t)‖H4−j−k

x
+ ‖∂jt gk(t)‖H4−j−k

x

)
≤ cz(t), (3.16)

‖f2(t)‖L2
x
, ‖g2(t)‖L2

x
, ‖f3(t)‖L2

x
, ‖g3(t)‖L2

x
≤ ce1/2

2 (t),

‖f̃k(t)‖H3−k
x

, ‖g̃k(t)‖H3−k
x
≤ cz(t)

for j, k ∈ {0, 1, 2, 3}, α ∈ N4
0 with |α| = k > 0, t ∈ J∗, where we set δα0=0 = 1

if α0 = 0 and δα0=0 = 0 if α0 > 0. The second summand in the second line of
(3.16) arises if all derivatives in ∂α are applied to the x-variable of ε or µ.

3.2. Helmholtz decompositions

In this section we discuss kernel and range of div and curl for a bounded open
subset G ⊆ R3 with C2-boundary. To simplify a bit, we assume that G is simply
connected in the main results. (See [10] or [16] for the general case.) We obtain
on one hand spaces between which curl acts bijectively, and on the other hand
decompositions of a given L2-map into gradient and curl fields. Both types of
results will often be used in the proof of Theorem 3.1, but they also play a key
role in many areas of analysis and its applications. We follow the treatment in
Section IX.1 of [16], see also [4] and [10].
We introduce subspaces of H(div) and H(curl) on G, where Γ1, · · · ,ΓN are

the components of Γ = ∂G and N denotes the kernel of div, curl : L2
x → H−1

x .

N0(curl) = {v ∈ N(curl) | trta v = 0}, N0(div) = {v ∈ N(div) | trno v = 0},
NΓ(div) =

{
v ∈ N(div)

∣∣∀ j :
∫

Γj
trno v dσ = 0

}
, N = N(div) ∩N0(curl),

H1
ta0(G) = {v ∈ H1(G)3 | trta v = 0} = H(div) ∩H0(curl).



3.2. Helmholtz decompositions 57

The last identity is shown in Theorem XI.1.3 of [16], compare also Proposi-
tion 3.11 below. The first three spaces are endowed with the L2-norm, and we
use the H1-norm for H1

ta0(G) and other subspaces of H1
x.

We start with the basic observation that smooth functions in the kernel of
curl and div are locally given by gradient and curl fields, respectively. Later on
we show global variants of this fact.

Lemma 3.2. Let G ⊆ R3 be open and Q ⊆ Q ⊆ G be a cuboid.
a) Let u ∈ N(curl) ∩ C1(G)3. Then there is a map ϕ ∈ C2(Q) with u = ∇ϕ.
a) Let u ∈ N(div)∩C1(G)3. Then there is a map w ∈ C1(Q)3 with u = curlw.

Proof. a) Let a be a corner of Q. For x ∈ Q we set

ϕ(x) =

∫ x3

a3

u3(x1, x2, ξ3) dξ3 +

∫ x2

a2

u2(x1, ξ2, a3) dξ2 +

∫ x1

a1

u1(ξ1, a2, a3) dξ1.

The assumption curlu = 0 yields ∂1u2 = ∂2u1 and ∂1u3 = ∂3u1, so that ∂1ϕ =
u1. The other components are treated similarly.
b) Analogously, we define

v1(x) =

∫ x2

a2

u3(x1, ξ2, x3) dξ2 −
∫ x3

a3

u3(x1, x2, ξ3) dξ3

and va1 with u replaced by

ua(x) = (u1(a1, x2, x3), u2(x1, a2, x3), u3(x1, x2, a3)).

The components v2, va2 , v3 and va3 are given by circular permutations of the
indices. Using div u = 0, one computes curl v = −3u + ua and curl v = −2ua.
So w = −1

3v + 1
6v

a satisfies curlw = u. �

To show our decay Theorem 3.1, we will need div-curl estimates that control
the H1-norm by the norms in H(div) and H(curl) plus boundary terms, see
Theorem XI.1.3 of [16] and our Proposition 3.11. We start with the simple
result on R3.

Lemma 3.3. The space H(div,R3)∩H(curl,R3) (endowed with ‖·‖div+‖·‖curl)
is equal to H1(R3)3 with equivalent norms.

Proof. The proof of Theorem 2.2 shows that C∞c (R3)3 is dense in
H(div,R3) ∩ H(curl,R3). Hence it is enough to prove the equivalence of the
norms for test functions v. Observe that curl curl v = ∇ div v−∆v. Integration
by parts, see (2.6) and (2.8), thus yields∫

R3

(
|curl v|2 + |div v|2

)
dx =

∫
R3

(
v · curl curl v − v · ∇ div v

)
dx

= −
∫
R3

v ·∆v dx =

∫
R3

|∇v|2 dx. �

The intersection of the kernels of div and curl will play an important role
below. We first show that it contains only smooth functions.

Corollary 3.4. Let G ⊆ R3 be open. Then the space N(div) ∩ N(curl) is
contained in C∞(G)3.
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Proof. We choose a bounded open set U ⊆ U ⊆ G and a cut-off function
ϕ ∈ C∞c (G) with ϕ = 1 on U . Take v ∈ N(div) ∩ N(curl). Let ṽ be the
0-extension of ϕv to R3. We then have

curl ṽ =

{
∇ϕ× v, on G,

0, on R3 \G,
div ṽ =

{
∇ϕ · v, on G,

0, on R3 \G.

Hence, ṽ belongs to H(div,R3) ∩ H(curl,R3) which is equal to H1(R3)3 by
Lemma 3.3. As a result, v is an element of H1

loc(G)3. Since ∂j curl v = curl ∂jv

and ∂j div v = div ∂jv, we can iterate the procedure obtaining v ∈ Hkloc(G)3 for
all k and then v ∈ C∞(G)3 by Sobolev’s embedding. �

Our analysis is based on the following functional analytic tool due to Peetre.
Recall that a bounded operator T between Banach spaces is an isomorphism
onto its range if it satisfies the lower bound ‖x‖ ≤ c‖Tx‖ for all x. Peetre’s
lemma admits also a compact perturbation in this context.

Lemma 3.5. Let X, Y and Z be Banach spaces, T ∈ B(X,Y ), and K ∈
B(X,Z), such that K is compact and there is a constant c > 0 with

∀x ∈ X : ‖x‖X ≤ c
(
‖Tx‖Y + ‖Kx‖Z

)
(3.17)

Then the kernel N(T ) has a finite dimension, the range R(T ) is closed and the
restriction T : X̃ → R(T ) is an isomorphism, where X̃ is a closed subspace of
X with X = X̃ ⊕N(T ).

Proof. 1) On N(T ) we have ‖x‖X ≤ c‖Kx‖Z so that the range R(K) is
closed and K̃ : N(T )→ R(K) is an isomorphism. Since K̃ is also compact, the
set K(BN(T )(0, 1)) has a compact closure, which contains a ball of R(K). It
follows that R(K), and thus N(T ), are finite dimensional.
2) There is a closed subspace X̃ withX = X̃⊕N(T ). Set T̃ = T�X̃ . For x̃ ∈ X̃

and x0 ∈ N(T ), we have T (x̃ + x0) = T̃ x̃ and so T̃ : N(T ) → R(T ) is bijective
and continuous. We claim that there is a constant c̃ > 0 with ‖x̃‖ ≤ c‖T̃ x̃‖ for
all x̃ ∈ X̃. This lower bound then implies the result.
To show the claim, we suppose that there are vectors x̃n ∈ X̃ of norm 1

such that (T̃ x̃n) tends to 0 in Y as n → ∞. Compactness yields a converging
subsequence (Kx̃nk)k. The estimate (3.17) then shows that (x̃nk) tends to some
x̃ in X̃. This vector also has norm 1 which contradicts T̃ x̃ = limk T̃ x̃nk = 0. �

We now determine the range of ∇ and show its closedness in three settings,
where we set A1(G) = {ϕ ∈ H1(G) |∆ϕ = 0}. The orthogonality in the direct
sums refers to the usual L2 scalar product.

Proposition 3.6. Let G ⊆ R3 be open and bounded with a Lipschitz bound-
ary. Then the follwing assertion hold.
a) The ranges ∇H1(G), ∇H1

0(G), and ∇A1(G) are closed in L2(G)3.
b) L2(G)3 = ∇H1(G)⊕⊥ N0(div) = ∇H1

0(G)⊕⊥ ∇A1(G)⊕⊥ N0(div).
c) L2(G)3 = ∇H1

0(G)⊕⊥ N(div).
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Proof. a) We use Lemma 3.5 with X = H1(G), Y = L2(G)3, Z = L2(G),
T = ∇, and K = I. Then (3.17) holds and K is compact since G is bounded.
So ∇H1(G) is closed. This argument also applies to ∇H1

0(G) and ∇A1(G).
b) Let v∈L2(G)3 be perpendicular to ∇H1(G). For all ϕ∈C∞c (G), we infer

0 =

∫
G
v · ∇ϕdx = 〈ϕ,div v〉H1

0

so that v belongs to N(div). Theorem 2.1 then yields H1/2(Γ) = trH1(G) and

0 =

∫
G
v · ∇ϕdx = 〈trϕ, trno v〉H1/2(Γ) (3.18)

for every ϕ ∈ H1(G). This means that trno v = 0 in H−
1
2 (Γ), and so v is

an element of N0(div) thanks to Theorem 2.1 b). Conversely, let v ∈ N0(div).
Because of trno v = 0 equation (3.18) now yields that v ⊥ ∇H1(G). We have
proven the first part of part b). Assertion c) is shown similarly.
Finally, let v = ∇ϕ and w = ∇ψ for some ϕ ∈ H1

0(G) and ψ ∈ A1(G). Using
again (2.8), we derive∫

G
v · w dx =

∫
G
∇ϕ · ∇ψ dx = −

∫
G
ϕ∆ψ dx = 0,

and thus ∇H1
0(G) ⊥ ∇A1(G). Further, take u = ∇χ for some χ ∈ H1(G).

