Publications of Roland Schnaubelt
Here you find a list of my publications since 2006 including links to the PDFs of the preprints. (Back to the main page.)
- C. Bresch, R. Schnaubelt: Local wellposedness of Maxwell systems with scalar-type retarded material laws. NoDEA Nonlinear Differential Equations Appl. 33 (2026), paper no. 13, 33 pp. PDF for download.
- S. Nicaise, R. Schnaubelt: Maxwell equations with localized internal damping: strong and polynomial stability. Commun. Anal. Mech. 17 (2025), 849-877. PDF for download.
- M. Ruff, R. Schnaubelt: Error analysis of the Lie splitting for semilinear wave equations with finite-energy solutions. Discrete Contin. Dyn. Syst. 45 (2025), 2969-3008. PDF for download.
- V. Müller, R. Schnaubelt, Y. Tomilov: On growth and instability for semilinear evolution equations: an abstract approach. Math. Ann. 389 (2024), 3885-3933. PDF for download.
- R. Nutt, R. Schnaubelt: Normal trace inequalities and decay of solutions to the nonlinear Maxwell system with absorbing boundary. J. Math. Anal. Appl. 532 (2024), paper no. 127915, 35 pp. PDF for download.
- R. Schippa, R. Schnaubelt: Strichartz estimates for Maxwell equations in media: the fully anisotropic case. J. Hyperbolic Differ. Equ. 20 (2023), 917-966. PDF for download.
- R. Schippa, R. Schnaubelt: Strichartz estimates for Maxwell equations in media: the structured case in two dimensions. Archiv Math. 121 (2023), 425-436. PDF for download.
- S. Ohrem, W. Reichel, R. Schnaubelt: Well-posedness for a (1+1)-dimensional wave equation with quasilinear boundary condition. Nonlinearity 36 (2023), 6712-6746. PDF for download.
- T. Dohnal, R. Schnaubelt, D. Tietz: Rigorous envelope approximation for interface wave-packets in Maxwell's equations with 2D localization. SIAM J. Math. Anal. 55 (2023), 6898-6939. PDF for download.
- R. Schippa, R. Schnaubelt: On quasilinear Maxwell equations in two dimensions. Pure Appl. Anal. 4 (2022), 313-365. PDF for download.
- S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: Multi-dimensional degenerate operators in L^p-spaces. Commun. Pure Appl. Anal. 21 (2022), 2115-2145. PDF for download.
- P. D'Ancona, R. Schnaubelt: Global Strichartz estimates for an inhomogeneous Maxwell system. Comm. Partial Differential Equations 47 (2022), 630-675. PDF for download.
- R. Schnaubelt, M. Spitz: Local wellposedness of quasilinear Maxwell equations with conservative interface conditions. Commun. Math. Sci. 20 (2022), 2115-2145. PDF for download.
- S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: L^p-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal. 280 (2021), paper no. 108807, 22 pp. PDF for download.
- R. Schnaubelt, M. Spitz: Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evol. Equ. Control Theory 10 (2021), 155-198. PDF for download.
- S. Herr, T. Lamm, T. Schmid, R. Schnaubelt: Biharmonic wave maps: Local wellposedness in high regularity. Nonlinearity 33 (2020), 2270-2305. PDF for download.
- M. Pokojovy, R. Schnaubelt: Boundary stabilization of quasilinear Maxwell equations. J. Differential Equations 268 (2020), 784-812. PDF for download.
- S. Herr, T. Lamm, R. Schnaubelt: Biharmonic wave maps into spheres. Proc. Amer. Math. Soc. 148 (2020), 787-796. PDF for download.
- I. Lasiecka, M. Pokojovy, R. Schnaubelt: Exponential decay of quasilinear Maxwell equations with interior conductivity. NoDEA Nonlinear Differential Equations Appl. 26 (2019), Paper No. 51, 34 pp. PDF for download.
- J. Eilinghoff, T. Jahnke, R. Schnaubelt: Error analysis of an energy preserving ADI splitting scheme for the Maxwell equations. SIAM J. Numer. Anal. 57 (2019), 1036-1057. PDF for download.
- L. Rzepnicki, R. Schnaubelt: Polynomial stability for a system of coupled strings. Bull. London Math. Soc. 50 (2018), 1117-1136. PDF for download.
