Publications
Here you will find my more recent publications including links to the PDFs of the preprints. (Back to the main page.)
- S. Nicaise, R. Schnaubelt: Maxwell equations with localized internal damping: strong and polynomial stability. Commun. Anal. Mech. 17 (2025), 849-877. PDF for download.
- M. Ruff, R. Schnaubelt: Error analysis of the Lie splitting for semilinear wave equations with finite-energy solutions. Discrete Contin. Dyn. Syst. 45 (2025), 2969-3008. PDF for download.
- V. Müller, R. Schnaubelt, Y. Tomilov: On growth and instability for semilinear evolution equations: an abstract approach. Math. Ann. 389 (2024), 3885-3933. PDF for download.
- R. Nutt, R. Schnaubelt: Normal trace inequalities and decay of solutions to the nonlinear Maxwell system with absorbing boundary. J. Math. Anal. Appl. 532 (2024), paper no. 127915, 35 pp. PDF for download.
- R. Schippa, R. Schnaubelt: Strichartz estimates for Maxwell equations in media: the fully anisotropic case. J. Hyperbolic Differ. Equ. 20 (2023), 917-966. PDF for download.
- R. Schippa, R. Schnaubelt: Strichartz estimates for Maxwell equations in media: the structured case in two dimensions. Archiv Math. 121 (2023), 425-436. PDF for download.
- S. Ohrem, W. Reichel, R. Schnaubelt: Well-posedness for a (1+1)-dimensional wave equation with quasilinear boundary condition. Nonlinearity 36 (2023), 6712-6746. PDF for download.
- T. Dohnal, R. Schnaubelt, D. Tietz: Rigorous envelope approximation for interface wave-packets in Maxwell's equations with 2D localization. SIAM J. Math. Anal. 55 (2023), 6898-6939. PDF for download.
- R. Schippa, R. Schnaubelt: On quasilinear Maxwell equations in two dimensions. Pure Appl. Anal. 4 (2022), 313-365. PDF for download.
- S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: Multi-dimensional degenerate operators in L^p-spaces. Commun. Pure Appl. Anal. 21 (2022), 2115-2145. PDF for download.
- P. D'Ancona, R. Schnaubelt: Global Strichartz estimates for an inhomogeneous Maxwell system. Comm. Partial Differential Equations 47 (2022), 630-675. PDF for download.
- R. Schnaubelt, M. Spitz: Local wellposedness of quasilinear Maxwell equations with conservative interface conditions. Commun. Math. Sci. 20 (2022), 2115-2145. PDF for download.
- S. Fornaro, G. Metafune, D. Pallara, R. Schnaubelt: L^p-spectrum of degenerate hypoelliptic Ornstein-Uhlenbeck operators. J. Funct. Anal. 280 (2021), paper no. 108807, 22 pp. PDF for download.
- R. Schnaubelt, M. Spitz: Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evol. Equ. Control Theory 10 (2021), 155-198. PDF for download.
- S. Herr, T. Lamm, T. Schmid, R. Schnaubelt: Biharmonic wave maps: Local wellposedness in high regularity. Nonlinearity 33 (2020), 2270-2305. PDF for download.
- M. Pokojovy, R. Schnaubelt: Boundary stabilization of quasilinear Maxwell equations. J. Differential Equations 268 (2020), 784-812. PDF for download.
- S. Herr, T. Lamm, R. Schnaubelt: Biharmonic wave maps into spheres. Proc. Amer. Math. Soc. 148 (2020), 787-796. PDF for download.
- I. Lasiecka, M. Pokojovy, R. Schnaubelt: Exponential decay of quasilinear Maxwell equations with interior conductivity. NoDEA Nonlinear Differential Equations Appl. 26 (2019), Paper No. 51, 34 pp. PDF for download.
- J. Eilinghoff, T. Jahnke, R. Schnaubelt: Error analysis of an energy preserving ADI splitting scheme for the Maxwell equations. SIAM J. Numer. Anal. 57 (2019), 1036-1057. PDF for download.
- L. Rzepnicki, R. Schnaubelt: Polynomial stability for a system of coupled strings. Bull. London Math. Soc. 50 (2018), 1117-1136. PDF for download.
- J. Eilinghoff, R. Schnaubelt: Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete Contin. Dyn. Syst. Ser. A. 38 (2018), 5685-5709. PDF for download.
- P. D'Ancona, S. Nicaise, R. Schnaubelt: Blow-up for nonlinear Maxwell equations. Electron. J. Differential Equations 2018, paper no. 73, 9 pp. PDF for download.
- M. Hochbruck, T. Pazur, R. Schnaubelt: Error analysis of implicit Runge--Kutta methods for quasilinear hyperbolic evolution equations. Numer. Math. 138 (2018), 557–579. PDF for download.