Theorem 8.3 in [24] provides a function ψ ∈ H1(G) with ∆ψ = 0 and trψ = trχ.
Hence, ϕ := ψ−χ belongs toH1

0(G) and so∇H1(G) = ∇H1
0(G)⊕⊥∇A1(G). �

To invert curl, we now determine its kernel. Here we use the simple connect-
edness of G.

Proposition 3.7. Let G ⊆ R3 be open, bounded and simply connected with a
Lipschitz boundary. We then have N(curl)=∇H1(G) and N(curl)∩N0(div)={0}.

Proof. The inclusion∇H1(G) ⊆ N(curl) follows from the identity curl∇ =
0. For the converse, take w ∈ N(curl) with w ⊥ ∇H1(G). We have to show
that w = 0. Proposition 3.6 yields w ∈ N0(div) and so w is smooth due to
Corollary 3.4. For each open cuboid Q ⊆ Q ⊆ G, Lemma 3.2 provides a
potential q ∈ C2(Q) with ∇q = w. We thus obtain

0 =

∫
Q
w · ∇ϕdx =

∫
Q
∇q · ∇ϕdx = −

∫
Q
ϕ∆q dx

for every ϕ ∈ C∞c (Q) (extended by 0 to an element of H1(G)). This means
that ∆q = 0 on G, and so q is real analytic thanks to Theorem 2.2.10 of [22].
By simple connectedness and using analytic continuation, see Theorem 16.15
in [46], we can extend q from some Q to an analytic function on G satisfying
∆q = 0 and ∇q = w on G.
Moreover, q belongs to L2(G) since ∇q ∈ L2(G) and G is bounded. We also

have trno∇q = trnow = 0. By means of (2.8), we then compute

0 =

∫
G
q div∇q dx = −

∫
G
|∇q|2 dx.
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Hence, w = ∇q vanishes, which yields the first assertion as∇H1(G) is closed due
to Proposition 3.6. The second assertion then follows from this proposition. �

In the next main result we show the invertibility of curl on vector fields in a
subspace of N(trno), where we also determine the range of curl in this setting
and obtain several decompositions. Recall that N = N(div) ∩N0(curl). We set

A1
c(G) = {ϕ ∈ A1(G) | ∀ j : trϕ is constant on Γj}.

Theorem 3.8. Let G ⊆ R3 be open, bounded and simply connected with a
C2-boundary. Set V = H1(G)3 ∩N0(div). The following assertions are true.
a) The range curlH1(G)3 = curlV is equal to NΓ(div) and closed in L2(G)3.
b) We have N = ∇A1

c(G), N(div) = curlH1(G)3 ⊕⊥ N , and

N0(curl) = ∇H1
0(G)⊕⊥ N , L2(G)3 = NΓ(div)⊕⊥ ∇H1

0(G)⊕⊥ N . (3.19)

c) The map curl : H1(G)3 ∩N0(div)→ NΓ(div) is invertible.

Proof. 1) We start with the first equality in assertion a). We clearly have
curlV ⊆ curlH1(G)3. Let w ∈ H1(G)3. Proposition 3.6 yields the decom-
position w = ∇ϕ + v for some ϕ ∈ H1(G) and v ∈ N0(div). We deduce
that ∆ϕ = divw ∈ L2(G) and hence, by Theorem 2.1, there exists the Neu-
mann trace ∂νϕ := trno∇ϕ = trnow ∈ H

1
2 (Γ). Elliptic regularity, see Proposi-

tion 5.7.7 in [55], shows that ϕ belongs to H2(G) and thus v to H1(G)3. Since
curlw = curl v, we have proven curlH1(G)3 = curlV .
To show the closedness, take v ∈ V . Since div v = 0, estimate (1.31) in

Section IX.1 of [16], cf. Lemma 3.3, yields∫
G
|∇v|2 dx ≤

∫
G
|curl v|2 dx+ c

∫
Γ
|v|2 dσ.

For X = V , Y = L2(G)3, Z = L2(Γ)3, T = curl and K = tr, Lemma 3.5 then
implies the closedness of curlV . (Recall that trH1(G) = H

1
2 (Γ) is compactly

embedded into L2(Γ).)
2) We next determine the complement of curlH1. Take w ∈ L2(G)3 with

w ⊥ curlH1(G)3. For every v ∈ H1
0(G)3, formula (2.6) yields

0 =

∫
G
w · curl v dx = 〈v, curlw〉H1

0

and hence curlw = 0. We can now use (2.9) to compute

0 =

∫
G
w · curl v dx−

∫
G
v · curlw dx = 〈tr v, trtaw〉H1/2(Γ) (3.20)

for v ∈ H1(G)3, which yields trtaw = 0 in H−
1
2 (Γ)3 and thus w ∈ N0(curl).

Conversely, let w ∈ N0(curl). Now (3.20) implies that w ⊥ curlH1(G)3. We
have shown that L2(G)3 = curlH1(G)3 ⊕⊥ N0(curl).
3) We next decompose N0(curl). So let w ∈ N0(curl). Proposition 3.7 provides

a potential ϕ ∈ H1(G) with ∇ϕ = w. Note that ∇ϕ ∈ N0(curl). We want
to show that trϕ is constant on each component Γj of Γ. To this end, let
F : U0 → Γ ∩ U be a parametrization on a connected open set U0 ⊆ R2 and
F = ψ�U0 for an inverse chart ψ. We then have 0 = trta∇(ϕ ◦ ψ) = ∇ξ(ϕ ◦ F )
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in H−
1
2 (U0). Let χ = ϕ ◦ F and χδ = ρδ ∗ χ ∈ C∞(U0) for a mollifier ρ in ξ.

We then obtain
∂ξjχδ = ρδ ∗ ∂ξjχ = 0, (3.21)

so that χδ is constant. The same is true for trϕ on Γ ∩ U by approximation,
and hence there are constants with cj = trϕ on each Γj .
Theorem 8.3 in [24] yields a function p ∈ A1(G) with tr p = cj on Γj . The map

ϕ0 := ϕ− p then belongs to H1
0(G) and thus N0(curl) ⊆ ∇H1

0(G)⊕⊥ ∇A1(G),
where the orthogonality was shown in Proposition 3.6. As in (3.21) one sees
that the sum belongs to N(trta), and it follows

(curlH1(G)3)⊥ = N0(curl) = ∇H1
0(G)⊕⊥ ∇A1(G) =: ∇H1

c(G). (3.22)

4) By (3.22), we have
∫
G v ·∇ϕdx = 0 for all v ∈ curlH1(G)3 and ϕ ∈ H1

c(G).
Since v ∈ N(div), formula (2.8) implies that

0 =

∫
G
ϕdiv v dx = 〈trϕ, trno v〉H1/2(Γ) =

N∑
j=1

〈cj1, trno v〉H1/2(Γj)
.

Choosing cj = δij we obtain v ∈ NΓ(div). The above computation also shows
that NΓ(div) is contained in (∇H1

c(G))⊥ = N0(curl). Assertion a) thus holds.
5) We have N(div) ⊥ ∇H1

0(G) due to Proposition 3.6 c). Hence, (3.22) yields
N = ∇A1(G). This fact and (3.22) imply (3.19). The remaining part of b) now
follows from N(div) = (∇H1

0(G))⊥, (3.19) and statement a).
We have shown that the continuous map curl : V → NΓ(div) is surjective,

and it is injective thanks to Proposition 3.7. �

We next invert curl on vector fields in a subspace of N(trta).

Theorem 3.9. Let G ⊆ R3 be open, bounded and simply connected with a
C2-boundary. Set W = H1

ta0(G) ∩ NΓ(div). Then curlH1
ta0(G) = curlW is

closed in L2(G)3 and curl : W → N0(div) is invertible.

Proof. 1) We first look at the spaceW1 = H1
ta0(G)∩N(div) which contains

W and satisfies curlW1 ⊆ curlH1
ta0(G). For the converse, take u ∈ H1

ta0(G).
Theorems 8.3 and 8.12 in [24] provide a function ϕ ∈ H2(G) ∩ H1

0(G) with
∆ϕ = div u. The field w = u − ∇ϕ thus belongs to H1(G)3 ∩ N(div). As in
step 3) of the previous proof, we see that trta∇ϕ = 0 implying w ∈ W1 and
curlW1 = curlH1

ta0(G). Next, Theorem 3.8 implies the decomposition N(div) =
NΓ(div)⊕⊥ N . Since N ⊆ N0(curl) we conclude curlH1

ta0(G) = curlW .
For w ∈W , inequality (1.29) of Section IX.1 of [16] yields∫

G
|∇w|2 dx ≤

∫
G
|curlw|2 dx+ c

∫
Γ
|w|2 dσ.

