Publications

 

Here you will find my more recent publications including links to the PDFs of the preprints. (Back to the main page.)

  1. S. Nicaise, R. Schnaubelt: Maxwell equations with localized internal damping: strong and polynomial stability. Commun. Anal. Mech. 17 (2025), 849-877. PDF for download.
  2. M. Ruff, R. Schnaubelt: Error analysis of the Lie splitting for semilinear wave equations with finite-energy solutions. Discrete Contin. Dyn. Syst. 45 (2025), 2969-3008. PDF for download.
  3. V. Müller, R. Schnaubelt, Y. Tomilov: On growth and instability for semilinear evolution equations: an abstract approach. Math. Ann. 389 (2024), 3885-3933. PDF for download.
  4. R. Nutt, R. Schnaubelt: Normal trace inequalities and decay of solutions to the nonlinear Maxwell system with absorbing boundary. J. Math. Anal. Appl. 532 (2024), paper no. 127915, 35 pp. PDF for download.
  5. R. Schippa, R. Schnaubelt: Strichartz estimates for Maxwell equations in media: the fully anisotropic case. J. Hyperbolic Differ. Equ. 20 (2023), 917-966.  PDF for download.
  6. R. Schippa, R. Schnaubelt: Strichartz estimates for Maxwell equations in media: the structured case in two dimensions. Archiv Math. 121 (2023), 425-436. PDF for download.
  7. S. Ohrem, W. Reichel, R. Schnaubelt: Well-posedness for a (1+1)-dimensional wave equation with quasilinear boundary condition. Nonlinearity 36 (2023), 6712-6746. PDF for download.
  8. T. Dohnal, R. Schnaubelt, D. Tietz: Rigorous envelope approximation for interface wave-packets in Maxwell's equations with 2D localization. SIAM J. Math. Anal. 55 (2023), 6898-6939. PDF for download.
  9. R. Schippa, R. Schnaubelt: On quasilinear Maxwell equations in two dimensions. Pure Appl. Anal. 4 (2022), 313-365. PDF for download.
  10. S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: Multi-dimensional degenerate operators in L^p-spaces. Commun. Pure Appl. Anal. 21 (2022), 2115-2145. PDF for download.
  11. P. D'Ancona, R. Schnaubelt: Global Strichartz estimates for an inhomogeneous Maxwell system. Comm. Partial Differential Equations 47 (2022), 630-675. PDF for download.
  12. R. Schnaubelt, M. Spitz: Local wellposedness of quasilinear Maxwell equations with conservative interface conditions. Commun. Math. Sci. 20 (2022), 2115-2145. PDF for download.
  13. S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: L^p-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal. 280 (2021), paper no. 108807, 22 pp. PDF for download.
  14. R. Schnaubelt, M. Spitz: Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evol. Equ. Control Theory 10 (2021), 155-198. PDF for download
  15. S. Herr, T. Lamm, T. Schmid, R. Schnaubelt: Biharmonic wave maps: Local wellposedness in high regularity. Nonlinearity 33 (2020), 2270-2305. PDF for download.
  16. M. Pokojovy, R. Schnaubelt: Boundary stabilization of quasilinear Maxwell equations. J. Differential Equations 268 (2020), 784-812. PDF for download.
  17. S. Herr, T. Lamm, R. Schnaubelt: Biharmonic wave maps into spheres. Proc. Amer. Math. Soc. 148 (2020), 787-796. PDF for download.
  18. I. Lasiecka, M. Pokojovy, R. Schnaubelt: Exponential decay of quasilinear Maxwell equations with interior conductivity. NoDEA Nonlinear Differential Equations Appl. 26 (2019), Paper No. 51, 34 pp. PDF for download.
  19. J. Eilinghoff, T. Jahnke, R. Schnaubelt: Error analysis of an energy preserving ADI splitting scheme for the Maxwell equations. SIAM J. Numer. Anal. 57 (2019), 1036-1057. PDF for download.
  20. L. Rzepnicki, R. Schnaubelt: Polynomial stability for a system of coupled strings. Bull. London Math. Soc. 50 (2018), 1117-1136. PDF for download.
  21. J. Eilinghoff, R. Schnaubelt: Error analysis  of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete Contin. Dyn. Syst. Ser. A.  38 (2018), 5685-5709. PDF for download.
  22. P. D'Ancona, S. Nicaise, R. Schnaubelt: Blow-up for nonlinear Maxwell equations. Electron. J. Differential Equations 2018, paper no. 73, 9 pp. PDF for download.
  23. M. Hochbruck, T. Pazur, R. Schnaubelt: Error analysis of implicit Runge--Kutta methods for quasilinear hyperbolic evolution equations. Numer. Math. 138 (2018), 557–579. PDF for download.