- J. Eilinghoff, R. Schnaubelt: Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete Contin. Dyn. Syst. Ser. A. 38 (2018), 5685-5709. PDF for download.
- P. D'Ancona, S. Nicaise, R. Schnaubelt: Blow-up for nonlinear Maxwell equations. Electron. J. Differential Equations 2018, paper no. 73, 9 pp. PDF for download.
- M. Hochbruck, T. Pazur, R. Schnaubelt: Error analysis of implicit Runge-Kutta methods for quasilinear hyperbolic evolution equations. Numer. Math. 138 (2018), 557–579. PDF for download.
- T. Jahnke, M. Mikl, R. Schnaubelt: Strang splitting for a semilinear Schrödinger equation with damping and forcing. J. Math. Anal. Appl. 455 (2017), 1051-1071. PDF for download.
- Y. Latushkin, R. Schnaubelt, Xinyao Yang: Stable foliations near a traveling front for reaction diffusion systems. Discrete Contin. Dyn. Syst. Ser. B. 22 (2017), 3145-3165. PDF for download.
- R. Schnaubelt, M. Veraar: Regularity of stochastic Volterra equations by functional calculus methods. J. Evol. Equ. 17 (2017), 523-536. PDF for download.
- L. Maniar, M. Meyries, R. Schnaubelt: Null controllability for parabolic problems with dynamic boundary conditions of reactive-diffusive type. Evol. Equ. Control Theory 6 (2017), 381–407. PDF for download.
- R. Schnaubelt: Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Adv. Differential Equations 22 (2017), 541-592. PDF for download.
- J. Eilinghoff, R. Schnaubelt, K. Schratz: Fractional error estimates of splitting schemes for the nonlinear Schrödinger equation. J. Math. Anal. Appl. 442 (2016), 740-760. PDF for download.
- L. Lorenzi, A. Lunardi, R. Schnaubelt: Strong convergence of solutions to nonautonomous Kolmogorov equations. Proc. Amer. Math. Soc. 144 (2016), 3903-3917. PDF for download.
- W. Dörfler, H. Gerner, R. Schnaubelt: Local wellposedness of a quasilinear wave equation. Appl. Anal. 95 (2016), 2110-2123. PDF for download.
- E.M. Ait Benhassi, S. Boulite, L. Maniar, R. Schnaubelt: Polynomial internal and external stability of well-posed linear systems. In: W. Arendt, R. Chill and Y. Tomilov (Eds.), "Operator Semigroups meet Complex Analysis, Harmonic Analysis and Mathematical Physics (Proceedings Herrnhut 2013)," Birkhäuser, 2015, pp. 1-15. PDF for download.
- R. Denk, R. Schnaubelt: A structurally damped plate equation with Dirichlet-Neumann boundary conditions. J. Differential Equations 259 (2015), 1323-1353. PDF for download.
- D. Hundertmark, P. Kunstmann, R. Schnaubelt: Stability of dispersion managed solitons for vanishing average dispersion. Archiv Math. 104 (2015), 283-288. PDF for download.
- M. Hochbruck, T. Jahnke, R. Schnaubelt: Convergence of an ADI splitting for Maxwells equations. Numer. Math. 129 (2015), 535-561. PDF for download.
- S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: Second order elliptic operators in L_2 with first order degeneration at the boundary and outward pointing drift. Commun. Pure Appl. Anal. 14 (2015), 407-419. PDF for download.
- R. Schnaubelt: Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete Contin. Dyn. Syst. Ser. A 35 (2015), 1193-1230. PDF for download.
- R. Johnson, Y. Latushkin, R. Schnaubelt: Reduction principle and asymptotic phase for center manifolds of parabolic systems with nonlinear boundary conditions. J. Dynam. Differential Equations 26 (2014), 243-266. PDF for download.
- M. Baroun, B. Jacob, L. Maniar, R. Schnaubelt: Semilinear observation systems. Systems Control Lett. 62 (2013), 924-929. PDF for download.
- S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: One-dimensional degenerate operators in L^p-spaces. J. Math. Anal. Appl. 402 (2013), 308-318. PDF for download.
- M. Meyries, R. Schnaubelt: Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions. Math. Nachr. 285 (2012), 1032-1051. PDF for download.