We now deduce the closedness of curlW from Lemma 3.5 as in step 1) of the
proof of Theorem 3.8.
2) To compute curlW , let v ⊥ curlH1

ta0(G). Formula (2.6) then yields

0 = 〈u, curl v〉H1
0

=

∫
G
v · curludx
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for all u ∈ H1
0(G)3, and so curl v = 0. Conversely, take v ∈ N(curl). For each

u ∈ H1
ta0(G), we compute

0 =

∫
G
u · curl v dx =

∫
G
v · curludx

using (2.9). This means that N(curl) is the complement of curlH1
ta0(G) in L2.

Since N(curl) = ∇H1(G)3 by Proposition 3.7, we infer curlH1
ta0(G) = N0(div)

from Proposition 3.6 b).
3) It remains to check injectivity of curl on W . Theorem 3.8 shows that

W1∩N(curl) = H1(G)3∩N and N = ∇A1
c(G). The latter space is contained in

H1(G)3 because of Theorems 8.3 and 8.12 in [24], and henceW1∩N(curl) = N .
Take w ∈W1 with w ⊥ N . For all ψ ∈ A1

c(G) we then compute

0 =

∫
G
w · ∇ψ dx =

∑N

j=1

∫
Γj

cj trnow dσ

by means of (2.8) and divw = 0, where ψ = cj on Γj . Choosing cj = δij , we
conclude that w belongs to NΓ(div) and thus to W . Equation (2.8) also shows
that w ∈W is perpendicular to ∇A1

c(G); i.e,

W = W1 ⊗⊥ N = W1 ⊗⊥ (W1 ∩N(curl)) (3.23)

and curl : W → N0(div) is bijective. �

Combining the above results, we obtain two Helmholtz decompositions.

Corollary 3.10. Let G ⊆ R3 be open, bounded and simply connected with a
C2-boundary. Then the following assertions are true
a) L2(G)3 = ∇H1(G)⊕⊥ curlH1

ta0(G) = ∇H1(G)⊕⊥ curlW .
Hence, for each v ∈ L2(G)3 there maps ϕ ∈ H1(G) and w ∈ W such that
v = ∇ϕ+curlw, where w is uniquely determined and ϕ is unique up to constants.
b) L2(G)3 =∇H1

0(G)⊕⊥∇A1
c(G)⊕⊥curlH1(G)3 =∇H1

0(G)⊕⊥∇A1
c(G)⊕⊥curlV .

Hence, for each v ∈ L2(G)3 there are maps ϕ ∈ H1
0(G), p ∈ ∇A1

c(G) and w ∈ v
such that v = ∇ϕ+∇p+ curlw, where w and ϕ are uniquely determined and p
is unique up to constants.

Proof. Assertion a) follows from Proposition 3.6 and Theorem 3.9, and
part b) from Theorem 3.8 b) and c). The decomposition is unique because of
the direct product and the injectivity of curl on W and V , and since the kernel
of ∇ consists of constants as G is connected. �

One can bound the H1-norm of a field v by its norms in H(curl) ∩ H(div)

and the H1/2-norm of trta v or trno v, see Corollary XI.1.1 of [16] and also
our Lemma 3.3. In the proof of Proposition 3.17 below, we need a version of
this result with regular, matrix-valued coefficients a (which does not directly
follow from the case a = I unless a is scalar). It is stated in Remark 4 of [20]
with a brief indication of a proof. We present a (different) proof inspired by
Lemma 4.5.5 of [13].
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Proposition 3.11. Let G be bounded with ∂G ∈ C2, a ∈W 1,∞(G,R3×3
η ) for

some η > 0 and let v ∈ H(curl) fulfill div(av) ∈ L2(G) and trno(av) ∈ H1/2(Γ).
Then v belongs to H1(G)3 and satisfies

‖v‖H1
x
≤ c
(
‖v‖H(curl) + ‖div(av)‖L2

x
+ ‖trno(av)‖H1/2(Γ)

)
=: cκ(v).

Proof. There exists a finite partition of unity {χi}i on G such that the sup-
port of each χi is contained in a simply connected subset of G with a connected
smooth boundary. Since each χi is scalar, we obtain the estimate

‖χiv‖L2
x

+ ‖curl(χiv)‖L2
x

+ ‖div(aχiv)‖L2
x

+ ‖trno(aχiv)‖H1/2(Γ) ≤ cκ(v).

We can thus assume that Γ is connected and G simply connected. In this case,
curl v is an element of NΓ(div) and so Theorem 3.8 c) yields a map w ∈ H1(G)3∩
N0(div) with curlw = curl v and ‖w‖H1

x
≤ c‖curl v‖L2

x
. As the difference v − w

belongs to N(curl), it is represented by v − w = ∇ϕ for a function ϕ ∈ H1(G)
thanks to Proposition 3.7. Here we can assume that

∫
G ϕdx = 0 and so ‖ϕ‖2 .

‖∇ϕ‖2 . ‖v‖2 + ‖w‖2 by Poincaré’s inequality. We further have

div(a∇ϕ) = div(av)− div(aw) ∈ L2(G),

trno(a∇ϕ) = trno(av)− trno(aw) ∈ H1/2(Γ),

because of the assumptions and w ∈ H1(G)3. Due to Proposition 5.7.7 in [55],
ϕ is thus an element of H2(G) satisfying

‖ϕ‖H2
x
≤ c
(
‖v‖L2

x
+ ‖div(av)‖L2

x
+ ‖trno(av)‖H1/2(Γ) + ‖w‖H1

x

)
≤ cκ(v).

The assertion now follows from the equation v = w +∇ϕ. �

3.3. Energy and observability-type inequalities

Wev now go back to the proof of Theorem 3.1. We first establish an energy
inequality for ∂kt u involving dissipation. The error term z3/2 is caused by various
commutators with ε(E) and µ(H).

Proposition 3.12. We assume the conditions of Theorem 3.1 except for the
simple connectedness of G. For 0 ≤ s ≤ t < T∗ and k ∈ {0, 1, 2, 3}, we obtain
the inequality

ek(t) +

∫ t

s
dk(τ) dτ ≤ ek(s) + c1

∫ t

s
z3/2(τ) dτ. (3.24)

We first give the direct proof for the case k = 0. Since (E,H) even belongs
to G3, the system (3.1) and the integration by parts formula (2.9) yield
d

dt

1

2

∫
G

(
ε(E(t))E(t) · E(t) + µ(H(t))H(t) ·H(t)

)
dx

=
1

2

∫
G

[
∂t(ε(E)E)·E + ε(E)E ·

[
ε(E)−1∂t(ε(E)E)

]
+ ε(E)E ·

[
∂tε(E)−1ε(E)E

]
+∂t(µ(H)H)·H+µ(H)H ·

[
µ(H)−1∂t(µ(H)H)

]
+µ(H)H ·

[
∂tµ(H)−1µ(H)H

]]
dx

=

∫
G

[
curlH · E − σE · E − curlE ·H − 1

2∂tε(E)E · E − 1
2∂tµ(H)H ·H

]
dx



3.3. Energy and observability-type inequalities 64

= −
∫
G

[
σE · E + 1

2∂tε(E)E · E + 1
2∂tµ(H)H ·H

]
dx.

We thus obtain the energy equality

e0(t) +

∫ t

s
d0(τ) dτ = e0(t)− 1

2

∫ t

s

∫
G

(
∂tε(E)E · E + ∂tµ(H)H ·H

)
dx dτ.

Combined with estimate (3.16), we derive (3.24) for the case k = 0.
For k ∈ {1, 2, 3} in Proposition 3.12, we have different coefficients in the

energy ek defined in (3.13) and more error terms. In this case, (3.24) follows
from Lemma 3.13 below, the system (3.12) and the estimates (3.16). This lemma
provides an energy identity in a more general situation to be encountered later.
Take coefficients a, b ∈W 1,∞(J×G,R3+3

η ) for some T, η > 0 and data v0, w0 ∈
L2
x, ϕ,ψ∈L2

t,x, and ω∈L2(J,H1/2(Γ))3 with ν·ω = 0. Theorem 1.4 of [19] yields
a unique solution (v, w)∈G0(J) with trta(v, w)∈L2(J,H−1/2(Γ))6 of the linear
system

a∂tv = curlw − σv + ϕ, t ∈ J, x ∈ G,
b∂tv = − curl v + ψ, t ∈ J, x ∈ G,

trta v = ω, t ∈ J, x ∈ Γ,

v(0) = v0, w(0) = w0, x ∈ G.

(Theorem 2.20 deals with the case ω = 0 without the regularity of trtaw.)
For ω = 0 and G = R3

+, the next lemma is a part of Theorem 2.10. In the
present form it follows from Theorem 1.1 of [53] (a version of Theorem 2.21
with boundary inhomogeneities), using approximation arguments omitted here,
see Lemma 4.2 in [34].

Lemma 3.13. Under the assumptions above, for 0 ≤ s ≤ t ≤ T we have

1

2

∫
G

(
a(t)v(t) · v(t) + b(t)w(t) · w(t)

)
dx+

∫ t

s

∫
G
σv · v dx dτ

=
1

2

∫
G

(
a(0)v0 · v0 + b(0)w0 · w0

)
dx+

∫ t

s

∫
Γ
ω · trtaw dx dτ

+

∫ t

s

∫
G

(
1
2∂ta v · v + 1

2∂tbw · w + ϕ · v + ψ · w
)
dx dτ.

In the next proposition we control the energy by the dissipation, i.e., ∂kt E by
∂ktH. Following [20], our aproach is based on a Helmholtz decomposition. Our
result is a variant of Proposition 2 in [20] where the case of time-independent ε
and µ and less regular solutions was treated.

