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CHAPTER 1

Introduction and local wellposedness on R?

In this section we develop a local wellposedness theory for the quasilinear
Maxwell equations on R3. Our approach is based on energy methods and a
fixed-point argument, which make use of the linear system with time-depending
coefficients. One has to work in Sobolev spaces H® with s > % in this context,
where we take s = 3 for simplicity. Actually we treat general symmetric hy-
perbolic systems on R3. In the first subsection we introduce Maxwell equations
and discuss some facts used throughout these notes. We then investigate the
linear case, first in L? and then in H3, also establishing the finite speed of prop-
agation. Our main tools are energy estimates, duality arguments for existence
in L?, approximation by mollifiers for regularity and uniqueness, and finally a
transformation from L? to H3. The non-linear problem is solved by means of
fixed-point arguments going back to Kato [30] at least, where the derivation
of blow-up conditions in W and the continuous dependence of data in H3
require significant additional efforts. Finally, for the isotropic Maxwell system,
we show the preservation of energy and construct a blow-up example in H!.

The wellposedness results on R? are due to Kato [31], but our proof differs
from Kato’s and instead uses (well known) energy methods from the theory of
symmetric hyperbolic PDE, see [5], [7], [11], [36], for instance. The problem on
domains is treated also via energy methods in Chapter 2, and so core features
of these arguments can first be presented in a simpler situation on R3.

1.1. The Maxwell system

The Maxwell equations relate the electric field E(t,z) € R3, the (electric)
displacement field D(t,z) € R3, the magnetic field B(t,z) € R? and the magne-
tizing field H(t,z) € R3 via the Maxwell-Ampére and Maxwell-Faraday laws

0¢D = curl H — J,, 0¢B = —curl E, t>0, z€q, (1.1)

where G C R? is open and J.(t,z) € R? is the current density. (See e.g. [29]
for the background in physics.) If G’ # R3 we have to add boundary conditions
to (1.1) as discussed in Chapter 2. We use the standard differential expressions
0 —83 82 Ul
curlu = Vxu=| 03 0 =01 ||lu], divu= V-u=01ui+0us+03us,
-0y O1 0 us
where the derivatives are interpreted in a weak sense if needed (see Section 1.2).
Since div curl = 0, solutions to (1.1) fulfill Gauf’ laws

pe(t) == div D(t) = div D(0) — /Ot div Je(s)ds,  divB(t) =divB(0), (1.2)
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1.1. The Maxwell system 2

for t > 0. The electric charge density p. is thus determined by the initial charge
and the current density. As there are no magnetic charges in physics, one often
requires div B(0) = 0.

To complete the Maxwell system (1.1), we have to connect the fields via
material laws. They involve the polarization P = D—egFE and the magnetization
M = B—pugH which describe the material response to the fields E and B. Below
we set 9 = po = 1 for simplicity (thus destroying physical units). In these notes
we use instantaneous constitutive relations, namely

(D,B) =0(z,E,H) = 0(x,u) for regular 6:G x R® — RS, (1.3)

We choose u = (F, H) as state because this fits best to energy estimates. Other
choices are possible since transformations like 6(x,-) are typically invertible.
Our main hypothesis will be that 9,0(z,u) is symmetric and ag > nl for some
number n > 0. Finally, the current is modelled as the sum

Je=0(z,E,H)E + Jy (1.4)

of a given external current density Jo : R>g x G — R3 and a current induced
via Ohm’s law for a (possibly state-depending) conductivity o : G x RS — R3*3,

ExaMPLE 1.1. A basic example in nonlinear optics is the Kerr law
D= xi(x)E+xs3(«)|E*E,  H=B,

for bounded functions x; : G — R with xi(x) > 2n > 0 for all z, see [2], [23] and
also Example 1.21. It is isotropic; i.e., D(t, z) and E(t,x) are parallel. The Kerr
law satisfies our assumption ag = aj > nI for small E (and for all E if y3 > 0).
The latter also holds for the more general laws D = x.(2)E + B.(z,|E|?)E and
H = xm(2)B + B (z,|B*)B for 3 x 3 matrices x; = XjT > 2nl and smooth
scalar §; with 3;(0) = 0. O

In physics material laws often also contain a time retardation, see 2], [9] or
[23]. Here we stick to the instantaneous case which stays within the PDE frame-
work. (But we expect that we can treat the Maxwell system with retardation
by variants of our methods.)

It is often convenient to rewrite (1.1) with (1.3) and (1.4) as a quasilinear
symmetric hyperbolic system. To this end, we first introduce the matrices

00 O 0 01 0 -1 0
S1=10 0 =1, S={0 0 0], S3=1[|1 0 O satisfying
01 0 -1 0 0 0 0 O

curl = 5101 + S20, + S303, axb= (a15’1 + a9S9 + a353)b
for vectors a,b € R3. We then define 9y = 9,

A = (é}] —(fj), ap(u) = 8,0(-,u), d= <g) f= <_6]0> (1.5)

for j € {1,2,3}. Note that the matrices Aj® are symmetric.
Then the Maxwell system (1.1) with material laws (1.3) and (1.4) becomes
3
L(u)u == ap(u)du + Z A5°05u + d(u)u = f. (1.6)
j=1
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Our strategy to solve this problem goes (at least) back to Kato [30]. One freezes
a function v from a suitable space £ in the nonlinearities, setting Ay = ag(v)
and D = d(v). One next solves the resulting non-autonomous linear problem
L(v)u = Z?:o A;0ju+ Du = f in the space £. For small times (0,7") one finds
a fixed point of the map v — u which then solves (1.6) and (1.1). The first linear
step is more difficult; here it is crucial to control very well how the constants in
the estimates depend on the coefficients. We carry out this program for G = R3
in the following sections.

1.2. The linear problem on R3 in L?

Let J = (0,T). We solve the linear problem in the space C(J, L*(R3,RY)) =
C(J, L2) for coefficients and data subject to the assumptions

A=Al e WX =Whe(J x R, R%Y), j€{0,1,2,3}, Ag=A] >nl>0,
De Ly =L®J xR R, woe L, felLi,=L*JxRR. (1.7)

We often omit range spaces as R® in the notation. We use the subscript ¢ to
indicate a function space over t € J or other time intervals, and x for a space
over € R (or over x € U C R™). Compared to (1.6) we allow for D and f
with non-zero ‘magnetic’ components, as needed in our analysis. We also deal
with general symmetric (¢, z)-depending coefficients A;, Ay and As, and thus
with linear symmetric hyperbolic systems. Those occur in many applications,
see [7], |30] or [36]; and our reasoning would not differ much if we restricted
to A; = A;O. Moreover, when treating the Maxwell system on domains by
localization arguments, one obtains z-depending coefficients. It is useful to see
them first in an easier case.
Assuming (1.7), we look for a solution u € C(J, L2) of the system

3
Lu=Y Aj0u+Du=f t>0,  u(0)=u, (1.8)
§=0
with dy = 0;. Here the derivatives are understood in a weak sense.

To explain this, we assume that the reader is familiar with Sobolev spaces
WHP(U) = W*P for an open subset U of R™, k € Ny, and p € [1,00]. (See [1]
or [8], for instance.) We mostly work with real scalars, endow W*? with the
(complete) norm Hsz,p = 2 0<a|<k |0%v||5 (obvious modification for p = o0),
and write H* := W*2 (which is a Hilbert space), LP = W and ||v||, = ||v|o,-
By Wé‘:’p(U) we denote the closure of test functions C°(U) in W*»(U). If U
is compact and C* (or Lipschitz if k = 1), say, then Wé“ " is the closed subspace
in W"P of functions whose (weak) derivatives of order up to k — 1 have trace 0.
One can check that WP (R™) = Wh»(R™).

Let H~*(U) be the dual space HE(U)*, where we restrict ourselves to p = 2
for simplicity. For ¢ € L2(U), j € {1,...,m} and v € H}(U), we define the
weak derivative d;¢ € H™H(U) by setting

(0j9)(v) = (v, D)3y = — (00, 0) 2.
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(The brackets (-,-)x designate the duality pairing between a Banach space X
and its dual X*.) Since |(9;v, )| < [[v]l12 |¢]l2, the linear map 8; : L?(U) —
H~Y(U) is bounded. Iteratively, one obtains bounded maps 9; : H~*(U) —
HF=1(U), and analogously 8% : H~*(U) — H~*1°l(U) for multi-indices o €
Ng* and k£ € Ny. The definitions imply that these derivatives commute.

For a € W1°(U) and ¢ € H~1(U), we next define the map ap € H~1(U) by

(ag)(v) = (v,ap)py = (av, )y, v € HA(D).

Because of ||av|i2 S [lall1,00 [[v]/1,2, We see as above that the multiplication

~

operator M, : ¢ — ayp is bounded on H~1(U). (Here and below A <, B stands
for A < ¢B for a generic constant ¢ = ¢(«) which is non-decreasing in each
component of v € R%.) These facts easily extend to R!-valued functions.

We infer that Lu € "Ht_,; if ue L7,. If Lu= f is contained in L?

7 »» We obtain
K

3
Ou=Ag'f =Y A A;0u— Ay Du € LIH;' =LA(JH ), (1.9)
j=1
and so u belongs to H}H; ! < C(J,H;'). Accordingly, the initial condition in
(1.8) is understood in H, .

We will first show the basic energy (or apriori) estimate. Here we use the
temporal weights e_(t) :== e 7 for v > 0 and ¢ € J (or ¢ € R) and the weighted
spaces L?YH'; of functions with (finite) norm

ol ams = lle—yol iz

On J, we have the equivalence HU”L%HQ < ol pagr < e7T||vHL%H§. Taking large
~ in these norms, we can produce small constants in front of the contribution
of f in the inequality below. This fact will be used to absorb error terms by the
left-hand side, for instance. The estimate and the precise form of the constants
is also crucial for the nonlinear problem. We write div A = Z?:o 0;A;.

LEMMA 1.2. Assume that (1.7) is true and u € H'(J x R3l solves (1.8). Let
C:=1divA—D, v >~)(L) = max{1,4n7||C|lw}, and t € J. We then obtain
Bl 00 22) + BT u®lZz < H1A0O) o uoliZz + 251 222

PROOF. Set v = e_yu and g = e_, f. We have yAgv + Lv = g. Using the
symmetry of A;, we derive

3
(g,v) = y(Agv,v) + Z(Ajajv,v> + (Dv,v)
j=0

3 t
1
= ~v(Agv,v) + = Z (/ 0;(Ajv-v)deds — <(9jAjv,v)) + (Dv,v),
2 =0 0 R3
where we drop the subscript L2((0,t), L2) of the brackets and denote the scalar
product in R® by a dot. Integration yields

7{Aov, v) + 5(Ao(t)v(t), v(t)) 12 = 5(A0(0)(0),v(0)) 12 + (Cv,v) + (g, v).
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We now replace v = e_u, g = e_~f as well as u(0) = up, and use (1.7) and
IIC|oo < vyn/4. Tt follows
yllull 2 2 +ge™ " lu(®) 17,
< 3140 (0) oo lluol135 + 1Cloo l1ulF2 12 + Y22 llull 2 21 fll 2.2
< 51 40(0) oo lluollZs + (3 + B llullzz 2 + 55 1/ 172 12 -

which implies the assertion. O

Below we use the above estimate for

v > q0(r,n) = max{1,12r/n} > v(L) (1.10)

where ||0;A;|loc, || D||os < r. For v = 0 its proof yields the energy equality

t
Ao(t)u(t)u(t)de = | Ap(0)up-up dr+2 // (C(s)u(s)+[f(s))u(s)dzds.
3 3
. oo (1.11)
In the term with C = 2 divA — D we have damping effects (if D = DT Z 0)
and extra errors terms coming from the ¢- or z-dependence of A;.

Lemma 1.2 yields uniqueness of H!-solutions to (1.8). However, we need
uniqueness (and the energy estimate) for solutions in C'(J, L2). This fundamen-
tal gap can be closed by a crucial regularization argument based on mollifiers.
We recall the definition and basic properties of this core tools, see e.g. [8].

R3

m

We set g.(z) = e ™g(e1z) for any function g on R™, ¢ > 0, and x € R™.
Take 0 < p € C2°(R™) with [ pdaz = 1, support supp p in the closed unit ball
B(0,1), and p(z) = p(—=z) for x € R™. Note that |pc|]1 = 1. For e > 0 and
v € LL (R™), we define the mollifiers R. by

loc

Reow) = perv) = [ pelo—po)dy, e R
One can check that Rov € C®(R™), supp R.v C suppv + B(0,¢), and
d“R.v = R.0% for v € W!*P(R™). Young’s inequality for convolutions yields
|Rev|lkp < ||v]|kyp for p € [1,00] and k € Ny. Using this estimate, one derives
that Rov — v in WFP(R™) for v € WFP(R™) as ¢ — 0 if p < oo, since this
limit is true for test functions v. Differentiating p.(z —y) in x, one also obtains
the smoothing estimate || Rev||xp Sek [|v]p-

Finally, for ¢ € H7¥(R™), v € H¥(R™) and k € N, we set

(RESO)(U) = <1)7R8‘10>H’“ = <R€Ua(p>H’“ :

This definition is consistent with the symmetry R* = R. on L?(R™) which
follows from the symmetry of p and Fubini’s theorem. By means of its properties
in H*(R™), one can show that R. is contractive on % ~/(R™) and that it maps
this space into H¥(R™) for all [ € N. Moreover, it commutes with 0%.

Hence, the commutator [R., M,] := R.M, — M,R. tends to 0 strongly in L2 if
a € LY. It even gains a derivative if a € Wa "°° which is crucial for our analysis.
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PROPOSITION 1.3. Let a€ WL (R™), uwe L2(R™), j€{1,...,m}, and e>0.
Set C.u = R.(a0ju) — adj(R-u). Then there is a constant ¢ = c¢(p) such that

|Czull2 < cllalli0o [|ul2 and  Cou—0 inL2: as ¢ —0.
PROOF. Let v € H!(R™). Using the above indicated facts, we compute
(v, Ceu)qyr = (aRov, Oju)yr — (av, R.0juygn = (0j(Re(av) — aRev), u) 2

We set Clv = 9j(R.(av) — aR.v) and R! for the convolution with (195p])e. For
a.e. ¢ € R™, dlﬁerentlatlon and |z — y| < ¢ yield

Cov(x) :/ e (9ip) (e (& — y)) e~ (aly) —a(x))v(y) dy — Dja(z) Rev (),
B(z,e)

|Clv(z)] < (|RLv(2)] + [Rev(2)]).

(Recall that W1°°(R™) is isomorphic to the space of bounded Lipschitz func-
tions [8].) Young’s inequality now implies the first assertion. The second one is
true for u in the dense subspace H!(R™) and thus on L?(R™) by the uniform
estimate. O

With this tool we can extend Lemma 1.2 to all solutions of (1.8) in C(J, L2).

PROPOSITION 1.4. Let (1.7) hold and u € C(J,L2) solve (1.8). Then the
statement of Lemma 1.2 and (1.11) are also valid for uw. Hence, (1.8) has at
most one solution in C(J,L32).

PROOF. We note that R.u belongs to C(J,H¥) for all ¢ > 0 and k € N.
Moreover, R.u tends to u in C(J,L2) as ¢ — 0 since u(J) is compact and
Re — I strongly in L2. As ||R.f(t)|l2 < || f(#)||2, dominated convergence also
yields Rof — f in L2 . Using Lu = f and (1.9), we compute

3
LR.u= R.f+[D,R.] ZAJ,R 10ju + [Ag, Re]Ou (1.12)

3
= Ref + [D, ReJu + [Ao, RJAG ' (f — Du) +) _([4;, R] — [Ao, R Ay A;) 0u
j=1

Proposition 1.3 shows that the right-hand side belongs to ng with uniform
bounds. Hence, R.u is also contained H;L2 by (1.9). Arguing as above, we
further see that the commutator terms tend to 0 in L?@ and thus in L%Li.
Lemma 1.2 and (1.11) for R.u now lead to the first assertion letting ¢ — 0. The
second one follows from linearity. O

Combining the energy estimate with a clever duality argument, one can also
deduce the existence of a solution.

THEOREM 1.5. Let (1.7) be true. Then there is a unique map u in C(J, L2)
solving (1.8). It satisfies the estimate in Lemma 1.2 and (1.11).

PROOF. 1) We need the (formal) adjoint L° = — 3°_ A;0; + D° of L with
D° = D" —divA. Let V = {v € H'(J x R RO |v(T) = 0}, v € V, and
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L°v = h. We introduce 9(t) = v(T —t) and f(t) = h(T —t) for t € J and
the operator L with coefficients Ag(t) = Ao(T —t), A;(t) = —A;(T —t) for
j €{1,2,3} and D(t) = D°(T —t). Note that Lo = f and 5(0) = 0. Applied at
time T — t to L, © and y = (7, n) from (1.10), Lemma 1.2 yields the estimate

9 ~ 5 2627(T—t) T—t L )
o)1 = 1o =01 < = [ e e - ) j3ar
eQ'yT T
< —5 | lh(s)l3ds,
e Ji
lollzz, < VT IL0l s, o= deeT. (1.13)

In particular, L° : V. — L2(J x R3)% is injective. We can thus define the
functional

b LV SR Lo(L0) = (0, )z + (0(0), Ao(O)uo)yz.
The Cauchy—Schwarz inequality and estimate (1.13) imply
6(LW)] < (IF1122, + 1 A6(O)uoll2) #(VT +1) 1213 .

By the Hahn-Banach theorem, ¢y has an extension ¢ in (L%x)* which can be
represented by a function u € L?(J, L2) via

(0. £) 13+ (000), Ao(O)uo) 2 = £(L°0) = (Lo,u) (1.14)
3 T
= (v, Du) —JE%/O R38j(Ajv)-udxdt (Vv eV).

2) To evaluate (1.14), we first take v € H(J x R3). The definition of weak
derivatives then leads to <v,f>L% = <v,Lu>H(1J; ie, Lu = f in Ht_; Hence,
xT

u belongs to H{ ;! because of (1.9) and f € L7,. For v € V, we can now

integrate by parts the summand in (1.14) with j = 0 in H;!; the others are
treated as before. As v(T') = 0, it follows

(0, F)pz, + (0(0), Ao(0)uo) 2 = (v, L)y + (Ao(0)0(0), u(0)) 1z

Since Ap(0) is symmetric and Lu = f, we have also shown that u(0) = ug.

3) We next use (1.12) for wy m = Ry/pu — Ry/mu. As in the proof of Propo-
sition 1.4, Proposition 1.3 implies that w,, ,, is contained in H%x and satisfes
Lwp,m — 0in L7, and wy,,, (0) = 0in L2 as n,m — 00. So (Ry,u) is a Cauchy
sequence in C(J,L2) by Lemma 1.2, and it converges to u in Lix. Thus, u be-
longs to C(J, L2). The other assertions were proven in Proposition 1.4. O

In the time-independent Maxwell case (Ag = Ag(x) and A; = Af°) one can
show a similar result if Ay is only bounded and positive definite (even with
boundary conditions), see e.g. Theorem 5.2.5 in [4] or §7.8 in [23]. In the non-
autonomous case there are blow-up solutions even for the wave equation on
G = R with Hoélder continuous and z-independent coefficients, as shown in [12].
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As indicated in Section 1.1 and described in the next example, the above
result can easily be applied to the linear Maxwell system

Oi(eF) =curlH — o E — Jy, O(uH) = —curl E, t>0, z € R, (1.15)

which is (1.1) on G = R? with the material laws D = e(t,z)E and B = pu(t,z)H.
We write Rp*" for the space of real n x n matrices M = MT >nl.

EXAMPLE 1.6. Let e, € Wh(J x R3,R3>*3) for some 1 > 0, 0 € L®(J X
R3, R3*3) By, Hy € L*(R3,R?) and Jy € L?(J x R3 R3). As in (1.5), we
set Ag = diag(e, ), A; = A° for j = {1,2,3}, D = diag(o + e, 0p), [ =
(=Jo,0), and ug = (Ep, Hp). Theorem 1.5 then yields a unique solution (E, H) €
C(J,L2) of (1.15) with E(0) = Ey and H(0) = Hp. It satisfies the energy
equality

1 1 1 1
le®)2 E@))13 + () H(t)II3 = 1£(0)2 EolI3 + [|1(0)2 Holl3
t
—// (2040 E+2Jo)-E + OyuH-H)dz ds. ¢
0 JR3

One of the key features of hyperbolic systems is the finite propagation speed
of their solutions. To see a simple example first, we look at the standard wave
equation 0?u = c20,,u on R for the wave speed ¢ > 0 equipped with the initial
conditions u(0) = up and dyu(0) = vg. (One can put this second-order equation
in the above first-order framework for the new state (0yu,dyu).) The solution
of this wave problem is given by d’Alembert’s formula

z+ct
u(t,z) = é(uo(x+ct)+uo(a:—ct))+2c/ vo(s) ds, t>0, xeR.
z—ct
Hence, the solution at (z,t¢) only depends on the initial data on [z — ct, x + ct];
for instance, u(t,z) = 0 if ug and vy vanish on [z — ct,z + ct]. Conversely, the
value of up and vy at y influences u at most for (¢,x) with |z — y| < ¢t; i.e., on
a triangle with vertex (y,0) and lateral sides of slope +c. In this sense, ¢ is the
speed of propagation.
We extend these observations to the system (1.8), assuming (1.7). In the
statement we use the backward ‘light’ cone

I(z0, R, K) = {(t,2) € R3o x R? | [z — 20| < R — Kt}.
It has the base B(zo, R) at t = 0 and the apex (£,z0). Set
ko = 11 Aull5 + 1425 + [|43]1 2%

with the operator norm for | - |5 on R6*6. Note that kg = v/3 in the Maxwell
example.

Below we see (for f = 0) that u vanishes on I'(xg, R, ko/n) if up = 0 on
B(zp, R). Hence, if two initial functions uy and @y coincide on B(zg, R) then
the corresponding solutions u and @ are equal on I'(xg, R, ko/n). In other words,
the values of uy outside B(xg, R) influence wu(t) only off I'(xg, R, ko/n), that is,
with maximal speed ko/n. Our proof is based on energy estimates with an
exponential weight, and the arguments are taken from §4.2.2 of [5].
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THEOREM 1.7. Let (1.7) be true. Assume that ug =0 on B(zo, R) and f =0
on T'(zg, R, ko/n) for some R >0 and xo € R3. Then the solution u € C(J, L)
of (1.8) also vanishes on I'(xo, R, ko/n).

PROOF. 1) Let §, R > 0 and 29 € R? be given. There is a function ¢ €
C>(R3) with |V4| < n/ko (for the euclidean norm) and

—204+nky L(R— |z —x0|) < th(x) < —3+nky (R~ |z —x0]), 2 €R3. (1.16)

We construct ¢ as in Theorem 6.1 of [51]. Take x(s) = —36 + nky (R — |s|)
for s € R. This function is Lipschitz with constant n/kg. The same is true for
the mollified map x. = R.x as Vxe = R-Vx. Also, x. tends uniformly to x as
€ — 0 since

Ixe(s) — x(s)] < /Relp(alT) Ix(s —71) = x(s)|dr < nk61€/Rp(0) o] do.

We fix a small ¢ > 0 such that y. satisfies (1.16) with s instead of |x — x|
and 5/3 instead of 2. Then ¢ (x) = x.((62 + | — x0|?)/?) does the job, where
do = /{705(377)71.

Set ¢(t,r) = (z) —t and u, = €™u for 7 > 0. Inequality (1.16) yields
P(z) < =0+t if v — x| > R — kot/n (e, (t,z) ¢ T'(xo, R, ko/n)), so that
e™ < e7™ < 1 off T'(zg, R, ko/n) and e™® is bounded on J x R3. We further
have Ve™ = 7Ve™ and 0,67 = —7e™®. As a result, u, is an element of
C(J, L%) and the right-hand side of

3
Lu, =e™f — T(Ao — Z Ajﬁjz/)) Uy
j=1

belongs to Lf’z. The matrix in parentheses is denoted by M.
2) For ¢ € RS we have M¢- € > (n— ko|V|)[€]* > 0. Set C = +divA—D
and k = [|C]|co- By Theorem 1.5, the function wu, satisfies the energy equality

1 1
140(t)2ur (t)[172 = [ 40(0)2ur (0) |72 + 2((C' = TM)ur +€™f,ur) 2 .

Using Cauchy—Schwarz, the above inequalities and Gronwall, we estimate
t
1Ol < 140l [l + 172y +Cr+1) [ (o) ds.

le"®u(®)3s S lle"uol3s + o7 71125

The right-hand side tends to 0 as 7 — oo since up and f vanish on I'(xg, R, ko/n)
and e™® — 0 uniformly off I'(zq, R, ko/n). Hence, u(t) has to be 0 on {¢ >
0} = {¢ > t+ d}. By (1.16), this set includes points (t,z) with |z — zg| <
R—kon~1(t+36). Since § > 0 is arbitrary here, u equals 0 on I'(zg, R, ko/n). O

1.3. The linear problem on R? in #?

As noted in Section 1.1, to solve the nonlinear problem (1.6) we will set
Ay = ap(v) for functions v having the same regularity as the desired solution
u. Since Ag has to be Lipschitz in Theorem 1.5, the same must be true for v.
Working in H¥ spaces, we thus need solutions in L{H3 N th’OOH?C at least. We
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want to reduce the problem in H2 to that in L2 by means of a transformation.
(One could also perform the proof of Theorem 1.5 in H2 instead of L2, see e.g.
[7] or [11], which would require more work in our context.)

To this end, we define the square root A = (I — A)Y/2 = F~1(1 4 |¢]?)/2F
of the shifted Laplacian on L?(R3), where F is the Fourier transform. Using
standard properties of F, one can check that A commutes with derivatives and
that it can be extended, respectively restricted, to isomorphisms Hf; — 7—[’;_1 for
k € Z with inverse given by A=! = (I — A)~1/2 = F~1(1 +|£|?)~/2F. Observe
that A = (I—A)A~! and that A~! is a convolution operator with positive kernel,
see Proposition 6.1.5 in [25]. Hence, A leaves invariant real-valued functions.

