Prof. Dr. Tobias Lamm
- Room: 2.040
CS 20.30 - Phone: +49 721 608-41696
- tobias lamm ∂does-not-exist.kit edu
- ORCID
- Englerstr. 2
76131 Karlsruhe
Publikationsliste
2025
Index estimates for sequences of harmonic maps
Hirsch, J.; Lamm, T.
2025. Communications in Analysis and Geometry, 33 (1), 131–162. doi:10.4310/CAG.250221033107
Hirsch, J.; Lamm, T.
2025. Communications in Analysis and Geometry, 33 (1), 131–162. doi:10.4310/CAG.250221033107
2024
Diffusive stability and self-similar decay for the harmonic map heat flow
Lamm, T.; Schneider, G.
2024. Journal of Differential Equations, 394, 320 – 344. doi:10.1016/j.jde.2024.03.017
Lamm, T.; Schneider, G.
2024. Journal of Differential Equations, 394, 320 – 344. doi:10.1016/j.jde.2024.03.017
2023
Rigidity of -harmonic maps of low degree
Hörter, J.; Lamm, T.; Micallef, M.
2023. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24 (4), 2269 – 2310. doi:10.2422/2036-2145.202201_002
Hörter, J.; Lamm, T.; Micallef, M.
2023. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, 24 (4), 2269 – 2310. doi:10.2422/2036-2145.202201_002
Dimension Estimates for Parabolic Equations and Harmonic Maps of low Index. PhD dissertation
Kaltefleiter, S.
2023, June 1. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000158988
Kaltefleiter, S.
2023, June 1. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000158988
Ricci flow of -metrics in four dimensions
Lamm, T.; Simon, M.
2023. Commentarii Mathematici Helvetici, 98 (2), 261 – 364. doi:10.4171/CMH/553
Lamm, T.; Simon, M.
2023. Commentarii Mathematici Helvetici, 98 (2), 261 – 364. doi:10.4171/CMH/553
2021
Local wellposedness and global regularity results for biharmonic wave maps. PhD dissertation
Schmid, T.
2021, January 18. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000128147
Schmid, T.
2021, January 18. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000128147
Existence of expanders of the harmonic map flow
Deruelle, A.; Lamm, T.
2021. Annales scientifiques de l’École Normale Supérieure, 54 (5), 1237–1274. doi:10.24033/asens.2480
Deruelle, A.; Lamm, T.
2021. Annales scientifiques de l’École Normale Supérieure, 54 (5), 1237–1274. doi:10.24033/asens.2480
Reflection of Willmore Surfaces with Free Boundaries
Kuwert, E.; Lamm, T.
2021. Canadian Journal of Mathematics, 73 (3), 787–804. doi:10.4153/S0008414X20000164
Kuwert, E.; Lamm, T.
2021. Canadian Journal of Mathematics, 73 (3), 787–804. doi:10.4153/S0008414X20000164
Conservation laws for even order elliptic systems in the critical dimension - a new approach
Hörter, J.; Lamm, T.
2021. Calculus of Variations and Partial Differential Equations, 60 (4), Art. Nr.: 125. doi:10.1007/s00526-021-01995-7
Hörter, J.; Lamm, T.
2021. Calculus of Variations and Partial Differential Equations, 60 (4), Art. Nr.: 125. doi:10.1007/s00526-021-01995-7
A gap theorem for α-harmonic maps between two-spheres
Lamm, T.; Malchiodi, A.; Micallef, M.
2021. Analysis & PDE, 14 (3), 881–889. doi:10.2140/apde.2021.14.881
Lamm, T.; Malchiodi, A.; Micallef, M.
2021. Analysis & PDE, 14 (3), 881–889. doi:10.2140/apde.2021.14.881
2020
Biharmonic wave maps into spheres
Herr, S.; Lamm, T.; Schnaubelt, R.