Lemma 3.14. Let the assumptions of Theorem 3.1 be satisfied and let (E,H)
solve (3.1). Then there exist functions w in C3

(
J+,H1

ta0(G) ∩ NΓ(div)
)
∩

C4(J+, L
2(G))3, p in C3(J+,H1

0(G)) and h in C3(J+,N ) with

∂kt E = −∂k+1
t w +∇∂kt p+ ∂kt h, µ̂k∂

k
tH = curl ∂kt w − gk (3.25)

for k ∈ {0, 1, 2, 3}, cf. (3.8) and (3.10). The sum for ∂kt E is orthogonal in L2
x.
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Proof. Let t ∈ J+. Equation (3.6) implies that the function µ(H(t))H(t)
is contained in N0(div). Since G is simply connected, Theorem 3.9 then yields
a vector field w(t) in H1

ta0(G) ∩ NΓ(div) satisfying curlw(t) = µ(H(t))H(t).
Moreover, the map w belongs to C3(J+,H1

ta0(G)∩NΓ(div)) because of (E,H) ∈
G3 and Theorem 3.9. Differentiating curlw = µ(H)H in t, we deduce

curl ∂kt w = ∂kt (µ(H)H) = µd(H)∂ktH + gk

for k ∈ {1, 2, 3} which shows the second part of (3.25). Comparing this relation
for k = 1 with (3.2), we infer curl(E + ∂tw) = 0. Morever, E + ∂tw belongs to
the kernel of trta. From (3.19) we obtain functions p(t) ∈ H1

0(G) and h(t) ∈ N
such that

E(t) = −∂tw(t) +∇p(t) + h(t)

for t ∈ J+ with orthogonal sums. This fact and (E,H) ∈ G3 imply the remaining
regularity assertions. Differentiating the above identity in t, we prove (3.25). �

We can now show the desired observability-type estimate. Let us explain this
name. For solutions of (3.1) with σ = 0, ε = ε(x) and µ = µ(x), Lemma 3.13
shows the energy equality e0(t) = e0(0) for t ≥ 0. Take σ = 1 in the definition
of d0. Then the next inequality can still be shown with modified constants and
z = 0, implying (t− 2c′3)e0(0) ≤ c′2

∫ t
0 ‖E(τ)‖2L2

x
dτ . Hence, the initial fields can

be determined by observing the electric field alone until t > 2c′3.

Proposition 3.15. Let the conditions of Theorem 3.1 be satisfied. For 0 ≤
s ≤ t < T∗ and k ∈ {0, 1, 2, 3}, we can estimate∫ t

s
ek(τ) dτ ≤ c2

∫ t

s
dk(τ) dτ + c3(ek(t) + ek(s)) + c4

∫ t

s
z3/2(τ) dτ.

Proof. Let k ∈ {0, 1, 2, 3}. To simplify, take s = 0. Equality (3.25) yields∫
Gt

µ̂k∂
k
tH ·∂ktH d(x, τ) =

∫
Gt

curl ∂kt w ·∂ktH d(x, τ)−
∫
Gt

gk ·∂ktH d(x, τ), (3.26)

where Gt = G × (0, t). Using that ∂kt w ∈ C(J+,H1
ta0(G)) by Lemma 3.14, we

apply (2.10), insert the first line of the system (3.9), and integrate by parts in
t. It follows∫

Gt

curl ∂kt w · ∂ktH d(x, τ) = 〈∂kt w, curl ∂ktH〉L2((0,t),H0(curl)) (3.27)

= 〈∂kt w, ∂t(ε̂k∂kt E)〉L2((0,t),H0(curl)) +

∫
Gt

∂kt w · (σ∂kt E + ∂tfk) d(x, τ)

=

∫
G
∂kt w(t) · ε̂k(t)∂kt E(t) dx−

∫
G
∂kt w(0) · ε̂k(0)∂kt E(0) dx

−
∫
Gt

∂k+1
t w · ε̂k∂kt E d(x, τ) +

∫
Gt

∂kt w · (σ∂kt E + ∂tfk) d(x, τ).

Since ∂kt w(t) ∈ H1
ta0(G)3 ∩ NΓ(div), Theorem 3.9 yields the Poincaré-type es-

timate ‖∂kt w(τ)‖L2
x
≤ c‖curl ∂kt w(τ)‖L2

x
. From (3.25) and (3.16), we then infer

the bound

‖∂kt w(τ)‖L2
x
≤ c‖ curl ∂kt w(τ)‖L2

x
= c‖µ̂k∂ktH(τ) + gk(τ)‖L2

x
≤ ce1/2

k (τ). (3.28)
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The orthogonality in the first part of (3.25) gives ‖∂k+1
t w(τ)‖L2

x
≤ ‖∂kt E(τ)‖L2

x
.

For any θ > 0, these inequalities along with (3.27) and (3.16) lead to the estimate∣∣∣ ∫
Gt

curl ∂kt w · ∂ktH d(x, τ)
∣∣∣ ≤ c(ek(t) + ek(0)) + c

∫
Gt

|∂kt E|2 d(x, τ) (3.29)

+ θ

∫
Gt

|∂kt w|2d(x, τ) + cθ

∫
Gt

|∂kt E|2 d(x, τ) + c

∫ t

0
z

3
2 (τ) dτ.

As in (3.28), we further compute∫
Gt

|∂kt w|2 d(x, τ) ≤ c
∫
Gt

curl ∂kt w · µ̂−1
k curl ∂kt w d(x, τ)

= c

∫
Gt

curl ∂kt w · (∂ktH + µ̂−1
k gk) d(x, τ)

≤ c
∣∣∣∫
Gt

curl ∂kt w · ∂ktH d(x, τ)
∣∣∣+ c

∫ t

0
z

3
2 (τ) dτ.

Fixing a small number θ > 0, the term with |∂kt w|2 in equation (3.29) can now
be absorbed by the left-hand side and by the integral of z3/2. So we arrive at∣∣∣ ∫

Gt

curl ∂kt w · ∂ktH d(x, τ)
∣∣∣ ≤ c(ek(t) + ek(0)) + c

∫ t

0
dk(τ) dτ + c

∫ t

0
z

3
2 (τ) dτ,

also using that dk(t) is equivalent to maxj≤k ‖∂jtE(t)‖2L2
x
. This fact, equation

(3.26), the last inequality, and the estimates (3.16) yield the claim. �

Combining Propositions 3.12 and 3.15, we arrive at the following energy
bound.

Proposition 3.16. Under the conditions of Theorem 3.1, we have

ek(t) +

∫ t

s
ek(s)ds ≤ C1ek(s) + C2

∫ t

s
z3/2(τ) dτ

for 0 ≤ s ≤ t < T∗ and k ∈ {0, 1, 2, 3}.

Proof. We multiply the inequality in Proposition 3.15 by α = min{ 1
c2
, 1

2c3
}

and add it to (3.24), obtaining

ek(t) + 2α

∫ t

s
ek(τ) dτ ≤ 3ek(s) + 2(c1 + αc4)

∫ t

s
z3/2(τ) dτ. �

For z = 0, from Corollary 3.16 one could easily infer exponential decay by
a standard argument, see below. The extra term can be made small since
z1/2(τ) ≤ δ for τ < T∗ by (3.14). However, z involves space derivatives so that
it cannot be absorbed by e that does not contain them. This gap is closed by
the next surprising result proved in the next section. It then allows us to show
Theorem 3.1.

Proposition 3.17. We impose the conditions of Theorem 3.1 except for the
simple connectedness of G. Then the solutions (E,H) to (3.1) satisfy

z(t) +

∫ t

s
z(τ) dτ ≤ c5

(
z(s) + e(t) + z2(t)

)
+ c6

∫ t

s

(
e(τ) + z3/2(τ)

)
dτ
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for all 0 ≤ s ≤ t < T∗.

Proof of Theorem 3.1. Proposition 3.17 and Corollary 3.16 show that

z(t)+

∫ t

s
z(τ) dτ ≤ (c5+C1(c5+c6))z(s)+c5z

2(t)+(c6+C2(c5+c6))

∫ t

s
z3/2(τ) dτ.

Fixing a sufficiently small radius δ ∈ (0, δ0], we can now absorb the superlinear
terms involving z2 and z3/2 by the left-hand side and hence obtain

z(t) +

∫ t

s
z(τ) dτ ≤ Cz(s), for all 0 ≤ s ≤ t < T∗

and some constant C > 0. Since then z(τ) ≥ C−1z(t), we infer that

(1 + (t− s)C−1)z(t) ≤ Cz(s). (3.30)

The differentiated Maxwell system (3.12) and the bounds from (3.16) yield

z(0) ≤ c0‖(E0, H0)‖2H3 ≤ c0r
2

for a constant c0 > 0. We now fix the radius

r := min
{
r(δ),

δ√
2c0C

}
,

where r(δ) was introduced before (3.14).
We suppose that T∗ < ∞, yielding z(T∗) = δ2 by (3.15). Because of (3.30),

the number z(t) is bounded by Cz(0) ≤ δ2/2 for t < T∗ and by continuity also
for t = T∗. This contradiction shows that T∗ =∞ and hence T+ =∞.
In particular, (3.30) is true for all t ≥ s ≥ 0. Fixing the time T > 0 with

C2/(C + T ) = 1/2, we derive z(nT ) ≤ 1
2z((n − 1)T ) for n ∈ N and then

z(nT ) ≤ 2−nz(0) by induction. With (3.30) one then obtains the asserted
exponential decay. �

3.4. Time regularity controls space regularity

In the proof of Proposition 3.17, we want to avoid the localization procedure
since we need global-in-time estimates. This can be done using a new coordinate
system near Γ = ∂G. (Possibly, one could derive the apriori estimates in §2.3 in
a similar way; but for the regularization this is not clear because of the mollifier
arguments.)
For a fixed distance % > 0, on the collar Γ% = {x ∈ G | dist(x,Γ) < %},

we can find smooth functions τ1, τ2, ν : Γ% → R3 such that the vectors
{τ1(x), τ2(x), ν(x)} form a basis of R3 for each point x ∈ Γ%, ν extends the
outer unit normal at Γ, and {τ1, τ2} span the tangential planes at Γ. For
ξ, ζ ∈ {τ1, τ2, ν}, v ∈ R3 and a ∈ R3×3, we set

∂ξ =
∑

j
ξj∂j , vξ = v · ξ, vξ = vξξ, vτ = vτ1τ

1 + vτ2τ
2, aξζ = ξ>aζ.