Our analysis relies on a commutator estimate for A% and M, : ¢ + ap which
gains a derivative. In Lemma A2 in [30] it is shown that

ITA%, Mol B @s), 2@y S Vallregs)- (1.17)
Here the space dimension 3 is crucial; on R™ one obtains e.g. an analogous
bound for [AF M,] : HF"! — L2 with & > 2 + 1. (Noninteger k are also
allowed here.)
Guided by (1.17) and (1.7), we introduce the space

FHI) = FHT) = {A e Whe(J x R:,R®®) | v, , A e LEHET'}, keN,

for the coefficients, endowed with its natural norm. We will usually take k = 3.
We use the same notation for vector- or scalar-valued functions of the same
regularity. The subscript sym will refer to symmetric matrices and n to those
with A = AT > nl with > 0. We state the hypotheses of the present section:

Ao € F3(T), A1, Ag Az e F2.(J), DeF(J), (1.18)

sym

ug € H2 =H3 R R®), fe 23J) =Z2Z3T) = L*(J,H3) nH (J, H2).
Set ”fH%g(J) = ||e_7f||i§7{% + ||e_78tfH%?H% for v > 0. We also use the spaces

HE = {ve L2(RY) | Vov e HETL), GM(J) = GM(T) = O(T, HoNCH (T, HEY)

with their natural norms. (Such spaces will also be considered on other time
intervals.) We state product and inversion rules which will be used throughout,
cf. [53]. Here one can replace R3 by all Lipschitz domains. In the proof and
also later on, we employ Sobolev embeddings such as H? — LP for p € [2, 0]
and H! — L4 for ¢ € [2,6] on (Lipschitz domains in) R3.

LEMMA 1.8. Let k > max{j, 2}.
a) For v € HE and w € Hj, we have the estimate

lowlizs S llollag 1wl -
Here one can replace HE by HE as well as Hi and HE by GI(J) and GI(J) (or
Fi(J)), or by Fi(J) and F*(J).
b) Also, if A € 7:15 for k € N, then A~ belongs to 7:{713 with norm bounded by
c(n, k) (L+ | All )1 A

HE
PROOF. a) For the first claim, by the product rule (and interpolative in-
equalities) we have to control 851185 “Pw for multi-indices 0 < B < a with
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|a] = j. Observe that 8511 c ”H];_w' and 8?_’810 € ’H‘f'. This product can be
estimated in L2 as needed if k — |3] > 2 or |3| > 2 since then v and w are
bounded, respectively. As k > 2, only the case |3| = 1 remains. Here 85 v and

P belong to H1 < L1 and thus the product to L2. The other variants are
proved similarly.
b) Observe that V2 A1 is a linear conbination of terms like

ATIWBAATL ATIWW2AATIV,AATY, ATV, AATIV, AATIV, A4

These terms clearly satisfy the asserted estimate, and the lower-order ones are
treated similarly. O

We look for a solution u € G3(J) of (1.8) assuming (1.18). The basic idea
is to solve a modified problem for w = A3w in C(J, L2). Since the inequality
(1. 17) only improves space regularlty, we first replace the equatlon Lu = f
by Lu = f = Ay L where L has the coefficients Ay = 1, A] = Ay 1A and
D= A;'D. We then obtain

3
Lw = A f+) [Aj, A)0ju + [D, A’]u,
j=1

3
Lw = AoA*f + )~ Ao[Aj, A*)0ju + Ao[D, A*Ju =: g(f, u). (1.19)

j=1
We now replace in g the unknown u by a given function v € C (J,H2). Theo-
rem 1.5 will give a solution w € C(J, L2) of Lw = g(f,v) with w(0) = A3ug.
The energy estimate from Lemma 1.2 (with a large ) then implies that
® : v — A73w is a strict contraction on Lgo’;’-li This fact will lead to the desired

regularity result. Let A be the maximum of HAk”B(H’ﬁ,LQ) and ”AikHB(LQ,H’“) for
k € {2,3}. It will be important in the fixed-point argument for the nonlinear
problem that the contant ¢y in (1.20) only depends on rg (and 1), but not on .

THEOREM 1.9. Let (1.18) be true. Then there is a unique u in C(J,H3) N
CY(J,H2) solving (1.8). Fort e J and v > y1(r,n) == max {yo(r,n), /c1}, see
(1.10), we have

ullZa 0,0 + ™27 (lu(®) 13 + 10ru(t)ll3)
Tz 0 T © U T 19U 302
< collluolidy + 17O 2e) + 2 I FlBaoy . (120
where [|430) g, 1D(0) s < 70, 143150y, 1Dl 75y < 7 for j € {0,1,2,3},
and co = co(ro,m) and c; = c1(r,n) are constants described in the proof.

PROOF. 1) Take v € C(J,H3) and v > ~o(r,n) from (1.10). Using
Lemma 1.8 and (1.17), we see that the square of the norm in L2 L2 of g(f,v) from

(1.19) is bounded by ¢; (|| f[13245 + [v][324,3) for a constant ¢} = ¢|(r,n). Theo-
"/ 17 Y x
rem 1.5 yields a solution w € C(J, L2) of Lw = g(f,v) and w(0) = ASug = wq

which satisfies

Pllwlzzzz + 3lwliers < colluolis + 25 (Hfll%gﬂg +ollZa)  (120)
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with ¢ = %QHAO(O)HOO. The map w also belongs to C'(J,H; ') because of
(1.9) and f € Z3(J). Set ®v = A 3w € G3(J). Let w satisty Lw = g(f,7)
and w(0) = wp for some v € C(J,H2). For w — w estimate (1.21) applies with
ug = 0 and f = 0 so that

)\\/c T

120 = B)llpzons = 1A (w — )| o < YA o — ] oo

Fixing a large v = v(r,n,T), we obtain a fixed point u of ® in L?Hi It actually
belongs to G3(.J) and satisfies u(0) = ug. Equation (1.19) implies that Lu = f.
Uniqueness of solutions was already shown in Proposition 1.4.

2) It remains to establish (1.20). We first insert u = v and w = A3u in (1.21)
and take v > max {’yo(r n), QA\F} Absorbing ||ul|? 12948 by the left-hand side,

we infer

/)\2
Blullzzrg + Fllullzers < colluollzs + 55 117290 (1.22)

If we estimated dyu in H2 by means of (1.9) and (1.22), we would obtain a
constant depending on r in front of the norm of ug. Instead we use that dyu €
C(J,H?2) satisfies

3
Latu == 8tf - 8,5Du - Z (9tAj8ju = h,
7=0

3
Oru(0) = Ag(0) 7 £(0) — Ao(0) Z 0)djuo =: vo.

Lemma 1.8 yields

1B I3z <110:fO)ll2z +e(r) (lu@) ez + 195u(®)]l52),
lvollaez < e(ro, M) (I (O)ll3z + lluollz)-

The commutator [M, A?] = [My, —A] : HL — L2 is bounded if a € W and
D%q € HL — L3. Starting from LO;u = h, as in (1.19) and (1.21) we thus
deduce

W0l + 31002

~ &1 02
< CO)\Q(HUOH%@ + Hf(O)Hg{g) + 35 (Hatfuigyg + ||U||igﬂg + ”3tu\|%gyg)
for constants ég = éo(ro,n) and é; = é1(r,n). Set co = 16A%n~1(c)+&) and ¢ =

82 max{c}, ¢1}. We add the above inequality to (1.22) and take v > ~1(r,n) =

max {7o(7,n), y/c1 }. Estimate (1.20) follows after some calculations. O

In the above result we control more space than time derivatives. Under
stronger assumptions on A;, D and f, one can obtain analogous estimates on
0?u in H! and 9Pu in L2 by differentiating (1.8) in time, see (2.27). We discuss
variants of the above theorem partly needed below.
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PROPOSITION 1.10. Let A; and D be as in Theorem 1.9, as well as ug € H?
and f € L*(J,H2). Then there is a unique solution u € C(J,H3) N C'(J, H})
of (1.8). Fort € J and~y >4 (r,n) = max {yo(r,n), ¢}, we have

’Y\\U\’%g((o,t),yg) + +e_27tHU(t)H?{g < Golluoll3s + % Hf”%g((o,t),ﬂg)
for constants ¢o = éo(ro,n) and ¢, = é(r,n). If O.f € L2(J,HL) we also obtain
YNOeullZs (0,070) + 2" 10cu(®) 3 < ollluollze + £ (O)30) + S 1Z2 0.
where ZF(J) = L2(J,HE) " HY(J, HEY) for k € N.

The result is shown as Theorem 1.9, replacing A3 by A? in its proof up to (1.22)
and A2 by A afterwards. For the second part one also uses that the commutator
[M,, A] is bounded on L2 by Proposition 4.1.A in [54] if a € Wa™.

REMARK 1.11. In Theorem 1.9 we have focused on the space H2 needed for
the quasilinear problem. Actually, one obtains a unique solution u € Gk(J ) of
(1.8) satisfying the analogue of (1.20) if ug € HE, f € Z*(J), A;, D € FF(J),
Aj = AjT, Aop >nl, and k € N\ {2}. For k = 2 one needs another assumption
stated below. This can be shown as for k = 3, one only has to take care of
estimates for products, inverse matrices and commutators.

Indeed, for k£ > 3 one can use the product and inversion results mentioned
above and the higher-order version of (1.17) in [30]. For k = 1 (thus for coef-
ficients in Wt{;oo) the needed product and inversion bounds are easy to check,

and we have just seen that [M,, A] is bounded on L2 if a € Wa™. For k = 2
the second-order derivatives of A; also have to belong to L{°L3. Then the com-
mutator [M,, A?] = [M,, —A] : HL — L2 is bounded, and the extra condition is
preserved by products and inverses.

Moreover, there is no problem to change the range space R% to R™. Also
other spatial domains R" can be treated analogously, though one has to modify
the assumptions on the coefficients in this case. Finally, invoking a bit more
harmonic analysis one can also work in fractional Sobolev spaces H; instead of
HE, see [31]. O

REMARK 1.12. In (1.18) we have required that the derivatives of the co-
efficients belong to H2. So local singularities are allowed to some extent,
but one enforces a certain decay at infinity which is an unnecessary restric-
tion. Actually, Theorem 1.9 remains valid if we replace the space .7:"3(J ) by
F3(J)=F3(J) + Wt?:fo, and H2 by H2 = H2 + W2, (They have the norm
of sums X +Y, namely ||z|| x+y = inf.—p4y ||| x +|y|ly.) To show this fact, we
note that [M4, A?] : #2 — H_ is bounded uniformly in ¢ if A € F3(.J) + Wt?:fo,
and so the same is true for

[Ma, A% = [Ma, AJA? + A[Ma, A?] : H2 — L2
(Recall the boundedness of [M,, A] on L2.) One can further show the appropri-
ate bounds for products and inversions involving F3(.J) +Wt%f° and H2+ W,

as well as C;?’(J ). The analogue of Theorem 1.9 can now be proven as before. ¢
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As a preparation for Theorem 1.19 on the wellposedness of the nonlinear
problem we show an approximation result for the coefficients.

LEMMA 1.13. Let ug € L2, f € L},, n € NU{oo}, j € {0,1,2,3},
A7 € F3(J) be symmetric with A} > nl, and D" € F3,(J). Assume that
||A§L||Wt{f° <r and HDn”L?f; <7, as well as A} — A and D" — D> in L,
asn — oo. Set L, = ), A70; + D". We have functions u, € C(J, L%) with
Lyuy, = f and u,(0) = ug. Then u, — uso in C(J,L2) as n — co.

PROOF. For the given data there are functions ug, in H3 and f,, in Z3(.J)

converging to ug and f in L2 and Lfl,, respectively, as m — oco. For these data

Theorem 1.9 provides solutions wy, ,, € g~3(J) of Lptpm = fm and up m(0) =
Uo,m. Fixing v = 7o(r,n) from Lemma 1.2 and (1.10), Proposition 1.4 now
shows

lun = tnmllgerz < ellun — wnmllizerz < e(lluo — uoumllzs + I1f — fm”%iz)’
with ¢ = ¢(r,n,T). The right-hand side tends to 0 as m — oo uniformly for
n € NU {oo}. It is thus enough to take ug € H3, f € Z3(J), and u,, € G3(J).
We then compute
3
L (tn = o) = Logtios — Lntice = » (A% — AT)Djtio + (D™ — D" tiog =: gp.
j=0

Since us € G3(T), as above Lemma 1.2 yields

l[un = vsollzgerz < (v, T) llgnllzeerz — 0, n — 00. u

1.4. The quasilinear problem on R?

In this section we treat the nonlinear system
U—ZCL] )Oju+d(u)yu = f, t>0, z€R3 u(0) = up, (1.23)

under the assumptlons

aj,d € C}(R* xRS, R%C), aj=a], ao>nlI, ne(0,1], (1.24)
Vr>0: sup max [|07a;(-,&)llree 107d(+ &)L < o0, j€{0,1,2,3},
le|<r 0<||<3

wp € H2, YT >0: fe Z3T) = 23(J) = LA(J, H)NH (J, H2), J=(0,T).

One can also treat coefficients only defined for (x,¢) € R3xU and an open subset
U C R, see Remark 1.20. This is already needed in the Kerr Example 1.1 if 3
is not non-negative. To simplify a bit, we focus on the case U = RS in (1.24).
We look for solutions u of (1.23) in C([0,Ty),H3) N CL([0,Ty),H2) for a
maximally chosen final time 7'y € (0, 00]. As indicated in the next section, solu-
tions may blow up and so T’y could be finite. The solutions will be constructed
in a fixed-point argument on the space GF~(J) = L®(J, HE) n whoo(J, #E1)
endowed with its natural norm, where k = 3. The overall strategy of this sec-
tion and many techniques are typical for quasilinear (or semilinear) evolution
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equations, though there are different (but related) approaches, see e.g. 5], |7],
or |28|.

We first state basic properties of substitution operators, which is remains valid
for Lipschitz domains instead of R? with the same proof. (Recall Remark 1.12
concerning F3 (J) and HZ,.) We set E, = L2°(J, H2) for a moment.

LEMMA 1.14. Let a be as in (1.24) and v > 0.

a) Let v € G3(J) with ||v]jc < 7. Then la()l g5 sy < w(r)(1 + Hv||é3(J)).

b) Let v,w € LFPHZ with norm < r. Then |la(v)—a(w)| g, < &(r)|lv—w|g, .
Here we can also replace L°H2 and E., by G*(J) and gg(J), respectively.

c) Let vg € H2 with |Jvg|lee < 7r0. Then ”a(UO)H?%go < ko(ro)(1 + ||v0||$_[%)

d) Let v, wo € H2 with norm <rq. Then lla(vo)—a(wo)l|22 < rKo(ro) Hvo—fw0||3{2 .

PRrROOF. We sketch the proof. (See §7.11in [51] or §2 in [52] for more details.)

a) Take o € N§ with 1 < |a| < 3 and a9 € {0,1}. The latter refers to
the time derivative. It is clear that the function |(0%a)(v)| is bounded by c¢(r)
for all 0 < |B] < 3 where 8 = (Bs,B¢) € N x N§. Note that 9%a(v) is a
linear combination of products of (8%a)(-,v) and j € {0,1,2,3} factors 8%v
with Bz +71 +---+v; = . Since v € W;;COO by Sobolev’s embedding, as in the
proof of Lemma 1.8 one can estimate 9%a(v) in L{L2 if j > 1 and in Ly, it
J =0, both by C(T)(l + HU|%3(J))

b) We start from the formula

1
a(v) —a(w) = /0 (Oca)(-, v+ s(w —v)) (w—v)ds = A(w — v).

Let s = v+ s(w — v). We then compute
1 1
V2(a(v) — a(w)) = /0 (8ea) (- ) V2 (w — v) ds + /0 V2(8ea)(- pa) (w — v) ds

1
+2/0 Va(96a) (-, 05) Vil — v) ds (1.25)

The factor e~ is put in front of V24 (w — v) on the right. We further have
vi(aﬂl)(" Ps) = (aiaga)(-, Ps) + (fiva?a)(w ©s)0zps + (35260('7 805)6:%905
+ (8?@)(, 908)[838(1037 8x§05]

Using Sobolev’s embedding, one can then bound the second term on the right-
hand side of (1.25) in L3°(/J, H2) by c(r)|lv—w||g,. The other terms are handeld
more easily. Parts ¢) and d) are treated similarly. 0

As the space for the fixed-point argument we will use
ER,T) = {v e G ()| lollgs sy < Ry 0(0) = ug.}

for suitable R > |lug|lys and T > 0. This set is non-empty as it contains
the constant function t — wv(t) = wg. It is crucial that E(R,T) is complete
for a metric involving only two derivatives, which can be shown by a standard
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application of the Banach-Alaoglu theorem. For this we recall that L{°L2 is
the dual space of L} L2, see Corollary 1.3.22 in [27]. (This is the reason to take
L* in time instead of C.)

LEMMA 1.15. The space E(R,T) is complete with the metric ||u — v|[peeps2.

PROOF. Let (u,) be Cauchy in £(R,T) with this metric. Then (u,) has a
limit v in C(J,H2). Take a € Nj with oy < 1 and 0 < |a| < 3. Applying
Banach—Alaoglu iteratively, we obtain a subsequence (also denoted by (uy))
such that 9%u, tends to a function v, weak* in L{°L2 which also satisfies
> lal<3 ||va\|%?oL% < R?. It remains to check that v, = d%u. To this end, take

¢ € H3(J x R?). We compute
(0%, u) = lim (9%, un) = lim (=1)1*N(p, 8%un) = (=1)1*(i2, va)
in the duality pairing L} L2 x L°L2. There thus exists 0%u = v,. O]
In the next lemma we perform the core fixed-point argument.
LEMMA 1.16. Let (1.24) hold and p* > ||u0\|$_[% + ||f(0)||3¢g + ||f||2z3(1)' Then

there is a radius R = R(p) > p given by (1.26), a time Ty = To(p) € (0,1] given
by (1.27), and a unique solution v € E(R,Ty) of (1.23).

PROOF. 1) Lemma 1.14 shows that a;(ug) and d(ug) are bounded in HZ,
by some kq(p). This yields a constant cp = co(p) > 1 in (1.20), in the setting of
Remark 1.12. We define

R? = R(p)? = eco(p)p® +1 > p*. (1.26)
Take v,w € E(R,T) for some T' > 0. Let a € {ag,a1,a2,a3,d} and v > 0. By
Lemma 1.14 and H2 < L there is a constant x = x(R) with
la@) sy <n and  fa(v) - a(w)llsrz < Ko — ]z

Let ¢ = Cl(Han)a L = 51(/‘5777)7 and M = maX{VI(an)v:}/l("i?n)} be given by
Theorem 1.9 and Proposition 1.10. We fix

v =7(p) = max {y1,ec1p’, VeérerR}, Ty =To(p) =min{l,(2y)""}, (1.27)
where the constant ¢ > 0 is introduced below.

2) Theorem 1.9 gives a solution u € G3(Jy) of L(v)u = f and u(0) = ug
satisfying

lu(®)[17e + 10eu®)l32 < €™ (colluollzs + I1F(0)3e) + v IFlIZa ) < R?

for t € [0,7p]. So the map ® : v — u =: v leaves invariant E(R,Ty). Observe
that
3

L(v)(0 — ) = (L(w) = L(v))d = Y _(a;(w) — a;(0))d;i + (d(w) — d(v))d.

J=0

The right-hand side at time ¢ is bounded in H2 by exR|v(t) — w(t)||2,2 due to
Lemma 1.14. Since v(0) = w(0) and Ty < 1, Proposition 1.10 then implies

1@ (v) = @(w)[[ 702 < €70 D(v) = D(w)[|Fe2 (1.28)
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1=

< ety KRy v — wl3ery < Sl — wlfEoegee

The assertion now follows from the contraction mapping principle. ([l

The above result yields uniqueness only in the ball £(R, Tp), but the contrac-
tion estimate (1.28) itself will lead to a much more flexible uniqueness state-
ment. Before showing it, we note that restrictions or translations of a solution
u € G3(J) to (1.23) satisfy (obvious) variants of (1.23). Let u € G3(.J) solve
(1.23) and v € G3(J') with v(T) = u(T) solve it on J' = (T,T’). Then the
concatenation w of u and v belongs to G3(0,7") and fulfills (1.23). (Use (1.23)
to check dyw € C([0,T'],H2).)

LEMMA 1.17. Let (1.24) hold, J = (0,T), u € G*(J) and @ € G3(J) solve
(1.23) on J and J, respectively. Then uw =14 on JNJ =:J.

PROOF. Let 7 be the supremum of all ¢ € [0,sup j) for which v = @ on
[0,%]. Note that u(0) = up = @(0). We suppose that 7 < sup.J. Then u = @ on
[0,7] by continuity, and there exists a number § > 0 with J5 := [r,7 4 §] C J.
Let R be the maximum of the norms of u and @ in Q~’3(Jg). Fix v as in (1.27)

(with & = k(R) and p = 0) and take 6 € (0,0]. As in (1.28), Proposition 1.10

yields a constant ¢; = ¢;(R) > 0 with

~ _ 129752 ~
HU — u”%?/o(J(s,H%) S ecry 1c2f<;2R 1) ”’U, — uHLf;O(Jg,’H%)'

Choosing a sufficently small § > 0, we infer u = % on Js. This fact contradicts
the definition of 7, so that 7 = sup J as asserted. O

We now use the above results to define a mazimal solution u to (1.23) assum-
ing (1.24). The mazimal existence time is given by

T, =T, (ug, f) == sup{T > 0| Juz € G3(T) solving (1.23) on [0, 77} € (0, cc].

Lemma 1.16 shows T4 (ug, f) > To(p) as we can restart the problem at time
to = To(p) with the initial value up(7"). Moreover, by Lemma 1.17 the solutions
us and ur coincide on [0,¢] for 0 < t < T < T%. Setting u(t) = up(t) for such
times thus yields a unique solution u of (1.23) on [0, T ) which belongs to G3(T)
for each T' € (0,T7).

In the proof of our main result below, we need the following Moser-type
estimates, which are still true if one replaces R” by a Lipschitz domain in R™.

LEMMA 1.18. Let k € N and o, B € Nj*.
a) For v,w € L®(R™) N H¥(R™) and |a| + |B| = k, we have
100 0%wllz < ¢ ([vlloc [wllk,2 + [V]lk,2 [1wlloo)-
b) For v,w € WHe(R™) N HF(R™) with 0%, 0%w € L2(R™) for 1 < |a| < k
and |a| + |B] =k + 1, we have

m m
0% 0 wllz < e Vullao 3 [Bwlli12+ el Vulloe D 1050llk1.2
j=1 j=1
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PrOOF. We first recall the Gagliardo—Nirenberg inequality

1 lad lal
10°@llak /o) < cllelloc = D 107]"
ly|=F
for p € L>®(R™) with V¢ € L?(R™) for all |y| = k, see [40].
Assertion a) is clear if |a| is 0 or k. So let £ > 2 and 1 < |a| < k — 1. Note

that % =1- |a| The inequalities of Hélder (with 3 Ia' 15 |) Gagliardo—
Nirenberg and Young yield

plel o del g 181 sl
[0°00%wllo < 10%]lak /1o 10%wll2r 1) < cllvlloe * [0l lwlls © el
= (lolloo lwlli.2) = % (ol llvlle2) E S llv 2 llw]loo-

In part b) we can assume that £ > 3 and 2 < |a|] < k — 1. There are
i,j € {1,...,m} with @ = o/ +¢; and 8 = ' + ¢;, where /| + |f'| = k — 1.
From a) we deduce

10°00 w2 = [|0% B0 0% w2 S 10:0]loo 105]|5-12 + 100 ]| k—1,2 |050]|
and thus statement b). O

We state the core local wellposedness result for (1.23). Let Br((uo, f),r) be
the closed ball in H2 x Z3(T) with center (ug, f) and radius r > 0.

THEOREM 1.19. Let (1.24) hold and p* > Hu0||3_lg + ||f(0)||g_l% + ||f||223(1)
Then the following assertions are true.

a) There is a unique solution w = V(ug, f) of (1.23) on [0,T}), where T =
T (uo, f) € (To(p),00] with To(p) >0 from (1.27) and uwe G3(T) for all T  (0,T).

b) Let Ty <oco. Then lim¢r, ||lu(t)|ys = oo and mt_)ﬂﬂu(t)ﬂwg,oo = o0.

c¢) Take T € [0,74). Then there is a radius 6 > 0 such that for all
(vo,9) € Br((uo, f),8) we have Ty (vo, f) > T and ¥ : By((ug, f),8) — G3(T) is
continuous. Moreover, W : (Br((uo, f),9), " [ln2xz2(1)) — G2(T) is Lipschitz.

PROOF. a)/b) Above we have shown part a). Let T < oo and u = U(uo, f).
1) Suppose there are t,, — T with r := sup,, ||u(ty)|]32 < oco. Set T' =T, +1
and p? = r2 + ||f||223(T) + sup, [|f(tn)]132 < 0o. Let 7 = Ty(p) > 0 be given
by (1.27). Fix an index N such that t{xy +7 > 7. Lemma 1.16 and a time
shift yield a solution v € G3(tx, tx +7) of (1.23) with v(ty) = u(ty) . We thus
obtain a solution on [0,¢y5 + 7]. This fact contradicts the definition of 7%, and
hence [Ju(t)|[32 — 0o as t — T';.
2) Next, set w = supg<;cr, [u(t)]1,00 and suppose that w < co. Let a € Nj
with |a| < 3. Using (1.9), we compute

Lw)du=03f - Y <B>[Zaﬂaj )0 Bou + 92d(u)d> P (1.29)

0<B<

+ 02 ag(u)0e B(ao ( Za] )0ju —d )u))}
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::fa: agf*ga-

In view of (the proofs of) Lemmas 1.8 and 1.14, the summands of f, in the
second line can be treated as the others (using Young’s inequality for products
of norms of f and u). Employing also Lemma 1.18 and H3 < le’oo, we can
estimate

3
1a®lls < c@(IF Ol +1+> > 1102w 02ulls)

k=11 | <3, [y [ 44yl <4
c(@)(If Oz + 1+ 1+ w?)lut)lls).