2020. Proceedings of the American Mathematical Society, 148 (2), 787–796. doi:10.1090/proc/14744
Herr, S.; Lamm, T.; Schnaubelt, R.
2020. Proceedings of the American Mathematical Society, 148 (2), 787–796. doi:10.1090/proc/14744
Biharmonic wave maps: local wellposedness in high regularity
Herr, S.; Lamm, T.; Schmid, T.; Schnaubelt, R.
2020. Nonlinearity, 33 (5), 2270–2305. doi:10.1088/1361-6544/ab73ce
Herr, S.; Lamm, T.; Schmid, T.; Schnaubelt, R.
2020. Nonlinearity, 33 (5), 2270–2305. doi:10.1088/1361-6544/ab73ce
Local foliation of manifolds by surfaces of willmore type
Lamm, T.; Metzger, J.; Schulze, F.
2020. Annales de l’Institut Fourier, 70 (4), 1639–1662. doi:10.5802/AIF.3375
Lamm, T.; Metzger, J.; Schulze, F.
2020. Annales de l’Institut Fourier, 70 (4), 1639–1662. doi:10.5802/AIF.3375
Limits of α-harmonic MAPS
Lamm, T.; Malchiodi, A.; Micallef, M.
2020. Journal of differential geometry, 116 (2), 321–348. doi:10.4310/JDG/1603936814
Lamm, T.; Malchiodi, A.; Micallef, M.
2020. Journal of differential geometry, 116 (2), 321–348. doi:10.4310/JDG/1603936814
2019
Biharmonic wave maps: local wellposedness in high regularity
Herr, S.; Lamm, T.; Schmid, T.; Schnaubelt, R.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000089304
Herr, S.; Lamm, T.; Schmid, T.; Schnaubelt, R.
2019. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000089304
2018
Conformal Willmore tori in ℝ4
Lamm, T.; Schätzle, R. M.
2018. Journal für die reine und angewandte Mathematik, 2018 (742), 281–301. doi:10.1515/crelle-2015-0101
Lamm, T.; Schätzle, R. M.
2018. Journal für die reine und angewandte Mathematik, 2018 (742), 281–301. doi:10.1515/crelle-2015-0101
Biharmonic wave maps into spheres
Herr, S.; Lamm, T.; Schnaubelt, R.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000088563
Herr, S.; Lamm, T.; Schnaubelt, R.
2018. Karlsruher Institut für Technologie (KIT). doi:10.5445/IR/1000088563
2016
Weak stability of Ricci expanders with positive curvature operator
Deruelle, A.; Lamm, T.
2016. Mathematische Zeitschrift, (Nov), 1–35. doi:10.1007/s00209-016-1791-x
Deruelle, A.; Lamm, T.
2016. Mathematische Zeitschrift, (Nov), 1–35. doi:10.1007/s00209-016-1791-x
Global estimates and energy identities for elliptic systems with antisymmetric potentials
Lamm, T.; Sharp, B.
2016. Communications in Partial Differential Equations, 41 (4), 579–608. doi:10.1080/03605302.2015.1116559
Lamm, T.; Sharp, B.
2016. Communications in Partial Differential Equations, 41 (4), 579–608. doi:10.1080/03605302.2015.1116559
2015
Parabolic equations with rough data
Koch, H.; Lamm, T.
2015. Mathematica Bohemica, 140 (4), 457–477. doi:10.21136/MB.2015.144463
Koch, H.; Lamm, T.
2015. Mathematica Bohemica, 140 (4), 457–477. doi:10.21136/MB.2015.144463
Compactness results for sequences of approximate biharmonic maps
Breiner, C.; Lamm, T.
2015. Pacific journal of mathematics, 276 (1), 59–92. doi:10.2140/pjm.2015.276.59
Breiner, C.; Lamm, T.
2015. Pacific journal of mathematics, 276 (1), 59–92. doi:10.2140/pjm.2015.276.59
Two-dimensional curvature functionals with superquadratic growth
Kuwert, E.; Lamm, T.; Li, Y.