We state several calculus formulas needed below, assuming that the functions
involved are sufficiently regular. We can switch between the derivatives of the
coefficient vξ and the component vξ up to a zero-order term since

∂ζv
ξ = ∂ζvξξ + vξ∂ζξ.
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The commutator of tangential derivatives and traces

∂τ trta v = ∂τ (v × ν) = trta ∂τv + v × ∂τν on Γ

is also of lower order. Similarly, the directional derivatives commute

∂ξ∂ζv =
∑

j,k
ξj∂j(ζk∂kv) = ∂ζ∂ξv +

∑
j,k
ξj∂jζk ∂kv − ζk∂kξj ∂jv

up to a first-order operator with bounded coefficients.
The gradient of a scalar function ϕ is expanded as

∇ϕ =
∑

ξ
ξ · ∇ϕ ξ =

∑
ξ
ξ∂ξϕ,

so that ∂j =
∑

ξ ξj∂ξ for j ∈ {1, 2, 3}. Due to the formulas before (1.5) we have

curl =
∑

j
Sj∂j =

∑
j,ξ
Sjξj∂ξ =:

∑
ξ
S(ξ)∂ξ.

Since the kernel of S(ν) is spanned by ν, we can write S(ν)v = S(ν)vτ , and the
restriction of S(ν) to span{τ1, τ2} has an inverse R(ν).
We now provide the tools that allow us transfer to the arguments of Proposi-

tion 2.12 from R+
3 to the present setting. We first isolate the normal derivative

of the tangential components of v in the equation curl v = f . Starting from the
above expansion

curl v = S(ν)(∂νv)τ + S(τ1)∂τ1v + S(τ2)∂τ2v,

we obtain

∂νv
τ =

∑
i
(∂ντ

i vτ i + τ i∂ντ
i · v) +R(ν)

(
f −

∑
i
S(τ i)∂τ iv

)
, (3.31)

where the first sum only contains zero-order terms.
In order to recover the normal derivative of the normal component of v, we

resort to the divergence operator. The divergence of a vector field v can be
expressed as

div v =
∑

j
∂j
∑

ξ
vξξj =

∑
ξ

(
∂ξvξ + div(ξ)vξ

)
.

Letting ϕ = div(av) for a matrix-valued function a, we derive

div(av) =
∑

ξ,ζ
∂ξ(ξ

>aζvζ) +
∑

ξ
div(ξ) ξ>av

=
∑

ξ,ζ
(aξζ∂ξvζ + ∂ξaξζvζ) +

∑
ξ

div(ξ) ξ>av,

aνν∂νvν = ϕ−
∑

(ξ,ζ)6=(ν,ν)

aξζ∂ξvζ −
∑

ξ,ζ
∂ξaξζvζ −

∑
ξ

div(ξ) ξ>av

=: ϕ−D(a)v, (3.32)

where D(a)v contains all tangential derivatives and normal derivatives of tan-
gential components of v plus zero-order terms. Next, let a ∈W 1,∞(J×G,R3×3

sym)

be positive definite, v ∈ C1(J,H1
x), and ψ ∈ L2

t,x. In view of (3.7), we look at
the equation

div
(
a(t)v(t)

)
= div

(
a(0)u(0)

)
−
∫ t

0

(
div(σu(s)) + ψ(s)

)
ds (3.33)
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for 0 ≤ t ≤ T . We set γ = σνν/aνν and Γ(t, s) = exp(−
∫ t
s γ(τ) dτ). Equations

(3.32) and (3.33) yield

aνν(t)∂νvν(t) = div
(
a(0)v(0)

)
−D

(
a(t)

)
v(t)

−
∫ t

0

(
γ(s)aνν(s)∂νvν(s) +D

(
σ)v(s) + ψ(s)

)
ds,

cf. (2.29). Differentiating with respect to t and solving the resulting ODE, we
derive

aνν(t)∂νvν(t)

= Γ(t, 0)aνν(0)∂νnν(0)−
∫ t

0
Γ(t, s)

(
D(σ)v(s) + ψ(s) + ∂s

(
D(a(s))v(s)

))
ds

= Γ(t, 0) div(a(0)v(0))−D(a(t))v(t)

+

∫ t

0
Γ(t, s)

(
γ(s)D

(
a(s)

)
v(s)−D(σ)v(s)− ψ(s)

)
ds. (3.34)

Before tackling the (quite demanding) proof of Proposition 3.17, we describe
our reasoning. We have to bound ∂kt E and ∂ktH in H3−k

x for k ∈ {0, 1, 2} by the
L2
x-norms of ∂jtE and ∂jtH for j ∈ {0, 1, 2, 3}.
The H1

x-norm of ∂ktH with k ∈ {0, 1, 2} can easily be estimated by means of
the curl-div estimates from Proposition 3.11 since we control curl, divergence
and normal trace of ∂ktH via the time differentiated Maxwell system (3.9) and
(3.11). Aiming at higher space regularity, we can apply the above strategy
to tangential derivatives of ∂ktH only, whereas normal derivatives destroy the
boundary conditions in (3.9). Here we proceed as in Proposition 2.12: The tan-
gential components of normal derivatives are read off the differentiated Maxwell
system using the expansion (3.31) of the curl-operator, while the normal com-
ponents are bounded employing the divergence condition (3.11) and formula
(3.32). In these arguments we have to restrict ourselves to fields localized near
the boundary. The localized fields in the interior can be controlled more easily
since the boundary conditions become trivial for them.
The electric fields E have less favorable divergence properties because of the

conductivity term in (3.9). Instead of Proposition 3.11, we thus employ the en-
ergy bound of the system (3.36) derived by differentiating the Maxwell equations
in time and tangential directions. The normal derivatives are again treated by
the curl-div-strategy indicated in the previous paragraph. However, to handle
the extra divergence term in (3.11) caused by the conductivity, we need the
more sophisticated divergence formula (3.34) relying on an ODE derived from
(3.11).
This program is carried out by iteration on the space regularity. In each step

one has to start with the magnetic fields in order to use their better properties
when estimating the electric ones.

Proof of Proposition 3.17. Let (E,H) be a solution of (3.1) on J∗ =
[0, T∗) satisfying z(t) ≤ δ2 and the equations (3.6) and (3.7). Take k ∈ {0, 1, 2}
and 0 ≤ t < T∗, where we let s = 0 for simplicity. To localize the fields, we
choose smooth scalar functions χ and 1− χ =: ϑ on G having compact support
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in G\Γ%/2 and Γ%, respectively. The proof is divided into several steps following
the above outline.
1) Estimate of ∂ktH in H1

x. The time differentiated Maxwell system (3.9) and
(3.11) combined with estimates (3.16) yield∥∥ curl ∂ktH(t)

∥∥
L2
x
≤ ce1/2

k+1(t) + cz(t)δk2,∥∥div(µ̂k∂
k
tH(t))

∥∥
L2
x
≤ cz(t)δk2,∥∥ trno(µ̂k∂

k
tH(t))

∥∥
H1/2(Γ)

≤ cz(t)δk2,

where δk2 = 1 for k = 2 and δk2 = 0 for k ∈ {0, 1}. Proposition 3.11 thus
implies ∥∥∂ktH(t)

∥∥2

H1
x
≤ cek+1(t) + cz2(t)δk2,∫ t

0

∥∥∂ktH(s)
∥∥2

H1
x

ds ≤ c
∫ t

0
(ek+1(s) + z2(s)δk2) ds.

(3.35)

We stress the core fact that the inhomogeneities in (3.9) and (3.11) are quadratic
in (E,H) and can thus be bounded by z via (3.16).
2) Estimates in the interior for E and H. We look at the localized fields

∂kt (χE) and ∂kt (χH) whose support suppχ is strictly separated from the bound-
ary. Hence, their spatial derivatives satisfy the boundary conditions of the
Maxwell system so that we can treat the electric fields via energy bounds and
the magnetic ones via the curl-div estimates.
a) Let α ∈ N3

0 with |α| ≤ 3− k. We apply ∂αxχ to the Maxwell system (3.12),
deriving the equations

εd(E) ∂t∂
α
x ∂

k
t (χE) = curl ∂αx ∂

k
t (χH)− σ∂αx ∂kt (χE) + ∂αx ([χ, curl]∂ktH)

−
∑

0≤β<α

(
α

β

)
∂α−βx (σ + εd(E)) ∂βx∂

k
t (χE)− ∂αx (χf̃k),

µd(H) ∂t∂
α
x ∂

k
t (χH) = − curl ∂αx ∂

k
t (χE)− ∂αx ([χ, curl]∂kt E)− ∂αx (χg̃k) (3.36)

−
∑

0≤β<α

(
α

β

)
∂α−βx µd(H) ∂βx∂

k
t (χH),

trta ∂
α
x ∂

k
t (χE) = 0, trno ∂

α
x ∂

k
t (χH) = 0.