Take 7 > 7o(w) in Proposition 1.4. For ¢t € [0,7}), this proposition and the
above estimate yield (with J; = (0,t))

—2vt
108l 2 (g, 27+ 25 108 u() 172 < S flug i+ 8% 11117 23ea 1+ Nl 72 1 0 )

We now sum over |a| < 3 and fix a large v to absorb the last summand. It turns
out that ||u(t)||32 is bounded for ¢ < T, contradicting step 1), and hence part
b) is shown.

c¢) The proof of assertion c) is more demanding. We first fix some constants,
and then show continuity of ¥ at (up, f) on an interval [0, b] assuming that we
have solutions with uniform bounds on [0, b]. Using this fact and Lemma 1.16,
we then prove inductively that solutions on [0, 7] exist and satisfy such bounds
if we start in a certain ball around (ug, f). Finally, we replace (ug, f) by different
data in this ball to obtain the asserted continuity statements.

1) Fix T" € (T, T,) and set J' = (0,7"). We can extend maps g from Z3(T)
to Z3(T") with norm bounded by cellgllzs(ry. Let cs > 1 be the norm of the
embedding C([0, T'], H) — Z°(T"), p* > lluollZa + 115y + ”fHLOO(J/ H2)
do = p/ce < p, and 7 > max{cgsp, ||u||g3 ) }. Below we take R >, b<T, and

v € G3(b) with norm less or equal R. Lemma 1.14 yields a constant & = &(R)
larger than the norms of a;(v) and d(v) in F3, (b) and of a;(v)(0) and d(v)(0)
in 7:[?,0

2) Assume there are b € (0,7"], v € H3 and g € Z3(T) such that T (vg, g) >
b. We write v = U (v, g) € G3(b). Let R > Hv||g~3(b with R > 7. Observe that

L(u)(v—u)= g— f+(L(u)—L(v))v = g— f+Z a;j(u)—a;(v))0jv+(d(u)—d(v))v.

By Lemma 1.14, the function (L(u) — L(v))v belongs to Qg(b) with norm less
than ¢(R)R|v — quz for v > 0. Proposition 1.10 yields

Il = ullga ey < &, n, T) (Iluo — voll32 + I = gllz2) + 77 Bbllv — ullgzy))

for v > A41(%,n) > 1. Fixing a large 7, = 7,(8, R, T",n) > A1(%,n), we thus
obtain

o — ullgegy < &F R m)(Juo — wollde + If — gllzzy).  (130)



1.4. The quasilinear problem on R3 20

3) Estimate (1.30) is related to Lipschitz continuity of ¥ in G2. The hard
and core part of the proof is to check continuity of ¥ in G at (ug, f), assuming
apriori bounds. So let (ugn, frn) € Br((uo, f),0) tend to (ug, f) on HS x Z3(T)
as n — 0o, where § > 0. Hence, f,,(0) — f(0) in H2 and f, — f in Z3(T").
Assume that T (ugp, frn) > b with b € (0,7'] and that u, = U(ugn, fn) is
bounded by some R > 7 in G3(b) for all n € N. Then u,, tends to u in G(b) as
n — oo by (1.30), and the coeffcients a;(u,) and d(uy,) satisfy the estimates of
step 1) with a uniform & = §(R).

The main idea is to split the n-dependence of the coefficients and the data.
Let o € N3 with |a| = 3. As in (1.29) we write L(u,)0%u, = 02 fn, — gn.a and
L(u)0%u = 0% f — go. Theorem 1.5 yields solutions wy,, 2z, € C([0,b], L2) of

L(Un)wn = 6;?;f — Ja, wn(o) = 3?”0,
L(Un)zn = 6£¢fn - 8(;]0 + Ga — Gn,as Zn(o) = ag?;lu(),n - 6;?“0'
By uniqueness, we have w,, + 2, = 05u, and hence
Opuy, — 05U = wy, — Ogu + 2.

Since a;j(un) — aj(u) and d(uy,) — d(u) in LS, as n — oo, Lemma 1.13 shows
that g, = [|wy, —9gul[ L2 tends to 0. We thus have to prove 2z, — 0 in L¥L2.
Choose v = 7, (R) as in step 2). For t € [0, b], Proposition 1.4 then implies

105 (un () — u®)|72 < 247 + 2z (1) 72
< 25 + e(R) (105 (w0 — wo) |72+ 105 (fo = NIz + lgn.a — gallZs )-

The estimation of ||gy o — ga| is only sketched. Let a € {aj,ay*,d}, v € {u,un},
and w € {u,uy, f}. First, we look at summands of the type A5 a(v(t))0F (un(t)—
u(t)) with |y| <4 —|B], |7v| < 3 and |B| < 3. By Lemma 1.8 and the bounds
on the coefficients these terms are bounded in L2 by c(R)|lun(t) — u(t)|3.2.
Analogous summands with f,(t) — f(t) are treated similarly.

We next analyze terms like W = 8 [a(un(t)) — a(u(t))] Ow(t). At first, we
look at situations where we can estimate the first factor by u — u, in LH2
using Lemma 1.14. This works for 8 = 0 in L for |y| < 3, for |3| = 1 in LY if
|v| <2, and for |8| = 2 in L2 if |y| < 1; and it yields terms as in the first case.
If this does not work (which implies w € {u, u,}), we compute 05 (a(uy) — a(u))
using the chain rule for each summand. For these terms we define

3 9
ha(t) = > DD M@ Oa)(un(®) = By, - Oy @) (u(t))l| e
ae{aj,d,agl} k=11;=1
The L2-norm of such W is then bounded by linear combinations of ¢(R) times
hn (|03 0 (8) - - - g o()0 ™ w(t)] L2 + 071 v(t) - - - 3~ pn (D) w(t)]| 2,

where ¢, = up, —u, m € {1,2,3,4}, |vi| <3, and |y1|+- -+ |vm| < 4. This sum
can be estimated by ¢(R)(hn(t) + ||un(t) — u(t)||3,2) due to Sobolev embeddings
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and the bounds on u and u,. We have shown that
Tl
l9n.a — 9a||%2((o,t),Lg) <c(R,T) (an - f||%gﬂg + [lun — U||%goyg + . h(s)? ds

t
[ 103 unl) — ) 0s).
0 hyi=3
We write the last integrand as ||02 (un(s) — u(s))||3. Note that h,(s) tends to 0

as m — 00 since u, — w in L5, and that it is bounded uniformly in s and n. By

dominated convergence fOT/ h2 ds tends to 0. Summing up, we conclude that

10 (un (t) — ()5 < e(B, T")en + (R, T’)/O 103 (un (5) — u(s))II5 ds

for a null sequence (g,). By Gronwall, 93(u,, — u) tends to 0 in C([0,b], L2) as
n — 0o, and so u, — u in C([0,b],H3). Using (1.9) and Lemma 1.14, we infer
U, — u in G3(D).

4) We now look for data to which we can apply steps 2) and 3). Let (vg,g) €
Br((ug, f),d0). We then obtain

[voll3s < [lvo — uolls + [[uollps < b0+ p < 2p < 27,
gl zs¢rry < Nlg = fllzsry + I fllzs0) < cedo +p < 2p < 27,
9l oo (1 12y < esllgllzsrry < 2¢sp < 27

Lemma 1.16 thus yields a time 7 = 7(7) and a solution v € G3(7) of (1.23) with
data vy and g, where ||ng~3(T) < R = R(7) and R > 27. By parts a) and b), we
have v = ¥(vp, g) and Ty (vg,g) > 7. Fix N € N with (N —1)7 < T < N, set
ty = k7t for k € {0,1,...,N — 1} and ty = min{T’, N7}.

Steps 2) and 3) show that (1.30) is true on [0, 7] for such v with a constant
¢ = &) and that W : Br((uo, f),00) — G3(7) is continuous at (ug, f). We can
thus find a radius §; € (0, dp] such that Hv—qu~3(T) < 7, and hence Hng~3(T) < 2r,
for all (vo, g) € Br((uo, f),01).

5) We iterate the above argument. Assume that for some k£ € {1,..., N — 1}
and 0 € (0,60], we have T} (vo, g) > t and |lv — ullgs(,, ) < 7 for all (vo,g) €
Br((ug, f), ) and the map ¥ : By ((uo, f), ) — G3(t1) is continuous at (ug, f).
It follows ||v||g~3(tk) < 27. Since ||v(tg)|3,2 < 27, step 4) and a time shift provide
a solution ¥ € G3([ty,txr1]) of (1.23) with 9(tx) = v(t;) and norm less or
equal R. We can thus extend v to a solution in G3([0,#,41]) bounded by R
and so T (vg,g) > tg+1. Because of this bound, steps 2) and 3) imply (1.30)
on [0,tg41] with é = é(7) for all (v, g) € Br((uo, f),dx) and the continuity of
W : Br((uo, f),0r) = G3(trs1) at (uo, f). Using the latter property, we find
a radius 041 € (0, 0] such that [jv — u||§3(tk+1) < 7 for v = ¥(vp,g) and all
(vo,g) € Br((uo, f),dk+1), and hence ||”Hg~3(tk+1) < 2r.

Induction yields a radius 6 = dn such that for all (vg,g) € Br((uo, f),d) we
have T’y (vg, g) > T, the continuity of ¥ : Br((uo, f),8) — G>(T) at (ug, f), and
”\II(U07g)Hg"3(T) < 27. Moreover, (1.30) holds on [0, 7] for u and v = ¥(vg, g).
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6) Finally, we take any (vo,g), (wo,h) € Br((ug, f),d) with corresponding
solutions v and w. Replacing u by w in step 2), we then obtain the last assertion
in c¢). Also step 3) can be repeated on [0,7] for data converging to (wg, h) in

Br((uo, f),9). O

Observe that Theorem 1.7 yields finite speed of progation for a solution u €
G3(T) of (1.23), setting A; = a;(u) and D = d(u). We comment on variants of
Theorem 1.19.

REMARK 1.20. One can easily extend Theorem 1.19 to negative times (e.g.,
by time reversion). Moreover, in (1.24) one can replace the domain R? x R of
a; and d by R3 x U for an open U C RS, restricting ¢ in the supremum not to
each closed ball B(0,7) C RS but to each compact subset of U. One further
has to require that the closure Ky of ug(R3) is contained in U, and the solution
u has to take values in U. Theorem 1.19 is then valid with one modification.
In part b) now T} < oo implies that limsup, ¢, [[u(t)|l;; 1.0 = co or that u(t)
leaves any compact subset of U as t — T..

The proofs are very similar in this more general case. In the fixed-point
argument one chooses a bounded open set V with Ko C V C V C U. Let
d > 0 be the distance between V' and 0U. In £(R,T) one then also includes the
condition that ||v(t) — uo|lec < d/2 for all t € [0, 7] which is preserved by limits
in L{H2. Other steps in the reasoning are modified accordingly. Compare
Theorem 3.3 of [52]. O

[

As explained in Section 1.1, one can easily apply Theorem 1.19 to the Maxwell
system (1.1) with material laws (1.3) and (1.4). We state the needed assump-
tions in a situation motivated by nonlinear optics.

ExXAMPLE 1.21. Let 0(z, E, H) = (ejjn(x)E + eni(z, E)E, uin(x)H) and J. =
o(xz,E)E+ Jo in (1.3) and (1.4). Here we assume that ey, min € Cp (R, R3%3)
and o € C3(R6, R3*3) satisfy ein, tiiin > 201 > 0 and supj¢j<, 1070 (-, §)l|Lee <
oo for all » > 0 and 0 < || < 3, respectively. (The subscript b means that
the functions and all occuring derivatives are bounded.) In Example 1.1 we
had seen rather general isotropic nonlinear terms which fit to (1.24). A typical

anistropic example is furnished by

eni(z, E) = (ijkl EEk)l

7,k=1

for scalar coefficients ngl € CP(R3), cf. [9]. Because of the triple sum in
enl(z, E)E, the tensor (ngl)i,j’k’l has to be symmetric in {j,k,l}. For (1.24)
we also require symmetry in {i,l}, i.e., we can only prescribe ngl for, say,
1<i<j<k<I1<3. For|E|<r and a suitable r € (0,00] and all 2, H € R3
we then obtain dg (7, £, H) > nl. Rewriting the system as in (1.6), we see
that hypothesis (1.24) (modified as in Remark 1.20 if » < co) is fulfilled. For
initial fields in H3 with |Eg| < r/2 and a current density Jo € Z3(T) for all
T > 0, Theorem 1.19 and Remark 1.20 thus provide wellposedness in H3 of the
Maxwell system (1.1) with the above material laws. O
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1.5. Energy and blow-up

In the preceeding sections we have worked with the linear energy estimate
which contains error terms caused by the time derivative of coefficients. (The
space derivatives in C of (1.11) disappear in the Maxwell case.) These error
terms have led to the H> setting, which is quite inconvenient. The time de-
pendence arises since we freeze a function in the nonlinearities of (1.23). One
may wonder whether this is really necessary and whether it is not better to
solve (1.23) based on a nonlinear energy identity. Actually, this can be done in
the semilinear case where D = e(x)E, B = u(x)H, and J. = o(z, F)E under
appropriate conditions on o, cf. [21]. Below we see that this does not seem to
work in the quasilinear case.

In this section we first establish an energy equality in the quasilinear case,
without conductivity and for isotropic nonlinearities

D= ElinE‘ + Be('v |E|2)E’ B = ,UlinH + Bm(7 |H|2)H7 (1'31)

Here ey, and p;, belong to L™ (R3, R%X?’) for some 1 > 0 and the maps S, By, :

R3 x R>¢ — R are C!, bounded in x € R and non-decreasing in s € R>g. We
set u= (F,H) and

_ (e O _ (Bel,|EI*) 3% 0
AO N < 6 Nlin) ’ ,6(|U’2) N ( 0 7 Bm(a |H|2)I3><3> ’

3
M= ( . Cuﬂ) ==Y 50,  D(M)=H(curl) x H(curl),
=1

—curl O

where #(curl) = H(curl,U) = {v € L*(U,R?) | curlv € L?*(U,R?)}. The opera-
tor M is skew-adjoint in L?(R?,R®). Maxwell equations (1.1) then become

O[Aou(t) 4+ B(|u(t)|?)u(t)] = Mu(t), t>0, u(0) = up = (Ep, Hp). (1.32)
Omitting the argument x in the notation, we further define

bi(s) = /O By dr, hy(s) = sBi(s) — Lbj(s).

We have hj(s) > 58;(s) since f; does not decrease and that h’(s) = $8;(s) +
sﬁg(s), where ﬁ; = 02;. We now introduce the ‘energy’ for u = (u1,u2) by

E(u) = /R3 (2 Aou - w+ hi(Jur]?) + ho(|us|?)] dz

Note that £(u) > Z|jul|3 if 8; > 0. In the Kerr case ejiy = pin = 1, Be(z,5) =
x3(x)s and B, = 0, we obtain

i BH) = [ [IEOF + Sl BOI + §HOF) do.

Let u € GY(T) solve (1.32). The energy equality &(u(t)) = &(up) for t € [0,T]
follows from

) = [ | [u- 0o+ Bul?)u- D+ 2ulB (0 - 0] da
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:/ 8t[A0u+5(\u|2)u} -udx:/ Mu-udx =0. (1.33)
R3 R3

In the Kerr case (with y3 > 0) we can thus bound powers of p-norms of solutions.
This is not enough control to pass to a weak limit in the nonlinearity when
performing an approximation argument (which would typically produce a global
solution). One would need an estimate involving derivatives. Such estimates
are not known, and the next result on blow-up indicates that they do not hold.

We first stress that it is well known that the gradient of a solution to (1.32)
may blow up in sup-norm in finite time, see [36]. However in the semilinear case
one relies on estimates in H(curl), so we are interested in blow-up in this space
(or at least in H'). Below we give such an example on a domain with periodic
boundary conditions, taken from [14]|. Such conditions arise if one truncates a
fullspace problem with periodic coefficients to a periodicity cell. (See this paper
for a weaker result on R3.) We work in the following more specific setting given
by D = (1+ «(|E|))E and B = H. We set a(s) = (1 + «a(]s|))s for s € R and
assume

a € C*(R,R), Is_.<0<sgp<sy:a >0 on S:=(s_,54),

B a//(s)
2&'(8)3/27

q is C' near sy, ¢(s) >0 for 0< s < sg.

qg: S —R; q(s) has a global maximum at s = s, (1.34)

Let v > 2 and ag > 0. A simple example for (1.34) is furnished by any C2-
extension of a : [0,s4] = R; a(s) = s + ags”, which is strictly growing on
(s—,s4) for some s_ < 0 < sp < s4 with
( 2(y-2) )h
so=——=
aoy(y+1)
in this case. We stress that the behavior of a for large s is arbitrary here.

THEOREM 1.22. Assume that (1.34) is true. Then there are numbers M, T >
0 and a divergence-free map (E, H) € C*([0,T) x [~M, M]3) which solves (1.1)
on (=M, M)? with periodic boundary conditions and the above material laws,
and which satisfies

[curl E(t)|lp2 =00 as t =T

We look for a solution of the form
(E(t7 ZL‘), B(t7 .’L‘)) = (U(t, x2)7 07 07 Oa Oa U(tv ZL‘Q))

for x € (—M, M)? and t € [0,T). Observe that such £ and B are divergence-
free. If u and v have support in [0,T") x (=M, M), then E and B fulfill periodic
boundary conditions. Moreover, (E, B) € C! satisfy (1.1) on (—M, M)3 with
the above material laws if and only if (u,v) € C! solve

Ora(u) = Ozv, 0w = Oyu, (u(0),v(0)) = (uo, vo),
for t € [0,T) and = € R. This system can be rewritten as

o, Cf) + A(u, ), (Z) —0  with Afu,0) = (_01 ‘“’(0“)1> (1.35)
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on R. Here we assume that u takes values in S from (1.34). Since also dyu =
curl £, the theorem thus follows from the next one-dimensional result.

The following proof uses a standard construction from Section 1.4 of [36].
However, it requires a rather detailed analysis to find a class of initial values for
which we get the blow-up of d,u in L? instead of L™.

PROPOSITION 1.23. Assume that (1.34) is true. Then there exist initial data
(up,v0) € CHR,R?) and a C'-solution (u,v) to (1.35) on [0,T) x R for some
T € (0,00) which is compactly supported and which satisfies ||Ozu(t, )| L2r) —
oo ast—T".

PROOF. 1) For (u,v) € S x R, the matrix A(u,v) has the eigenvalues and
eigenvectors

Ao, 0) = £d'(w)"2,  wia(u,v) = (F1,d (u)2).

(Recall S = (s_,s4), so and ¢ from (1.34).) These observations are a special
case of the analysis in Section 3 of [3]. In the following we take A = A\; and
w = w; and drop the index 1. Fix (£,() € (so,s+) x R such that

q(s) >0 for 0<s<E¢.
Observe that the interval £ —S = (£ —s4,£—s_) contains [0, £]. The C2-function
p:&—8S >SS xR

¢1(3):f—8, ¢2(s) _C+/ a’(5_7)1/2dT’
0
solves the ordinary differential equation

¢'(s) =w(e(s)), s€&—8,  ¢(0)=(£0).

For later use, we note the identities

VA(@(5) - ¢ (s) = VA(B(5)) - w(e(s)) = q(§ —s), s€&=S  (136)

Let g : R — [0,&] be C! and equal to ¢ outside a compact set. There is a
unique C'-solution o of the scalar partial differential equation

oo (t,x) + ANo(o(t,x)))0zo(t,z) =0, t>0, x€R,
a(0,x) = oo(z), r € R, (1.37)

on a bounded time interval [0, ¢), where o takes values in £ — S. See e.g. Theo-
rems 2.1 and 2.2 of [36]. We now define

(u(t,:c)> = ¢(o(t,z)).

v(t, x)
It is easy to check that (u,v) is a Cl-solution of (1.35) on [0,%) x R. We observe
Opu = ¢ (0)0p0 = —0,0. (1.38)

2) The method of characteristics yields the implicit formula
o(t,z) = oo(x — tA(@(o(t, 2)))) = oo(y(t, x)),

Y(t0) = 0 — NG b)) = o 1€ — oty 2,
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for the solution of (1.37) as long as

L+t (@(o(t,2))) - w(d(o(t, x)))og(z — tA(P(o(t, x))))
=1+ toh(x — tA((o(t, 2)q(E — olt,z)) >0, (1.40)

see (1.36). Hence, o is bounded. We now set
1(0) = inf Gh(u(t,2)a(€ — o(t.x)) for ¢ [0.0)

Let top > 0 be the supremum of ¢ € [0,%) such that 7y(7) > —1 for all 7 € [0, ¢].
In the following, we take ¢t € [0,tg) so that the inequality (1.40) is valid for all
x € R. Equations (1.39) then imply

B0 (t,w) = oz — (@0t 2))) (1 - ta(§ — o(t,2)) Do (t,2)),

o(ion) )
1+ tQ(g_g(t7 i’))O’é(y(f, 1’))
In particular, 9,0 is bounded on [0,y — 6] X R for each § € (0,tg]. The blow-up
condition in Theorem 2.2 Annex of [36] (a variant of Theorem 1.19) thus yields
t = tp. From formula (1.39) we further deduce d,0(t,z) = o(,(y(t,x))0zy(t, x)
and therefore

1
Oy(t,x) = > 0. 1.41
D) = e o o)) (L0
(In the case o(,(y(t,x)) = 0 the identity d,y(t,z) = 1 > 0 follows from (1.39).)
Using also (1.39), we see that the map = — y(¢,x) is a bijection from R to R.
This fact and (1.39) lead to the equation

1(0) = inf oh(2)al€ — 00()) = 0.

3) We now fix a C''-function g : R — [0, £] which is equal to & outside some
compact set and satisfies

a0(0) = & — sp, 04(0) = min o()(2) < 0.
z€R

In view of (1.34), we can determine
1
70 = 04(0)q(sp) and to = e (1.42)

Substituting z = y(¢, ) and using (1.41), we infer from (1.39) the identities

10a0(t, )2 = /R By (1, )| d = /R o (u(t,2))Duy(t, 2)|? da

By R S—
r 1+ tq(§ — 00(2)) 0p(2)
Since ¢ has a global maximum at sp while o{, has a global minimum at 0, we
obtain the expansions

q(s) = q(s0) —o0+(s = s0), 00(2) = 05(0) + 04 (2), o0(z) = =50+ 0(2),



1.5. Energy and blow-up 27

where 04 (z) denotes any nonnegative function with the property o4 (z)/z — 0
as z — 0. Hence, (1.42) yields

L+tq(€ — 00(2)) o9(2) = 1+ 70 + tla(s0)0+ (2) + 01 (2) [06(0)] — 04.(2)°]
=14ty + to4(2)

for small |z|. Fix a number dy > 0 such that the above identity is true and
log(2)> > £]06(0)]* = co if |2| < ). For each € > 0 there exists a radius
9 € (0,60) with 0 < o4 (z) <ed for z € (—9,9). We can then estimate

0 / 2 6

2

oot B2 [ O e [ a2

_s L+tyo +toy(2) _s L4ty +ted 14 tyo + ted
Because of tg = —1/v9 = T in (1.42), it follows

2,
Te’
Since € > 0 is arbitrary, equation (1.38) finally implies that

liminf |0y (t, )| >
t—T—

liminf ||0yu(t, )||3 = liminf ||0,0 (¢, -)||3 = +o0.
t—T— t—T—

4) Note that o(t,z) = oo(y(t,x)) = & if |y| is large enough. This fact holds
for some g > 0 and all t € [0,T") and |z| > z¢ because of (1.39) and the strict
positivity of @’ on [0,£]. So u = £ — ¢ has compact support. Fixing

13
(== [ ale-ntrar
0
also the function Y
v = C-l—/ a/(f—T)l/QdT
0

has compact support. O



CHAPTER 2

Local wellposedness on a domain

In this chapter we extend the results from the previous one to linear and
quasilinear Maxwell systems on a spatial domain G, endowed with boundary
conditions. The general theory of symmetric hyperbolic systems is much more
sophisticated in this case. It uses Sobolev spaces of higher order and with
weights encoding a loss of derivatives in normal direction, see [26] or [49].
Fortunately the Maxwell equations have a special structure which allows us
to derive analogous theorems as on R® using a similar approach. However,
already in the half-space case G = R3 = {z € R3|z3 > 0} many new difficulties
arise, which we describe and solve below (sketching or omitting some technical
steps). The general case is treated via localization arguments and thus reduced
to hyperbolic problems on ]R‘rjr. They still resemble the Maxwell system, but the
resulting coefficients A;, j € {1,2, 3}, are far more complicated than AS°. Here
we can only indicate how one deals with the new situation. In a first section
we start with a derivation of the boundary conditions and a discussion of the
relevant trace operator and the compatibility conditions.

2.1. The Maxwell system on a domain
We continue to study the Maxwell equations
oD = curl H — J,, OB = —curl E, t>0, zeq, (2.1)

for t > 0 and = € G, where G C R3 is open and bounded with a smooth
boundary or G = Ri = R? x Ry. As before, we can define solutions to these
equations in C(J, L2). Observe that the solutions still satisfy GauR’ laws (1.2).
Below we will equip the system again with the material laws (1.3) and (1.4),
or their linear variants. However, the derivation of the boundary conditions is
independent of these laws.

We first establish the interface conditions for (2.1), arguing a bit informal. Let
¥ be a surface in G, which is given by a chart ¢ : U — V with ¢(X) = Vj x {0}.
Given a point x € 3, we may choose ¢ with ¢/(x) = I. Set ¢ = ¢! and
Ur = (VNRY) with R?2 = R?2 x R_. We equip ¥ with the unit normal vy,
pointing into Uy, whereas v and vy are the outer unit normal of U and Uy,
respectively. Moreover, let S C Vj be a line segment with direction p and a > 0
such that Q@ = Sx[—a,a] C V. Let 9Q be oriented counter-clockwise and choose
the normal n to @ with det[n,p,es3] > 0. The surface I' = ¢(S x [—a,a]) C U
shall carry the induced orientation; i.e., its boundary (with a parametrization
v = v(6)) winds positively around the unit normal vp of I'. Note that v is
perpendicular to vs, at a point x with ¢'(z) = I. Let '+ = ¥(Q NR3) be

28
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oriented accordingly. For a function f on Ui we denote its trace on X by fi
(assuming that it exists) and its jump across X by [f] = f+ — f—.