2015. Journal of the European Mathematical Society, 17 (12), 3081–3111. doi:10.4171/JEMS/580
Kuwert, E.; Lamm, T.; Li, Y.
2015. Journal of the European Mathematical Society, 17 (12), 3081–3111. doi:10.4171/JEMS/580
Rigidity and non-rigidity results for conformal immersions
Lamm, T.; Schätzle, R. M.
2015. Advances in mathematics, 281, 1178–1201. doi:10.1016/j.aim.2015.06.006
Lamm, T.; Schätzle, R. M.
2015. Advances in mathematics, 281, 1178–1201. doi:10.1016/j.aim.2015.06.006
Branched Willmore spheres
Lamm, T.; Nguyen, H.
2015. Journal für die reine und angewandte Mathematik, 701, 169–194. doi:10.1515/crelle-2013-0028
Lamm, T.; Nguyen, H.
2015. Journal für die reine und angewandte Mathematik, 701, 169–194. doi:10.1515/crelle-2013-0028
Quantitative stratification and higher regularity for biharmonic maps
Breiner, C.; Lamm, T.
2015. Manuscripta mathematica, 148 (3-4), 379–398. doi:10.1007/s00229-015-0750-x
Breiner, C.; Lamm, T.
2015. Manuscripta mathematica, 148 (3-4), 379–398. doi:10.1007/s00229-015-0750-x
2014
Optimal rigidity estimates for nearly umbilical surfaces in arbitrary codimension
Lamm, T.; Schätzle, R. M.
2014. Geometric and Functional Analysis, 24 (6), 2029–2062. doi:10.1007/s00039-014-0303-6
Lamm, T.; Schätzle, R. M.
2014. Geometric and Functional Analysis, 24 (6), 2029–2062. doi:10.1007/s00039-014-0303-6
Quantitative rigidity results for conformal immersions
Lamm, T.; Nguyen, H. T.
2014. American Journal of Mathematics, 136 (5), 1409–1440. doi:10.1353/ajm.2014.0033
Lamm, T.; Nguyen, H. T.
2014. American Journal of Mathematics, 136 (5), 1409–1440. doi:10.1353/ajm.2014.0033
2013
Minimizers of the Willmore functional with a small area constraint
Lamm, T.; Metzger, J.
2013. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 30 (3), 497–518. doi:10.1016/J.ANIHPC.2012.10.003
Lamm, T.; Metzger, J.
2013. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 30 (3), 497–518. doi:10.1016/J.ANIHPC.2012.10.003
Estimates for the energy density of critical points of a class of conformally invariant variational problems
Lamm, T.; Lin, L.
2013. Advances in Calculus of Variations, 6 (4), 391–413. doi:10.1515/acv-2012-0104
Lamm, T.; Lin, L.
2013. Advances in Calculus of Variations, 6 (4), 391–413. doi:10.1515/acv-2012-0104
A Bernstein type theorem for entire Willmore graphs
Chen, J.; Lamm, T.
2013. Journal of Geometric Analysis, 23, 456–469. doi:10.1007/s12220-011-9264-2
Chen, J.; Lamm, T.
2013. Journal of Geometric Analysis, 23, 456–469. doi:10.1007/s12220-011-9264-2
2012
Boundary partial regularity for a class of biharmonic maps
Gong, H.; Lamm, T.; Wang, C.
2012. Calculus of Variations and Partial Differential Equations, 45 (1-2), 165–191. doi:10.1007/s00526-011-0455-2
Gong, H.; Lamm, T.; Wang, C.
2012. Calculus of Variations and Partial Differential Equations, 45 (1-2), 165–191. doi:10.1007/s00526-011-0455-2
Geometric flows with rough initial data
Koch, H.; Lamm, T.
2012. The Asian journal of mathematics, 16, 209–236
Koch, H.; Lamm, T.