Note that the commutator m := [χ, curl] is merely a multiplication operator.
Lemma 3.13 and the inequalities (3.16) thus yield

‖∂αx ∂kt (χE)(t)‖2L2
x

+

∫ t

0
‖∂αx ∂kt (χE)(s)‖2L2

x
ds

≤ cz(0) + c

∫ t

0

(
z3/2(s) + ‖∂kt (χE(s))‖2

H|α|−1
x

+ ‖∂kt (χH(s))‖2
H|α|−1
x

)
ds

+ c

∫
Gt

(
∂αx (m∂ktH) · ∂αx ∂kt (χE))− ∂αx (m∂kt E) · ∂αx ∂kt (χH)

)
d(x, s),
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where Gt = (0, t)×G. The former part of the last line can be estimated by

1

4

∫ t

0

∥∥∂αx ∂kt (χE)(s)
∥∥2

L2
x

ds+ c

∫ t

0

∥∥χ̃∂ktH(s)
∥∥2

H|α|x
ds

with another cut-off function χ̃ ∈ C∞c (G \ Γ%/2) that is equal to 1 on suppχ.
The first summand is absorbed by the left-hand side, while the second one only
involves H and can be treated separately. The latter part of the integral on Gt
is similarly bounded by

θ

∫ t

0

∥∥∂kt E(s)
∥∥2

H|α|x
ds+ c(θ)

∫ t

0

∥∥χ̃∂ktH(s)
∥∥2

H|α|x
ds

for an arbitrary (small) θ > 0. It follows∥∥∂αx ∂kt (χE)(t)
∥∥2

L2
x

+

∫ t

0

∥∥∂αx ∂kt (χE)(s)
∥∥2

L2
x

ds (3.37)

≤ cz(0) + c

∫ t

0
(z3/2(τ) +

∥∥∂kt (χE(s)
∥∥2

H|α|−1
x

) ds

+ θ

∫ t

0

∥∥∂kt E(s)
∥∥2

H|α|x
ds+ c(θ)

∫ t

0

∥∥χ̃∂ktH(s)
∥∥2

H|α|x
ds.

b) To treat H, we only need |α| ≤ 2− k. Equations (3.6) and (3.11) yield

div
(
µ̂k∂

α
x ∂

k
t (χH)

)
(3.38)

= ∂αx ([div, χ]µ̂k∂
k
tH)−

∑
0≤β<α

(
α

β

)
div
(
∂α−βx µ̂k ∂

β
x (∂kt (χH)

)
− ∂αx (χdiv gk).

Recalling formulas (3.36) and (3.16), we deduce∥∥ curl∂αx ∂
k
t (χH(t))

∥∥
L2
x

+
∥∥µ̂k div ∂αx ∂

k
t (χH(t))

∥∥
L2
x

≤ c
(
z(t) +

∥∥∂kt χ̃H(t)
∥∥
H|α|x

+
∥∥∂k+1

t (χE(t))
∥∥
H|α|x

+
∥∥∂kt (χE(t))

∥∥
H|α|x

)
Proposition 3.11 now implies the inequalities∥∥∂ktχH(t)

∥∥2

H|α|+1
x

≤ c
[
z2(t)+

∥∥∂ktχ̃H(t)
∥∥2

H|α|x
+ max
j≤k+1

‖∂jt(χE(t))‖2
H|α|x

]
, (3.39)∫ t

0

∥∥∂ktχH(s)
∥∥2

H|α|+1
x

ds≤ c
∫ t

0

[
z2(s) +

∥∥∂ktχ̃H(s)
∥∥2

H|α|x
+ max
j≤k+1

∥∥∂jt (χE(s))
∥∥2

H|α|x

]
ds.

Here, we can replace χ by χ̃ from inequality (3.37) and χ̃ by a function χ̆ ∈
C∞c (G \ Γ%/2) which is equal to 1 on supp χ̃.
We set yj(t) = max0≤k≤3−j

∥∥∂kt χ(E(t), H(t))
∥∥2

Hjx
. The estimates (3.35),

(3.37) and (3.39) iteratively imply

yj(t) +

∫ t

0
yj(s) ds ≤ cz(0) + c

(
e(t) + z2(t)

)
+ c(θ)

∫ t

0
(e(s) + z3/2(s)) ds

+ θ max
1≤l≤j

max
0≤k≤3−l

∫ t

0
‖∂kt E(s)‖2Hlx ds (3.40)

for any θ > 0 and j ∈ {1, 2, 3}.
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3) Boundary-collar estimate of ∂kt E in H1
x. We write ϑ = 1 − χ and ∂τ =

(∂τ1 , ∂τ2). Let α ∈ N2
0 with 0 < |α| ≤ 3−k. (For the later use, also higher-order

space derivatives are treated.)
a) We localize the system near the boundary by including the cut-off ϑ into

the equations (3.12), and then apply ∂ατ to the resulting system. The localized
tangential-time derivatives of (E,H) thus satisfy

εd(E) ∂t∂
α
τ ∂

k
t (ϑE) = curl ∂ατ ∂

k
t (ϑH)− σ∂ατ ∂kt (ϑE) + [∂ατ , curl]∂kt (ϑH)

+ ∂ατ ([ϑ, curl]∂ktH)−
∑

0≤β<α

(
α

β

)
∂α−βτ (σ + εd(E)) ∂βτ ∂

k
t (ϑE)− ∂ατ (ϑf̃k),

µd(H) ∂t∂
α
τ ∂

k
t (ϑH) = − curl ∂ατ ∂

k
t (ϑE)− ∂ατ ([ϑ, curl]∂kt E)− [∂ατ , curl]∂kt (ϑE)

−
∑

0≤β<α

(
α

β

)
∂α−βτ µd(H) ∂βτ ∂

k
t (ϑH)− ∂ατ (ϑg̃k),

trta ∂
α
τ ∂

k
t (ϑE) = [∂ατ , trta]∂kt (ϑE) =: ω. (3.41)

The commutators [∂ατ , curl] are differential operators of order |α| with bounded
coefficients, whereas [∂ατ , trta] is of order |α| − 1 on the boundary and hence a
bounded operator from H|α|−1/2(Γ) to H1/2(Γ). We now use the energy identity
in Lemma 3.13 with a = εd(E), b = µd(H), v = ∂ατ ∂

k
t (ϑE), and w = ∂ατ ∂

k
t (ϑH).

The commutator terms, the sums, and the summands with f̃k and g̃k yield
the inhomogeneities ϕ and ψ, respectively. From Lemma 3.13 we deduce the
inequality∥∥∂ατ ∂kt (ϑE)(t)

∥∥2

L2
x

+

∫ t

0

∥∥∂ατ ∂kt (ϑE)(s)
∥∥2

L2
x

ds

≤ cz(0) + c

∫
Gt

(
|∂tav · v|+ |∂tbw · w|+ |ϕ · v|+ |ψ · w|

)
d(s, x)

+ c

∫
Γt

|ω · trtaw|d(s, x).

Several terms on the right-hand side are super-quadratic in (E,H) and can
be bounded by cz3/2 due to (3.16). The quadratic ones need more care. The
summands in ϕ · v and ψ · w containing the commutators are less or equal to

θ

∫ t

0

∥∥∂kt E(s)
∥∥2

H|α|x
ds+ c(θ)

∫ t

0

∥∥ϑ̃∂ktH(s)
∥∥2

H|α|x
ds

with any (small) constant θ > 0 and a cut-off ϑ̃ ∈ C∞c (Γ%) being equal to
1 on suppϑ. The boundary integral is estimated by the same expression,
where we use the dual paring H1/2(Γ) × H−1/2(Γ) and that ∂τ i belongs to
B(H1/2(Γ),H−1/2(Γ)). The sums over β give rise to the terms

1

4

∫ t

0

∥∥∂ατ (∂kt ϑE(s))
∥∥2

L2
x

ds+ c

∫ t

0

∥∥ϑ∂kt E(s)
∥∥2

H|α|−1
x

ds+ c

∫ t

0

∥∥ϑ∂ktH(s)
∥∥2

H|α|x
ds

plus super-quadratic terms. We thus arrive at∥∥∂ατ ∂kt (ϑE)(t)
∥∥2

L2
x

+

∫ t

0

∥∥∂ατ ∂kt (ϑE)(s)
∥∥2

L2
x

ds (3.42)
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≤ cz(0) + c(θ)

∫ t

0

(∥∥ϑ∂kt E(s)
∥∥2

H|α|−1
x

+
∥∥ϑ̃∂ktH(s)

∥∥2

H|α|x

)
ds

+ θ

∫ t

0

∥∥∂kt E(s)
∥∥2

H|α|x
ds+ c

∫ t

0
z3/2(s) ds.

b) To finalize the H1
x-estimate for E, we must control the normal derivatives.