It is better to start from the more fundamental integral versions of the
Maxwell equations and the Gauf’ laws (1.2), namely

H-dgz/(atD+Je)-Vrda, / E-dé’:—/&gBoVrda,
or T or r (22)
D-Vdaz/pedx, B-vdo =0,
ou U ou
where we require that these traces and integrals exist. (Here H - d§= (H o) -
7' df and o is the surface measure.) If the fields belong to H'(U), say, these
equations follow from (2.1) and (1.2) by means of Stokes’ and Gauf’ theorems.
To show the converse implication, after applying Stokes and Gauf again, one
divides the integrals by the volume of U and I', respectively, and lets them tend
to 0. (Note that vp can be any unit vector in R? if one varies ¥ and T.)

Let p+ = pelv,. and J+ = J[y,.. We also allow for surface charges py and
surface currents Jy, concentrated on X, where Jy 1 vs. Let D be regular on
Ux so that the jump [D - vg] = [D] - vs is integrable on 3. We then infer from
(2.2) on U that

/p+dm+/ p_dx+/pzdaz/pedx: D-vdo
Uy U ) U U

=[ D-vydo+ D-y_da+/[D~ug]da.
Lo U by

By (2.2) on Uy, the first two terms on both sides cancel. We can replace Vj by

subsets V{. Dividing by the area of ¥ and shrinking Vjj, we see that py, = [D-vy)]

on X. In the same way one shows that [B - vs] = 0. Similarly, (2.2) also yields

H-ds+ H-d§—/ [H]-ds= [ H-d§
ar, ar_ rny ar

:/ (8tD+Je)-yp+da+/ (atD—i-Je)-VrdU-f—/ Js -vrds
ry r_ rns

for ds = || df. Choosing ¢'(x) = I, the unit tangent vector of ' N'Y at z is
equal to vs; x vp. We then deduce as above that —Jx - vp = [H| - (v X vp) =
vr - [H X vg], and hence [H x vy| = —Jx, as nr is an arbitrary tangent vector
of ¥. Analogously one shows that [E X vg] = 0. We summarize the interface
conditions

[E X I/E] = 0, [D . Z/E] = py, [B . I/E] = 0, [H X VE} = —JE (2.3)

for fields being sufficiently regular on Uy. (Cf. §1.4.2.4 in [15] or §1.7 in [23].)
As for Gaufs’ laws (1.2), the equations for D and B are redundant for solutions
to (2.1) satisfying the interface conditions for F and H. More precisely, one has
[B(t)-vs] = [B(0)-vs], and px(t) can be computed in terms of [D(0)-vs] = px(0),
Je and Jy. See Lemma 8.1 in [48] and also §1.4.2.4 in [15] or our Lemma 2.4.
Arguably the basic set-up for the Maxwell system is R? endowed with different
material laws on subsets G and R*\ G (e.g., having vacaum D = F and H = B
on R3\ G) and equipped with initial conditions and interface conditions for
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E and H on ¥ = 0G. In fact, one can extend the local wellposedness theory
discussed in this chapter to this setting, see [48]. Here we treat the simpler
situation that the traces at G of the fields on R?\ G are assumed to be 0. For
the electric fields, this is reasonable in the case of a perfect conductor on R3\ G
which refers to the limit case of infinite conductivity ¢ so that E = %Je =0in
Ohm'’s law, see §1.4.2.4+6 in [15] or §7.12 in [23]. In this setting we will derive
a local wellposedness theory with the boundary condition of a perfect coductor

Exv=0 on 0G. (2.4)
It is usually combined with the condition
B-v=0 on O0G, (2.5)

which however turns out to be true if it holds at time 0 by Lemma 2.4.

Before we continue, we have to explain the meaning of the above equations
for functions E, B € C(J, L*(G,R3)) solving the Maxwell system. To this end,
we first recall several known results about traces, see [1] and [16], for instance.
Let U C R™ be an open subset with a Lipschitz boundary given by local graphs
which yield a covering of U by finitely many charts ¢; : U; — V; with inverses
¢ and parametrizations F; = 9;[¢, _o). Let v be its outer unit normal. For
s > 0 we have the fractional Sobolev spaces H*(R™) consisting of v € L?(R™)
such that [£]* Fv belongs to L2(R™), where |¢|* stands for the map & +— [€]°.
They are endowed with the norm given ||v]|? = [[v||3 + [||¢|* Fv||3. Their dual
spaces are denoted by H~*(R™). The space H*(U) contains the restrictions v[y
for v € H*(R™). For an open subset I' C 9U and s € (0, 1), we define

HYI) ={ve L*T,0)|Vj: voF; € H(¢;(TNV}))}.

Again we let H~*(T") be the dual space. If QU is C*, one can take here s € [0, k].

It is known that the trace operator tr : v — v[gy (defined on HY(U) N C(U))
extends to a continuous and surjective map from H!(U) to 2 (0U). Its kernel
is HY(U). Here and in the treatment of div below, U can be a Lipschitz domain
in R™. We discuss analogous results for the traces used in (2.4) and (2.5). To
this end, we use the spaces

H(div,U) = H(div) = {v € L*(U)™ | dive € L*(U)},
H(curl,U) = H(curl) = {v € L*(U,R?) | curlv € L*(U,R?)}
endowed with their canonical norms. The closures of test functions in these
spaces are denoted by Ho(div) and Ho(curl), respectively.
To work with curl, we need its basic integration by parts formula. We first

treat a weak version. Let w € L}(U) and v € C°(U). With distributional
derivatives we compute,

/ w-curlvdx = / (w1(82v3 — O3v2) + wa(D3v1 — O1v3) + ws(O1vy — 821)1))dx
U U

= (v, curlw) oo (1)
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By density, we deduce
/ w - curlvde = (fu,curlw)H(l)(U),
U

/u-curlvdx—/curlu-vdx
U U

for w € L*(U), u € H(curl), and v € H(U). To handle nonzero boundary
terms, we express curl by means of div. Let u,v € HY(U). We set

(2.6)

ﬁ’l = (0,71,3, _u2)7 ﬂg = <_u3707u1)7 ﬁ'?) = (U’Qa —U1,0)-

The divergence theorem and a straightforward computation then imply

/ curlu -vdx = / (v1 div i1 + vg div 1y + v3 div ﬂg) dz (2.7)
U U
3
:Z(/ —aj-wjdwr/ v iy v;do)
Pl oG

:/u‘curlvdx—k/ (v x u)-vdo
U ou

:/u~curlvdm—|—/ u- (v xv)do.
U au

We can show the completeness of H(curl). Indeed, if (uy) is Cauchy in
H(curl), then it converges to some u and curl u,, to some w in L2. Forv € H}(U),
formula (2.6) now yields

/w~vda:: lim curlu, - vdx = lim un~curlvdx:/u-curlvdx.
This means that curlu = w in £~ (U) and thus in L?(U). The completeness
of H(div) is shown analogously.

We now state the basic trace theorems for H(div) and H(curl). To this end

we define the normal trace trye : v — (v - v)[sy on H(div) N C(U) and the

tangential trace tri, : v — (v X v)[gy on H(curl) N C(U).

THEOREM 2.1. Let U C R™ be open having a Lipschitz boundary as described
above. Then the following assertions are true.

a) The space CZ(U) == C°(R™)|y is dense in H(div).

b) The normal trace extends to a continuous and surjective map try, :
H(div) — H_%(BU) with kernel Ho(div).

¢) For v € H(div) and ¢ € HY(U), we have Gaup’ formula

/ v-Vedr = —/ pdivedz + (tr ¢, tro v)g1/2(907)- (2.8)
U U

THEOREM 2.2. Let U C R3 be open having a Lipschitz boundary as described
above. Then the following assertions are true.

a) The space C°(U) is dense in H(curl).

b) The tangential trace has a continuous extension try, : H(curl) — H_%(ﬁU)
with kernel Ho(curl).
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¢) For v € H(curl) and ¢ € HY(U,R3) we have

/ v-curlpdr = / curlv - pdz + (tr @, trea U>H1/2(6U). (2.9)
U U
If v € Ho(curl) and o € L?(U,R3), we obtain Ho(curl)* — H~1(U,R3) and
/ curlv - pdr = (v, curl )3y (curl)- (2.10)
U

In Theorem 2.4 in [10] the range of try, is determined if JU € C?, say. We only
show the results for curl. Those for div are similarly proven, see Theorem 1X.1.1
in [16]. The core step of the prof is the density statement in a), which relies on
the following description of Hg(curl).

LEMMA 2.3. Let U C R3 be open having a Lipschitz boundary as described
above. Assume that u € H(curl) satisfies

/ u - curlpdx = / curlu - ¢pdx
U U
for all $ € C°(U)3. Then u belongs to Ho(curl).

PrROOF. We proceed in several steps to approximate the given map w in
H(curl,U) by test functions in G. For the approximation, we first use the
assumption to extend u to an element in H (curl, R?).

1) Set v = curlu € L*(U). Let 4,9 € L?(R3) be the 0-extensions of u and v,
respectively. Take ¢ € C2°(R3)3. The assumption then yields

/ ﬁ-curlgpdx-/u-curlgpdx—/curlu-cpdx—/ v - pde.
R3 G G R3

By density, this equation is true for ¢ € H1(R3)? so that curla = ¢ in H~H(R?),
and hence @ belongs to H (curl, R?).

2) We next restrict the problem to compactly supported @ if G is unbounded.
Take a cut-off function x € C°(R3) with 0 < x < 1, x = 1 on B(0,1), and
support in B(0,2). For a > 0 the map xq(z) == x(3z) satisfies |va| < 1,
IVxal < [[VX|lso/a, supp xa € B(0,2a), and tends pointwise to 1 as a — oo.
So X4 converges to % in L?(R3) by dominated convergence. We further obtain

curl(x,@) = xqcurlt + Vy, x & — curla

in L2(R3) as a — oo. Hence, the restriction of x,@ to U tends to u in H(curl, U).
It is thus enough to show that x,a|y belongs to Ho(curl, U) for all a. Therefore,
we assume that 4 has compact support without loss of generality.

3) In this main step, we require U to be strictly starlike; i.e., QU is contained
in U for all § € [0,1). For maps v € L*(R3) we set Dgv = v(0-) for 6 € [3,1).
The operators Dy are uniformly bounded on L?(R3) and converge strongly to
I as & — 1 on C.(R?®) and thus on L?(R?). The function @y = Dyt has a
(compact) support Sp in U. Since 0;tg ,(x) = 0(0;1Uy)(0z), we obtain

curltiy = 0Dg curlt — curla

in L?(R3) as § — 1. Hence, the restrictions of iy to U tend to u in H(curl,U).
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4) Let 0 < dist(Sp,0U). Then the mollified maps Rstg[y belong to C°(U)
and tend to 1y in L?(U). Moreover, the restrictions of curl Rsiig = Rs curl g
to U converge to curliy in L?(U). Combined with step 3), we have shown the
lemma for strictly starlike U.

5) The general case can be treated by localization. See the proof of
Lemma IX.1.1 in [16]. O

We can now show the trace theorem for curl.

PROOF OF THEOREM 2.2. 1) To show the density statement, take u €
H(curl) such that

VoeCxWU): 0= (u,d)eul = / (u- ¢+ curlu - curl ) da.

U
Using (2.6), we infer curlcurl ¢ = —u in H~1(U) and hence v := curlu belongs
to H(curl) with curlv = —u. Lemma 2.3 now implies that v is an element of

Ho(curl). We can thus approximate it by v, € C°(U)3 in H(curl). For all
w € H(curl), formula (2.6) implies

(U, W)eur1 = (—curlv,w) 2 + (v, curl w) 72
= lim ((—curl¢n, w)r2 + (Y, curlw)2) =0,
n—oo

so that u = 0 and assertion a) is true.

2) We extend tr, to H(curl) by means of (2.7) for v € C°(U) and ¢ € H(U).
This formula yields

‘/BU(U xv)-pdo| < vll2 |l curlplls + [[curlvllz [[¢ll2 < e llvllzcun ]l

Let R : H%((?U) — H1(U) be a right inverse of tr and g be its norm. Writing
Y = H%(ﬁU) and 1) = pR¢ , we then estimate

[travl, 1 . = sup [($,trav)y| <o sup |(tr 24, trea v)y|
H2OU) gly<t ol <t °
=0 Sup ‘<tI‘ %¢atrta U>L2‘ <co ||UHH(curl)-

“971w||H1(U)§1

We can thus extend trg, to a continuous map from H(curl) to ’H*%(GU)

3) By continuity and density, Ho(curl) is contained in the kernel of try, and
(2.9) follows from (2.7). Let u € N(tr,). For ¢ € H}(U), formula (2.9) yields

/u~curl<,0dx:/curlu'godx,
U U

so that u belongs to Ho(curl). Hence, also b) is shown. Let ¢ € L?(U). For v €
HS(U) we define the functional ®(v) = (v, curl P)ni(v)- Since HS(U) is dense
in Ho(curl), equation (2.6) implies that ® can be extended to Ho(curl)*, so that
curl actually maps L?(U) into Ho(curl)* < H~1(U) and satisfies (2.10). O
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These results justify the boundary condition (2.5) in view of (1.2), but not yet
(2.4) since we only require u = (E, H) € C(J, L2). We first fix our assumptions
for the linear problem Lu = Z?:o A;j0ju+ Du= fonG as

Ap € Wip® = Whe(J x G,R6), Ag=A] >0l >0, J=(0,T),
Aj= AP for je{1,2,3}, De Ly, =L xGR>), (2.11)
u € L*(G,R% =L2, feli,=L*JxG,R".

(The matrices AS® were defined in (1.5).) Let Lu = f for u € C (J,L2). We
thus obtain

3
8j(Aju) =f—Du+ GAgu € L?’z.
=0
By Theorem 2.1, the function Z?:o njAju has a trace in H~1/2(0(J x G)),
where n is the outer unit normal of J x G. Restricting to the subset {0} x G
with n = —eq this gives a meaning to the initial condition u(0) = ug as Ap(0)

is Lipschitz and invertible. On the lateral boundary J x 0G with n = (0, v), by

means of the comments before (1.5) we infer that (—v x u?,v x u') has a trace

in H=Y2(J x 9G), and so (2.4) for E = u' is well defined. We denote the latter
trace also by trya. See §2.1 in [51] for a detailed exposition in which several
basic properties are shown that are used below without further notice.

We now check that condition (2.5) is preserved for H!-solutions of the Maxwell
system with (2.4).

LEMMA 2.4. Let B,E € CY(J,L2) N C(J,H}) satisfy B = —curl E and

tria £ = 0. Then trye B(t) = trpo B(0) for allt € J.

PROOF. Let t € J and ¢ € H?(G). The assumption implies divd;B = 0 so

that try, 0y B(t) exists in ”H_%(@G), and the same is true for curl E(¢). Using
also (2.8) and (2.9), we thus obtain

O(B(t)-v, 0)12(66) = (trno(0:B) (1), 9)3-1/2(a¢) = (— trmo CUurl E(t), 0)9-1/2 (9
= —/ diveurl E(t) o dz — / curl E(t) - Vo dz
G G
=— /G E(t) - curl Vo dr + (tra E(t), Vo) -1/2(96) = 0
omitting tr in front of ¢. The result follows by density. g

2.2. The linear problem on Ri in L?

We treat the linear Maxwell equations (2.1) on G = R3 with the boundary

condition (2.4) of a perfect conductor for v = —eg. As in Eample 1.6, we rewrite
them as the symmetric hyperbolic system
3
Lu= ZAjajquDu: f, t>0, 2R3,
j=0

Bu=-Exe3=0, t>0, x€dR3, (2.12)
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u(0) =ug, =€ Ri

assuming hypothesis (2.11) for G = R3. We first look for a solution u =

(E,H) € C(J,L2%), using the notation of (2.11) for G = R?, proceeding as in
[7], [11] or [45], for instance. The trace operator B is defined as in the previous
section and will be identified with the matrix B® = (S3 0) € R3*® where
the matrices S; € R3*3 were introduced before (1.5). We proceed similar to
Section 1.2 starting with an energy estimate. Later it turns out to be important
that we require a bit less than H! in the lemma. We set vy = (v1, V2, V4, v5) for
the tangential components of a function v : Ri — RS, and vy, = (v3,v6) for the
normal ones.

LEMMA 2.5. Assume that (2.11) is true for G = R and that u € C(J, L2)
solves (2.12) and has derivatives Oju, O3uia in L?,a: for j €{0,1,2}. Let CT =
30,40 — D, v > (L) == max{1,4||C*|ls/n}, t € J, and L2 = L2(0,t). We
then obtain

W ul2s p + Be P ult)]35 < SlAoO)llo luolZy + 5517132z (213)

PROOF. Let v = e_ yu and g = e_f. By assumption, 0;u for j € {0,1,2}
and 93 A5°u belong to L7, and hence u, has a trace on {3 = 0} in L?(J xR?).
It is 0 for u; and ug by the boundary condition. As in Lemma 1.2, the equation
vyAgv + Lv = g yields

3
(g,v) = v{Agv,v) +ZA8UU (Dv,v)
7=0

for the scalar products in L2((0,t),L2). For j € {1,2,3} the summand
with A; is equal to [ 19;(Ajv - v)d(s,z) since A; is constant and symmet-
ric. The integral in x; then vanishes by the above properties and since
ASu - u = (usug, —uqug, 0, —ugug, ujus, 0) has trace 0 on {x3 = 0}. For j =0,
one obtains 24¢0v - v = O (Apv - v) — O Agv - v. Integrating in ¢, we derive

1

1
v{Aov,v) + 3 Ap(t)v(t) -v(t)dz = 3 Ao(0)ug - updz + (CT v, v) + (g, v).
RY R?
The assertion now follows as in Lemma 1.2. O

We use (2.13) only for

v > g (ryn) = max{1,6r/n} > 5" (L) (2.14)

assuming that ||0;Ap||cc, || Pllec < 7. As in (1.11) the above proof yields the
energy equality

/R Ao(tyut) - u(t) da (2.15)

= s Ao (0)ug - ugdx + 2/0t /Ri (CT(s)u(s) + f(s)) - u(t) dz ds.
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For the existence result we need analogous estimates for the (formal) adjoint

3
== A;0;+ D" - 9,4
§=0
in backward time and on the time interval R. To this end, we extend the
coefficents Ag constantly and D by 0 to t € R.

PROPOSITION 2.6. Let (2.11) be true for G = R3 with ||0; Ao/, | Dlloo < 7
Extend Ao constantly and D by 0 to t € R. Let v >~ (r,n), see (2.14).

a) Let v € C(J, L2) with jv, 0304, € L2(J, L2) for j € {0,1,2} satisfy L°v =
f, Bu =0 and v(T) = vg. For the weight é&,(t) = '*=1) t € J, and Lim =
L2((t,T), L?) we obtain

Beyol2, + 3D o), < 3IAo(T) oo ol + 755 16,7125 - (216)

b) Let h,v € L2 (R, L2) with d;v, d3vsa € L2 (R, L3) for j € {0,1,2} satisfy
L°v = h and Bv = 0. We then have

% HUH%EW(R,LQ =~ 277] HhH ]R JL2) - (2'17>
The same estimate holds if we replace —v by ~y and L° by L.

PROOF. Assertion a) can be reduced to Lemma 2.5 as in step 1) of the
proof of Theorem 1.5. For b), we first show the addendum. For ¢t € R, as in
Lemma 2.5 and with L2 ; = L2(—o0,t) we derive

%HUH%%@ +3e M vt)llZz < 25 RlT2 12 < 77 I L2 - (2.18)

On the left we can drop the second summand and then let ¢ — oo using Fatou’s
lemma. Transforming ¢ — —t as in Theorem 1.5, estimate (2.17) follows from
(2.18). O

Also in the present setting the duality argument from Theorem 1.5 provides

a solution of (2.12) in L%@. However, the regularization argument does not

work anymore in x3. To obtain uniqueness and a continuous solution satisfying

the energy estimate, we first pass to a problem with ¢ € R so that we can use
regularization in ¢ instead. We set ||1)H§{1 = ||v\|%27_[1 + |0wl|22 2 -
¥ vtz ¥z

PROPOSITION 2.7. Let (2.11) be true for G = R3. with ||0;Ao|ccs || D]eo < 7.

a) Then we have a solution u € L*(J, L2) of (2.12).

b) Let v > ~g (r,n), see (2.14), and f € L2(R,L2). Then there is a function
u € L%(R, L2) N C(R, L2) satisfying Lu = f and Bu = 0. Let f also have
support in R>g. Then u solves (2.12) on J with ug = 0 and f, and it fulfills
(2.13) and (2.15).

PROOF. a) We proceed as in Theorem 1.5 and define for v € V = {v €
HU(T x R3) | Bv =0, v(T) =0} the functional

lo: LV 5 R (o(Lo0) = (v, fyz -+ (0(0), Ao(0)uo) 2.
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Estimate (2.16) with v = 43 (7, 1) shows that £y is well defined and that
[eo(L0) < [fllzz, ollcz, + [[A0(0)uollz [[0(0)l| 22 < ellL%0]l Lz -
As a result, ¢y can be extended to a functional on Lgm which in turn is rep-

resented by a function u € L?(J, L2) satisfying ¢o(L°v) = (L°v,u)p2 for all
v e Vi, ’

{0, frz, + (v(0), Ao(0)uo) 2 (2.19)
2 T
= (v, Du) Lz ;/ )-udxdt—/o s O3v - A3’udx dt.

First, for v € H{(J x R3) this formula yields
3
(v, f)pz, = (v, Duppz + Z<U7Ajaju>Hé(JxRi) = (0, Lu)aa(sxgs )
j=0

so that Lu = f in ’H;; Since f € L}, from (1.9) we deduce that d;u belongs
to L2H ! and from Lu = f that d3uy, is contained in Lis (Ry, HH(J x R?)).

In a second step, we take v = ¢vg for some vy € C°(RY) and ¢ € C*([0,77)
with ¢(0) =1 and ¢(T") = 0. Equation (2.19) now implies

(v, Lu}Lz + (vo, Ao(0)uo) 2

(v, Du)z +Z / Oy1(5)) 303 as) ds + (v, Ao(0)u(0)) 2

= (v, Lu)pz + <UO,A0( Ju(0)) 2.
As C(R3) is dense in H{(R2), it follows Ag(0)ug = Ap(0)u(0) in H, !, and so

u(0) = uo.
Finally, let v € C°(J x R? x R>q). Identity (2.19) then leads to

2 T
<U>LU>L§7I = <U7DU>L$@+Z<U7Ajaju>Hé(JxR2,L2(R+))—/0 » O3v- ASPu dx dt.
=0 +

We now choose v such that only vs # 0. Write I' = 9R3 = {z5 = 0}. Combined
with the identity

00 00
/ <83’U5, u1>L2(J><R2) dﬂ?g :/ <’U5, 83u1>Hé(J><R2)d:C3 -+ <tI‘[‘ Vs, tr[‘ u1>H(1](J><]R2)
0 0

the above equation in display yields (v, Lu) = (v, Lu)+(trr vs, trr u1) so that the
last term is equal to 0. Again by density we conclude trp u; = 0 in H~!(J x R?),
and similarly trpug = 0. Therefore u € L2(J, L2) solves (2.12).

b) 1) Let f € L%(R, L2) for a fixed v > ~; (r,n). We proceed as above on
the time interval R, setting V = {v € Hl_V(R x R%) | Bv = 0} and {o(L°v) =
<v,f)ng for v € V. We note that L2 is the dual of L?_ via the L®-scalar
product. Estimate (2.17) then implies that ¢y is welldefined and bounded. As
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in part a) we can then represent ¢y by a function u € L% (R, L2) and show that
Lu = f and Bu = 0.

2) Let Ry, be a mollifier in (¢, 21, 22) for n € N. Then R, /,u is an element
of ’H%(R x R?, L*(Ry)), and it satisfies BR; /,u = 0 and

LRiu=Rif+[Ay,R1]0mu+ [D,Rilu = fp. (2.20)

By Proposition 1.3 and dominated convergence, the functions fn tend to f in
L,QY(R, L?) as n — co. Moreover,

2
83A§ORLU = fn — ZAjajR;u— DRiu (2.21)
j=0
is contained in LE/L?E. So (Ry/pu)n is Cauchy in Cp L2 N L?/L?C by (2.18) and
(2.20). Since Ry/pu — u in L%Lg, we conclude that u belongs to C(R, L2) and
fulfills (2.18).
3) Let f have support in Rsq. Using (2.18) for u, we estimate

0 0
2 . 2 =
2 —2 2 2 2
/ [u(s)[|72 ds < / e luls)]l7z ds < W”JCHL%(RL%) < WHNL?,;

—oQ —0oQ
Letting v — oo, we infer that u vanishes for ¢ < 0. Inequality (2.18) then shows
(2.13) with ug = 0. Moreover, the functions R;/,u from step 2) satisfy the
energy equality (2.15) with ug = 0, and thus also u by approximation. ([l

The above proof also yields uniqueness of solutions to (2.12) even in Lix.

PROPOSITION 2.8. Assume that (2.11) is true for G = R3. Let u,v €
L2(J,L2) solve (2.12). Then u = v.

PROOF. The function w = u—v € L}, solves (2.12) with ug = 0 and f = 0.
Extend w by 0 to R. We then have w € H((0,T),H,') by (1.9) and Lw = 0
on (—o00,T"). Take times 0 < tg < t; < T and a function § € C°°(R) being 1
on (—o0,tg] and 0 on [t1,00). The map @ = fw has support in J and satisfies
L = 0/ Agw =: g € L?L2, where supp g C [to,t1]. As in parts 2) and 3) of the
proof of Proposition 2.7b), we then check that w = 0 on [0, ¢o] (using the weight
e~ 7(t=%0) and replacing the time 0 by to). Here ty < T is arbitrary. (|

As a final preliminary step we show the desired result if f = 0. Recall that
we have extended Ag and D to R.

LEMMA 2.9. Assume that (2.11) is true and f = 0. Then there is a unique
solution u € C(J,L2) of (2.12), and it satisfies (2.13) and (2.15) with f = 0.

PROOF. Proposition 2.7 provides a solution u € L7, on (0,T + 1).