2012. The Asian journal of mathematics, 16, 209–236
2011
Foliations of asymptotically flat manifolds by surfaces of Willmore type
Lamm, T.; Metzger, J.; Schulze, F.
2011. Mathematische Annalen, 350 (1), 1–78. doi:10.1007/s00208-010-0550-2
Lamm, T.; Metzger, J.; Schulze, F.
2011. Mathematische Annalen, 350 (1), 1–78. doi:10.1007/s00208-010-0550-2
2010
Small surfaces of Willmore type in Riemannian manifolds
Lamm, T.; Metzger, J.
2010. International Mathematics Research Notices, 2010 (19), 3786–3813. doi:10.1093/imrn/rnq048
Lamm, T.; Metzger, J.
2010. International Mathematics Research Notices, 2010 (19), 3786–3813. doi:10.1093/imrn/rnq048
The Cauchy problem for Schrödinger flows into Kähler manifolds
Kenig, C.; Lamm, T.; Pollack, D.; Staffilani, G.; Toro, T.
2010. Discrete and Continuous Dynamical Systems, 27 (2), 389–439. doi:10.3934/dcds.2010.27.389
Kenig, C.; Lamm, T.; Pollack, D.; Staffilani, G.; Toro, T.
2010. Discrete and Continuous Dynamical Systems, 27 (2), 389–439. doi:10.3934/dcds.2010.27.389
Energy identity for approximations of harmonic maps from surfaces
Lamm, T.
2010. Transactions of the American Mathematical Society, 362 (8), 4077–4097. doi:10.1090/S0002-9947-10-04912-3
Lamm, T.
2010. Transactions of the American Mathematical Society, 362 (8), 4077–4097. doi:10.1090/S0002-9947-10-04912-3
2009
The heat flow with a critical exponential nonlinearity
Lamm, T.; Robert, F.; Struwe, M.
2009. Journal of functional analysis, 257 (9), 2951–2998. doi:10.1016/j.jfa.2009.05.018
Lamm, T.; Robert, F.; Struwe, M.
2009. Journal of functional analysis, 257 (9), 2951–2998. doi:10.1016/j.jfa.2009.05.018
Boundary regularity for polyharmonic maps in the critical dimension
Lamm, T.; Wang, C.
2009. Advances in Calculus of Variations, 2 (1), 1–16. doi:10.1515/ACV.2009.001
Lamm, T.; Wang, C.
2009. Advances in Calculus of Variations, 2 (1), 1–16. doi:10.1515/ACV.2009.001
2008
Conservation laws for fourth order systems in four dimensions
Lamm, T.; Rivière, T.
2008. Communications in Partial and Differential Equations, 33, 245–262. doi:10.1080/03605300701382381
Lamm, T.; Rivière, T.
2008. Communications in Partial and Differential Equations, 33, 245–262. doi:10.1080/03605300701382381
2006
Fourth order approximation of harmonic maps from surfaces
Lamm, T.
2006. Calculus of Variations and Partial Differential Equations, 27 (2), 125–157. doi:10.1007/s00526-005-0001-1
Lamm, T.
2006. Calculus of Variations and Partial Differential Equations, 27 (2), 125–157. doi:10.1007/s00526-005-0001-1
2004
Heat Flow for Extrinsic Biharmonic Maps with Small Initial Energy
Lamm, T.
2004. Annals of Global Analysis and Geometry, 26 (4), 369–384. doi:10.1023/B:AGAG.0000047526.21237.04
Lamm, T.
2004. Annals of Global Analysis and Geometry, 26 (4), 369–384. doi:10.1023/B:AGAG.0000047526.21237.04
Biharmonic map heat flow into manifolds of nonpositive curvature
Lamm, T.
2004. Calculus of Variations and Partial Differential Equations, 22 (4), 421–445. doi:10.1007/s00526-004-0283-8
Lamm, T.
2004. Calculus of Variations and Partial Differential Equations, 22 (4), 421–445. doi:10.1007/s00526-004-0283-8