As in Proposition 2.12, we first treat their tangential component using the second
equation in (3.12). Combined with formula (3.31) and estimate (3.16) it implies∥∥∂ν(∂kt (ϑE(t))τ

∥∥2

L2
x
≤ c
(
ek+1(t) + z2(t) +

∥∥∂τ∂kt (ϑE(t))
∥∥2

L2
x

)
. (3.43)

For the normal component we use the div-relations, where we also consider
higher tangential derivatives for later use. We first look at the case k ∈ {1, 2}
and apply ∂ατ ϑ to equation (3.11) with |α| ≤ 2− k. It follows

div
(
εd(E)∂ατ ∂

k
t (ϑE)

)
= −D(εd(E), α)∂kt E − div(σ∂ατ (ϑ∂k−1

t E)) (3.44)

−D(σ, α)∂k−1
t E − ∂ατ (ϑ div fk

)
.

Here we abbreviate the commutator terms

D(a, α)v := ∂ατ
(
[ϑ, div](av)

)
+ [∂ατ , div](ϑav) +

∑
0≤β<α

(
α

β

)
div
(
∂α−βτ a ∂βτ (ϑv)

)
for a matrix-valued function a and a vector function v. Observe that D(a, α) is
a differential operator of order |α| and that |D(a, 0)v| ≤ c|v|. Below we treat the
equality (3.44) by means of formula (3.32). For k = 0, the divergence equation
contains a time integral and initial data which are handled using identity (3.34).
To avoid terms which grow linearly in time, we have to derive another equation
from (3.1), namely,

∂t(ε(E)∂ατ (ϑE)) = curl ∂ατ (ϑH)− σ∂ατ (ϑE)− [curl, ∂ατ ](ϑH)− ∂ατ ([curl, ϑ]H)

−
∑

0≤β<α

(
α

β

)
∂α−βτ (σ + ε(E)) ∂βτ (ϑE).

Writing h for the sum of the three errors terms, we infer the divergence relation

div
(
ε(E(t))∂ατ (ϑE(t))

)
= div

(
ε(E0)∂ατ (ϑE0)

)
(3.45)

−
∫ t

0

(
div(σ∂ατ (ϑE(s))) + div h(s)

)
ds.

c) To control ∂νEν , we use equation (3.45) with α = 0 and identity (3.34),
where we put a = ε(E), v = ϑE, and ψ = div h. The function γ = σνν/aνν is
bounded from below by γ0 = cη > 0. We then get the estimate∥∥∂ν(ϑE(t))ν

∥∥2

L2
x
≤ ce−γ0tz(0) + c

[
‖E(t)‖2L2

x
+ ‖∂τ (ϑE(t))‖2L2

x
+ ‖∂ν(ϑE(t))τ‖2L2

x

]
+ c

∫ t

0
e−γ0(t−s)

[
‖E(s)‖2L2

x
+ ‖∂τ (ϑE(s))‖2L2 + ‖∂ν(ϑE(s))τ‖2L2

x
+ ‖H(s)‖2H1

x

]
ds.

This bound together with equations (3.42), (3.43) and (3.35) implies∥∥∂ν(ϑE(t))ν
∥∥2

L2
x

+

∫ t

0

∥∥∂ν(ϑE(s))ν
∥∥2

L2
x

ds (3.46)
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≤ c
(
z(0) + e(t) + z2(t)

)
+ θ

∫ t

0
‖E(s)‖2H1

x
ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds,

where the (small) number θ > 0 comes from (3.42). Combining (3.42), (3.43),
(3.46) and (3.35), we conclude∥∥ϑE(t)

∥∥2

H1
x

+

∫ t

0

∥∥ϑE(s)
∥∥2

H1
x

ds

≤ c
(
z(0) + e(t) + z2(t)

)
+ θ

∫ t

0
‖E(s)‖2H1

x
ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.

For k ∈ {1, 2}, we proceed similarly using equation (3.44) with α = 0 and
formula (3.32) for the normal component. Here the term ‖∂k−1

t ϑE(t)‖2H1
x
ap-

pears on the right-hand side, which can be treated iteratively. We thus show
the inequality∥∥∂kt ϑE(t)

∥∥2

H1
x

+

∫ t

0

∥∥∂kt ϑE(s)
∥∥2

H1
x

ds (3.47)

≤ c
(
z(0) + e(t) + z2(t)

)
+ θ

∫ t

0

∥∥∂kt E(s)
∥∥2

H1
x

ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds

for k ∈ {0, 1, 2}. Both in (3.47) and (3.37) for |α| = 1, we now choose a
sufficiently small θ > 0. Together with (3.35) for k ∈ {0, 1, 2}, we derive the
first-order bound∥∥∂kt (E(t), H(t)

)
‖2H1

x
+

∫ t

0

∥∥∂kt (E(s), H(s))
∥∥2

H1
x

ds (3.48)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

4) Estimate in H2
x. While the bound of H in H1

x was entirely based on
the curl-div-estimates of Proposition 3.11, this is only partly possible in H2

x or
H3
x since normal derivatives violate the boundary conditions. We thus have to

employ the curl-div strategy of step 3) also for H. Let k ∈ {0, 1}.
a) We first control tangential space-time derivatives of H in H1

x by means of
Proposition 3.11, which yields

‖v‖H1
x
≤ c
(
‖v‖H(curl) + ‖ div(µ̂kv)‖L2

x
+ ‖ trno(µ̂kv)‖H1/2(Γ)

)
(3.49)

for v = ∂τ∂
k
t ϑH. The curl-term appears in the first equation in (3.41) with

|α| = 1. From equations (3.9), (3.6) and (3.11) we further deduce

trno

(
µ̂kv

)
= [trno, ∂τ ](∂kt ϑH)− trno

(
∂τ µ̂k ∂

k
t (ϑH)

)
,

div
(
µ̂kv

)
= ∂τ ([div, ϑ]µ̂k∂

k
tH)− [∂τ , div](µ̂k∂

k
t (ϑH))− div(∂τ µ̂k ∂

k
t (ϑH)).

The commutator [∂τ ,div] is of order one and the others are of order zero. By
means of (3.16), we then estimate

‖ div
(
µ̂k∂τ∂

k
t (ϑH(t))

)
‖L2

x
≤ c‖∂ktH(t)‖H1

x
,

‖ curl
(
∂τ∂

k
t ϑH(t)

)
‖L2

x
≤ c
(
‖∂k+1

t E(t)‖H1
x

+ ‖∂kt (E(t), H(t))‖H1
x
+z(t)

)
,

‖trno

(
µ̂k∂τ∂

k
t (ϑH(t))

)
‖H1/2(Γ) ≤ c‖∂

k
tH(t)‖H1

x
. (3.50)
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Since k + 1 ≤ 2, inequalities (3.48), (3.49) and (3.50) now imply∥∥∂τ∂kt (ϑH(t))
∥∥2

H1
x

+

∫ t

0

∥∥∂τ∂kt (ϑH(s))
∥∥2

H1
x

ds (3.51)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

b) To treat ∂ν∂ktH in H1
x, we first solve in the first equation of (3.41) with

α = 0 for the tangential component ∂ν(∂kt ϑH(t))τ using (3.31). It follows

‖∂ν∂kt (ϑH(t))τ‖H1
x
≤c
[
‖∂τ∂kt (ϑH(t))‖H1

x
+‖∂kt (E(t), H(t))‖H1

x
+‖∂k+1

t E(t)‖H1
x

]
.

Formulas (3.48) and (3.51) now allow us to bound the tangential component by∥∥∂ν∂kt (ϑH(t))τ
∥∥2

H1
x

+

∫ t

0

∥∥∂ν∂kt (ϑH(s))τ
∥∥2

H1
x

ds (3.52)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

As to the normal component, we apply identity (3.32) to the divergence equa-
tion (3.38) with α = 0 and ϑ instead of χ. The H1

x-norm of ∂ν∂kt (ϑH(t))ν is
thus controlled by that of ∂kt ϑH(t), ∂τ∂kt (ϑH(t)), and ∂ν∂kt (ϑH(t))τ . Estimates
(3.48), (3.51), and (3.52) then yield∥∥∂ν∂kt (ϑH(t))ν

∥∥2

H1
x

+

∫ t

0

∥∥∂ν∂kt (ϑH(s))ν
∥∥2

H1
x

ds (3.53)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

Collecting the inequalities (3.51), (3.52), (3.53), (3.39) and (3.48), we arrive at
the H2

x-estimate for the fields H and ∂tH∥∥∂ktH(t)
∥∥2

H2
x

+

∫ t

0

∥∥∂ktH(s)
∥∥2

H2
x

ds (3.54)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

c) We now turn our attention to E. Let |α| = 2. The L2
x-norm of the tan-

gential derivative ∂ατ (ϑ∂kt E) is already controlled via inequalities (3.42), (3.48),
and (3.54) up to the term

θ

∫ t

0

∥∥∂kt E(s)
∥∥2

H2
x

ds.

The second equation in (3.41) with |α| = 1 and formula (3.31) lead to the
estimate∥∥∂ν[∂τ∂kt (ϑE(t))

]τ∥∥
L2
x
≤ c
(
‖∂2

τ∂
k
t (ϑE(t))‖L2

x
+ ‖∂kt (E(t),H(t))‖H1

x

+ ‖∂k+1
t E(t)‖H1

x
+ z(t)

)
.