1) First, let ug be 0 outside a compact set in ]R‘}r. Then extend it by 0 to R3.
Theorem 1.5 (and a backward version) yield a solution % € C(R, L2) of L& = 0
with @(0) = up. There is a time 7 > 0 such that @(t) is supported in R} for
all t € [—7, 7] due to the finite speed of propagation, see Theorem 1.7. So the
restriction v of @ to [—7, 7] x R3. solves (2.12) with f = 0. Proposition 2.8 shows
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that « = v on [0, 7], and hence u belongs to C([0,7], L2). We extend u by ﬂ|R§_
continuously to t < 0.

As in the proof of Proposition 2.7, we set u, = R /,u on [0, T] for a mollifier
in (t,21,72) = (t,2'). Then the functions u, € C(J,L2) tend to u in L?(J, L2)
and satisfy Bu, = 0, Lu, = f, — 0 in L?(J,L2) as well as (2.13) and (2.15)
on J. (See (2.20) and (2.21) and use Lemma 2.5.) Moreover, we have

1/n
un(oa x) = / / pl/n(_87x, - y/)u(sv ylami’)) dy/ ds
—1/n J B(z',1/n)

which tends to ug in L2 by the time continuity of u. For t € J and v = ’yaL , see
(2.14), estimate (2.13) then yields

ltn(t) = um (@72 < c(llun(0) = um(O)7z + lfn = Fmllzz ) — 0

for n,m — oo so that (u,) is Cauchy in C(J, L2). As a result, u belongs to this
space and fulfills (2.13) and (2.15) with f = 0.

2) Let ug € L2. Set uo,n = LK, up for compact sets K, C R‘i with U,y Kn =
R3 . Step 1) provides a map u,, € C(J, L2) with Lu,, = 0, Bu, = 0 and u,(0) =
uo,, which satisfies (2.13) and (2.15). This estimate then implies that (uy) is
Cauchy in C(J, L2), and hence the limit u has the asserted properties. ([l

We now obtain the basic linear well-posedness result in L2. (The additional
factor 2 could be avoided using R/, as above.)

THEOREM 2.10. Let (2.11) be true for G = R3 with ||0;Ao]|ccs | D]lec < 7.
Then there is a unique solution u € C(J,L2) of (2.12). It satisfies (2.15) and
(2.13) with a factor 2 on the right-hand side for v > ¢ (r,n) from (2.14).

PROOF. Uniqueness was shown in Corollary 2.6. Proposition 2.7 and
Lemma 2.9 provide functions v,w € C(J, L2) satisfying Lv = f, Bv = 0,
v(0) = 0, as well as Lw = 0, Bw = 0, w(0) = ug. Then u = v +w € C(J,L3?)
solves (2.12). Since v and w fulfill (2.13) and (2.15) for the respective data, the
last assertion also follows. O

2.3. The linear problem on R?i- in H3

On G = R3 we have reduced the wellposedness of the linear problem in H? to
that in L? by means of the transformation v — (I — A)3/2y. For the Maxwell
system on domains such a procedure does not seem to work anymore because of
the boundary condition (2.4). (See [32] for cases where one can proceed in such
a way also in the presence of (simpler) boundary conditions.) Instead we will
first derive apriori estimates for #3-solutions and then show by regularization
arguments that the L2-solution of Theorem 2.10 is actually an H3-solution if
the data satisfy natural assumptions.

In our reasoning we will mix space and time regularity so that we need the
same number of derivatives in space and in time. We thus look for solutions in
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G3(J x R3), where we set

m(J x Q) ﬂc’f S H™ R (G, RY)),

m
G"(J x G) = [ Wh(J,H™ (G, RY))
k=0
for m € Ny and an open bounded set G C R? with smooth boundary or G €
{R3,R3}. These spaces are endowed with their canonical norms. Sometimes
we only write G"™(T) if G is clear from the context and J = (0,7"). For the
coefficients we use

F™MJ x G)={AeWh*(J x G,R) |Va € Nj with 1 < |a| <m :
O*A € L>(J,L2)},

These spaces are endowed with their natural norms, and the same symbols also
denote spaces with different range spaces. The spaces H" = H™(G) are defined
as on R? after (1.18). As before, the subscript ‘sym’ means that the functions
take values in symmetric matrices, ‘n’ that they are bounded from below by nl
in addition, and ‘¥’ refers to norms with weight e=7*. To obtain solutions in G3,
we strengthen hypotheses (2.11) to

Ag,D € F3(J x G,R6*®), Ay =A) >nI >0, J=(0,T), (2.22)
Aj = AL for j € {1,2,3}, wuo e H"G,RE) =1k, feH (IxG,RE) =%,
Aol zs, 1D 75 < v [ 40(0) |2+ [1D(0) I3, 1185 A0 (0) |21, 8. D(0) |2+ < 7o
for all I € {1,2}, some k € {1,2, 3}, and constants r > 9 > 1. We note that the
product and inversion rules from Lemma 1.8 remain true on the present spatial
domain G and for g3, since G admits an extension operator and the additional
time derivatives can be treated bimila,rly, see §2 of [53] or §2.2 of [51].

If one has a solution u € C(J,HL) of (2.12), the initial value u(0) = ug must
satisfy the boundary condition Bug = 0 by continuity. If u even belongs to g3,
also u! = 9yu(0) and u? = 9?u(0) have to fulfill Bu/ = 0, where we put u" = ug.
In view of (2.12) and (2.22), the following (linear) compatibility conditions (of
order 3) are thus neccessary for the existence of a solution u € G3.

Bu? =0 for j€{0,1,2}, where:

3
= 49(0) ! [ £(0) = D(O)uo = S A;dju0] (2.23)
j=1

3
— Ap(0)! {at £(0) = 8,D(0)ug — D(OYu" — 9 Ag(0)u’ — Y Ajajul].

J=1

The function u? is defined analogously applying 02 to Lu = f. Assuming (2.22),
the product and inversion rules easily yield

1|55 < e(ro,m) (luollzgg + I1F Ol + -+ 10" FO)lppes)  (2:24)



2.3. The linear problem on R% in #3 41

for k€{1,2,3} and j€{0,...,k}, cf. Lemma 2.3 in [53| or Lemma 2.33 of [51].

We start with the apriori estimates for the time and tangential derivatives. We
write Hf, (J x G) for functions g € L}, with 8%g € L}, for all @ = (a, ..., a3) €
N§ with |a] <k and a3 = 0. Analogously, we define G,  and Hf,(G) = H:

ta,xr"

LEMMA 2.11. Let (2.22) be true for G = R3 and some k € {1,2,3}, where
we only require f € H,(J x G). Assume that u € GF(J x G) solves (2.12).
Then there exist constants :7k;+ = i,j(r, n) > g (rym), see (2.14), cz = cz(r, n)

and ¢y = ¢ o(ro,n) such that u satisfies
by, -+l < cbolluolidy + 17O + -+ 15~ F0)13)
+
P2, + i3
for all v > '7,:'

PrROOF. Take o € N§ with || < k and a3 = 0 and apply 9° to (2.12). We
then have BO®u = 0, 9%u(0) = 9(@1:22)y20 and

Lo*u=0"F— > (3)(0°A0* PO+ 0°Do* Pu). (2.25)
0<B<La

Combined with (2.24) and Lemma 1.8, the energy inequality (2.13) applied to
the above equation yields the assertion. O

The extra term involving u on the right-hand side will be absorbed below.
The above argument fails for the normal derivative J3 since 03 destroys the
boundary condition Bu = 0. However, the equation (2.12) directly allows to
bound Osut, in terms of u and dju for j € {0,1,2}. For instance, the first line
of (2.12) yields

O3Hy = O, H3 — (Aoﬁtu)l — (Du)1 + fi1. (2.26)
Here we mix space and time regularity which forces us to use the solution space
G3. The remaining derivatives dzug and dsug (and higher-order analogues) can
be treated using divcurl = 0. We stress that we do not employ boundary
conditions in these two steps.

PROPOSITION 2.12. Let (2.22) be true for G = R and some T' > 0 and
ke {1,2,3}. Let T € (0,T"] and u € G¥(J x G) solve (2.12). Then there exist
constants ;" = v (r,n, T') > 3,5 (r,n), see Lemma 2.11, C;f = C;f (r,n,T') and
C]:O = C];to(ro, n) such that

+ _
lulgs < (G + TCOTT (lluollzye + 1£(0) 52 + -+ + 10F~ £(0)]72)

(AN Yous
+ et T||f|;3{5 for all v > ;. (2.27)

PROOF. 1) Let k =1 and ¢t € [0,7]. To carry out the argument indicated
above, we first note that || Ag(t)||ree < ro-+7t since Ag(t) = Ag(0)+ [ D Ao(s) ds
and analogously for D and f. So (2.12) and Lemma 2.11 yield

103utallgyey < e(ro + Tl Oty aw)llgyy + 1/ (O] 2 (2.28)
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+osup [0, (51 d,
T7€[0,¢] JO

< c(ro +Tr)[[(u, Oray, s w)llgyey + £ 0Nz + F 10 f [l 22 0.0),L2)
< (co(ro,n) + Te(r,n)) (lluollzr + 11F(0)llz2) + %\/’;T)(Hf\hz;m(t) + [lullg:z)),

using also Young’s inequality. We next treat Osun, with un, = (us,ug). To
simplify notation, we assume in this proof that D = 0 and A4 = diag(a®, a™),
where a’ maps into R%X?’, and we write f = (f¢, f™). (Compare Proposition 3.3
in [53].) Equation (2.12) then leads to

O1(a°VE) = 8;a°V,E + a°V(a_t curl H + a_ ! f€)
= 0;a°V,E + a®Va, ' (curl H + £€) + Vo f¢ + Vy curl H
in H;1. The first two summands in the last line are denoted by A and are
bounded pointwise by ¢(r)(|Vzu| + |f]). Observe that the trace sp(V, curl H)

is equal to divcurl H = 0. Integrating in time, we thus obtain

t
a53(t)03E3(t) = sp(a®(0)VEp) — Z a5y (t) Ok E5(t) + /Sp(er + A)ds.
(k) £(3,3) 0
(2.29)
Let 0'u = (u, 01w, Oau, O3uts). Since af; > 1, as in (2.28) we derive

t
105 E3(8) |22 < c(ro, m)l[uolly + ™5 [10"u(t) | £z + C(T,n)/0 1(f(s), uls)) [l ds

Cc\T
< clro)lluollag + (eo(r) + te(r))e 'u(®)llgagey + \%evtmw

¢
+Cl(r)/ H(‘)guno(s)HL% ds, (2.30)
0

dropping the dependence on 7 in the constants. We now multiply this inequality
by e, and add the analogous one for d3H3 as well as Lemma 2.11 and (2.28).
It follows

e (u(t), Dezu(®))llzz < (e(ro)+Te(r)) (luollsey + 11£(0)122) + L2211 flla o

, t
+ L gy +l0) [ Ontan(o)lzz ds. (231)

Taking the supremum ¢ < #, we educe this estimate with ¢’ instead of ¢ and
||u|\g% () on the left-hand side. We now absorb the norm of u on the right-hand

side choosing sufficiently large 7. Going back to the form (2.31) of the estimate,
Gronwall’s inequality yields (2.27) for k = 1.

2) Let k = 3, the variant for £ = 2 is shown by a modification of the proof.
a) We first take a € N§ with |a| < 2 and a3 = 0. Equation (2.25) and
Lemma 1.8 show that Lo%u = f, with ”foz”%% LS c(r) (|]fHH§/ o Tl )-

Using also (2.24), we can bound 0%u(0) in H} by
c(ro)(luollzz + IF(O) 132 + 10:£ (0 l22 + 1107 f(0)|z2) = e(r0)ri(uo, f).
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Lemma 2.11 and (2.28) thus imply
lullgs, . + 1950 wrallgoqe) < (c(ro) + Te(r))r(uo, £) + X2 (| fllpgs ,, + llullgs).
We next employ (2.30) with 0%u and f, instead of u and f. Using also the
above estimates, we derive (2.31) for 9%u and f, replacing ||u|]g%(t) by ||u||g§(t)
on the right. Note that we still work with L and so the constant ¢1(r) in (2.30)
is unchanged. Gronwall’s inquality thus implies (2.27) for £ = 3 up to the term
c(r, T")y~tecr (M)t ||u|]é3 on the right-hand side, if restrict ourselves to derivatives
of w and f with as Svl.
b) In a next step, in a) we choose a with || < 2 and a3 = 1. Proceeding as
in step a) and using it, we first obtain

lullgs, (1) + 10sullgz, ) + HagutaHggM(t)
< (c(ro)+Te(r)e™ M re(uo, £) + 2210 a2, + e O fllges .+ lullgs)]-

In (2.30) we now insert 030i,u and 03 f with j € {0,1,2}. As in (2.31), we
derive from the above estimate and Gronwall’s inquality the assertion up to the
error term for all derivatives except 85’ and k = 2 in the exponent. The step for
93 can be performed analogously. Finally we absorb c(r,T")y~? Hu||é§ by the

left-hand side, choosing large v > 3 (r,n,T"). O

Using the above estimate, we now show in several steps that the solution
u € GO(J) of (2.12) given by Theorem 2.10 actually belongs to G3(J) if (2.22)
is true with k = 3. For k = 1, we first show that u € C'(J, L2) by solving
an equation formally satisfied by dyu. In this step, we need the compatibility
condition to obtain time regularity. The tangential regularity is then derived by
means of mollifiers as in Proposition 2.7. The normal regularity finally follows
from (2.12) and (2.29).

LEMMA 2.13. Let (2.22) be true for G =R3 and k =1, and let u € G°(J x G)
solve (2.12). Assume that Bug = 0. Then u belongs to C*(J, L?).

PROOF. 1) Define u! € L2 as in (2.23). We look for v € C(J, L2) solving

3
L'v:= Z Ajaj’l) + (D + 8tA0)1} =0 f — 0D (uo + V(t)), t>0, xze Ri,
j=0
Bv=0, t>0,z¢edR], (2.32)

v(0) = u', reR3,

where we have set V(t) = fg v(s)ds. If we already knew that u belonged
to C1(J,L2), then v = dyu would satisfy (2.32). However, we can solve this
problem directly using a simple fixed-point argument. Indeed, take w € G°(.J)
and replace v by w on the right-hand side of the evolution equation in (2.32).
Theorem 2.10 then yields a solution v € G°(J) of the resulting problem. For
v > 74 and ¢ = ¢(r,n), we further obtain

— Y17 2 ey
lo=lge < £IW = WliZ2 s < 5 lw — w3,
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where ¥ € GY(J) solves (2.32) for w € G°(J) instead of v on the right. Fixing a
large 7, we obtain a unique fixed point v € G°(.J) solving (2.32).

2) The function w = ug+V € C*(J, L2) satisfies w(0) = up and Bw = 0 due
to the compatibility condition Bug = 0. Observe that dyv € L?H, ' by (2.32)
and hence

t
Ao(t)v(t) = Ag(0)u! + /0 (9 Ao(s)v(s) + Ao(s)O(s))) ds
in H,! for t € [0, T]. Similarly, we have
D(t)w(t) = D(0)ug + /0 (0:D(s)w(s) + D(s)v(s)) ds.

These identities, (2.32) and (2.23) imply

3
Lw(t) = (Aov)(t) + > AS0;(ug + V(1)) + D(t)w(t)
Jj=1

3 t
= Ao(0)u' + 3 AOu0 + D(O)uo + /O (L'o(s) + 8, D(s)w(s)) ds

7j=1
t
=50+ [ (s ds = f(0).
0
The uniqueness statement of Theorem 2.10 now yields u = w € C1(J,L2). O

LEMMA 2.14. Let (2.22) be true for G =R3 and k =1, and letu € C'(J, L2)
solve (2.12). Then u belongs to C(J, M, ).

PROOF. Let Ry, be a mollifier with respect to (x1,x2) and set u, = Ry /nu
for n € N. This function belongs to C(J,H{, ,) N C'(J,L3) and tends to u in
C(J,L2) by the properties of u. As in (2.20), we have BR;/,u =0 and

Luy, = R1f + [Ao, R1|0wu+ [D, Rilu = fp.

Hence, 03A5°u,, is contained in Lix. We can thus apply 0; for j € {1,2} to
Lu,, = f, resulting in

Lajun = R; (@f — ajAoatu — 8jDu) -+ [A(), Rl]ajatu + [D, Rl]aju = (n.
In view of the regularity of u and the data, Proposition 1.3 implies that g, tends
to 9 f — 0jAoOyu — 0jDu in L7, and dju,(0) to Ojug in L2 as n — oo. Hence,
(Ojun)n is Cauchy in C(J, L2) by (2.13). This means that (u,) converges to u
in C(J, Hi, ) O

The next lemma on normal regularity does not involve boundary conditions.
If Bu = 0, then u satisfies its regularity assumptions thanks to the previous
lemmas.

LEMMA 2.15. Let (2.22) be true for G = R3 and k = 1. Assume that u €
CYJ,L2)NC(J, Hi, ) solves Lu = f. Then u belongs to G'(J).
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PROOF. Observe that O3uy, is contained in C(J, L2) by (2.26) and the as-
sumptions. We want to regularize u in x3-direction and then use (2.30) to
pass to the limit. To this end, we simplify a bit and restrict ourselves to the
special case Ay = diag(a®,a™) as in the proof of Proposition 2.12. More im-
portantly, for technical reasons we shift the functions on ]Ri downwards by
Ssv(z) = v(a', 23 + 6) for & = (2/,23) € R with 23 > —§ and § > 0. This de-
stroys the boundary condition, which is not needed fortunately. We then extend
the function Ssv by 0 to R? and apply the mollifier R, /n i 3. Afterwards we
will restrict to x € Ri’_ again. This allows us to justify the calculations below,
see the proof of Lemma 4.1 in [53] for the details.

We write us = Ssu, fs = Ssf, and Lg for the operator with shifted coefficients
SsAo and S;D. One has Lsus = f5, and hence O3usy, is contained in CyL2. We
compute

LsRius = Ri fs + [S5A0, R1|0sus + [SsD, R1]us = gsn

for n € N and § > 0 with % < 6. Then Ry/,us belongs to GH(J x Ri), 9sn
tends to fs in H%x as n — oo, and ug,n = Ry/p,Ssup to Ssup in H! by our
assumptions and Proposition 1.3. We can now derive the analogue of formula
(2.29) for Rius as before. As in (2.30) it follows

103(R1 — R1)Ssuno(t)|rz < ¢ |:||ug,n —udlr + I(R1 — R1) Ssullgoe)

t

+lgin=gamlag, [+ ¢ 105(Ry ~ R 1) Ssunol 3.
where up, = (us,ug) and du = (Ayu, dou, A3ut,). In view of the above com-
ments, the terms in brackets tend to 0 as n, m — oo, and hence the same is true

for the left-hand side due to Gronwall’s inequality.
As (Ry/,,S5uno)n has the limit Ssuy, in G, we infer that 05Ss5une = S503Une
is an element of G%(J x R3). The strong continuity of (Ss)s on L*(R3) then
implies that also Jsuno belongs to QO(J X RE’;), so that u is an element of G*. [

We can now show the linear wellposedness result in #3(R3).

THEOREM 2.16. Let (2.22) be true for G = RY and k = 3. Assume that
the compatibility conditions (2.23) hold. Then there is a unique solution u €
G3(J x R3) of (2.12). It satisfies (2.27).

PROOF. 1) Theorem 2.10 provides a unique solution u in G°(J). If we
can prove that u belongs to G3(.J), then it satisfies (2.27) by Proposition 2.12.
Lemmas 2.13, 2.14 and 2.15 already show that u is an element of Gt

2) For the iteration steps, we also assume that d;Ag € F3(J). Let L be the
operator with D = D + §;Ag € F3(J) instead of D. We then have d;u e G°(.J),
Bowu =0, and

Loju=0,f —0Du=f € Hi,.
As 9;u(0) = u' € H! and Bu' = 0 by (2.24) and (2.23), step 1) yields dyu € G*.

Due to this regularity, Ldju = 9;f — 8;Agdyu — 8;Du =: f; belongs to H
and we have 9;u(0) = djup € HL for j € {1,2,3}. If j # 3 also the boundary



2.3. The linear problem on R% in #3 46

conditions BOju = 0 are preserved. Lemmas 2.14 and 2.15 thus show that 0;u
is an element of C(J,H}) for j = {1,2}. In particular, d3u is contained in
CYJ,L2)nC(J, H{, ), and hence in G'(J) due to Lemma 2.15 and f3, d3ug €
H'. Therefore u belongs to G2(J).

3) To show u € G3(.J), we proceed similarly as in step 2), writing L for the
operator with D replaced by D = D + 28, A € F3(J). Because of step 2) and
the assumption on Ag, the function 9?u € G°(J) satisfies

Lo}u = 0} f — 0} Aodyu — 0} Du — 20,DOyu € Hj,

and B&?u = 0. Starting from Ldyu = f and du(0) = u', we compute
3
82u(0) = Ag(0)~! [at £(0) =9, D(0)ug — D(0)u' — 3, Ap(0)u' =3 Ajajul] — 2,
j=1

see (2.23). Using also (2.24), we infer u? € H. and Bu? = 0. So d?u belongs to
G1(J) by step 1).

We next look at d;;u € G°(J) for j € {1,2,3}. By the above established
properties of u and the regularity of Ag, the map

Eﬁjtu = 8jtf — 8jA08t2u — 8th08tu — Gthu — 8tD8ju — 8jDat’U,

is an element of Hj, and 9;u(0) = d;u’ of H}. Because of Bdju = 0 and
Boju' = 0 if j # 3, step 1) yields 9;;u € G*(J) in this case. As in step 2), du
thus belongs to C(J,H2) by Lemma 2.15.

Finally, we treat d;,u € G°(J) for j, k € {1,2,3}. Again the right-hand side

Lajku = 8]kf — 8jkA08tu - @Ag(‘?ktu — 8kA08jtu - 6jkDu - 8]D8ku - 8kD8Ju

is contained in Htl,x and 9;;u(0) = d;xup in Hi. For j,k < 2, we deduce that
djru € G'(J) again from step 1). Hence, dj3u belongs to C'(J, L2)NC(J, Hi, )
and thus to G!(J) by Lemma 2.15. The remaining property dssu € C(J,HL) is
shown analogously.

4) We still have to remove the extra assumption 0;Ag € F3(J). To this end,
one has to regularize Ay and to approximate ug in H> so that the compatibility

conditions (2.23) remain valid. This technical step is omitted, see Lemma 4.8
in [53]. O

As in Remarks 1.11 and 1.12, we list variants of the above theorem, which
can be shown analogously.

REMARK 2.17. Theorem 2.16 remains valid if we replace in (2.22) the differ-
entiation order 3 by m € N throughout, and impose corresponding variants of
the compatibility conditions (2.23). If m = 2, the second-order derivatives of
Ay also have to belong to L{°L3. On the other hand, in (2.11) we can replace
F3 = F3(JIxRY) by F3, = F34+ W/ and H2 = H2(RY) by HZ, = H2+ W2,
We use this notation below also for other domains G. O
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°7e 3
2.4. The quasilinear problem on R}

We now treat the nonlinear Maxwell system

3
ag(u)dpu + > APhu+duu=f, t>0, z€G,
j=1
Bu=FExv=0, t>0, z€dG, (2.33)
u(0) =up, x€G.
on G = R:i under the hypothesis

ag,d € C3(G x RS, R6%6), ap = ag >nl,

Vr>0: sup max [0yag oo, [|105d(, &) || Lo < o0,
sup s 70008 174 €)

up € H*(G,R), VT >0:feH0,T)xGR)=H; (), (2.34)
p° > luoll3s + Hf\\igw L O)1F2 + 10f(0) 5 + 107 £(0)]72-

We state a version of Lemma 1.14 on G in the framework of G2 and F3. The
proof is similar and thus omitted, see §2 of [52] or §7.1 in [51].

LEMMA 2.18. Let a be as in (2.34) and v > 0.

a) Let v € G3(J) with ||v]joc < 7. Then |a(v )||Fm < k(r)(1+ Hvﬂégu)).
b) Let v,w€G2(J) with norm < r. Then ||a(v)—a(w )Hgg(J)§/<(r)||v—ng3(J)
c) Let vg € H2 with |Jvg|lee < 0. Then HG(UO)HﬁgQ < ko(ro)(1+ ”1)0“3_[%)
d) Let vo, wo € H2 with norm <rqo. Then Ha(vo)—a(wo)HH% < no(ro)Hvo—ongﬁ.

We need a nonlinear variant of the compatibility conditions (2.23), derived
similarly:

3
Bu/ =0 for j € {0,1,2}, u':=ag(up)™* (f(O) — d(ug)ug — ZAjaju()),
j=1
u? = ap(up) ! <atf(0) — Oeag(uo)[u', u'] — d(ug)u' — ded(ug)[u', ug] (2.35)
3

- Z Ajc‘)jul) s
j=1

where u® = wg and the derivatives in ¢ € RS act on the vectors in brackets
bilinearly. We set v/ =: Sj(ug, f, ag,d). Lemma 2.18 (and analogous versions for
O¢ag and Og¢d) imply that S; satisfy estimates as in (2.24) and related Lipschitz
bounds, see Lemma 2.4 in [52] or Lemma 7.7 in [51].

We now state the local wellposedness result on G = Ri, using the data
manifold

Dragdl(o, £)7) = { (w0, ) EHEXHEL(T) | JuolBa +1If I3 < 1, (2.35) true}.

0

It is endowed with the metric of H3 x H} (') unless something else is stated.
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THEOREM 2.19. Let (2.34) and (2.35) hold with G = R3. The following
assertions are true.

a) There is a mazimal existence time T4 = T4 (ug, f) € (To(p), <] and a
unique (mazimal) solution u = W(ug, f) € G3([0,T4)) of (2.33). (For Ty(p) see
the proof.)

b) Let Ty < 0. Then limyr, [u(t) g = o0 and supyg, [u(®) .= = .

c) Let T € [0,T4). Then there is a radius 6 > 0 such that for all (vo,g)
in Dr.ay.a((uo, f),8) we have Ty (vo, f) > T and ¥ : Dr((ug, f),8) = G3(T) is
continuous. Moreover, ¥ : (Dr((uo, f),6), I3z x22 (1)) = G*(T) is Lipschitz.