- M. Meyries, R. Schnaubelt: Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights. J. Funct. Anal. 262 (2012), 1200-1229. PDF for download.
- S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: Degenerate operators of Tricomi type in L^p-spaces and in spaces of continuous functions. J. Differential Equations 252 (2012), 1182-1212. PDF for download.
- L. Maniar, R. Schnaubelt: Stability of periodic solutions to parabolic problems with nonlinear boundary conditions. Adv. Differential Equations 17 (2012), 557-604. PDF for download.
- R. Schnaubelt, M. Veraar: Stochastic equations with boundary noise. J. Escher et.al. (Eds.), "Parabolic Problems: Herbert Amann Festschrift," Birkhäuser, 2011, pp. 609-629. PDF for download.
- R. Schnaubelt, G. Weiss: Two classes of passive time-varying well-posed linear systems. Math. Control Signals Systems 21 (2010), 265-301. PDF for download.
- M. Geissert, L. Lorenzi, R. Schnaubelt: L^p-regularity for parabolic operators with unbounded time-dependent coefficients. Ann. Mat. Pura Appl. (4) 189 (2010), 303-333. PDF for download.
- R. Schnaubelt, M. Veraar: Structurally damped plate and wave equations with random point force in arbitrary space dimensions. Differential Integral Equations 23 (2010), 957-988. PDF for download.
- G. Metafune, D. Pallara, P.J. Rabier, R. Schnaubelt: Uniqueness for elliptic operators on L^p(R^N) with unbounded coefficients. Forum Math. 22 (2010), 583-601. PDF for download.
- M. Baroun, L. Maniar, R. Schnaubelt: Almost periodicity and Fredholmity of parabolic evolution equations with inhomogeneous boundary values. Integral Equations Operator Theory 65 (2009), 169-193. PDF for download.
- M. Hieber, L. Lorenzi, J. Prüss, A. Rhandi, R. Schnaubelt: Global properties of generalized Ornstein-Uhlenbeck operators on L^p(R^N,R^N) with more than linearly growing coefficients. J. Math. Anal. Appl. 350 (2009), 100-121. PDF for download.
- J. Prüss, R. Schnaubelt, Rico Zacher: Global asymptotic stability of equilibria in models for virus dynamics. Math. Model. Nat. Phenom. 3 (2008), 126-142. PDF for download.
- L. Maniar, R. Schnaubelt: Robustness of Fredholm properties of parabolic evolution equations under boundary perturbations. J. Lond. Math. Soc. (2) 77 (2008), 558-580. PDF for download.
- Y. Latushkin, J. Prüss, R. Schnaubelt: Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete Contin. Dyn. Syst. Ser. B 9 (2008), 595-633. PDF for download.
- S. Hadd, A. Rhandi, R. Schnaubelt: Feedbacks for time varying regular linear systems with input and state delays. IMA J. Math. Control Inform. 25 (2008), 85-110. PDF for download.
- L. Maniar, R. Schnaubelt: The Fredholm alternative for parabolic evolution equations with inhomogeneous boundary conditions. J. Differential Equations 235 (2007), 308-339. PDF for download.
- B. Jacob, R. Schnaubelt: Observability of polynomially stable systems. Systems Control Lett. 56 (2007), 277-284. PDF for download.
- Y. Latushkin, A. Pogan, R. Schnaubelt: Dichotomy and Fredholm properties of evolution equations. J. Operator Theory 58 (2007), 387-414. PDF for download.
- Y. Latushkin, J. Prüss, R. Schnaubelt: Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions. J. Evol. Equ. 6 (2006), 537-576. PDF for download.
- R. Schnaubelt: Exponential and polynomial dichotomies of operator semigroups in Banach spaces. Studia Math. 175 (2006), 121-138. PDF for download.
- J. Prüss, A. Rhandi, R. Schnaubelt: The domain of elliptic operators on L^p(R^d) with unbounded drift coefficients. Houston J. Math. 32 (2006), 563-576. PDF for download.
- A. Batkai, K.-J. Engel, J. Prüss. R. Schnaubelt: Polynomial asymptotic stability of operator semigroups. Math. Nachr. 279 (2006), 1425-1440. PDF for download.