Combined with the tangential bound and the H1
x-result (3.48), we obtain∥∥∂ν(∂τ∂kt (ϑE(t)

)τ∥∥2

L2
x

+
∥∥∂ατ ∂kt (ϑE(t))

∥∥2

L2
x
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+

∫ t

0

(∥∥∂ν(∂τ∂kt (ϑE(s))
)τ∥∥2

L2 +
∥∥∂ατ ∂kt (ϑE(s))

∥∥2

L2
x

)
ds (3.55)

≤ c(z(0) + e(t) + z2(t)) + θ

∫ t

0
‖∂kt E(s)‖2H2

x
ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.

d) For the normal component and k = 0, we look at the divergence relation
(3.45) with |α| = 1. As in (3.46), we deduce from (3.34) the estimate∥∥∂ν(∂τ (ϑE(t))

)
ν

∥∥2

L2
x

+

∫ t

0

∥∥∂ν(∂τ (ϑE(s))
)
ν

∥∥2

L2
x

ds (3.56)

≤ c(z(0) + e(t) + z2(t)) + θ

∫ t

0
‖E(s)‖2H2

x
ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.

The two above inqualities imply∥∥∂τ (ϑE(t))
∥∥2

H1
x

+

∫ t

0

∥∥∂τ (ϑE(s))
∥∥2

H1
x

ds (3.57)

≤ c
(
z(0) + e(t) + z2(t)

)
+ θ

∫ t

0
‖E(s)‖2H2

x
ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.

To treat the case k = 1, we start from the divergence equation (3.44) with
|α| = 1 and use formula (3.32). Employing also estimates (3.55), (3.57) and
(3.16), we get∥∥∂ν(∂τ (ϑ∂tE(t))

)
ν

∥∥2

L2
x

+

∫ t

0

∥∥∂ν(∂τ (ϑ∂tE(s))
)
ν

∥∥2

L2
x

ds (3.58)

≤ c(z(0) + e(t) + z2(t)) + θ

∫ t

0

(
‖E(s)‖2H2

x
+ ‖∂tE(s)‖2H2

x

)
ds

+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.

Together with inequality (3.55), this relation leads to

‖∂τ∂t(ϑE(t))‖2H1
x

+

∫ t

0
‖∂τ∂t(ϑE(s))‖2H1

x
ds (3.59)

≤ c(z(0) + e(t) + z2(t)) + θ

∫ t

0

(
‖E(s)‖2H2

x
+ ‖∂tE(s)‖2H2

x

)
ds

+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.

e) It remains to control the term ∂2
ν(∂kt ϑE). We first replace the derivative ∂ατ

by ∂ν in system (3.41). The resulting second equation, the curl-formula (3.31)
and estimates (3.16) imply∥∥∂ν(∂ν∂kt (ϑE(t))

)τ‖L2
x
≤c
[∥∥∂τ∂ν∂kt (ϑE(t))

∥∥
L2
x
+max

j≤2

∥∥∂jt (E(t), H(t))
∥∥
H1
x
+z(t)

]
.

The right-hand side can be estimated via inequalities (3.48) and (3.59).
For the normal component, we employ the modifications of the diver-

gence relations (3.45) and (3.44) with ∂ν instead of ∂ατ . We then estimate
∂ν
(
∂ν∂

k
t (ϑE(t))

)
ν
for k ∈ {0, 1} as in inequalities (3.56) and (3.58). Here and



3.4. Time regularity controls space regularity 77

in (3.40), (3.57) and (3.59), we take a small θ > 0 to absorb the H2-norms
of ∂kt E on the right-hand side. Using also (3.54) for the magnetic field, for
k ∈ {0, 1} we derive the desired bound in H2

x∥∥∂kt (E(t), H(t))
∥∥2

H2
x

+

∫ t

0

∥∥∂kt (E(s), H(s))‖2H2
x

ds (3.60)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

5) Estimate in H3
x. Since the reasoning is similar to step 4), we will omit

some details here. Let k = 0.
a) We again begin with the magnetic field H. We first look at the tangential

derivative ∂ατ (ϑE) with |α| = 2, where we proceed as in (3.51) using Proposi-
tion 3.11. For ξ, ζ ∈ {ν, τ1, τ2}, differentiating the divergence relation (3.6) we
obtain

div
(
µ(H)∂ξ∂ζ(ϑH)

)
= ∂ξ∂ζ([div, ϑ]µ(H)H)− [∂ξ∂ζ ,div](µ(H)ϑH)

− div(∂ζµ(H) ∂ξ(ϑH))− div(∂ξµ(H) ∂ζ(ϑH))

− div(∂ξ∂ζµ(H)ϑH).

Similary, the magnetic boundary condition in (3.6) yields

trno

(
µ(H)∂ατ (ϑH)

)
= [trno, ∂

α
τ ](µ(H)ϑH) + trno

∑
0≤β<α

(
α

β

)
∂α−βτ µ(H) ∂βτ (ϑH).

Employing (3.16), we deduce the estimates

‖ curl ∂ατ (ϑH(t))‖L2
x
≤ c
(
‖∂tE(t)‖H2

x
+ ‖(E(t), H(t))‖H2

x
+ z(t)

)
,

‖div
(
µ(H(t))v

)
‖L2

x
≤ c‖H(t)‖H2

x
,

‖ trno

(
µ(H(t))v

)
‖H1/2(Γ) ≤ c‖H(t)‖H2

x

from (3.41) and the above formulas. The second-order bound (3.60) and Propo-
sition 3.11 thus imply∥∥∂ατ (ϑH(t))

∥∥2

H1
x

+

∫ t

0
‖∂ατ (ϑH(s))‖2H1

x
ds (3.61)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

To include one normal derivative, we first use (3.41) with |α| = 1 and the
curl-formula (3.31). We can then bound the H1

x-norm of ∂ν(∂τ (ϑH(t)))τ by

‖∂2
τ (ϑH(t))‖H1

x
+ max

j≤1
‖∂jt (E(t), H(t))

∥∥
H2
x

+ z(t).

The normal component is treated as in (3.53), based on the divergence relation
(3.38) with |α| = 1, χ replaced by ϑ, and ∂αx by ∂τ . By means of (3.32) and
(3.16), the H1

x-norm of the function ∂ν(∂τ (ϑH(t)))ν is thus controlled by that
of ∂ν(∂τ (ϑH(t)))τ and ∂2

τ (ϑH(t)) plus lower order terms. Combining these
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inequalities with (3.60) and (3.61), we infer∥∥∂ν∂τ (ϑH(t))
∥∥2

H1
x

+

∫ t

0
‖∂ν∂τ (ϑH(s))‖2H1

x
ds

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

(3.62)

In this reasoning we can replace ∂τ by ∂ν , arriving at∥∥∂2
ν(ϑH(t))

∥∥2

H1
x

+

∫ t

0
‖∂2

ν(ϑH(s))‖2H1
x

ds (3.63)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

Together with (3.39) and (3.60), the estimates (3.61), (3.62) and (3.63) lead to

‖H(t)‖2H3
x

+

∫ t

0
‖H(s)‖2H3

x
ds (3.64)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

b) We finally tackle E in H3
x. The third-order tangential derivatives ∂ατ (ϑE)

were already treated in estimate (3.42) with k = 0, where the lower order-terms
on the right-hand side are now dominated by (3.60) and (3.64). Let |β| = 2. The
second equation in (3.41) with |α| = 2 and the curl-formula (3.31) allow us to
bound ∂ν(∂βτ (ϑE))τ in the same fashion. The normal component ∂ν(∂βτ (ϑE))ν
can also be estimated via equations (3.45) and (3.34) as in (3.46). We thus
arrive at∥∥∂βτ (ϑE(t))

∥∥2

H1
x

+

∫ t

0

∥∥∂βτ (ϑE(s))
∥∥2

H1
x

ds (3.65)

≤ c
(
z(0) + e(t) + z2(t)

)
+ θ

∫ t

0

∥∥E(s)
∥∥2

H3
x

ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.

We replace the tangential derivative ∂ατ by ∂ν∂τ in system (3.41). The second
equation therein and formula (3.31) provide control of the tangential component
∂ν(∂ν∂τ (ϑE))τ in L2

x via inequalities (3.65) and (3.60). The related normal
component can then be handled through the formula (3.34) and the divergence
identity (3.45) with ∂ν∂τ instead of ∂ατ . In this way we show the inequality∥∥∂τ (ϑE(t))

∥∥2

H2
x

+

∫ t

0

∥∥∂τ (ϑE(s))
∥∥2

H2
x

ds

≤ c
(
z(0) + e(t) + z2(t)

)
+ θ

∫ t

0

∥∥E(s)
∥∥2

H3
x

ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.

The remaining term ∂3
ν(ϑE) is managed analogously, resulting in∥∥ϑE(t)

∥∥2

H3
x

+

∫ t

0

∥∥ϑE(s)
∥∥2

H3
x

ds

≤ c
(
z(0) + e(t) + z2(t)

)
+ θ

∫ t

0

∥∥E(s)
∥∥2

H3
x

ds+ c(θ)

∫ t

0

(
e(s) + z3/2(s)

)
ds.
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Fixing a sufficiently small number θ > 0, the above inequalities and the interior
estimate (3.40) combined with (3.48) and (3.60) lead to the bound∥∥E(t)

∥∥2

H3
x

+

∫ t

0

∥∥E(s)
∥∥2

H3
x

ds ≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

The above equation and (3.64) now furnish our last result∥∥(E(t), H(t))
∥∥2

H3
x

+

∫ t

0

∥∥(E(s), H(s))
∥∥3

H3
x

ds (3.66)

≤ c
(
z(0) + e(t) + z2(t)

)
+ c

∫ t

0

(
e(s) + z3/2(s)

)
ds.

Proposition 3.17 now follows from formulas (3.48), (3.60) and (3.66). �
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