PROOF. The arguments are only sketched, see [53] for full proofs in a more
general setting. As a fixed-point space we employ

g(R, T) = {0693’@]) } Hv”g3f(‘]) SR, 8§v(0):Sj(u0,f, ao,d), j c {O, 1,2}}.

One can check as before that this set is complete for the metric induced by the
norm of G(T). (Compared to Lemma 1.15, we need the time derivatives in the
norm because of the new initial conditions.) It is now more difficult to show
that £(R,T) is non-empty for sufficiently large R, see Lemma 2.6 in [53|. For
v € E(R,T) one sets Ay = ap(v) and D = d(v) with a corresponding linear
operator L(v). Observe that the nonlinear compatibility conditions (2.35) for
ap and d coincide with the linear ones (2.23) for Ag and D because of the initial
conditions in £(R,T).

We then choose R, v and Ty depending on p as in Lemma 1.16. Here we have
also to control first and second time derivatives of Ag and D at t = 0 since these
bounds enter the higher-order energy estimate (2.27) via (2.22). Theorem 2.16
(and Remark 2.17) now yield a unique solution u = ®(v) € G3(Tp) of L(v) = f
with Bu = 0 and u(0) = ug. The constants are arranged so that [ju|gs < R
and @ is strictly contractive. The compatibility conditions of this equation also
imply that u belongs to £(R,Tp). So we have solved (2.33) on [0, Tp).

The proofs of Lemma 1.17 as well as of assertion a) and the first part of b) of
Theorem 1.19 follow a general pattern so that these arguments and statements
can easily be extended to the present situation. The second part of assertion b)
is more involved. One proceeds as in the proof of Theorem 1.19 and estimates
Oz u in terms of the data and w = sup;,., ”u(t)HW%,oo. This works as before if
a3 = 0. Using the resulting inequality in this case, one then follows the iteration
steps of the proof of Theorem 2.16. The analogous difficulty occurs in the core
step 3) of the proof of Theorem 1.19 ¢), the other steps do not change much. O

We discuss variants of the above theorem in Remark 2.23 in greater generality.

2.5. The main wellposedness result

We now treat the Maxwell system on an open and bounded set G C R? with
a smooth boundary. Again we first look at the linear problem

3
Lu:ZAjaju—i-Du:f, t>0, z G,
7=0
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Bu=Exv=0, t>0,z¢dq, (2.36)
u(0) =uy, x€G,

assuming hypothesis (2.22), and the nonlinear system (2.33) under asumption
(2.34). We further assume the compatibility conditions (2.23) respectively (2.35)
on (G are satisfied.

Below we state the wellposedness theorems on the spatial domain G. We
cannot give full proofs (since they are too lengthy and technical), but rather
explain main features and differences to the case G = Ri. We start with the
localization procedure which is the core point.

Localization. In principle, we follow a standard localization procedure.
One covers 0G by finitely many charts ¢; : U; — V; and adds another open
set Uy with Uy C G so that Uy, Uy, ...,Un cover G. Let ¢y : Uy — Uy be
the identity, {6o,---,0n} be a smooth partition of unity for this cover and
Vit = {z € V;|zs > 0} be the range ¢;(U; N G) for i > 1, where we put
Vit ={z €V;|z3>0}. Set ¢y = ¢; ! and ®; : L2(U;) — L2(V;); ®ju = u oy,
with inverse @Z-_lv =vo ;.

First, let u solve (2.22). One looks at the transformed function ®;(0;u) €
L2(J x V7). After extension by 0, the map ®¢(fpu) solves the original problem
(1.8) on R3. For i > 1 and v € L*(J x V"), we compute

3
Liv = 0;L0; v = ¥, (Ao(atv) o p; + Z A5°0j(vow;) + Dvo %’)
j=1

3 3
= ®;Ag0v + ©;Dv + Z A;O(I)i ( Z (Okv) © @ ]sz k)
j=1 k=1
3 3
= q)iAoatU + ®;D + Z <Z Aﬁoq)i(ajcpi,k))akv
k=1 j=1

3
= Z AL dpv + Do, (2.37)
k=0

where (; 1 is the k-th component of ;. Note that fl}c is symmetric and [16 >nl.

One can check that there is a constant 7 > 0 and for each ¢ > 1 an index
k(i) € {1,2,3} such that |Oyu)wi3| > 7 on U;, see Lemma 5.1 in [51].
simplify, we only look at the case that k(i) = 3 and J3p; 3 > 7. Since U; N 0G
equals U == {x € U;|p;3(z) = 0}, the vector V; 3(x) is orthogonal to OU?
at x and hence given by Vy; 3(z) = —k;(x)v(x) for the smooth function x; =
—v-Vp;3. On UZ-0 the boundary condition Bu = E X v = 0 thus is equivalent to
kiBu = k;E x v = 0. Using this reformulation, the transformation then yields
the new boundary condition

B'v = ®;(k;B®; 'v) = &;(k; B)v

on VZ-JF. The coefficients fl;-, D', and B’ are extended to Ri or its closure keeping
their properties. (This extension is omitted below, cf. Chapter 5 of [51].)
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The matrices fl; for j € {1,2,3} and B’ now depend (smoothly) on the space
variable z. Moreover, fl;- has twelve instead of four non-zero entries, whereas

B still has just two of them. For instance, we have

_ 0 _gi y 0 —®i03piz  Pibapis
As = <§z’ 0 3> 5 S; = | ®i03¢i3 0 —®;01pi3
3 —Dibhpiz  Pidipis 0

In the calculations of this chapter, these changes lead to plenty of additional
commutators, which are partly hard to control and which make the iteration
arguments much more complicated. Even worse is the change from A5° to flé
since the form of A5° plays a crucial role in the above treatment of normal
regularity. It is not clear how to extend the corresponding arguments to the
transformed operator.

Instead, one passes to the function v = R; 1®,;(0;u) for invertible matrices
Ri(z) = diag(R;(x), Ri(x)) that are defined using ;. Let L’ be the operator
on R} with coefficients A% = R AiR; and D' = RI D'R; — Y°?_, A19;R; 'R
and set B' = R} B'R; as well as v}, = R;'®;(0;u). We then infer v*(0) = v},
Biv' =0, and

L' —ZA’ R;1®,(0;u)) + R} D'®;(6;u) ZA%?R Lo, (0;u)
7=1

= Z R AL9;®;(0u) + R} D'®;(0;u) = R L'®;(0;u)
j=0

3
= RI(DZ(L(Hlu)) = R:@Z(sz) + RZT(I%’ ( ZAjoé?ﬂzu) = fz(f, u)

j=1
We now choose R} so that A{ = AS® and B® = B, namely

1 1 0 @01pi3
0 1 @003

Vi3 \0 0 P;050;5

A computation shows R;F gg]:?l = S3, and hence RZT flgRi = A5°. We write
B = (Bj 03x3) and recall that B1E = E x v = — Z v;S;E. Tt follows

RZ' = diag(Ri, Rl) with RZ =

®;(k;B1) = ZCDZ KiV;)S; —Z@ i ©i3)S; —5’3

Therefore we obtain B = R;rBiRi = B,

We only sketch the remaining steps, see Chapter 5 of [51] for details. One
can check that the new coefficients and data satisfy hypothesis (2.22) with A{°
and AS° replaced by A}, A} € fgym and the compatibility conditions (2.23) on
G = Ri. Moreover, the relevant norms of the transformed functions on Ri
are bounded by a constant ¢(G) times the same norms of the corresponding

functions on G.
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So the apriori estimates of Theorems 2.16 and 1.9 for v’ on ]R‘j_ respectively
Oou on R3 yield analogous inequalities for « on G. This also shows uniqueness of
solutions. To construct a solution, one solves the transformed problems on Vfr
and Vj and glues the solutions together. For this, we need another set of cut-off
functions o; € C°(U;) which are 1 on the support of ;. We have included the
original solution u into f* to compensate for error terms with 6; when deriving
the transformed system. This forces us to set up a fixed-point argument on the
space of functions v in G3(J x G) which satisfy 8/v(0) = v/ for j = {0,1,2} and
u’ from (2.23) given by the data. The fixed point then solves the problem.

Main wellposedness results. Besides Theorem 1.9 on R?, the above rea-
soning requires a variant of Theorem 2.16 on R for the modified coefficients A}
and A%, where A} and D have the same properties as before and A3 = AS® and
B = B do not change. This modification has quite unexpected consequences,
as many estimates and iteration arguments become much more involved since
the additional commutators intertwine our three steps (time, tangential and
normal regularity) to a larger extent. However, with some effort these problems
can be solved.

We first state the linear wellposedness result for L2-solutions which follows
by localization from Theorem 2.10. The result is surely older, but it is also a
special case of the more general Theorem 1.4 of [19], which is actually devoted to
boundary regularity. (The validity of (2.15) in this case is derived in Lemma 4.2
of [34] based on [53].)

THEOREM 2.20. Assume that (2.11) is true for G with ||0;Ao||co, || D]|co < 7.

Then there is a unique solution u € C(J,L2) of (2.36), and it satisfies (2.15)
on G as well as (2.13) with a factor 2 on the right-hand side.

Theorem 1.1 of [53] yields the linear wellposedness theorem in G3(J x G).

THEOREM 2.21. Let (2.22) be true for k = 3 and the compatibility conditions
(2.23) hold. Then there is a unique solution u € G3(J x G) of (2.36). It satisfies
(2.27) on G.

Remark 2.17 remains valid on G (after replacing Ri by G). The first part of
the proof of the quasilinear result on G is close to that of Theorem 2.19 on Ri,
now based on Theorem 2.21. In Theorem 2.19 for G = Ri, when proving the
blow-up condition in Wa> and of the continuous dependence on data, we have
omitted steps in which arguments from the derivation of the apriori estimate are
extended to the nonlinear level. On G the procedure is even more involved since
one has to perform the localization procedure also for the nonlinear problem.
So we skip these arguments, too. The following local wellposedness result is
proved in Theorem 5.3 of [52]. We use the notation from Theorem 2.19.

THEOREM 2.22. Let (2.34) and the compatibility conditions (2.35) hold. Then
the following assertions are true.

a) There is a mazimal existence time Ty = T4 (ug, f) € (To(p),o0] and a
unique (mazximal) solution u = U(ug, f) € G3([0,T4)) of (2.33).

b) Let Ty < oo. Then limy7, [[u(t)|lys = oo and sup,.p, |u(?) 0.

||W11’°° =
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c) Let T € [0,T4). Then there is a radius & > 0 such that for all (vo,g)
in Dr.ay.a((uo, f),8) we have Ty (vo, f) > T and ¥ : Dr((ug, f),8) — G3(T) is
continuous. Moreover, ¥ : (Dr((uo, [),6), I ll22 22 , (1)) = GX(T) is Lipschitz.

Example 1.21 directly carries over from R3 to G. In Theorem 5.3 of [52] more
general results were shown which we sketch below, cf. Remark 1.20.

REMARK 2.23. a) In [52] one allows for unbounded domains G having a
‘uniformly smooth’ boundary (e.g. a compact, smooth one). Theorem 5.3 in
[62] actually deals with solutions on an interval (7,7 ) containing 0.

b) One also obtains solutions in G™ for data in H™ or C™ with m > 3 and
m € N, assuming higher-oder compatibility conditions.

¢) One can admit nonlinearities ap and d taking values in an open subset
U C RS. The necessary modifications are like those described in Remark 1.20.

d) Also boundary data Bu = g from the space (., HI(J, Hm+%7]’(G)) can
be included. The corresponding linear result in G%(J) is taken from [19] where
it is assumed that the coeflicients are constant outside a compact set. This leads
to a restriction on ag and d in [52|: They have to converge if |z| — oo (if G is
unbounded).

e) For the linear system on G , [51, 52| show finite speed of propagation. ¢

The local wellposedness theory for general hyperbolic systems would require
much more regularity for the above theorem, see [26] or [49]. In [48] we establish
results analogous to Theorem 2.22 for corresponding interface problems, and in
[47] for so-called absorbing boundary conditions. For these, in [42] an existence
result was proven (without uniqueness or continuous dependence on data).



CHAPTER 3

Exponential decay caused by conductivity

In this last chapter we use the wellposedness Theorem 2.22 to show global
existence and exponential decay to 0 for small initial data in the presence of
a strictly positive conductivity o. The result is taken from [34]. Its proof is
based on a standard procedure for quasilinear problems, going back to [37] at
least. Besides local wellposedness, it uses the energy estimates for Ofu with
k € {0,1,2,3} including the dissipation terms ||01/28tkE(t)||%2. One further
needs an observability-type estimate for the time-differentiated linear problem
(inspired by [20] in our case) to control the norms of dfu in HZ~* by the
dissipation terms, globally in time. This can only be done up to error terms
which are small, but only in the stronger topology of G3. Astonishingly, a
variant of the apriori estimates from Chapter 2 allows us to bound space by time
derivatives, again globally in time. Our presentation is based on our paper [34].
We also show results on Helmholtz decompositions on G following Section X1.1
in [16], which are used in the derivation of the observability-type estimate.

3.1. Introduction and theorem on decay

We study the special case of the Maxwell system (1.1) given by

O (E(E)E) =curlH — oF, t>0, x €@,
O (W(H)H) = —curl E, t>0, z €@, (3.1)
tria. & =F xv =0, t>0, xel,
E(0) = Ey, H(0)= Hy, x € G,

on an open, bounded, simply connected domain G C R3 with smooth boundary
0G =T. As before, we also use the equivalent version

eY(E))E = curl H — oE, t>0, z€q,
pd(H)9,H = — curl E, t>0, €@, (3.2)
tria F =FE xv =0, t>0, xel,
E(0) = Ey, H(0) = H,, zeQq,

for energy estimates, with the differentiated coefficients

3
ed(-, &) =e(-,6) + (Z 8§k5jl(-,§)§l> . 1t analogously defined.
=1 J
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We modify our assumptions (2.34) and impose the hypothesis
€, W, €d7 )uda o€ 03(5 X Rgv RS;IE),

o> 77-[ > 07 8('70))/1’('70)75(1("0)7Md("0) > 277] on Gv

thus assuming that o is uniformly positive definite. The material laws in Ex-
ample 1.21 on G fulfill the above condititions for £ and p. By continuity, we
can fix a constant k > 0 such that

6(75)7“(75)7€d(7§)7ud(?§) 277 if ‘§| < 2k. (34)

The initial fields shall also satisfy the magnetic divergence and boundary
conditions now. Together with the simple connectedness of G, these conditions
exclude non-zero Hy in the kernel of curl, see 77 for the case p = 1, which would

produce a constant-in-time solution (E, H) = (0, Hp) of our system (3.1). Let
Cs be the norm of the Sobolev embedding H2(G) < L>®(G). We assume

Ey, Hy € H3(G,R?), ||E0||3{g + HHOH%; <7r?,  where r < k/Cs, (3.5)
div(u(Ho)Ho) = 0,  troo(u(Ho)Ho) =0, trya Eg = trya B = try B = 0,
El = Ed(E())_l[CuI‘I Hy — 0 Ey), H' := —pd(Hp) ! curl Ey,

E? = eY(By) ' [cwl H' — 0E' — (Vpe!(Eo)E") - BY].

Note that the initial data are bounded by k. In view of (3.4), Theorem 2.22
and Remark 2.23 provide a unique local solution u = (E, H) € G3(J) of (3.1)
with a maximal existence time Ty = T (Ey, Hy) and Jy = [0,7%). Moreover,
(1.2) and Lemma 2.4 show

div (u(H(t))H(t)) =0,  troo(u(H(t))H(t)) =0, (3.6)
div (=(E(1))E(t)) = div (=(Eo) Eo) — /0 div (0E(s))ds  (3.7)

for t € J;. We state the decay result for small data, see Theorem 2.2 in [34].

THEOREM 3.1. Let (3.3) and (3.5) hold. Then there exist a radius r > 0 in
(3.5) and numbers M,w > 0 such that T'y (Ey, Hy) = oo and

OF(E(), H®))||s-r < Me™ vt I t>0.
ke?lofli?;ﬁ}ut( (), H(t))ll33-+ < Me for all t >

(3.3)

The theorem is proved at the end of Section 3.3. In [43] we prove such a
result for boundary damping H x v + (((E x v)) x v = 0 with {(z) > 7 on
0G, where G is strictly starlike. These theorems are the first decay results for
quasilinear Maxwell systems on domains. On R? one has global existence for
small data and certain material laws exploiting dispersive estimates, see §11.6
of [44] (with polynomial decay), [35] or [50]. In [6] convergence to equilibria is
shown for a class of hyperbolic systems with damping on R™ (not including the
Maxwell system).

There are some decay results for linear Maxwell systems with conductivity. In
[21], [33], [38] and [41], for instance, isotropic constitutive relations and (semi-
linear) strictly positive conductivity were considered, whereas matrix-valued
coefficients were investigated only recently in [20], see also [18] for related re-
sults on boundary obervability. Partially positive conductivities were treated in
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[39] in some cases, as well as in [41] for constant &, > 0 and in [20] without
decay rates.

We discuss the background of the proof which employs time-differentiated
versions of (3.1). For the sake of brevity, we set

_ [«B), k=0 | wH), k=0,
6k_'{sdum, ke {1,2,3}, “k_’{udaqy ke {1,2,3}. (38)

For k € {0,1,2,3}, we then obtain the system

O1(ExOFE) = curl OF H — 6OF E — 0, fr., teJ,, zeG,
O (ixdF H) = — curl OF E — dygy, teJy, z e, (3.9)
tTiq 8fE =0, trno(ﬂkﬁfH) = —tTno ks teJy, x el

with the commutator terms
fo=fi=0, fo=0cYE)QE, f;3=0{<"(E)OE + 20, (E) O{E,
Ggo=g =0, go=0u (H)OH, g3=20*u(H)0H +20,u(H)?H.
Note that the electric boundary condition remains unchanged. The magnetic
one is well-defined in H~1/2 (T") by Theorem 2.1 and the divergence relations
div(ud(H)OFH) = —divg,,  div(e}(E)OFE) = — div(cdF 1 E+fi), (3.11)

which follow from (3.6) and from (3.7) for k € {1,2,3}. Estimate (3.16) below
shows that all maps 04 fx, Orgx, div fi, div gz belong to L>(J, L*(G)) for T < T
For the energy estimate, it is useful to consider the equivalent version of (3.9)

(3.10)

eY(E)00FE = curlOF H — 00FE — f, teJg, 2 €@,
pd(H) 0,08 H = — curl OF E — gy, telJ,, zeq, (3.12)
tri OFE = 0, telJy, zel,
for k € {0,1,2,3}, which is based on (3.2) and has the new commutator terms
k k
=X (Damaroe o= (oo n,
=1 =1

where we put fo = o = 0. We further introduce the quantities

~1/2 75 ~1/2 47
er(t) = 3 max, (50 BOIE, + 13 HOIT), e =es
di(t) = max o' 2O E@Z  d=ds, (3.13)
ar(t) = max (1] B3 + 10/HO), 2=,

for k € {0,1,2,3} and t € J;. The choice of weights simplifies some estimates
below. Here e is related to energy and dj to dissipation. We stress that dy
only contains the electric field and that di and e only involve time derivatives,
in contrast to zg.

To control the norms of (F,H) and the above quantities, we set 0y =
min{1,x/Cs} and take 6 € (0,dp], to be fixed in the proof of Theorem 3.1.
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Theorem 2.22 then yields a radius 7(6) € (0, ] such that for all » € (0,r(d)] and
(Eo, Hp) as in (3.5) we have T, > 1 and z(t) < 62 for t € [0,1]. Given such
(Eo, Hy), we now introduce the final time

T.(Eo, Ho) = T = sup {T € [1,T4) |Vt € [0,T] : 2(t) < 6°}. (3.14)
The blow-up condition in Theorem 2.22 implies that Ty > T, and hence
AT%) = max, (107 BT 135 + 0P H(TL) 3 5-0) = 82 (if T < 00) (3.15)

by continuity. We will suppose that T, < oco. For sufficiently small § > 0
(and thus 7 > 0), below we then show that z(7.) < 62. This contradiction to
(3.15) then establishes Ty = oo. The exponential decay in Theorem 3.1 will be
a by-product of this argument, see the end of Section 3.3.

In the following we always look at solutions with data (Ey, Hy) as in (3.5)
for some r € (0,7(d)] and a corresponding solution v = (E,H) of (3.1) on
J« = [0,T,), which thus satisfies z(t) < 62 < 1 for all ¢ € J,. The constants c,
¢k, C or Cy below do not depend on s,t € J,, Ty, 6 € (0,d], € (0,7(d)], or
(Eo, Hy) satistying (3.5).

Using Lemmas 1.8 and 2.18 and formula (3.14), one can estimate the above
commutator terms by

8@l 1Akl 18 Ol 1 Dl <
10°85 ()2 10°F; (1)l 1z < e(z"(8) + Sag=0);
ke{2.3} ])é{o 1 (” fult )”7_[4 j—k + H@,{gk( )HtHglcfjfk) < ez(t), (3.16)

122 g2 12 1512 lga () z < ey (E),
155 )33 13 () a1 < c2(t)

for j, k € {0,1,2,3}, o € N} with |a| = k > 0, t € J., where we set dq,—0 = 1
if ap = 0 and 6ou=0 = 0 if a9 > 0. The second summand in the second line of
(3.16) arises if all derivatives in 0% are applied to the z-variable of  or p.

3.2. Helmholtz decompositions

In this section we discuss kernel and range of div and curl for a bounded open
subset G C R? with C%-boundary. To simplify a bit, we assume that G is simply
connected in the main results. (See [10] or [16] for the general case.) We obtain
on one hand spaces between which curl acts bijectively, and on the other hand
decompositions of a given L?-map into gradient and curl fields. Both types of
results will often be used in the proof of Theorem 3.1, but they also play a key
role in many areas of analysis and its applications. We follow the treatment in
Section IX.1 of [16], see also [4| and [10].

We introduce subspaces of H(div) and H(curl) on G, where I'y,--- ,I'y are
the components of I' = G and N denotes the kernel of div,curl : L2 — H .

No(curl) = {v € N(curl) | trya v = 0}, No(div) = {v € N(div) | trpo v = 0},
NF(div) = {v € N(div) ‘V] fF trpovdo =0}, N = N(div) N No(curl),
Hio(G) = {v € HY(G)?| trav = 0} = H(div) N Ho(curl).



3.2. Helmholtz decompositions 57

The last identity is shown in Theorem XI.1.3 of [16]|, compare also Proposi-
tion 3.11 below. The first three spaces are endowed with the L?-norm, and we
use the H'-norm for HL,,(G) and other subspaces of H..

We start with the basic observation that smooth functions in the kernel of
curl and div are locally given by gradient and curl fields, respectively. Later on
we show global variants of this fact.

LEMMA 3.2. Let G C R3 be open and Q C Q C G be a cuboid.
a) Let u € N(curl) N CH(G)3. Then there is a map ¢ € C*(Q) with u = V.
a) Let u € N(div)NC(G)3. Then there is a map w € C1(Q)? with u = curl w.

PROOF. a) Let a be a corner of Q. For = € @) we set

p(r) = /% uz(wy, v2,&3) dé3 +/ uz(r1, &2, a3) dée + /x1 u1(&1, ag, az) d&y.

as az ai

2

The assumption curlu = 0 yields dyugy = Osu; and dyusz = Jsug, so that 01 =
u1. The other components are treated similarly.
b) Analogously, we define

v1(l‘):/ 2“3(931,52,$3)d52—/ 3U3($1,$2,f3)d€3

az as

and v§ with u replaced by
u(z) = (u1(ar, x2, x3), uz(w1, az, z3), uz(z1, x2, az)).

The components vo, v§, vz and v§ are given by circular permutations of the
indices. Using divu = 0, one computes curlv = —3u + u® and curlv = —2u®.
Sow = f%v + %v“ satisfies curlw = . O

To show our decay Theorem 3.1, we will need div-curl estimates that control
the H!'-norm by the norms in #(div) and #(curl) plus boundary terms, see
Theorem XI.1.3 of [16] and our Proposition 3.11. We start with the simple
result on R3.

LEMMA 3.3. The space H(div, R*)NH (curl,R?) (endowed with ||-||aiv+-|lcur1)
is equal to H1(R®)? with equivalent norms.

PROOF. The proof of Theorem 2.2 shows that C°(R?)? is dense in
H(div, R3) N H(curl,R?). Hence it is enough to prove the equivalence of the
norms for test functions v. Observe that curl curlv = V divv — Av. Integration
by parts, see (2.6) and (2.8), thus yields

/ (|Curlv|2 + |divv|2) dr = / (v-curleurlv — v - Vdivo) dz
R3 R3
:—/ v-Avdr = |Vo|? da. O
R3 R3

The intersection of the kernels of div and curl will play an important role
below. We first show that it contains only smooth functions.

COROLLARY 3.4. Let G C R3 be open. Then the space N(div) N N(curl) is
contained in C*(G)3.
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PROOF. We choose a bounded open set U C U C G and a cut-off function
¢ € CX(G) with ¢ = 1 on U. Take v € N(div) N N(curl). Let ¢ be the
0-extension of v to R3. We then have

. Vo xwv, on G, .. Vyp-v, on G,
curlv = divo =
0, on R3\ G, 0, on R3\G.

Hence, ¥ belongs to H(div,R3) N H(curl, R?) which is equal to H!(R3)? by
Lemma 3.3. As a result, v is an element of H{ (G)3. Since 9; curlv = curl 9;v

and 0; divv = div d;v, we can iterate the procedure obtaining v € ’H{COC(G)3 for

all k and then v € C*°(G)? by Sobolev’s embedding. O

Our analysis is based on the following functional analytic tool due to Peetre.
Recall that a bounded operator T" between Banach spaces is an isomorphism
onto its range if it satisfies the lower bound ||z| < ¢||Tz| for all z. Peetre’s
lemma admits also a compact perturbation in this context.

LEMMA 3.5. Let X, Y and Z be Banach spaces, T € B(X,Y), and K €
B(X,Z), such that K is compact and there is a constant ¢ > 0 with

VeeX: lzllx < c(|Tz|y + | Kz|2) (3.17)

Then the kernel N(T') has a finite dimension, the range R(T') is closed and the
restriction T :NX — R(T) is an isomorphism, where X is a closed subspace of
X with X = X & N(T).

PROOF. 1) On N(T') we have |[z|x < c|[Kz|z so that the range R(K) is
closed and K : N(T') — R(K) is an isomorphism. Since K is also compact, the
set K(By(7)(0,1)) has a compact closure, which contains a ball of R(K). It
follows that R(K), and thus N(7'), are finite dimensional.

2) There is a closed subspace X with X = X@N(T). Set T = Tl;. Forz e X
and zo € N(T'), we have T'(& + xo) = T# and so T : N(T) — R(T) is bijective
and continuous. We claim that there is a constant & > 0 with ||Z|| < ¢||TZ]|| for
all # € X. This lower bound then implies the result.

To show the claim, we suppose that there are vectors z, € X of norm 1
such that (T:%n) tends to 0 in Y as n — oco. Compactness yields a converging
subsequence (K, );. The estimate (3.17) then shows that (Z,, ) tends to some
# in X. This vector also has norm 1 which contradicts 77 = limy, T Zpn, =0. O

We now determine the range of V and show its closedness in three settings,
where we set A(G) = {p € H(G) | Ap = 0}. The orthogonality in the direct
sums refers to the usual L? scalar product.

PROPOSITION 3.6. Let G C R? be open and bounded with a Lipschitz bound-
ary. Then the follwing assertion hold.

a) The ranges VHY(G), VH(G), and VAYG) are closed in L*(G)3.

b) L*(G)3 = VHI(G) @ No(div) = VH(G) &1 VAYG) &, Ny(div).

¢) L*(G)3 = VHI(G) @ N(div).
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PROOF. a) We use Lemma 3.5 with X = H1(G), Y = L?(G)3, Z = L*(G),
T =V,and K = I. Then (3.17) holds and K is compact since G is bounded.
So VHY(G) is closed. This argument also applies to VH(G) and VAL(G).

b) Let v€ L?(G)? be perpendicular to VH!(G). For all o € O(G), we infer
0= / v-Vodr = (p,divo),n
G 0
so that v belongs to N(div). Theorem 2.1 then yields H!/?(I') = tr H'(G) and
0= / v+ Vodr = (tr g, trne v)g1/2(r) (3.18)
G

for every ¢ € H'(G). This means that trp,v = 0 in ”H_%(F), and so v is
an element of No(div) thanks to Theorem 2.1b). Conversely, let v € Ng(div).
Because of trp, v = 0 equation (3.18) now yields that v L VH!(G). We have
proven the first part of part b). Assertion ¢) is shown similarly.

Finally, let v = V¢ and w = V1 for some ¢ € H}(G) and ¥ € AY(G). Using
again (2.8), we derive

/v-wdx:/V@-dex:—/goAz/de:O,
G G G

and thus VH}(G) L VAYG). Further, take u = Vx for some x € H(G).
Theorem 8.3 in [24] provides a function ¢ € H!(G) with Aty = 0 and tri) = tr x.
Hence, ¢ = 1)—x belongs to H}(G) and so VH(G) = VH}(G)o VANG). O

To invert curl, we now determine its kernel. Here we use the simple connect-

edness of G.

PROPOSITION 3.7. Let G C R? be open, bounded and simply connected with a
Lipschitz boundary. We then have N(curl) = VHYG) and N(curl)N\Np(div) ={0}.

PROOF. The inclusion VH!(G) C N(curl) follows from the identity curl V =
0. For the converse, take w € N(curl) with w 1 VH!(G). We have to show
that w = 0. Proposition 3.6 yields w € Ny(div) and so w is smooth due to
Corollary 3.4. For each open cuboid @ C @ C @, Lemma 3.2 provides a
potential ¢ € C%(Q) with Vq = w. We thus obtain

O:/w-Vgodx:/Vq-Vgodx:—/gpAqu
Q Q Q

for every ¢ € C°(Q) (extended by 0 to an element of H'(G)). This means
that Ag = 0 on G, and so g is real analytic thanks to Theorem 2.2.10 of [22].
By simple connectedness and using analytic continuation, see Theorem 16.15
in [46], we can extend ¢ from some @ to an analytic function on G satisfying
Ag =0 and Vg =w on G.

Moreover, ¢ belongs to L?(G) since Vq € L?*(G) and G is bounded. We also
have try, Vg = trpe w = 0. By means of (2.8), we then compute

Oz/qdiVqux:—/ |Vq|? dz.
G G
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Hence, w = Vq vanishes, which yields the first assertion as VH!(G) is closed due
to Proposition 3.6. The second assertion then follows from this proposition. [

In the next main result we show the invertibility of curl on vector fields in a
subspace of N(try,), where we also determine the range of curl in this setting
and obtain several decompositions. Recall that N' = N(div) N Ng(curl). We set

ANG) ={p € A1(G)|Vj: trp is constant on I';}.
THEOREM 3.8. Let G C R? be open, bounded and simply connected with a
C?-boundary. Set V. =H(G)3 N No(div). The following assertions are true.
a) The range curl H'(G)? = curl V is equal to NY(div) and closed in L*(G)3.
b) We have N =VALG), N(div) = curl H}(G)3 &L N, and
No(curl) = VHA(G) @1 N, L*G)? =N'(div) @, VHI(G) @ N.  (3.19)
¢) The map curl : HY(G)? N No(div) — NV (div) s invertible.
PROOF. 1) We start with the first equality in assertion a). We clearly have
curl V. C curl HY(G)?. Let w € H'(G)3. Proposition 3.6 yields the decom-

position w = Ve + v for some ¢ € H(G) and v € Ny(div). We deduce
that Ap = divw € L?(G) and hence, by Theorem 2.1, there exists the Neu-
mann trace dy,p = try, Vi = trpow € H%(F) Elliptic regularity, see Proposi-
tion 5.7.7 in [55], shows that ¢ belongs to H?(G) and thus v to H!(G)3. Since
curl w = curlv, we have proven curl H!(G)3 = curl V.

To show the closedness, take v € V. Since dive = 0, estimate (1.31) in
Section IX.1 of [16], cf. Lemma 3.3, yields

/\VU!deS/ ]curledx—i—c/\v]Qda.
G G r

For X =V,Y = L*(G)3, Z = L*(T)?, T = curl and K = tr, Lemma 3.5 then
implies the closedness of curl V. (Recall that tr H!(G) = ’H%(I‘) is compactly
embedded into L?(T").)

2) We next determine the complement of curl H!. Take w € L?*(G)? with
w L curl H1(G)3. For every v € HE(G)?, formula (2.6) yields

0= / w - curlvde = (v, curl w)y
G 0
and hence curlw = 0. We can now use (2.9) to compute
0= / w - curlvde — / v curlwdz = (tr v, tTea w)g1/2(r) (3.20)
G G

for v € HY(G)3, which yields try, w = 0 in H_%(F)?’ and thus w € No(curl).
Conversely, let w € Ng(curl). Now (3.20) implies that w L curl H}(G)3. We
have shown that L?(G)? = curl H1(G)3 @, No(curl).
3) We next decompose Ng(curl). Solet w € Ng(curl). Proposition 3.7 provides
a potential ¢ € H!(G) with Vi = w. Note that Vo € Ng(curl). We want
to show that tr¢ is constant on each component I'; of I'. To this end, let

F : Uy — I'NU be a parametrization on a connected open set Uy C R? and
F = 9]y, for an inverse chart 1. We then have 0 = try, V(¢ 0 1)) = Ve(po F)
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in Hfé(Uo). Let x = ¢ o F and x5 = ps * x € C*°(Up) for a mollifier p in &.
We then obtain

Jg;xs = ps * g;x = 0, (3.21)
so that ys is constant. The same is true for trp on I' N U by approximation,
and hence there are constants with ¢; = tr ¢ on each I';.

Theorem 8.3 in [24] yields a function p € A} (G) with trp = ¢; on T;. The map
©0 = ¢ — p then belongs to H}(G) and thus No(curl) C VH(G) &, VAYG),
where the orthogonality was shown in Proposition 3.6. As in (3.21) one sees
that the sum belongs to N(tr,), and it follows

(caurl HY(G)?) T = No(curl) = VHI(G) @ VAYG) = VHLG).  (3.22)

4) By (3.22), we have [, v-Vodz =0 for all v € curl H'(G)? and ¢ € HL(G).
Since v € N(div), formula (2.8) implies that

N
0= / pdivodz = (tr ¢, tTe v)g1/2(ry = Z(cj]l,trno U)Hl/g(rj).
G -
J=1

Choosing ¢; = 6;; we obtain v € NI'(div). The above computation also shows
that N''(div) is contained in (VH!(G))* = Ng(curl). Assertion a) thus holds.

5) We have N(div) L VH{(G) due to Proposition 3.6 c). Hence, (3.22) yields
N = VAYG). This fact and (3.22) imply (3.19). The remaining part of b) now
follows from N(div) = (VH}(G))*, (3.19) and statement a).

We have shown that the continuous map curl : V' — NI'(div) is surjective,
and it is injective thanks to Proposition 3.7. O

We next invert curl on vector fields in a subspace of N(tr,).

THEOREM 3.9. Let G C R? be open, bounded and simply connected with a
C%-boundary. Set W = HL,(G) N NY(div). Then curlHlo(G) = curl W is
closed in L?(G)? and curl : W — Nq(div) is invertible.

PROOF. 1) We first look at the space W1 = HL,,(G)NN(div) which contains
W and satisfies curl Wi C curl Hi,((G). For the converse, take u € Hi,((G).
Theorems 8.3 and 8.12 in [24] provide a function ¢ € H?(G) N HY(G) with
Ap = divu. The field w = u — Vi thus belongs to H!(G)? N N(div). As in
step 3) of the previous proof, we see that tri, Vo = 0 implying w € W) and
curl Wi = curl H.,,(G). Next, Theorem 3.8 implies the decomposition N(div) =
NI'(div) @, V. Since N C No(curl) we conclude curl Hi,((G) = curl W.

For w € W, inequality (1.29) of Section IX.1 of [16] yields

/|Vw]2dx</ |curl w|? dx+c/\w|2da

We now deduce the closedness of curl W from Lemma 3.5 as in step 1) of the
proof of Theorem 3.8.

2) To compute curl W, let v L curl Hi,,(G). Formula (2.6) then yields

0= (u,curlv)Hé = / v-curludx
G
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for all u € H{(G)3, and so curlv = 0. Conversely, take v € N(curl). For each
u € Hio(G), we compute

O:/u-curlvdmz/v-curludx
G G

using (2.9). This means that N(curl) is the complement of curl Hl,,(G) in L2
Since N(curl) = VH!(G)? by Proposition 3.7, we infer curl Hi,(G) = No(div)
from Proposition 3.6 b).

3) It remains to check injectivity of curl on W. Theorem 3.8 shows that
Wi NN(curl) = HYG)3NAN and N = VAL(G). The latter space is contained in
HY(G)? because of Theorems 8.3 and 8.12 in [24], and hence W3 NN(curl) = N.
Take w € W1 with w L N. For all ¢ € AL(G) we then compute

N
0= -Vypdr = i trno w d
/Gw P dx ijl/rjcjrowa

by means of (2.8) and divw = 0, where 1) = ¢; on I';. Choosing ¢; = d;;, we
conclude that w belongs to N''(div) and thus to W. Equation (2.8) also shows
that w € W is perpendicular to VAL(G); i.e,

W =W, @, N =W;®, (W;NnN(curl)) (3.23)
and curl : W — Ny(div) is bijective. O

Combining the above results, we obtain two Helmholtz decompositions.

COROLLARY 3.10. Let G C R? be open, bounded and simply connected with a
C?-boundary. Then the following assertions are true

a) L*(G)3 = VHY(G) @1 curl Hi o (G) = VHYG) &1 curl W,
Hence, for each v € L*(G)? there maps ¢ € H'(G) and w € W such that
v = Vp+curl w, where w is uniquely determined and o is unique up to constants.

b) L*(G)2=VH(G) D VAL G) B curlHY(G)3 =VHI(G) B VAL (G) B curl V.
Hence, for each v € L*(G)? there are maps p € HY(G), p € VALG) and w € v
such that v =V + Vp+ curlw, where w and ¢ are uniquely determined and p
18 unique up to constants.

PROOF. Assertion a) follows from Proposition 3.6 and Theorem 3.9, and
part b) from Theorem 3.8b) and c¢). The decomposition is unique because of
the direct product and the injectivity of curl on W and V', and since the kernel
of V consists of constants as G is connected. O

One can bound the H!-norm of a field v by its norms in H(curl) N H(div)
and the H'/2-norm of tryav or trnev, see Corollary XI.1.1 of [16] and also
our Lemma 3.3. In the proof of Proposition 3.17 below, we need a version of
this result with regular, matrix-valued coefficients a (which does not directly
follow from the case a = I unless a is scalar). It is stated in Remark 4 of [20]
with a brief indication of a proof. We present a (different) proof inspired by
Lemma 4.5.5 of [13].
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PROPOSITION 3.11. Let G be bounded with 0G € C?, a € Wh>(G,R}*3) for
some n > 0 and let v € H(curl) fulfill div(av) € L*(G) and trpo(av) € HY/?(T).
Then v belongs to H(G)? and satisfies

Il < (vl + Idiv(av)lizz + [ltrao(av) g2 ry) = ck(v).

PROOF. There exists a finite partition of unity {x;}; on QSuch that the sup-
port of each x; is contained in a simply connected subset of G with a connected
smooth boundary. Since each y; is scalar, we obtain the estimate

Ixivllzz + llewl(xv)ll 2 + ldiv(axiv)llrz + [[trmo(axiv) /ey < ck(v).

We can thus assume that I" is connected and G simply connected. In this case,
curl v is an element of N''(div) and so Theorem 3.8 c) yields a map w € H'(G)3N
No(div) with curlw = curlv and |Jw[j3 < ¢||curlv|[z2. As the difference v — w

belongs to N(curl), it is represented by v — w = V¢ for a function ¢ € H(G)
thanks to Proposition 3.7. Here we can assume that [, ¢ dz =0 and so |||z <
Vel < |lvll2 + [|w||2 by Poincaré’s inequality. We further have

div(aVp) = div(av) — div(aw) € L*(G),
trno(aVe) = trno(av) — trye(aw) € HY2(I),
because of the assumptions and w € H'(G)3. Due to Proposition 5.7.7 in [55],
¢ is thus an element of H?(G) satisfying
lollze < ellvlizz + Idiv(av)llzs + [ltrno(av)llzrzry + lwllz) < er(v).

The assertion now follows from the equation v = w + V. g

3.3. Energy and observability-type inequalities

Wev now go back to the proof of Theorem 3.1. We first establish an energy
inequality for 9Fu involving dissipation. The error term 23/2 is caused by various
commutators with ¢(E) and u(H).

ProprosITION 3.12. We assume the conditions of Theorem 3.1 except for the
simple connectedness of G. For 0 < s <t < T, and k € {0,1,2,3}, we obtain
the inequality

er(t) + /t d(7)dr < eg(s) +c1 /t 22 (r) dr. (3.24)

We first give the direct proof for the case k = 0. Since (E, H) even belongs
to G2, the system (3.1) and the integration by parts formula (2.9) yield

5. CEOEQ - B+ wHO)H) - H ) ds

— ;/G [&(E(E)E).E +e(BE)E-[¢(B)"9(c(E)E)] + £(E)E-[0c(E)'e(B)E]

+0y(W(H)H)-H+p(H)H- [u(H) " '0y(n(H) H)] +p(H)H - [@M(H)’%(H)Hﬂdx

:/ [curlH-E —oFE-FE —curllE-H — 30e(E)E - E — Yo,u(H) H - H| da
G



3.3. Energy and observability-type inequalities 64

= —/ [cE-E+ 10,e(E)E-E + Loyu(H) H - H] da.
G
We thus obtain the energy equality

eg(t)+/td0(7)dT:eo(t)—;/t/G(8t5(E)E-E+8tu(H)H-H) dz dr.

Combined with estimate (3.16), we derive (3.24) for the case k = 0.

For k € {1,2,3} in Proposition 3.12, we have different coefficients in the
energy ey defined in (3.13) and more error terms. In this case, (3.24) follows
from Lemma 3.13 below, the system (3.12) and the estimates (3.16). This lemma
provides an energy identity in a more general situation to be encountered later.

Take coefficients a,b € W (Jx G, R%Jr?’) for some T, > 0 and data vy, wg €
L2, p,eL?,, andwe L*(J, H1/2(T))3 with vw = 0. Theorem 1.4 of [19] yields

a unique solution (v, w) € G°(J) with trea (v, w) € L?(J, H~/2(I"))% of the linear
system

adw = curlw — ov + @, teJ, xe@,
boyv = — curlv + Y, ted zed,
tria v = w, ted, zel,
v(0) = vy, w(0) = wy, x € G.

(Theorem 2.20 deals with the case w = 0 without the regularity of tr, w.)
For w = 0 and G = Ri, the next lemma is a part of Theorem 2.10. In the
present form it follows from Theorem 1.1 of [53] (a version of Theorem 2.21
with boundary inhomogeneities), using approximation arguments omitted here,
see Lemma 4.2 in [34].

LEMMA 3.13. Under the assumptions above, for 0 < s <t <T we have

1

5 /G (a(t)v(t) - v(t) + b(t)w(t) - w(t))dz + /s /Gav ~vdrdr

1 t
= [ (a0 460w wi)e [ [t wdzar
G s JI

t
s
s JG

In the next proposition we control the energy by the dissipation, i.e., afE by
afH . Following |20], our aproach is based on a Helmholtz decomposition. Our
result is a variant of Proposition 2 in [20] where the case of time-independent ¢
and p and less regular solutions was treated.

LEMMA 3.14. Let the assumptions of Theorem 3.1 be satisfied and let (E, H)
solve (3.1). Then there exist functions w in C*(Jy, Hiyo(G) N NE(div)) N
C*(J4+, L2(@))3, p in C3(J4, HY(Q@)) and h in C3(J1, N) with

OFE = —0F w + VoFp + 0Fh,  dFH = curl 0Fw — gy, (3.25)
for k€ {0,1,2,3}, cf. (3.8) and (3.10). The sum for OFFE is orthogonal in L2.
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PROOF. Let t € J;. Equation (3.6) implies that the function p(H (t))H (t)
is contained in Ny(div). Since G is simply connected, Theorem 3.9 then yields
a vector field w(t) in Hl,o(G) N NY(div) satisfying curlw(t) = u(H(t))H(t).
Moreover, the map w belongs to C3(J, HL,,(G)NNT (div)) because of (E, H) €
G3 and Theorem 3.9. Differentiating curlw = p(H)H in t, we deduce

curl OFw = OF (W(H)H) = p*(H)OFH + g

for k € {1,2,3} which shows the second part of (3.25). Comparing this relation
for k =1 with (3.2), we infer curl(E 4 0,w) = 0. Morever, E + 0w belongs to
the kernel of tr,. From (3.19) we obtain functions p(t) € H(G) and h(t) € N
such that

E(t) = —duu(t) + Vp(t) + h(t)
for t € J, with orthogonal sums. This fact and (F, H) € G2 imply the remaining
regularity assertions. Differentiating the above identity in ¢, we prove (3.25). O

We can now show the desired observability-type estimate. Let us explain this
name. For solutions of (3.1) with 0 = 0, ¢ = ¢(z) and p = p(z), Lemma 3.13
shows the energy equality eg(t) = ep(0) for t > 0. Take 0 = 1 in the definition
of dp. Then the next inequality can still be shown with modified constants and
z =0, implying (t — 2c4)ep(0) < fg ||E(7')||%% d7. Hence, the initial fields can
be determined by observing the electric field alone until ¢ > 2cj.

PROPOSITION 3.15. Let the conditions of Theorem 8.1 be satisfied. For 0 <
s<t<T,andk € {0,1,2,3}, we can estimate

t t t
/ ep(T)dr < 02/ di(7)dT + es(ex(t) + ex(s)) + 64/ 232 () dr.
PrOOF. Let k € {0, 1,2,3}. To simplify, take s = 0. Equality (3.25) yields
/ﬁkafﬂ-afﬂd(xm) = / curl@fwﬁfﬂd(azﬁ)—/ gr-OFH d(x, ), (3.26)
Gy Gt Gy

where Gy = G x (0,t). Using that 0fw € C(J4,HL,o(G)) by Lemma 3.14, we
apply (2.10), insert the first line of the system (3.9), and integrate by parts in
t. It follows

/ curl OFw - OF H d(x, 7) = (9Fw, curl 3fH>L2((0,t),7{0(curl)) (3.27)
Gt
= (0w, 0 (EkOF E)) 12((0.4) Ho(curl)) + : Ofw - (0OFE + O, fx) d(z,T)

- / Ow(t) - E,(t)OF B(t) dz — / OFw(0) - £,(0)0F E(0) da
G G

— | T w-goFEd(z,T) + | OFw- (0OFE + 8, fr) d(z, 7).
Gt Gt
Since Fw(t) € Hi(G)? N N(div), Theorem 3.9 yields the Poincaré-type es-
timate ||8fw(T)HL% < ¢||curl 8fw(7')||L3. From (3.25) and (3.16), we then infer
the bound

|0Fw(r)| 12 < el curlOfw(r)| 12 = el dFH(T) + gi(7)l| 2 < cey/*(7). (3.28)
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The orthogonality in the first part of (3.25) gives H(?wa(T)HL% < H@fE(T)HL%
For any 6 > 0, these inequalities along with (3.27) and (3.16) lead to the estimate

| / el ofw - O H d(a, )| < elex(t) + exl(0)) + ¢ / OFERd(z,7)  (3.29)
Gy Gt

t
+60 [ |0Fw)?d(z, ) + 09/ OFE|?d(z,T) + 0/23(7) dr.
Gy Gy 0

As in (3.28), we further compute

|OFw|*d(z, ) < c/ curl OFw - e curl OFwd(z, 7)

Gt Gt

= c/ curl Ofw - (0F H + fiy, ' gi) d(, 7)
Gt

t
gc‘/ curl@fw~8fHd($,7')‘+C/Z (7)dr.
Gt 0

Fixing a small number 6 > 0, the term with |0fw|? in equation (3.29) can now
be absorbed by the left-hand side and by the integral of z3/2. So we arrive at

)/Gt curl@fw . afHd(:c,T)‘ < c(ek(t) + er(0)) +C/Ot dy(7) d7'+0/0t Z%(T) dr,

also using that dj(t) is equivalent to max;<y H@gE(t)H%Q This fact, equation
(3.26), the last inequality, and the estimates (3.16) yield the claim. O

Combining Propositions 3.12 and 3.15, we arrive at the following energy
bound.

PROPOSITION 3.16. Under the conditions of Theorem 3.1, we have

er(t) + /t er(s)ds < Crep(s) + Co /t 23/2(7) dr

S

for0<s<t<T, and k €{0,1,2,3}.

PrOOF. We multiply the inequality in Proposition 3.15 by o = min{é, %}
and add it to (3.24), obtaining

t t
er(t) + 2a/ er(T)dr < 3er(s) + 2(c1 + 0464)/ 232(7) dr. O

For z = 0, from Corollary 3.16 one could easily infer exponential decay by
a standard argument, see below. The extra term can be made small since
21/2(1) < 6 for T < T, by (3.14). However, z involves space derivatives so that
it cannot be absorbed by e that does not contain them. This gap is closed by
the next surprising result proved in the next section. It then allows us to show
Theorem 3.1.

PROPOSITION 3.17. We impose the conditions of Theorem 3.1 except for the
simple connectedness of G. Then the solutions (E,H) to (3.1) satisfy

2(t) +/ 2(1)dr < c5(2(s) + e(t) + 22(t)) + c6/ (e(r) + 232(r)) dr
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forall0 < s <t <T.

PRrROOF OF THEOREM 3.1. Proposition 3.17 and Corollary 3.16 show that

t t
z(t)—i—/ z(r)dr < (05—1—01(05—|—CG))Z(5)+C522(t)—|—(06—|—02(C5+06))/ 23/2(7) dr.

Fixing a sufficiently small radius 6 € (0, dp], we can now absorb the superlinear
terms involving 22 and z3/2 by the left-hand side and hence obtain

t
2(t) +/ z(1)dr < Cz(s), forall 0<s<t<T,

and some constant C' > 0. Since then z(7) > C~!2(t), we infer that
(14 (t—s)CHz(t) < Cz(s). (3.30)
The differentiated Maxwell system (3.12) and the bounds from (3.16) yield
2(0) < col|(Eo, Ho)|l3s < cor?

for a constant cg > 0. We now fix the radius

i, )
r = min < r( ),\/m ,
where r(9) was introduced before (3.14).

We suppose that T, < oo, yielding z(T,) = 6% by (3.15). Because of (3.30),
the number z(t) is bounded by Cz(0) < §2/2 for t < T}, and by continuity also
for t = T,. This contradiction shows that T, = oo and hence Ty = co.

In particular, (3.30) is true for all ¢ > s > 0. Fixing the time 7" > 0 with
C?/(C +T) = 1/2, we derive z(nT) < %z((n — 1)T) for n € N and then
z(nT) < 27"z(0) by induction. With (3.30) one then obtains the asserted
exponential decay. ([l

3.4. Time regularity controls space regularity

In the proof of Proposition 3.17, we want to avoid the localization procedure
since we need global-in-time estimates. This can be done using a new coordinate
system near I' = 0G. (Possibly, one could derive the apriori estimates in §2.3 in
a similar way; but for the regularization this is not clear because of the mollifier
arguments. )

For a fixed distance ¢ > 0, on the collar T', = {z € G| dist(z,T') < o},
we can find smooth functions 7%, 72,v : r, —» R3 such that the vectors
{rY(x), (), v(x)} form a basis of R? for each point x € T,, v extends the
outer unit normal at I', and {r!, 72} span the tangential planes at I". For
,¢ce{rt, 72, v}, v € R? and a € R3*3, we set

O = Zj §0;, ve=v-¢, I vel, v = VAT 4 v, 272, age = e

We state several calculus formulas needed below, assuming that the functions
involved are sufficiently regular. We can switch between the derivatives of the
coefficient v¢ and the component v& up to a zero-order term since

8(1]5 = 6{1}55 + ’Ugacg.
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The commutator of tangential derivatives and traces
Ortrigv = 07 (v X V) = trea 070 + v X Orv on I

is also of lower order. Similarly, the directional derivatives commute
Dedcv = Z £;0;(CuORv) = v + ZM £;0;Ch Opv — ChOKE; v

up to a first-order operator with bounded coefficients.
The gradient of a scalar function ¢ is expanded as

=D £ VeE=) o,

so that 0; = 3 ;0 for j € {1,2,3}. Due to the formulas before (1.5) we have

curl = Zj Sjaj = Zj,ﬁ ijjag = Zg S(E)a

Since the kernel of S(v) is spanned by v, we can write S(v)v = S(v)v”, and the
restriction of S(v) to span{7!, 72} has an inverse R(v).

We now provide the tools that allow us transfer to the arguments of Proposi-
tion 2.12 from R; to the present setting. We first isolate the normal derivative
of the tangential components of v in the equation curlv = f. Starting from the
above expansion

curlv = S)(0,v)" + S(71)01v + S(72)0,2v,

we obtain
OvT = Z (0,7t vy + 79,7 - v) + R(v ( Z S(r Tw), (3.31)

where the first sum only contains zero-order terms.

In order to recover the normal derivative of the normal component of v, we
resort to the divergence operator. The divergence of a vector field v can be
expressed as

dive = Zj 0; Zg Ve = Zg (Deve + div(§)ve).

Letting ¢ = div(av) for a matrix-valued function a, we derive
di = Oe(¢" div($) ¢’
iv(av) Zé (£ ave) + Z iv(€) & av
= ZE,C agcOcve + 85(1,5(1)4 + Zg div(&) §Tav,

Ay, Oy, = @ — Z agcOgve — Z&C Ogagcve — Zg div(¢) chw
(€0)#ww)
= ¢ — D(a)v, (3.32)

where D(a)v contains all tangential derivatives and normal derivatives of tan-
gential components of v plus zero-order terms. Next, let a € Wh°(J x G, ngxrg)

be positive definite, v € C1(J,H}), and ¢ € L7,. In view of (3.7), we look at
the equation

div (a(t)v(t)) = div (a(0)u(0)) — /0 (div(ou(s)) + ¢(s)) ds (3.33)
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for 0 <t <T. Weset v =o0,,/a,, and I'(t,s) = exp(— fst v(7) dr). Equations
(3.32) and (3.33) yield

avy ()80, (t) = div (a(0)v(0)) — D(a(t))v(t)

- /0 (1(8)a (8)Bu () + D(o)0(s) + 1(s)) ds,

cf. (2.29). Differentiating with respect to ¢ and solving the resulting ODE, we
derive

ayy ()0, (t)

=T'(¢,0)a,,(0)d,n,(0) — /0 L(t,s)(D(o)v(s) + ¢(s) + ds(D(a(s))v(s))) ds
=T'(¢,0) div(a(0)v(0)) — D(a(t))v(t)

—I—/O L'(t,s)(v(s)D(a(s))v(s) — D(o)v(s) —(s)) ds. (3.34)

Before tackling the (quite demanding) proof of Proposition 3.17, we describe
our reasoning. We have to bound 0F E and 0f H in H3~F for k € {0,1,2} by the
L2-norms of &/ E and 8/ H for j € {0,1,2,3}.

The H}-norm of OF H with k € {0,1,2} can easily be estimated by means of
the curl-div estimates from Proposition 3.11 since we control curl, divergence
and normal trace of Of H via the time differentiated Maxwell system (3.9) and
(3.11). Aiming at higher space regularity, we can apply the above strategy
to tangential derivatives of OF H only, whereas normal derivatives destroy the
boundary conditions in (3.9). Here we proceed as in Proposition 2.12: The tan-
gential components of normal derivatives are read off the differentiated Maxwell
system using the expansion (3.31) of the curl-operator, while the normal com-
ponents are bounded employing the divergence condition (3.11) and formula
(3.32). In these arguments we have to restrict ourselves to fields localized near
the boundary. The localized fields in the interior can be controlled more easily
since the boundary conditions become trivial for them.

The electric fields E have less favorable divergence properties because of the
conductivity term in (3.9). Instead of Proposition 3.11, we thus employ the en-
ergy bound of the system (3.36) derived by differentiating the Maxwell equations
in time and tangential directions. The normal derivatives are again treated by
the curl-div-strategy indicated in the previous paragraph. However, to handle
the extra divergence term in (3.11) caused by the conductivity, we need the
more sophisticated divergence formula (3.34) relying on an ODE derived from
(3.11).

This program is carried out by iteration on the space regularity. In each step
one has to start with the magnetic fields in order to use their better properties
when estimating the electric ones.

PROOF OF PROPOSITION 3.17. Let (E, H) be a solution of (3.1) on J, =
[0, T,) satisfying z(t) < 62 and the equations (3.6) and (3.7). Take k € {0, 1,2}
and 0 < t < Ty, where we let s = 0 for simplicity. To localize the fields, we
choose smooth scalar functions y and 1 — y =: ¢ on G having compact support
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in G\T'p/9 and Ty, respectively. The proof is divided into several steps following
the above outline.

1) Estimate of OF H in HL. The time differentiated Maxwell system (3.9) and
(3.11) combined with estimates (3.16) yield

H curl 8fH(t)HL% < ce,qu1 (t) + cz(t)dg2,

I div(ﬁkﬁfH(t))HL% < cz(t)0na,
H trno(ﬁkafH(t))HHlm(p) < Cz(t)5k27

where 032 = 1 for k = 2 and dy2 = 0 for £ € {0,1}. Proposition 3.11 thus
implies

|OF H ()5, < cersa(t) + ez (£)ora,
H.’L‘

: ‘ (3.35)
/0 HatkH(S)Her}c ds < C/o (ext1(s) + 2%(5)0k2) ds.

We stress the core fact that the inhomogeneities in (3.9) and (3.11) are quadratic
in (F, H) and can thus be bounded by z via (3.16).

2) Estimates in the interior for E and H. We look at the localized fields
OF (xF) and 0f (x H) whose support supp Y is strictly separated from the bound-
ary. Hence, their spatial derivatives satisfy the boundary conditions of the
Maxwell system so that we can treat the electric fields via energy bounds and
the magnetic ones via the curl-div estimates.

a) Let o € N3 with |a| < 3 — k. We apply 99y to the Maxwell system (3.12),
deriving the equations

£(B) 0,000) (YE) = curl 920f (xH) — 0029k (YE) + 92 ([x. curl]o} H)

- 3 (5)er okt ok (em) - ),
0<B<a

Pt (H) 0,020F (xH) = — curl 9207 (xE) — 02([x, curl]of E) — 92 (xgk)  (3.36)
« _
S ( 5) 003 () 00k (x ),
0<B<a
trea COF (YE) = 0, trne OCOF (YH) = 0.

Note that the commutator m = [x, curl] is merely a multiplication operator.
Lemma 3.13 and the inequalities (3.16) thus yield

10307 (XE) (8) 172 +/O 10507 (XE)(5)II72 ds
< ez(0) +C/0 (22(5) + 107 B jor-1 + 10F OH ()13, 101-1) ds

b [ (@mofH) - 020k(E)) - 02 (mdk E) - 020 (i) (e )
Gt
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where G; = (0,t) x G. The former part of the last line can be estimated by

+ [ ezobaErol, as+e [ R0kH e as

with another cut-off function y € C2°(G'\ I'y/2) that is equal to 1 on supp x.
The first summand is absorbed by the left-hand side, while the second one only
involves H and can be treated separately. The latter part of the integral on G}
is similarly bounded by

t t
6 / |08 B(s)| 2o ds + c(6) / |ROFE(s) |20 ds
0 0

for an arbitrary (small) # > 0. It follows

t
Jozotam 03, + [ ozt m)s), as (3.37)
t
Scz(0)+c/ (2(7) + (|9 (B (s) 2ot -1) s
0

¢
+0 / 0E B ()]0 ds + c(6) / [XOFH (5)]3e0 ds.
0 ¢ 0
b) To treat H, we only need |a| < 2 — k. Equations (3.6) and (3.11) yield
div([x 0505 (xH)) (3.38)

= op(aodmottn) - 3 (§)aiv (@ m020k ) - v )

<<«
Recalling formulas (3.36) and (3.16), we deduce

I curld®oF (xH (t) HL2 + || div OCOF (YH (1) HL2

< e(=(0) 4 O o + (105 B0 o + [0 OB W) )

HH‘O‘

Proposition 3.11 now implies the inequalities

[OBCH D|yerer < e[+ |ORE (O)[o1+ max [FOEW)2ye]. (339
t t
ot < o [226) + 189 e+ o, 186D s

Here, we can replace x by x from inequality (3.37) and x by a function y €
C°(G\ T'y/2) which is equal to 1 on supp X.

We set y;(t) = maxo<p<sz—j H@fx(E(t),H(t))Hij The estimates (3.35),
(3.37) and (3.39) iteratively imply

)+ [ 5)ds < 20) 5 elelt) + 20) +e(0) [ (els) +¥2()) s
+ 6 max max /Hat HHZ ds (3.40)

1<1<j 0<k<3—1

for any 6 > 0 and j € {1,2,3}.
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3) Boundary-collar estimate of OFF in HL. We write ¥ = 1 — x and 9, =
(071,0:2). Let a € N3 with 0 < |a| < 3—k. (For the later use, also higher-order
space derivatives are treated.)

a) We localize the system near the boundary by including the cut-off ¥ into
the equations (3.12), and then apply 0% to the resulting system. The localized
tangential-time derivatives of (E, H) thus satisfy

e4(E) 0,020 (VE) = curl 0%0F (WH) — 0020F (VE) + [0%, curl|oF (W H)

L or (9, crll b ) — Y (“) 028 (0 + (E)) 20F (OE) — 02 (9 ),
0<p<« 'B

pd(H) 08,0008 (WH) = — curl 920F (VE) — 02([9, curl]0F E) — [0%, curl]oF (VE)

X\ oo (95
- 3 (5o tutan oot o) - o).
<<«

trin OCOF (VE) = [02, tria]OF (WE) = w. (3.41)
The commutators [0%, curl] are differential operators of order || with bounded
coefficients, whereas [0, tri,] is of order |o| — 1 on the boundary and hence a
bounded operator from HI*1=1/2(I") to H'/(I"). We now use the energy identity
in Lemma 3.13 with a = ¢4(E), b = pd(H), v = 020F (YE), and w= O2OF(VH).
The commutator terms, the sums, and the summands with f; and gp yield

the inhomogeneities ¢ and 1, respectively. From Lemma 3.13 we deduce the
inequality

oot 0, + [ ook @m))7, as

< cz(0) + c/ (|0rav - v| + [Opbw - w| + | - v| + [ - w]) (s, z)

Gt

+c | |w-trew|d(s, x).
Iy
Several terms on the right-hand side are super-quadratic in (F, H) and can
be bounded by ¢z%? due to (3.16). The quadratic ones need more care. The
summands in ¢ - v and 1 - w containing the commutators are less or equal to

t t
6 / |0F E(s)|201 ds + c(6) / |908 H(s) |2 ds
0 0

with any (small) constant § > 0 and a cut-off ¥ € C>(T,) being equal to
1 on supp?. The boundary integral is estimated by the same expression,
where we use the dual paring H/2(I') x #~'/2(T') and that 0.: belongs to
B(HY?(T"),H~'/2(I)). The sums over 3 give rise to the terms

1 t t t
; / |02 (@F0E(s))|2, ds + ¢ / 90 B (5)|2ot-1 ds + ¢ / 905 H (s)||2 1 s
0 T 0 ¥ 0 N

plus super-quadratic terms. We thus arrive at

|zt )W), + /0 |osot@E)(s)|2, ds (3.42)
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< ¢2(0) + ¢(0) /0 ([908 B )|+ + [[90E H (s)[2en) ds
t k S 2 o S C t23/2 S S.
+9/0 |0 E(s)|[2 e ds + /0 (s)d

b) To finalize the Hl-estimate for E, we must control the normal derivatives.
Asin Proposition 2.12, we first treat their tangential component using the second
equation in (3.12). Combined with formula (3.31) and estimate (3.16) it implies

7|2 2

[0, @EWED), < elexa(®) + 20 + 0,06 ED)2,).  (3.43)
For the normal component we use the div-relations, where we also consider
higher tangential derivatives for later use. We first look at the case k € {1,2}

and apply 099 to equation (3.11) with |a| < 2 — k. It follows
div (e4(E)0%0f (WE)) = —D(eY(E), )0f E — div(c02 (90, E))  (3.44)

— D(0, )0y E — 029 div fy).
Here we abbreviate the commutator terms
D(a,a)v = 82 ([0, div](av)) + [0%, div](Jav) + Z <a> div (02 Pa 92 (Wv))
0<B<a ﬂ

for a matrix-valued function a and a vector function v. Observe that D(a, ) is
a differential operator of order |«| and that |D(a, 0)v| < ¢|v|. Below we treat the
equality (3.44) by means of formula (3.32). For k = 0, the divergence equation
contains a time integral and initial data which are handled using identity (3.34).

To avoid terms which grow linearly in time, we have to derive another equation
from (3.1), namely,

O (e(E)OF(VE)) = curl 90X (VH) — 00 (VE) — [curl, 02 ](9H ) — 0% ([curl, 9] H)
- > <a> 0% P(o +e(E))°(VE).

<8<« 6
Writing A for the sum of the three errors terms, we infer the divergence relation
div (e(E(t))02(VE(t))) = div ((Ep)0% (VEY)) (3.45)

t
- / (div(c02(VE(s))) + div h(s)) ds.
0
c¢) To control 0, E,, we use equation (3.45) with = 0 and identity (3.34),

where we put a = e(F), v = 9F, and ¢ = div h. The function v = o,,/a,, is
bounded from below by vy = ¢n > 0. We then get the estimate

10, DB, |2, < cem%2(0) + e[| B3 + [0-(0E(0) |32 + 18, (9E(0) 3]

t
o [0 1B g + 10 (DB () Ea-+ 10, (DB()) I + () By s

This bound together with equations (3.42), (3.43) and (3.35) implies

H(‘?V(ﬁE(t))VHi% +/O Hay(ﬁE(s)),,Hig ds (3.46)
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gc(z(0)+e(t)+z2(t))+0/0 ]E(s)H?_%ds%—c(H)/o (e(s) + 2%/2(s)) ds,

where the (small) number # > 0 comes from (3.42). Combining (3.42), (3.43),
(3.46) and (3.35), we conclude

t
0205, + [ 19505 as

< c(2(0) +e(t) + 2%(t)) + 9/0 1E(s)[17a ds + c(6) /0 (e(s) + 2%%(s)) ds.

For k € {1,2}, we proceed similarly using equation (3.44) with a = 0 and
formula (3.32) for the normal component. Here the term ||3£€7119E(t)\|3_[1 ap-

pears on the right-hand side, which can be treated iteratively. We thus show
the inequality

t
|k E®)2, + /0 |F9E ()2, ds (3.47)

< e(=(0) + et) + 22(8)) + 9/0 [0k B ()2, ds + 0(9)/0 (e(s) + 25/2(s)) ds

for k € {0,1,2}. Both in (3.47) and (3.37) for || = 1, we now choose a
sufficiently small > 0. Together with (3.35) for & € {0,1,2}, we derive the
first-order bound

|0 (B (), H(®) I, + /0 0k (B(s), H()|2, ds (3.48)

< c(2(0) +e(t) + 2%(t)) + C/o (e(s) + 2%/%(s)) ds.

4) Estimate in H2. While the bound of H in H! was entirely based on
the curl-div-estimates of Proposition 3.11, this is only partly possible in H2 or
H3 since normal derivatives violate the boundary conditions. We thus have to
employ the curl-div strategy of step 3) also for H. Let k € {0, 1}.

a) We first control tangential space-time derivatives of H in H! by means of
Proposition 3.11, which yields

vl < e(lvllaewn + [T div(ERv)lrz + [ trno (Fkv) g 2(ry) (3.49)

for v = 0,0F9H. The curl-term appears in the first equation in (3.41) with
|a| = 1. From equations (3.9), (3.6) and (3.11) we further deduce

trno (7kV) = [tTno, 07| (OFVH) — trno (01 OF (VH)),
div (figv) = 0 ([div, 9]far0y H) — [0, div)(1ix0f (9H)) — div(0-fiy, Of (VH)).

The commutator [0;,div] is of order one and the others are of order zero. By
means of (3.16), we then estimate

| div (@0, 0F WH(®)) 12 < O H(E) 01,
| curl (8- 90 H 1)) 2 < e(I0F Bl + 18E (B, H@®)llps +2(0)),
a0 (70 OH (1)) g2y < €l H () s (3.50)
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Since k + 1 < 2, inequalities (3.48), (3.49) and (3.50) now imply

0,0 WH®))][3,, +/O 0,08 WH (s))][3,, ds (3.51)

t
< e(2(0) + e(t) + 2%(t)) + c/ (e(s) + 2%/%(s)) ds.
0
b) To treat 0,0F H in H}, we first solve in the first equation of (3.41) with
a = 0 for the tangential component 8, (0F9H (t))™ using (3.31). It follows
10,07 (VH (£))7 ll301 <[ 10705 (OH () g +10F (B(t), H () llgaz + 110 E(E)ll3aa ]

Formulas (3.48) and (3.51) now allow us to bound the tangential component by

|0,0Ff (WH (¢ Hw / |0,0F (VH (s (3.52)

)7l ds

< c(2(0) +e(t) + 2%(t)) + C/o (e(s) + 23/%(s)) ds.

As to the normal component, we apply identity (3.32) to the divergence equa-
tion (3.38) with a = 0 and ¥ instead of . The HL-norm of 9,0F (VH(t)), is
thus controlled by that of OFYH (t), 9,0F (VH (t)), and 9,0F (VH (t))". Estimates
(3.48), (3.51), and (3.52) then yield

o, 0kEE), 2 + /\méﬁﬁﬂ (3.53)

oy ds

t
< c(2(0) +e(t) + 22(t)) + c/ (e(s) + 23/2(5)) ds.
0
Collecting the inequalities (3.51), (3.52), (3.53), (3.39) and (3.48), we arrive at
the H2-estimate for the fields H and 0, H

t
HwH@m@+AH&H@mﬁ@ (3.54)

< c(2(0) +e(t) + 2%(t)) + C/o (e(s) + 2%/%(s)) ds.

¢) We now turn our attention to E. Let |a] = 2. The L2-norm of the tan-
gential derivative 0%(9OFE) is already controlled via inequalities (3.42), (3.48),

and (3.54) up to the term
o [ otEe s

The second equation in (3.41) with || = 1 and formula (3.31) lead to the
estimate

10, [0:07 WE®)] || 2 < e (0207 WE®) 12 + 107 (E(t),H ()|l
+ 07T E @) g + #(2).-
Combined with the tangential bound and the H!-result (3.48), we obtain

0. (0-0F @E®)"|I7, + o8t 0Bz,



3.4. Time regularity controls space regularity 76
/ (Ha (0-EWE() |72 + lo20F WB(s))|7, ) s (3.55)

< e(2(0) + e(t) +9/ 10 E(s) 2, ds+c(0)/0 (e(s) + 2%/2(s)) ds.

d) For the normal component and k& = 0, we look at the divergence relation
(3.45) with |a| = 1. As in (3.46), we deduce from (3.34) the estimate

Jou@-0E0), I3 + [ 10.(0-050), 3 @ (3.56)

< e(2(0) + e(t) + 22(1)) + 9/0 1B ) I ds+c(9)/0 (c(s) + 2%/2(s)) ds.

The two above inqualities imply
t
|- B, +/O 0. (9B, ds (3.57)

§c(z(0)+e(t)+22(t))+9/0 HE(S)H%ids—i-C(Q)/O (c(s) + 2%/2(s)) ds.

To treat the case k = 1, we start from the divergence equation (3.44) with
|a] = 1 and use formula (3.32). Employing also estimates (3.55), (3.57) and
(3.16), we get

Jou -0, 2 + [ o ontoonmisn), I as (359
< c(2(0) + et) + 22(1)) + 6 /0 (IE() 3 + 9B (5)13,2) ds
+e(6) /0 (e(s) + 2%/2(s)) ds.

Together with inequality (3.55), this relation leads to

0- 0 WE() |2, + /0 10-0,(9E(s)) |12, ds (3.59)
< e(2(0) + e(t) + () + 0 /0 (1B(s) |25 + 9B (s) ) ds

e(6) /0 (e(s) + 2¥/2(s)) ds.

e) It remains to control the term 92(9FYE). We first replace the derivative 9%
by 0, in system (3.41). The resulting second equation, the curl-formula (3.31)
and estimates (3.16) imply

10, (0,0F WER))) || 2 <cl[||0-0,0F (WE(t HLQ—I—I?S%XH(‘?{(E(t),H(t))HH{Fz(t)].

The right-hand side can be estimated via inequalities (3.48) and (3.59).

For the normal component, we employ the modifications of the diver-
gence relations (3.45) and (3.44) with 0, instead of 0%. We then estimate
Oy (8,,8,{“(19E(t)))y for k € {0,1} as in inequalities (3.56) and (3.58). Here and
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in (3.40), (3.57) and (3.59), we take a small § > 0 to absorb the H2?-norms
of OFE on the right-hand side. Using also (3.54) for the magnetic field, for
k € {0,1} we derive the desired bound in H?2

ok 0. 1O + [ oHE). ) g as (3.60)

< c(2(0) + e(t) + 22(1)) + C/O (e(s) + 2%/%(s)) ds.

5) Estimate in H3. Since the reasoning is similar to step 4), we will omit
some details here. Let k£ = 0.

a) We again begin with the magnetic field H. We first look at the tangential
derivative 02(VFE) with |a| = 2, where we proceed as in (3.51) using Proposi-
tion 3.11. For &,¢ € {v, 7!, 7%}, differentiating the divergence relation (3.6) we
obtain

div (u(H) DD (D)) = 00 ([liv, 9)u( HH) — [0, div] (u ()0 H)
— div(Ogu(H) 0¢(9H)) — div(Dgpu(H) 0, (V1))
- div(8§8<u(H) 19H)
Similary, the magnetic boundary condition in (3.6) yields
a1 H)OF D) = [0, OF O + 1 3 ()05 Pter) 02(0)
0<B<a
Employing (3.16), we deduce the estimates
curl 02 WH )52 < (10D + | (B@), HE) ez + (1),
| div (u(H (£)v) 22 < el H(t) ]9,
I trno ((H (£))0) llpg1/2(ry < el H ()ll3z

from (3.41) and the above formulas. The second-order bound (3.60) and Propo-
sition 3.11 thus imply

|ozwr )3, + [ 1oz )Ry ds (3.61)

< c(2(0) +e(t) + 2%(1)) +c/0 (e(s) + 2%%(s)) ds.

To include one normal derivative, we first use (3.41) with |a] = 1 and the
curl-formula (3.31). We can then bound the H!-norm of 9, (0, (9H(t)))” by

02 H ()l + mae 0] (E(O). H (1) + 2(2).

The normal component is treated as in (3.53), based on the divergence relation
(3.38) with |a| = 1, x replaced by ¢, and 9% by 9;. By means of (3.32) and
(3.16), the Hl-norm of the function 8, (0, (9H(t))), is thus controlled by that
of 8,(0-(VH(t)))” and 02(WH(t)) plus lower order terms. Combining these
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inequalities with (3.60) and (3.61), we infer

t
10,0-(WH (£))]]7,1 +/0 18,0-(9H (5)) %1 ds

. (3.62)
< c(2(0) +e(t) + 2%(t)) + c/ (e(s) + 23/2(s)) ds.
0
In this reasoning we can replace 0, by 0,, arriving at
t
OB @], + [ 1020 ) as (3.63)

< e(2(0) + et) + 22(t)) + ¢ /0 (e(s) + 2%/2(s)) ds.

Together with (3.39) and (3.60), the estimates (3.61), (3.62) and (3.63) lead to
t
1701 + [ 1) ds (3.69)

< c(2(0) + e(t) + 2%(t)) + c/o (e(s) + 23/%(s)) ds.

b) We finally tackle E in H3. The third-order tangential derivatives 9%(JE)
were already treated in estimate (3.42) with k£ = 0, where the lower order-terms
on the right-hand side are now dominated by (3.60) and (3.64). Let |3| = 2. The
second equation in (3.41) with || = 2 and the curl-formula (3.31) allow us to

bound 8, (82(YE))™ in the same fashion. The normal component 8, (92 (VE)),
can also be estimated via equations (3.45) and (3.34) as in (3.46). We thus
arrive at

\\(5—97/?(1915@))“;é +/0 Haf(ﬁE(s))Hi% ds (3.65)

Sc(z(0)+e(t)+22(t))+9/o HE(s)Higds—i—c(G)/O (c(s) + 2%/2(s)) ds.

We replace the tangential derivative 0¢ by 9,0; in system (3.41). The second
equation therein and formula (3.31) provide control of the tangential component
0,(0,0;(VE))™ in L2 via inequalities (3.65) and (3.60). The related normal
component can then be handled through the formula (3.34) and the divergence
identity (3.45) with 0,0; instead of <. In this way we show the inequality

H87(19E(t))Hi% +/O ||aT(79E(s))||3d% ds

t t
< e(=(0) + e(t) + 22(2)) +9/ 126) 2 ds+c(0)/ (c(s) + 2%/2(s)) ds.
0 e 0
The remaining term 93(9F) is managed analogously, resulting in

B2, + /0 9B (s)||2, ds

2
M3

t t
Sc(z(0)+e(t)+z2(t))+0/0 HE(S)Higds%—c(O)/o (e(s) + 2%/2(s)) ds.



3.4. Time regularity controls space regularity 79

Fixing a sufficiently small number 8 > 0, the above inequalities and the interior
estimate (3.40) combined with (3.48) and (3.60) lead to the bound

HE(t)Hig, +/ HE(S)HE{3 ds < c(2(0) + e(t) + 22(t)) + C/o (e(s) + 23/%(s)) ds.

The above equation and (3.64) now furnish our last result

B0, B + [ 1) 1 ds (3.66)

t
< c(2(0) +e(t) + 2%(t)) + c/ (e(s) + 2%/%(s))ds.
0
Proposition 3.17 now follows from formulas (3.48), (3.60) and (3.66). O
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